1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PGTABLE_H
3 #define _ASM_X86_PGTABLE_H
4
5 #include <linux/mem_encrypt.h>
6 #include <asm/page.h>
7 #include <asm/pgtable_types.h>
8
9 /*
10 * Macro to mark a page protection value as UC-
11 */
12 #define pgprot_noncached(prot) \
13 ((boot_cpu_data.x86 > 3) \
14 ? (__pgprot(pgprot_val(prot) | \
15 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS))) \
16 : (prot))
17
18 /*
19 * Macros to add or remove encryption attribute
20 */
21 #define pgprot_encrypted(prot) __pgprot(__sme_set(pgprot_val(prot)))
22 #define pgprot_decrypted(prot) __pgprot(__sme_clr(pgprot_val(prot)))
23
24 #ifndef __ASSEMBLY__
25 #include <asm/x86_init.h>
26 #include <asm/fpu/xstate.h>
27 #include <asm/fpu/api.h>
28
29 extern pgd_t early_top_pgt[PTRS_PER_PGD];
30 int __init __early_make_pgtable(unsigned long address, pmdval_t pmd);
31
32 void ptdump_walk_pgd_level(struct seq_file *m, pgd_t *pgd);
33 void ptdump_walk_pgd_level_debugfs(struct seq_file *m, pgd_t *pgd, bool user);
34 void ptdump_walk_pgd_level_checkwx(void);
35 void ptdump_walk_user_pgd_level_checkwx(void);
36
37 #ifdef CONFIG_DEBUG_WX
38 #define debug_checkwx() ptdump_walk_pgd_level_checkwx()
39 #define debug_checkwx_user() ptdump_walk_user_pgd_level_checkwx()
40 #else
41 #define debug_checkwx() do { } while (0)
42 #define debug_checkwx_user() do { } while (0)
43 #endif
44
45 /*
46 * ZERO_PAGE is a global shared page that is always zero: used
47 * for zero-mapped memory areas etc..
48 */
49 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
50 __visible;
51 #define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page))
52
53 extern spinlock_t pgd_lock;
54 extern struct list_head pgd_list;
55
56 extern struct mm_struct *pgd_page_get_mm(struct page *page);
57
58 extern pmdval_t early_pmd_flags;
59
60 #ifdef CONFIG_PARAVIRT_XXL
61 #include <asm/paravirt.h>
62 #else /* !CONFIG_PARAVIRT_XXL */
63 #define set_pte(ptep, pte) native_set_pte(ptep, pte)
64 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte)
65
66 #define set_pte_atomic(ptep, pte) \
67 native_set_pte_atomic(ptep, pte)
68
69 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd)
70
71 #ifndef __PAGETABLE_P4D_FOLDED
72 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd)
73 #define pgd_clear(pgd) (pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0)
74 #endif
75
76 #ifndef set_p4d
77 # define set_p4d(p4dp, p4d) native_set_p4d(p4dp, p4d)
78 #endif
79
80 #ifndef __PAGETABLE_PUD_FOLDED
81 #define p4d_clear(p4d) native_p4d_clear(p4d)
82 #endif
83
84 #ifndef set_pud
85 # define set_pud(pudp, pud) native_set_pud(pudp, pud)
86 #endif
87
88 #ifndef __PAGETABLE_PUD_FOLDED
89 #define pud_clear(pud) native_pud_clear(pud)
90 #endif
91
92 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep)
93 #define pmd_clear(pmd) native_pmd_clear(pmd)
94
95 #define pgd_val(x) native_pgd_val(x)
96 #define __pgd(x) native_make_pgd(x)
97
98 #ifndef __PAGETABLE_P4D_FOLDED
99 #define p4d_val(x) native_p4d_val(x)
100 #define __p4d(x) native_make_p4d(x)
101 #endif
102
103 #ifndef __PAGETABLE_PUD_FOLDED
104 #define pud_val(x) native_pud_val(x)
105 #define __pud(x) native_make_pud(x)
106 #endif
107
108 #ifndef __PAGETABLE_PMD_FOLDED
109 #define pmd_val(x) native_pmd_val(x)
110 #define __pmd(x) native_make_pmd(x)
111 #endif
112
113 #define pte_val(x) native_pte_val(x)
114 #define __pte(x) native_make_pte(x)
115
116 #define arch_end_context_switch(prev) do {} while(0)
117 #endif /* CONFIG_PARAVIRT_XXL */
118
119 /*
120 * The following only work if pte_present() is true.
121 * Undefined behaviour if not..
122 */
pte_dirty(pte_t pte)123 static inline int pte_dirty(pte_t pte)
124 {
125 return pte_flags(pte) & _PAGE_DIRTY;
126 }
127
128
read_pkru(void)129 static inline u32 read_pkru(void)
130 {
131 if (boot_cpu_has(X86_FEATURE_OSPKE))
132 return rdpkru();
133 return 0;
134 }
135
write_pkru(u32 pkru)136 static inline void write_pkru(u32 pkru)
137 {
138 struct pkru_state *pk;
139
140 if (!boot_cpu_has(X86_FEATURE_OSPKE))
141 return;
142
143 pk = get_xsave_addr(¤t->thread.fpu.state.xsave, XFEATURE_PKRU);
144
145 /*
146 * The PKRU value in xstate needs to be in sync with the value that is
147 * written to the CPU. The FPU restore on return to userland would
148 * otherwise load the previous value again.
149 */
150 fpregs_lock();
151 if (pk)
152 pk->pkru = pkru;
153 __write_pkru(pkru);
154 fpregs_unlock();
155 }
156
pte_young(pte_t pte)157 static inline int pte_young(pte_t pte)
158 {
159 return pte_flags(pte) & _PAGE_ACCESSED;
160 }
161
pmd_dirty(pmd_t pmd)162 static inline int pmd_dirty(pmd_t pmd)
163 {
164 return pmd_flags(pmd) & _PAGE_DIRTY;
165 }
166
pmd_young(pmd_t pmd)167 static inline int pmd_young(pmd_t pmd)
168 {
169 return pmd_flags(pmd) & _PAGE_ACCESSED;
170 }
171
pud_dirty(pud_t pud)172 static inline int pud_dirty(pud_t pud)
173 {
174 return pud_flags(pud) & _PAGE_DIRTY;
175 }
176
pud_young(pud_t pud)177 static inline int pud_young(pud_t pud)
178 {
179 return pud_flags(pud) & _PAGE_ACCESSED;
180 }
181
pte_write(pte_t pte)182 static inline int pte_write(pte_t pte)
183 {
184 return pte_flags(pte) & _PAGE_RW;
185 }
186
pte_huge(pte_t pte)187 static inline int pte_huge(pte_t pte)
188 {
189 return pte_flags(pte) & _PAGE_PSE;
190 }
191
pte_global(pte_t pte)192 static inline int pte_global(pte_t pte)
193 {
194 return pte_flags(pte) & _PAGE_GLOBAL;
195 }
196
pte_exec(pte_t pte)197 static inline int pte_exec(pte_t pte)
198 {
199 return !(pte_flags(pte) & _PAGE_NX);
200 }
201
pte_special(pte_t pte)202 static inline int pte_special(pte_t pte)
203 {
204 return pte_flags(pte) & _PAGE_SPECIAL;
205 }
206
207 /* Entries that were set to PROT_NONE are inverted */
208
209 static inline u64 protnone_mask(u64 val);
210
pte_pfn(pte_t pte)211 static inline unsigned long pte_pfn(pte_t pte)
212 {
213 phys_addr_t pfn = pte_val(pte);
214 pfn ^= protnone_mask(pfn);
215 return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT;
216 }
217
pmd_pfn(pmd_t pmd)218 static inline unsigned long pmd_pfn(pmd_t pmd)
219 {
220 phys_addr_t pfn = pmd_val(pmd);
221 pfn ^= protnone_mask(pfn);
222 return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
223 }
224
pud_pfn(pud_t pud)225 static inline unsigned long pud_pfn(pud_t pud)
226 {
227 phys_addr_t pfn = pud_val(pud);
228 pfn ^= protnone_mask(pfn);
229 return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT;
230 }
231
p4d_pfn(p4d_t p4d)232 static inline unsigned long p4d_pfn(p4d_t p4d)
233 {
234 return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT;
235 }
236
pgd_pfn(pgd_t pgd)237 static inline unsigned long pgd_pfn(pgd_t pgd)
238 {
239 return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT;
240 }
241
p4d_large(p4d_t p4d)242 static inline int p4d_large(p4d_t p4d)
243 {
244 /* No 512 GiB pages yet */
245 return 0;
246 }
247
248 #define pte_page(pte) pfn_to_page(pte_pfn(pte))
249
pmd_large(pmd_t pte)250 static inline int pmd_large(pmd_t pte)
251 {
252 return pmd_flags(pte) & _PAGE_PSE;
253 }
254
255 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
256 /* NOTE: when predicate huge page, consider also pmd_devmap, or use pmd_large */
pmd_trans_huge(pmd_t pmd)257 static inline int pmd_trans_huge(pmd_t pmd)
258 {
259 return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
260 }
261
262 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
pud_trans_huge(pud_t pud)263 static inline int pud_trans_huge(pud_t pud)
264 {
265 return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
266 }
267 #endif
268
269 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)270 static inline int has_transparent_hugepage(void)
271 {
272 return boot_cpu_has(X86_FEATURE_PSE);
273 }
274
275 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
pmd_devmap(pmd_t pmd)276 static inline int pmd_devmap(pmd_t pmd)
277 {
278 return !!(pmd_val(pmd) & _PAGE_DEVMAP);
279 }
280
281 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
pud_devmap(pud_t pud)282 static inline int pud_devmap(pud_t pud)
283 {
284 return !!(pud_val(pud) & _PAGE_DEVMAP);
285 }
286 #else
pud_devmap(pud_t pud)287 static inline int pud_devmap(pud_t pud)
288 {
289 return 0;
290 }
291 #endif
292
pgd_devmap(pgd_t pgd)293 static inline int pgd_devmap(pgd_t pgd)
294 {
295 return 0;
296 }
297 #endif
298 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
299
pte_set_flags(pte_t pte,pteval_t set)300 static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
301 {
302 pteval_t v = native_pte_val(pte);
303
304 return native_make_pte(v | set);
305 }
306
pte_clear_flags(pte_t pte,pteval_t clear)307 static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
308 {
309 pteval_t v = native_pte_val(pte);
310
311 return native_make_pte(v & ~clear);
312 }
313
pte_mkclean(pte_t pte)314 static inline pte_t pte_mkclean(pte_t pte)
315 {
316 return pte_clear_flags(pte, _PAGE_DIRTY);
317 }
318
pte_mkold(pte_t pte)319 static inline pte_t pte_mkold(pte_t pte)
320 {
321 return pte_clear_flags(pte, _PAGE_ACCESSED);
322 }
323
pte_wrprotect(pte_t pte)324 static inline pte_t pte_wrprotect(pte_t pte)
325 {
326 return pte_clear_flags(pte, _PAGE_RW);
327 }
328
pte_mkexec(pte_t pte)329 static inline pte_t pte_mkexec(pte_t pte)
330 {
331 return pte_clear_flags(pte, _PAGE_NX);
332 }
333
pte_mkdirty(pte_t pte)334 static inline pte_t pte_mkdirty(pte_t pte)
335 {
336 return pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
337 }
338
pte_mkyoung(pte_t pte)339 static inline pte_t pte_mkyoung(pte_t pte)
340 {
341 return pte_set_flags(pte, _PAGE_ACCESSED);
342 }
343
pte_mkwrite(pte_t pte)344 static inline pte_t pte_mkwrite(pte_t pte)
345 {
346 return pte_set_flags(pte, _PAGE_RW);
347 }
348
pte_mkhuge(pte_t pte)349 static inline pte_t pte_mkhuge(pte_t pte)
350 {
351 return pte_set_flags(pte, _PAGE_PSE);
352 }
353
pte_clrhuge(pte_t pte)354 static inline pte_t pte_clrhuge(pte_t pte)
355 {
356 return pte_clear_flags(pte, _PAGE_PSE);
357 }
358
pte_mkglobal(pte_t pte)359 static inline pte_t pte_mkglobal(pte_t pte)
360 {
361 return pte_set_flags(pte, _PAGE_GLOBAL);
362 }
363
pte_clrglobal(pte_t pte)364 static inline pte_t pte_clrglobal(pte_t pte)
365 {
366 return pte_clear_flags(pte, _PAGE_GLOBAL);
367 }
368
pte_mkspecial(pte_t pte)369 static inline pte_t pte_mkspecial(pte_t pte)
370 {
371 return pte_set_flags(pte, _PAGE_SPECIAL);
372 }
373
pte_mkdevmap(pte_t pte)374 static inline pte_t pte_mkdevmap(pte_t pte)
375 {
376 return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP);
377 }
378
pmd_set_flags(pmd_t pmd,pmdval_t set)379 static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
380 {
381 pmdval_t v = native_pmd_val(pmd);
382
383 return native_make_pmd(v | set);
384 }
385
pmd_clear_flags(pmd_t pmd,pmdval_t clear)386 static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
387 {
388 pmdval_t v = native_pmd_val(pmd);
389
390 return native_make_pmd(v & ~clear);
391 }
392
pmd_mkold(pmd_t pmd)393 static inline pmd_t pmd_mkold(pmd_t pmd)
394 {
395 return pmd_clear_flags(pmd, _PAGE_ACCESSED);
396 }
397
pmd_mkclean(pmd_t pmd)398 static inline pmd_t pmd_mkclean(pmd_t pmd)
399 {
400 return pmd_clear_flags(pmd, _PAGE_DIRTY);
401 }
402
pmd_wrprotect(pmd_t pmd)403 static inline pmd_t pmd_wrprotect(pmd_t pmd)
404 {
405 return pmd_clear_flags(pmd, _PAGE_RW);
406 }
407
pmd_mkdirty(pmd_t pmd)408 static inline pmd_t pmd_mkdirty(pmd_t pmd)
409 {
410 return pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
411 }
412
pmd_mkdevmap(pmd_t pmd)413 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
414 {
415 return pmd_set_flags(pmd, _PAGE_DEVMAP);
416 }
417
pmd_mkhuge(pmd_t pmd)418 static inline pmd_t pmd_mkhuge(pmd_t pmd)
419 {
420 return pmd_set_flags(pmd, _PAGE_PSE);
421 }
422
pmd_mkyoung(pmd_t pmd)423 static inline pmd_t pmd_mkyoung(pmd_t pmd)
424 {
425 return pmd_set_flags(pmd, _PAGE_ACCESSED);
426 }
427
pmd_mkwrite(pmd_t pmd)428 static inline pmd_t pmd_mkwrite(pmd_t pmd)
429 {
430 return pmd_set_flags(pmd, _PAGE_RW);
431 }
432
pud_set_flags(pud_t pud,pudval_t set)433 static inline pud_t pud_set_flags(pud_t pud, pudval_t set)
434 {
435 pudval_t v = native_pud_val(pud);
436
437 return native_make_pud(v | set);
438 }
439
pud_clear_flags(pud_t pud,pudval_t clear)440 static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear)
441 {
442 pudval_t v = native_pud_val(pud);
443
444 return native_make_pud(v & ~clear);
445 }
446
pud_mkold(pud_t pud)447 static inline pud_t pud_mkold(pud_t pud)
448 {
449 return pud_clear_flags(pud, _PAGE_ACCESSED);
450 }
451
pud_mkclean(pud_t pud)452 static inline pud_t pud_mkclean(pud_t pud)
453 {
454 return pud_clear_flags(pud, _PAGE_DIRTY);
455 }
456
pud_wrprotect(pud_t pud)457 static inline pud_t pud_wrprotect(pud_t pud)
458 {
459 return pud_clear_flags(pud, _PAGE_RW);
460 }
461
pud_mkdirty(pud_t pud)462 static inline pud_t pud_mkdirty(pud_t pud)
463 {
464 return pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
465 }
466
pud_mkdevmap(pud_t pud)467 static inline pud_t pud_mkdevmap(pud_t pud)
468 {
469 return pud_set_flags(pud, _PAGE_DEVMAP);
470 }
471
pud_mkhuge(pud_t pud)472 static inline pud_t pud_mkhuge(pud_t pud)
473 {
474 return pud_set_flags(pud, _PAGE_PSE);
475 }
476
pud_mkyoung(pud_t pud)477 static inline pud_t pud_mkyoung(pud_t pud)
478 {
479 return pud_set_flags(pud, _PAGE_ACCESSED);
480 }
481
pud_mkwrite(pud_t pud)482 static inline pud_t pud_mkwrite(pud_t pud)
483 {
484 return pud_set_flags(pud, _PAGE_RW);
485 }
486
487 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_soft_dirty(pte_t pte)488 static inline int pte_soft_dirty(pte_t pte)
489 {
490 return pte_flags(pte) & _PAGE_SOFT_DIRTY;
491 }
492
pmd_soft_dirty(pmd_t pmd)493 static inline int pmd_soft_dirty(pmd_t pmd)
494 {
495 return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
496 }
497
pud_soft_dirty(pud_t pud)498 static inline int pud_soft_dirty(pud_t pud)
499 {
500 return pud_flags(pud) & _PAGE_SOFT_DIRTY;
501 }
502
pte_mksoft_dirty(pte_t pte)503 static inline pte_t pte_mksoft_dirty(pte_t pte)
504 {
505 return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
506 }
507
pmd_mksoft_dirty(pmd_t pmd)508 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
509 {
510 return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
511 }
512
pud_mksoft_dirty(pud_t pud)513 static inline pud_t pud_mksoft_dirty(pud_t pud)
514 {
515 return pud_set_flags(pud, _PAGE_SOFT_DIRTY);
516 }
517
pte_clear_soft_dirty(pte_t pte)518 static inline pte_t pte_clear_soft_dirty(pte_t pte)
519 {
520 return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
521 }
522
pmd_clear_soft_dirty(pmd_t pmd)523 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
524 {
525 return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
526 }
527
pud_clear_soft_dirty(pud_t pud)528 static inline pud_t pud_clear_soft_dirty(pud_t pud)
529 {
530 return pud_clear_flags(pud, _PAGE_SOFT_DIRTY);
531 }
532
533 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
534
535 /*
536 * Mask out unsupported bits in a present pgprot. Non-present pgprots
537 * can use those bits for other purposes, so leave them be.
538 */
massage_pgprot(pgprot_t pgprot)539 static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
540 {
541 pgprotval_t protval = pgprot_val(pgprot);
542
543 if (protval & _PAGE_PRESENT)
544 protval &= __supported_pte_mask;
545
546 return protval;
547 }
548
check_pgprot(pgprot_t pgprot)549 static inline pgprotval_t check_pgprot(pgprot_t pgprot)
550 {
551 pgprotval_t massaged_val = massage_pgprot(pgprot);
552
553 /* mmdebug.h can not be included here because of dependencies */
554 #ifdef CONFIG_DEBUG_VM
555 WARN_ONCE(pgprot_val(pgprot) != massaged_val,
556 "attempted to set unsupported pgprot: %016llx "
557 "bits: %016llx supported: %016llx\n",
558 (u64)pgprot_val(pgprot),
559 (u64)pgprot_val(pgprot) ^ massaged_val,
560 (u64)__supported_pte_mask);
561 #endif
562
563 return massaged_val;
564 }
565
pfn_pte(unsigned long page_nr,pgprot_t pgprot)566 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
567 {
568 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
569 pfn ^= protnone_mask(pgprot_val(pgprot));
570 pfn &= PTE_PFN_MASK;
571 return __pte(pfn | check_pgprot(pgprot));
572 }
573
pfn_pmd(unsigned long page_nr,pgprot_t pgprot)574 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
575 {
576 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
577 pfn ^= protnone_mask(pgprot_val(pgprot));
578 pfn &= PHYSICAL_PMD_PAGE_MASK;
579 return __pmd(pfn | check_pgprot(pgprot));
580 }
581
pfn_pud(unsigned long page_nr,pgprot_t pgprot)582 static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot)
583 {
584 phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
585 pfn ^= protnone_mask(pgprot_val(pgprot));
586 pfn &= PHYSICAL_PUD_PAGE_MASK;
587 return __pud(pfn | check_pgprot(pgprot));
588 }
589
pmd_mknotpresent(pmd_t pmd)590 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
591 {
592 return pfn_pmd(pmd_pfn(pmd),
593 __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE)));
594 }
595
pud_mknotpresent(pud_t pud)596 static inline pud_t pud_mknotpresent(pud_t pud)
597 {
598 return pfn_pud(pud_pfn(pud),
599 __pgprot(pud_flags(pud) & ~(_PAGE_PRESENT|_PAGE_PROTNONE)));
600 }
601
602 static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask);
603
pte_modify(pte_t pte,pgprot_t newprot)604 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
605 {
606 pteval_t val = pte_val(pte), oldval = val;
607
608 /*
609 * Chop off the NX bit (if present), and add the NX portion of
610 * the newprot (if present):
611 */
612 val &= _PAGE_CHG_MASK;
613 val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK;
614 val = flip_protnone_guard(oldval, val, PTE_PFN_MASK);
615 return __pte(val);
616 }
617
pmd_modify(pmd_t pmd,pgprot_t newprot)618 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
619 {
620 pmdval_t val = pmd_val(pmd), oldval = val;
621
622 val &= _HPAGE_CHG_MASK;
623 val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK;
624 val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK);
625 return __pmd(val);
626 }
627
628 /*
629 * mprotect needs to preserve PAT and encryption bits when updating
630 * vm_page_prot
631 */
632 #define pgprot_modify pgprot_modify
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)633 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
634 {
635 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
636 pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK;
637 return __pgprot(preservebits | addbits);
638 }
639
640 #define pte_pgprot(x) __pgprot(pte_flags(x))
641 #define pmd_pgprot(x) __pgprot(pmd_flags(x))
642 #define pud_pgprot(x) __pgprot(pud_flags(x))
643 #define p4d_pgprot(x) __pgprot(p4d_flags(x))
644
645 #define canon_pgprot(p) __pgprot(massage_pgprot(p))
646
arch_filter_pgprot(pgprot_t prot)647 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
648 {
649 return canon_pgprot(prot);
650 }
651
is_new_memtype_allowed(u64 paddr,unsigned long size,enum page_cache_mode pcm,enum page_cache_mode new_pcm)652 static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
653 enum page_cache_mode pcm,
654 enum page_cache_mode new_pcm)
655 {
656 /*
657 * PAT type is always WB for untracked ranges, so no need to check.
658 */
659 if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
660 return 1;
661
662 /*
663 * Certain new memtypes are not allowed with certain
664 * requested memtype:
665 * - request is uncached, return cannot be write-back
666 * - request is write-combine, return cannot be write-back
667 * - request is write-through, return cannot be write-back
668 * - request is write-through, return cannot be write-combine
669 */
670 if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
671 new_pcm == _PAGE_CACHE_MODE_WB) ||
672 (pcm == _PAGE_CACHE_MODE_WC &&
673 new_pcm == _PAGE_CACHE_MODE_WB) ||
674 (pcm == _PAGE_CACHE_MODE_WT &&
675 new_pcm == _PAGE_CACHE_MODE_WB) ||
676 (pcm == _PAGE_CACHE_MODE_WT &&
677 new_pcm == _PAGE_CACHE_MODE_WC)) {
678 return 0;
679 }
680
681 return 1;
682 }
683
684 pmd_t *populate_extra_pmd(unsigned long vaddr);
685 pte_t *populate_extra_pte(unsigned long vaddr);
686
687 #ifdef CONFIG_PAGE_TABLE_ISOLATION
688 pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd);
689
690 /*
691 * Take a PGD location (pgdp) and a pgd value that needs to be set there.
692 * Populates the user and returns the resulting PGD that must be set in
693 * the kernel copy of the page tables.
694 */
pti_set_user_pgtbl(pgd_t * pgdp,pgd_t pgd)695 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
696 {
697 if (!static_cpu_has(X86_FEATURE_PTI))
698 return pgd;
699 return __pti_set_user_pgtbl(pgdp, pgd);
700 }
701 #else /* CONFIG_PAGE_TABLE_ISOLATION */
pti_set_user_pgtbl(pgd_t * pgdp,pgd_t pgd)702 static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
703 {
704 return pgd;
705 }
706 #endif /* CONFIG_PAGE_TABLE_ISOLATION */
707
708 #endif /* __ASSEMBLY__ */
709
710
711 #ifdef CONFIG_X86_32
712 # include <asm/pgtable_32.h>
713 #else
714 # include <asm/pgtable_64.h>
715 #endif
716
717 #ifndef __ASSEMBLY__
718 #include <linux/mm_types.h>
719 #include <linux/mmdebug.h>
720 #include <linux/log2.h>
721 #include <asm/fixmap.h>
722
pte_none(pte_t pte)723 static inline int pte_none(pte_t pte)
724 {
725 return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
726 }
727
728 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)729 static inline int pte_same(pte_t a, pte_t b)
730 {
731 return a.pte == b.pte;
732 }
733
pte_present(pte_t a)734 static inline int pte_present(pte_t a)
735 {
736 return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
737 }
738
739 #ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t a)740 static inline int pte_devmap(pte_t a)
741 {
742 return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP;
743 }
744 #endif
745
746 #define pte_accessible pte_accessible
pte_accessible(struct mm_struct * mm,pte_t a)747 static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
748 {
749 if (pte_flags(a) & _PAGE_PRESENT)
750 return true;
751
752 if ((pte_flags(a) & _PAGE_PROTNONE) &&
753 mm_tlb_flush_pending(mm))
754 return true;
755
756 return false;
757 }
758
pmd_present(pmd_t pmd)759 static inline int pmd_present(pmd_t pmd)
760 {
761 /*
762 * Checking for _PAGE_PSE is needed too because
763 * split_huge_page will temporarily clear the present bit (but
764 * the _PAGE_PSE flag will remain set at all times while the
765 * _PAGE_PRESENT bit is clear).
766 */
767 return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
768 }
769
770 #ifdef CONFIG_NUMA_BALANCING
771 /*
772 * These work without NUMA balancing but the kernel does not care. See the
773 * comment in include/asm-generic/pgtable.h
774 */
pte_protnone(pte_t pte)775 static inline int pte_protnone(pte_t pte)
776 {
777 return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
778 == _PAGE_PROTNONE;
779 }
780
pmd_protnone(pmd_t pmd)781 static inline int pmd_protnone(pmd_t pmd)
782 {
783 return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
784 == _PAGE_PROTNONE;
785 }
786 #endif /* CONFIG_NUMA_BALANCING */
787
pmd_none(pmd_t pmd)788 static inline int pmd_none(pmd_t pmd)
789 {
790 /* Only check low word on 32-bit platforms, since it might be
791 out of sync with upper half. */
792 unsigned long val = native_pmd_val(pmd);
793 return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
794 }
795
pmd_page_vaddr(pmd_t pmd)796 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
797 {
798 return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
799 }
800
801 /*
802 * Currently stuck as a macro due to indirect forward reference to
803 * linux/mmzone.h's __section_mem_map_addr() definition:
804 */
805 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
806
807 /*
808 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
809 *
810 * this macro returns the index of the entry in the pmd page which would
811 * control the given virtual address
812 */
pmd_index(unsigned long address)813 static inline unsigned long pmd_index(unsigned long address)
814 {
815 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
816 }
817
818 /*
819 * Conversion functions: convert a page and protection to a page entry,
820 * and a page entry and page directory to the page they refer to.
821 *
822 * (Currently stuck as a macro because of indirect forward reference
823 * to linux/mm.h:page_to_nid())
824 */
825 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
826
827 /*
828 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
829 *
830 * this function returns the index of the entry in the pte page which would
831 * control the given virtual address
832 */
pte_index(unsigned long address)833 static inline unsigned long pte_index(unsigned long address)
834 {
835 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
836 }
837
pte_offset_kernel(pmd_t * pmd,unsigned long address)838 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
839 {
840 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
841 }
842
pmd_bad(pmd_t pmd)843 static inline int pmd_bad(pmd_t pmd)
844 {
845 return (pmd_flags(pmd) & ~_PAGE_USER) != _KERNPG_TABLE;
846 }
847
pages_to_mb(unsigned long npg)848 static inline unsigned long pages_to_mb(unsigned long npg)
849 {
850 return npg >> (20 - PAGE_SHIFT);
851 }
852
853 #if CONFIG_PGTABLE_LEVELS > 2
pud_none(pud_t pud)854 static inline int pud_none(pud_t pud)
855 {
856 return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
857 }
858
pud_present(pud_t pud)859 static inline int pud_present(pud_t pud)
860 {
861 return pud_flags(pud) & _PAGE_PRESENT;
862 }
863
pud_page_vaddr(pud_t pud)864 static inline unsigned long pud_page_vaddr(pud_t pud)
865 {
866 return (unsigned long)__va(pud_val(pud) & pud_pfn_mask(pud));
867 }
868
869 /*
870 * Currently stuck as a macro due to indirect forward reference to
871 * linux/mmzone.h's __section_mem_map_addr() definition:
872 */
873 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
874
875 /* Find an entry in the second-level page table.. */
pmd_offset(pud_t * pud,unsigned long address)876 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
877 {
878 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
879 }
880
pud_large(pud_t pud)881 static inline int pud_large(pud_t pud)
882 {
883 return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) ==
884 (_PAGE_PSE | _PAGE_PRESENT);
885 }
886
pud_bad(pud_t pud)887 static inline int pud_bad(pud_t pud)
888 {
889 return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
890 }
891 #else
pud_large(pud_t pud)892 static inline int pud_large(pud_t pud)
893 {
894 return 0;
895 }
896 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
897
pud_index(unsigned long address)898 static inline unsigned long pud_index(unsigned long address)
899 {
900 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
901 }
902
903 #if CONFIG_PGTABLE_LEVELS > 3
p4d_none(p4d_t p4d)904 static inline int p4d_none(p4d_t p4d)
905 {
906 return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
907 }
908
p4d_present(p4d_t p4d)909 static inline int p4d_present(p4d_t p4d)
910 {
911 return p4d_flags(p4d) & _PAGE_PRESENT;
912 }
913
p4d_page_vaddr(p4d_t p4d)914 static inline unsigned long p4d_page_vaddr(p4d_t p4d)
915 {
916 return (unsigned long)__va(p4d_val(p4d) & p4d_pfn_mask(p4d));
917 }
918
919 /*
920 * Currently stuck as a macro due to indirect forward reference to
921 * linux/mmzone.h's __section_mem_map_addr() definition:
922 */
923 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
924
925 /* Find an entry in the third-level page table.. */
pud_offset(p4d_t * p4d,unsigned long address)926 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
927 {
928 return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address);
929 }
930
p4d_bad(p4d_t p4d)931 static inline int p4d_bad(p4d_t p4d)
932 {
933 unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER;
934
935 if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
936 ignore_flags |= _PAGE_NX;
937
938 return (p4d_flags(p4d) & ~ignore_flags) != 0;
939 }
940 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
941
p4d_index(unsigned long address)942 static inline unsigned long p4d_index(unsigned long address)
943 {
944 return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1);
945 }
946
947 #if CONFIG_PGTABLE_LEVELS > 4
pgd_present(pgd_t pgd)948 static inline int pgd_present(pgd_t pgd)
949 {
950 if (!pgtable_l5_enabled())
951 return 1;
952 return pgd_flags(pgd) & _PAGE_PRESENT;
953 }
954
pgd_page_vaddr(pgd_t pgd)955 static inline unsigned long pgd_page_vaddr(pgd_t pgd)
956 {
957 return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
958 }
959
960 /*
961 * Currently stuck as a macro due to indirect forward reference to
962 * linux/mmzone.h's __section_mem_map_addr() definition:
963 */
964 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
965
966 /* to find an entry in a page-table-directory. */
p4d_offset(pgd_t * pgd,unsigned long address)967 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
968 {
969 if (!pgtable_l5_enabled())
970 return (p4d_t *)pgd;
971 return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address);
972 }
973
pgd_bad(pgd_t pgd)974 static inline int pgd_bad(pgd_t pgd)
975 {
976 unsigned long ignore_flags = _PAGE_USER;
977
978 if (!pgtable_l5_enabled())
979 return 0;
980
981 if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
982 ignore_flags |= _PAGE_NX;
983
984 return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE;
985 }
986
pgd_none(pgd_t pgd)987 static inline int pgd_none(pgd_t pgd)
988 {
989 if (!pgtable_l5_enabled())
990 return 0;
991 /*
992 * There is no need to do a workaround for the KNL stray
993 * A/D bit erratum here. PGDs only point to page tables
994 * except on 32-bit non-PAE which is not supported on
995 * KNL.
996 */
997 return !native_pgd_val(pgd);
998 }
999 #endif /* CONFIG_PGTABLE_LEVELS > 4 */
1000
1001 #endif /* __ASSEMBLY__ */
1002
1003 /*
1004 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
1005 *
1006 * this macro returns the index of the entry in the pgd page which would
1007 * control the given virtual address
1008 */
1009 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
1010
1011 /*
1012 * pgd_offset() returns a (pgd_t *)
1013 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
1014 */
1015 #define pgd_offset_pgd(pgd, address) (pgd + pgd_index((address)))
1016 /*
1017 * a shortcut to get a pgd_t in a given mm
1018 */
1019 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
1020 /*
1021 * a shortcut which implies the use of the kernel's pgd, instead
1022 * of a process's
1023 */
1024 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
1025
1026
1027 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET)
1028 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
1029
1030 #ifndef __ASSEMBLY__
1031
1032 extern int direct_gbpages;
1033 void init_mem_mapping(void);
1034 void early_alloc_pgt_buf(void);
1035 extern void memblock_find_dma_reserve(void);
1036
1037 #ifdef CONFIG_X86_64
1038 /* Realmode trampoline initialization. */
1039 extern pgd_t trampoline_pgd_entry;
init_trampoline_default(void)1040 static inline void __meminit init_trampoline_default(void)
1041 {
1042 /* Default trampoline pgd value */
1043 trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
1044 }
1045
1046 void __init poking_init(void);
1047
1048 # ifdef CONFIG_RANDOMIZE_MEMORY
1049 void __meminit init_trampoline(void);
1050 # else
1051 # define init_trampoline init_trampoline_default
1052 # endif
1053 #else
init_trampoline(void)1054 static inline void init_trampoline(void) { }
1055 #endif
1056
1057 /* local pte updates need not use xchg for locking */
native_local_ptep_get_and_clear(pte_t * ptep)1058 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
1059 {
1060 pte_t res = *ptep;
1061
1062 /* Pure native function needs no input for mm, addr */
1063 native_pte_clear(NULL, 0, ptep);
1064 return res;
1065 }
1066
native_local_pmdp_get_and_clear(pmd_t * pmdp)1067 static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
1068 {
1069 pmd_t res = *pmdp;
1070
1071 native_pmd_clear(pmdp);
1072 return res;
1073 }
1074
native_local_pudp_get_and_clear(pud_t * pudp)1075 static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp)
1076 {
1077 pud_t res = *pudp;
1078
1079 native_pud_clear(pudp);
1080 return res;
1081 }
1082
native_set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1083 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr,
1084 pte_t *ptep , pte_t pte)
1085 {
1086 native_set_pte(ptep, pte);
1087 }
1088
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)1089 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1090 pmd_t *pmdp, pmd_t pmd)
1091 {
1092 set_pmd(pmdp, pmd);
1093 }
1094
set_pud_at(struct mm_struct * mm,unsigned long addr,pud_t * pudp,pud_t pud)1095 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
1096 pud_t *pudp, pud_t pud)
1097 {
1098 native_set_pud(pudp, pud);
1099 }
1100
1101 /*
1102 * We only update the dirty/accessed state if we set
1103 * the dirty bit by hand in the kernel, since the hardware
1104 * will do the accessed bit for us, and we don't want to
1105 * race with other CPU's that might be updating the dirty
1106 * bit at the same time.
1107 */
1108 struct vm_area_struct;
1109
1110 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1111 extern int ptep_set_access_flags(struct vm_area_struct *vma,
1112 unsigned long address, pte_t *ptep,
1113 pte_t entry, int dirty);
1114
1115 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1116 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
1117 unsigned long addr, pte_t *ptep);
1118
1119 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1120 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
1121 unsigned long address, pte_t *ptep);
1122
1123 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1124 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
1125 pte_t *ptep)
1126 {
1127 pte_t pte = native_ptep_get_and_clear(ptep);
1128 return pte;
1129 }
1130
1131 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)1132 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1133 unsigned long addr, pte_t *ptep,
1134 int full)
1135 {
1136 pte_t pte;
1137 if (full) {
1138 /*
1139 * Full address destruction in progress; paravirt does not
1140 * care about updates and native needs no locking
1141 */
1142 pte = native_local_ptep_get_and_clear(ptep);
1143 } else {
1144 pte = ptep_get_and_clear(mm, addr, ptep);
1145 }
1146 return pte;
1147 }
1148
1149 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1150 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1151 unsigned long addr, pte_t *ptep)
1152 {
1153 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte);
1154 }
1155
1156 #define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
1157
1158 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1159
1160 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1161 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1162 unsigned long address, pmd_t *pmdp,
1163 pmd_t entry, int dirty);
1164 extern int pudp_set_access_flags(struct vm_area_struct *vma,
1165 unsigned long address, pud_t *pudp,
1166 pud_t entry, int dirty);
1167
1168 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1169 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1170 unsigned long addr, pmd_t *pmdp);
1171 extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1172 unsigned long addr, pud_t *pudp);
1173
1174 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1175 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
1176 unsigned long address, pmd_t *pmdp);
1177
1178
1179 #define pmd_write pmd_write
pmd_write(pmd_t pmd)1180 static inline int pmd_write(pmd_t pmd)
1181 {
1182 return pmd_flags(pmd) & _PAGE_RW;
1183 }
1184
1185 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1186 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
1187 pmd_t *pmdp)
1188 {
1189 return native_pmdp_get_and_clear(pmdp);
1190 }
1191
1192 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
pudp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pud_t * pudp)1193 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1194 unsigned long addr, pud_t *pudp)
1195 {
1196 return native_pudp_get_and_clear(pudp);
1197 }
1198
1199 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1200 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1201 unsigned long addr, pmd_t *pmdp)
1202 {
1203 clear_bit(_PAGE_BIT_RW, (unsigned long *)pmdp);
1204 }
1205
1206 #define pud_write pud_write
pud_write(pud_t pud)1207 static inline int pud_write(pud_t pud)
1208 {
1209 return pud_flags(pud) & _PAGE_RW;
1210 }
1211
1212 #ifndef pmdp_establish
1213 #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)1214 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1215 unsigned long address, pmd_t *pmdp, pmd_t pmd)
1216 {
1217 if (IS_ENABLED(CONFIG_SMP)) {
1218 return xchg(pmdp, pmd);
1219 } else {
1220 pmd_t old = *pmdp;
1221 WRITE_ONCE(*pmdp, pmd);
1222 return old;
1223 }
1224 }
1225 #endif
1226 /*
1227 * Page table pages are page-aligned. The lower half of the top
1228 * level is used for userspace and the top half for the kernel.
1229 *
1230 * Returns true for parts of the PGD that map userspace and
1231 * false for the parts that map the kernel.
1232 */
pgdp_maps_userspace(void * __ptr)1233 static inline bool pgdp_maps_userspace(void *__ptr)
1234 {
1235 unsigned long ptr = (unsigned long)__ptr;
1236
1237 return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START);
1238 }
1239
pgd_large(pgd_t pgd)1240 static inline int pgd_large(pgd_t pgd) { return 0; }
1241
1242 #ifdef CONFIG_PAGE_TABLE_ISOLATION
1243 /*
1244 * All top-level PAGE_TABLE_ISOLATION page tables are order-1 pages
1245 * (8k-aligned and 8k in size). The kernel one is at the beginning 4k and
1246 * the user one is in the last 4k. To switch between them, you
1247 * just need to flip the 12th bit in their addresses.
1248 */
1249 #define PTI_PGTABLE_SWITCH_BIT PAGE_SHIFT
1250
1251 /*
1252 * This generates better code than the inline assembly in
1253 * __set_bit().
1254 */
ptr_set_bit(void * ptr,int bit)1255 static inline void *ptr_set_bit(void *ptr, int bit)
1256 {
1257 unsigned long __ptr = (unsigned long)ptr;
1258
1259 __ptr |= BIT(bit);
1260 return (void *)__ptr;
1261 }
ptr_clear_bit(void * ptr,int bit)1262 static inline void *ptr_clear_bit(void *ptr, int bit)
1263 {
1264 unsigned long __ptr = (unsigned long)ptr;
1265
1266 __ptr &= ~BIT(bit);
1267 return (void *)__ptr;
1268 }
1269
kernel_to_user_pgdp(pgd_t * pgdp)1270 static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp)
1271 {
1272 return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
1273 }
1274
user_to_kernel_pgdp(pgd_t * pgdp)1275 static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp)
1276 {
1277 return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
1278 }
1279
kernel_to_user_p4dp(p4d_t * p4dp)1280 static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp)
1281 {
1282 return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
1283 }
1284
user_to_kernel_p4dp(p4d_t * p4dp)1285 static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp)
1286 {
1287 return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
1288 }
1289 #endif /* CONFIG_PAGE_TABLE_ISOLATION */
1290
1291 /*
1292 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
1293 *
1294 * dst - pointer to pgd range anwhere on a pgd page
1295 * src - ""
1296 * count - the number of pgds to copy.
1297 *
1298 * dst and src can be on the same page, but the range must not overlap,
1299 * and must not cross a page boundary.
1300 */
clone_pgd_range(pgd_t * dst,pgd_t * src,int count)1301 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
1302 {
1303 memcpy(dst, src, count * sizeof(pgd_t));
1304 #ifdef CONFIG_PAGE_TABLE_ISOLATION
1305 if (!static_cpu_has(X86_FEATURE_PTI))
1306 return;
1307 /* Clone the user space pgd as well */
1308 memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src),
1309 count * sizeof(pgd_t));
1310 #endif
1311 }
1312
1313 #define PTE_SHIFT ilog2(PTRS_PER_PTE)
page_level_shift(enum pg_level level)1314 static inline int page_level_shift(enum pg_level level)
1315 {
1316 return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
1317 }
page_level_size(enum pg_level level)1318 static inline unsigned long page_level_size(enum pg_level level)
1319 {
1320 return 1UL << page_level_shift(level);
1321 }
page_level_mask(enum pg_level level)1322 static inline unsigned long page_level_mask(enum pg_level level)
1323 {
1324 return ~(page_level_size(level) - 1);
1325 }
1326
1327 /*
1328 * The x86 doesn't have any external MMU info: the kernel page
1329 * tables contain all the necessary information.
1330 */
update_mmu_cache(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1331 static inline void update_mmu_cache(struct vm_area_struct *vma,
1332 unsigned long addr, pte_t *ptep)
1333 {
1334 }
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)1335 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1336 unsigned long addr, pmd_t *pmd)
1337 {
1338 }
update_mmu_cache_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud)1339 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1340 unsigned long addr, pud_t *pud)
1341 {
1342 }
1343
1344 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_swp_mksoft_dirty(pte_t pte)1345 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1346 {
1347 return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1348 }
1349
pte_swp_soft_dirty(pte_t pte)1350 static inline int pte_swp_soft_dirty(pte_t pte)
1351 {
1352 return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
1353 }
1354
pte_swp_clear_soft_dirty(pte_t pte)1355 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1356 {
1357 return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1358 }
1359
1360 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_swp_mksoft_dirty(pmd_t pmd)1361 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1362 {
1363 return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1364 }
1365
pmd_swp_soft_dirty(pmd_t pmd)1366 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1367 {
1368 return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY;
1369 }
1370
pmd_swp_clear_soft_dirty(pmd_t pmd)1371 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1372 {
1373 return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1374 }
1375 #endif
1376 #endif
1377
1378 #define PKRU_AD_BIT 0x1u
1379 #define PKRU_WD_BIT 0x2u
1380 #define PKRU_BITS_PER_PKEY 2
1381
1382 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1383 extern u32 init_pkru_value;
1384 #else
1385 #define init_pkru_value 0
1386 #endif
1387
__pkru_allows_read(u32 pkru,u16 pkey)1388 static inline bool __pkru_allows_read(u32 pkru, u16 pkey)
1389 {
1390 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
1391 return !(pkru & (PKRU_AD_BIT << pkru_pkey_bits));
1392 }
1393
__pkru_allows_write(u32 pkru,u16 pkey)1394 static inline bool __pkru_allows_write(u32 pkru, u16 pkey)
1395 {
1396 int pkru_pkey_bits = pkey * PKRU_BITS_PER_PKEY;
1397 /*
1398 * Access-disable disables writes too so we need to check
1399 * both bits here.
1400 */
1401 return !(pkru & ((PKRU_AD_BIT|PKRU_WD_BIT) << pkru_pkey_bits));
1402 }
1403
pte_flags_pkey(unsigned long pte_flags)1404 static inline u16 pte_flags_pkey(unsigned long pte_flags)
1405 {
1406 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1407 /* ifdef to avoid doing 59-bit shift on 32-bit values */
1408 return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
1409 #else
1410 return 0;
1411 #endif
1412 }
1413
__pkru_allows_pkey(u16 pkey,bool write)1414 static inline bool __pkru_allows_pkey(u16 pkey, bool write)
1415 {
1416 u32 pkru = read_pkru();
1417
1418 if (!__pkru_allows_read(pkru, pkey))
1419 return false;
1420 if (write && !__pkru_allows_write(pkru, pkey))
1421 return false;
1422
1423 return true;
1424 }
1425
1426 /*
1427 * 'pteval' can come from a PTE, PMD or PUD. We only check
1428 * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the
1429 * same value on all 3 types.
1430 */
__pte_access_permitted(unsigned long pteval,bool write)1431 static inline bool __pte_access_permitted(unsigned long pteval, bool write)
1432 {
1433 unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER;
1434
1435 if (write)
1436 need_pte_bits |= _PAGE_RW;
1437
1438 if ((pteval & need_pte_bits) != need_pte_bits)
1439 return 0;
1440
1441 return __pkru_allows_pkey(pte_flags_pkey(pteval), write);
1442 }
1443
1444 #define pte_access_permitted pte_access_permitted
pte_access_permitted(pte_t pte,bool write)1445 static inline bool pte_access_permitted(pte_t pte, bool write)
1446 {
1447 return __pte_access_permitted(pte_val(pte), write);
1448 }
1449
1450 #define pmd_access_permitted pmd_access_permitted
pmd_access_permitted(pmd_t pmd,bool write)1451 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1452 {
1453 return __pte_access_permitted(pmd_val(pmd), write);
1454 }
1455
1456 #define pud_access_permitted pud_access_permitted
pud_access_permitted(pud_t pud,bool write)1457 static inline bool pud_access_permitted(pud_t pud, bool write)
1458 {
1459 return __pte_access_permitted(pud_val(pud), write);
1460 }
1461
1462 #define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1
1463 extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot);
1464
arch_has_pfn_modify_check(void)1465 static inline bool arch_has_pfn_modify_check(void)
1466 {
1467 return boot_cpu_has_bug(X86_BUG_L1TF);
1468 }
1469
1470 #include <asm-generic/pgtable.h>
1471 #endif /* __ASSEMBLY__ */
1472
1473 #endif /* _ASM_X86_PGTABLE_H */
1474