1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3 * vim: noexpandtab sw=8 ts=8 sts=0:
4 *
5 * alloc.c
6 *
7 * Extent allocs and frees
8 *
9 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 */
11
12 #include <linux/fs.h>
13 #include <linux/types.h>
14 #include <linux/slab.h>
15 #include <linux/highmem.h>
16 #include <linux/swap.h>
17 #include <linux/quotaops.h>
18 #include <linux/blkdev.h>
19 #include <linux/sched/signal.h>
20
21 #include <cluster/masklog.h>
22
23 #include "ocfs2.h"
24
25 #include "alloc.h"
26 #include "aops.h"
27 #include "blockcheck.h"
28 #include "dlmglue.h"
29 #include "extent_map.h"
30 #include "inode.h"
31 #include "journal.h"
32 #include "localalloc.h"
33 #include "suballoc.h"
34 #include "sysfile.h"
35 #include "file.h"
36 #include "super.h"
37 #include "uptodate.h"
38 #include "xattr.h"
39 #include "refcounttree.h"
40 #include "ocfs2_trace.h"
41
42 #include "buffer_head_io.h"
43
44 enum ocfs2_contig_type {
45 CONTIG_NONE = 0,
46 CONTIG_LEFT,
47 CONTIG_RIGHT,
48 CONTIG_LEFTRIGHT,
49 };
50
51 static enum ocfs2_contig_type
52 ocfs2_extent_rec_contig(struct super_block *sb,
53 struct ocfs2_extent_rec *ext,
54 struct ocfs2_extent_rec *insert_rec);
55 /*
56 * Operations for a specific extent tree type.
57 *
58 * To implement an on-disk btree (extent tree) type in ocfs2, add
59 * an ocfs2_extent_tree_operations structure and the matching
60 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
61 * for the allocation portion of the extent tree.
62 */
63 struct ocfs2_extent_tree_operations {
64 /*
65 * last_eb_blk is the block number of the right most leaf extent
66 * block. Most on-disk structures containing an extent tree store
67 * this value for fast access. The ->eo_set_last_eb_blk() and
68 * ->eo_get_last_eb_blk() operations access this value. They are
69 * both required.
70 */
71 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
72 u64 blkno);
73 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
74
75 /*
76 * The on-disk structure usually keeps track of how many total
77 * clusters are stored in this extent tree. This function updates
78 * that value. new_clusters is the delta, and must be
79 * added to the total. Required.
80 */
81 void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
82 u32 new_clusters);
83
84 /*
85 * If this extent tree is supported by an extent map, insert
86 * a record into the map.
87 */
88 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
89 struct ocfs2_extent_rec *rec);
90
91 /*
92 * If this extent tree is supported by an extent map, truncate the
93 * map to clusters,
94 */
95 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
96 u32 clusters);
97
98 /*
99 * If ->eo_insert_check() exists, it is called before rec is
100 * inserted into the extent tree. It is optional.
101 */
102 int (*eo_insert_check)(struct ocfs2_extent_tree *et,
103 struct ocfs2_extent_rec *rec);
104 int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
105
106 /*
107 * --------------------------------------------------------------
108 * The remaining are internal to ocfs2_extent_tree and don't have
109 * accessor functions
110 */
111
112 /*
113 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
114 * It is required.
115 */
116 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
117
118 /*
119 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
120 * it exists. If it does not, et->et_max_leaf_clusters is set
121 * to 0 (unlimited). Optional.
122 */
123 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
124
125 /*
126 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
127 * are contiguous or not. Optional. Don't need to set it if use
128 * ocfs2_extent_rec as the tree leaf.
129 */
130 enum ocfs2_contig_type
131 (*eo_extent_contig)(struct ocfs2_extent_tree *et,
132 struct ocfs2_extent_rec *ext,
133 struct ocfs2_extent_rec *insert_rec);
134 };
135
136
137 /*
138 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
139 * in the methods.
140 */
141 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
143 u64 blkno);
144 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
145 u32 clusters);
146 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
147 struct ocfs2_extent_rec *rec);
148 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
149 u32 clusters);
150 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
151 struct ocfs2_extent_rec *rec);
152 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
153 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
154
155 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle,
156 struct ocfs2_extent_tree *et,
157 struct buffer_head **new_eb_bh,
158 int blk_wanted, int *blk_given);
159 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et);
160
161 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
162 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk,
163 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk,
164 .eo_update_clusters = ocfs2_dinode_update_clusters,
165 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert,
166 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate,
167 .eo_insert_check = ocfs2_dinode_insert_check,
168 .eo_sanity_check = ocfs2_dinode_sanity_check,
169 .eo_fill_root_el = ocfs2_dinode_fill_root_el,
170 };
171
ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree * et,u64 blkno)172 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
173 u64 blkno)
174 {
175 struct ocfs2_dinode *di = et->et_object;
176
177 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
178 di->i_last_eb_blk = cpu_to_le64(blkno);
179 }
180
ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree * et)181 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
182 {
183 struct ocfs2_dinode *di = et->et_object;
184
185 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
186 return le64_to_cpu(di->i_last_eb_blk);
187 }
188
ocfs2_dinode_update_clusters(struct ocfs2_extent_tree * et,u32 clusters)189 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
190 u32 clusters)
191 {
192 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
193 struct ocfs2_dinode *di = et->et_object;
194
195 le32_add_cpu(&di->i_clusters, clusters);
196 spin_lock(&oi->ip_lock);
197 oi->ip_clusters = le32_to_cpu(di->i_clusters);
198 spin_unlock(&oi->ip_lock);
199 }
200
ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree * et,struct ocfs2_extent_rec * rec)201 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
202 struct ocfs2_extent_rec *rec)
203 {
204 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
205
206 ocfs2_extent_map_insert_rec(inode, rec);
207 }
208
ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree * et,u32 clusters)209 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
210 u32 clusters)
211 {
212 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
213
214 ocfs2_extent_map_trunc(inode, clusters);
215 }
216
ocfs2_dinode_insert_check(struct ocfs2_extent_tree * et,struct ocfs2_extent_rec * rec)217 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
218 struct ocfs2_extent_rec *rec)
219 {
220 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
221 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
222
223 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
224 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
225 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
226 "Device %s, asking for sparse allocation: inode %llu, "
227 "cpos %u, clusters %u\n",
228 osb->dev_str,
229 (unsigned long long)oi->ip_blkno,
230 rec->e_cpos, oi->ip_clusters);
231
232 return 0;
233 }
234
ocfs2_dinode_sanity_check(struct ocfs2_extent_tree * et)235 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
236 {
237 struct ocfs2_dinode *di = et->et_object;
238
239 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
240 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
241
242 return 0;
243 }
244
ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree * et)245 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
246 {
247 struct ocfs2_dinode *di = et->et_object;
248
249 et->et_root_el = &di->id2.i_list;
250 }
251
252
ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree * et)253 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
254 {
255 struct ocfs2_xattr_value_buf *vb = et->et_object;
256
257 et->et_root_el = &vb->vb_xv->xr_list;
258 }
259
ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree * et,u64 blkno)260 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
261 u64 blkno)
262 {
263 struct ocfs2_xattr_value_buf *vb = et->et_object;
264
265 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
266 }
267
ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree * et)268 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
269 {
270 struct ocfs2_xattr_value_buf *vb = et->et_object;
271
272 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
273 }
274
ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree * et,u32 clusters)275 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
276 u32 clusters)
277 {
278 struct ocfs2_xattr_value_buf *vb = et->et_object;
279
280 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
281 }
282
283 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
284 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk,
285 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk,
286 .eo_update_clusters = ocfs2_xattr_value_update_clusters,
287 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el,
288 };
289
ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree * et)290 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
291 {
292 struct ocfs2_xattr_block *xb = et->et_object;
293
294 et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
295 }
296
ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree * et)297 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
298 {
299 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
300 et->et_max_leaf_clusters =
301 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
302 }
303
ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree * et,u64 blkno)304 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
305 u64 blkno)
306 {
307 struct ocfs2_xattr_block *xb = et->et_object;
308 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
309
310 xt->xt_last_eb_blk = cpu_to_le64(blkno);
311 }
312
ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree * et)313 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
314 {
315 struct ocfs2_xattr_block *xb = et->et_object;
316 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
317
318 return le64_to_cpu(xt->xt_last_eb_blk);
319 }
320
ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree * et,u32 clusters)321 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
322 u32 clusters)
323 {
324 struct ocfs2_xattr_block *xb = et->et_object;
325
326 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
327 }
328
329 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
330 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk,
331 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk,
332 .eo_update_clusters = ocfs2_xattr_tree_update_clusters,
333 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el,
334 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
335 };
336
ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree * et,u64 blkno)337 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
338 u64 blkno)
339 {
340 struct ocfs2_dx_root_block *dx_root = et->et_object;
341
342 dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
343 }
344
ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree * et)345 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
346 {
347 struct ocfs2_dx_root_block *dx_root = et->et_object;
348
349 return le64_to_cpu(dx_root->dr_last_eb_blk);
350 }
351
ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree * et,u32 clusters)352 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
353 u32 clusters)
354 {
355 struct ocfs2_dx_root_block *dx_root = et->et_object;
356
357 le32_add_cpu(&dx_root->dr_clusters, clusters);
358 }
359
ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree * et)360 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
361 {
362 struct ocfs2_dx_root_block *dx_root = et->et_object;
363
364 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
365
366 return 0;
367 }
368
ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree * et)369 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
370 {
371 struct ocfs2_dx_root_block *dx_root = et->et_object;
372
373 et->et_root_el = &dx_root->dr_list;
374 }
375
376 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
377 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk,
378 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk,
379 .eo_update_clusters = ocfs2_dx_root_update_clusters,
380 .eo_sanity_check = ocfs2_dx_root_sanity_check,
381 .eo_fill_root_el = ocfs2_dx_root_fill_root_el,
382 };
383
ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree * et)384 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
385 {
386 struct ocfs2_refcount_block *rb = et->et_object;
387
388 et->et_root_el = &rb->rf_list;
389 }
390
ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree * et,u64 blkno)391 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
392 u64 blkno)
393 {
394 struct ocfs2_refcount_block *rb = et->et_object;
395
396 rb->rf_last_eb_blk = cpu_to_le64(blkno);
397 }
398
ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree * et)399 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
400 {
401 struct ocfs2_refcount_block *rb = et->et_object;
402
403 return le64_to_cpu(rb->rf_last_eb_blk);
404 }
405
ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree * et,u32 clusters)406 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
407 u32 clusters)
408 {
409 struct ocfs2_refcount_block *rb = et->et_object;
410
411 le32_add_cpu(&rb->rf_clusters, clusters);
412 }
413
414 static enum ocfs2_contig_type
ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree * et,struct ocfs2_extent_rec * ext,struct ocfs2_extent_rec * insert_rec)415 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
416 struct ocfs2_extent_rec *ext,
417 struct ocfs2_extent_rec *insert_rec)
418 {
419 return CONTIG_NONE;
420 }
421
422 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
423 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk,
424 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk,
425 .eo_update_clusters = ocfs2_refcount_tree_update_clusters,
426 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el,
427 .eo_extent_contig = ocfs2_refcount_tree_extent_contig,
428 };
429
__ocfs2_init_extent_tree(struct ocfs2_extent_tree * et,struct ocfs2_caching_info * ci,struct buffer_head * bh,ocfs2_journal_access_func access,void * obj,const struct ocfs2_extent_tree_operations * ops)430 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
431 struct ocfs2_caching_info *ci,
432 struct buffer_head *bh,
433 ocfs2_journal_access_func access,
434 void *obj,
435 const struct ocfs2_extent_tree_operations *ops)
436 {
437 et->et_ops = ops;
438 et->et_root_bh = bh;
439 et->et_ci = ci;
440 et->et_root_journal_access = access;
441 if (!obj)
442 obj = (void *)bh->b_data;
443 et->et_object = obj;
444 et->et_dealloc = NULL;
445
446 et->et_ops->eo_fill_root_el(et);
447 if (!et->et_ops->eo_fill_max_leaf_clusters)
448 et->et_max_leaf_clusters = 0;
449 else
450 et->et_ops->eo_fill_max_leaf_clusters(et);
451 }
452
ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree * et,struct ocfs2_caching_info * ci,struct buffer_head * bh)453 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
454 struct ocfs2_caching_info *ci,
455 struct buffer_head *bh)
456 {
457 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
458 NULL, &ocfs2_dinode_et_ops);
459 }
460
ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree * et,struct ocfs2_caching_info * ci,struct buffer_head * bh)461 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
462 struct ocfs2_caching_info *ci,
463 struct buffer_head *bh)
464 {
465 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
466 NULL, &ocfs2_xattr_tree_et_ops);
467 }
468
ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree * et,struct ocfs2_caching_info * ci,struct ocfs2_xattr_value_buf * vb)469 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
470 struct ocfs2_caching_info *ci,
471 struct ocfs2_xattr_value_buf *vb)
472 {
473 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
474 &ocfs2_xattr_value_et_ops);
475 }
476
ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree * et,struct ocfs2_caching_info * ci,struct buffer_head * bh)477 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
478 struct ocfs2_caching_info *ci,
479 struct buffer_head *bh)
480 {
481 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
482 NULL, &ocfs2_dx_root_et_ops);
483 }
484
ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree * et,struct ocfs2_caching_info * ci,struct buffer_head * bh)485 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
486 struct ocfs2_caching_info *ci,
487 struct buffer_head *bh)
488 {
489 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
490 NULL, &ocfs2_refcount_tree_et_ops);
491 }
492
ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree * et,u64 new_last_eb_blk)493 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
494 u64 new_last_eb_blk)
495 {
496 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
497 }
498
ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree * et)499 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
500 {
501 return et->et_ops->eo_get_last_eb_blk(et);
502 }
503
ocfs2_et_update_clusters(struct ocfs2_extent_tree * et,u32 clusters)504 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
505 u32 clusters)
506 {
507 et->et_ops->eo_update_clusters(et, clusters);
508 }
509
ocfs2_et_extent_map_insert(struct ocfs2_extent_tree * et,struct ocfs2_extent_rec * rec)510 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
511 struct ocfs2_extent_rec *rec)
512 {
513 if (et->et_ops->eo_extent_map_insert)
514 et->et_ops->eo_extent_map_insert(et, rec);
515 }
516
ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree * et,u32 clusters)517 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
518 u32 clusters)
519 {
520 if (et->et_ops->eo_extent_map_truncate)
521 et->et_ops->eo_extent_map_truncate(et, clusters);
522 }
523
ocfs2_et_root_journal_access(handle_t * handle,struct ocfs2_extent_tree * et,int type)524 static inline int ocfs2_et_root_journal_access(handle_t *handle,
525 struct ocfs2_extent_tree *et,
526 int type)
527 {
528 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
529 type);
530 }
531
532 static inline enum ocfs2_contig_type
ocfs2_et_extent_contig(struct ocfs2_extent_tree * et,struct ocfs2_extent_rec * rec,struct ocfs2_extent_rec * insert_rec)533 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
534 struct ocfs2_extent_rec *rec,
535 struct ocfs2_extent_rec *insert_rec)
536 {
537 if (et->et_ops->eo_extent_contig)
538 return et->et_ops->eo_extent_contig(et, rec, insert_rec);
539
540 return ocfs2_extent_rec_contig(
541 ocfs2_metadata_cache_get_super(et->et_ci),
542 rec, insert_rec);
543 }
544
ocfs2_et_insert_check(struct ocfs2_extent_tree * et,struct ocfs2_extent_rec * rec)545 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
546 struct ocfs2_extent_rec *rec)
547 {
548 int ret = 0;
549
550 if (et->et_ops->eo_insert_check)
551 ret = et->et_ops->eo_insert_check(et, rec);
552 return ret;
553 }
554
ocfs2_et_sanity_check(struct ocfs2_extent_tree * et)555 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
556 {
557 int ret = 0;
558
559 if (et->et_ops->eo_sanity_check)
560 ret = et->et_ops->eo_sanity_check(et);
561 return ret;
562 }
563
564 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
565 struct ocfs2_extent_block *eb);
566 static void ocfs2_adjust_rightmost_records(handle_t *handle,
567 struct ocfs2_extent_tree *et,
568 struct ocfs2_path *path,
569 struct ocfs2_extent_rec *insert_rec);
570 /*
571 * Reset the actual path elements so that we can re-use the structure
572 * to build another path. Generally, this involves freeing the buffer
573 * heads.
574 */
ocfs2_reinit_path(struct ocfs2_path * path,int keep_root)575 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
576 {
577 int i, start = 0, depth = 0;
578 struct ocfs2_path_item *node;
579
580 if (keep_root)
581 start = 1;
582
583 for(i = start; i < path_num_items(path); i++) {
584 node = &path->p_node[i];
585
586 brelse(node->bh);
587 node->bh = NULL;
588 node->el = NULL;
589 }
590
591 /*
592 * Tree depth may change during truncate, or insert. If we're
593 * keeping the root extent list, then make sure that our path
594 * structure reflects the proper depth.
595 */
596 if (keep_root)
597 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
598 else
599 path_root_access(path) = NULL;
600
601 path->p_tree_depth = depth;
602 }
603
ocfs2_free_path(struct ocfs2_path * path)604 void ocfs2_free_path(struct ocfs2_path *path)
605 {
606 if (path) {
607 ocfs2_reinit_path(path, 0);
608 kfree(path);
609 }
610 }
611
612 /*
613 * All the elements of src into dest. After this call, src could be freed
614 * without affecting dest.
615 *
616 * Both paths should have the same root. Any non-root elements of dest
617 * will be freed.
618 */
ocfs2_cp_path(struct ocfs2_path * dest,struct ocfs2_path * src)619 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
620 {
621 int i;
622
623 BUG_ON(path_root_bh(dest) != path_root_bh(src));
624 BUG_ON(path_root_el(dest) != path_root_el(src));
625 BUG_ON(path_root_access(dest) != path_root_access(src));
626
627 ocfs2_reinit_path(dest, 1);
628
629 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
630 dest->p_node[i].bh = src->p_node[i].bh;
631 dest->p_node[i].el = src->p_node[i].el;
632
633 if (dest->p_node[i].bh)
634 get_bh(dest->p_node[i].bh);
635 }
636 }
637
638 /*
639 * Make the *dest path the same as src and re-initialize src path to
640 * have a root only.
641 */
ocfs2_mv_path(struct ocfs2_path * dest,struct ocfs2_path * src)642 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
643 {
644 int i;
645
646 BUG_ON(path_root_bh(dest) != path_root_bh(src));
647 BUG_ON(path_root_access(dest) != path_root_access(src));
648
649 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
650 brelse(dest->p_node[i].bh);
651
652 dest->p_node[i].bh = src->p_node[i].bh;
653 dest->p_node[i].el = src->p_node[i].el;
654
655 src->p_node[i].bh = NULL;
656 src->p_node[i].el = NULL;
657 }
658 }
659
660 /*
661 * Insert an extent block at given index.
662 *
663 * This will not take an additional reference on eb_bh.
664 */
ocfs2_path_insert_eb(struct ocfs2_path * path,int index,struct buffer_head * eb_bh)665 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
666 struct buffer_head *eb_bh)
667 {
668 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
669
670 /*
671 * Right now, no root bh is an extent block, so this helps
672 * catch code errors with dinode trees. The assertion can be
673 * safely removed if we ever need to insert extent block
674 * structures at the root.
675 */
676 BUG_ON(index == 0);
677
678 path->p_node[index].bh = eb_bh;
679 path->p_node[index].el = &eb->h_list;
680 }
681
ocfs2_new_path(struct buffer_head * root_bh,struct ocfs2_extent_list * root_el,ocfs2_journal_access_func access)682 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
683 struct ocfs2_extent_list *root_el,
684 ocfs2_journal_access_func access)
685 {
686 struct ocfs2_path *path;
687
688 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
689
690 path = kzalloc(sizeof(*path), GFP_NOFS);
691 if (path) {
692 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
693 get_bh(root_bh);
694 path_root_bh(path) = root_bh;
695 path_root_el(path) = root_el;
696 path_root_access(path) = access;
697 }
698
699 return path;
700 }
701
ocfs2_new_path_from_path(struct ocfs2_path * path)702 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
703 {
704 return ocfs2_new_path(path_root_bh(path), path_root_el(path),
705 path_root_access(path));
706 }
707
ocfs2_new_path_from_et(struct ocfs2_extent_tree * et)708 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
709 {
710 return ocfs2_new_path(et->et_root_bh, et->et_root_el,
711 et->et_root_journal_access);
712 }
713
714 /*
715 * Journal the buffer at depth idx. All idx>0 are extent_blocks,
716 * otherwise it's the root_access function.
717 *
718 * I don't like the way this function's name looks next to
719 * ocfs2_journal_access_path(), but I don't have a better one.
720 */
ocfs2_path_bh_journal_access(handle_t * handle,struct ocfs2_caching_info * ci,struct ocfs2_path * path,int idx)721 int ocfs2_path_bh_journal_access(handle_t *handle,
722 struct ocfs2_caching_info *ci,
723 struct ocfs2_path *path,
724 int idx)
725 {
726 ocfs2_journal_access_func access = path_root_access(path);
727
728 if (!access)
729 access = ocfs2_journal_access;
730
731 if (idx)
732 access = ocfs2_journal_access_eb;
733
734 return access(handle, ci, path->p_node[idx].bh,
735 OCFS2_JOURNAL_ACCESS_WRITE);
736 }
737
738 /*
739 * Convenience function to journal all components in a path.
740 */
ocfs2_journal_access_path(struct ocfs2_caching_info * ci,handle_t * handle,struct ocfs2_path * path)741 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
742 handle_t *handle,
743 struct ocfs2_path *path)
744 {
745 int i, ret = 0;
746
747 if (!path)
748 goto out;
749
750 for(i = 0; i < path_num_items(path); i++) {
751 ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
752 if (ret < 0) {
753 mlog_errno(ret);
754 goto out;
755 }
756 }
757
758 out:
759 return ret;
760 }
761
762 /*
763 * Return the index of the extent record which contains cluster #v_cluster.
764 * -1 is returned if it was not found.
765 *
766 * Should work fine on interior and exterior nodes.
767 */
ocfs2_search_extent_list(struct ocfs2_extent_list * el,u32 v_cluster)768 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
769 {
770 int ret = -1;
771 int i;
772 struct ocfs2_extent_rec *rec;
773 u32 rec_end, rec_start, clusters;
774
775 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
776 rec = &el->l_recs[i];
777
778 rec_start = le32_to_cpu(rec->e_cpos);
779 clusters = ocfs2_rec_clusters(el, rec);
780
781 rec_end = rec_start + clusters;
782
783 if (v_cluster >= rec_start && v_cluster < rec_end) {
784 ret = i;
785 break;
786 }
787 }
788
789 return ret;
790 }
791
792 /*
793 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
794 * ocfs2_extent_rec_contig only work properly against leaf nodes!
795 */
ocfs2_block_extent_contig(struct super_block * sb,struct ocfs2_extent_rec * ext,u64 blkno)796 static int ocfs2_block_extent_contig(struct super_block *sb,
797 struct ocfs2_extent_rec *ext,
798 u64 blkno)
799 {
800 u64 blk_end = le64_to_cpu(ext->e_blkno);
801
802 blk_end += ocfs2_clusters_to_blocks(sb,
803 le16_to_cpu(ext->e_leaf_clusters));
804
805 return blkno == blk_end;
806 }
807
ocfs2_extents_adjacent(struct ocfs2_extent_rec * left,struct ocfs2_extent_rec * right)808 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
809 struct ocfs2_extent_rec *right)
810 {
811 u32 left_range;
812
813 left_range = le32_to_cpu(left->e_cpos) +
814 le16_to_cpu(left->e_leaf_clusters);
815
816 return (left_range == le32_to_cpu(right->e_cpos));
817 }
818
819 static enum ocfs2_contig_type
ocfs2_extent_rec_contig(struct super_block * sb,struct ocfs2_extent_rec * ext,struct ocfs2_extent_rec * insert_rec)820 ocfs2_extent_rec_contig(struct super_block *sb,
821 struct ocfs2_extent_rec *ext,
822 struct ocfs2_extent_rec *insert_rec)
823 {
824 u64 blkno = le64_to_cpu(insert_rec->e_blkno);
825
826 /*
827 * Refuse to coalesce extent records with different flag
828 * fields - we don't want to mix unwritten extents with user
829 * data.
830 */
831 if (ext->e_flags != insert_rec->e_flags)
832 return CONTIG_NONE;
833
834 if (ocfs2_extents_adjacent(ext, insert_rec) &&
835 ocfs2_block_extent_contig(sb, ext, blkno))
836 return CONTIG_RIGHT;
837
838 blkno = le64_to_cpu(ext->e_blkno);
839 if (ocfs2_extents_adjacent(insert_rec, ext) &&
840 ocfs2_block_extent_contig(sb, insert_rec, blkno))
841 return CONTIG_LEFT;
842
843 return CONTIG_NONE;
844 }
845
846 /*
847 * NOTE: We can have pretty much any combination of contiguousness and
848 * appending.
849 *
850 * The usefulness of APPEND_TAIL is more in that it lets us know that
851 * we'll have to update the path to that leaf.
852 */
853 enum ocfs2_append_type {
854 APPEND_NONE = 0,
855 APPEND_TAIL,
856 };
857
858 enum ocfs2_split_type {
859 SPLIT_NONE = 0,
860 SPLIT_LEFT,
861 SPLIT_RIGHT,
862 };
863
864 struct ocfs2_insert_type {
865 enum ocfs2_split_type ins_split;
866 enum ocfs2_append_type ins_appending;
867 enum ocfs2_contig_type ins_contig;
868 int ins_contig_index;
869 int ins_tree_depth;
870 };
871
872 struct ocfs2_merge_ctxt {
873 enum ocfs2_contig_type c_contig_type;
874 int c_has_empty_extent;
875 int c_split_covers_rec;
876 };
877
ocfs2_validate_extent_block(struct super_block * sb,struct buffer_head * bh)878 static int ocfs2_validate_extent_block(struct super_block *sb,
879 struct buffer_head *bh)
880 {
881 int rc;
882 struct ocfs2_extent_block *eb =
883 (struct ocfs2_extent_block *)bh->b_data;
884
885 trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr);
886
887 BUG_ON(!buffer_uptodate(bh));
888
889 /*
890 * If the ecc fails, we return the error but otherwise
891 * leave the filesystem running. We know any error is
892 * local to this block.
893 */
894 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
895 if (rc) {
896 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
897 (unsigned long long)bh->b_blocknr);
898 return rc;
899 }
900
901 /*
902 * Errors after here are fatal.
903 */
904
905 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
906 rc = ocfs2_error(sb,
907 "Extent block #%llu has bad signature %.*s\n",
908 (unsigned long long)bh->b_blocknr, 7,
909 eb->h_signature);
910 goto bail;
911 }
912
913 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
914 rc = ocfs2_error(sb,
915 "Extent block #%llu has an invalid h_blkno of %llu\n",
916 (unsigned long long)bh->b_blocknr,
917 (unsigned long long)le64_to_cpu(eb->h_blkno));
918 goto bail;
919 }
920
921 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation)
922 rc = ocfs2_error(sb,
923 "Extent block #%llu has an invalid h_fs_generation of #%u\n",
924 (unsigned long long)bh->b_blocknr,
925 le32_to_cpu(eb->h_fs_generation));
926 bail:
927 return rc;
928 }
929
ocfs2_read_extent_block(struct ocfs2_caching_info * ci,u64 eb_blkno,struct buffer_head ** bh)930 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
931 struct buffer_head **bh)
932 {
933 int rc;
934 struct buffer_head *tmp = *bh;
935
936 rc = ocfs2_read_block(ci, eb_blkno, &tmp,
937 ocfs2_validate_extent_block);
938
939 /* If ocfs2_read_block() got us a new bh, pass it up. */
940 if (!rc && !*bh)
941 *bh = tmp;
942
943 return rc;
944 }
945
946
947 /*
948 * How many free extents have we got before we need more meta data?
949 */
ocfs2_num_free_extents(struct ocfs2_extent_tree * et)950 int ocfs2_num_free_extents(struct ocfs2_extent_tree *et)
951 {
952 int retval;
953 struct ocfs2_extent_list *el = NULL;
954 struct ocfs2_extent_block *eb;
955 struct buffer_head *eb_bh = NULL;
956 u64 last_eb_blk = 0;
957
958 el = et->et_root_el;
959 last_eb_blk = ocfs2_et_get_last_eb_blk(et);
960
961 if (last_eb_blk) {
962 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
963 &eb_bh);
964 if (retval < 0) {
965 mlog_errno(retval);
966 goto bail;
967 }
968 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
969 el = &eb->h_list;
970 }
971
972 BUG_ON(el->l_tree_depth != 0);
973
974 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
975 bail:
976 brelse(eb_bh);
977
978 trace_ocfs2_num_free_extents(retval);
979 return retval;
980 }
981
982 /* expects array to already be allocated
983 *
984 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
985 * l_count for you
986 */
ocfs2_create_new_meta_bhs(handle_t * handle,struct ocfs2_extent_tree * et,int wanted,struct ocfs2_alloc_context * meta_ac,struct buffer_head * bhs[])987 static int ocfs2_create_new_meta_bhs(handle_t *handle,
988 struct ocfs2_extent_tree *et,
989 int wanted,
990 struct ocfs2_alloc_context *meta_ac,
991 struct buffer_head *bhs[])
992 {
993 int count, status, i;
994 u16 suballoc_bit_start;
995 u32 num_got;
996 u64 suballoc_loc, first_blkno;
997 struct ocfs2_super *osb =
998 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
999 struct ocfs2_extent_block *eb;
1000
1001 count = 0;
1002 while (count < wanted) {
1003 status = ocfs2_claim_metadata(handle,
1004 meta_ac,
1005 wanted - count,
1006 &suballoc_loc,
1007 &suballoc_bit_start,
1008 &num_got,
1009 &first_blkno);
1010 if (status < 0) {
1011 mlog_errno(status);
1012 goto bail;
1013 }
1014
1015 for(i = count; i < (num_got + count); i++) {
1016 bhs[i] = sb_getblk(osb->sb, first_blkno);
1017 if (bhs[i] == NULL) {
1018 status = -ENOMEM;
1019 mlog_errno(status);
1020 goto bail;
1021 }
1022 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1023
1024 status = ocfs2_journal_access_eb(handle, et->et_ci,
1025 bhs[i],
1026 OCFS2_JOURNAL_ACCESS_CREATE);
1027 if (status < 0) {
1028 mlog_errno(status);
1029 goto bail;
1030 }
1031
1032 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1033 eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1034 /* Ok, setup the minimal stuff here. */
1035 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1036 eb->h_blkno = cpu_to_le64(first_blkno);
1037 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1038 eb->h_suballoc_slot =
1039 cpu_to_le16(meta_ac->ac_alloc_slot);
1040 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc);
1041 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1042 eb->h_list.l_count =
1043 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1044
1045 suballoc_bit_start++;
1046 first_blkno++;
1047
1048 /* We'll also be dirtied by the caller, so
1049 * this isn't absolutely necessary. */
1050 ocfs2_journal_dirty(handle, bhs[i]);
1051 }
1052
1053 count += num_got;
1054 }
1055
1056 status = 0;
1057 bail:
1058 if (status < 0) {
1059 for(i = 0; i < wanted; i++) {
1060 brelse(bhs[i]);
1061 bhs[i] = NULL;
1062 }
1063 mlog_errno(status);
1064 }
1065 return status;
1066 }
1067
1068 /*
1069 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1070 *
1071 * Returns the sum of the rightmost extent rec logical offset and
1072 * cluster count.
1073 *
1074 * ocfs2_add_branch() uses this to determine what logical cluster
1075 * value should be populated into the leftmost new branch records.
1076 *
1077 * ocfs2_shift_tree_depth() uses this to determine the # clusters
1078 * value for the new topmost tree record.
1079 */
ocfs2_sum_rightmost_rec(struct ocfs2_extent_list * el)1080 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
1081 {
1082 int i;
1083
1084 i = le16_to_cpu(el->l_next_free_rec) - 1;
1085
1086 return le32_to_cpu(el->l_recs[i].e_cpos) +
1087 ocfs2_rec_clusters(el, &el->l_recs[i]);
1088 }
1089
1090 /*
1091 * Change range of the branches in the right most path according to the leaf
1092 * extent block's rightmost record.
1093 */
ocfs2_adjust_rightmost_branch(handle_t * handle,struct ocfs2_extent_tree * et)1094 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1095 struct ocfs2_extent_tree *et)
1096 {
1097 int status;
1098 struct ocfs2_path *path = NULL;
1099 struct ocfs2_extent_list *el;
1100 struct ocfs2_extent_rec *rec;
1101
1102 path = ocfs2_new_path_from_et(et);
1103 if (!path) {
1104 status = -ENOMEM;
1105 return status;
1106 }
1107
1108 status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1109 if (status < 0) {
1110 mlog_errno(status);
1111 goto out;
1112 }
1113
1114 status = ocfs2_extend_trans(handle, path_num_items(path));
1115 if (status < 0) {
1116 mlog_errno(status);
1117 goto out;
1118 }
1119
1120 status = ocfs2_journal_access_path(et->et_ci, handle, path);
1121 if (status < 0) {
1122 mlog_errno(status);
1123 goto out;
1124 }
1125
1126 el = path_leaf_el(path);
1127 rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1];
1128
1129 ocfs2_adjust_rightmost_records(handle, et, path, rec);
1130
1131 out:
1132 ocfs2_free_path(path);
1133 return status;
1134 }
1135
1136 /*
1137 * Add an entire tree branch to our inode. eb_bh is the extent block
1138 * to start at, if we don't want to start the branch at the root
1139 * structure.
1140 *
1141 * last_eb_bh is required as we have to update it's next_leaf pointer
1142 * for the new last extent block.
1143 *
1144 * the new branch will be 'empty' in the sense that every block will
1145 * contain a single record with cluster count == 0.
1146 */
ocfs2_add_branch(handle_t * handle,struct ocfs2_extent_tree * et,struct buffer_head * eb_bh,struct buffer_head ** last_eb_bh,struct ocfs2_alloc_context * meta_ac)1147 static int ocfs2_add_branch(handle_t *handle,
1148 struct ocfs2_extent_tree *et,
1149 struct buffer_head *eb_bh,
1150 struct buffer_head **last_eb_bh,
1151 struct ocfs2_alloc_context *meta_ac)
1152 {
1153 int status, new_blocks, i, block_given = 0;
1154 u64 next_blkno, new_last_eb_blk;
1155 struct buffer_head *bh;
1156 struct buffer_head **new_eb_bhs = NULL;
1157 struct ocfs2_extent_block *eb;
1158 struct ocfs2_extent_list *eb_el;
1159 struct ocfs2_extent_list *el;
1160 u32 new_cpos, root_end;
1161
1162 BUG_ON(!last_eb_bh || !*last_eb_bh);
1163
1164 if (eb_bh) {
1165 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1166 el = &eb->h_list;
1167 } else
1168 el = et->et_root_el;
1169
1170 /* we never add a branch to a leaf. */
1171 BUG_ON(!el->l_tree_depth);
1172
1173 new_blocks = le16_to_cpu(el->l_tree_depth);
1174
1175 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1176 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1177 root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1178
1179 /*
1180 * If there is a gap before the root end and the real end
1181 * of the righmost leaf block, we need to remove the gap
1182 * between new_cpos and root_end first so that the tree
1183 * is consistent after we add a new branch(it will start
1184 * from new_cpos).
1185 */
1186 if (root_end > new_cpos) {
1187 trace_ocfs2_adjust_rightmost_branch(
1188 (unsigned long long)
1189 ocfs2_metadata_cache_owner(et->et_ci),
1190 root_end, new_cpos);
1191
1192 status = ocfs2_adjust_rightmost_branch(handle, et);
1193 if (status) {
1194 mlog_errno(status);
1195 goto bail;
1196 }
1197 }
1198
1199 /* allocate the number of new eb blocks we need */
1200 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1201 GFP_KERNEL);
1202 if (!new_eb_bhs) {
1203 status = -ENOMEM;
1204 mlog_errno(status);
1205 goto bail;
1206 }
1207
1208 /* Firstyly, try to reuse dealloc since we have already estimated how
1209 * many extent blocks we may use.
1210 */
1211 if (!ocfs2_is_dealloc_empty(et)) {
1212 status = ocfs2_reuse_blk_from_dealloc(handle, et,
1213 new_eb_bhs, new_blocks,
1214 &block_given);
1215 if (status < 0) {
1216 mlog_errno(status);
1217 goto bail;
1218 }
1219 }
1220
1221 BUG_ON(block_given > new_blocks);
1222
1223 if (block_given < new_blocks) {
1224 BUG_ON(!meta_ac);
1225 status = ocfs2_create_new_meta_bhs(handle, et,
1226 new_blocks - block_given,
1227 meta_ac,
1228 &new_eb_bhs[block_given]);
1229 if (status < 0) {
1230 mlog_errno(status);
1231 goto bail;
1232 }
1233 }
1234
1235 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1236 * linked with the rest of the tree.
1237 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1238 *
1239 * when we leave the loop, new_last_eb_blk will point to the
1240 * newest leaf, and next_blkno will point to the topmost extent
1241 * block. */
1242 next_blkno = new_last_eb_blk = 0;
1243 for(i = 0; i < new_blocks; i++) {
1244 bh = new_eb_bhs[i];
1245 eb = (struct ocfs2_extent_block *) bh->b_data;
1246 /* ocfs2_create_new_meta_bhs() should create it right! */
1247 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1248 eb_el = &eb->h_list;
1249
1250 status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1251 OCFS2_JOURNAL_ACCESS_CREATE);
1252 if (status < 0) {
1253 mlog_errno(status);
1254 goto bail;
1255 }
1256
1257 eb->h_next_leaf_blk = 0;
1258 eb_el->l_tree_depth = cpu_to_le16(i);
1259 eb_el->l_next_free_rec = cpu_to_le16(1);
1260 /*
1261 * This actually counts as an empty extent as
1262 * c_clusters == 0
1263 */
1264 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1265 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1266 /*
1267 * eb_el isn't always an interior node, but even leaf
1268 * nodes want a zero'd flags and reserved field so
1269 * this gets the whole 32 bits regardless of use.
1270 */
1271 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1272 if (!eb_el->l_tree_depth)
1273 new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1274
1275 ocfs2_journal_dirty(handle, bh);
1276 next_blkno = le64_to_cpu(eb->h_blkno);
1277 }
1278
1279 /* This is a bit hairy. We want to update up to three blocks
1280 * here without leaving any of them in an inconsistent state
1281 * in case of error. We don't have to worry about
1282 * journal_dirty erroring as it won't unless we've aborted the
1283 * handle (in which case we would never be here) so reserving
1284 * the write with journal_access is all we need to do. */
1285 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1286 OCFS2_JOURNAL_ACCESS_WRITE);
1287 if (status < 0) {
1288 mlog_errno(status);
1289 goto bail;
1290 }
1291 status = ocfs2_et_root_journal_access(handle, et,
1292 OCFS2_JOURNAL_ACCESS_WRITE);
1293 if (status < 0) {
1294 mlog_errno(status);
1295 goto bail;
1296 }
1297 if (eb_bh) {
1298 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1299 OCFS2_JOURNAL_ACCESS_WRITE);
1300 if (status < 0) {
1301 mlog_errno(status);
1302 goto bail;
1303 }
1304 }
1305
1306 /* Link the new branch into the rest of the tree (el will
1307 * either be on the root_bh, or the extent block passed in. */
1308 i = le16_to_cpu(el->l_next_free_rec);
1309 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1310 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1311 el->l_recs[i].e_int_clusters = 0;
1312 le16_add_cpu(&el->l_next_free_rec, 1);
1313
1314 /* fe needs a new last extent block pointer, as does the
1315 * next_leaf on the previously last-extent-block. */
1316 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1317
1318 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1319 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1320
1321 ocfs2_journal_dirty(handle, *last_eb_bh);
1322 ocfs2_journal_dirty(handle, et->et_root_bh);
1323 if (eb_bh)
1324 ocfs2_journal_dirty(handle, eb_bh);
1325
1326 /*
1327 * Some callers want to track the rightmost leaf so pass it
1328 * back here.
1329 */
1330 brelse(*last_eb_bh);
1331 get_bh(new_eb_bhs[0]);
1332 *last_eb_bh = new_eb_bhs[0];
1333
1334 status = 0;
1335 bail:
1336 if (new_eb_bhs) {
1337 for (i = 0; i < new_blocks; i++)
1338 brelse(new_eb_bhs[i]);
1339 kfree(new_eb_bhs);
1340 }
1341
1342 return status;
1343 }
1344
1345 /*
1346 * adds another level to the allocation tree.
1347 * returns back the new extent block so you can add a branch to it
1348 * after this call.
1349 */
ocfs2_shift_tree_depth(handle_t * handle,struct ocfs2_extent_tree * et,struct ocfs2_alloc_context * meta_ac,struct buffer_head ** ret_new_eb_bh)1350 static int ocfs2_shift_tree_depth(handle_t *handle,
1351 struct ocfs2_extent_tree *et,
1352 struct ocfs2_alloc_context *meta_ac,
1353 struct buffer_head **ret_new_eb_bh)
1354 {
1355 int status, i, block_given = 0;
1356 u32 new_clusters;
1357 struct buffer_head *new_eb_bh = NULL;
1358 struct ocfs2_extent_block *eb;
1359 struct ocfs2_extent_list *root_el;
1360 struct ocfs2_extent_list *eb_el;
1361
1362 if (!ocfs2_is_dealloc_empty(et)) {
1363 status = ocfs2_reuse_blk_from_dealloc(handle, et,
1364 &new_eb_bh, 1,
1365 &block_given);
1366 } else if (meta_ac) {
1367 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1368 &new_eb_bh);
1369
1370 } else {
1371 BUG();
1372 }
1373
1374 if (status < 0) {
1375 mlog_errno(status);
1376 goto bail;
1377 }
1378
1379 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1380 /* ocfs2_create_new_meta_bhs() should create it right! */
1381 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1382
1383 eb_el = &eb->h_list;
1384 root_el = et->et_root_el;
1385
1386 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1387 OCFS2_JOURNAL_ACCESS_CREATE);
1388 if (status < 0) {
1389 mlog_errno(status);
1390 goto bail;
1391 }
1392
1393 /* copy the root extent list data into the new extent block */
1394 eb_el->l_tree_depth = root_el->l_tree_depth;
1395 eb_el->l_next_free_rec = root_el->l_next_free_rec;
1396 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1397 eb_el->l_recs[i] = root_el->l_recs[i];
1398
1399 ocfs2_journal_dirty(handle, new_eb_bh);
1400
1401 status = ocfs2_et_root_journal_access(handle, et,
1402 OCFS2_JOURNAL_ACCESS_WRITE);
1403 if (status < 0) {
1404 mlog_errno(status);
1405 goto bail;
1406 }
1407
1408 new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1409
1410 /* update root_bh now */
1411 le16_add_cpu(&root_el->l_tree_depth, 1);
1412 root_el->l_recs[0].e_cpos = 0;
1413 root_el->l_recs[0].e_blkno = eb->h_blkno;
1414 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1415 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1416 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1417 root_el->l_next_free_rec = cpu_to_le16(1);
1418
1419 /* If this is our 1st tree depth shift, then last_eb_blk
1420 * becomes the allocated extent block */
1421 if (root_el->l_tree_depth == cpu_to_le16(1))
1422 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1423
1424 ocfs2_journal_dirty(handle, et->et_root_bh);
1425
1426 *ret_new_eb_bh = new_eb_bh;
1427 new_eb_bh = NULL;
1428 status = 0;
1429 bail:
1430 brelse(new_eb_bh);
1431
1432 return status;
1433 }
1434
1435 /*
1436 * Should only be called when there is no space left in any of the
1437 * leaf nodes. What we want to do is find the lowest tree depth
1438 * non-leaf extent block with room for new records. There are three
1439 * valid results of this search:
1440 *
1441 * 1) a lowest extent block is found, then we pass it back in
1442 * *lowest_eb_bh and return '0'
1443 *
1444 * 2) the search fails to find anything, but the root_el has room. We
1445 * pass NULL back in *lowest_eb_bh, but still return '0'
1446 *
1447 * 3) the search fails to find anything AND the root_el is full, in
1448 * which case we return > 0
1449 *
1450 * return status < 0 indicates an error.
1451 */
ocfs2_find_branch_target(struct ocfs2_extent_tree * et,struct buffer_head ** target_bh)1452 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1453 struct buffer_head **target_bh)
1454 {
1455 int status = 0, i;
1456 u64 blkno;
1457 struct ocfs2_extent_block *eb;
1458 struct ocfs2_extent_list *el;
1459 struct buffer_head *bh = NULL;
1460 struct buffer_head *lowest_bh = NULL;
1461
1462 *target_bh = NULL;
1463
1464 el = et->et_root_el;
1465
1466 while(le16_to_cpu(el->l_tree_depth) > 1) {
1467 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1468 status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1469 "Owner %llu has empty extent list (next_free_rec == 0)\n",
1470 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1471 goto bail;
1472 }
1473 i = le16_to_cpu(el->l_next_free_rec) - 1;
1474 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1475 if (!blkno) {
1476 status = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1477 "Owner %llu has extent list where extent # %d has no physical block start\n",
1478 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1479 goto bail;
1480 }
1481
1482 brelse(bh);
1483 bh = NULL;
1484
1485 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1486 if (status < 0) {
1487 mlog_errno(status);
1488 goto bail;
1489 }
1490
1491 eb = (struct ocfs2_extent_block *) bh->b_data;
1492 el = &eb->h_list;
1493
1494 if (le16_to_cpu(el->l_next_free_rec) <
1495 le16_to_cpu(el->l_count)) {
1496 brelse(lowest_bh);
1497 lowest_bh = bh;
1498 get_bh(lowest_bh);
1499 }
1500 }
1501
1502 /* If we didn't find one and the fe doesn't have any room,
1503 * then return '1' */
1504 el = et->et_root_el;
1505 if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1506 status = 1;
1507
1508 *target_bh = lowest_bh;
1509 bail:
1510 brelse(bh);
1511
1512 return status;
1513 }
1514
1515 /*
1516 * Grow a b-tree so that it has more records.
1517 *
1518 * We might shift the tree depth in which case existing paths should
1519 * be considered invalid.
1520 *
1521 * Tree depth after the grow is returned via *final_depth.
1522 *
1523 * *last_eb_bh will be updated by ocfs2_add_branch().
1524 */
ocfs2_grow_tree(handle_t * handle,struct ocfs2_extent_tree * et,int * final_depth,struct buffer_head ** last_eb_bh,struct ocfs2_alloc_context * meta_ac)1525 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1526 int *final_depth, struct buffer_head **last_eb_bh,
1527 struct ocfs2_alloc_context *meta_ac)
1528 {
1529 int ret, shift;
1530 struct ocfs2_extent_list *el = et->et_root_el;
1531 int depth = le16_to_cpu(el->l_tree_depth);
1532 struct buffer_head *bh = NULL;
1533
1534 BUG_ON(meta_ac == NULL && ocfs2_is_dealloc_empty(et));
1535
1536 shift = ocfs2_find_branch_target(et, &bh);
1537 if (shift < 0) {
1538 ret = shift;
1539 mlog_errno(ret);
1540 goto out;
1541 }
1542
1543 /* We traveled all the way to the bottom of the allocation tree
1544 * and didn't find room for any more extents - we need to add
1545 * another tree level */
1546 if (shift) {
1547 BUG_ON(bh);
1548 trace_ocfs2_grow_tree(
1549 (unsigned long long)
1550 ocfs2_metadata_cache_owner(et->et_ci),
1551 depth);
1552
1553 /* ocfs2_shift_tree_depth will return us a buffer with
1554 * the new extent block (so we can pass that to
1555 * ocfs2_add_branch). */
1556 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1557 if (ret < 0) {
1558 mlog_errno(ret);
1559 goto out;
1560 }
1561 depth++;
1562 if (depth == 1) {
1563 /*
1564 * Special case: we have room now if we shifted from
1565 * tree_depth 0, so no more work needs to be done.
1566 *
1567 * We won't be calling add_branch, so pass
1568 * back *last_eb_bh as the new leaf. At depth
1569 * zero, it should always be null so there's
1570 * no reason to brelse.
1571 */
1572 BUG_ON(*last_eb_bh);
1573 get_bh(bh);
1574 *last_eb_bh = bh;
1575 goto out;
1576 }
1577 }
1578
1579 /* call ocfs2_add_branch to add the final part of the tree with
1580 * the new data. */
1581 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1582 meta_ac);
1583 if (ret < 0)
1584 mlog_errno(ret);
1585
1586 out:
1587 if (final_depth)
1588 *final_depth = depth;
1589 brelse(bh);
1590 return ret;
1591 }
1592
1593 /*
1594 * This function will discard the rightmost extent record.
1595 */
ocfs2_shift_records_right(struct ocfs2_extent_list * el)1596 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1597 {
1598 int next_free = le16_to_cpu(el->l_next_free_rec);
1599 int count = le16_to_cpu(el->l_count);
1600 unsigned int num_bytes;
1601
1602 BUG_ON(!next_free);
1603 /* This will cause us to go off the end of our extent list. */
1604 BUG_ON(next_free >= count);
1605
1606 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1607
1608 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1609 }
1610
ocfs2_rotate_leaf(struct ocfs2_extent_list * el,struct ocfs2_extent_rec * insert_rec)1611 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1612 struct ocfs2_extent_rec *insert_rec)
1613 {
1614 int i, insert_index, next_free, has_empty, num_bytes;
1615 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1616 struct ocfs2_extent_rec *rec;
1617
1618 next_free = le16_to_cpu(el->l_next_free_rec);
1619 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1620
1621 BUG_ON(!next_free);
1622
1623 /* The tree code before us didn't allow enough room in the leaf. */
1624 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1625
1626 /*
1627 * The easiest way to approach this is to just remove the
1628 * empty extent and temporarily decrement next_free.
1629 */
1630 if (has_empty) {
1631 /*
1632 * If next_free was 1 (only an empty extent), this
1633 * loop won't execute, which is fine. We still want
1634 * the decrement above to happen.
1635 */
1636 for(i = 0; i < (next_free - 1); i++)
1637 el->l_recs[i] = el->l_recs[i+1];
1638
1639 next_free--;
1640 }
1641
1642 /*
1643 * Figure out what the new record index should be.
1644 */
1645 for(i = 0; i < next_free; i++) {
1646 rec = &el->l_recs[i];
1647
1648 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1649 break;
1650 }
1651 insert_index = i;
1652
1653 trace_ocfs2_rotate_leaf(insert_cpos, insert_index,
1654 has_empty, next_free,
1655 le16_to_cpu(el->l_count));
1656
1657 BUG_ON(insert_index < 0);
1658 BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1659 BUG_ON(insert_index > next_free);
1660
1661 /*
1662 * No need to memmove if we're just adding to the tail.
1663 */
1664 if (insert_index != next_free) {
1665 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1666
1667 num_bytes = next_free - insert_index;
1668 num_bytes *= sizeof(struct ocfs2_extent_rec);
1669 memmove(&el->l_recs[insert_index + 1],
1670 &el->l_recs[insert_index],
1671 num_bytes);
1672 }
1673
1674 /*
1675 * Either we had an empty extent, and need to re-increment or
1676 * there was no empty extent on a non full rightmost leaf node,
1677 * in which case we still need to increment.
1678 */
1679 next_free++;
1680 el->l_next_free_rec = cpu_to_le16(next_free);
1681 /*
1682 * Make sure none of the math above just messed up our tree.
1683 */
1684 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1685
1686 el->l_recs[insert_index] = *insert_rec;
1687
1688 }
1689
ocfs2_remove_empty_extent(struct ocfs2_extent_list * el)1690 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1691 {
1692 int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1693
1694 BUG_ON(num_recs == 0);
1695
1696 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1697 num_recs--;
1698 size = num_recs * sizeof(struct ocfs2_extent_rec);
1699 memmove(&el->l_recs[0], &el->l_recs[1], size);
1700 memset(&el->l_recs[num_recs], 0,
1701 sizeof(struct ocfs2_extent_rec));
1702 el->l_next_free_rec = cpu_to_le16(num_recs);
1703 }
1704 }
1705
1706 /*
1707 * Create an empty extent record .
1708 *
1709 * l_next_free_rec may be updated.
1710 *
1711 * If an empty extent already exists do nothing.
1712 */
ocfs2_create_empty_extent(struct ocfs2_extent_list * el)1713 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1714 {
1715 int next_free = le16_to_cpu(el->l_next_free_rec);
1716
1717 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1718
1719 if (next_free == 0)
1720 goto set_and_inc;
1721
1722 if (ocfs2_is_empty_extent(&el->l_recs[0]))
1723 return;
1724
1725 mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1726 "Asked to create an empty extent in a full list:\n"
1727 "count = %u, tree depth = %u",
1728 le16_to_cpu(el->l_count),
1729 le16_to_cpu(el->l_tree_depth));
1730
1731 ocfs2_shift_records_right(el);
1732
1733 set_and_inc:
1734 le16_add_cpu(&el->l_next_free_rec, 1);
1735 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1736 }
1737
1738 /*
1739 * For a rotation which involves two leaf nodes, the "root node" is
1740 * the lowest level tree node which contains a path to both leafs. This
1741 * resulting set of information can be used to form a complete "subtree"
1742 *
1743 * This function is passed two full paths from the dinode down to a
1744 * pair of adjacent leaves. It's task is to figure out which path
1745 * index contains the subtree root - this can be the root index itself
1746 * in a worst-case rotation.
1747 *
1748 * The array index of the subtree root is passed back.
1749 */
ocfs2_find_subtree_root(struct ocfs2_extent_tree * et,struct ocfs2_path * left,struct ocfs2_path * right)1750 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1751 struct ocfs2_path *left,
1752 struct ocfs2_path *right)
1753 {
1754 int i = 0;
1755
1756 /*
1757 * Check that the caller passed in two paths from the same tree.
1758 */
1759 BUG_ON(path_root_bh(left) != path_root_bh(right));
1760
1761 do {
1762 i++;
1763
1764 /*
1765 * The caller didn't pass two adjacent paths.
1766 */
1767 mlog_bug_on_msg(i > left->p_tree_depth,
1768 "Owner %llu, left depth %u, right depth %u\n"
1769 "left leaf blk %llu, right leaf blk %llu\n",
1770 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1771 left->p_tree_depth, right->p_tree_depth,
1772 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1773 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1774 } while (left->p_node[i].bh->b_blocknr ==
1775 right->p_node[i].bh->b_blocknr);
1776
1777 return i - 1;
1778 }
1779
1780 typedef void (path_insert_t)(void *, struct buffer_head *);
1781
1782 /*
1783 * Traverse a btree path in search of cpos, starting at root_el.
1784 *
1785 * This code can be called with a cpos larger than the tree, in which
1786 * case it will return the rightmost path.
1787 */
__ocfs2_find_path(struct ocfs2_caching_info * ci,struct ocfs2_extent_list * root_el,u32 cpos,path_insert_t * func,void * data)1788 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1789 struct ocfs2_extent_list *root_el, u32 cpos,
1790 path_insert_t *func, void *data)
1791 {
1792 int i, ret = 0;
1793 u32 range;
1794 u64 blkno;
1795 struct buffer_head *bh = NULL;
1796 struct ocfs2_extent_block *eb;
1797 struct ocfs2_extent_list *el;
1798 struct ocfs2_extent_rec *rec;
1799
1800 el = root_el;
1801 while (el->l_tree_depth) {
1802 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1803 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1804 "Owner %llu has empty extent list at depth %u\n",
1805 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1806 le16_to_cpu(el->l_tree_depth));
1807 ret = -EROFS;
1808 goto out;
1809
1810 }
1811
1812 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1813 rec = &el->l_recs[i];
1814
1815 /*
1816 * In the case that cpos is off the allocation
1817 * tree, this should just wind up returning the
1818 * rightmost record.
1819 */
1820 range = le32_to_cpu(rec->e_cpos) +
1821 ocfs2_rec_clusters(el, rec);
1822 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1823 break;
1824 }
1825
1826 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1827 if (blkno == 0) {
1828 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1829 "Owner %llu has bad blkno in extent list at depth %u (index %d)\n",
1830 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1831 le16_to_cpu(el->l_tree_depth), i);
1832 ret = -EROFS;
1833 goto out;
1834 }
1835
1836 brelse(bh);
1837 bh = NULL;
1838 ret = ocfs2_read_extent_block(ci, blkno, &bh);
1839 if (ret) {
1840 mlog_errno(ret);
1841 goto out;
1842 }
1843
1844 eb = (struct ocfs2_extent_block *) bh->b_data;
1845 el = &eb->h_list;
1846
1847 if (le16_to_cpu(el->l_next_free_rec) >
1848 le16_to_cpu(el->l_count)) {
1849 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1850 "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n",
1851 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1852 (unsigned long long)bh->b_blocknr,
1853 le16_to_cpu(el->l_next_free_rec),
1854 le16_to_cpu(el->l_count));
1855 ret = -EROFS;
1856 goto out;
1857 }
1858
1859 if (func)
1860 func(data, bh);
1861 }
1862
1863 out:
1864 /*
1865 * Catch any trailing bh that the loop didn't handle.
1866 */
1867 brelse(bh);
1868
1869 return ret;
1870 }
1871
1872 /*
1873 * Given an initialized path (that is, it has a valid root extent
1874 * list), this function will traverse the btree in search of the path
1875 * which would contain cpos.
1876 *
1877 * The path traveled is recorded in the path structure.
1878 *
1879 * Note that this will not do any comparisons on leaf node extent
1880 * records, so it will work fine in the case that we just added a tree
1881 * branch.
1882 */
1883 struct find_path_data {
1884 int index;
1885 struct ocfs2_path *path;
1886 };
find_path_ins(void * data,struct buffer_head * bh)1887 static void find_path_ins(void *data, struct buffer_head *bh)
1888 {
1889 struct find_path_data *fp = data;
1890
1891 get_bh(bh);
1892 ocfs2_path_insert_eb(fp->path, fp->index, bh);
1893 fp->index++;
1894 }
ocfs2_find_path(struct ocfs2_caching_info * ci,struct ocfs2_path * path,u32 cpos)1895 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1896 struct ocfs2_path *path, u32 cpos)
1897 {
1898 struct find_path_data data;
1899
1900 data.index = 1;
1901 data.path = path;
1902 return __ocfs2_find_path(ci, path_root_el(path), cpos,
1903 find_path_ins, &data);
1904 }
1905
find_leaf_ins(void * data,struct buffer_head * bh)1906 static void find_leaf_ins(void *data, struct buffer_head *bh)
1907 {
1908 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1909 struct ocfs2_extent_list *el = &eb->h_list;
1910 struct buffer_head **ret = data;
1911
1912 /* We want to retain only the leaf block. */
1913 if (le16_to_cpu(el->l_tree_depth) == 0) {
1914 get_bh(bh);
1915 *ret = bh;
1916 }
1917 }
1918 /*
1919 * Find the leaf block in the tree which would contain cpos. No
1920 * checking of the actual leaf is done.
1921 *
1922 * Some paths want to call this instead of allocating a path structure
1923 * and calling ocfs2_find_path().
1924 *
1925 * This function doesn't handle non btree extent lists.
1926 */
ocfs2_find_leaf(struct ocfs2_caching_info * ci,struct ocfs2_extent_list * root_el,u32 cpos,struct buffer_head ** leaf_bh)1927 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1928 struct ocfs2_extent_list *root_el, u32 cpos,
1929 struct buffer_head **leaf_bh)
1930 {
1931 int ret;
1932 struct buffer_head *bh = NULL;
1933
1934 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1935 if (ret) {
1936 mlog_errno(ret);
1937 goto out;
1938 }
1939
1940 *leaf_bh = bh;
1941 out:
1942 return ret;
1943 }
1944
1945 /*
1946 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1947 *
1948 * Basically, we've moved stuff around at the bottom of the tree and
1949 * we need to fix up the extent records above the changes to reflect
1950 * the new changes.
1951 *
1952 * left_rec: the record on the left.
1953 * right_rec: the record to the right of left_rec
1954 * right_child_el: is the child list pointed to by right_rec
1955 *
1956 * By definition, this only works on interior nodes.
1957 */
ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec * left_rec,struct ocfs2_extent_rec * right_rec,struct ocfs2_extent_list * right_child_el)1958 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1959 struct ocfs2_extent_rec *right_rec,
1960 struct ocfs2_extent_list *right_child_el)
1961 {
1962 u32 left_clusters, right_end;
1963
1964 /*
1965 * Interior nodes never have holes. Their cpos is the cpos of
1966 * the leftmost record in their child list. Their cluster
1967 * count covers the full theoretical range of their child list
1968 * - the range between their cpos and the cpos of the record
1969 * immediately to their right.
1970 */
1971 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1972 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1973 BUG_ON(right_child_el->l_tree_depth);
1974 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1975 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1976 }
1977 left_clusters -= le32_to_cpu(left_rec->e_cpos);
1978 left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1979
1980 /*
1981 * Calculate the rightmost cluster count boundary before
1982 * moving cpos - we will need to adjust clusters after
1983 * updating e_cpos to keep the same highest cluster count.
1984 */
1985 right_end = le32_to_cpu(right_rec->e_cpos);
1986 right_end += le32_to_cpu(right_rec->e_int_clusters);
1987
1988 right_rec->e_cpos = left_rec->e_cpos;
1989 le32_add_cpu(&right_rec->e_cpos, left_clusters);
1990
1991 right_end -= le32_to_cpu(right_rec->e_cpos);
1992 right_rec->e_int_clusters = cpu_to_le32(right_end);
1993 }
1994
1995 /*
1996 * Adjust the adjacent root node records involved in a
1997 * rotation. left_el_blkno is passed in as a key so that we can easily
1998 * find it's index in the root list.
1999 */
ocfs2_adjust_root_records(struct ocfs2_extent_list * root_el,struct ocfs2_extent_list * left_el,struct ocfs2_extent_list * right_el,u64 left_el_blkno)2000 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
2001 struct ocfs2_extent_list *left_el,
2002 struct ocfs2_extent_list *right_el,
2003 u64 left_el_blkno)
2004 {
2005 int i;
2006
2007 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
2008 le16_to_cpu(left_el->l_tree_depth));
2009
2010 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
2011 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
2012 break;
2013 }
2014
2015 /*
2016 * The path walking code should have never returned a root and
2017 * two paths which are not adjacent.
2018 */
2019 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2020
2021 ocfs2_adjust_adjacent_records(&root_el->l_recs[i],
2022 &root_el->l_recs[i + 1], right_el);
2023 }
2024
2025 /*
2026 * We've changed a leaf block (in right_path) and need to reflect that
2027 * change back up the subtree.
2028 *
2029 * This happens in multiple places:
2030 * - When we've moved an extent record from the left path leaf to the right
2031 * path leaf to make room for an empty extent in the left path leaf.
2032 * - When our insert into the right path leaf is at the leftmost edge
2033 * and requires an update of the path immediately to it's left. This
2034 * can occur at the end of some types of rotation and appending inserts.
2035 * - When we've adjusted the last extent record in the left path leaf and the
2036 * 1st extent record in the right path leaf during cross extent block merge.
2037 */
ocfs2_complete_edge_insert(handle_t * handle,struct ocfs2_path * left_path,struct ocfs2_path * right_path,int subtree_index)2038 static void ocfs2_complete_edge_insert(handle_t *handle,
2039 struct ocfs2_path *left_path,
2040 struct ocfs2_path *right_path,
2041 int subtree_index)
2042 {
2043 int i, idx;
2044 struct ocfs2_extent_list *el, *left_el, *right_el;
2045 struct ocfs2_extent_rec *left_rec, *right_rec;
2046 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2047
2048 /*
2049 * Update the counts and position values within all the
2050 * interior nodes to reflect the leaf rotation we just did.
2051 *
2052 * The root node is handled below the loop.
2053 *
2054 * We begin the loop with right_el and left_el pointing to the
2055 * leaf lists and work our way up.
2056 *
2057 * NOTE: within this loop, left_el and right_el always refer
2058 * to the *child* lists.
2059 */
2060 left_el = path_leaf_el(left_path);
2061 right_el = path_leaf_el(right_path);
2062 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2063 trace_ocfs2_complete_edge_insert(i);
2064
2065 /*
2066 * One nice property of knowing that all of these
2067 * nodes are below the root is that we only deal with
2068 * the leftmost right node record and the rightmost
2069 * left node record.
2070 */
2071 el = left_path->p_node[i].el;
2072 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2073 left_rec = &el->l_recs[idx];
2074
2075 el = right_path->p_node[i].el;
2076 right_rec = &el->l_recs[0];
2077
2078 ocfs2_adjust_adjacent_records(left_rec, right_rec, right_el);
2079
2080 ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2081 ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2082
2083 /*
2084 * Setup our list pointers now so that the current
2085 * parents become children in the next iteration.
2086 */
2087 left_el = left_path->p_node[i].el;
2088 right_el = right_path->p_node[i].el;
2089 }
2090
2091 /*
2092 * At the root node, adjust the two adjacent records which
2093 * begin our path to the leaves.
2094 */
2095
2096 el = left_path->p_node[subtree_index].el;
2097 left_el = left_path->p_node[subtree_index + 1].el;
2098 right_el = right_path->p_node[subtree_index + 1].el;
2099
2100 ocfs2_adjust_root_records(el, left_el, right_el,
2101 left_path->p_node[subtree_index + 1].bh->b_blocknr);
2102
2103 root_bh = left_path->p_node[subtree_index].bh;
2104
2105 ocfs2_journal_dirty(handle, root_bh);
2106 }
2107
ocfs2_rotate_subtree_right(handle_t * handle,struct ocfs2_extent_tree * et,struct ocfs2_path * left_path,struct ocfs2_path * right_path,int subtree_index)2108 static int ocfs2_rotate_subtree_right(handle_t *handle,
2109 struct ocfs2_extent_tree *et,
2110 struct ocfs2_path *left_path,
2111 struct ocfs2_path *right_path,
2112 int subtree_index)
2113 {
2114 int ret, i;
2115 struct buffer_head *right_leaf_bh;
2116 struct buffer_head *left_leaf_bh = NULL;
2117 struct buffer_head *root_bh;
2118 struct ocfs2_extent_list *right_el, *left_el;
2119 struct ocfs2_extent_rec move_rec;
2120
2121 left_leaf_bh = path_leaf_bh(left_path);
2122 left_el = path_leaf_el(left_path);
2123
2124 if (left_el->l_next_free_rec != left_el->l_count) {
2125 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2126 "Inode %llu has non-full interior leaf node %llu (next free = %u)\n",
2127 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2128 (unsigned long long)left_leaf_bh->b_blocknr,
2129 le16_to_cpu(left_el->l_next_free_rec));
2130 return -EROFS;
2131 }
2132
2133 /*
2134 * This extent block may already have an empty record, so we
2135 * return early if so.
2136 */
2137 if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2138 return 0;
2139
2140 root_bh = left_path->p_node[subtree_index].bh;
2141 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2142
2143 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2144 subtree_index);
2145 if (ret) {
2146 mlog_errno(ret);
2147 goto out;
2148 }
2149
2150 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2151 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2152 right_path, i);
2153 if (ret) {
2154 mlog_errno(ret);
2155 goto out;
2156 }
2157
2158 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2159 left_path, i);
2160 if (ret) {
2161 mlog_errno(ret);
2162 goto out;
2163 }
2164 }
2165
2166 right_leaf_bh = path_leaf_bh(right_path);
2167 right_el = path_leaf_el(right_path);
2168
2169 /* This is a code error, not a disk corruption. */
2170 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2171 "because rightmost leaf block %llu is empty\n",
2172 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2173 (unsigned long long)right_leaf_bh->b_blocknr);
2174
2175 ocfs2_create_empty_extent(right_el);
2176
2177 ocfs2_journal_dirty(handle, right_leaf_bh);
2178
2179 /* Do the copy now. */
2180 i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2181 move_rec = left_el->l_recs[i];
2182 right_el->l_recs[0] = move_rec;
2183
2184 /*
2185 * Clear out the record we just copied and shift everything
2186 * over, leaving an empty extent in the left leaf.
2187 *
2188 * We temporarily subtract from next_free_rec so that the
2189 * shift will lose the tail record (which is now defunct).
2190 */
2191 le16_add_cpu(&left_el->l_next_free_rec, -1);
2192 ocfs2_shift_records_right(left_el);
2193 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2194 le16_add_cpu(&left_el->l_next_free_rec, 1);
2195
2196 ocfs2_journal_dirty(handle, left_leaf_bh);
2197
2198 ocfs2_complete_edge_insert(handle, left_path, right_path,
2199 subtree_index);
2200
2201 out:
2202 return ret;
2203 }
2204
2205 /*
2206 * Given a full path, determine what cpos value would return us a path
2207 * containing the leaf immediately to the left of the current one.
2208 *
2209 * Will return zero if the path passed in is already the leftmost path.
2210 */
ocfs2_find_cpos_for_left_leaf(struct super_block * sb,struct ocfs2_path * path,u32 * cpos)2211 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2212 struct ocfs2_path *path, u32 *cpos)
2213 {
2214 int i, j, ret = 0;
2215 u64 blkno;
2216 struct ocfs2_extent_list *el;
2217
2218 BUG_ON(path->p_tree_depth == 0);
2219
2220 *cpos = 0;
2221
2222 blkno = path_leaf_bh(path)->b_blocknr;
2223
2224 /* Start at the tree node just above the leaf and work our way up. */
2225 i = path->p_tree_depth - 1;
2226 while (i >= 0) {
2227 el = path->p_node[i].el;
2228
2229 /*
2230 * Find the extent record just before the one in our
2231 * path.
2232 */
2233 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2234 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2235 if (j == 0) {
2236 if (i == 0) {
2237 /*
2238 * We've determined that the
2239 * path specified is already
2240 * the leftmost one - return a
2241 * cpos of zero.
2242 */
2243 goto out;
2244 }
2245 /*
2246 * The leftmost record points to our
2247 * leaf - we need to travel up the
2248 * tree one level.
2249 */
2250 goto next_node;
2251 }
2252
2253 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2254 *cpos = *cpos + ocfs2_rec_clusters(el,
2255 &el->l_recs[j - 1]);
2256 *cpos = *cpos - 1;
2257 goto out;
2258 }
2259 }
2260
2261 /*
2262 * If we got here, we never found a valid node where
2263 * the tree indicated one should be.
2264 */
2265 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2266 (unsigned long long)blkno);
2267 ret = -EROFS;
2268 goto out;
2269
2270 next_node:
2271 blkno = path->p_node[i].bh->b_blocknr;
2272 i--;
2273 }
2274
2275 out:
2276 return ret;
2277 }
2278
2279 /*
2280 * Extend the transaction by enough credits to complete the rotation,
2281 * and still leave at least the original number of credits allocated
2282 * to this transaction.
2283 */
ocfs2_extend_rotate_transaction(handle_t * handle,int subtree_depth,int op_credits,struct ocfs2_path * path)2284 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2285 int op_credits,
2286 struct ocfs2_path *path)
2287 {
2288 int ret = 0;
2289 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2290
2291 if (handle->h_buffer_credits < credits)
2292 ret = ocfs2_extend_trans(handle,
2293 credits - handle->h_buffer_credits);
2294
2295 return ret;
2296 }
2297
2298 /*
2299 * Trap the case where we're inserting into the theoretical range past
2300 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2301 * whose cpos is less than ours into the right leaf.
2302 *
2303 * It's only necessary to look at the rightmost record of the left
2304 * leaf because the logic that calls us should ensure that the
2305 * theoretical ranges in the path components above the leaves are
2306 * correct.
2307 */
ocfs2_rotate_requires_path_adjustment(struct ocfs2_path * left_path,u32 insert_cpos)2308 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2309 u32 insert_cpos)
2310 {
2311 struct ocfs2_extent_list *left_el;
2312 struct ocfs2_extent_rec *rec;
2313 int next_free;
2314
2315 left_el = path_leaf_el(left_path);
2316 next_free = le16_to_cpu(left_el->l_next_free_rec);
2317 rec = &left_el->l_recs[next_free - 1];
2318
2319 if (insert_cpos > le32_to_cpu(rec->e_cpos))
2320 return 1;
2321 return 0;
2322 }
2323
ocfs2_leftmost_rec_contains(struct ocfs2_extent_list * el,u32 cpos)2324 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2325 {
2326 int next_free = le16_to_cpu(el->l_next_free_rec);
2327 unsigned int range;
2328 struct ocfs2_extent_rec *rec;
2329
2330 if (next_free == 0)
2331 return 0;
2332
2333 rec = &el->l_recs[0];
2334 if (ocfs2_is_empty_extent(rec)) {
2335 /* Empty list. */
2336 if (next_free == 1)
2337 return 0;
2338 rec = &el->l_recs[1];
2339 }
2340
2341 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2342 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2343 return 1;
2344 return 0;
2345 }
2346
2347 /*
2348 * Rotate all the records in a btree right one record, starting at insert_cpos.
2349 *
2350 * The path to the rightmost leaf should be passed in.
2351 *
2352 * The array is assumed to be large enough to hold an entire path (tree depth).
2353 *
2354 * Upon successful return from this function:
2355 *
2356 * - The 'right_path' array will contain a path to the leaf block
2357 * whose range contains e_cpos.
2358 * - That leaf block will have a single empty extent in list index 0.
2359 * - In the case that the rotation requires a post-insert update,
2360 * *ret_left_path will contain a valid path which can be passed to
2361 * ocfs2_insert_path().
2362 */
ocfs2_rotate_tree_right(handle_t * handle,struct ocfs2_extent_tree * et,enum ocfs2_split_type split,u32 insert_cpos,struct ocfs2_path * right_path,struct ocfs2_path ** ret_left_path)2363 static int ocfs2_rotate_tree_right(handle_t *handle,
2364 struct ocfs2_extent_tree *et,
2365 enum ocfs2_split_type split,
2366 u32 insert_cpos,
2367 struct ocfs2_path *right_path,
2368 struct ocfs2_path **ret_left_path)
2369 {
2370 int ret, start, orig_credits = handle->h_buffer_credits;
2371 u32 cpos;
2372 struct ocfs2_path *left_path = NULL;
2373 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2374
2375 *ret_left_path = NULL;
2376
2377 left_path = ocfs2_new_path_from_path(right_path);
2378 if (!left_path) {
2379 ret = -ENOMEM;
2380 mlog_errno(ret);
2381 goto out;
2382 }
2383
2384 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2385 if (ret) {
2386 mlog_errno(ret);
2387 goto out;
2388 }
2389
2390 trace_ocfs2_rotate_tree_right(
2391 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2392 insert_cpos, cpos);
2393
2394 /*
2395 * What we want to do here is:
2396 *
2397 * 1) Start with the rightmost path.
2398 *
2399 * 2) Determine a path to the leaf block directly to the left
2400 * of that leaf.
2401 *
2402 * 3) Determine the 'subtree root' - the lowest level tree node
2403 * which contains a path to both leaves.
2404 *
2405 * 4) Rotate the subtree.
2406 *
2407 * 5) Find the next subtree by considering the left path to be
2408 * the new right path.
2409 *
2410 * The check at the top of this while loop also accepts
2411 * insert_cpos == cpos because cpos is only a _theoretical_
2412 * value to get us the left path - insert_cpos might very well
2413 * be filling that hole.
2414 *
2415 * Stop at a cpos of '0' because we either started at the
2416 * leftmost branch (i.e., a tree with one branch and a
2417 * rotation inside of it), or we've gone as far as we can in
2418 * rotating subtrees.
2419 */
2420 while (cpos && insert_cpos <= cpos) {
2421 trace_ocfs2_rotate_tree_right(
2422 (unsigned long long)
2423 ocfs2_metadata_cache_owner(et->et_ci),
2424 insert_cpos, cpos);
2425
2426 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2427 if (ret) {
2428 mlog_errno(ret);
2429 goto out;
2430 }
2431
2432 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2433 path_leaf_bh(right_path),
2434 "Owner %llu: error during insert of %u "
2435 "(left path cpos %u) results in two identical "
2436 "paths ending at %llu\n",
2437 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2438 insert_cpos, cpos,
2439 (unsigned long long)
2440 path_leaf_bh(left_path)->b_blocknr);
2441
2442 if (split == SPLIT_NONE &&
2443 ocfs2_rotate_requires_path_adjustment(left_path,
2444 insert_cpos)) {
2445
2446 /*
2447 * We've rotated the tree as much as we
2448 * should. The rest is up to
2449 * ocfs2_insert_path() to complete, after the
2450 * record insertion. We indicate this
2451 * situation by returning the left path.
2452 *
2453 * The reason we don't adjust the records here
2454 * before the record insert is that an error
2455 * later might break the rule where a parent
2456 * record e_cpos will reflect the actual
2457 * e_cpos of the 1st nonempty record of the
2458 * child list.
2459 */
2460 *ret_left_path = left_path;
2461 goto out_ret_path;
2462 }
2463
2464 start = ocfs2_find_subtree_root(et, left_path, right_path);
2465
2466 trace_ocfs2_rotate_subtree(start,
2467 (unsigned long long)
2468 right_path->p_node[start].bh->b_blocknr,
2469 right_path->p_tree_depth);
2470
2471 ret = ocfs2_extend_rotate_transaction(handle, start,
2472 orig_credits, right_path);
2473 if (ret) {
2474 mlog_errno(ret);
2475 goto out;
2476 }
2477
2478 ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2479 right_path, start);
2480 if (ret) {
2481 mlog_errno(ret);
2482 goto out;
2483 }
2484
2485 if (split != SPLIT_NONE &&
2486 ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2487 insert_cpos)) {
2488 /*
2489 * A rotate moves the rightmost left leaf
2490 * record over to the leftmost right leaf
2491 * slot. If we're doing an extent split
2492 * instead of a real insert, then we have to
2493 * check that the extent to be split wasn't
2494 * just moved over. If it was, then we can
2495 * exit here, passing left_path back -
2496 * ocfs2_split_extent() is smart enough to
2497 * search both leaves.
2498 */
2499 *ret_left_path = left_path;
2500 goto out_ret_path;
2501 }
2502
2503 /*
2504 * There is no need to re-read the next right path
2505 * as we know that it'll be our current left
2506 * path. Optimize by copying values instead.
2507 */
2508 ocfs2_mv_path(right_path, left_path);
2509
2510 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2511 if (ret) {
2512 mlog_errno(ret);
2513 goto out;
2514 }
2515 }
2516
2517 out:
2518 ocfs2_free_path(left_path);
2519
2520 out_ret_path:
2521 return ret;
2522 }
2523
ocfs2_update_edge_lengths(handle_t * handle,struct ocfs2_extent_tree * et,struct ocfs2_path * path)2524 static int ocfs2_update_edge_lengths(handle_t *handle,
2525 struct ocfs2_extent_tree *et,
2526 struct ocfs2_path *path)
2527 {
2528 int i, idx, ret;
2529 struct ocfs2_extent_rec *rec;
2530 struct ocfs2_extent_list *el;
2531 struct ocfs2_extent_block *eb;
2532 u32 range;
2533
2534 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2535 if (ret) {
2536 mlog_errno(ret);
2537 goto out;
2538 }
2539
2540 /* Path should always be rightmost. */
2541 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2542 BUG_ON(eb->h_next_leaf_blk != 0ULL);
2543
2544 el = &eb->h_list;
2545 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2546 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2547 rec = &el->l_recs[idx];
2548 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2549
2550 for (i = 0; i < path->p_tree_depth; i++) {
2551 el = path->p_node[i].el;
2552 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2553 rec = &el->l_recs[idx];
2554
2555 rec->e_int_clusters = cpu_to_le32(range);
2556 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2557
2558 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2559 }
2560 out:
2561 return ret;
2562 }
2563
ocfs2_unlink_path(handle_t * handle,struct ocfs2_extent_tree * et,struct ocfs2_cached_dealloc_ctxt * dealloc,struct ocfs2_path * path,int unlink_start)2564 static void ocfs2_unlink_path(handle_t *handle,
2565 struct ocfs2_extent_tree *et,
2566 struct ocfs2_cached_dealloc_ctxt *dealloc,
2567 struct ocfs2_path *path, int unlink_start)
2568 {
2569 int ret, i;
2570 struct ocfs2_extent_block *eb;
2571 struct ocfs2_extent_list *el;
2572 struct buffer_head *bh;
2573
2574 for(i = unlink_start; i < path_num_items(path); i++) {
2575 bh = path->p_node[i].bh;
2576
2577 eb = (struct ocfs2_extent_block *)bh->b_data;
2578 /*
2579 * Not all nodes might have had their final count
2580 * decremented by the caller - handle this here.
2581 */
2582 el = &eb->h_list;
2583 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2584 mlog(ML_ERROR,
2585 "Inode %llu, attempted to remove extent block "
2586 "%llu with %u records\n",
2587 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2588 (unsigned long long)le64_to_cpu(eb->h_blkno),
2589 le16_to_cpu(el->l_next_free_rec));
2590
2591 ocfs2_journal_dirty(handle, bh);
2592 ocfs2_remove_from_cache(et->et_ci, bh);
2593 continue;
2594 }
2595
2596 el->l_next_free_rec = 0;
2597 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2598
2599 ocfs2_journal_dirty(handle, bh);
2600
2601 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2602 if (ret)
2603 mlog_errno(ret);
2604
2605 ocfs2_remove_from_cache(et->et_ci, bh);
2606 }
2607 }
2608
ocfs2_unlink_subtree(handle_t * handle,struct ocfs2_extent_tree * et,struct ocfs2_path * left_path,struct ocfs2_path * right_path,int subtree_index,struct ocfs2_cached_dealloc_ctxt * dealloc)2609 static void ocfs2_unlink_subtree(handle_t *handle,
2610 struct ocfs2_extent_tree *et,
2611 struct ocfs2_path *left_path,
2612 struct ocfs2_path *right_path,
2613 int subtree_index,
2614 struct ocfs2_cached_dealloc_ctxt *dealloc)
2615 {
2616 int i;
2617 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2618 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2619 struct ocfs2_extent_block *eb;
2620
2621 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2622
2623 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2624 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2625 break;
2626
2627 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2628
2629 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2630 le16_add_cpu(&root_el->l_next_free_rec, -1);
2631
2632 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2633 eb->h_next_leaf_blk = 0;
2634
2635 ocfs2_journal_dirty(handle, root_bh);
2636 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2637
2638 ocfs2_unlink_path(handle, et, dealloc, right_path,
2639 subtree_index + 1);
2640 }
2641
ocfs2_rotate_subtree_left(handle_t * handle,struct ocfs2_extent_tree * et,struct ocfs2_path * left_path,struct ocfs2_path * right_path,int subtree_index,struct ocfs2_cached_dealloc_ctxt * dealloc,int * deleted)2642 static int ocfs2_rotate_subtree_left(handle_t *handle,
2643 struct ocfs2_extent_tree *et,
2644 struct ocfs2_path *left_path,
2645 struct ocfs2_path *right_path,
2646 int subtree_index,
2647 struct ocfs2_cached_dealloc_ctxt *dealloc,
2648 int *deleted)
2649 {
2650 int ret, i, del_right_subtree = 0, right_has_empty = 0;
2651 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2652 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2653 struct ocfs2_extent_block *eb;
2654
2655 *deleted = 0;
2656
2657 right_leaf_el = path_leaf_el(right_path);
2658 left_leaf_el = path_leaf_el(left_path);
2659 root_bh = left_path->p_node[subtree_index].bh;
2660 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2661
2662 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2663 return 0;
2664
2665 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2666 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2667 /*
2668 * It's legal for us to proceed if the right leaf is
2669 * the rightmost one and it has an empty extent. There
2670 * are two cases to handle - whether the leaf will be
2671 * empty after removal or not. If the leaf isn't empty
2672 * then just remove the empty extent up front. The
2673 * next block will handle empty leaves by flagging
2674 * them for unlink.
2675 *
2676 * Non rightmost leaves will throw -EAGAIN and the
2677 * caller can manually move the subtree and retry.
2678 */
2679
2680 if (eb->h_next_leaf_blk != 0ULL)
2681 return -EAGAIN;
2682
2683 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2684 ret = ocfs2_journal_access_eb(handle, et->et_ci,
2685 path_leaf_bh(right_path),
2686 OCFS2_JOURNAL_ACCESS_WRITE);
2687 if (ret) {
2688 mlog_errno(ret);
2689 goto out;
2690 }
2691
2692 ocfs2_remove_empty_extent(right_leaf_el);
2693 } else
2694 right_has_empty = 1;
2695 }
2696
2697 if (eb->h_next_leaf_blk == 0ULL &&
2698 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2699 /*
2700 * We have to update i_last_eb_blk during the meta
2701 * data delete.
2702 */
2703 ret = ocfs2_et_root_journal_access(handle, et,
2704 OCFS2_JOURNAL_ACCESS_WRITE);
2705 if (ret) {
2706 mlog_errno(ret);
2707 goto out;
2708 }
2709
2710 del_right_subtree = 1;
2711 }
2712
2713 /*
2714 * Getting here with an empty extent in the right path implies
2715 * that it's the rightmost path and will be deleted.
2716 */
2717 BUG_ON(right_has_empty && !del_right_subtree);
2718
2719 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2720 subtree_index);
2721 if (ret) {
2722 mlog_errno(ret);
2723 goto out;
2724 }
2725
2726 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2727 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2728 right_path, i);
2729 if (ret) {
2730 mlog_errno(ret);
2731 goto out;
2732 }
2733
2734 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2735 left_path, i);
2736 if (ret) {
2737 mlog_errno(ret);
2738 goto out;
2739 }
2740 }
2741
2742 if (!right_has_empty) {
2743 /*
2744 * Only do this if we're moving a real
2745 * record. Otherwise, the action is delayed until
2746 * after removal of the right path in which case we
2747 * can do a simple shift to remove the empty extent.
2748 */
2749 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2750 memset(&right_leaf_el->l_recs[0], 0,
2751 sizeof(struct ocfs2_extent_rec));
2752 }
2753 if (eb->h_next_leaf_blk == 0ULL) {
2754 /*
2755 * Move recs over to get rid of empty extent, decrease
2756 * next_free. This is allowed to remove the last
2757 * extent in our leaf (setting l_next_free_rec to
2758 * zero) - the delete code below won't care.
2759 */
2760 ocfs2_remove_empty_extent(right_leaf_el);
2761 }
2762
2763 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2764 ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2765
2766 if (del_right_subtree) {
2767 ocfs2_unlink_subtree(handle, et, left_path, right_path,
2768 subtree_index, dealloc);
2769 ret = ocfs2_update_edge_lengths(handle, et, left_path);
2770 if (ret) {
2771 mlog_errno(ret);
2772 goto out;
2773 }
2774
2775 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2776 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2777
2778 /*
2779 * Removal of the extent in the left leaf was skipped
2780 * above so we could delete the right path
2781 * 1st.
2782 */
2783 if (right_has_empty)
2784 ocfs2_remove_empty_extent(left_leaf_el);
2785
2786 ocfs2_journal_dirty(handle, et_root_bh);
2787
2788 *deleted = 1;
2789 } else
2790 ocfs2_complete_edge_insert(handle, left_path, right_path,
2791 subtree_index);
2792
2793 out:
2794 return ret;
2795 }
2796
2797 /*
2798 * Given a full path, determine what cpos value would return us a path
2799 * containing the leaf immediately to the right of the current one.
2800 *
2801 * Will return zero if the path passed in is already the rightmost path.
2802 *
2803 * This looks similar, but is subtly different to
2804 * ocfs2_find_cpos_for_left_leaf().
2805 */
ocfs2_find_cpos_for_right_leaf(struct super_block * sb,struct ocfs2_path * path,u32 * cpos)2806 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2807 struct ocfs2_path *path, u32 *cpos)
2808 {
2809 int i, j, ret = 0;
2810 u64 blkno;
2811 struct ocfs2_extent_list *el;
2812
2813 *cpos = 0;
2814
2815 if (path->p_tree_depth == 0)
2816 return 0;
2817
2818 blkno = path_leaf_bh(path)->b_blocknr;
2819
2820 /* Start at the tree node just above the leaf and work our way up. */
2821 i = path->p_tree_depth - 1;
2822 while (i >= 0) {
2823 int next_free;
2824
2825 el = path->p_node[i].el;
2826
2827 /*
2828 * Find the extent record just after the one in our
2829 * path.
2830 */
2831 next_free = le16_to_cpu(el->l_next_free_rec);
2832 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2833 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2834 if (j == (next_free - 1)) {
2835 if (i == 0) {
2836 /*
2837 * We've determined that the
2838 * path specified is already
2839 * the rightmost one - return a
2840 * cpos of zero.
2841 */
2842 goto out;
2843 }
2844 /*
2845 * The rightmost record points to our
2846 * leaf - we need to travel up the
2847 * tree one level.
2848 */
2849 goto next_node;
2850 }
2851
2852 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2853 goto out;
2854 }
2855 }
2856
2857 /*
2858 * If we got here, we never found a valid node where
2859 * the tree indicated one should be.
2860 */
2861 ocfs2_error(sb, "Invalid extent tree at extent block %llu\n",
2862 (unsigned long long)blkno);
2863 ret = -EROFS;
2864 goto out;
2865
2866 next_node:
2867 blkno = path->p_node[i].bh->b_blocknr;
2868 i--;
2869 }
2870
2871 out:
2872 return ret;
2873 }
2874
ocfs2_rotate_rightmost_leaf_left(handle_t * handle,struct ocfs2_extent_tree * et,struct ocfs2_path * path)2875 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2876 struct ocfs2_extent_tree *et,
2877 struct ocfs2_path *path)
2878 {
2879 int ret;
2880 struct buffer_head *bh = path_leaf_bh(path);
2881 struct ocfs2_extent_list *el = path_leaf_el(path);
2882
2883 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2884 return 0;
2885
2886 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2887 path_num_items(path) - 1);
2888 if (ret) {
2889 mlog_errno(ret);
2890 goto out;
2891 }
2892
2893 ocfs2_remove_empty_extent(el);
2894 ocfs2_journal_dirty(handle, bh);
2895
2896 out:
2897 return ret;
2898 }
2899
__ocfs2_rotate_tree_left(handle_t * handle,struct ocfs2_extent_tree * et,int orig_credits,struct ocfs2_path * path,struct ocfs2_cached_dealloc_ctxt * dealloc,struct ocfs2_path ** empty_extent_path)2900 static int __ocfs2_rotate_tree_left(handle_t *handle,
2901 struct ocfs2_extent_tree *et,
2902 int orig_credits,
2903 struct ocfs2_path *path,
2904 struct ocfs2_cached_dealloc_ctxt *dealloc,
2905 struct ocfs2_path **empty_extent_path)
2906 {
2907 int ret, subtree_root, deleted;
2908 u32 right_cpos;
2909 struct ocfs2_path *left_path = NULL;
2910 struct ocfs2_path *right_path = NULL;
2911 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2912
2913 if (!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])))
2914 return 0;
2915
2916 *empty_extent_path = NULL;
2917
2918 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2919 if (ret) {
2920 mlog_errno(ret);
2921 goto out;
2922 }
2923
2924 left_path = ocfs2_new_path_from_path(path);
2925 if (!left_path) {
2926 ret = -ENOMEM;
2927 mlog_errno(ret);
2928 goto out;
2929 }
2930
2931 ocfs2_cp_path(left_path, path);
2932
2933 right_path = ocfs2_new_path_from_path(path);
2934 if (!right_path) {
2935 ret = -ENOMEM;
2936 mlog_errno(ret);
2937 goto out;
2938 }
2939
2940 while (right_cpos) {
2941 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2942 if (ret) {
2943 mlog_errno(ret);
2944 goto out;
2945 }
2946
2947 subtree_root = ocfs2_find_subtree_root(et, left_path,
2948 right_path);
2949
2950 trace_ocfs2_rotate_subtree(subtree_root,
2951 (unsigned long long)
2952 right_path->p_node[subtree_root].bh->b_blocknr,
2953 right_path->p_tree_depth);
2954
2955 ret = ocfs2_extend_rotate_transaction(handle, 0,
2956 orig_credits, left_path);
2957 if (ret) {
2958 mlog_errno(ret);
2959 goto out;
2960 }
2961
2962 /*
2963 * Caller might still want to make changes to the
2964 * tree root, so re-add it to the journal here.
2965 */
2966 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2967 left_path, 0);
2968 if (ret) {
2969 mlog_errno(ret);
2970 goto out;
2971 }
2972
2973 ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2974 right_path, subtree_root,
2975 dealloc, &deleted);
2976 if (ret == -EAGAIN) {
2977 /*
2978 * The rotation has to temporarily stop due to
2979 * the right subtree having an empty
2980 * extent. Pass it back to the caller for a
2981 * fixup.
2982 */
2983 *empty_extent_path = right_path;
2984 right_path = NULL;
2985 goto out;
2986 }
2987 if (ret) {
2988 mlog_errno(ret);
2989 goto out;
2990 }
2991
2992 /*
2993 * The subtree rotate might have removed records on
2994 * the rightmost edge. If so, then rotation is
2995 * complete.
2996 */
2997 if (deleted)
2998 break;
2999
3000 ocfs2_mv_path(left_path, right_path);
3001
3002 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
3003 &right_cpos);
3004 if (ret) {
3005 mlog_errno(ret);
3006 goto out;
3007 }
3008 }
3009
3010 out:
3011 ocfs2_free_path(right_path);
3012 ocfs2_free_path(left_path);
3013
3014 return ret;
3015 }
3016
ocfs2_remove_rightmost_path(handle_t * handle,struct ocfs2_extent_tree * et,struct ocfs2_path * path,struct ocfs2_cached_dealloc_ctxt * dealloc)3017 static int ocfs2_remove_rightmost_path(handle_t *handle,
3018 struct ocfs2_extent_tree *et,
3019 struct ocfs2_path *path,
3020 struct ocfs2_cached_dealloc_ctxt *dealloc)
3021 {
3022 int ret, subtree_index;
3023 u32 cpos;
3024 struct ocfs2_path *left_path = NULL;
3025 struct ocfs2_extent_block *eb;
3026 struct ocfs2_extent_list *el;
3027
3028 ret = ocfs2_et_sanity_check(et);
3029 if (ret)
3030 goto out;
3031
3032 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3033 if (ret) {
3034 mlog_errno(ret);
3035 goto out;
3036 }
3037
3038 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3039 path, &cpos);
3040 if (ret) {
3041 mlog_errno(ret);
3042 goto out;
3043 }
3044
3045 if (cpos) {
3046 /*
3047 * We have a path to the left of this one - it needs
3048 * an update too.
3049 */
3050 left_path = ocfs2_new_path_from_path(path);
3051 if (!left_path) {
3052 ret = -ENOMEM;
3053 mlog_errno(ret);
3054 goto out;
3055 }
3056
3057 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3058 if (ret) {
3059 mlog_errno(ret);
3060 goto out;
3061 }
3062
3063 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3064 if (ret) {
3065 mlog_errno(ret);
3066 goto out;
3067 }
3068
3069 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3070
3071 ocfs2_unlink_subtree(handle, et, left_path, path,
3072 subtree_index, dealloc);
3073 ret = ocfs2_update_edge_lengths(handle, et, left_path);
3074 if (ret) {
3075 mlog_errno(ret);
3076 goto out;
3077 }
3078
3079 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3080 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3081 } else {
3082 /*
3083 * 'path' is also the leftmost path which
3084 * means it must be the only one. This gets
3085 * handled differently because we want to
3086 * revert the root back to having extents
3087 * in-line.
3088 */
3089 ocfs2_unlink_path(handle, et, dealloc, path, 1);
3090
3091 el = et->et_root_el;
3092 el->l_tree_depth = 0;
3093 el->l_next_free_rec = 0;
3094 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3095
3096 ocfs2_et_set_last_eb_blk(et, 0);
3097 }
3098
3099 ocfs2_journal_dirty(handle, path_root_bh(path));
3100
3101 out:
3102 ocfs2_free_path(left_path);
3103 return ret;
3104 }
3105
ocfs2_remove_rightmost_empty_extent(struct ocfs2_super * osb,struct ocfs2_extent_tree * et,struct ocfs2_path * path,struct ocfs2_cached_dealloc_ctxt * dealloc)3106 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super *osb,
3107 struct ocfs2_extent_tree *et,
3108 struct ocfs2_path *path,
3109 struct ocfs2_cached_dealloc_ctxt *dealloc)
3110 {
3111 handle_t *handle;
3112 int ret;
3113 int credits = path->p_tree_depth * 2 + 1;
3114
3115 handle = ocfs2_start_trans(osb, credits);
3116 if (IS_ERR(handle)) {
3117 ret = PTR_ERR(handle);
3118 mlog_errno(ret);
3119 return ret;
3120 }
3121
3122 ret = ocfs2_remove_rightmost_path(handle, et, path, dealloc);
3123 if (ret)
3124 mlog_errno(ret);
3125
3126 ocfs2_commit_trans(osb, handle);
3127 return ret;
3128 }
3129
3130 /*
3131 * Left rotation of btree records.
3132 *
3133 * In many ways, this is (unsurprisingly) the opposite of right
3134 * rotation. We start at some non-rightmost path containing an empty
3135 * extent in the leaf block. The code works its way to the rightmost
3136 * path by rotating records to the left in every subtree.
3137 *
3138 * This is used by any code which reduces the number of extent records
3139 * in a leaf. After removal, an empty record should be placed in the
3140 * leftmost list position.
3141 *
3142 * This won't handle a length update of the rightmost path records if
3143 * the rightmost tree leaf record is removed so the caller is
3144 * responsible for detecting and correcting that.
3145 */
ocfs2_rotate_tree_left(handle_t * handle,struct ocfs2_extent_tree * et,struct ocfs2_path * path,struct ocfs2_cached_dealloc_ctxt * dealloc)3146 static int ocfs2_rotate_tree_left(handle_t *handle,
3147 struct ocfs2_extent_tree *et,
3148 struct ocfs2_path *path,
3149 struct ocfs2_cached_dealloc_ctxt *dealloc)
3150 {
3151 int ret, orig_credits = handle->h_buffer_credits;
3152 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3153 struct ocfs2_extent_block *eb;
3154 struct ocfs2_extent_list *el;
3155
3156 el = path_leaf_el(path);
3157 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3158 return 0;
3159
3160 if (path->p_tree_depth == 0) {
3161 rightmost_no_delete:
3162 /*
3163 * Inline extents. This is trivially handled, so do
3164 * it up front.
3165 */
3166 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3167 if (ret)
3168 mlog_errno(ret);
3169 goto out;
3170 }
3171
3172 /*
3173 * Handle rightmost branch now. There's several cases:
3174 * 1) simple rotation leaving records in there. That's trivial.
3175 * 2) rotation requiring a branch delete - there's no more
3176 * records left. Two cases of this:
3177 * a) There are branches to the left.
3178 * b) This is also the leftmost (the only) branch.
3179 *
3180 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
3181 * 2a) we need the left branch so that we can update it with the unlink
3182 * 2b) we need to bring the root back to inline extents.
3183 */
3184
3185 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3186 el = &eb->h_list;
3187 if (eb->h_next_leaf_blk == 0) {
3188 /*
3189 * This gets a bit tricky if we're going to delete the
3190 * rightmost path. Get the other cases out of the way
3191 * 1st.
3192 */
3193 if (le16_to_cpu(el->l_next_free_rec) > 1)
3194 goto rightmost_no_delete;
3195
3196 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3197 ret = ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3198 "Owner %llu has empty extent block at %llu\n",
3199 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3200 (unsigned long long)le64_to_cpu(eb->h_blkno));
3201 goto out;
3202 }
3203
3204 /*
3205 * XXX: The caller can not trust "path" any more after
3206 * this as it will have been deleted. What do we do?
3207 *
3208 * In theory the rotate-for-merge code will never get
3209 * here because it'll always ask for a rotate in a
3210 * nonempty list.
3211 */
3212
3213 ret = ocfs2_remove_rightmost_path(handle, et, path,
3214 dealloc);
3215 if (ret)
3216 mlog_errno(ret);
3217 goto out;
3218 }
3219
3220 /*
3221 * Now we can loop, remembering the path we get from -EAGAIN
3222 * and restarting from there.
3223 */
3224 try_rotate:
3225 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3226 dealloc, &restart_path);
3227 if (ret && ret != -EAGAIN) {
3228 mlog_errno(ret);
3229 goto out;
3230 }
3231
3232 while (ret == -EAGAIN) {
3233 tmp_path = restart_path;
3234 restart_path = NULL;
3235
3236 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3237 tmp_path, dealloc,
3238 &restart_path);
3239 if (ret && ret != -EAGAIN) {
3240 mlog_errno(ret);
3241 goto out;
3242 }
3243
3244 ocfs2_free_path(tmp_path);
3245 tmp_path = NULL;
3246
3247 if (ret == 0)
3248 goto try_rotate;
3249 }
3250
3251 out:
3252 ocfs2_free_path(tmp_path);
3253 ocfs2_free_path(restart_path);
3254 return ret;
3255 }
3256
ocfs2_cleanup_merge(struct ocfs2_extent_list * el,int index)3257 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3258 int index)
3259 {
3260 struct ocfs2_extent_rec *rec = &el->l_recs[index];
3261 unsigned int size;
3262
3263 if (rec->e_leaf_clusters == 0) {
3264 /*
3265 * We consumed all of the merged-from record. An empty
3266 * extent cannot exist anywhere but the 1st array
3267 * position, so move things over if the merged-from
3268 * record doesn't occupy that position.
3269 *
3270 * This creates a new empty extent so the caller
3271 * should be smart enough to have removed any existing
3272 * ones.
3273 */
3274 if (index > 0) {
3275 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3276 size = index * sizeof(struct ocfs2_extent_rec);
3277 memmove(&el->l_recs[1], &el->l_recs[0], size);
3278 }
3279
3280 /*
3281 * Always memset - the caller doesn't check whether it
3282 * created an empty extent, so there could be junk in
3283 * the other fields.
3284 */
3285 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3286 }
3287 }
3288
ocfs2_get_right_path(struct ocfs2_extent_tree * et,struct ocfs2_path * left_path,struct ocfs2_path ** ret_right_path)3289 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3290 struct ocfs2_path *left_path,
3291 struct ocfs2_path **ret_right_path)
3292 {
3293 int ret;
3294 u32 right_cpos;
3295 struct ocfs2_path *right_path = NULL;
3296 struct ocfs2_extent_list *left_el;
3297
3298 *ret_right_path = NULL;
3299
3300 /* This function shouldn't be called for non-trees. */
3301 BUG_ON(left_path->p_tree_depth == 0);
3302
3303 left_el = path_leaf_el(left_path);
3304 BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3305
3306 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3307 left_path, &right_cpos);
3308 if (ret) {
3309 mlog_errno(ret);
3310 goto out;
3311 }
3312
3313 /* This function shouldn't be called for the rightmost leaf. */
3314 BUG_ON(right_cpos == 0);
3315
3316 right_path = ocfs2_new_path_from_path(left_path);
3317 if (!right_path) {
3318 ret = -ENOMEM;
3319 mlog_errno(ret);
3320 goto out;
3321 }
3322
3323 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3324 if (ret) {
3325 mlog_errno(ret);
3326 goto out;
3327 }
3328
3329 *ret_right_path = right_path;
3330 out:
3331 if (ret)
3332 ocfs2_free_path(right_path);
3333 return ret;
3334 }
3335
3336 /*
3337 * Remove split_rec clusters from the record at index and merge them
3338 * onto the beginning of the record "next" to it.
3339 * For index < l_count - 1, the next means the extent rec at index + 1.
3340 * For index == l_count - 1, the "next" means the 1st extent rec of the
3341 * next extent block.
3342 */
ocfs2_merge_rec_right(struct ocfs2_path * left_path,handle_t * handle,struct ocfs2_extent_tree * et,struct ocfs2_extent_rec * split_rec,int index)3343 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3344 handle_t *handle,
3345 struct ocfs2_extent_tree *et,
3346 struct ocfs2_extent_rec *split_rec,
3347 int index)
3348 {
3349 int ret, next_free, i;
3350 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3351 struct ocfs2_extent_rec *left_rec;
3352 struct ocfs2_extent_rec *right_rec;
3353 struct ocfs2_extent_list *right_el;
3354 struct ocfs2_path *right_path = NULL;
3355 int subtree_index = 0;
3356 struct ocfs2_extent_list *el = path_leaf_el(left_path);
3357 struct buffer_head *bh = path_leaf_bh(left_path);
3358 struct buffer_head *root_bh = NULL;
3359
3360 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3361 left_rec = &el->l_recs[index];
3362
3363 if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3364 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3365 /* we meet with a cross extent block merge. */
3366 ret = ocfs2_get_right_path(et, left_path, &right_path);
3367 if (ret) {
3368 mlog_errno(ret);
3369 return ret;
3370 }
3371
3372 right_el = path_leaf_el(right_path);
3373 next_free = le16_to_cpu(right_el->l_next_free_rec);
3374 BUG_ON(next_free <= 0);
3375 right_rec = &right_el->l_recs[0];
3376 if (ocfs2_is_empty_extent(right_rec)) {
3377 BUG_ON(next_free <= 1);
3378 right_rec = &right_el->l_recs[1];
3379 }
3380
3381 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3382 le16_to_cpu(left_rec->e_leaf_clusters) !=
3383 le32_to_cpu(right_rec->e_cpos));
3384
3385 subtree_index = ocfs2_find_subtree_root(et, left_path,
3386 right_path);
3387
3388 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3389 handle->h_buffer_credits,
3390 right_path);
3391 if (ret) {
3392 mlog_errno(ret);
3393 goto out;
3394 }
3395
3396 root_bh = left_path->p_node[subtree_index].bh;
3397 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3398
3399 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3400 subtree_index);
3401 if (ret) {
3402 mlog_errno(ret);
3403 goto out;
3404 }
3405
3406 for (i = subtree_index + 1;
3407 i < path_num_items(right_path); i++) {
3408 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3409 right_path, i);
3410 if (ret) {
3411 mlog_errno(ret);
3412 goto out;
3413 }
3414
3415 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3416 left_path, i);
3417 if (ret) {
3418 mlog_errno(ret);
3419 goto out;
3420 }
3421 }
3422
3423 } else {
3424 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3425 right_rec = &el->l_recs[index + 1];
3426 }
3427
3428 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3429 path_num_items(left_path) - 1);
3430 if (ret) {
3431 mlog_errno(ret);
3432 goto out;
3433 }
3434
3435 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3436
3437 le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3438 le64_add_cpu(&right_rec->e_blkno,
3439 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3440 split_clusters));
3441 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3442
3443 ocfs2_cleanup_merge(el, index);
3444
3445 ocfs2_journal_dirty(handle, bh);
3446 if (right_path) {
3447 ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3448 ocfs2_complete_edge_insert(handle, left_path, right_path,
3449 subtree_index);
3450 }
3451 out:
3452 ocfs2_free_path(right_path);
3453 return ret;
3454 }
3455
ocfs2_get_left_path(struct ocfs2_extent_tree * et,struct ocfs2_path * right_path,struct ocfs2_path ** ret_left_path)3456 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3457 struct ocfs2_path *right_path,
3458 struct ocfs2_path **ret_left_path)
3459 {
3460 int ret;
3461 u32 left_cpos;
3462 struct ocfs2_path *left_path = NULL;
3463
3464 *ret_left_path = NULL;
3465
3466 /* This function shouldn't be called for non-trees. */
3467 BUG_ON(right_path->p_tree_depth == 0);
3468
3469 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3470 right_path, &left_cpos);
3471 if (ret) {
3472 mlog_errno(ret);
3473 goto out;
3474 }
3475
3476 /* This function shouldn't be called for the leftmost leaf. */
3477 BUG_ON(left_cpos == 0);
3478
3479 left_path = ocfs2_new_path_from_path(right_path);
3480 if (!left_path) {
3481 ret = -ENOMEM;
3482 mlog_errno(ret);
3483 goto out;
3484 }
3485
3486 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3487 if (ret) {
3488 mlog_errno(ret);
3489 goto out;
3490 }
3491
3492 *ret_left_path = left_path;
3493 out:
3494 if (ret)
3495 ocfs2_free_path(left_path);
3496 return ret;
3497 }
3498
3499 /*
3500 * Remove split_rec clusters from the record at index and merge them
3501 * onto the tail of the record "before" it.
3502 * For index > 0, the "before" means the extent rec at index - 1.
3503 *
3504 * For index == 0, the "before" means the last record of the previous
3505 * extent block. And there is also a situation that we may need to
3506 * remove the rightmost leaf extent block in the right_path and change
3507 * the right path to indicate the new rightmost path.
3508 */
ocfs2_merge_rec_left(struct ocfs2_path * right_path,handle_t * handle,struct ocfs2_extent_tree * et,struct ocfs2_extent_rec * split_rec,struct ocfs2_cached_dealloc_ctxt * dealloc,int index)3509 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3510 handle_t *handle,
3511 struct ocfs2_extent_tree *et,
3512 struct ocfs2_extent_rec *split_rec,
3513 struct ocfs2_cached_dealloc_ctxt *dealloc,
3514 int index)
3515 {
3516 int ret, i, subtree_index = 0, has_empty_extent = 0;
3517 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3518 struct ocfs2_extent_rec *left_rec;
3519 struct ocfs2_extent_rec *right_rec;
3520 struct ocfs2_extent_list *el = path_leaf_el(right_path);
3521 struct buffer_head *bh = path_leaf_bh(right_path);
3522 struct buffer_head *root_bh = NULL;
3523 struct ocfs2_path *left_path = NULL;
3524 struct ocfs2_extent_list *left_el;
3525
3526 BUG_ON(index < 0);
3527
3528 right_rec = &el->l_recs[index];
3529 if (index == 0) {
3530 /* we meet with a cross extent block merge. */
3531 ret = ocfs2_get_left_path(et, right_path, &left_path);
3532 if (ret) {
3533 mlog_errno(ret);
3534 return ret;
3535 }
3536
3537 left_el = path_leaf_el(left_path);
3538 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3539 le16_to_cpu(left_el->l_count));
3540
3541 left_rec = &left_el->l_recs[
3542 le16_to_cpu(left_el->l_next_free_rec) - 1];
3543 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3544 le16_to_cpu(left_rec->e_leaf_clusters) !=
3545 le32_to_cpu(split_rec->e_cpos));
3546
3547 subtree_index = ocfs2_find_subtree_root(et, left_path,
3548 right_path);
3549
3550 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3551 handle->h_buffer_credits,
3552 left_path);
3553 if (ret) {
3554 mlog_errno(ret);
3555 goto out;
3556 }
3557
3558 root_bh = left_path->p_node[subtree_index].bh;
3559 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3560
3561 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3562 subtree_index);
3563 if (ret) {
3564 mlog_errno(ret);
3565 goto out;
3566 }
3567
3568 for (i = subtree_index + 1;
3569 i < path_num_items(right_path); i++) {
3570 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3571 right_path, i);
3572 if (ret) {
3573 mlog_errno(ret);
3574 goto out;
3575 }
3576
3577 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3578 left_path, i);
3579 if (ret) {
3580 mlog_errno(ret);
3581 goto out;
3582 }
3583 }
3584 } else {
3585 left_rec = &el->l_recs[index - 1];
3586 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3587 has_empty_extent = 1;
3588 }
3589
3590 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3591 path_num_items(right_path) - 1);
3592 if (ret) {
3593 mlog_errno(ret);
3594 goto out;
3595 }
3596
3597 if (has_empty_extent && index == 1) {
3598 /*
3599 * The easy case - we can just plop the record right in.
3600 */
3601 *left_rec = *split_rec;
3602 } else
3603 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3604
3605 le32_add_cpu(&right_rec->e_cpos, split_clusters);
3606 le64_add_cpu(&right_rec->e_blkno,
3607 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3608 split_clusters));
3609 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3610
3611 ocfs2_cleanup_merge(el, index);
3612
3613 ocfs2_journal_dirty(handle, bh);
3614 if (left_path) {
3615 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3616
3617 /*
3618 * In the situation that the right_rec is empty and the extent
3619 * block is empty also, ocfs2_complete_edge_insert can't handle
3620 * it and we need to delete the right extent block.
3621 */
3622 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3623 le16_to_cpu(el->l_next_free_rec) == 1) {
3624 /* extend credit for ocfs2_remove_rightmost_path */
3625 ret = ocfs2_extend_rotate_transaction(handle, 0,
3626 handle->h_buffer_credits,
3627 right_path);
3628 if (ret) {
3629 mlog_errno(ret);
3630 goto out;
3631 }
3632
3633 ret = ocfs2_remove_rightmost_path(handle, et,
3634 right_path,
3635 dealloc);
3636 if (ret) {
3637 mlog_errno(ret);
3638 goto out;
3639 }
3640
3641 /* Now the rightmost extent block has been deleted.
3642 * So we use the new rightmost path.
3643 */
3644 ocfs2_mv_path(right_path, left_path);
3645 left_path = NULL;
3646 } else
3647 ocfs2_complete_edge_insert(handle, left_path,
3648 right_path, subtree_index);
3649 }
3650 out:
3651 ocfs2_free_path(left_path);
3652 return ret;
3653 }
3654
ocfs2_try_to_merge_extent(handle_t * handle,struct ocfs2_extent_tree * et,struct ocfs2_path * path,int split_index,struct ocfs2_extent_rec * split_rec,struct ocfs2_cached_dealloc_ctxt * dealloc,struct ocfs2_merge_ctxt * ctxt)3655 static int ocfs2_try_to_merge_extent(handle_t *handle,
3656 struct ocfs2_extent_tree *et,
3657 struct ocfs2_path *path,
3658 int split_index,
3659 struct ocfs2_extent_rec *split_rec,
3660 struct ocfs2_cached_dealloc_ctxt *dealloc,
3661 struct ocfs2_merge_ctxt *ctxt)
3662 {
3663 int ret = 0;
3664 struct ocfs2_extent_list *el = path_leaf_el(path);
3665 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3666
3667 BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3668
3669 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3670 /* extend credit for ocfs2_remove_rightmost_path */
3671 ret = ocfs2_extend_rotate_transaction(handle, 0,
3672 handle->h_buffer_credits,
3673 path);
3674 if (ret) {
3675 mlog_errno(ret);
3676 goto out;
3677 }
3678 /*
3679 * The merge code will need to create an empty
3680 * extent to take the place of the newly
3681 * emptied slot. Remove any pre-existing empty
3682 * extents - having more than one in a leaf is
3683 * illegal.
3684 */
3685 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3686 if (ret) {
3687 mlog_errno(ret);
3688 goto out;
3689 }
3690 split_index--;
3691 rec = &el->l_recs[split_index];
3692 }
3693
3694 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3695 /*
3696 * Left-right contig implies this.
3697 */
3698 BUG_ON(!ctxt->c_split_covers_rec);
3699
3700 /*
3701 * Since the leftright insert always covers the entire
3702 * extent, this call will delete the insert record
3703 * entirely, resulting in an empty extent record added to
3704 * the extent block.
3705 *
3706 * Since the adding of an empty extent shifts
3707 * everything back to the right, there's no need to
3708 * update split_index here.
3709 *
3710 * When the split_index is zero, we need to merge it to the
3711 * prevoius extent block. It is more efficient and easier
3712 * if we do merge_right first and merge_left later.
3713 */
3714 ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3715 split_index);
3716 if (ret) {
3717 mlog_errno(ret);
3718 goto out;
3719 }
3720
3721 /*
3722 * We can only get this from logic error above.
3723 */
3724 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3725
3726 /* extend credit for ocfs2_remove_rightmost_path */
3727 ret = ocfs2_extend_rotate_transaction(handle, 0,
3728 handle->h_buffer_credits,
3729 path);
3730 if (ret) {
3731 mlog_errno(ret);
3732 goto out;
3733 }
3734
3735 /* The merge left us with an empty extent, remove it. */
3736 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3737 if (ret) {
3738 mlog_errno(ret);
3739 goto out;
3740 }
3741
3742 rec = &el->l_recs[split_index];
3743
3744 /*
3745 * Note that we don't pass split_rec here on purpose -
3746 * we've merged it into the rec already.
3747 */
3748 ret = ocfs2_merge_rec_left(path, handle, et, rec,
3749 dealloc, split_index);
3750
3751 if (ret) {
3752 mlog_errno(ret);
3753 goto out;
3754 }
3755
3756 /* extend credit for ocfs2_remove_rightmost_path */
3757 ret = ocfs2_extend_rotate_transaction(handle, 0,
3758 handle->h_buffer_credits,
3759 path);
3760 if (ret) {
3761 mlog_errno(ret);
3762 goto out;
3763 }
3764
3765 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3766 /*
3767 * Error from this last rotate is not critical, so
3768 * print but don't bubble it up.
3769 */
3770 if (ret)
3771 mlog_errno(ret);
3772 ret = 0;
3773 } else {
3774 /*
3775 * Merge a record to the left or right.
3776 *
3777 * 'contig_type' is relative to the existing record,
3778 * so for example, if we're "right contig", it's to
3779 * the record on the left (hence the left merge).
3780 */
3781 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3782 ret = ocfs2_merge_rec_left(path, handle, et,
3783 split_rec, dealloc,
3784 split_index);
3785 if (ret) {
3786 mlog_errno(ret);
3787 goto out;
3788 }
3789 } else {
3790 ret = ocfs2_merge_rec_right(path, handle,
3791 et, split_rec,
3792 split_index);
3793 if (ret) {
3794 mlog_errno(ret);
3795 goto out;
3796 }
3797 }
3798
3799 if (ctxt->c_split_covers_rec) {
3800 /* extend credit for ocfs2_remove_rightmost_path */
3801 ret = ocfs2_extend_rotate_transaction(handle, 0,
3802 handle->h_buffer_credits,
3803 path);
3804 if (ret) {
3805 mlog_errno(ret);
3806 ret = 0;
3807 goto out;
3808 }
3809
3810 /*
3811 * The merge may have left an empty extent in
3812 * our leaf. Try to rotate it away.
3813 */
3814 ret = ocfs2_rotate_tree_left(handle, et, path,
3815 dealloc);
3816 if (ret)
3817 mlog_errno(ret);
3818 ret = 0;
3819 }
3820 }
3821
3822 out:
3823 return ret;
3824 }
3825
ocfs2_subtract_from_rec(struct super_block * sb,enum ocfs2_split_type split,struct ocfs2_extent_rec * rec,struct ocfs2_extent_rec * split_rec)3826 static void ocfs2_subtract_from_rec(struct super_block *sb,
3827 enum ocfs2_split_type split,
3828 struct ocfs2_extent_rec *rec,
3829 struct ocfs2_extent_rec *split_rec)
3830 {
3831 u64 len_blocks;
3832
3833 len_blocks = ocfs2_clusters_to_blocks(sb,
3834 le16_to_cpu(split_rec->e_leaf_clusters));
3835
3836 if (split == SPLIT_LEFT) {
3837 /*
3838 * Region is on the left edge of the existing
3839 * record.
3840 */
3841 le32_add_cpu(&rec->e_cpos,
3842 le16_to_cpu(split_rec->e_leaf_clusters));
3843 le64_add_cpu(&rec->e_blkno, len_blocks);
3844 le16_add_cpu(&rec->e_leaf_clusters,
3845 -le16_to_cpu(split_rec->e_leaf_clusters));
3846 } else {
3847 /*
3848 * Region is on the right edge of the existing
3849 * record.
3850 */
3851 le16_add_cpu(&rec->e_leaf_clusters,
3852 -le16_to_cpu(split_rec->e_leaf_clusters));
3853 }
3854 }
3855
3856 /*
3857 * Do the final bits of extent record insertion at the target leaf
3858 * list. If this leaf is part of an allocation tree, it is assumed
3859 * that the tree above has been prepared.
3860 */
ocfs2_insert_at_leaf(struct ocfs2_extent_tree * et,struct ocfs2_extent_rec * insert_rec,struct ocfs2_extent_list * el,struct ocfs2_insert_type * insert)3861 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3862 struct ocfs2_extent_rec *insert_rec,
3863 struct ocfs2_extent_list *el,
3864 struct ocfs2_insert_type *insert)
3865 {
3866 int i = insert->ins_contig_index;
3867 unsigned int range;
3868 struct ocfs2_extent_rec *rec;
3869
3870 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3871
3872 if (insert->ins_split != SPLIT_NONE) {
3873 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3874 BUG_ON(i == -1);
3875 rec = &el->l_recs[i];
3876 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3877 insert->ins_split, rec,
3878 insert_rec);
3879 goto rotate;
3880 }
3881
3882 /*
3883 * Contiguous insert - either left or right.
3884 */
3885 if (insert->ins_contig != CONTIG_NONE) {
3886 rec = &el->l_recs[i];
3887 if (insert->ins_contig == CONTIG_LEFT) {
3888 rec->e_blkno = insert_rec->e_blkno;
3889 rec->e_cpos = insert_rec->e_cpos;
3890 }
3891 le16_add_cpu(&rec->e_leaf_clusters,
3892 le16_to_cpu(insert_rec->e_leaf_clusters));
3893 return;
3894 }
3895
3896 /*
3897 * Handle insert into an empty leaf.
3898 */
3899 if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3900 ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3901 ocfs2_is_empty_extent(&el->l_recs[0]))) {
3902 el->l_recs[0] = *insert_rec;
3903 el->l_next_free_rec = cpu_to_le16(1);
3904 return;
3905 }
3906
3907 /*
3908 * Appending insert.
3909 */
3910 if (insert->ins_appending == APPEND_TAIL) {
3911 i = le16_to_cpu(el->l_next_free_rec) - 1;
3912 rec = &el->l_recs[i];
3913 range = le32_to_cpu(rec->e_cpos)
3914 + le16_to_cpu(rec->e_leaf_clusters);
3915 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3916
3917 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3918 le16_to_cpu(el->l_count),
3919 "owner %llu, depth %u, count %u, next free %u, "
3920 "rec.cpos %u, rec.clusters %u, "
3921 "insert.cpos %u, insert.clusters %u\n",
3922 ocfs2_metadata_cache_owner(et->et_ci),
3923 le16_to_cpu(el->l_tree_depth),
3924 le16_to_cpu(el->l_count),
3925 le16_to_cpu(el->l_next_free_rec),
3926 le32_to_cpu(el->l_recs[i].e_cpos),
3927 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3928 le32_to_cpu(insert_rec->e_cpos),
3929 le16_to_cpu(insert_rec->e_leaf_clusters));
3930 i++;
3931 el->l_recs[i] = *insert_rec;
3932 le16_add_cpu(&el->l_next_free_rec, 1);
3933 return;
3934 }
3935
3936 rotate:
3937 /*
3938 * Ok, we have to rotate.
3939 *
3940 * At this point, it is safe to assume that inserting into an
3941 * empty leaf and appending to a leaf have both been handled
3942 * above.
3943 *
3944 * This leaf needs to have space, either by the empty 1st
3945 * extent record, or by virtue of an l_next_rec < l_count.
3946 */
3947 ocfs2_rotate_leaf(el, insert_rec);
3948 }
3949
ocfs2_adjust_rightmost_records(handle_t * handle,struct ocfs2_extent_tree * et,struct ocfs2_path * path,struct ocfs2_extent_rec * insert_rec)3950 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3951 struct ocfs2_extent_tree *et,
3952 struct ocfs2_path *path,
3953 struct ocfs2_extent_rec *insert_rec)
3954 {
3955 int i, next_free;
3956 struct buffer_head *bh;
3957 struct ocfs2_extent_list *el;
3958 struct ocfs2_extent_rec *rec;
3959
3960 /*
3961 * Update everything except the leaf block.
3962 */
3963 for (i = 0; i < path->p_tree_depth; i++) {
3964 bh = path->p_node[i].bh;
3965 el = path->p_node[i].el;
3966
3967 next_free = le16_to_cpu(el->l_next_free_rec);
3968 if (next_free == 0) {
3969 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3970 "Owner %llu has a bad extent list\n",
3971 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3972 return;
3973 }
3974
3975 rec = &el->l_recs[next_free - 1];
3976
3977 rec->e_int_clusters = insert_rec->e_cpos;
3978 le32_add_cpu(&rec->e_int_clusters,
3979 le16_to_cpu(insert_rec->e_leaf_clusters));
3980 le32_add_cpu(&rec->e_int_clusters,
3981 -le32_to_cpu(rec->e_cpos));
3982
3983 ocfs2_journal_dirty(handle, bh);
3984 }
3985 }
3986
ocfs2_append_rec_to_path(handle_t * handle,struct ocfs2_extent_tree * et,struct ocfs2_extent_rec * insert_rec,struct ocfs2_path * right_path,struct ocfs2_path ** ret_left_path)3987 static int ocfs2_append_rec_to_path(handle_t *handle,
3988 struct ocfs2_extent_tree *et,
3989 struct ocfs2_extent_rec *insert_rec,
3990 struct ocfs2_path *right_path,
3991 struct ocfs2_path **ret_left_path)
3992 {
3993 int ret, next_free;
3994 struct ocfs2_extent_list *el;
3995 struct ocfs2_path *left_path = NULL;
3996
3997 *ret_left_path = NULL;
3998
3999 /*
4000 * This shouldn't happen for non-trees. The extent rec cluster
4001 * count manipulation below only works for interior nodes.
4002 */
4003 BUG_ON(right_path->p_tree_depth == 0);
4004
4005 /*
4006 * If our appending insert is at the leftmost edge of a leaf,
4007 * then we might need to update the rightmost records of the
4008 * neighboring path.
4009 */
4010 el = path_leaf_el(right_path);
4011 next_free = le16_to_cpu(el->l_next_free_rec);
4012 if (next_free == 0 ||
4013 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
4014 u32 left_cpos;
4015
4016 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
4017 right_path, &left_cpos);
4018 if (ret) {
4019 mlog_errno(ret);
4020 goto out;
4021 }
4022
4023 trace_ocfs2_append_rec_to_path(
4024 (unsigned long long)
4025 ocfs2_metadata_cache_owner(et->et_ci),
4026 le32_to_cpu(insert_rec->e_cpos),
4027 left_cpos);
4028
4029 /*
4030 * No need to worry if the append is already in the
4031 * leftmost leaf.
4032 */
4033 if (left_cpos) {
4034 left_path = ocfs2_new_path_from_path(right_path);
4035 if (!left_path) {
4036 ret = -ENOMEM;
4037 mlog_errno(ret);
4038 goto out;
4039 }
4040
4041 ret = ocfs2_find_path(et->et_ci, left_path,
4042 left_cpos);
4043 if (ret) {
4044 mlog_errno(ret);
4045 goto out;
4046 }
4047
4048 /*
4049 * ocfs2_insert_path() will pass the left_path to the
4050 * journal for us.
4051 */
4052 }
4053 }
4054
4055 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4056 if (ret) {
4057 mlog_errno(ret);
4058 goto out;
4059 }
4060
4061 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4062
4063 *ret_left_path = left_path;
4064 ret = 0;
4065 out:
4066 if (ret != 0)
4067 ocfs2_free_path(left_path);
4068
4069 return ret;
4070 }
4071
ocfs2_split_record(struct ocfs2_extent_tree * et,struct ocfs2_path * left_path,struct ocfs2_path * right_path,struct ocfs2_extent_rec * split_rec,enum ocfs2_split_type split)4072 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4073 struct ocfs2_path *left_path,
4074 struct ocfs2_path *right_path,
4075 struct ocfs2_extent_rec *split_rec,
4076 enum ocfs2_split_type split)
4077 {
4078 int index;
4079 u32 cpos = le32_to_cpu(split_rec->e_cpos);
4080 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4081 struct ocfs2_extent_rec *rec, *tmprec;
4082
4083 right_el = path_leaf_el(right_path);
4084 if (left_path)
4085 left_el = path_leaf_el(left_path);
4086
4087 el = right_el;
4088 insert_el = right_el;
4089 index = ocfs2_search_extent_list(el, cpos);
4090 if (index != -1) {
4091 if (index == 0 && left_path) {
4092 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4093
4094 /*
4095 * This typically means that the record
4096 * started in the left path but moved to the
4097 * right as a result of rotation. We either
4098 * move the existing record to the left, or we
4099 * do the later insert there.
4100 *
4101 * In this case, the left path should always
4102 * exist as the rotate code will have passed
4103 * it back for a post-insert update.
4104 */
4105
4106 if (split == SPLIT_LEFT) {
4107 /*
4108 * It's a left split. Since we know
4109 * that the rotate code gave us an
4110 * empty extent in the left path, we
4111 * can just do the insert there.
4112 */
4113 insert_el = left_el;
4114 } else {
4115 /*
4116 * Right split - we have to move the
4117 * existing record over to the left
4118 * leaf. The insert will be into the
4119 * newly created empty extent in the
4120 * right leaf.
4121 */
4122 tmprec = &right_el->l_recs[index];
4123 ocfs2_rotate_leaf(left_el, tmprec);
4124 el = left_el;
4125
4126 memset(tmprec, 0, sizeof(*tmprec));
4127 index = ocfs2_search_extent_list(left_el, cpos);
4128 BUG_ON(index == -1);
4129 }
4130 }
4131 } else {
4132 BUG_ON(!left_path);
4133 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4134 /*
4135 * Left path is easy - we can just allow the insert to
4136 * happen.
4137 */
4138 el = left_el;
4139 insert_el = left_el;
4140 index = ocfs2_search_extent_list(el, cpos);
4141 BUG_ON(index == -1);
4142 }
4143
4144 rec = &el->l_recs[index];
4145 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4146 split, rec, split_rec);
4147 ocfs2_rotate_leaf(insert_el, split_rec);
4148 }
4149
4150 /*
4151 * This function only does inserts on an allocation b-tree. For tree
4152 * depth = 0, ocfs2_insert_at_leaf() is called directly.
4153 *
4154 * right_path is the path we want to do the actual insert
4155 * in. left_path should only be passed in if we need to update that
4156 * portion of the tree after an edge insert.
4157 */
ocfs2_insert_path(handle_t * handle,struct ocfs2_extent_tree * et,struct ocfs2_path * left_path,struct ocfs2_path * right_path,struct ocfs2_extent_rec * insert_rec,struct ocfs2_insert_type * insert)4158 static int ocfs2_insert_path(handle_t *handle,
4159 struct ocfs2_extent_tree *et,
4160 struct ocfs2_path *left_path,
4161 struct ocfs2_path *right_path,
4162 struct ocfs2_extent_rec *insert_rec,
4163 struct ocfs2_insert_type *insert)
4164 {
4165 int ret, subtree_index;
4166 struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4167
4168 if (left_path) {
4169 /*
4170 * There's a chance that left_path got passed back to
4171 * us without being accounted for in the
4172 * journal. Extend our transaction here to be sure we
4173 * can change those blocks.
4174 */
4175 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth);
4176 if (ret < 0) {
4177 mlog_errno(ret);
4178 goto out;
4179 }
4180
4181 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4182 if (ret < 0) {
4183 mlog_errno(ret);
4184 goto out;
4185 }
4186 }
4187
4188 /*
4189 * Pass both paths to the journal. The majority of inserts
4190 * will be touching all components anyway.
4191 */
4192 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4193 if (ret < 0) {
4194 mlog_errno(ret);
4195 goto out;
4196 }
4197
4198 if (insert->ins_split != SPLIT_NONE) {
4199 /*
4200 * We could call ocfs2_insert_at_leaf() for some types
4201 * of splits, but it's easier to just let one separate
4202 * function sort it all out.
4203 */
4204 ocfs2_split_record(et, left_path, right_path,
4205 insert_rec, insert->ins_split);
4206
4207 /*
4208 * Split might have modified either leaf and we don't
4209 * have a guarantee that the later edge insert will
4210 * dirty this for us.
4211 */
4212 if (left_path)
4213 ocfs2_journal_dirty(handle,
4214 path_leaf_bh(left_path));
4215 } else
4216 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4217 insert);
4218
4219 ocfs2_journal_dirty(handle, leaf_bh);
4220
4221 if (left_path) {
4222 /*
4223 * The rotate code has indicated that we need to fix
4224 * up portions of the tree after the insert.
4225 *
4226 * XXX: Should we extend the transaction here?
4227 */
4228 subtree_index = ocfs2_find_subtree_root(et, left_path,
4229 right_path);
4230 ocfs2_complete_edge_insert(handle, left_path, right_path,
4231 subtree_index);
4232 }
4233
4234 ret = 0;
4235 out:
4236 return ret;
4237 }
4238
ocfs2_do_insert_extent(handle_t * handle,struct ocfs2_extent_tree * et,struct ocfs2_extent_rec * insert_rec,struct ocfs2_insert_type * type)4239 static int ocfs2_do_insert_extent(handle_t *handle,
4240 struct ocfs2_extent_tree *et,
4241 struct ocfs2_extent_rec *insert_rec,
4242 struct ocfs2_insert_type *type)
4243 {
4244 int ret, rotate = 0;
4245 u32 cpos;
4246 struct ocfs2_path *right_path = NULL;
4247 struct ocfs2_path *left_path = NULL;
4248 struct ocfs2_extent_list *el;
4249
4250 el = et->et_root_el;
4251
4252 ret = ocfs2_et_root_journal_access(handle, et,
4253 OCFS2_JOURNAL_ACCESS_WRITE);
4254 if (ret) {
4255 mlog_errno(ret);
4256 goto out;
4257 }
4258
4259 if (le16_to_cpu(el->l_tree_depth) == 0) {
4260 ocfs2_insert_at_leaf(et, insert_rec, el, type);
4261 goto out_update_clusters;
4262 }
4263
4264 right_path = ocfs2_new_path_from_et(et);
4265 if (!right_path) {
4266 ret = -ENOMEM;
4267 mlog_errno(ret);
4268 goto out;
4269 }
4270
4271 /*
4272 * Determine the path to start with. Rotations need the
4273 * rightmost path, everything else can go directly to the
4274 * target leaf.
4275 */
4276 cpos = le32_to_cpu(insert_rec->e_cpos);
4277 if (type->ins_appending == APPEND_NONE &&
4278 type->ins_contig == CONTIG_NONE) {
4279 rotate = 1;
4280 cpos = UINT_MAX;
4281 }
4282
4283 ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4284 if (ret) {
4285 mlog_errno(ret);
4286 goto out;
4287 }
4288
4289 /*
4290 * Rotations and appends need special treatment - they modify
4291 * parts of the tree's above them.
4292 *
4293 * Both might pass back a path immediate to the left of the
4294 * one being inserted to. This will be cause
4295 * ocfs2_insert_path() to modify the rightmost records of
4296 * left_path to account for an edge insert.
4297 *
4298 * XXX: When modifying this code, keep in mind that an insert
4299 * can wind up skipping both of these two special cases...
4300 */
4301 if (rotate) {
4302 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4303 le32_to_cpu(insert_rec->e_cpos),
4304 right_path, &left_path);
4305 if (ret) {
4306 mlog_errno(ret);
4307 goto out;
4308 }
4309
4310 /*
4311 * ocfs2_rotate_tree_right() might have extended the
4312 * transaction without re-journaling our tree root.
4313 */
4314 ret = ocfs2_et_root_journal_access(handle, et,
4315 OCFS2_JOURNAL_ACCESS_WRITE);
4316 if (ret) {
4317 mlog_errno(ret);
4318 goto out;
4319 }
4320 } else if (type->ins_appending == APPEND_TAIL
4321 && type->ins_contig != CONTIG_LEFT) {
4322 ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4323 right_path, &left_path);
4324 if (ret) {
4325 mlog_errno(ret);
4326 goto out;
4327 }
4328 }
4329
4330 ret = ocfs2_insert_path(handle, et, left_path, right_path,
4331 insert_rec, type);
4332 if (ret) {
4333 mlog_errno(ret);
4334 goto out;
4335 }
4336
4337 out_update_clusters:
4338 if (type->ins_split == SPLIT_NONE)
4339 ocfs2_et_update_clusters(et,
4340 le16_to_cpu(insert_rec->e_leaf_clusters));
4341
4342 ocfs2_journal_dirty(handle, et->et_root_bh);
4343
4344 out:
4345 ocfs2_free_path(left_path);
4346 ocfs2_free_path(right_path);
4347
4348 return ret;
4349 }
4350
ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree * et,struct ocfs2_path * path,struct ocfs2_extent_list * el,int index,struct ocfs2_extent_rec * split_rec,struct ocfs2_merge_ctxt * ctxt)4351 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4352 struct ocfs2_path *path,
4353 struct ocfs2_extent_list *el, int index,
4354 struct ocfs2_extent_rec *split_rec,
4355 struct ocfs2_merge_ctxt *ctxt)
4356 {
4357 int status = 0;
4358 enum ocfs2_contig_type ret = CONTIG_NONE;
4359 u32 left_cpos, right_cpos;
4360 struct ocfs2_extent_rec *rec = NULL;
4361 struct ocfs2_extent_list *new_el;
4362 struct ocfs2_path *left_path = NULL, *right_path = NULL;
4363 struct buffer_head *bh;
4364 struct ocfs2_extent_block *eb;
4365 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4366
4367 if (index > 0) {
4368 rec = &el->l_recs[index - 1];
4369 } else if (path->p_tree_depth > 0) {
4370 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4371 if (status)
4372 goto exit;
4373
4374 if (left_cpos != 0) {
4375 left_path = ocfs2_new_path_from_path(path);
4376 if (!left_path) {
4377 status = -ENOMEM;
4378 mlog_errno(status);
4379 goto exit;
4380 }
4381
4382 status = ocfs2_find_path(et->et_ci, left_path,
4383 left_cpos);
4384 if (status)
4385 goto free_left_path;
4386
4387 new_el = path_leaf_el(left_path);
4388
4389 if (le16_to_cpu(new_el->l_next_free_rec) !=
4390 le16_to_cpu(new_el->l_count)) {
4391 bh = path_leaf_bh(left_path);
4392 eb = (struct ocfs2_extent_block *)bh->b_data;
4393 status = ocfs2_error(sb,
4394 "Extent block #%llu has an invalid l_next_free_rec of %d. It should have matched the l_count of %d\n",
4395 (unsigned long long)le64_to_cpu(eb->h_blkno),
4396 le16_to_cpu(new_el->l_next_free_rec),
4397 le16_to_cpu(new_el->l_count));
4398 goto free_left_path;
4399 }
4400 rec = &new_el->l_recs[
4401 le16_to_cpu(new_el->l_next_free_rec) - 1];
4402 }
4403 }
4404
4405 /*
4406 * We're careful to check for an empty extent record here -
4407 * the merge code will know what to do if it sees one.
4408 */
4409 if (rec) {
4410 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4411 if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4412 ret = CONTIG_RIGHT;
4413 } else {
4414 ret = ocfs2_et_extent_contig(et, rec, split_rec);
4415 }
4416 }
4417
4418 rec = NULL;
4419 if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4420 rec = &el->l_recs[index + 1];
4421 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4422 path->p_tree_depth > 0) {
4423 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4424 if (status)
4425 goto free_left_path;
4426
4427 if (right_cpos == 0)
4428 goto free_left_path;
4429
4430 right_path = ocfs2_new_path_from_path(path);
4431 if (!right_path) {
4432 status = -ENOMEM;
4433 mlog_errno(status);
4434 goto free_left_path;
4435 }
4436
4437 status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4438 if (status)
4439 goto free_right_path;
4440
4441 new_el = path_leaf_el(right_path);
4442 rec = &new_el->l_recs[0];
4443 if (ocfs2_is_empty_extent(rec)) {
4444 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4445 bh = path_leaf_bh(right_path);
4446 eb = (struct ocfs2_extent_block *)bh->b_data;
4447 status = ocfs2_error(sb,
4448 "Extent block #%llu has an invalid l_next_free_rec of %d\n",
4449 (unsigned long long)le64_to_cpu(eb->h_blkno),
4450 le16_to_cpu(new_el->l_next_free_rec));
4451 goto free_right_path;
4452 }
4453 rec = &new_el->l_recs[1];
4454 }
4455 }
4456
4457 if (rec) {
4458 enum ocfs2_contig_type contig_type;
4459
4460 contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4461
4462 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4463 ret = CONTIG_LEFTRIGHT;
4464 else if (ret == CONTIG_NONE)
4465 ret = contig_type;
4466 }
4467
4468 free_right_path:
4469 ocfs2_free_path(right_path);
4470 free_left_path:
4471 ocfs2_free_path(left_path);
4472 exit:
4473 if (status == 0)
4474 ctxt->c_contig_type = ret;
4475
4476 return status;
4477 }
4478
ocfs2_figure_contig_type(struct ocfs2_extent_tree * et,struct ocfs2_insert_type * insert,struct ocfs2_extent_list * el,struct ocfs2_extent_rec * insert_rec)4479 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4480 struct ocfs2_insert_type *insert,
4481 struct ocfs2_extent_list *el,
4482 struct ocfs2_extent_rec *insert_rec)
4483 {
4484 int i;
4485 enum ocfs2_contig_type contig_type = CONTIG_NONE;
4486
4487 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4488
4489 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4490 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4491 insert_rec);
4492 if (contig_type != CONTIG_NONE) {
4493 insert->ins_contig_index = i;
4494 break;
4495 }
4496 }
4497 insert->ins_contig = contig_type;
4498
4499 if (insert->ins_contig != CONTIG_NONE) {
4500 struct ocfs2_extent_rec *rec =
4501 &el->l_recs[insert->ins_contig_index];
4502 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4503 le16_to_cpu(insert_rec->e_leaf_clusters);
4504
4505 /*
4506 * Caller might want us to limit the size of extents, don't
4507 * calculate contiguousness if we might exceed that limit.
4508 */
4509 if (et->et_max_leaf_clusters &&
4510 (len > et->et_max_leaf_clusters))
4511 insert->ins_contig = CONTIG_NONE;
4512 }
4513 }
4514
4515 /*
4516 * This should only be called against the righmost leaf extent list.
4517 *
4518 * ocfs2_figure_appending_type() will figure out whether we'll have to
4519 * insert at the tail of the rightmost leaf.
4520 *
4521 * This should also work against the root extent list for tree's with 0
4522 * depth. If we consider the root extent list to be the rightmost leaf node
4523 * then the logic here makes sense.
4524 */
ocfs2_figure_appending_type(struct ocfs2_insert_type * insert,struct ocfs2_extent_list * el,struct ocfs2_extent_rec * insert_rec)4525 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4526 struct ocfs2_extent_list *el,
4527 struct ocfs2_extent_rec *insert_rec)
4528 {
4529 int i;
4530 u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4531 struct ocfs2_extent_rec *rec;
4532
4533 insert->ins_appending = APPEND_NONE;
4534
4535 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4536
4537 if (!el->l_next_free_rec)
4538 goto set_tail_append;
4539
4540 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4541 /* Were all records empty? */
4542 if (le16_to_cpu(el->l_next_free_rec) == 1)
4543 goto set_tail_append;
4544 }
4545
4546 i = le16_to_cpu(el->l_next_free_rec) - 1;
4547 rec = &el->l_recs[i];
4548
4549 if (cpos >=
4550 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4551 goto set_tail_append;
4552
4553 return;
4554
4555 set_tail_append:
4556 insert->ins_appending = APPEND_TAIL;
4557 }
4558
4559 /*
4560 * Helper function called at the beginning of an insert.
4561 *
4562 * This computes a few things that are commonly used in the process of
4563 * inserting into the btree:
4564 * - Whether the new extent is contiguous with an existing one.
4565 * - The current tree depth.
4566 * - Whether the insert is an appending one.
4567 * - The total # of free records in the tree.
4568 *
4569 * All of the information is stored on the ocfs2_insert_type
4570 * structure.
4571 */
ocfs2_figure_insert_type(struct ocfs2_extent_tree * et,struct buffer_head ** last_eb_bh,struct ocfs2_extent_rec * insert_rec,int * free_records,struct ocfs2_insert_type * insert)4572 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4573 struct buffer_head **last_eb_bh,
4574 struct ocfs2_extent_rec *insert_rec,
4575 int *free_records,
4576 struct ocfs2_insert_type *insert)
4577 {
4578 int ret;
4579 struct ocfs2_extent_block *eb;
4580 struct ocfs2_extent_list *el;
4581 struct ocfs2_path *path = NULL;
4582 struct buffer_head *bh = NULL;
4583
4584 insert->ins_split = SPLIT_NONE;
4585
4586 el = et->et_root_el;
4587 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4588
4589 if (el->l_tree_depth) {
4590 /*
4591 * If we have tree depth, we read in the
4592 * rightmost extent block ahead of time as
4593 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4594 * may want it later.
4595 */
4596 ret = ocfs2_read_extent_block(et->et_ci,
4597 ocfs2_et_get_last_eb_blk(et),
4598 &bh);
4599 if (ret) {
4600 mlog_errno(ret);
4601 goto out;
4602 }
4603 eb = (struct ocfs2_extent_block *) bh->b_data;
4604 el = &eb->h_list;
4605 }
4606
4607 /*
4608 * Unless we have a contiguous insert, we'll need to know if
4609 * there is room left in our allocation tree for another
4610 * extent record.
4611 *
4612 * XXX: This test is simplistic, we can search for empty
4613 * extent records too.
4614 */
4615 *free_records = le16_to_cpu(el->l_count) -
4616 le16_to_cpu(el->l_next_free_rec);
4617
4618 if (!insert->ins_tree_depth) {
4619 ocfs2_figure_contig_type(et, insert, el, insert_rec);
4620 ocfs2_figure_appending_type(insert, el, insert_rec);
4621 return 0;
4622 }
4623
4624 path = ocfs2_new_path_from_et(et);
4625 if (!path) {
4626 ret = -ENOMEM;
4627 mlog_errno(ret);
4628 goto out;
4629 }
4630
4631 /*
4632 * In the case that we're inserting past what the tree
4633 * currently accounts for, ocfs2_find_path() will return for
4634 * us the rightmost tree path. This is accounted for below in
4635 * the appending code.
4636 */
4637 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4638 if (ret) {
4639 mlog_errno(ret);
4640 goto out;
4641 }
4642
4643 el = path_leaf_el(path);
4644
4645 /*
4646 * Now that we have the path, there's two things we want to determine:
4647 * 1) Contiguousness (also set contig_index if this is so)
4648 *
4649 * 2) Are we doing an append? We can trivially break this up
4650 * into two types of appends: simple record append, or a
4651 * rotate inside the tail leaf.
4652 */
4653 ocfs2_figure_contig_type(et, insert, el, insert_rec);
4654
4655 /*
4656 * The insert code isn't quite ready to deal with all cases of
4657 * left contiguousness. Specifically, if it's an insert into
4658 * the 1st record in a leaf, it will require the adjustment of
4659 * cluster count on the last record of the path directly to it's
4660 * left. For now, just catch that case and fool the layers
4661 * above us. This works just fine for tree_depth == 0, which
4662 * is why we allow that above.
4663 */
4664 if (insert->ins_contig == CONTIG_LEFT &&
4665 insert->ins_contig_index == 0)
4666 insert->ins_contig = CONTIG_NONE;
4667
4668 /*
4669 * Ok, so we can simply compare against last_eb to figure out
4670 * whether the path doesn't exist. This will only happen in
4671 * the case that we're doing a tail append, so maybe we can
4672 * take advantage of that information somehow.
4673 */
4674 if (ocfs2_et_get_last_eb_blk(et) ==
4675 path_leaf_bh(path)->b_blocknr) {
4676 /*
4677 * Ok, ocfs2_find_path() returned us the rightmost
4678 * tree path. This might be an appending insert. There are
4679 * two cases:
4680 * 1) We're doing a true append at the tail:
4681 * -This might even be off the end of the leaf
4682 * 2) We're "appending" by rotating in the tail
4683 */
4684 ocfs2_figure_appending_type(insert, el, insert_rec);
4685 }
4686
4687 out:
4688 ocfs2_free_path(path);
4689
4690 if (ret == 0)
4691 *last_eb_bh = bh;
4692 else
4693 brelse(bh);
4694 return ret;
4695 }
4696
4697 /*
4698 * Insert an extent into a btree.
4699 *
4700 * The caller needs to update the owning btree's cluster count.
4701 */
ocfs2_insert_extent(handle_t * handle,struct ocfs2_extent_tree * et,u32 cpos,u64 start_blk,u32 new_clusters,u8 flags,struct ocfs2_alloc_context * meta_ac)4702 int ocfs2_insert_extent(handle_t *handle,
4703 struct ocfs2_extent_tree *et,
4704 u32 cpos,
4705 u64 start_blk,
4706 u32 new_clusters,
4707 u8 flags,
4708 struct ocfs2_alloc_context *meta_ac)
4709 {
4710 int status;
4711 int free_records;
4712 struct buffer_head *last_eb_bh = NULL;
4713 struct ocfs2_insert_type insert = {0, };
4714 struct ocfs2_extent_rec rec;
4715
4716 trace_ocfs2_insert_extent_start(
4717 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4718 cpos, new_clusters);
4719
4720 memset(&rec, 0, sizeof(rec));
4721 rec.e_cpos = cpu_to_le32(cpos);
4722 rec.e_blkno = cpu_to_le64(start_blk);
4723 rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4724 rec.e_flags = flags;
4725 status = ocfs2_et_insert_check(et, &rec);
4726 if (status) {
4727 mlog_errno(status);
4728 goto bail;
4729 }
4730
4731 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4732 &free_records, &insert);
4733 if (status < 0) {
4734 mlog_errno(status);
4735 goto bail;
4736 }
4737
4738 trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig,
4739 insert.ins_contig_index, free_records,
4740 insert.ins_tree_depth);
4741
4742 if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4743 status = ocfs2_grow_tree(handle, et,
4744 &insert.ins_tree_depth, &last_eb_bh,
4745 meta_ac);
4746 if (status) {
4747 mlog_errno(status);
4748 goto bail;
4749 }
4750 }
4751
4752 /* Finally, we can add clusters. This might rotate the tree for us. */
4753 status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4754 if (status < 0)
4755 mlog_errno(status);
4756 else
4757 ocfs2_et_extent_map_insert(et, &rec);
4758
4759 bail:
4760 brelse(last_eb_bh);
4761
4762 return status;
4763 }
4764
4765 /*
4766 * Allcate and add clusters into the extent b-tree.
4767 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4768 * The extent b-tree's root is specified by et, and
4769 * it is not limited to the file storage. Any extent tree can use this
4770 * function if it implements the proper ocfs2_extent_tree.
4771 */
ocfs2_add_clusters_in_btree(handle_t * handle,struct ocfs2_extent_tree * et,u32 * logical_offset,u32 clusters_to_add,int mark_unwritten,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,enum ocfs2_alloc_restarted * reason_ret)4772 int ocfs2_add_clusters_in_btree(handle_t *handle,
4773 struct ocfs2_extent_tree *et,
4774 u32 *logical_offset,
4775 u32 clusters_to_add,
4776 int mark_unwritten,
4777 struct ocfs2_alloc_context *data_ac,
4778 struct ocfs2_alloc_context *meta_ac,
4779 enum ocfs2_alloc_restarted *reason_ret)
4780 {
4781 int status = 0, err = 0;
4782 int need_free = 0;
4783 int free_extents;
4784 enum ocfs2_alloc_restarted reason = RESTART_NONE;
4785 u32 bit_off, num_bits;
4786 u64 block;
4787 u8 flags = 0;
4788 struct ocfs2_super *osb =
4789 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4790
4791 BUG_ON(!clusters_to_add);
4792
4793 if (mark_unwritten)
4794 flags = OCFS2_EXT_UNWRITTEN;
4795
4796 free_extents = ocfs2_num_free_extents(et);
4797 if (free_extents < 0) {
4798 status = free_extents;
4799 mlog_errno(status);
4800 goto leave;
4801 }
4802
4803 /* there are two cases which could cause us to EAGAIN in the
4804 * we-need-more-metadata case:
4805 * 1) we haven't reserved *any*
4806 * 2) we are so fragmented, we've needed to add metadata too
4807 * many times. */
4808 if (!free_extents && !meta_ac) {
4809 err = -1;
4810 status = -EAGAIN;
4811 reason = RESTART_META;
4812 goto leave;
4813 } else if ((!free_extents)
4814 && (ocfs2_alloc_context_bits_left(meta_ac)
4815 < ocfs2_extend_meta_needed(et->et_root_el))) {
4816 err = -2;
4817 status = -EAGAIN;
4818 reason = RESTART_META;
4819 goto leave;
4820 }
4821
4822 status = __ocfs2_claim_clusters(handle, data_ac, 1,
4823 clusters_to_add, &bit_off, &num_bits);
4824 if (status < 0) {
4825 if (status != -ENOSPC)
4826 mlog_errno(status);
4827 goto leave;
4828 }
4829
4830 BUG_ON(num_bits > clusters_to_add);
4831
4832 /* reserve our write early -- insert_extent may update the tree root */
4833 status = ocfs2_et_root_journal_access(handle, et,
4834 OCFS2_JOURNAL_ACCESS_WRITE);
4835 if (status < 0) {
4836 mlog_errno(status);
4837 need_free = 1;
4838 goto bail;
4839 }
4840
4841 block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4842 trace_ocfs2_add_clusters_in_btree(
4843 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4844 bit_off, num_bits);
4845 status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4846 num_bits, flags, meta_ac);
4847 if (status < 0) {
4848 mlog_errno(status);
4849 need_free = 1;
4850 goto bail;
4851 }
4852
4853 ocfs2_journal_dirty(handle, et->et_root_bh);
4854
4855 clusters_to_add -= num_bits;
4856 *logical_offset += num_bits;
4857
4858 if (clusters_to_add) {
4859 err = clusters_to_add;
4860 status = -EAGAIN;
4861 reason = RESTART_TRANS;
4862 }
4863
4864 bail:
4865 if (need_free) {
4866 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
4867 ocfs2_free_local_alloc_bits(osb, handle, data_ac,
4868 bit_off, num_bits);
4869 else
4870 ocfs2_free_clusters(handle,
4871 data_ac->ac_inode,
4872 data_ac->ac_bh,
4873 ocfs2_clusters_to_blocks(osb->sb, bit_off),
4874 num_bits);
4875 }
4876
4877 leave:
4878 if (reason_ret)
4879 *reason_ret = reason;
4880 trace_ocfs2_add_clusters_in_btree_ret(status, reason, err);
4881 return status;
4882 }
4883
ocfs2_make_right_split_rec(struct super_block * sb,struct ocfs2_extent_rec * split_rec,u32 cpos,struct ocfs2_extent_rec * rec)4884 static void ocfs2_make_right_split_rec(struct super_block *sb,
4885 struct ocfs2_extent_rec *split_rec,
4886 u32 cpos,
4887 struct ocfs2_extent_rec *rec)
4888 {
4889 u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4890 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4891
4892 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4893
4894 split_rec->e_cpos = cpu_to_le32(cpos);
4895 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4896
4897 split_rec->e_blkno = rec->e_blkno;
4898 le64_add_cpu(&split_rec->e_blkno,
4899 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4900
4901 split_rec->e_flags = rec->e_flags;
4902 }
4903
ocfs2_split_and_insert(handle_t * handle,struct ocfs2_extent_tree * et,struct ocfs2_path * path,struct buffer_head ** last_eb_bh,int split_index,struct ocfs2_extent_rec * orig_split_rec,struct ocfs2_alloc_context * meta_ac)4904 static int ocfs2_split_and_insert(handle_t *handle,
4905 struct ocfs2_extent_tree *et,
4906 struct ocfs2_path *path,
4907 struct buffer_head **last_eb_bh,
4908 int split_index,
4909 struct ocfs2_extent_rec *orig_split_rec,
4910 struct ocfs2_alloc_context *meta_ac)
4911 {
4912 int ret = 0, depth;
4913 unsigned int insert_range, rec_range, do_leftright = 0;
4914 struct ocfs2_extent_rec tmprec;
4915 struct ocfs2_extent_list *rightmost_el;
4916 struct ocfs2_extent_rec rec;
4917 struct ocfs2_extent_rec split_rec = *orig_split_rec;
4918 struct ocfs2_insert_type insert;
4919 struct ocfs2_extent_block *eb;
4920
4921 leftright:
4922 /*
4923 * Store a copy of the record on the stack - it might move
4924 * around as the tree is manipulated below.
4925 */
4926 rec = path_leaf_el(path)->l_recs[split_index];
4927
4928 rightmost_el = et->et_root_el;
4929
4930 depth = le16_to_cpu(rightmost_el->l_tree_depth);
4931 if (depth) {
4932 BUG_ON(!(*last_eb_bh));
4933 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4934 rightmost_el = &eb->h_list;
4935 }
4936
4937 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4938 le16_to_cpu(rightmost_el->l_count)) {
4939 ret = ocfs2_grow_tree(handle, et,
4940 &depth, last_eb_bh, meta_ac);
4941 if (ret) {
4942 mlog_errno(ret);
4943 goto out;
4944 }
4945 }
4946
4947 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4948 insert.ins_appending = APPEND_NONE;
4949 insert.ins_contig = CONTIG_NONE;
4950 insert.ins_tree_depth = depth;
4951
4952 insert_range = le32_to_cpu(split_rec.e_cpos) +
4953 le16_to_cpu(split_rec.e_leaf_clusters);
4954 rec_range = le32_to_cpu(rec.e_cpos) +
4955 le16_to_cpu(rec.e_leaf_clusters);
4956
4957 if (split_rec.e_cpos == rec.e_cpos) {
4958 insert.ins_split = SPLIT_LEFT;
4959 } else if (insert_range == rec_range) {
4960 insert.ins_split = SPLIT_RIGHT;
4961 } else {
4962 /*
4963 * Left/right split. We fake this as a right split
4964 * first and then make a second pass as a left split.
4965 */
4966 insert.ins_split = SPLIT_RIGHT;
4967
4968 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4969 &tmprec, insert_range, &rec);
4970
4971 split_rec = tmprec;
4972
4973 BUG_ON(do_leftright);
4974 do_leftright = 1;
4975 }
4976
4977 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
4978 if (ret) {
4979 mlog_errno(ret);
4980 goto out;
4981 }
4982
4983 if (do_leftright == 1) {
4984 u32 cpos;
4985 struct ocfs2_extent_list *el;
4986
4987 do_leftright++;
4988 split_rec = *orig_split_rec;
4989
4990 ocfs2_reinit_path(path, 1);
4991
4992 cpos = le32_to_cpu(split_rec.e_cpos);
4993 ret = ocfs2_find_path(et->et_ci, path, cpos);
4994 if (ret) {
4995 mlog_errno(ret);
4996 goto out;
4997 }
4998
4999 el = path_leaf_el(path);
5000 split_index = ocfs2_search_extent_list(el, cpos);
5001 if (split_index == -1) {
5002 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5003 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5004 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5005 cpos);
5006 ret = -EROFS;
5007 goto out;
5008 }
5009 goto leftright;
5010 }
5011 out:
5012
5013 return ret;
5014 }
5015
ocfs2_replace_extent_rec(handle_t * handle,struct ocfs2_extent_tree * et,struct ocfs2_path * path,struct ocfs2_extent_list * el,int split_index,struct ocfs2_extent_rec * split_rec)5016 static int ocfs2_replace_extent_rec(handle_t *handle,
5017 struct ocfs2_extent_tree *et,
5018 struct ocfs2_path *path,
5019 struct ocfs2_extent_list *el,
5020 int split_index,
5021 struct ocfs2_extent_rec *split_rec)
5022 {
5023 int ret;
5024
5025 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
5026 path_num_items(path) - 1);
5027 if (ret) {
5028 mlog_errno(ret);
5029 goto out;
5030 }
5031
5032 el->l_recs[split_index] = *split_rec;
5033
5034 ocfs2_journal_dirty(handle, path_leaf_bh(path));
5035 out:
5036 return ret;
5037 }
5038
5039 /*
5040 * Split part or all of the extent record at split_index in the leaf
5041 * pointed to by path. Merge with the contiguous extent record if needed.
5042 *
5043 * Care is taken to handle contiguousness so as to not grow the tree.
5044 *
5045 * meta_ac is not strictly necessary - we only truly need it if growth
5046 * of the tree is required. All other cases will degrade into a less
5047 * optimal tree layout.
5048 *
5049 * last_eb_bh should be the rightmost leaf block for any extent
5050 * btree. Since a split may grow the tree or a merge might shrink it,
5051 * the caller cannot trust the contents of that buffer after this call.
5052 *
5053 * This code is optimized for readability - several passes might be
5054 * made over certain portions of the tree. All of those blocks will
5055 * have been brought into cache (and pinned via the journal), so the
5056 * extra overhead is not expressed in terms of disk reads.
5057 */
ocfs2_split_extent(handle_t * handle,struct ocfs2_extent_tree * et,struct ocfs2_path * path,int split_index,struct ocfs2_extent_rec * split_rec,struct ocfs2_alloc_context * meta_ac,struct ocfs2_cached_dealloc_ctxt * dealloc)5058 int ocfs2_split_extent(handle_t *handle,
5059 struct ocfs2_extent_tree *et,
5060 struct ocfs2_path *path,
5061 int split_index,
5062 struct ocfs2_extent_rec *split_rec,
5063 struct ocfs2_alloc_context *meta_ac,
5064 struct ocfs2_cached_dealloc_ctxt *dealloc)
5065 {
5066 int ret = 0;
5067 struct ocfs2_extent_list *el = path_leaf_el(path);
5068 struct buffer_head *last_eb_bh = NULL;
5069 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5070 struct ocfs2_merge_ctxt ctxt;
5071
5072 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5073 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5074 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5075 ret = -EIO;
5076 mlog_errno(ret);
5077 goto out;
5078 }
5079
5080 ret = ocfs2_figure_merge_contig_type(et, path, el,
5081 split_index,
5082 split_rec,
5083 &ctxt);
5084 if (ret) {
5085 mlog_errno(ret);
5086 goto out;
5087 }
5088
5089 /*
5090 * The core merge / split code wants to know how much room is
5091 * left in this allocation tree, so we pass the
5092 * rightmost extent list.
5093 */
5094 if (path->p_tree_depth) {
5095 ret = ocfs2_read_extent_block(et->et_ci,
5096 ocfs2_et_get_last_eb_blk(et),
5097 &last_eb_bh);
5098 if (ret) {
5099 mlog_errno(ret);
5100 goto out;
5101 }
5102 }
5103
5104 if (rec->e_cpos == split_rec->e_cpos &&
5105 rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5106 ctxt.c_split_covers_rec = 1;
5107 else
5108 ctxt.c_split_covers_rec = 0;
5109
5110 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5111
5112 trace_ocfs2_split_extent(split_index, ctxt.c_contig_type,
5113 ctxt.c_has_empty_extent,
5114 ctxt.c_split_covers_rec);
5115
5116 if (ctxt.c_contig_type == CONTIG_NONE) {
5117 if (ctxt.c_split_covers_rec)
5118 ret = ocfs2_replace_extent_rec(handle, et, path, el,
5119 split_index, split_rec);
5120 else
5121 ret = ocfs2_split_and_insert(handle, et, path,
5122 &last_eb_bh, split_index,
5123 split_rec, meta_ac);
5124 if (ret)
5125 mlog_errno(ret);
5126 } else {
5127 ret = ocfs2_try_to_merge_extent(handle, et, path,
5128 split_index, split_rec,
5129 dealloc, &ctxt);
5130 if (ret)
5131 mlog_errno(ret);
5132 }
5133
5134 out:
5135 brelse(last_eb_bh);
5136 return ret;
5137 }
5138
5139 /*
5140 * Change the flags of the already-existing extent at cpos for len clusters.
5141 *
5142 * new_flags: the flags we want to set.
5143 * clear_flags: the flags we want to clear.
5144 * phys: the new physical offset we want this new extent starts from.
5145 *
5146 * If the existing extent is larger than the request, initiate a
5147 * split. An attempt will be made at merging with adjacent extents.
5148 *
5149 * The caller is responsible for passing down meta_ac if we'll need it.
5150 */
ocfs2_change_extent_flag(handle_t * handle,struct ocfs2_extent_tree * et,u32 cpos,u32 len,u32 phys,struct ocfs2_alloc_context * meta_ac,struct ocfs2_cached_dealloc_ctxt * dealloc,int new_flags,int clear_flags)5151 int ocfs2_change_extent_flag(handle_t *handle,
5152 struct ocfs2_extent_tree *et,
5153 u32 cpos, u32 len, u32 phys,
5154 struct ocfs2_alloc_context *meta_ac,
5155 struct ocfs2_cached_dealloc_ctxt *dealloc,
5156 int new_flags, int clear_flags)
5157 {
5158 int ret, index;
5159 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5160 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5161 struct ocfs2_extent_rec split_rec;
5162 struct ocfs2_path *left_path = NULL;
5163 struct ocfs2_extent_list *el;
5164 struct ocfs2_extent_rec *rec;
5165
5166 left_path = ocfs2_new_path_from_et(et);
5167 if (!left_path) {
5168 ret = -ENOMEM;
5169 mlog_errno(ret);
5170 goto out;
5171 }
5172
5173 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5174 if (ret) {
5175 mlog_errno(ret);
5176 goto out;
5177 }
5178 el = path_leaf_el(left_path);
5179
5180 index = ocfs2_search_extent_list(el, cpos);
5181 if (index == -1) {
5182 ocfs2_error(sb,
5183 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5184 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5185 cpos);
5186 ret = -EROFS;
5187 goto out;
5188 }
5189
5190 ret = -EIO;
5191 rec = &el->l_recs[index];
5192 if (new_flags && (rec->e_flags & new_flags)) {
5193 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5194 "extent that already had them\n",
5195 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5196 new_flags);
5197 goto out;
5198 }
5199
5200 if (clear_flags && !(rec->e_flags & clear_flags)) {
5201 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5202 "extent that didn't have them\n",
5203 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5204 clear_flags);
5205 goto out;
5206 }
5207
5208 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5209 split_rec.e_cpos = cpu_to_le32(cpos);
5210 split_rec.e_leaf_clusters = cpu_to_le16(len);
5211 split_rec.e_blkno = cpu_to_le64(start_blkno);
5212 split_rec.e_flags = rec->e_flags;
5213 if (new_flags)
5214 split_rec.e_flags |= new_flags;
5215 if (clear_flags)
5216 split_rec.e_flags &= ~clear_flags;
5217
5218 ret = ocfs2_split_extent(handle, et, left_path,
5219 index, &split_rec, meta_ac,
5220 dealloc);
5221 if (ret)
5222 mlog_errno(ret);
5223
5224 out:
5225 ocfs2_free_path(left_path);
5226 return ret;
5227
5228 }
5229
5230 /*
5231 * Mark the already-existing extent at cpos as written for len clusters.
5232 * This removes the unwritten extent flag.
5233 *
5234 * If the existing extent is larger than the request, initiate a
5235 * split. An attempt will be made at merging with adjacent extents.
5236 *
5237 * The caller is responsible for passing down meta_ac if we'll need it.
5238 */
ocfs2_mark_extent_written(struct inode * inode,struct ocfs2_extent_tree * et,handle_t * handle,u32 cpos,u32 len,u32 phys,struct ocfs2_alloc_context * meta_ac,struct ocfs2_cached_dealloc_ctxt * dealloc)5239 int ocfs2_mark_extent_written(struct inode *inode,
5240 struct ocfs2_extent_tree *et,
5241 handle_t *handle, u32 cpos, u32 len, u32 phys,
5242 struct ocfs2_alloc_context *meta_ac,
5243 struct ocfs2_cached_dealloc_ctxt *dealloc)
5244 {
5245 int ret;
5246
5247 trace_ocfs2_mark_extent_written(
5248 (unsigned long long)OCFS2_I(inode)->ip_blkno,
5249 cpos, len, phys);
5250
5251 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5252 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n",
5253 (unsigned long long)OCFS2_I(inode)->ip_blkno);
5254 ret = -EROFS;
5255 goto out;
5256 }
5257
5258 /*
5259 * XXX: This should be fixed up so that we just re-insert the
5260 * next extent records.
5261 */
5262 ocfs2_et_extent_map_truncate(et, 0);
5263
5264 ret = ocfs2_change_extent_flag(handle, et, cpos,
5265 len, phys, meta_ac, dealloc,
5266 0, OCFS2_EXT_UNWRITTEN);
5267 if (ret)
5268 mlog_errno(ret);
5269
5270 out:
5271 return ret;
5272 }
5273
ocfs2_split_tree(handle_t * handle,struct ocfs2_extent_tree * et,struct ocfs2_path * path,int index,u32 new_range,struct ocfs2_alloc_context * meta_ac)5274 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5275 struct ocfs2_path *path,
5276 int index, u32 new_range,
5277 struct ocfs2_alloc_context *meta_ac)
5278 {
5279 int ret, depth, credits;
5280 struct buffer_head *last_eb_bh = NULL;
5281 struct ocfs2_extent_block *eb;
5282 struct ocfs2_extent_list *rightmost_el, *el;
5283 struct ocfs2_extent_rec split_rec;
5284 struct ocfs2_extent_rec *rec;
5285 struct ocfs2_insert_type insert;
5286
5287 /*
5288 * Setup the record to split before we grow the tree.
5289 */
5290 el = path_leaf_el(path);
5291 rec = &el->l_recs[index];
5292 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5293 &split_rec, new_range, rec);
5294
5295 depth = path->p_tree_depth;
5296 if (depth > 0) {
5297 ret = ocfs2_read_extent_block(et->et_ci,
5298 ocfs2_et_get_last_eb_blk(et),
5299 &last_eb_bh);
5300 if (ret < 0) {
5301 mlog_errno(ret);
5302 goto out;
5303 }
5304
5305 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5306 rightmost_el = &eb->h_list;
5307 } else
5308 rightmost_el = path_leaf_el(path);
5309
5310 credits = path->p_tree_depth +
5311 ocfs2_extend_meta_needed(et->et_root_el);
5312 ret = ocfs2_extend_trans(handle, credits);
5313 if (ret) {
5314 mlog_errno(ret);
5315 goto out;
5316 }
5317
5318 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5319 le16_to_cpu(rightmost_el->l_count)) {
5320 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5321 meta_ac);
5322 if (ret) {
5323 mlog_errno(ret);
5324 goto out;
5325 }
5326 }
5327
5328 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5329 insert.ins_appending = APPEND_NONE;
5330 insert.ins_contig = CONTIG_NONE;
5331 insert.ins_split = SPLIT_RIGHT;
5332 insert.ins_tree_depth = depth;
5333
5334 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5335 if (ret)
5336 mlog_errno(ret);
5337
5338 out:
5339 brelse(last_eb_bh);
5340 return ret;
5341 }
5342
ocfs2_truncate_rec(handle_t * handle,struct ocfs2_extent_tree * et,struct ocfs2_path * path,int index,struct ocfs2_cached_dealloc_ctxt * dealloc,u32 cpos,u32 len)5343 static int ocfs2_truncate_rec(handle_t *handle,
5344 struct ocfs2_extent_tree *et,
5345 struct ocfs2_path *path, int index,
5346 struct ocfs2_cached_dealloc_ctxt *dealloc,
5347 u32 cpos, u32 len)
5348 {
5349 int ret;
5350 u32 left_cpos, rec_range, trunc_range;
5351 int is_rightmost_tree_rec = 0;
5352 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5353 struct ocfs2_path *left_path = NULL;
5354 struct ocfs2_extent_list *el = path_leaf_el(path);
5355 struct ocfs2_extent_rec *rec;
5356 struct ocfs2_extent_block *eb;
5357
5358 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5359 /* extend credit for ocfs2_remove_rightmost_path */
5360 ret = ocfs2_extend_rotate_transaction(handle, 0,
5361 handle->h_buffer_credits,
5362 path);
5363 if (ret) {
5364 mlog_errno(ret);
5365 goto out;
5366 }
5367
5368 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5369 if (ret) {
5370 mlog_errno(ret);
5371 goto out;
5372 }
5373
5374 index--;
5375 }
5376
5377 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5378 path->p_tree_depth) {
5379 /*
5380 * Check whether this is the rightmost tree record. If
5381 * we remove all of this record or part of its right
5382 * edge then an update of the record lengths above it
5383 * will be required.
5384 */
5385 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5386 if (eb->h_next_leaf_blk == 0)
5387 is_rightmost_tree_rec = 1;
5388 }
5389
5390 rec = &el->l_recs[index];
5391 if (index == 0 && path->p_tree_depth &&
5392 le32_to_cpu(rec->e_cpos) == cpos) {
5393 /*
5394 * Changing the leftmost offset (via partial or whole
5395 * record truncate) of an interior (or rightmost) path
5396 * means we have to update the subtree that is formed
5397 * by this leaf and the one to it's left.
5398 *
5399 * There are two cases we can skip:
5400 * 1) Path is the leftmost one in our btree.
5401 * 2) The leaf is rightmost and will be empty after
5402 * we remove the extent record - the rotate code
5403 * knows how to update the newly formed edge.
5404 */
5405
5406 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5407 if (ret) {
5408 mlog_errno(ret);
5409 goto out;
5410 }
5411
5412 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5413 left_path = ocfs2_new_path_from_path(path);
5414 if (!left_path) {
5415 ret = -ENOMEM;
5416 mlog_errno(ret);
5417 goto out;
5418 }
5419
5420 ret = ocfs2_find_path(et->et_ci, left_path,
5421 left_cpos);
5422 if (ret) {
5423 mlog_errno(ret);
5424 goto out;
5425 }
5426 }
5427 }
5428
5429 ret = ocfs2_extend_rotate_transaction(handle, 0,
5430 handle->h_buffer_credits,
5431 path);
5432 if (ret) {
5433 mlog_errno(ret);
5434 goto out;
5435 }
5436
5437 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5438 if (ret) {
5439 mlog_errno(ret);
5440 goto out;
5441 }
5442
5443 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5444 if (ret) {
5445 mlog_errno(ret);
5446 goto out;
5447 }
5448
5449 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5450 trunc_range = cpos + len;
5451
5452 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5453 int next_free;
5454
5455 memset(rec, 0, sizeof(*rec));
5456 ocfs2_cleanup_merge(el, index);
5457
5458 next_free = le16_to_cpu(el->l_next_free_rec);
5459 if (is_rightmost_tree_rec && next_free > 1) {
5460 /*
5461 * We skip the edge update if this path will
5462 * be deleted by the rotate code.
5463 */
5464 rec = &el->l_recs[next_free - 1];
5465 ocfs2_adjust_rightmost_records(handle, et, path,
5466 rec);
5467 }
5468 } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5469 /* Remove leftmost portion of the record. */
5470 le32_add_cpu(&rec->e_cpos, len);
5471 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5472 le16_add_cpu(&rec->e_leaf_clusters, -len);
5473 } else if (rec_range == trunc_range) {
5474 /* Remove rightmost portion of the record */
5475 le16_add_cpu(&rec->e_leaf_clusters, -len);
5476 if (is_rightmost_tree_rec)
5477 ocfs2_adjust_rightmost_records(handle, et, path, rec);
5478 } else {
5479 /* Caller should have trapped this. */
5480 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5481 "(%u, %u)\n",
5482 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5483 le32_to_cpu(rec->e_cpos),
5484 le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5485 BUG();
5486 }
5487
5488 if (left_path) {
5489 int subtree_index;
5490
5491 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5492 ocfs2_complete_edge_insert(handle, left_path, path,
5493 subtree_index);
5494 }
5495
5496 ocfs2_journal_dirty(handle, path_leaf_bh(path));
5497
5498 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5499 if (ret)
5500 mlog_errno(ret);
5501
5502 out:
5503 ocfs2_free_path(left_path);
5504 return ret;
5505 }
5506
ocfs2_remove_extent(handle_t * handle,struct ocfs2_extent_tree * et,u32 cpos,u32 len,struct ocfs2_alloc_context * meta_ac,struct ocfs2_cached_dealloc_ctxt * dealloc)5507 int ocfs2_remove_extent(handle_t *handle,
5508 struct ocfs2_extent_tree *et,
5509 u32 cpos, u32 len,
5510 struct ocfs2_alloc_context *meta_ac,
5511 struct ocfs2_cached_dealloc_ctxt *dealloc)
5512 {
5513 int ret, index;
5514 u32 rec_range, trunc_range;
5515 struct ocfs2_extent_rec *rec;
5516 struct ocfs2_extent_list *el;
5517 struct ocfs2_path *path = NULL;
5518
5519 /*
5520 * XXX: Why are we truncating to 0 instead of wherever this
5521 * affects us?
5522 */
5523 ocfs2_et_extent_map_truncate(et, 0);
5524
5525 path = ocfs2_new_path_from_et(et);
5526 if (!path) {
5527 ret = -ENOMEM;
5528 mlog_errno(ret);
5529 goto out;
5530 }
5531
5532 ret = ocfs2_find_path(et->et_ci, path, cpos);
5533 if (ret) {
5534 mlog_errno(ret);
5535 goto out;
5536 }
5537
5538 el = path_leaf_el(path);
5539 index = ocfs2_search_extent_list(el, cpos);
5540 if (index == -1) {
5541 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5542 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5543 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5544 cpos);
5545 ret = -EROFS;
5546 goto out;
5547 }
5548
5549 /*
5550 * We have 3 cases of extent removal:
5551 * 1) Range covers the entire extent rec
5552 * 2) Range begins or ends on one edge of the extent rec
5553 * 3) Range is in the middle of the extent rec (no shared edges)
5554 *
5555 * For case 1 we remove the extent rec and left rotate to
5556 * fill the hole.
5557 *
5558 * For case 2 we just shrink the existing extent rec, with a
5559 * tree update if the shrinking edge is also the edge of an
5560 * extent block.
5561 *
5562 * For case 3 we do a right split to turn the extent rec into
5563 * something case 2 can handle.
5564 */
5565 rec = &el->l_recs[index];
5566 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5567 trunc_range = cpos + len;
5568
5569 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5570
5571 trace_ocfs2_remove_extent(
5572 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5573 cpos, len, index, le32_to_cpu(rec->e_cpos),
5574 ocfs2_rec_clusters(el, rec));
5575
5576 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5577 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5578 cpos, len);
5579 if (ret) {
5580 mlog_errno(ret);
5581 goto out;
5582 }
5583 } else {
5584 ret = ocfs2_split_tree(handle, et, path, index,
5585 trunc_range, meta_ac);
5586 if (ret) {
5587 mlog_errno(ret);
5588 goto out;
5589 }
5590
5591 /*
5592 * The split could have manipulated the tree enough to
5593 * move the record location, so we have to look for it again.
5594 */
5595 ocfs2_reinit_path(path, 1);
5596
5597 ret = ocfs2_find_path(et->et_ci, path, cpos);
5598 if (ret) {
5599 mlog_errno(ret);
5600 goto out;
5601 }
5602
5603 el = path_leaf_el(path);
5604 index = ocfs2_search_extent_list(el, cpos);
5605 if (index == -1) {
5606 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5607 "Owner %llu: split at cpos %u lost record\n",
5608 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5609 cpos);
5610 ret = -EROFS;
5611 goto out;
5612 }
5613
5614 /*
5615 * Double check our values here. If anything is fishy,
5616 * it's easier to catch it at the top level.
5617 */
5618 rec = &el->l_recs[index];
5619 rec_range = le32_to_cpu(rec->e_cpos) +
5620 ocfs2_rec_clusters(el, rec);
5621 if (rec_range != trunc_range) {
5622 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5623 "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n",
5624 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5625 cpos, len, le32_to_cpu(rec->e_cpos),
5626 ocfs2_rec_clusters(el, rec));
5627 ret = -EROFS;
5628 goto out;
5629 }
5630
5631 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5632 cpos, len);
5633 if (ret)
5634 mlog_errno(ret);
5635 }
5636
5637 out:
5638 ocfs2_free_path(path);
5639 return ret;
5640 }
5641
5642 /*
5643 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5644 * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5645 * number to reserve some extra blocks, and it only handles meta
5646 * data allocations.
5647 *
5648 * Currently, only ocfs2_remove_btree_range() uses it for truncating
5649 * and punching holes.
5650 */
ocfs2_reserve_blocks_for_rec_trunc(struct inode * inode,struct ocfs2_extent_tree * et,u32 extents_to_split,struct ocfs2_alloc_context ** ac,int extra_blocks)5651 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode,
5652 struct ocfs2_extent_tree *et,
5653 u32 extents_to_split,
5654 struct ocfs2_alloc_context **ac,
5655 int extra_blocks)
5656 {
5657 int ret = 0, num_free_extents;
5658 unsigned int max_recs_needed = 2 * extents_to_split;
5659 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5660
5661 *ac = NULL;
5662
5663 num_free_extents = ocfs2_num_free_extents(et);
5664 if (num_free_extents < 0) {
5665 ret = num_free_extents;
5666 mlog_errno(ret);
5667 goto out;
5668 }
5669
5670 if (!num_free_extents ||
5671 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed))
5672 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el);
5673
5674 if (extra_blocks) {
5675 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac);
5676 if (ret < 0) {
5677 if (ret != -ENOSPC)
5678 mlog_errno(ret);
5679 }
5680 }
5681
5682 out:
5683 if (ret) {
5684 if (*ac) {
5685 ocfs2_free_alloc_context(*ac);
5686 *ac = NULL;
5687 }
5688 }
5689
5690 return ret;
5691 }
5692
ocfs2_remove_btree_range(struct inode * inode,struct ocfs2_extent_tree * et,u32 cpos,u32 phys_cpos,u32 len,int flags,struct ocfs2_cached_dealloc_ctxt * dealloc,u64 refcount_loc,bool refcount_tree_locked)5693 int ocfs2_remove_btree_range(struct inode *inode,
5694 struct ocfs2_extent_tree *et,
5695 u32 cpos, u32 phys_cpos, u32 len, int flags,
5696 struct ocfs2_cached_dealloc_ctxt *dealloc,
5697 u64 refcount_loc, bool refcount_tree_locked)
5698 {
5699 int ret, credits = 0, extra_blocks = 0;
5700 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5701 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5702 struct inode *tl_inode = osb->osb_tl_inode;
5703 handle_t *handle;
5704 struct ocfs2_alloc_context *meta_ac = NULL;
5705 struct ocfs2_refcount_tree *ref_tree = NULL;
5706
5707 if ((flags & OCFS2_EXT_REFCOUNTED) && len) {
5708 BUG_ON(!ocfs2_is_refcount_inode(inode));
5709
5710 if (!refcount_tree_locked) {
5711 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
5712 &ref_tree, NULL);
5713 if (ret) {
5714 mlog_errno(ret);
5715 goto bail;
5716 }
5717 }
5718
5719 ret = ocfs2_prepare_refcount_change_for_del(inode,
5720 refcount_loc,
5721 phys_blkno,
5722 len,
5723 &credits,
5724 &extra_blocks);
5725 if (ret < 0) {
5726 mlog_errno(ret);
5727 goto bail;
5728 }
5729 }
5730
5731 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac,
5732 extra_blocks);
5733 if (ret) {
5734 mlog_errno(ret);
5735 goto bail;
5736 }
5737
5738 inode_lock(tl_inode);
5739
5740 if (ocfs2_truncate_log_needs_flush(osb)) {
5741 ret = __ocfs2_flush_truncate_log(osb);
5742 if (ret < 0) {
5743 mlog_errno(ret);
5744 goto out;
5745 }
5746 }
5747
5748 handle = ocfs2_start_trans(osb,
5749 ocfs2_remove_extent_credits(osb->sb) + credits);
5750 if (IS_ERR(handle)) {
5751 ret = PTR_ERR(handle);
5752 mlog_errno(ret);
5753 goto out;
5754 }
5755
5756 ret = ocfs2_et_root_journal_access(handle, et,
5757 OCFS2_JOURNAL_ACCESS_WRITE);
5758 if (ret) {
5759 mlog_errno(ret);
5760 goto out_commit;
5761 }
5762
5763 dquot_free_space_nodirty(inode,
5764 ocfs2_clusters_to_bytes(inode->i_sb, len));
5765
5766 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5767 if (ret) {
5768 mlog_errno(ret);
5769 goto out_commit;
5770 }
5771
5772 ocfs2_et_update_clusters(et, -len);
5773 ocfs2_update_inode_fsync_trans(handle, inode, 1);
5774
5775 ocfs2_journal_dirty(handle, et->et_root_bh);
5776
5777 if (phys_blkno) {
5778 if (flags & OCFS2_EXT_REFCOUNTED)
5779 ret = ocfs2_decrease_refcount(inode, handle,
5780 ocfs2_blocks_to_clusters(osb->sb,
5781 phys_blkno),
5782 len, meta_ac,
5783 dealloc, 1);
5784 else
5785 ret = ocfs2_truncate_log_append(osb, handle,
5786 phys_blkno, len);
5787 if (ret)
5788 mlog_errno(ret);
5789
5790 }
5791
5792 out_commit:
5793 ocfs2_commit_trans(osb, handle);
5794 out:
5795 inode_unlock(tl_inode);
5796 bail:
5797 if (meta_ac)
5798 ocfs2_free_alloc_context(meta_ac);
5799
5800 if (ref_tree)
5801 ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
5802
5803 return ret;
5804 }
5805
ocfs2_truncate_log_needs_flush(struct ocfs2_super * osb)5806 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5807 {
5808 struct buffer_head *tl_bh = osb->osb_tl_bh;
5809 struct ocfs2_dinode *di;
5810 struct ocfs2_truncate_log *tl;
5811
5812 di = (struct ocfs2_dinode *) tl_bh->b_data;
5813 tl = &di->id2.i_dealloc;
5814
5815 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5816 "slot %d, invalid truncate log parameters: used = "
5817 "%u, count = %u\n", osb->slot_num,
5818 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5819 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5820 }
5821
ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log * tl,unsigned int new_start)5822 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5823 unsigned int new_start)
5824 {
5825 unsigned int tail_index;
5826 unsigned int current_tail;
5827
5828 /* No records, nothing to coalesce */
5829 if (!le16_to_cpu(tl->tl_used))
5830 return 0;
5831
5832 tail_index = le16_to_cpu(tl->tl_used) - 1;
5833 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5834 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5835
5836 return current_tail == new_start;
5837 }
5838
ocfs2_truncate_log_append(struct ocfs2_super * osb,handle_t * handle,u64 start_blk,unsigned int num_clusters)5839 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5840 handle_t *handle,
5841 u64 start_blk,
5842 unsigned int num_clusters)
5843 {
5844 int status, index;
5845 unsigned int start_cluster, tl_count;
5846 struct inode *tl_inode = osb->osb_tl_inode;
5847 struct buffer_head *tl_bh = osb->osb_tl_bh;
5848 struct ocfs2_dinode *di;
5849 struct ocfs2_truncate_log *tl;
5850
5851 BUG_ON(inode_trylock(tl_inode));
5852
5853 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5854
5855 di = (struct ocfs2_dinode *) tl_bh->b_data;
5856
5857 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5858 * by the underlying call to ocfs2_read_inode_block(), so any
5859 * corruption is a code bug */
5860 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5861
5862 tl = &di->id2.i_dealloc;
5863 tl_count = le16_to_cpu(tl->tl_count);
5864 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5865 tl_count == 0,
5866 "Truncate record count on #%llu invalid "
5867 "wanted %u, actual %u\n",
5868 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5869 ocfs2_truncate_recs_per_inode(osb->sb),
5870 le16_to_cpu(tl->tl_count));
5871
5872 /* Caller should have known to flush before calling us. */
5873 index = le16_to_cpu(tl->tl_used);
5874 if (index >= tl_count) {
5875 status = -ENOSPC;
5876 mlog_errno(status);
5877 goto bail;
5878 }
5879
5880 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5881 OCFS2_JOURNAL_ACCESS_WRITE);
5882 if (status < 0) {
5883 mlog_errno(status);
5884 goto bail;
5885 }
5886
5887 trace_ocfs2_truncate_log_append(
5888 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index,
5889 start_cluster, num_clusters);
5890 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5891 /*
5892 * Move index back to the record we are coalescing with.
5893 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5894 */
5895 index--;
5896
5897 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5898 trace_ocfs2_truncate_log_append(
5899 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5900 index, le32_to_cpu(tl->tl_recs[index].t_start),
5901 num_clusters);
5902 } else {
5903 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5904 tl->tl_used = cpu_to_le16(index + 1);
5905 }
5906 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5907
5908 ocfs2_journal_dirty(handle, tl_bh);
5909
5910 osb->truncated_clusters += num_clusters;
5911 bail:
5912 return status;
5913 }
5914
ocfs2_replay_truncate_records(struct ocfs2_super * osb,struct inode * data_alloc_inode,struct buffer_head * data_alloc_bh)5915 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5916 struct inode *data_alloc_inode,
5917 struct buffer_head *data_alloc_bh)
5918 {
5919 int status = 0;
5920 int i;
5921 unsigned int num_clusters;
5922 u64 start_blk;
5923 struct ocfs2_truncate_rec rec;
5924 struct ocfs2_dinode *di;
5925 struct ocfs2_truncate_log *tl;
5926 struct inode *tl_inode = osb->osb_tl_inode;
5927 struct buffer_head *tl_bh = osb->osb_tl_bh;
5928 handle_t *handle;
5929
5930 di = (struct ocfs2_dinode *) tl_bh->b_data;
5931 tl = &di->id2.i_dealloc;
5932 i = le16_to_cpu(tl->tl_used) - 1;
5933 while (i >= 0) {
5934 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5935 if (IS_ERR(handle)) {
5936 status = PTR_ERR(handle);
5937 mlog_errno(status);
5938 goto bail;
5939 }
5940
5941 /* Caller has given us at least enough credits to
5942 * update the truncate log dinode */
5943 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5944 OCFS2_JOURNAL_ACCESS_WRITE);
5945 if (status < 0) {
5946 mlog_errno(status);
5947 goto bail;
5948 }
5949
5950 tl->tl_used = cpu_to_le16(i);
5951
5952 ocfs2_journal_dirty(handle, tl_bh);
5953
5954 rec = tl->tl_recs[i];
5955 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5956 le32_to_cpu(rec.t_start));
5957 num_clusters = le32_to_cpu(rec.t_clusters);
5958
5959 /* if start_blk is not set, we ignore the record as
5960 * invalid. */
5961 if (start_blk) {
5962 trace_ocfs2_replay_truncate_records(
5963 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5964 i, le32_to_cpu(rec.t_start), num_clusters);
5965
5966 status = ocfs2_free_clusters(handle, data_alloc_inode,
5967 data_alloc_bh, start_blk,
5968 num_clusters);
5969 if (status < 0) {
5970 mlog_errno(status);
5971 goto bail;
5972 }
5973 }
5974
5975 ocfs2_commit_trans(osb, handle);
5976 i--;
5977 }
5978
5979 osb->truncated_clusters = 0;
5980
5981 bail:
5982 return status;
5983 }
5984
5985 /* Expects you to already be holding tl_inode->i_mutex */
__ocfs2_flush_truncate_log(struct ocfs2_super * osb)5986 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5987 {
5988 int status;
5989 unsigned int num_to_flush;
5990 struct inode *tl_inode = osb->osb_tl_inode;
5991 struct inode *data_alloc_inode = NULL;
5992 struct buffer_head *tl_bh = osb->osb_tl_bh;
5993 struct buffer_head *data_alloc_bh = NULL;
5994 struct ocfs2_dinode *di;
5995 struct ocfs2_truncate_log *tl;
5996 struct ocfs2_journal *journal = osb->journal;
5997
5998 BUG_ON(inode_trylock(tl_inode));
5999
6000 di = (struct ocfs2_dinode *) tl_bh->b_data;
6001
6002 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
6003 * by the underlying call to ocfs2_read_inode_block(), so any
6004 * corruption is a code bug */
6005 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6006
6007 tl = &di->id2.i_dealloc;
6008 num_to_flush = le16_to_cpu(tl->tl_used);
6009 trace_ocfs2_flush_truncate_log(
6010 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
6011 num_to_flush);
6012 if (!num_to_flush) {
6013 status = 0;
6014 goto out;
6015 }
6016
6017 /* Appending truncate log(TA) and and flushing truncate log(TF) are
6018 * two separated transactions. They can be both committed but not
6019 * checkpointed. If crash occurs then, both two transaction will be
6020 * replayed with several already released to global bitmap clusters.
6021 * Then truncate log will be replayed resulting in cluster double free.
6022 */
6023 jbd2_journal_lock_updates(journal->j_journal);
6024 status = jbd2_journal_flush(journal->j_journal);
6025 jbd2_journal_unlock_updates(journal->j_journal);
6026 if (status < 0) {
6027 mlog_errno(status);
6028 goto out;
6029 }
6030
6031 data_alloc_inode = ocfs2_get_system_file_inode(osb,
6032 GLOBAL_BITMAP_SYSTEM_INODE,
6033 OCFS2_INVALID_SLOT);
6034 if (!data_alloc_inode) {
6035 status = -EINVAL;
6036 mlog(ML_ERROR, "Could not get bitmap inode!\n");
6037 goto out;
6038 }
6039
6040 inode_lock(data_alloc_inode);
6041
6042 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
6043 if (status < 0) {
6044 mlog_errno(status);
6045 goto out_mutex;
6046 }
6047
6048 status = ocfs2_replay_truncate_records(osb, data_alloc_inode,
6049 data_alloc_bh);
6050 if (status < 0)
6051 mlog_errno(status);
6052
6053 brelse(data_alloc_bh);
6054 ocfs2_inode_unlock(data_alloc_inode, 1);
6055
6056 out_mutex:
6057 inode_unlock(data_alloc_inode);
6058 iput(data_alloc_inode);
6059
6060 out:
6061 return status;
6062 }
6063
ocfs2_flush_truncate_log(struct ocfs2_super * osb)6064 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6065 {
6066 int status;
6067 struct inode *tl_inode = osb->osb_tl_inode;
6068
6069 inode_lock(tl_inode);
6070 status = __ocfs2_flush_truncate_log(osb);
6071 inode_unlock(tl_inode);
6072
6073 return status;
6074 }
6075
ocfs2_truncate_log_worker(struct work_struct * work)6076 static void ocfs2_truncate_log_worker(struct work_struct *work)
6077 {
6078 int status;
6079 struct ocfs2_super *osb =
6080 container_of(work, struct ocfs2_super,
6081 osb_truncate_log_wq.work);
6082
6083 status = ocfs2_flush_truncate_log(osb);
6084 if (status < 0)
6085 mlog_errno(status);
6086 else
6087 ocfs2_init_steal_slots(osb);
6088 }
6089
6090 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
ocfs2_schedule_truncate_log_flush(struct ocfs2_super * osb,int cancel)6091 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6092 int cancel)
6093 {
6094 if (osb->osb_tl_inode &&
6095 atomic_read(&osb->osb_tl_disable) == 0) {
6096 /* We want to push off log flushes while truncates are
6097 * still running. */
6098 if (cancel)
6099 cancel_delayed_work(&osb->osb_truncate_log_wq);
6100
6101 queue_delayed_work(osb->ocfs2_wq, &osb->osb_truncate_log_wq,
6102 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6103 }
6104 }
6105
6106 /*
6107 * Try to flush truncate logs if we can free enough clusters from it.
6108 * As for return value, "< 0" means error, "0" no space and "1" means
6109 * we have freed enough spaces and let the caller try to allocate again.
6110 */
ocfs2_try_to_free_truncate_log(struct ocfs2_super * osb,unsigned int needed)6111 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
6112 unsigned int needed)
6113 {
6114 tid_t target;
6115 int ret = 0;
6116 unsigned int truncated_clusters;
6117
6118 inode_lock(osb->osb_tl_inode);
6119 truncated_clusters = osb->truncated_clusters;
6120 inode_unlock(osb->osb_tl_inode);
6121
6122 /*
6123 * Check whether we can succeed in allocating if we free
6124 * the truncate log.
6125 */
6126 if (truncated_clusters < needed)
6127 goto out;
6128
6129 ret = ocfs2_flush_truncate_log(osb);
6130 if (ret) {
6131 mlog_errno(ret);
6132 goto out;
6133 }
6134
6135 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
6136 jbd2_log_wait_commit(osb->journal->j_journal, target);
6137 ret = 1;
6138 }
6139 out:
6140 return ret;
6141 }
6142
ocfs2_get_truncate_log_info(struct ocfs2_super * osb,int slot_num,struct inode ** tl_inode,struct buffer_head ** tl_bh)6143 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6144 int slot_num,
6145 struct inode **tl_inode,
6146 struct buffer_head **tl_bh)
6147 {
6148 int status;
6149 struct inode *inode = NULL;
6150 struct buffer_head *bh = NULL;
6151
6152 inode = ocfs2_get_system_file_inode(osb,
6153 TRUNCATE_LOG_SYSTEM_INODE,
6154 slot_num);
6155 if (!inode) {
6156 status = -EINVAL;
6157 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6158 goto bail;
6159 }
6160
6161 status = ocfs2_read_inode_block(inode, &bh);
6162 if (status < 0) {
6163 iput(inode);
6164 mlog_errno(status);
6165 goto bail;
6166 }
6167
6168 *tl_inode = inode;
6169 *tl_bh = bh;
6170 bail:
6171 return status;
6172 }
6173
6174 /* called during the 1st stage of node recovery. we stamp a clean
6175 * truncate log and pass back a copy for processing later. if the
6176 * truncate log does not require processing, a *tl_copy is set to
6177 * NULL. */
ocfs2_begin_truncate_log_recovery(struct ocfs2_super * osb,int slot_num,struct ocfs2_dinode ** tl_copy)6178 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6179 int slot_num,
6180 struct ocfs2_dinode **tl_copy)
6181 {
6182 int status;
6183 struct inode *tl_inode = NULL;
6184 struct buffer_head *tl_bh = NULL;
6185 struct ocfs2_dinode *di;
6186 struct ocfs2_truncate_log *tl;
6187
6188 *tl_copy = NULL;
6189
6190 trace_ocfs2_begin_truncate_log_recovery(slot_num);
6191
6192 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6193 if (status < 0) {
6194 mlog_errno(status);
6195 goto bail;
6196 }
6197
6198 di = (struct ocfs2_dinode *) tl_bh->b_data;
6199
6200 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
6201 * validated by the underlying call to ocfs2_read_inode_block(),
6202 * so any corruption is a code bug */
6203 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6204
6205 tl = &di->id2.i_dealloc;
6206 if (le16_to_cpu(tl->tl_used)) {
6207 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used));
6208
6209 /*
6210 * Assuming the write-out below goes well, this copy will be
6211 * passed back to recovery for processing.
6212 */
6213 *tl_copy = kmemdup(tl_bh->b_data, tl_bh->b_size, GFP_KERNEL);
6214 if (!(*tl_copy)) {
6215 status = -ENOMEM;
6216 mlog_errno(status);
6217 goto bail;
6218 }
6219
6220 /* All we need to do to clear the truncate log is set
6221 * tl_used. */
6222 tl->tl_used = 0;
6223
6224 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6225 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6226 if (status < 0) {
6227 mlog_errno(status);
6228 goto bail;
6229 }
6230 }
6231
6232 bail:
6233 iput(tl_inode);
6234 brelse(tl_bh);
6235
6236 if (status < 0) {
6237 kfree(*tl_copy);
6238 *tl_copy = NULL;
6239 mlog_errno(status);
6240 }
6241
6242 return status;
6243 }
6244
ocfs2_complete_truncate_log_recovery(struct ocfs2_super * osb,struct ocfs2_dinode * tl_copy)6245 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6246 struct ocfs2_dinode *tl_copy)
6247 {
6248 int status = 0;
6249 int i;
6250 unsigned int clusters, num_recs, start_cluster;
6251 u64 start_blk;
6252 handle_t *handle;
6253 struct inode *tl_inode = osb->osb_tl_inode;
6254 struct ocfs2_truncate_log *tl;
6255
6256 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6257 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6258 return -EINVAL;
6259 }
6260
6261 tl = &tl_copy->id2.i_dealloc;
6262 num_recs = le16_to_cpu(tl->tl_used);
6263 trace_ocfs2_complete_truncate_log_recovery(
6264 (unsigned long long)le64_to_cpu(tl_copy->i_blkno),
6265 num_recs);
6266
6267 inode_lock(tl_inode);
6268 for(i = 0; i < num_recs; i++) {
6269 if (ocfs2_truncate_log_needs_flush(osb)) {
6270 status = __ocfs2_flush_truncate_log(osb);
6271 if (status < 0) {
6272 mlog_errno(status);
6273 goto bail_up;
6274 }
6275 }
6276
6277 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6278 if (IS_ERR(handle)) {
6279 status = PTR_ERR(handle);
6280 mlog_errno(status);
6281 goto bail_up;
6282 }
6283
6284 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6285 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6286 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6287
6288 status = ocfs2_truncate_log_append(osb, handle,
6289 start_blk, clusters);
6290 ocfs2_commit_trans(osb, handle);
6291 if (status < 0) {
6292 mlog_errno(status);
6293 goto bail_up;
6294 }
6295 }
6296
6297 bail_up:
6298 inode_unlock(tl_inode);
6299
6300 return status;
6301 }
6302
ocfs2_truncate_log_shutdown(struct ocfs2_super * osb)6303 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6304 {
6305 int status;
6306 struct inode *tl_inode = osb->osb_tl_inode;
6307
6308 atomic_set(&osb->osb_tl_disable, 1);
6309
6310 if (tl_inode) {
6311 cancel_delayed_work(&osb->osb_truncate_log_wq);
6312 flush_workqueue(osb->ocfs2_wq);
6313
6314 status = ocfs2_flush_truncate_log(osb);
6315 if (status < 0)
6316 mlog_errno(status);
6317
6318 brelse(osb->osb_tl_bh);
6319 iput(osb->osb_tl_inode);
6320 }
6321 }
6322
ocfs2_truncate_log_init(struct ocfs2_super * osb)6323 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6324 {
6325 int status;
6326 struct inode *tl_inode = NULL;
6327 struct buffer_head *tl_bh = NULL;
6328
6329 status = ocfs2_get_truncate_log_info(osb,
6330 osb->slot_num,
6331 &tl_inode,
6332 &tl_bh);
6333 if (status < 0)
6334 mlog_errno(status);
6335
6336 /* ocfs2_truncate_log_shutdown keys on the existence of
6337 * osb->osb_tl_inode so we don't set any of the osb variables
6338 * until we're sure all is well. */
6339 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6340 ocfs2_truncate_log_worker);
6341 atomic_set(&osb->osb_tl_disable, 0);
6342 osb->osb_tl_bh = tl_bh;
6343 osb->osb_tl_inode = tl_inode;
6344
6345 return status;
6346 }
6347
6348 /*
6349 * Delayed de-allocation of suballocator blocks.
6350 *
6351 * Some sets of block de-allocations might involve multiple suballocator inodes.
6352 *
6353 * The locking for this can get extremely complicated, especially when
6354 * the suballocator inodes to delete from aren't known until deep
6355 * within an unrelated codepath.
6356 *
6357 * ocfs2_extent_block structures are a good example of this - an inode
6358 * btree could have been grown by any number of nodes each allocating
6359 * out of their own suballoc inode.
6360 *
6361 * These structures allow the delay of block de-allocation until a
6362 * later time, when locking of multiple cluster inodes won't cause
6363 * deadlock.
6364 */
6365
6366 /*
6367 * Describe a single bit freed from a suballocator. For the block
6368 * suballocators, it represents one block. For the global cluster
6369 * allocator, it represents some clusters and free_bit indicates
6370 * clusters number.
6371 */
6372 struct ocfs2_cached_block_free {
6373 struct ocfs2_cached_block_free *free_next;
6374 u64 free_bg;
6375 u64 free_blk;
6376 unsigned int free_bit;
6377 };
6378
6379 struct ocfs2_per_slot_free_list {
6380 struct ocfs2_per_slot_free_list *f_next_suballocator;
6381 int f_inode_type;
6382 int f_slot;
6383 struct ocfs2_cached_block_free *f_first;
6384 };
6385
ocfs2_free_cached_blocks(struct ocfs2_super * osb,int sysfile_type,int slot,struct ocfs2_cached_block_free * head)6386 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6387 int sysfile_type,
6388 int slot,
6389 struct ocfs2_cached_block_free *head)
6390 {
6391 int ret;
6392 u64 bg_blkno;
6393 handle_t *handle;
6394 struct inode *inode;
6395 struct buffer_head *di_bh = NULL;
6396 struct ocfs2_cached_block_free *tmp;
6397
6398 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6399 if (!inode) {
6400 ret = -EINVAL;
6401 mlog_errno(ret);
6402 goto out;
6403 }
6404
6405 inode_lock(inode);
6406
6407 ret = ocfs2_inode_lock(inode, &di_bh, 1);
6408 if (ret) {
6409 mlog_errno(ret);
6410 goto out_mutex;
6411 }
6412
6413 while (head) {
6414 if (head->free_bg)
6415 bg_blkno = head->free_bg;
6416 else
6417 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6418 head->free_bit);
6419 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6420 if (IS_ERR(handle)) {
6421 ret = PTR_ERR(handle);
6422 mlog_errno(ret);
6423 goto out_unlock;
6424 }
6425
6426 trace_ocfs2_free_cached_blocks(
6427 (unsigned long long)head->free_blk, head->free_bit);
6428
6429 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6430 head->free_bit, bg_blkno, 1);
6431 if (ret)
6432 mlog_errno(ret);
6433
6434 ocfs2_commit_trans(osb, handle);
6435
6436 tmp = head;
6437 head = head->free_next;
6438 kfree(tmp);
6439 }
6440
6441 out_unlock:
6442 ocfs2_inode_unlock(inode, 1);
6443 brelse(di_bh);
6444 out_mutex:
6445 inode_unlock(inode);
6446 iput(inode);
6447 out:
6448 while(head) {
6449 /* Premature exit may have left some dangling items. */
6450 tmp = head;
6451 head = head->free_next;
6452 kfree(tmp);
6453 }
6454
6455 return ret;
6456 }
6457
ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt * ctxt,u64 blkno,unsigned int bit)6458 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6459 u64 blkno, unsigned int bit)
6460 {
6461 int ret = 0;
6462 struct ocfs2_cached_block_free *item;
6463
6464 item = kzalloc(sizeof(*item), GFP_NOFS);
6465 if (item == NULL) {
6466 ret = -ENOMEM;
6467 mlog_errno(ret);
6468 return ret;
6469 }
6470
6471 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit);
6472
6473 item->free_blk = blkno;
6474 item->free_bit = bit;
6475 item->free_next = ctxt->c_global_allocator;
6476
6477 ctxt->c_global_allocator = item;
6478 return ret;
6479 }
6480
ocfs2_free_cached_clusters(struct ocfs2_super * osb,struct ocfs2_cached_block_free * head)6481 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6482 struct ocfs2_cached_block_free *head)
6483 {
6484 struct ocfs2_cached_block_free *tmp;
6485 struct inode *tl_inode = osb->osb_tl_inode;
6486 handle_t *handle;
6487 int ret = 0;
6488
6489 inode_lock(tl_inode);
6490
6491 while (head) {
6492 if (ocfs2_truncate_log_needs_flush(osb)) {
6493 ret = __ocfs2_flush_truncate_log(osb);
6494 if (ret < 0) {
6495 mlog_errno(ret);
6496 break;
6497 }
6498 }
6499
6500 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6501 if (IS_ERR(handle)) {
6502 ret = PTR_ERR(handle);
6503 mlog_errno(ret);
6504 break;
6505 }
6506
6507 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6508 head->free_bit);
6509
6510 ocfs2_commit_trans(osb, handle);
6511 tmp = head;
6512 head = head->free_next;
6513 kfree(tmp);
6514
6515 if (ret < 0) {
6516 mlog_errno(ret);
6517 break;
6518 }
6519 }
6520
6521 inode_unlock(tl_inode);
6522
6523 while (head) {
6524 /* Premature exit may have left some dangling items. */
6525 tmp = head;
6526 head = head->free_next;
6527 kfree(tmp);
6528 }
6529
6530 return ret;
6531 }
6532
ocfs2_run_deallocs(struct ocfs2_super * osb,struct ocfs2_cached_dealloc_ctxt * ctxt)6533 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6534 struct ocfs2_cached_dealloc_ctxt *ctxt)
6535 {
6536 int ret = 0, ret2;
6537 struct ocfs2_per_slot_free_list *fl;
6538
6539 if (!ctxt)
6540 return 0;
6541
6542 while (ctxt->c_first_suballocator) {
6543 fl = ctxt->c_first_suballocator;
6544
6545 if (fl->f_first) {
6546 trace_ocfs2_run_deallocs(fl->f_inode_type,
6547 fl->f_slot);
6548 ret2 = ocfs2_free_cached_blocks(osb,
6549 fl->f_inode_type,
6550 fl->f_slot,
6551 fl->f_first);
6552 if (ret2)
6553 mlog_errno(ret2);
6554 if (!ret)
6555 ret = ret2;
6556 }
6557
6558 ctxt->c_first_suballocator = fl->f_next_suballocator;
6559 kfree(fl);
6560 }
6561
6562 if (ctxt->c_global_allocator) {
6563 ret2 = ocfs2_free_cached_clusters(osb,
6564 ctxt->c_global_allocator);
6565 if (ret2)
6566 mlog_errno(ret2);
6567 if (!ret)
6568 ret = ret2;
6569
6570 ctxt->c_global_allocator = NULL;
6571 }
6572
6573 return ret;
6574 }
6575
6576 static struct ocfs2_per_slot_free_list *
ocfs2_find_per_slot_free_list(int type,int slot,struct ocfs2_cached_dealloc_ctxt * ctxt)6577 ocfs2_find_per_slot_free_list(int type,
6578 int slot,
6579 struct ocfs2_cached_dealloc_ctxt *ctxt)
6580 {
6581 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6582
6583 while (fl) {
6584 if (fl->f_inode_type == type && fl->f_slot == slot)
6585 return fl;
6586
6587 fl = fl->f_next_suballocator;
6588 }
6589
6590 fl = kmalloc(sizeof(*fl), GFP_NOFS);
6591 if (fl) {
6592 fl->f_inode_type = type;
6593 fl->f_slot = slot;
6594 fl->f_first = NULL;
6595 fl->f_next_suballocator = ctxt->c_first_suballocator;
6596
6597 ctxt->c_first_suballocator = fl;
6598 }
6599 return fl;
6600 }
6601
6602 static struct ocfs2_per_slot_free_list *
ocfs2_find_preferred_free_list(int type,int preferred_slot,int * real_slot,struct ocfs2_cached_dealloc_ctxt * ctxt)6603 ocfs2_find_preferred_free_list(int type,
6604 int preferred_slot,
6605 int *real_slot,
6606 struct ocfs2_cached_dealloc_ctxt *ctxt)
6607 {
6608 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6609
6610 while (fl) {
6611 if (fl->f_inode_type == type && fl->f_slot == preferred_slot) {
6612 *real_slot = fl->f_slot;
6613 return fl;
6614 }
6615
6616 fl = fl->f_next_suballocator;
6617 }
6618
6619 /* If we can't find any free list matching preferred slot, just use
6620 * the first one.
6621 */
6622 fl = ctxt->c_first_suballocator;
6623 *real_slot = fl->f_slot;
6624
6625 return fl;
6626 }
6627
6628 /* Return Value 1 indicates empty */
ocfs2_is_dealloc_empty(struct ocfs2_extent_tree * et)6629 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree *et)
6630 {
6631 struct ocfs2_per_slot_free_list *fl = NULL;
6632
6633 if (!et->et_dealloc)
6634 return 1;
6635
6636 fl = et->et_dealloc->c_first_suballocator;
6637 if (!fl)
6638 return 1;
6639
6640 if (!fl->f_first)
6641 return 1;
6642
6643 return 0;
6644 }
6645
6646 /* If extent was deleted from tree due to extent rotation and merging, and
6647 * no metadata is reserved ahead of time. Try to reuse some extents
6648 * just deleted. This is only used to reuse extent blocks.
6649 * It is supposed to find enough extent blocks in dealloc if our estimation
6650 * on metadata is accurate.
6651 */
ocfs2_reuse_blk_from_dealloc(handle_t * handle,struct ocfs2_extent_tree * et,struct buffer_head ** new_eb_bh,int blk_wanted,int * blk_given)6652 static int ocfs2_reuse_blk_from_dealloc(handle_t *handle,
6653 struct ocfs2_extent_tree *et,
6654 struct buffer_head **new_eb_bh,
6655 int blk_wanted, int *blk_given)
6656 {
6657 int i, status = 0, real_slot;
6658 struct ocfs2_cached_dealloc_ctxt *dealloc;
6659 struct ocfs2_per_slot_free_list *fl;
6660 struct ocfs2_cached_block_free *bf;
6661 struct ocfs2_extent_block *eb;
6662 struct ocfs2_super *osb =
6663 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
6664
6665 *blk_given = 0;
6666
6667 /* If extent tree doesn't have a dealloc, this is not faulty. Just
6668 * tell upper caller dealloc can't provide any block and it should
6669 * ask for alloc to claim more space.
6670 */
6671 dealloc = et->et_dealloc;
6672 if (!dealloc)
6673 goto bail;
6674
6675 for (i = 0; i < blk_wanted; i++) {
6676 /* Prefer to use local slot */
6677 fl = ocfs2_find_preferred_free_list(EXTENT_ALLOC_SYSTEM_INODE,
6678 osb->slot_num, &real_slot,
6679 dealloc);
6680 /* If no more block can be reused, we should claim more
6681 * from alloc. Just return here normally.
6682 */
6683 if (!fl) {
6684 status = 0;
6685 break;
6686 }
6687
6688 bf = fl->f_first;
6689 fl->f_first = bf->free_next;
6690
6691 new_eb_bh[i] = sb_getblk(osb->sb, bf->free_blk);
6692 if (new_eb_bh[i] == NULL) {
6693 status = -ENOMEM;
6694 mlog_errno(status);
6695 goto bail;
6696 }
6697
6698 mlog(0, "Reusing block(%llu) from "
6699 "dealloc(local slot:%d, real slot:%d)\n",
6700 bf->free_blk, osb->slot_num, real_slot);
6701
6702 ocfs2_set_new_buffer_uptodate(et->et_ci, new_eb_bh[i]);
6703
6704 status = ocfs2_journal_access_eb(handle, et->et_ci,
6705 new_eb_bh[i],
6706 OCFS2_JOURNAL_ACCESS_CREATE);
6707 if (status < 0) {
6708 mlog_errno(status);
6709 goto bail;
6710 }
6711
6712 memset(new_eb_bh[i]->b_data, 0, osb->sb->s_blocksize);
6713 eb = (struct ocfs2_extent_block *) new_eb_bh[i]->b_data;
6714
6715 /* We can't guarantee that buffer head is still cached, so
6716 * polutlate the extent block again.
6717 */
6718 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
6719 eb->h_blkno = cpu_to_le64(bf->free_blk);
6720 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
6721 eb->h_suballoc_slot = cpu_to_le16(real_slot);
6722 eb->h_suballoc_loc = cpu_to_le64(bf->free_bg);
6723 eb->h_suballoc_bit = cpu_to_le16(bf->free_bit);
6724 eb->h_list.l_count =
6725 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
6726
6727 /* We'll also be dirtied by the caller, so
6728 * this isn't absolutely necessary.
6729 */
6730 ocfs2_journal_dirty(handle, new_eb_bh[i]);
6731
6732 if (!fl->f_first) {
6733 dealloc->c_first_suballocator = fl->f_next_suballocator;
6734 kfree(fl);
6735 }
6736 kfree(bf);
6737 }
6738
6739 *blk_given = i;
6740
6741 bail:
6742 if (unlikely(status < 0)) {
6743 for (i = 0; i < blk_wanted; i++)
6744 brelse(new_eb_bh[i]);
6745 }
6746
6747 return status;
6748 }
6749
ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt * ctxt,int type,int slot,u64 suballoc,u64 blkno,unsigned int bit)6750 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6751 int type, int slot, u64 suballoc,
6752 u64 blkno, unsigned int bit)
6753 {
6754 int ret;
6755 struct ocfs2_per_slot_free_list *fl;
6756 struct ocfs2_cached_block_free *item;
6757
6758 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6759 if (fl == NULL) {
6760 ret = -ENOMEM;
6761 mlog_errno(ret);
6762 goto out;
6763 }
6764
6765 item = kzalloc(sizeof(*item), GFP_NOFS);
6766 if (item == NULL) {
6767 ret = -ENOMEM;
6768 mlog_errno(ret);
6769 goto out;
6770 }
6771
6772 trace_ocfs2_cache_block_dealloc(type, slot,
6773 (unsigned long long)suballoc,
6774 (unsigned long long)blkno, bit);
6775
6776 item->free_bg = suballoc;
6777 item->free_blk = blkno;
6778 item->free_bit = bit;
6779 item->free_next = fl->f_first;
6780
6781 fl->f_first = item;
6782
6783 ret = 0;
6784 out:
6785 return ret;
6786 }
6787
ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt * ctxt,struct ocfs2_extent_block * eb)6788 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6789 struct ocfs2_extent_block *eb)
6790 {
6791 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6792 le16_to_cpu(eb->h_suballoc_slot),
6793 le64_to_cpu(eb->h_suballoc_loc),
6794 le64_to_cpu(eb->h_blkno),
6795 le16_to_cpu(eb->h_suballoc_bit));
6796 }
6797
ocfs2_zero_func(handle_t * handle,struct buffer_head * bh)6798 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6799 {
6800 set_buffer_uptodate(bh);
6801 mark_buffer_dirty(bh);
6802 return 0;
6803 }
6804
ocfs2_map_and_dirty_page(struct inode * inode,handle_t * handle,unsigned int from,unsigned int to,struct page * page,int zero,u64 * phys)6805 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6806 unsigned int from, unsigned int to,
6807 struct page *page, int zero, u64 *phys)
6808 {
6809 int ret, partial = 0;
6810 loff_t start_byte = ((loff_t)page->index << PAGE_SHIFT) + from;
6811 loff_t length = to - from;
6812
6813 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6814 if (ret)
6815 mlog_errno(ret);
6816
6817 if (zero)
6818 zero_user_segment(page, from, to);
6819
6820 /*
6821 * Need to set the buffers we zero'd into uptodate
6822 * here if they aren't - ocfs2_map_page_blocks()
6823 * might've skipped some
6824 */
6825 ret = walk_page_buffers(handle, page_buffers(page),
6826 from, to, &partial,
6827 ocfs2_zero_func);
6828 if (ret < 0)
6829 mlog_errno(ret);
6830 else if (ocfs2_should_order_data(inode)) {
6831 ret = ocfs2_jbd2_inode_add_write(handle, inode,
6832 start_byte, length);
6833 if (ret < 0)
6834 mlog_errno(ret);
6835 }
6836
6837 if (!partial)
6838 SetPageUptodate(page);
6839
6840 flush_dcache_page(page);
6841 }
6842
ocfs2_zero_cluster_pages(struct inode * inode,loff_t start,loff_t end,struct page ** pages,int numpages,u64 phys,handle_t * handle)6843 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6844 loff_t end, struct page **pages,
6845 int numpages, u64 phys, handle_t *handle)
6846 {
6847 int i;
6848 struct page *page;
6849 unsigned int from, to = PAGE_SIZE;
6850 struct super_block *sb = inode->i_sb;
6851
6852 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6853
6854 if (numpages == 0)
6855 goto out;
6856
6857 to = PAGE_SIZE;
6858 for(i = 0; i < numpages; i++) {
6859 page = pages[i];
6860
6861 from = start & (PAGE_SIZE - 1);
6862 if ((end >> PAGE_SHIFT) == page->index)
6863 to = end & (PAGE_SIZE - 1);
6864
6865 BUG_ON(from > PAGE_SIZE);
6866 BUG_ON(to > PAGE_SIZE);
6867
6868 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6869 &phys);
6870
6871 start = (page->index + 1) << PAGE_SHIFT;
6872 }
6873 out:
6874 if (pages)
6875 ocfs2_unlock_and_free_pages(pages, numpages);
6876 }
6877
ocfs2_grab_pages(struct inode * inode,loff_t start,loff_t end,struct page ** pages,int * num)6878 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
6879 struct page **pages, int *num)
6880 {
6881 int numpages, ret = 0;
6882 struct address_space *mapping = inode->i_mapping;
6883 unsigned long index;
6884 loff_t last_page_bytes;
6885
6886 BUG_ON(start > end);
6887
6888 numpages = 0;
6889 last_page_bytes = PAGE_ALIGN(end);
6890 index = start >> PAGE_SHIFT;
6891 do {
6892 pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS);
6893 if (!pages[numpages]) {
6894 ret = -ENOMEM;
6895 mlog_errno(ret);
6896 goto out;
6897 }
6898
6899 numpages++;
6900 index++;
6901 } while (index < (last_page_bytes >> PAGE_SHIFT));
6902
6903 out:
6904 if (ret != 0) {
6905 if (pages)
6906 ocfs2_unlock_and_free_pages(pages, numpages);
6907 numpages = 0;
6908 }
6909
6910 *num = numpages;
6911
6912 return ret;
6913 }
6914
ocfs2_grab_eof_pages(struct inode * inode,loff_t start,loff_t end,struct page ** pages,int * num)6915 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6916 struct page **pages, int *num)
6917 {
6918 struct super_block *sb = inode->i_sb;
6919
6920 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6921 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6922
6923 return ocfs2_grab_pages(inode, start, end, pages, num);
6924 }
6925
6926 /*
6927 * Zero the area past i_size but still within an allocated
6928 * cluster. This avoids exposing nonzero data on subsequent file
6929 * extends.
6930 *
6931 * We need to call this before i_size is updated on the inode because
6932 * otherwise block_write_full_page() will skip writeout of pages past
6933 * i_size. The new_i_size parameter is passed for this reason.
6934 */
ocfs2_zero_range_for_truncate(struct inode * inode,handle_t * handle,u64 range_start,u64 range_end)6935 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6936 u64 range_start, u64 range_end)
6937 {
6938 int ret = 0, numpages;
6939 struct page **pages = NULL;
6940 u64 phys;
6941 unsigned int ext_flags;
6942 struct super_block *sb = inode->i_sb;
6943
6944 /*
6945 * File systems which don't support sparse files zero on every
6946 * extend.
6947 */
6948 if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6949 return 0;
6950
6951 pages = kcalloc(ocfs2_pages_per_cluster(sb),
6952 sizeof(struct page *), GFP_NOFS);
6953 if (pages == NULL) {
6954 ret = -ENOMEM;
6955 mlog_errno(ret);
6956 goto out;
6957 }
6958
6959 if (range_start == range_end)
6960 goto out;
6961
6962 ret = ocfs2_extent_map_get_blocks(inode,
6963 range_start >> sb->s_blocksize_bits,
6964 &phys, NULL, &ext_flags);
6965 if (ret) {
6966 mlog_errno(ret);
6967 goto out;
6968 }
6969
6970 /*
6971 * Tail is a hole, or is marked unwritten. In either case, we
6972 * can count on read and write to return/push zero's.
6973 */
6974 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6975 goto out;
6976
6977 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6978 &numpages);
6979 if (ret) {
6980 mlog_errno(ret);
6981 goto out;
6982 }
6983
6984 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6985 numpages, phys, handle);
6986
6987 /*
6988 * Initiate writeout of the pages we zero'd here. We don't
6989 * wait on them - the truncate_inode_pages() call later will
6990 * do that for us.
6991 */
6992 ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
6993 range_end - 1);
6994 if (ret)
6995 mlog_errno(ret);
6996
6997 out:
6998 kfree(pages);
6999
7000 return ret;
7001 }
7002
ocfs2_zero_dinode_id2_with_xattr(struct inode * inode,struct ocfs2_dinode * di)7003 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
7004 struct ocfs2_dinode *di)
7005 {
7006 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
7007 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
7008
7009 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
7010 memset(&di->id2, 0, blocksize -
7011 offsetof(struct ocfs2_dinode, id2) -
7012 xattrsize);
7013 else
7014 memset(&di->id2, 0, blocksize -
7015 offsetof(struct ocfs2_dinode, id2));
7016 }
7017
ocfs2_dinode_new_extent_list(struct inode * inode,struct ocfs2_dinode * di)7018 void ocfs2_dinode_new_extent_list(struct inode *inode,
7019 struct ocfs2_dinode *di)
7020 {
7021 ocfs2_zero_dinode_id2_with_xattr(inode, di);
7022 di->id2.i_list.l_tree_depth = 0;
7023 di->id2.i_list.l_next_free_rec = 0;
7024 di->id2.i_list.l_count = cpu_to_le16(
7025 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
7026 }
7027
ocfs2_set_inode_data_inline(struct inode * inode,struct ocfs2_dinode * di)7028 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
7029 {
7030 struct ocfs2_inode_info *oi = OCFS2_I(inode);
7031 struct ocfs2_inline_data *idata = &di->id2.i_data;
7032
7033 spin_lock(&oi->ip_lock);
7034 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
7035 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7036 spin_unlock(&oi->ip_lock);
7037
7038 /*
7039 * We clear the entire i_data structure here so that all
7040 * fields can be properly initialized.
7041 */
7042 ocfs2_zero_dinode_id2_with_xattr(inode, di);
7043
7044 idata->id_count = cpu_to_le16(
7045 ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
7046 }
7047
ocfs2_convert_inline_data_to_extents(struct inode * inode,struct buffer_head * di_bh)7048 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
7049 struct buffer_head *di_bh)
7050 {
7051 int ret, has_data, num_pages = 0;
7052 int need_free = 0;
7053 u32 bit_off, num;
7054 handle_t *handle;
7055 u64 block;
7056 struct ocfs2_inode_info *oi = OCFS2_I(inode);
7057 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7058 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7059 struct ocfs2_alloc_context *data_ac = NULL;
7060 struct page *page = NULL;
7061 struct ocfs2_extent_tree et;
7062 int did_quota = 0;
7063
7064 has_data = i_size_read(inode) ? 1 : 0;
7065
7066 if (has_data) {
7067 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
7068 if (ret) {
7069 mlog_errno(ret);
7070 goto out;
7071 }
7072 }
7073
7074 handle = ocfs2_start_trans(osb,
7075 ocfs2_inline_to_extents_credits(osb->sb));
7076 if (IS_ERR(handle)) {
7077 ret = PTR_ERR(handle);
7078 mlog_errno(ret);
7079 goto out;
7080 }
7081
7082 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7083 OCFS2_JOURNAL_ACCESS_WRITE);
7084 if (ret) {
7085 mlog_errno(ret);
7086 goto out_commit;
7087 }
7088
7089 if (has_data) {
7090 unsigned int page_end = min_t(unsigned, PAGE_SIZE,
7091 osb->s_clustersize);
7092 u64 phys;
7093
7094 ret = dquot_alloc_space_nodirty(inode,
7095 ocfs2_clusters_to_bytes(osb->sb, 1));
7096 if (ret)
7097 goto out_commit;
7098 did_quota = 1;
7099
7100 data_ac->ac_resv = &oi->ip_la_data_resv;
7101
7102 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off,
7103 &num);
7104 if (ret) {
7105 mlog_errno(ret);
7106 goto out_commit;
7107 }
7108
7109 /*
7110 * Save two copies, one for insert, and one that can
7111 * be changed by ocfs2_map_and_dirty_page() below.
7112 */
7113 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
7114
7115 ret = ocfs2_grab_eof_pages(inode, 0, page_end, &page,
7116 &num_pages);
7117 if (ret) {
7118 mlog_errno(ret);
7119 need_free = 1;
7120 goto out_commit;
7121 }
7122
7123 /*
7124 * This should populate the 1st page for us and mark
7125 * it up to date.
7126 */
7127 ret = ocfs2_read_inline_data(inode, page, di_bh);
7128 if (ret) {
7129 mlog_errno(ret);
7130 need_free = 1;
7131 goto out_unlock;
7132 }
7133
7134 ocfs2_map_and_dirty_page(inode, handle, 0, page_end, page, 0,
7135 &phys);
7136 }
7137
7138 spin_lock(&oi->ip_lock);
7139 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
7140 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
7141 spin_unlock(&oi->ip_lock);
7142
7143 ocfs2_update_inode_fsync_trans(handle, inode, 1);
7144 ocfs2_dinode_new_extent_list(inode, di);
7145
7146 ocfs2_journal_dirty(handle, di_bh);
7147
7148 if (has_data) {
7149 /*
7150 * An error at this point should be extremely rare. If
7151 * this proves to be false, we could always re-build
7152 * the in-inode data from our pages.
7153 */
7154 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7155 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
7156 if (ret) {
7157 mlog_errno(ret);
7158 need_free = 1;
7159 goto out_unlock;
7160 }
7161
7162 inode->i_blocks = ocfs2_inode_sector_count(inode);
7163 }
7164
7165 out_unlock:
7166 if (page)
7167 ocfs2_unlock_and_free_pages(&page, num_pages);
7168
7169 out_commit:
7170 if (ret < 0 && did_quota)
7171 dquot_free_space_nodirty(inode,
7172 ocfs2_clusters_to_bytes(osb->sb, 1));
7173
7174 if (need_free) {
7175 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
7176 ocfs2_free_local_alloc_bits(osb, handle, data_ac,
7177 bit_off, num);
7178 else
7179 ocfs2_free_clusters(handle,
7180 data_ac->ac_inode,
7181 data_ac->ac_bh,
7182 ocfs2_clusters_to_blocks(osb->sb, bit_off),
7183 num);
7184 }
7185
7186 ocfs2_commit_trans(osb, handle);
7187
7188 out:
7189 if (data_ac)
7190 ocfs2_free_alloc_context(data_ac);
7191 return ret;
7192 }
7193
7194 /*
7195 * It is expected, that by the time you call this function,
7196 * inode->i_size and fe->i_size have been adjusted.
7197 *
7198 * WARNING: This will kfree the truncate context
7199 */
ocfs2_commit_truncate(struct ocfs2_super * osb,struct inode * inode,struct buffer_head * di_bh)7200 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7201 struct inode *inode,
7202 struct buffer_head *di_bh)
7203 {
7204 int status = 0, i, flags = 0;
7205 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff;
7206 u64 blkno = 0;
7207 struct ocfs2_extent_list *el;
7208 struct ocfs2_extent_rec *rec;
7209 struct ocfs2_path *path = NULL;
7210 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7211 struct ocfs2_extent_list *root_el = &(di->id2.i_list);
7212 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc);
7213 struct ocfs2_extent_tree et;
7214 struct ocfs2_cached_dealloc_ctxt dealloc;
7215 struct ocfs2_refcount_tree *ref_tree = NULL;
7216
7217 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7218 ocfs2_init_dealloc_ctxt(&dealloc);
7219
7220 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7221 i_size_read(inode));
7222
7223 path = ocfs2_new_path(di_bh, &di->id2.i_list,
7224 ocfs2_journal_access_di);
7225 if (!path) {
7226 status = -ENOMEM;
7227 mlog_errno(status);
7228 goto bail;
7229 }
7230
7231 ocfs2_extent_map_trunc(inode, new_highest_cpos);
7232
7233 start:
7234 /*
7235 * Check that we still have allocation to delete.
7236 */
7237 if (OCFS2_I(inode)->ip_clusters == 0) {
7238 status = 0;
7239 goto bail;
7240 }
7241
7242 /*
7243 * Truncate always works against the rightmost tree branch.
7244 */
7245 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7246 if (status) {
7247 mlog_errno(status);
7248 goto bail;
7249 }
7250
7251 trace_ocfs2_commit_truncate(
7252 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7253 new_highest_cpos,
7254 OCFS2_I(inode)->ip_clusters,
7255 path->p_tree_depth);
7256
7257 /*
7258 * By now, el will point to the extent list on the bottom most
7259 * portion of this tree. Only the tail record is considered in
7260 * each pass.
7261 *
7262 * We handle the following cases, in order:
7263 * - empty extent: delete the remaining branch
7264 * - remove the entire record
7265 * - remove a partial record
7266 * - no record needs to be removed (truncate has completed)
7267 */
7268 el = path_leaf_el(path);
7269 if (le16_to_cpu(el->l_next_free_rec) == 0) {
7270 ocfs2_error(inode->i_sb,
7271 "Inode %llu has empty extent block at %llu\n",
7272 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7273 (unsigned long long)path_leaf_bh(path)->b_blocknr);
7274 status = -EROFS;
7275 goto bail;
7276 }
7277
7278 i = le16_to_cpu(el->l_next_free_rec) - 1;
7279 rec = &el->l_recs[i];
7280 flags = rec->e_flags;
7281 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
7282
7283 if (i == 0 && ocfs2_is_empty_extent(rec)) {
7284 /*
7285 * Lower levels depend on this never happening, but it's best
7286 * to check it up here before changing the tree.
7287 */
7288 if (root_el->l_tree_depth && rec->e_int_clusters == 0) {
7289 mlog(ML_ERROR, "Inode %lu has an empty "
7290 "extent record, depth %u\n", inode->i_ino,
7291 le16_to_cpu(root_el->l_tree_depth));
7292 status = ocfs2_remove_rightmost_empty_extent(osb,
7293 &et, path, &dealloc);
7294 if (status) {
7295 mlog_errno(status);
7296 goto bail;
7297 }
7298
7299 ocfs2_reinit_path(path, 1);
7300 goto start;
7301 } else {
7302 trunc_cpos = le32_to_cpu(rec->e_cpos);
7303 trunc_len = 0;
7304 blkno = 0;
7305 }
7306 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) {
7307 /*
7308 * Truncate entire record.
7309 */
7310 trunc_cpos = le32_to_cpu(rec->e_cpos);
7311 trunc_len = ocfs2_rec_clusters(el, rec);
7312 blkno = le64_to_cpu(rec->e_blkno);
7313 } else if (range > new_highest_cpos) {
7314 /*
7315 * Partial truncate. it also should be
7316 * the last truncate we're doing.
7317 */
7318 trunc_cpos = new_highest_cpos;
7319 trunc_len = range - new_highest_cpos;
7320 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos);
7321 blkno = le64_to_cpu(rec->e_blkno) +
7322 ocfs2_clusters_to_blocks(inode->i_sb, coff);
7323 } else {
7324 /*
7325 * Truncate completed, leave happily.
7326 */
7327 status = 0;
7328 goto bail;
7329 }
7330
7331 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
7332
7333 if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) {
7334 status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
7335 &ref_tree, NULL);
7336 if (status) {
7337 mlog_errno(status);
7338 goto bail;
7339 }
7340 }
7341
7342 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
7343 phys_cpos, trunc_len, flags, &dealloc,
7344 refcount_loc, true);
7345 if (status < 0) {
7346 mlog_errno(status);
7347 goto bail;
7348 }
7349
7350 ocfs2_reinit_path(path, 1);
7351
7352 /*
7353 * The check above will catch the case where we've truncated
7354 * away all allocation.
7355 */
7356 goto start;
7357
7358 bail:
7359 if (ref_tree)
7360 ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7361
7362 ocfs2_schedule_truncate_log_flush(osb, 1);
7363
7364 ocfs2_run_deallocs(osb, &dealloc);
7365
7366 ocfs2_free_path(path);
7367
7368 return status;
7369 }
7370
7371 /*
7372 * 'start' is inclusive, 'end' is not.
7373 */
ocfs2_truncate_inline(struct inode * inode,struct buffer_head * di_bh,unsigned int start,unsigned int end,int trunc)7374 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7375 unsigned int start, unsigned int end, int trunc)
7376 {
7377 int ret;
7378 unsigned int numbytes;
7379 handle_t *handle;
7380 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7381 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7382 struct ocfs2_inline_data *idata = &di->id2.i_data;
7383
7384 /* No need to punch hole beyond i_size. */
7385 if (start >= i_size_read(inode))
7386 return 0;
7387
7388 if (end > i_size_read(inode))
7389 end = i_size_read(inode);
7390
7391 BUG_ON(start > end);
7392
7393 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7394 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7395 !ocfs2_supports_inline_data(osb)) {
7396 ocfs2_error(inode->i_sb,
7397 "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7398 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7399 le16_to_cpu(di->i_dyn_features),
7400 OCFS2_I(inode)->ip_dyn_features,
7401 osb->s_feature_incompat);
7402 ret = -EROFS;
7403 goto out;
7404 }
7405
7406 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7407 if (IS_ERR(handle)) {
7408 ret = PTR_ERR(handle);
7409 mlog_errno(ret);
7410 goto out;
7411 }
7412
7413 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7414 OCFS2_JOURNAL_ACCESS_WRITE);
7415 if (ret) {
7416 mlog_errno(ret);
7417 goto out_commit;
7418 }
7419
7420 numbytes = end - start;
7421 memset(idata->id_data + start, 0, numbytes);
7422
7423 /*
7424 * No need to worry about the data page here - it's been
7425 * truncated already and inline data doesn't need it for
7426 * pushing zero's to disk, so we'll let readpage pick it up
7427 * later.
7428 */
7429 if (trunc) {
7430 i_size_write(inode, start);
7431 di->i_size = cpu_to_le64(start);
7432 }
7433
7434 inode->i_blocks = ocfs2_inode_sector_count(inode);
7435 inode->i_ctime = inode->i_mtime = current_time(inode);
7436
7437 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7438 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7439
7440 ocfs2_update_inode_fsync_trans(handle, inode, 1);
7441 ocfs2_journal_dirty(handle, di_bh);
7442
7443 out_commit:
7444 ocfs2_commit_trans(osb, handle);
7445
7446 out:
7447 return ret;
7448 }
7449
ocfs2_trim_extent(struct super_block * sb,struct ocfs2_group_desc * gd,u64 group,u32 start,u32 count)7450 static int ocfs2_trim_extent(struct super_block *sb,
7451 struct ocfs2_group_desc *gd,
7452 u64 group, u32 start, u32 count)
7453 {
7454 u64 discard, bcount;
7455 struct ocfs2_super *osb = OCFS2_SB(sb);
7456
7457 bcount = ocfs2_clusters_to_blocks(sb, count);
7458 discard = ocfs2_clusters_to_blocks(sb, start);
7459
7460 /*
7461 * For the first cluster group, the gd->bg_blkno is not at the start
7462 * of the group, but at an offset from the start. If we add it while
7463 * calculating discard for first group, we will wrongly start fstrim a
7464 * few blocks after the desried start block and the range can cross
7465 * over into the next cluster group. So, add it only if this is not
7466 * the first cluster group.
7467 */
7468 if (group != osb->first_cluster_group_blkno)
7469 discard += le64_to_cpu(gd->bg_blkno);
7470
7471 trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount);
7472
7473 return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0);
7474 }
7475
ocfs2_trim_group(struct super_block * sb,struct ocfs2_group_desc * gd,u64 group,u32 start,u32 max,u32 minbits)7476 static int ocfs2_trim_group(struct super_block *sb,
7477 struct ocfs2_group_desc *gd, u64 group,
7478 u32 start, u32 max, u32 minbits)
7479 {
7480 int ret = 0, count = 0, next;
7481 void *bitmap = gd->bg_bitmap;
7482
7483 if (le16_to_cpu(gd->bg_free_bits_count) < minbits)
7484 return 0;
7485
7486 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno),
7487 start, max, minbits);
7488
7489 while (start < max) {
7490 start = ocfs2_find_next_zero_bit(bitmap, max, start);
7491 if (start >= max)
7492 break;
7493 next = ocfs2_find_next_bit(bitmap, max, start);
7494
7495 if ((next - start) >= minbits) {
7496 ret = ocfs2_trim_extent(sb, gd, group,
7497 start, next - start);
7498 if (ret < 0) {
7499 mlog_errno(ret);
7500 break;
7501 }
7502 count += next - start;
7503 }
7504 start = next + 1;
7505
7506 if (fatal_signal_pending(current)) {
7507 count = -ERESTARTSYS;
7508 break;
7509 }
7510
7511 if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits)
7512 break;
7513 }
7514
7515 if (ret < 0)
7516 count = ret;
7517
7518 return count;
7519 }
7520
7521 static
ocfs2_trim_mainbm(struct super_block * sb,struct fstrim_range * range)7522 int ocfs2_trim_mainbm(struct super_block *sb, struct fstrim_range *range)
7523 {
7524 struct ocfs2_super *osb = OCFS2_SB(sb);
7525 u64 start, len, trimmed = 0, first_group, last_group = 0, group = 0;
7526 int ret, cnt;
7527 u32 first_bit, last_bit, minlen;
7528 struct buffer_head *main_bm_bh = NULL;
7529 struct inode *main_bm_inode = NULL;
7530 struct buffer_head *gd_bh = NULL;
7531 struct ocfs2_dinode *main_bm;
7532 struct ocfs2_group_desc *gd = NULL;
7533
7534 start = range->start >> osb->s_clustersize_bits;
7535 len = range->len >> osb->s_clustersize_bits;
7536 minlen = range->minlen >> osb->s_clustersize_bits;
7537
7538 if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize)
7539 return -EINVAL;
7540
7541 trace_ocfs2_trim_mainbm(start, len, minlen);
7542
7543 next_group:
7544 main_bm_inode = ocfs2_get_system_file_inode(osb,
7545 GLOBAL_BITMAP_SYSTEM_INODE,
7546 OCFS2_INVALID_SLOT);
7547 if (!main_bm_inode) {
7548 ret = -EIO;
7549 mlog_errno(ret);
7550 goto out;
7551 }
7552
7553 inode_lock(main_bm_inode);
7554
7555 ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0);
7556 if (ret < 0) {
7557 mlog_errno(ret);
7558 goto out_mutex;
7559 }
7560 main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data;
7561
7562 /*
7563 * Do some check before trim the first group.
7564 */
7565 if (!group) {
7566 if (start >= le32_to_cpu(main_bm->i_clusters)) {
7567 ret = -EINVAL;
7568 goto out_unlock;
7569 }
7570
7571 if (start + len > le32_to_cpu(main_bm->i_clusters))
7572 len = le32_to_cpu(main_bm->i_clusters) - start;
7573
7574 /*
7575 * Determine first and last group to examine based on
7576 * start and len
7577 */
7578 first_group = ocfs2_which_cluster_group(main_bm_inode, start);
7579 if (first_group == osb->first_cluster_group_blkno)
7580 first_bit = start;
7581 else
7582 first_bit = start - ocfs2_blocks_to_clusters(sb,
7583 first_group);
7584 last_group = ocfs2_which_cluster_group(main_bm_inode,
7585 start + len - 1);
7586 group = first_group;
7587 }
7588
7589 do {
7590 if (first_bit + len >= osb->bitmap_cpg)
7591 last_bit = osb->bitmap_cpg;
7592 else
7593 last_bit = first_bit + len;
7594
7595 ret = ocfs2_read_group_descriptor(main_bm_inode,
7596 main_bm, group,
7597 &gd_bh);
7598 if (ret < 0) {
7599 mlog_errno(ret);
7600 break;
7601 }
7602
7603 gd = (struct ocfs2_group_desc *)gd_bh->b_data;
7604 cnt = ocfs2_trim_group(sb, gd, group,
7605 first_bit, last_bit, minlen);
7606 brelse(gd_bh);
7607 gd_bh = NULL;
7608 if (cnt < 0) {
7609 ret = cnt;
7610 mlog_errno(ret);
7611 break;
7612 }
7613
7614 trimmed += cnt;
7615 len -= osb->bitmap_cpg - first_bit;
7616 first_bit = 0;
7617 if (group == osb->first_cluster_group_blkno)
7618 group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7619 else
7620 group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7621 } while (0);
7622
7623 out_unlock:
7624 ocfs2_inode_unlock(main_bm_inode, 0);
7625 brelse(main_bm_bh);
7626 main_bm_bh = NULL;
7627 out_mutex:
7628 inode_unlock(main_bm_inode);
7629 iput(main_bm_inode);
7630
7631 /*
7632 * If all the groups trim are not done or failed, but we should release
7633 * main_bm related locks for avoiding the current IO starve, then go to
7634 * trim the next group
7635 */
7636 if (ret >= 0 && group <= last_group)
7637 goto next_group;
7638 out:
7639 range->len = trimmed * sb->s_blocksize;
7640 return ret;
7641 }
7642
ocfs2_trim_fs(struct super_block * sb,struct fstrim_range * range)7643 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range)
7644 {
7645 int ret;
7646 struct ocfs2_super *osb = OCFS2_SB(sb);
7647 struct ocfs2_trim_fs_info info, *pinfo = NULL;
7648
7649 ocfs2_trim_fs_lock_res_init(osb);
7650
7651 trace_ocfs2_trim_fs(range->start, range->len, range->minlen);
7652
7653 ret = ocfs2_trim_fs_lock(osb, NULL, 1);
7654 if (ret < 0) {
7655 if (ret != -EAGAIN) {
7656 mlog_errno(ret);
7657 ocfs2_trim_fs_lock_res_uninit(osb);
7658 return ret;
7659 }
7660
7661 mlog(ML_NOTICE, "Wait for trim on device (%s) to "
7662 "finish, which is running from another node.\n",
7663 osb->dev_str);
7664 ret = ocfs2_trim_fs_lock(osb, &info, 0);
7665 if (ret < 0) {
7666 mlog_errno(ret);
7667 ocfs2_trim_fs_lock_res_uninit(osb);
7668 return ret;
7669 }
7670
7671 if (info.tf_valid && info.tf_success &&
7672 info.tf_start == range->start &&
7673 info.tf_len == range->len &&
7674 info.tf_minlen == range->minlen) {
7675 /* Avoid sending duplicated trim to a shared device */
7676 mlog(ML_NOTICE, "The same trim on device (%s) was "
7677 "just done from node (%u), return.\n",
7678 osb->dev_str, info.tf_nodenum);
7679 range->len = info.tf_trimlen;
7680 goto out;
7681 }
7682 }
7683
7684 info.tf_nodenum = osb->node_num;
7685 info.tf_start = range->start;
7686 info.tf_len = range->len;
7687 info.tf_minlen = range->minlen;
7688
7689 ret = ocfs2_trim_mainbm(sb, range);
7690
7691 info.tf_trimlen = range->len;
7692 info.tf_success = (ret < 0 ? 0 : 1);
7693 pinfo = &info;
7694 out:
7695 ocfs2_trim_fs_unlock(osb, pinfo);
7696 ocfs2_trim_fs_lock_res_uninit(osb);
7697 return ret;
7698 }
7699