1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * inode.c - NILFS inode operations.
4 *
5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 *
7 * Written by Ryusuke Konishi.
8 *
9 */
10
11 #include <linux/buffer_head.h>
12 #include <linux/gfp.h>
13 #include <linux/mpage.h>
14 #include <linux/pagemap.h>
15 #include <linux/writeback.h>
16 #include <linux/uio.h>
17 #include "nilfs.h"
18 #include "btnode.h"
19 #include "segment.h"
20 #include "page.h"
21 #include "mdt.h"
22 #include "cpfile.h"
23 #include "ifile.h"
24
25 /**
26 * struct nilfs_iget_args - arguments used during comparison between inodes
27 * @ino: inode number
28 * @cno: checkpoint number
29 * @root: pointer on NILFS root object (mounted checkpoint)
30 * @for_gc: inode for GC flag
31 * @for_btnc: inode for B-tree node cache flag
32 * @for_shadow: inode for shadowed page cache flag
33 */
34 struct nilfs_iget_args {
35 u64 ino;
36 __u64 cno;
37 struct nilfs_root *root;
38 bool for_gc;
39 bool for_btnc;
40 bool for_shadow;
41 };
42
43 static int nilfs_iget_test(struct inode *inode, void *opaque);
44
nilfs_inode_add_blocks(struct inode * inode,int n)45 void nilfs_inode_add_blocks(struct inode *inode, int n)
46 {
47 struct nilfs_root *root = NILFS_I(inode)->i_root;
48
49 inode_add_bytes(inode, i_blocksize(inode) * n);
50 if (root)
51 atomic64_add(n, &root->blocks_count);
52 }
53
nilfs_inode_sub_blocks(struct inode * inode,int n)54 void nilfs_inode_sub_blocks(struct inode *inode, int n)
55 {
56 struct nilfs_root *root = NILFS_I(inode)->i_root;
57
58 inode_sub_bytes(inode, i_blocksize(inode) * n);
59 if (root)
60 atomic64_sub(n, &root->blocks_count);
61 }
62
63 /**
64 * nilfs_get_block() - get a file block on the filesystem (callback function)
65 * @inode - inode struct of the target file
66 * @blkoff - file block number
67 * @bh_result - buffer head to be mapped on
68 * @create - indicate whether allocating the block or not when it has not
69 * been allocated yet.
70 *
71 * This function does not issue actual read request of the specified data
72 * block. It is done by VFS.
73 */
nilfs_get_block(struct inode * inode,sector_t blkoff,struct buffer_head * bh_result,int create)74 int nilfs_get_block(struct inode *inode, sector_t blkoff,
75 struct buffer_head *bh_result, int create)
76 {
77 struct nilfs_inode_info *ii = NILFS_I(inode);
78 struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
79 __u64 blknum = 0;
80 int err = 0, ret;
81 unsigned int maxblocks = bh_result->b_size >> inode->i_blkbits;
82
83 down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
84 ret = nilfs_bmap_lookup_contig(ii->i_bmap, blkoff, &blknum, maxblocks);
85 up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
86 if (ret >= 0) { /* found */
87 map_bh(bh_result, inode->i_sb, blknum);
88 if (ret > 0)
89 bh_result->b_size = (ret << inode->i_blkbits);
90 goto out;
91 }
92 /* data block was not found */
93 if (ret == -ENOENT && create) {
94 struct nilfs_transaction_info ti;
95
96 bh_result->b_blocknr = 0;
97 err = nilfs_transaction_begin(inode->i_sb, &ti, 1);
98 if (unlikely(err))
99 goto out;
100 err = nilfs_bmap_insert(ii->i_bmap, blkoff,
101 (unsigned long)bh_result);
102 if (unlikely(err != 0)) {
103 if (err == -EEXIST) {
104 /*
105 * The get_block() function could be called
106 * from multiple callers for an inode.
107 * However, the page having this block must
108 * be locked in this case.
109 */
110 nilfs_warn(inode->i_sb,
111 "%s (ino=%lu): a race condition while inserting a data block at offset=%llu",
112 __func__, inode->i_ino,
113 (unsigned long long)blkoff);
114 err = -EAGAIN;
115 }
116 nilfs_transaction_abort(inode->i_sb);
117 goto out;
118 }
119 nilfs_mark_inode_dirty_sync(inode);
120 nilfs_transaction_commit(inode->i_sb); /* never fails */
121 /* Error handling should be detailed */
122 set_buffer_new(bh_result);
123 set_buffer_delay(bh_result);
124 map_bh(bh_result, inode->i_sb, 0);
125 /* Disk block number must be changed to proper value */
126
127 } else if (ret == -ENOENT) {
128 /*
129 * not found is not error (e.g. hole); must return without
130 * the mapped state flag.
131 */
132 ;
133 } else {
134 err = ret;
135 }
136
137 out:
138 return err;
139 }
140
141 /**
142 * nilfs_readpage() - implement readpage() method of nilfs_aops {}
143 * address_space_operations.
144 * @file - file struct of the file to be read
145 * @page - the page to be read
146 */
nilfs_readpage(struct file * file,struct page * page)147 static int nilfs_readpage(struct file *file, struct page *page)
148 {
149 return mpage_readpage(page, nilfs_get_block);
150 }
151
152 /**
153 * nilfs_readpages() - implement readpages() method of nilfs_aops {}
154 * address_space_operations.
155 * @file - file struct of the file to be read
156 * @mapping - address_space struct used for reading multiple pages
157 * @pages - the pages to be read
158 * @nr_pages - number of pages to be read
159 */
nilfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned int nr_pages)160 static int nilfs_readpages(struct file *file, struct address_space *mapping,
161 struct list_head *pages, unsigned int nr_pages)
162 {
163 return mpage_readpages(mapping, pages, nr_pages, nilfs_get_block);
164 }
165
nilfs_writepages(struct address_space * mapping,struct writeback_control * wbc)166 static int nilfs_writepages(struct address_space *mapping,
167 struct writeback_control *wbc)
168 {
169 struct inode *inode = mapping->host;
170 int err = 0;
171
172 if (sb_rdonly(inode->i_sb)) {
173 nilfs_clear_dirty_pages(mapping, false);
174 return -EROFS;
175 }
176
177 if (wbc->sync_mode == WB_SYNC_ALL)
178 err = nilfs_construct_dsync_segment(inode->i_sb, inode,
179 wbc->range_start,
180 wbc->range_end);
181 return err;
182 }
183
nilfs_writepage(struct page * page,struct writeback_control * wbc)184 static int nilfs_writepage(struct page *page, struct writeback_control *wbc)
185 {
186 struct inode *inode = page->mapping->host;
187 int err;
188
189 if (sb_rdonly(inode->i_sb)) {
190 /*
191 * It means that filesystem was remounted in read-only
192 * mode because of error or metadata corruption. But we
193 * have dirty pages that try to be flushed in background.
194 * So, here we simply discard this dirty page.
195 */
196 nilfs_clear_dirty_page(page, false);
197 unlock_page(page);
198 return -EROFS;
199 }
200
201 redirty_page_for_writepage(wbc, page);
202 unlock_page(page);
203
204 if (wbc->sync_mode == WB_SYNC_ALL) {
205 err = nilfs_construct_segment(inode->i_sb);
206 if (unlikely(err))
207 return err;
208 } else if (wbc->for_reclaim)
209 nilfs_flush_segment(inode->i_sb, inode->i_ino);
210
211 return 0;
212 }
213
nilfs_set_page_dirty(struct page * page)214 static int nilfs_set_page_dirty(struct page *page)
215 {
216 struct inode *inode = page->mapping->host;
217 int ret = __set_page_dirty_nobuffers(page);
218
219 if (page_has_buffers(page)) {
220 unsigned int nr_dirty = 0;
221 struct buffer_head *bh, *head;
222
223 /*
224 * This page is locked by callers, and no other thread
225 * concurrently marks its buffers dirty since they are
226 * only dirtied through routines in fs/buffer.c in
227 * which call sites of mark_buffer_dirty are protected
228 * by page lock.
229 */
230 bh = head = page_buffers(page);
231 do {
232 /* Do not mark hole blocks dirty */
233 if (buffer_dirty(bh) || !buffer_mapped(bh))
234 continue;
235
236 set_buffer_dirty(bh);
237 nr_dirty++;
238 } while (bh = bh->b_this_page, bh != head);
239
240 if (nr_dirty)
241 nilfs_set_file_dirty(inode, nr_dirty);
242 } else if (ret) {
243 unsigned int nr_dirty = 1 << (PAGE_SHIFT - inode->i_blkbits);
244
245 nilfs_set_file_dirty(inode, nr_dirty);
246 }
247 return ret;
248 }
249
nilfs_write_failed(struct address_space * mapping,loff_t to)250 void nilfs_write_failed(struct address_space *mapping, loff_t to)
251 {
252 struct inode *inode = mapping->host;
253
254 if (to > inode->i_size) {
255 truncate_pagecache(inode, inode->i_size);
256 nilfs_truncate(inode);
257 }
258 }
259
nilfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)260 static int nilfs_write_begin(struct file *file, struct address_space *mapping,
261 loff_t pos, unsigned len, unsigned flags,
262 struct page **pagep, void **fsdata)
263
264 {
265 struct inode *inode = mapping->host;
266 int err = nilfs_transaction_begin(inode->i_sb, NULL, 1);
267
268 if (unlikely(err))
269 return err;
270
271 err = block_write_begin(mapping, pos, len, flags, pagep,
272 nilfs_get_block);
273 if (unlikely(err)) {
274 nilfs_write_failed(mapping, pos + len);
275 nilfs_transaction_abort(inode->i_sb);
276 }
277 return err;
278 }
279
nilfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)280 static int nilfs_write_end(struct file *file, struct address_space *mapping,
281 loff_t pos, unsigned len, unsigned copied,
282 struct page *page, void *fsdata)
283 {
284 struct inode *inode = mapping->host;
285 unsigned int start = pos & (PAGE_SIZE - 1);
286 unsigned int nr_dirty;
287 int err;
288
289 nr_dirty = nilfs_page_count_clean_buffers(page, start,
290 start + copied);
291 copied = generic_write_end(file, mapping, pos, len, copied, page,
292 fsdata);
293 nilfs_set_file_dirty(inode, nr_dirty);
294 err = nilfs_transaction_commit(inode->i_sb);
295 return err ? : copied;
296 }
297
298 static ssize_t
nilfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)299 nilfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
300 {
301 struct inode *inode = file_inode(iocb->ki_filp);
302
303 if (iov_iter_rw(iter) == WRITE)
304 return 0;
305
306 /* Needs synchronization with the cleaner */
307 return blockdev_direct_IO(iocb, inode, iter, nilfs_get_block);
308 }
309
310 const struct address_space_operations nilfs_aops = {
311 .writepage = nilfs_writepage,
312 .readpage = nilfs_readpage,
313 .writepages = nilfs_writepages,
314 .set_page_dirty = nilfs_set_page_dirty,
315 .readpages = nilfs_readpages,
316 .write_begin = nilfs_write_begin,
317 .write_end = nilfs_write_end,
318 /* .releasepage = nilfs_releasepage, */
319 .invalidatepage = block_invalidatepage,
320 .direct_IO = nilfs_direct_IO,
321 .is_partially_uptodate = block_is_partially_uptodate,
322 };
323
nilfs_insert_inode_locked(struct inode * inode,struct nilfs_root * root,unsigned long ino)324 static int nilfs_insert_inode_locked(struct inode *inode,
325 struct nilfs_root *root,
326 unsigned long ino)
327 {
328 struct nilfs_iget_args args = {
329 .ino = ino, .root = root, .cno = 0, .for_gc = false,
330 .for_btnc = false, .for_shadow = false
331 };
332
333 return insert_inode_locked4(inode, ino, nilfs_iget_test, &args);
334 }
335
nilfs_new_inode(struct inode * dir,umode_t mode)336 struct inode *nilfs_new_inode(struct inode *dir, umode_t mode)
337 {
338 struct super_block *sb = dir->i_sb;
339 struct the_nilfs *nilfs = sb->s_fs_info;
340 struct inode *inode;
341 struct nilfs_inode_info *ii;
342 struct nilfs_root *root;
343 struct buffer_head *bh;
344 int err = -ENOMEM;
345 ino_t ino;
346
347 inode = new_inode(sb);
348 if (unlikely(!inode))
349 goto failed;
350
351 mapping_set_gfp_mask(inode->i_mapping,
352 mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS));
353
354 root = NILFS_I(dir)->i_root;
355 ii = NILFS_I(inode);
356 ii->i_state = BIT(NILFS_I_NEW);
357 ii->i_root = root;
358
359 err = nilfs_ifile_create_inode(root->ifile, &ino, &bh);
360 if (unlikely(err))
361 goto failed_ifile_create_inode;
362 /* reference count of i_bh inherits from nilfs_mdt_read_block() */
363
364 if (unlikely(ino < NILFS_USER_INO)) {
365 nilfs_msg(sb, KERN_WARNING,
366 "inode bitmap is inconsistent for reserved inodes");
367 do {
368 brelse(bh);
369 err = nilfs_ifile_create_inode(root->ifile, &ino, &bh);
370 if (unlikely(err))
371 goto failed_ifile_create_inode;
372 } while (ino < NILFS_USER_INO);
373
374 nilfs_msg(sb, KERN_INFO,
375 "repaired inode bitmap for reserved inodes");
376 }
377 ii->i_bh = bh;
378
379 atomic64_inc(&root->inodes_count);
380 inode_init_owner(inode, dir, mode);
381 inode->i_ino = ino;
382 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
383
384 if (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) {
385 err = nilfs_bmap_read(ii->i_bmap, NULL);
386 if (err < 0)
387 goto failed_after_creation;
388
389 set_bit(NILFS_I_BMAP, &ii->i_state);
390 /* No lock is needed; iget() ensures it. */
391 }
392
393 ii->i_flags = nilfs_mask_flags(
394 mode, NILFS_I(dir)->i_flags & NILFS_FL_INHERITED);
395
396 /* ii->i_file_acl = 0; */
397 /* ii->i_dir_acl = 0; */
398 ii->i_dir_start_lookup = 0;
399 nilfs_set_inode_flags(inode);
400 spin_lock(&nilfs->ns_next_gen_lock);
401 inode->i_generation = nilfs->ns_next_generation++;
402 spin_unlock(&nilfs->ns_next_gen_lock);
403 if (nilfs_insert_inode_locked(inode, root, ino) < 0) {
404 err = -EIO;
405 goto failed_after_creation;
406 }
407
408 err = nilfs_init_acl(inode, dir);
409 if (unlikely(err))
410 /*
411 * Never occur. When supporting nilfs_init_acl(),
412 * proper cancellation of above jobs should be considered.
413 */
414 goto failed_after_creation;
415
416 return inode;
417
418 failed_after_creation:
419 clear_nlink(inode);
420 unlock_new_inode(inode);
421 iput(inode); /*
422 * raw_inode will be deleted through
423 * nilfs_evict_inode().
424 */
425 goto failed;
426
427 failed_ifile_create_inode:
428 make_bad_inode(inode);
429 iput(inode);
430 failed:
431 return ERR_PTR(err);
432 }
433
nilfs_set_inode_flags(struct inode * inode)434 void nilfs_set_inode_flags(struct inode *inode)
435 {
436 unsigned int flags = NILFS_I(inode)->i_flags;
437 unsigned int new_fl = 0;
438
439 if (flags & FS_SYNC_FL)
440 new_fl |= S_SYNC;
441 if (flags & FS_APPEND_FL)
442 new_fl |= S_APPEND;
443 if (flags & FS_IMMUTABLE_FL)
444 new_fl |= S_IMMUTABLE;
445 if (flags & FS_NOATIME_FL)
446 new_fl |= S_NOATIME;
447 if (flags & FS_DIRSYNC_FL)
448 new_fl |= S_DIRSYNC;
449 inode_set_flags(inode, new_fl, S_SYNC | S_APPEND | S_IMMUTABLE |
450 S_NOATIME | S_DIRSYNC);
451 }
452
nilfs_read_inode_common(struct inode * inode,struct nilfs_inode * raw_inode)453 int nilfs_read_inode_common(struct inode *inode,
454 struct nilfs_inode *raw_inode)
455 {
456 struct nilfs_inode_info *ii = NILFS_I(inode);
457 int err;
458
459 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
460 i_uid_write(inode, le32_to_cpu(raw_inode->i_uid));
461 i_gid_write(inode, le32_to_cpu(raw_inode->i_gid));
462 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
463 inode->i_size = le64_to_cpu(raw_inode->i_size);
464 inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
465 inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
466 inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
467 inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
468 inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
469 inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
470 if (nilfs_is_metadata_file_inode(inode) && !S_ISREG(inode->i_mode))
471 return -EIO; /* this inode is for metadata and corrupted */
472 if (inode->i_nlink == 0)
473 return -ESTALE; /* this inode is deleted */
474
475 inode->i_blocks = le64_to_cpu(raw_inode->i_blocks);
476 ii->i_flags = le32_to_cpu(raw_inode->i_flags);
477 #if 0
478 ii->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
479 ii->i_dir_acl = S_ISREG(inode->i_mode) ?
480 0 : le32_to_cpu(raw_inode->i_dir_acl);
481 #endif
482 ii->i_dir_start_lookup = 0;
483 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
484
485 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
486 S_ISLNK(inode->i_mode)) {
487 err = nilfs_bmap_read(ii->i_bmap, raw_inode);
488 if (err < 0)
489 return err;
490 set_bit(NILFS_I_BMAP, &ii->i_state);
491 /* No lock is needed; iget() ensures it. */
492 }
493 return 0;
494 }
495
__nilfs_read_inode(struct super_block * sb,struct nilfs_root * root,unsigned long ino,struct inode * inode)496 static int __nilfs_read_inode(struct super_block *sb,
497 struct nilfs_root *root, unsigned long ino,
498 struct inode *inode)
499 {
500 struct the_nilfs *nilfs = sb->s_fs_info;
501 struct buffer_head *bh;
502 struct nilfs_inode *raw_inode;
503 int err;
504
505 down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
506 err = nilfs_ifile_get_inode_block(root->ifile, ino, &bh);
507 if (unlikely(err))
508 goto bad_inode;
509
510 raw_inode = nilfs_ifile_map_inode(root->ifile, ino, bh);
511
512 err = nilfs_read_inode_common(inode, raw_inode);
513 if (err)
514 goto failed_unmap;
515
516 if (S_ISREG(inode->i_mode)) {
517 inode->i_op = &nilfs_file_inode_operations;
518 inode->i_fop = &nilfs_file_operations;
519 inode->i_mapping->a_ops = &nilfs_aops;
520 } else if (S_ISDIR(inode->i_mode)) {
521 inode->i_op = &nilfs_dir_inode_operations;
522 inode->i_fop = &nilfs_dir_operations;
523 inode->i_mapping->a_ops = &nilfs_aops;
524 } else if (S_ISLNK(inode->i_mode)) {
525 inode->i_op = &nilfs_symlink_inode_operations;
526 inode_nohighmem(inode);
527 inode->i_mapping->a_ops = &nilfs_aops;
528 } else {
529 inode->i_op = &nilfs_special_inode_operations;
530 init_special_inode(
531 inode, inode->i_mode,
532 huge_decode_dev(le64_to_cpu(raw_inode->i_device_code)));
533 }
534 nilfs_ifile_unmap_inode(root->ifile, ino, bh);
535 brelse(bh);
536 up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
537 nilfs_set_inode_flags(inode);
538 mapping_set_gfp_mask(inode->i_mapping,
539 mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS));
540 return 0;
541
542 failed_unmap:
543 nilfs_ifile_unmap_inode(root->ifile, ino, bh);
544 brelse(bh);
545
546 bad_inode:
547 up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
548 return err;
549 }
550
nilfs_iget_test(struct inode * inode,void * opaque)551 static int nilfs_iget_test(struct inode *inode, void *opaque)
552 {
553 struct nilfs_iget_args *args = opaque;
554 struct nilfs_inode_info *ii;
555
556 if (args->ino != inode->i_ino || args->root != NILFS_I(inode)->i_root)
557 return 0;
558
559 ii = NILFS_I(inode);
560 if (test_bit(NILFS_I_BTNC, &ii->i_state)) {
561 if (!args->for_btnc)
562 return 0;
563 } else if (args->for_btnc) {
564 return 0;
565 }
566 if (test_bit(NILFS_I_SHADOW, &ii->i_state)) {
567 if (!args->for_shadow)
568 return 0;
569 } else if (args->for_shadow) {
570 return 0;
571 }
572
573 if (!test_bit(NILFS_I_GCINODE, &ii->i_state))
574 return !args->for_gc;
575
576 return args->for_gc && args->cno == ii->i_cno;
577 }
578
nilfs_iget_set(struct inode * inode,void * opaque)579 static int nilfs_iget_set(struct inode *inode, void *opaque)
580 {
581 struct nilfs_iget_args *args = opaque;
582
583 inode->i_ino = args->ino;
584 NILFS_I(inode)->i_cno = args->cno;
585 NILFS_I(inode)->i_root = args->root;
586 if (args->root && args->ino == NILFS_ROOT_INO)
587 nilfs_get_root(args->root);
588
589 if (args->for_gc)
590 NILFS_I(inode)->i_state = BIT(NILFS_I_GCINODE);
591 if (args->for_btnc)
592 NILFS_I(inode)->i_state |= BIT(NILFS_I_BTNC);
593 if (args->for_shadow)
594 NILFS_I(inode)->i_state |= BIT(NILFS_I_SHADOW);
595 return 0;
596 }
597
nilfs_ilookup(struct super_block * sb,struct nilfs_root * root,unsigned long ino)598 struct inode *nilfs_ilookup(struct super_block *sb, struct nilfs_root *root,
599 unsigned long ino)
600 {
601 struct nilfs_iget_args args = {
602 .ino = ino, .root = root, .cno = 0, .for_gc = false,
603 .for_btnc = false, .for_shadow = false
604 };
605
606 return ilookup5(sb, ino, nilfs_iget_test, &args);
607 }
608
nilfs_iget_locked(struct super_block * sb,struct nilfs_root * root,unsigned long ino)609 struct inode *nilfs_iget_locked(struct super_block *sb, struct nilfs_root *root,
610 unsigned long ino)
611 {
612 struct nilfs_iget_args args = {
613 .ino = ino, .root = root, .cno = 0, .for_gc = false,
614 .for_btnc = false, .for_shadow = false
615 };
616
617 return iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args);
618 }
619
nilfs_iget(struct super_block * sb,struct nilfs_root * root,unsigned long ino)620 struct inode *nilfs_iget(struct super_block *sb, struct nilfs_root *root,
621 unsigned long ino)
622 {
623 struct inode *inode;
624 int err;
625
626 inode = nilfs_iget_locked(sb, root, ino);
627 if (unlikely(!inode))
628 return ERR_PTR(-ENOMEM);
629 if (!(inode->i_state & I_NEW))
630 return inode;
631
632 err = __nilfs_read_inode(sb, root, ino, inode);
633 if (unlikely(err)) {
634 iget_failed(inode);
635 return ERR_PTR(err);
636 }
637 unlock_new_inode(inode);
638 return inode;
639 }
640
nilfs_iget_for_gc(struct super_block * sb,unsigned long ino,__u64 cno)641 struct inode *nilfs_iget_for_gc(struct super_block *sb, unsigned long ino,
642 __u64 cno)
643 {
644 struct nilfs_iget_args args = {
645 .ino = ino, .root = NULL, .cno = cno, .for_gc = true,
646 .for_btnc = false, .for_shadow = false
647 };
648 struct inode *inode;
649 int err;
650
651 inode = iget5_locked(sb, ino, nilfs_iget_test, nilfs_iget_set, &args);
652 if (unlikely(!inode))
653 return ERR_PTR(-ENOMEM);
654 if (!(inode->i_state & I_NEW))
655 return inode;
656
657 err = nilfs_init_gcinode(inode);
658 if (unlikely(err)) {
659 iget_failed(inode);
660 return ERR_PTR(err);
661 }
662 unlock_new_inode(inode);
663 return inode;
664 }
665
666 /**
667 * nilfs_attach_btree_node_cache - attach a B-tree node cache to the inode
668 * @inode: inode object
669 *
670 * nilfs_attach_btree_node_cache() attaches a B-tree node cache to @inode,
671 * or does nothing if the inode already has it. This function allocates
672 * an additional inode to maintain page cache of B-tree nodes one-on-one.
673 *
674 * Return Value: On success, 0 is returned. On errors, one of the following
675 * negative error code is returned.
676 *
677 * %-ENOMEM - Insufficient memory available.
678 */
nilfs_attach_btree_node_cache(struct inode * inode)679 int nilfs_attach_btree_node_cache(struct inode *inode)
680 {
681 struct nilfs_inode_info *ii = NILFS_I(inode);
682 struct inode *btnc_inode;
683 struct nilfs_iget_args args;
684
685 if (ii->i_assoc_inode)
686 return 0;
687
688 args.ino = inode->i_ino;
689 args.root = ii->i_root;
690 args.cno = ii->i_cno;
691 args.for_gc = test_bit(NILFS_I_GCINODE, &ii->i_state) != 0;
692 args.for_btnc = true;
693 args.for_shadow = test_bit(NILFS_I_SHADOW, &ii->i_state) != 0;
694
695 btnc_inode = iget5_locked(inode->i_sb, inode->i_ino, nilfs_iget_test,
696 nilfs_iget_set, &args);
697 if (unlikely(!btnc_inode))
698 return -ENOMEM;
699 if (btnc_inode->i_state & I_NEW) {
700 nilfs_init_btnc_inode(btnc_inode);
701 unlock_new_inode(btnc_inode);
702 }
703 NILFS_I(btnc_inode)->i_assoc_inode = inode;
704 NILFS_I(btnc_inode)->i_bmap = ii->i_bmap;
705 ii->i_assoc_inode = btnc_inode;
706
707 return 0;
708 }
709
710 /**
711 * nilfs_detach_btree_node_cache - detach the B-tree node cache from the inode
712 * @inode: inode object
713 *
714 * nilfs_detach_btree_node_cache() detaches the B-tree node cache and its
715 * holder inode bound to @inode, or does nothing if @inode doesn't have it.
716 */
nilfs_detach_btree_node_cache(struct inode * inode)717 void nilfs_detach_btree_node_cache(struct inode *inode)
718 {
719 struct nilfs_inode_info *ii = NILFS_I(inode);
720 struct inode *btnc_inode = ii->i_assoc_inode;
721
722 if (btnc_inode) {
723 NILFS_I(btnc_inode)->i_assoc_inode = NULL;
724 ii->i_assoc_inode = NULL;
725 iput(btnc_inode);
726 }
727 }
728
729 /**
730 * nilfs_iget_for_shadow - obtain inode for shadow mapping
731 * @inode: inode object that uses shadow mapping
732 *
733 * nilfs_iget_for_shadow() allocates a pair of inodes that holds page
734 * caches for shadow mapping. The page cache for data pages is set up
735 * in one inode and the one for b-tree node pages is set up in the
736 * other inode, which is attached to the former inode.
737 *
738 * Return Value: On success, a pointer to the inode for data pages is
739 * returned. On errors, one of the following negative error code is returned
740 * in a pointer type.
741 *
742 * %-ENOMEM - Insufficient memory available.
743 */
nilfs_iget_for_shadow(struct inode * inode)744 struct inode *nilfs_iget_for_shadow(struct inode *inode)
745 {
746 struct nilfs_iget_args args = {
747 .ino = inode->i_ino, .root = NULL, .cno = 0, .for_gc = false,
748 .for_btnc = false, .for_shadow = true
749 };
750 struct inode *s_inode;
751 int err;
752
753 s_inode = iget5_locked(inode->i_sb, inode->i_ino, nilfs_iget_test,
754 nilfs_iget_set, &args);
755 if (unlikely(!s_inode))
756 return ERR_PTR(-ENOMEM);
757 if (!(s_inode->i_state & I_NEW))
758 return inode;
759
760 NILFS_I(s_inode)->i_flags = 0;
761 memset(NILFS_I(s_inode)->i_bmap, 0, sizeof(struct nilfs_bmap));
762 mapping_set_gfp_mask(s_inode->i_mapping, GFP_NOFS);
763
764 err = nilfs_attach_btree_node_cache(s_inode);
765 if (unlikely(err)) {
766 iget_failed(s_inode);
767 return ERR_PTR(err);
768 }
769 unlock_new_inode(s_inode);
770 return s_inode;
771 }
772
nilfs_write_inode_common(struct inode * inode,struct nilfs_inode * raw_inode,int has_bmap)773 void nilfs_write_inode_common(struct inode *inode,
774 struct nilfs_inode *raw_inode, int has_bmap)
775 {
776 struct nilfs_inode_info *ii = NILFS_I(inode);
777
778 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
779 raw_inode->i_uid = cpu_to_le32(i_uid_read(inode));
780 raw_inode->i_gid = cpu_to_le32(i_gid_read(inode));
781 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
782 raw_inode->i_size = cpu_to_le64(inode->i_size);
783 raw_inode->i_ctime = cpu_to_le64(inode->i_ctime.tv_sec);
784 raw_inode->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
785 raw_inode->i_ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
786 raw_inode->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
787 raw_inode->i_blocks = cpu_to_le64(inode->i_blocks);
788
789 raw_inode->i_flags = cpu_to_le32(ii->i_flags);
790 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
791
792 if (NILFS_ROOT_METADATA_FILE(inode->i_ino)) {
793 struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
794
795 /* zero-fill unused portion in the case of super root block */
796 raw_inode->i_xattr = 0;
797 raw_inode->i_pad = 0;
798 memset((void *)raw_inode + sizeof(*raw_inode), 0,
799 nilfs->ns_inode_size - sizeof(*raw_inode));
800 }
801
802 if (has_bmap)
803 nilfs_bmap_write(ii->i_bmap, raw_inode);
804 else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
805 raw_inode->i_device_code =
806 cpu_to_le64(huge_encode_dev(inode->i_rdev));
807 /*
808 * When extending inode, nilfs->ns_inode_size should be checked
809 * for substitutions of appended fields.
810 */
811 }
812
nilfs_update_inode(struct inode * inode,struct buffer_head * ibh,int flags)813 void nilfs_update_inode(struct inode *inode, struct buffer_head *ibh, int flags)
814 {
815 ino_t ino = inode->i_ino;
816 struct nilfs_inode_info *ii = NILFS_I(inode);
817 struct inode *ifile = ii->i_root->ifile;
818 struct nilfs_inode *raw_inode;
819
820 raw_inode = nilfs_ifile_map_inode(ifile, ino, ibh);
821
822 if (test_and_clear_bit(NILFS_I_NEW, &ii->i_state))
823 memset(raw_inode, 0, NILFS_MDT(ifile)->mi_entry_size);
824 if (flags & I_DIRTY_DATASYNC)
825 set_bit(NILFS_I_INODE_SYNC, &ii->i_state);
826
827 nilfs_write_inode_common(inode, raw_inode, 0);
828 /*
829 * XXX: call with has_bmap = 0 is a workaround to avoid
830 * deadlock of bmap. This delays update of i_bmap to just
831 * before writing.
832 */
833
834 nilfs_ifile_unmap_inode(ifile, ino, ibh);
835 }
836
837 #define NILFS_MAX_TRUNCATE_BLOCKS 16384 /* 64MB for 4KB block */
838
nilfs_truncate_bmap(struct nilfs_inode_info * ii,unsigned long from)839 static void nilfs_truncate_bmap(struct nilfs_inode_info *ii,
840 unsigned long from)
841 {
842 __u64 b;
843 int ret;
844
845 if (!test_bit(NILFS_I_BMAP, &ii->i_state))
846 return;
847 repeat:
848 ret = nilfs_bmap_last_key(ii->i_bmap, &b);
849 if (ret == -ENOENT)
850 return;
851 else if (ret < 0)
852 goto failed;
853
854 if (b < from)
855 return;
856
857 b -= min_t(__u64, NILFS_MAX_TRUNCATE_BLOCKS, b - from);
858 ret = nilfs_bmap_truncate(ii->i_bmap, b);
859 nilfs_relax_pressure_in_lock(ii->vfs_inode.i_sb);
860 if (!ret || (ret == -ENOMEM &&
861 nilfs_bmap_truncate(ii->i_bmap, b) == 0))
862 goto repeat;
863
864 failed:
865 nilfs_warn(ii->vfs_inode.i_sb, "error %d truncating bmap (ino=%lu)",
866 ret, ii->vfs_inode.i_ino);
867 }
868
nilfs_truncate(struct inode * inode)869 void nilfs_truncate(struct inode *inode)
870 {
871 unsigned long blkoff;
872 unsigned int blocksize;
873 struct nilfs_transaction_info ti;
874 struct super_block *sb = inode->i_sb;
875 struct nilfs_inode_info *ii = NILFS_I(inode);
876
877 if (!test_bit(NILFS_I_BMAP, &ii->i_state))
878 return;
879 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
880 return;
881
882 blocksize = sb->s_blocksize;
883 blkoff = (inode->i_size + blocksize - 1) >> sb->s_blocksize_bits;
884 nilfs_transaction_begin(sb, &ti, 0); /* never fails */
885
886 block_truncate_page(inode->i_mapping, inode->i_size, nilfs_get_block);
887
888 nilfs_truncate_bmap(ii, blkoff);
889
890 inode->i_mtime = inode->i_ctime = current_time(inode);
891 if (IS_SYNC(inode))
892 nilfs_set_transaction_flag(NILFS_TI_SYNC);
893
894 nilfs_mark_inode_dirty(inode);
895 nilfs_set_file_dirty(inode, 0);
896 nilfs_transaction_commit(sb);
897 /*
898 * May construct a logical segment and may fail in sync mode.
899 * But truncate has no return value.
900 */
901 }
902
nilfs_clear_inode(struct inode * inode)903 static void nilfs_clear_inode(struct inode *inode)
904 {
905 struct nilfs_inode_info *ii = NILFS_I(inode);
906
907 /*
908 * Free resources allocated in nilfs_read_inode(), here.
909 */
910 BUG_ON(!list_empty(&ii->i_dirty));
911 brelse(ii->i_bh);
912 ii->i_bh = NULL;
913
914 if (nilfs_is_metadata_file_inode(inode))
915 nilfs_mdt_clear(inode);
916
917 if (test_bit(NILFS_I_BMAP, &ii->i_state))
918 nilfs_bmap_clear(ii->i_bmap);
919
920 if (!test_bit(NILFS_I_BTNC, &ii->i_state))
921 nilfs_detach_btree_node_cache(inode);
922
923 if (ii->i_root && inode->i_ino == NILFS_ROOT_INO)
924 nilfs_put_root(ii->i_root);
925 }
926
nilfs_evict_inode(struct inode * inode)927 void nilfs_evict_inode(struct inode *inode)
928 {
929 struct nilfs_transaction_info ti;
930 struct super_block *sb = inode->i_sb;
931 struct nilfs_inode_info *ii = NILFS_I(inode);
932 struct the_nilfs *nilfs;
933 int ret;
934
935 if (inode->i_nlink || !ii->i_root || unlikely(is_bad_inode(inode))) {
936 truncate_inode_pages_final(&inode->i_data);
937 clear_inode(inode);
938 nilfs_clear_inode(inode);
939 return;
940 }
941 nilfs_transaction_begin(sb, &ti, 0); /* never fails */
942
943 truncate_inode_pages_final(&inode->i_data);
944
945 nilfs = sb->s_fs_info;
946 if (unlikely(sb_rdonly(sb) || !nilfs->ns_writer)) {
947 /*
948 * If this inode is about to be disposed after the file system
949 * has been degraded to read-only due to file system corruption
950 * or after the writer has been detached, do not make any
951 * changes that cause writes, just clear it.
952 * Do this check after read-locking ns_segctor_sem by
953 * nilfs_transaction_begin() in order to avoid a race with
954 * the writer detach operation.
955 */
956 clear_inode(inode);
957 nilfs_clear_inode(inode);
958 nilfs_transaction_abort(sb);
959 return;
960 }
961
962 /* TODO: some of the following operations may fail. */
963 nilfs_truncate_bmap(ii, 0);
964 nilfs_mark_inode_dirty(inode);
965 clear_inode(inode);
966
967 ret = nilfs_ifile_delete_inode(ii->i_root->ifile, inode->i_ino);
968 if (!ret)
969 atomic64_dec(&ii->i_root->inodes_count);
970
971 nilfs_clear_inode(inode);
972
973 if (IS_SYNC(inode))
974 nilfs_set_transaction_flag(NILFS_TI_SYNC);
975 nilfs_transaction_commit(sb);
976 /*
977 * May construct a logical segment and may fail in sync mode.
978 * But delete_inode has no return value.
979 */
980 }
981
nilfs_setattr(struct dentry * dentry,struct iattr * iattr)982 int nilfs_setattr(struct dentry *dentry, struct iattr *iattr)
983 {
984 struct nilfs_transaction_info ti;
985 struct inode *inode = d_inode(dentry);
986 struct super_block *sb = inode->i_sb;
987 int err;
988
989 err = setattr_prepare(dentry, iattr);
990 if (err)
991 return err;
992
993 err = nilfs_transaction_begin(sb, &ti, 0);
994 if (unlikely(err))
995 return err;
996
997 if ((iattr->ia_valid & ATTR_SIZE) &&
998 iattr->ia_size != i_size_read(inode)) {
999 inode_dio_wait(inode);
1000 truncate_setsize(inode, iattr->ia_size);
1001 nilfs_truncate(inode);
1002 }
1003
1004 setattr_copy(inode, iattr);
1005 mark_inode_dirty(inode);
1006
1007 if (iattr->ia_valid & ATTR_MODE) {
1008 err = nilfs_acl_chmod(inode);
1009 if (unlikely(err))
1010 goto out_err;
1011 }
1012
1013 return nilfs_transaction_commit(sb);
1014
1015 out_err:
1016 nilfs_transaction_abort(sb);
1017 return err;
1018 }
1019
nilfs_permission(struct inode * inode,int mask)1020 int nilfs_permission(struct inode *inode, int mask)
1021 {
1022 struct nilfs_root *root = NILFS_I(inode)->i_root;
1023
1024 if ((mask & MAY_WRITE) && root &&
1025 root->cno != NILFS_CPTREE_CURRENT_CNO)
1026 return -EROFS; /* snapshot is not writable */
1027
1028 return generic_permission(inode, mask);
1029 }
1030
nilfs_load_inode_block(struct inode * inode,struct buffer_head ** pbh)1031 int nilfs_load_inode_block(struct inode *inode, struct buffer_head **pbh)
1032 {
1033 struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1034 struct nilfs_inode_info *ii = NILFS_I(inode);
1035 int err;
1036
1037 spin_lock(&nilfs->ns_inode_lock);
1038 if (ii->i_bh == NULL || unlikely(!buffer_uptodate(ii->i_bh))) {
1039 spin_unlock(&nilfs->ns_inode_lock);
1040 err = nilfs_ifile_get_inode_block(ii->i_root->ifile,
1041 inode->i_ino, pbh);
1042 if (unlikely(err))
1043 return err;
1044 spin_lock(&nilfs->ns_inode_lock);
1045 if (ii->i_bh == NULL)
1046 ii->i_bh = *pbh;
1047 else if (unlikely(!buffer_uptodate(ii->i_bh))) {
1048 __brelse(ii->i_bh);
1049 ii->i_bh = *pbh;
1050 } else {
1051 brelse(*pbh);
1052 *pbh = ii->i_bh;
1053 }
1054 } else
1055 *pbh = ii->i_bh;
1056
1057 get_bh(*pbh);
1058 spin_unlock(&nilfs->ns_inode_lock);
1059 return 0;
1060 }
1061
nilfs_inode_dirty(struct inode * inode)1062 int nilfs_inode_dirty(struct inode *inode)
1063 {
1064 struct nilfs_inode_info *ii = NILFS_I(inode);
1065 struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1066 int ret = 0;
1067
1068 if (!list_empty(&ii->i_dirty)) {
1069 spin_lock(&nilfs->ns_inode_lock);
1070 ret = test_bit(NILFS_I_DIRTY, &ii->i_state) ||
1071 test_bit(NILFS_I_BUSY, &ii->i_state);
1072 spin_unlock(&nilfs->ns_inode_lock);
1073 }
1074 return ret;
1075 }
1076
nilfs_set_file_dirty(struct inode * inode,unsigned int nr_dirty)1077 int nilfs_set_file_dirty(struct inode *inode, unsigned int nr_dirty)
1078 {
1079 struct nilfs_inode_info *ii = NILFS_I(inode);
1080 struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1081
1082 atomic_add(nr_dirty, &nilfs->ns_ndirtyblks);
1083
1084 if (test_and_set_bit(NILFS_I_DIRTY, &ii->i_state))
1085 return 0;
1086
1087 spin_lock(&nilfs->ns_inode_lock);
1088 if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
1089 !test_bit(NILFS_I_BUSY, &ii->i_state)) {
1090 /*
1091 * Because this routine may race with nilfs_dispose_list(),
1092 * we have to check NILFS_I_QUEUED here, too.
1093 */
1094 if (list_empty(&ii->i_dirty) && igrab(inode) == NULL) {
1095 /*
1096 * This will happen when somebody is freeing
1097 * this inode.
1098 */
1099 nilfs_warn(inode->i_sb,
1100 "cannot set file dirty (ino=%lu): the file is being freed",
1101 inode->i_ino);
1102 spin_unlock(&nilfs->ns_inode_lock);
1103 return -EINVAL; /*
1104 * NILFS_I_DIRTY may remain for
1105 * freeing inode.
1106 */
1107 }
1108 list_move_tail(&ii->i_dirty, &nilfs->ns_dirty_files);
1109 set_bit(NILFS_I_QUEUED, &ii->i_state);
1110 }
1111 spin_unlock(&nilfs->ns_inode_lock);
1112 return 0;
1113 }
1114
__nilfs_mark_inode_dirty(struct inode * inode,int flags)1115 int __nilfs_mark_inode_dirty(struct inode *inode, int flags)
1116 {
1117 struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1118 struct buffer_head *ibh;
1119 int err;
1120
1121 /*
1122 * Do not dirty inodes after the log writer has been detached
1123 * and its nilfs_root struct has been freed.
1124 */
1125 if (unlikely(nilfs_purging(nilfs)))
1126 return 0;
1127
1128 err = nilfs_load_inode_block(inode, &ibh);
1129 if (unlikely(err)) {
1130 nilfs_warn(inode->i_sb,
1131 "cannot mark inode dirty (ino=%lu): error %d loading inode block",
1132 inode->i_ino, err);
1133 return err;
1134 }
1135 nilfs_update_inode(inode, ibh, flags);
1136 mark_buffer_dirty(ibh);
1137 nilfs_mdt_mark_dirty(NILFS_I(inode)->i_root->ifile);
1138 brelse(ibh);
1139 return 0;
1140 }
1141
1142 /**
1143 * nilfs_dirty_inode - reflect changes on given inode to an inode block.
1144 * @inode: inode of the file to be registered.
1145 *
1146 * nilfs_dirty_inode() loads a inode block containing the specified
1147 * @inode and copies data from a nilfs_inode to a corresponding inode
1148 * entry in the inode block. This operation is excluded from the segment
1149 * construction. This function can be called both as a single operation
1150 * and as a part of indivisible file operations.
1151 */
nilfs_dirty_inode(struct inode * inode,int flags)1152 void nilfs_dirty_inode(struct inode *inode, int flags)
1153 {
1154 struct nilfs_transaction_info ti;
1155 struct nilfs_mdt_info *mdi = NILFS_MDT(inode);
1156
1157 if (is_bad_inode(inode)) {
1158 nilfs_warn(inode->i_sb,
1159 "tried to mark bad_inode dirty. ignored.");
1160 dump_stack();
1161 return;
1162 }
1163 if (mdi) {
1164 nilfs_mdt_mark_dirty(inode);
1165 return;
1166 }
1167 nilfs_transaction_begin(inode->i_sb, &ti, 0);
1168 __nilfs_mark_inode_dirty(inode, flags);
1169 nilfs_transaction_commit(inode->i_sb); /* never fails */
1170 }
1171
nilfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)1172 int nilfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1173 __u64 start, __u64 len)
1174 {
1175 struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
1176 __u64 logical = 0, phys = 0, size = 0;
1177 __u32 flags = 0;
1178 loff_t isize;
1179 sector_t blkoff, end_blkoff;
1180 sector_t delalloc_blkoff;
1181 unsigned long delalloc_blklen;
1182 unsigned int blkbits = inode->i_blkbits;
1183 int ret, n;
1184
1185 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
1186 if (ret)
1187 return ret;
1188
1189 inode_lock(inode);
1190
1191 isize = i_size_read(inode);
1192
1193 blkoff = start >> blkbits;
1194 end_blkoff = (start + len - 1) >> blkbits;
1195
1196 delalloc_blklen = nilfs_find_uncommitted_extent(inode, blkoff,
1197 &delalloc_blkoff);
1198
1199 do {
1200 __u64 blkphy;
1201 unsigned int maxblocks;
1202
1203 if (delalloc_blklen && blkoff == delalloc_blkoff) {
1204 if (size) {
1205 /* End of the current extent */
1206 ret = fiemap_fill_next_extent(
1207 fieinfo, logical, phys, size, flags);
1208 if (ret)
1209 break;
1210 }
1211 if (blkoff > end_blkoff)
1212 break;
1213
1214 flags = FIEMAP_EXTENT_MERGED | FIEMAP_EXTENT_DELALLOC;
1215 logical = blkoff << blkbits;
1216 phys = 0;
1217 size = delalloc_blklen << blkbits;
1218
1219 blkoff = delalloc_blkoff + delalloc_blklen;
1220 delalloc_blklen = nilfs_find_uncommitted_extent(
1221 inode, blkoff, &delalloc_blkoff);
1222 continue;
1223 }
1224
1225 /*
1226 * Limit the number of blocks that we look up so as
1227 * not to get into the next delayed allocation extent.
1228 */
1229 maxblocks = INT_MAX;
1230 if (delalloc_blklen)
1231 maxblocks = min_t(sector_t, delalloc_blkoff - blkoff,
1232 maxblocks);
1233 blkphy = 0;
1234
1235 down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
1236 n = nilfs_bmap_lookup_contig(
1237 NILFS_I(inode)->i_bmap, blkoff, &blkphy, maxblocks);
1238 up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
1239
1240 if (n < 0) {
1241 int past_eof;
1242
1243 if (unlikely(n != -ENOENT))
1244 break; /* error */
1245
1246 /* HOLE */
1247 blkoff++;
1248 past_eof = ((blkoff << blkbits) >= isize);
1249
1250 if (size) {
1251 /* End of the current extent */
1252
1253 if (past_eof)
1254 flags |= FIEMAP_EXTENT_LAST;
1255
1256 ret = fiemap_fill_next_extent(
1257 fieinfo, logical, phys, size, flags);
1258 if (ret)
1259 break;
1260 size = 0;
1261 }
1262 if (blkoff > end_blkoff || past_eof)
1263 break;
1264 } else {
1265 if (size) {
1266 if (phys && blkphy << blkbits == phys + size) {
1267 /* The current extent goes on */
1268 size += n << blkbits;
1269 } else {
1270 /* Terminate the current extent */
1271 ret = fiemap_fill_next_extent(
1272 fieinfo, logical, phys, size,
1273 flags);
1274 if (ret || blkoff > end_blkoff)
1275 break;
1276
1277 /* Start another extent */
1278 flags = FIEMAP_EXTENT_MERGED;
1279 logical = blkoff << blkbits;
1280 phys = blkphy << blkbits;
1281 size = n << blkbits;
1282 }
1283 } else {
1284 /* Start a new extent */
1285 flags = FIEMAP_EXTENT_MERGED;
1286 logical = blkoff << blkbits;
1287 phys = blkphy << blkbits;
1288 size = n << blkbits;
1289 }
1290 blkoff += n;
1291 }
1292 cond_resched();
1293 } while (true);
1294
1295 /* If ret is 1 then we just hit the end of the extent array */
1296 if (ret == 1)
1297 ret = 0;
1298
1299 inode_unlock(inode);
1300 return ret;
1301 }
1302