• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2001 Dave Engebretsen IBM Corporation
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/interrupt.h>
8 #include <linux/irq.h>
9 #include <linux/of.h>
10 #include <linux/fs.h>
11 #include <linux/reboot.h>
12 #include <linux/irq_work.h>
13 
14 #include <asm/machdep.h>
15 #include <asm/rtas.h>
16 #include <asm/firmware.h>
17 #include <asm/mce.h>
18 
19 #include "pseries.h"
20 
21 static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
22 static DEFINE_SPINLOCK(ras_log_buf_lock);
23 
24 static int ras_check_exception_token;
25 
26 static void mce_process_errlog_event(struct irq_work *work);
27 static struct irq_work mce_errlog_process_work = {
28 	.func = mce_process_errlog_event,
29 };
30 
31 #define EPOW_SENSOR_TOKEN	9
32 #define EPOW_SENSOR_INDEX	0
33 
34 /* EPOW events counter variable */
35 static int num_epow_events;
36 
37 static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id);
38 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
39 static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
40 
41 /* RTAS pseries MCE errorlog section. */
42 struct pseries_mc_errorlog {
43 	__be32	fru_id;
44 	__be32	proc_id;
45 	u8	error_type;
46 	/*
47 	 * sub_err_type (1 byte). Bit fields depends on error_type
48 	 *
49 	 *   MSB0
50 	 *   |
51 	 *   V
52 	 *   01234567
53 	 *   XXXXXXXX
54 	 *
55 	 * For error_type == MC_ERROR_TYPE_UE
56 	 *   XXXXXXXX
57 	 *   X		1: Permanent or Transient UE.
58 	 *    X		1: Effective address provided.
59 	 *     X	1: Logical address provided.
60 	 *      XX	2: Reserved.
61 	 *        XXX	3: Type of UE error.
62 	 *
63 	 * For error_type != MC_ERROR_TYPE_UE
64 	 *   XXXXXXXX
65 	 *   X		1: Effective address provided.
66 	 *    XXXXX	5: Reserved.
67 	 *         XX	2: Type of SLB/ERAT/TLB error.
68 	 */
69 	u8	sub_err_type;
70 	u8	reserved_1[6];
71 	__be64	effective_address;
72 	__be64	logical_address;
73 } __packed;
74 
75 /* RTAS pseries MCE error types */
76 #define MC_ERROR_TYPE_UE		0x00
77 #define MC_ERROR_TYPE_SLB		0x01
78 #define MC_ERROR_TYPE_ERAT		0x02
79 #define MC_ERROR_TYPE_UNKNOWN		0x03
80 #define MC_ERROR_TYPE_TLB		0x04
81 #define MC_ERROR_TYPE_D_CACHE		0x05
82 #define MC_ERROR_TYPE_I_CACHE		0x07
83 
84 /* RTAS pseries MCE error sub types */
85 #define MC_ERROR_UE_INDETERMINATE		0
86 #define MC_ERROR_UE_IFETCH			1
87 #define MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH	2
88 #define MC_ERROR_UE_LOAD_STORE			3
89 #define MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE	4
90 
91 #define UE_EFFECTIVE_ADDR_PROVIDED		0x40
92 #define UE_LOGICAL_ADDR_PROVIDED		0x20
93 
94 #define MC_ERROR_SLB_PARITY		0
95 #define MC_ERROR_SLB_MULTIHIT		1
96 #define MC_ERROR_SLB_INDETERMINATE	2
97 
98 #define MC_ERROR_ERAT_PARITY		1
99 #define MC_ERROR_ERAT_MULTIHIT		2
100 #define MC_ERROR_ERAT_INDETERMINATE	3
101 
102 #define MC_ERROR_TLB_PARITY		1
103 #define MC_ERROR_TLB_MULTIHIT		2
104 #define MC_ERROR_TLB_INDETERMINATE	3
105 
rtas_mc_error_sub_type(const struct pseries_mc_errorlog * mlog)106 static inline u8 rtas_mc_error_sub_type(const struct pseries_mc_errorlog *mlog)
107 {
108 	switch (mlog->error_type) {
109 	case	MC_ERROR_TYPE_UE:
110 		return (mlog->sub_err_type & 0x07);
111 	case	MC_ERROR_TYPE_SLB:
112 	case	MC_ERROR_TYPE_ERAT:
113 	case	MC_ERROR_TYPE_TLB:
114 		return (mlog->sub_err_type & 0x03);
115 	default:
116 		return 0;
117 	}
118 }
119 
120 /*
121  * Enable the hotplug interrupt late because processing them may touch other
122  * devices or systems (e.g. hugepages) that have not been initialized at the
123  * subsys stage.
124  */
init_ras_hotplug_IRQ(void)125 int __init init_ras_hotplug_IRQ(void)
126 {
127 	struct device_node *np;
128 
129 	/* Hotplug Events */
130 	np = of_find_node_by_path("/event-sources/hot-plug-events");
131 	if (np != NULL) {
132 		if (dlpar_workqueue_init() == 0)
133 			request_event_sources_irqs(np, ras_hotplug_interrupt,
134 						   "RAS_HOTPLUG");
135 		of_node_put(np);
136 	}
137 
138 	return 0;
139 }
140 machine_late_initcall(pseries, init_ras_hotplug_IRQ);
141 
142 /*
143  * Initialize handlers for the set of interrupts caused by hardware errors
144  * and power system events.
145  */
init_ras_IRQ(void)146 static int __init init_ras_IRQ(void)
147 {
148 	struct device_node *np;
149 
150 	ras_check_exception_token = rtas_token("check-exception");
151 
152 	/* Internal Errors */
153 	np = of_find_node_by_path("/event-sources/internal-errors");
154 	if (np != NULL) {
155 		request_event_sources_irqs(np, ras_error_interrupt,
156 					   "RAS_ERROR");
157 		of_node_put(np);
158 	}
159 
160 	/* EPOW Events */
161 	np = of_find_node_by_path("/event-sources/epow-events");
162 	if (np != NULL) {
163 		request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
164 		of_node_put(np);
165 	}
166 
167 	return 0;
168 }
169 machine_subsys_initcall(pseries, init_ras_IRQ);
170 
171 #define EPOW_SHUTDOWN_NORMAL				1
172 #define EPOW_SHUTDOWN_ON_UPS				2
173 #define EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS	3
174 #define EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH	4
175 
handle_system_shutdown(char event_modifier)176 static void handle_system_shutdown(char event_modifier)
177 {
178 	switch (event_modifier) {
179 	case EPOW_SHUTDOWN_NORMAL:
180 		pr_emerg("Power off requested\n");
181 		orderly_poweroff(true);
182 		break;
183 
184 	case EPOW_SHUTDOWN_ON_UPS:
185 		pr_emerg("Loss of system power detected. System is running on"
186 			 " UPS/battery. Check RTAS error log for details\n");
187 		break;
188 
189 	case EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS:
190 		pr_emerg("Loss of system critical functions detected. Check"
191 			 " RTAS error log for details\n");
192 		orderly_poweroff(true);
193 		break;
194 
195 	case EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH:
196 		pr_emerg("High ambient temperature detected. Check RTAS"
197 			 " error log for details\n");
198 		orderly_poweroff(true);
199 		break;
200 
201 	default:
202 		pr_err("Unknown power/cooling shutdown event (modifier = %d)\n",
203 			event_modifier);
204 	}
205 }
206 
207 struct epow_errorlog {
208 	unsigned char sensor_value;
209 	unsigned char event_modifier;
210 	unsigned char extended_modifier;
211 	unsigned char reserved;
212 	unsigned char platform_reason;
213 };
214 
215 #define EPOW_RESET			0
216 #define EPOW_WARN_COOLING		1
217 #define EPOW_WARN_POWER			2
218 #define EPOW_SYSTEM_SHUTDOWN		3
219 #define EPOW_SYSTEM_HALT		4
220 #define EPOW_MAIN_ENCLOSURE		5
221 #define EPOW_POWER_OFF			7
222 
rtas_parse_epow_errlog(struct rtas_error_log * log)223 static void rtas_parse_epow_errlog(struct rtas_error_log *log)
224 {
225 	struct pseries_errorlog *pseries_log;
226 	struct epow_errorlog *epow_log;
227 	char action_code;
228 	char modifier;
229 
230 	pseries_log = get_pseries_errorlog(log, PSERIES_ELOG_SECT_ID_EPOW);
231 	if (pseries_log == NULL)
232 		return;
233 
234 	epow_log = (struct epow_errorlog *)pseries_log->data;
235 	action_code = epow_log->sensor_value & 0xF;	/* bottom 4 bits */
236 	modifier = epow_log->event_modifier & 0xF;	/* bottom 4 bits */
237 
238 	switch (action_code) {
239 	case EPOW_RESET:
240 		if (num_epow_events) {
241 			pr_info("Non critical power/cooling issue cleared\n");
242 			num_epow_events--;
243 		}
244 		break;
245 
246 	case EPOW_WARN_COOLING:
247 		pr_info("Non-critical cooling issue detected. Check RTAS error"
248 			" log for details\n");
249 		break;
250 
251 	case EPOW_WARN_POWER:
252 		pr_info("Non-critical power issue detected. Check RTAS error"
253 			" log for details\n");
254 		break;
255 
256 	case EPOW_SYSTEM_SHUTDOWN:
257 		handle_system_shutdown(epow_log->event_modifier);
258 		break;
259 
260 	case EPOW_SYSTEM_HALT:
261 		pr_emerg("Critical power/cooling issue detected. Check RTAS"
262 			 " error log for details. Powering off.\n");
263 		orderly_poweroff(true);
264 		break;
265 
266 	case EPOW_MAIN_ENCLOSURE:
267 	case EPOW_POWER_OFF:
268 		pr_emerg("System about to lose power. Check RTAS error log "
269 			 " for details. Powering off immediately.\n");
270 		emergency_sync();
271 		kernel_power_off();
272 		break;
273 
274 	default:
275 		pr_err("Unknown power/cooling event (action code  = %d)\n",
276 			action_code);
277 	}
278 
279 	/* Increment epow events counter variable */
280 	if (action_code != EPOW_RESET)
281 		num_epow_events++;
282 }
283 
ras_hotplug_interrupt(int irq,void * dev_id)284 static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id)
285 {
286 	struct pseries_errorlog *pseries_log;
287 	struct pseries_hp_errorlog *hp_elog;
288 
289 	spin_lock(&ras_log_buf_lock);
290 
291 	rtas_call(ras_check_exception_token, 6, 1, NULL,
292 		  RTAS_VECTOR_EXTERNAL_INTERRUPT, virq_to_hw(irq),
293 		  RTAS_HOTPLUG_EVENTS, 0, __pa(&ras_log_buf),
294 		  rtas_get_error_log_max());
295 
296 	pseries_log = get_pseries_errorlog((struct rtas_error_log *)ras_log_buf,
297 					   PSERIES_ELOG_SECT_ID_HOTPLUG);
298 	hp_elog = (struct pseries_hp_errorlog *)pseries_log->data;
299 
300 	/*
301 	 * Since PCI hotplug is not currently supported on pseries, put PCI
302 	 * hotplug events on the ras_log_buf to be handled by rtas_errd.
303 	 */
304 	if (hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_MEM ||
305 	    hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_CPU ||
306 	    hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_PMEM)
307 		queue_hotplug_event(hp_elog);
308 	else
309 		log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
310 
311 	spin_unlock(&ras_log_buf_lock);
312 	return IRQ_HANDLED;
313 }
314 
315 /* Handle environmental and power warning (EPOW) interrupts. */
ras_epow_interrupt(int irq,void * dev_id)316 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
317 {
318 	int status;
319 	int state;
320 	int critical;
321 
322 	status = rtas_get_sensor_fast(EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX,
323 				      &state);
324 
325 	if (state > 3)
326 		critical = 1;		/* Time Critical */
327 	else
328 		critical = 0;
329 
330 	spin_lock(&ras_log_buf_lock);
331 
332 	status = rtas_call(ras_check_exception_token, 6, 1, NULL,
333 			   RTAS_VECTOR_EXTERNAL_INTERRUPT,
334 			   virq_to_hw(irq),
335 			   RTAS_EPOW_WARNING,
336 			   critical, __pa(&ras_log_buf),
337 				rtas_get_error_log_max());
338 
339 	log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
340 
341 	rtas_parse_epow_errlog((struct rtas_error_log *)ras_log_buf);
342 
343 	spin_unlock(&ras_log_buf_lock);
344 	return IRQ_HANDLED;
345 }
346 
347 /*
348  * Handle hardware error interrupts.
349  *
350  * RTAS check-exception is called to collect data on the exception.  If
351  * the error is deemed recoverable, we log a warning and return.
352  * For nonrecoverable errors, an error is logged and we stop all processing
353  * as quickly as possible in order to prevent propagation of the failure.
354  */
ras_error_interrupt(int irq,void * dev_id)355 static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
356 {
357 	struct rtas_error_log *rtas_elog;
358 	int status;
359 	int fatal;
360 
361 	spin_lock(&ras_log_buf_lock);
362 
363 	status = rtas_call(ras_check_exception_token, 6, 1, NULL,
364 			   RTAS_VECTOR_EXTERNAL_INTERRUPT,
365 			   virq_to_hw(irq),
366 			   RTAS_INTERNAL_ERROR, 1 /* Time Critical */,
367 			   __pa(&ras_log_buf),
368 				rtas_get_error_log_max());
369 
370 	rtas_elog = (struct rtas_error_log *)ras_log_buf;
371 
372 	if (status == 0 &&
373 	    rtas_error_severity(rtas_elog) >= RTAS_SEVERITY_ERROR_SYNC)
374 		fatal = 1;
375 	else
376 		fatal = 0;
377 
378 	/* format and print the extended information */
379 	log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
380 
381 	if (fatal) {
382 		pr_emerg("Fatal hardware error detected. Check RTAS error"
383 			 " log for details. Powering off immediately\n");
384 		emergency_sync();
385 		kernel_power_off();
386 	} else {
387 		pr_err("Recoverable hardware error detected\n");
388 	}
389 
390 	spin_unlock(&ras_log_buf_lock);
391 	return IRQ_HANDLED;
392 }
393 
394 /*
395  * Some versions of FWNMI place the buffer inside the 4kB page starting at
396  * 0x7000. Other versions place it inside the rtas buffer. We check both.
397  * Minimum size of the buffer is 16 bytes.
398  */
399 #define VALID_FWNMI_BUFFER(A) \
400 	((((A) >= 0x7000) && ((A) <= 0x8000 - 16)) || \
401 	(((A) >= rtas.base) && ((A) <= (rtas.base + rtas.size - 16))))
402 
fwnmi_get_errlog(void)403 static inline struct rtas_error_log *fwnmi_get_errlog(void)
404 {
405 	return (struct rtas_error_log *)local_paca->mce_data_buf;
406 }
407 
408 /*
409  * Get the error information for errors coming through the
410  * FWNMI vectors.  The pt_regs' r3 will be updated to reflect
411  * the actual r3 if possible, and a ptr to the error log entry
412  * will be returned if found.
413  *
414  * Use one buffer mce_data_buf per cpu to store RTAS error.
415  *
416  * The mce_data_buf does not have any locks or protection around it,
417  * if a second machine check comes in, or a system reset is done
418  * before we have logged the error, then we will get corruption in the
419  * error log.  This is preferable over holding off on calling
420  * ibm,nmi-interlock which would result in us checkstopping if a
421  * second machine check did come in.
422  */
fwnmi_get_errinfo(struct pt_regs * regs)423 static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
424 {
425 	unsigned long *savep;
426 	struct rtas_error_log *h;
427 
428 	/* Mask top two bits */
429 	regs->gpr[3] &= ~(0x3UL << 62);
430 
431 	if (!VALID_FWNMI_BUFFER(regs->gpr[3])) {
432 		printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]);
433 		return NULL;
434 	}
435 
436 	savep = __va(regs->gpr[3]);
437 	regs->gpr[3] = be64_to_cpu(savep[0]);	/* restore original r3 */
438 
439 	h = (struct rtas_error_log *)&savep[1];
440 	/* Use the per cpu buffer from paca to store rtas error log */
441 	memset(local_paca->mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
442 	if (!rtas_error_extended(h)) {
443 		memcpy(local_paca->mce_data_buf, h, sizeof(__u64));
444 	} else {
445 		int len, error_log_length;
446 
447 		error_log_length = 8 + rtas_error_extended_log_length(h);
448 		len = min_t(int, error_log_length, RTAS_ERROR_LOG_MAX);
449 		memcpy(local_paca->mce_data_buf, h, len);
450 	}
451 
452 	return (struct rtas_error_log *)local_paca->mce_data_buf;
453 }
454 
455 /* Call this when done with the data returned by FWNMI_get_errinfo.
456  * It will release the saved data area for other CPUs in the
457  * partition to receive FWNMI errors.
458  */
fwnmi_release_errinfo(void)459 static void fwnmi_release_errinfo(void)
460 {
461 	int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL);
462 	if (ret != 0)
463 		printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret);
464 }
465 
pSeries_system_reset_exception(struct pt_regs * regs)466 int pSeries_system_reset_exception(struct pt_regs *regs)
467 {
468 #ifdef __LITTLE_ENDIAN__
469 	/*
470 	 * Some firmware byteswaps SRR registers and gives incorrect SRR1. Try
471 	 * to detect the bad SRR1 pattern here. Flip the NIP back to correct
472 	 * endian for reporting purposes. Unfortunately the MSR can't be fixed,
473 	 * so clear it. It will be missing MSR_RI so we won't try to recover.
474 	 */
475 	if ((be64_to_cpu(regs->msr) &
476 			(MSR_LE|MSR_RI|MSR_DR|MSR_IR|MSR_ME|MSR_PR|
477 			 MSR_ILE|MSR_HV|MSR_SF)) == (MSR_DR|MSR_SF)) {
478 		regs->nip = be64_to_cpu((__be64)regs->nip);
479 		regs->msr = 0;
480 	}
481 #endif
482 
483 	if (fwnmi_active) {
484 		struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs);
485 		if (errhdr) {
486 			/* XXX Should look at FWNMI information */
487 		}
488 		fwnmi_release_errinfo();
489 	}
490 
491 	if (smp_handle_nmi_ipi(regs))
492 		return 1;
493 
494 	return 0; /* need to perform reset */
495 }
496 
mce_handle_err_realmode(int disposition,u8 error_type)497 static int mce_handle_err_realmode(int disposition, u8 error_type)
498 {
499 #ifdef CONFIG_PPC_BOOK3S_64
500 	if (disposition == RTAS_DISP_NOT_RECOVERED) {
501 		switch (error_type) {
502 		case	MC_ERROR_TYPE_SLB:
503 		case	MC_ERROR_TYPE_ERAT:
504 			/*
505 			 * Store the old slb content in paca before flushing.
506 			 * Print this when we go to virtual mode.
507 			 * There are chances that we may hit MCE again if there
508 			 * is a parity error on the SLB entry we trying to read
509 			 * for saving. Hence limit the slb saving to single
510 			 * level of recursion.
511 			 */
512 			if (local_paca->in_mce == 1)
513 				slb_save_contents(local_paca->mce_faulty_slbs);
514 			flush_and_reload_slb();
515 			disposition = RTAS_DISP_FULLY_RECOVERED;
516 			break;
517 		default:
518 			break;
519 		}
520 	} else if (disposition == RTAS_DISP_LIMITED_RECOVERY) {
521 		/* Platform corrected itself but could be degraded */
522 		pr_err("MCE: limited recovery, system may be degraded\n");
523 		disposition = RTAS_DISP_FULLY_RECOVERED;
524 	}
525 #endif
526 	return disposition;
527 }
528 
mce_handle_err_virtmode(struct pt_regs * regs,struct rtas_error_log * errp,struct pseries_mc_errorlog * mce_log,int disposition)529 static int mce_handle_err_virtmode(struct pt_regs *regs,
530 				   struct rtas_error_log *errp,
531 				   struct pseries_mc_errorlog *mce_log,
532 				   int disposition)
533 {
534 	struct mce_error_info mce_err = { 0 };
535 	int initiator = rtas_error_initiator(errp);
536 	int severity = rtas_error_severity(errp);
537 	unsigned long eaddr = 0, paddr = 0;
538 	u8 error_type, err_sub_type;
539 
540 	if (!mce_log)
541 		goto out;
542 
543 	error_type = mce_log->error_type;
544 	err_sub_type = rtas_mc_error_sub_type(mce_log);
545 
546 	if (initiator == RTAS_INITIATOR_UNKNOWN)
547 		mce_err.initiator = MCE_INITIATOR_UNKNOWN;
548 	else if (initiator == RTAS_INITIATOR_CPU)
549 		mce_err.initiator = MCE_INITIATOR_CPU;
550 	else if (initiator == RTAS_INITIATOR_PCI)
551 		mce_err.initiator = MCE_INITIATOR_PCI;
552 	else if (initiator == RTAS_INITIATOR_ISA)
553 		mce_err.initiator = MCE_INITIATOR_ISA;
554 	else if (initiator == RTAS_INITIATOR_MEMORY)
555 		mce_err.initiator = MCE_INITIATOR_MEMORY;
556 	else if (initiator == RTAS_INITIATOR_POWERMGM)
557 		mce_err.initiator = MCE_INITIATOR_POWERMGM;
558 	else
559 		mce_err.initiator = MCE_INITIATOR_UNKNOWN;
560 
561 	if (severity == RTAS_SEVERITY_NO_ERROR)
562 		mce_err.severity = MCE_SEV_NO_ERROR;
563 	else if (severity == RTAS_SEVERITY_EVENT)
564 		mce_err.severity = MCE_SEV_WARNING;
565 	else if (severity == RTAS_SEVERITY_WARNING)
566 		mce_err.severity = MCE_SEV_WARNING;
567 	else if (severity == RTAS_SEVERITY_ERROR_SYNC)
568 		mce_err.severity = MCE_SEV_SEVERE;
569 	else if (severity == RTAS_SEVERITY_ERROR)
570 		mce_err.severity = MCE_SEV_SEVERE;
571 	else if (severity == RTAS_SEVERITY_FATAL)
572 		mce_err.severity = MCE_SEV_FATAL;
573 	else
574 		mce_err.severity = MCE_SEV_FATAL;
575 
576 	if (severity <= RTAS_SEVERITY_ERROR_SYNC)
577 		mce_err.sync_error = true;
578 	else
579 		mce_err.sync_error = false;
580 
581 	mce_err.error_type = MCE_ERROR_TYPE_UNKNOWN;
582 	mce_err.error_class = MCE_ECLASS_UNKNOWN;
583 
584 	switch (error_type) {
585 	case MC_ERROR_TYPE_UE:
586 		mce_err.error_type = MCE_ERROR_TYPE_UE;
587 		switch (err_sub_type) {
588 		case MC_ERROR_UE_IFETCH:
589 			mce_err.u.ue_error_type = MCE_UE_ERROR_IFETCH;
590 			break;
591 		case MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH:
592 			mce_err.u.ue_error_type = MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH;
593 			break;
594 		case MC_ERROR_UE_LOAD_STORE:
595 			mce_err.u.ue_error_type = MCE_UE_ERROR_LOAD_STORE;
596 			break;
597 		case MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE:
598 			mce_err.u.ue_error_type = MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE;
599 			break;
600 		case MC_ERROR_UE_INDETERMINATE:
601 		default:
602 			mce_err.u.ue_error_type = MCE_UE_ERROR_INDETERMINATE;
603 			break;
604 		}
605 		if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED)
606 			eaddr = be64_to_cpu(mce_log->effective_address);
607 
608 		if (mce_log->sub_err_type & UE_LOGICAL_ADDR_PROVIDED) {
609 			paddr = be64_to_cpu(mce_log->logical_address);
610 		} else if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED) {
611 			unsigned long pfn;
612 
613 			pfn = addr_to_pfn(regs, eaddr);
614 			if (pfn != ULONG_MAX)
615 				paddr = pfn << PAGE_SHIFT;
616 		}
617 
618 		break;
619 	case MC_ERROR_TYPE_SLB:
620 		mce_err.error_type = MCE_ERROR_TYPE_SLB;
621 		switch (err_sub_type) {
622 		case MC_ERROR_SLB_PARITY:
623 			mce_err.u.slb_error_type = MCE_SLB_ERROR_PARITY;
624 			break;
625 		case MC_ERROR_SLB_MULTIHIT:
626 			mce_err.u.slb_error_type = MCE_SLB_ERROR_MULTIHIT;
627 			break;
628 		case MC_ERROR_SLB_INDETERMINATE:
629 		default:
630 			mce_err.u.slb_error_type = MCE_SLB_ERROR_INDETERMINATE;
631 			break;
632 		}
633 		if (mce_log->sub_err_type & 0x80)
634 			eaddr = be64_to_cpu(mce_log->effective_address);
635 		break;
636 	case MC_ERROR_TYPE_ERAT:
637 		mce_err.error_type = MCE_ERROR_TYPE_ERAT;
638 		switch (err_sub_type) {
639 		case MC_ERROR_ERAT_PARITY:
640 			mce_err.u.erat_error_type = MCE_ERAT_ERROR_PARITY;
641 			break;
642 		case MC_ERROR_ERAT_MULTIHIT:
643 			mce_err.u.erat_error_type = MCE_ERAT_ERROR_MULTIHIT;
644 			break;
645 		case MC_ERROR_ERAT_INDETERMINATE:
646 		default:
647 			mce_err.u.erat_error_type = MCE_ERAT_ERROR_INDETERMINATE;
648 			break;
649 		}
650 		if (mce_log->sub_err_type & 0x80)
651 			eaddr = be64_to_cpu(mce_log->effective_address);
652 		break;
653 	case MC_ERROR_TYPE_TLB:
654 		mce_err.error_type = MCE_ERROR_TYPE_TLB;
655 		switch (err_sub_type) {
656 		case MC_ERROR_TLB_PARITY:
657 			mce_err.u.tlb_error_type = MCE_TLB_ERROR_PARITY;
658 			break;
659 		case MC_ERROR_TLB_MULTIHIT:
660 			mce_err.u.tlb_error_type = MCE_TLB_ERROR_MULTIHIT;
661 			break;
662 		case MC_ERROR_TLB_INDETERMINATE:
663 		default:
664 			mce_err.u.tlb_error_type = MCE_TLB_ERROR_INDETERMINATE;
665 			break;
666 		}
667 		if (mce_log->sub_err_type & 0x80)
668 			eaddr = be64_to_cpu(mce_log->effective_address);
669 		break;
670 	case MC_ERROR_TYPE_D_CACHE:
671 		mce_err.error_type = MCE_ERROR_TYPE_DCACHE;
672 		break;
673 	case MC_ERROR_TYPE_I_CACHE:
674 		mce_err.error_type = MCE_ERROR_TYPE_DCACHE;
675 		break;
676 	case MC_ERROR_TYPE_UNKNOWN:
677 	default:
678 		mce_err.error_type = MCE_ERROR_TYPE_UNKNOWN;
679 		break;
680 	}
681 out:
682 	save_mce_event(regs, disposition == RTAS_DISP_FULLY_RECOVERED,
683 		       &mce_err, regs->nip, eaddr, paddr);
684 	return disposition;
685 }
686 
mce_handle_error(struct pt_regs * regs,struct rtas_error_log * errp)687 static int mce_handle_error(struct pt_regs *regs, struct rtas_error_log *errp)
688 {
689 	struct pseries_errorlog *pseries_log;
690 	struct pseries_mc_errorlog *mce_log = NULL;
691 	int disposition = rtas_error_disposition(errp);
692 	u8 error_type;
693 
694 	if (!rtas_error_extended(errp))
695 		goto out;
696 
697 	pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE);
698 	if (!pseries_log)
699 		goto out;
700 
701 	mce_log = (struct pseries_mc_errorlog *)pseries_log->data;
702 	error_type = mce_log->error_type;
703 
704 	disposition = mce_handle_err_realmode(disposition, error_type);
705 
706 	/*
707 	 * Enable translation as we will be accessing per-cpu variables
708 	 * in save_mce_event() which may fall outside RMO region, also
709 	 * leave it enabled because subsequently we will be queuing work
710 	 * to workqueues where again per-cpu variables accessed, besides
711 	 * fwnmi_release_errinfo() crashes when called in realmode on
712 	 * pseries.
713 	 * Note: All the realmode handling like flushing SLB entries for
714 	 *       SLB multihit is done by now.
715 	 */
716 out:
717 	mtmsr(mfmsr() | MSR_IR | MSR_DR);
718 	disposition = mce_handle_err_virtmode(regs, errp, mce_log,
719 					      disposition);
720 	return disposition;
721 }
722 
723 /*
724  * Process MCE rtas errlog event.
725  */
mce_process_errlog_event(struct irq_work * work)726 static void mce_process_errlog_event(struct irq_work *work)
727 {
728 	struct rtas_error_log *err;
729 
730 	err = fwnmi_get_errlog();
731 	log_error((char *)err, ERR_TYPE_RTAS_LOG, 0);
732 }
733 
734 /*
735  * See if we can recover from a machine check exception.
736  * This is only called on power4 (or above) and only via
737  * the Firmware Non-Maskable Interrupts (fwnmi) handler
738  * which provides the error analysis for us.
739  *
740  * Return 1 if corrected (or delivered a signal).
741  * Return 0 if there is nothing we can do.
742  */
recover_mce(struct pt_regs * regs,struct machine_check_event * evt)743 static int recover_mce(struct pt_regs *regs, struct machine_check_event *evt)
744 {
745 	int recovered = 0;
746 
747 	if (!(regs->msr & MSR_RI)) {
748 		/* If MSR_RI isn't set, we cannot recover */
749 		pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
750 		recovered = 0;
751 	} else if (evt->disposition == MCE_DISPOSITION_RECOVERED) {
752 		/* Platform corrected itself */
753 		recovered = 1;
754 	} else if (evt->severity == MCE_SEV_FATAL) {
755 		/* Fatal machine check */
756 		pr_err("Machine check interrupt is fatal\n");
757 		recovered = 0;
758 	}
759 
760 	if (!recovered && evt->sync_error) {
761 		/*
762 		 * Try to kill processes if we get a synchronous machine check
763 		 * (e.g., one caused by execution of this instruction). This
764 		 * will devolve into a panic if we try to kill init or are in
765 		 * an interrupt etc.
766 		 *
767 		 * TODO: Queue up this address for hwpoisioning later.
768 		 * TODO: This is not quite right for d-side machine
769 		 *       checks ->nip is not necessarily the important
770 		 *       address.
771 		 */
772 		if ((user_mode(regs))) {
773 			_exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
774 			recovered = 1;
775 		} else if (die_will_crash()) {
776 			/*
777 			 * die() would kill the kernel, so better to go via
778 			 * the platform reboot code that will log the
779 			 * machine check.
780 			 */
781 			recovered = 0;
782 		} else {
783 			die("Machine check", regs, SIGBUS);
784 			recovered = 1;
785 		}
786 	}
787 
788 	return recovered;
789 }
790 
791 /*
792  * Handle a machine check.
793  *
794  * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
795  * should be present.  If so the handler which called us tells us if the
796  * error was recovered (never true if RI=0).
797  *
798  * On hardware prior to Power 4 these exceptions were asynchronous which
799  * means we can't tell exactly where it occurred and so we can't recover.
800  */
pSeries_machine_check_exception(struct pt_regs * regs)801 int pSeries_machine_check_exception(struct pt_regs *regs)
802 {
803 	struct machine_check_event evt;
804 
805 	if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
806 		return 0;
807 
808 	/* Print things out */
809 	if (evt.version != MCE_V1) {
810 		pr_err("Machine Check Exception, Unknown event version %d !\n",
811 		       evt.version);
812 		return 0;
813 	}
814 	machine_check_print_event_info(&evt, user_mode(regs), false);
815 
816 	if (recover_mce(regs, &evt))
817 		return 1;
818 
819 	return 0;
820 }
821 
pseries_machine_check_realmode(struct pt_regs * regs)822 long pseries_machine_check_realmode(struct pt_regs *regs)
823 {
824 	struct rtas_error_log *errp;
825 	int disposition;
826 
827 	if (fwnmi_active) {
828 		errp = fwnmi_get_errinfo(regs);
829 		/*
830 		 * Call to fwnmi_release_errinfo() in real mode causes kernel
831 		 * to panic. Hence we will call it as soon as we go into
832 		 * virtual mode.
833 		 */
834 		disposition = mce_handle_error(regs, errp);
835 		fwnmi_release_errinfo();
836 
837 		/* Queue irq work to log this rtas event later. */
838 		irq_work_queue(&mce_errlog_process_work);
839 
840 		if (disposition == RTAS_DISP_FULLY_RECOVERED)
841 			return 1;
842 	}
843 
844 	return 0;
845 }
846