1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57 * Some modules use swappable objects and may try to swap them out under
58 * memory pressure (via the shrinker). Before doing so, they may wish to
59 * check to see if any swap space is available.
60 */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70
71 /*
72 * all active swap_info_structs
73 * protected with swap_lock, and ordered by priority.
74 */
75 PLIST_HEAD(swap_active_head);
76
77 /*
78 * all available (active, not full) swap_info_structs
79 * protected with swap_avail_lock, ordered by priority.
80 * This is used by get_swap_page() instead of swap_active_head
81 * because swap_active_head includes all swap_info_structs,
82 * but get_swap_page() doesn't need to look at full ones.
83 * This uses its own lock instead of swap_lock because when a
84 * swap_info_struct changes between not-full/full, it needs to
85 * add/remove itself to/from this list, but the swap_info_struct->lock
86 * is held and the locking order requires swap_lock to be taken
87 * before any swap_info_struct->lock.
88 */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93
94 static DEFINE_MUTEX(swapon_mutex);
95
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
swap_type_to_swap_info(int type)102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104 if (type >= READ_ONCE(nr_swapfiles))
105 return NULL;
106
107 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
108 return READ_ONCE(swap_info[type]);
109 }
110
swap_count(unsigned char ent)111 static inline unsigned char swap_count(unsigned char ent)
112 {
113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
114 }
115
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY 0x1
118 /*
119 * Reclaim the swap entry if there are no more mappings of the
120 * corresponding page
121 */
122 #define TTRS_UNMAPPED 0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL 0x4
125
126 /* returns 1 if swap entry is freed */
__try_to_reclaim_swap(struct swap_info_struct * si,unsigned long offset,unsigned long flags)127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 unsigned long offset, unsigned long flags)
129 {
130 swp_entry_t entry = swp_entry(si->type, offset);
131 struct page *page;
132 int ret = 0;
133
134 page = find_get_page(swap_address_space(entry), offset);
135 if (!page)
136 return 0;
137 /*
138 * When this function is called from scan_swap_map_slots() and it's
139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 * here. We have to use trylock for avoiding deadlock. This is a special
141 * case and you should use try_to_free_swap() with explicit lock_page()
142 * in usual operations.
143 */
144 if (trylock_page(page)) {
145 if ((flags & TTRS_ANYWAY) ||
146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 ret = try_to_free_swap(page);
149 unlock_page(page);
150 }
151 put_page(page);
152 return ret;
153 }
154
first_se(struct swap_info_struct * sis)155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 {
157 struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 return rb_entry(rb, struct swap_extent, rb_node);
159 }
160
next_se(struct swap_extent * se)161 static inline struct swap_extent *next_se(struct swap_extent *se)
162 {
163 struct rb_node *rb = rb_next(&se->rb_node);
164 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165 }
166
167 /*
168 * swapon tell device that all the old swap contents can be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
discard_swap(struct swap_info_struct * si)171 static int discard_swap(struct swap_info_struct *si)
172 {
173 struct swap_extent *se;
174 sector_t start_block;
175 sector_t nr_blocks;
176 int err = 0;
177
178 /* Do not discard the swap header page! */
179 se = first_se(si);
180 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 if (nr_blocks) {
183 err = blkdev_issue_discard(si->bdev, start_block,
184 nr_blocks, GFP_KERNEL, 0);
185 if (err)
186 return err;
187 cond_resched();
188 }
189
190 for (se = next_se(se); se; se = next_se(se)) {
191 start_block = se->start_block << (PAGE_SHIFT - 9);
192 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193
194 err = blkdev_issue_discard(si->bdev, start_block,
195 nr_blocks, GFP_KERNEL, 0);
196 if (err)
197 break;
198
199 cond_resched();
200 }
201 return err; /* That will often be -EOPNOTSUPP */
202 }
203
204 static struct swap_extent *
offset_to_swap_extent(struct swap_info_struct * sis,unsigned long offset)205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 {
207 struct swap_extent *se;
208 struct rb_node *rb;
209
210 rb = sis->swap_extent_root.rb_node;
211 while (rb) {
212 se = rb_entry(rb, struct swap_extent, rb_node);
213 if (offset < se->start_page)
214 rb = rb->rb_left;
215 else if (offset >= se->start_page + se->nr_pages)
216 rb = rb->rb_right;
217 else
218 return se;
219 }
220 /* It *must* be present */
221 BUG();
222 }
223
swap_page_sector(struct page * page)224 sector_t swap_page_sector(struct page *page)
225 {
226 struct swap_info_struct *sis = page_swap_info(page);
227 struct swap_extent *se;
228 sector_t sector;
229 pgoff_t offset;
230
231 offset = __page_file_index(page);
232 se = offset_to_swap_extent(sis, offset);
233 sector = se->start_block + (offset - se->start_page);
234 return sector << (PAGE_SHIFT - 9);
235 }
236
237 /*
238 * swap allocation tell device that a cluster of swap can now be discarded,
239 * to allow the swap device to optimize its wear-levelling.
240 */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)241 static void discard_swap_cluster(struct swap_info_struct *si,
242 pgoff_t start_page, pgoff_t nr_pages)
243 {
244 struct swap_extent *se = offset_to_swap_extent(si, start_page);
245
246 while (nr_pages) {
247 pgoff_t offset = start_page - se->start_page;
248 sector_t start_block = se->start_block + offset;
249 sector_t nr_blocks = se->nr_pages - offset;
250
251 if (nr_blocks > nr_pages)
252 nr_blocks = nr_pages;
253 start_page += nr_blocks;
254 nr_pages -= nr_blocks;
255
256 start_block <<= PAGE_SHIFT - 9;
257 nr_blocks <<= PAGE_SHIFT - 9;
258 if (blkdev_issue_discard(si->bdev, start_block,
259 nr_blocks, GFP_NOIO, 0))
260 break;
261
262 se = next_se(se);
263 }
264 }
265
266 #ifdef CONFIG_THP_SWAP
267 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
268
269 #define swap_entry_size(size) (size)
270 #else
271 #define SWAPFILE_CLUSTER 256
272
273 /*
274 * Define swap_entry_size() as constant to let compiler to optimize
275 * out some code if !CONFIG_THP_SWAP
276 */
277 #define swap_entry_size(size) 1
278 #endif
279 #define LATENCY_LIMIT 256
280
cluster_set_flag(struct swap_cluster_info * info,unsigned int flag)281 static inline void cluster_set_flag(struct swap_cluster_info *info,
282 unsigned int flag)
283 {
284 info->flags = flag;
285 }
286
cluster_count(struct swap_cluster_info * info)287 static inline unsigned int cluster_count(struct swap_cluster_info *info)
288 {
289 return info->data;
290 }
291
cluster_set_count(struct swap_cluster_info * info,unsigned int c)292 static inline void cluster_set_count(struct swap_cluster_info *info,
293 unsigned int c)
294 {
295 info->data = c;
296 }
297
cluster_set_count_flag(struct swap_cluster_info * info,unsigned int c,unsigned int f)298 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
299 unsigned int c, unsigned int f)
300 {
301 info->flags = f;
302 info->data = c;
303 }
304
cluster_next(struct swap_cluster_info * info)305 static inline unsigned int cluster_next(struct swap_cluster_info *info)
306 {
307 return info->data;
308 }
309
cluster_set_next(struct swap_cluster_info * info,unsigned int n)310 static inline void cluster_set_next(struct swap_cluster_info *info,
311 unsigned int n)
312 {
313 info->data = n;
314 }
315
cluster_set_next_flag(struct swap_cluster_info * info,unsigned int n,unsigned int f)316 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
317 unsigned int n, unsigned int f)
318 {
319 info->flags = f;
320 info->data = n;
321 }
322
cluster_is_free(struct swap_cluster_info * info)323 static inline bool cluster_is_free(struct swap_cluster_info *info)
324 {
325 return info->flags & CLUSTER_FLAG_FREE;
326 }
327
cluster_is_null(struct swap_cluster_info * info)328 static inline bool cluster_is_null(struct swap_cluster_info *info)
329 {
330 return info->flags & CLUSTER_FLAG_NEXT_NULL;
331 }
332
cluster_set_null(struct swap_cluster_info * info)333 static inline void cluster_set_null(struct swap_cluster_info *info)
334 {
335 info->flags = CLUSTER_FLAG_NEXT_NULL;
336 info->data = 0;
337 }
338
cluster_is_huge(struct swap_cluster_info * info)339 static inline bool cluster_is_huge(struct swap_cluster_info *info)
340 {
341 if (IS_ENABLED(CONFIG_THP_SWAP))
342 return info->flags & CLUSTER_FLAG_HUGE;
343 return false;
344 }
345
cluster_clear_huge(struct swap_cluster_info * info)346 static inline void cluster_clear_huge(struct swap_cluster_info *info)
347 {
348 info->flags &= ~CLUSTER_FLAG_HUGE;
349 }
350
lock_cluster(struct swap_info_struct * si,unsigned long offset)351 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
352 unsigned long offset)
353 {
354 struct swap_cluster_info *ci;
355
356 ci = si->cluster_info;
357 if (ci) {
358 ci += offset / SWAPFILE_CLUSTER;
359 spin_lock(&ci->lock);
360 }
361 return ci;
362 }
363
unlock_cluster(struct swap_cluster_info * ci)364 static inline void unlock_cluster(struct swap_cluster_info *ci)
365 {
366 if (ci)
367 spin_unlock(&ci->lock);
368 }
369
370 /*
371 * Determine the locking method in use for this device. Return
372 * swap_cluster_info if SSD-style cluster-based locking is in place.
373 */
lock_cluster_or_swap_info(struct swap_info_struct * si,unsigned long offset)374 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
375 struct swap_info_struct *si, unsigned long offset)
376 {
377 struct swap_cluster_info *ci;
378
379 /* Try to use fine-grained SSD-style locking if available: */
380 ci = lock_cluster(si, offset);
381 /* Otherwise, fall back to traditional, coarse locking: */
382 if (!ci)
383 spin_lock(&si->lock);
384
385 return ci;
386 }
387
unlock_cluster_or_swap_info(struct swap_info_struct * si,struct swap_cluster_info * ci)388 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
389 struct swap_cluster_info *ci)
390 {
391 if (ci)
392 unlock_cluster(ci);
393 else
394 spin_unlock(&si->lock);
395 }
396
cluster_list_empty(struct swap_cluster_list * list)397 static inline bool cluster_list_empty(struct swap_cluster_list *list)
398 {
399 return cluster_is_null(&list->head);
400 }
401
cluster_list_first(struct swap_cluster_list * list)402 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
403 {
404 return cluster_next(&list->head);
405 }
406
cluster_list_init(struct swap_cluster_list * list)407 static void cluster_list_init(struct swap_cluster_list *list)
408 {
409 cluster_set_null(&list->head);
410 cluster_set_null(&list->tail);
411 }
412
cluster_list_add_tail(struct swap_cluster_list * list,struct swap_cluster_info * ci,unsigned int idx)413 static void cluster_list_add_tail(struct swap_cluster_list *list,
414 struct swap_cluster_info *ci,
415 unsigned int idx)
416 {
417 if (cluster_list_empty(list)) {
418 cluster_set_next_flag(&list->head, idx, 0);
419 cluster_set_next_flag(&list->tail, idx, 0);
420 } else {
421 struct swap_cluster_info *ci_tail;
422 unsigned int tail = cluster_next(&list->tail);
423
424 /*
425 * Nested cluster lock, but both cluster locks are
426 * only acquired when we held swap_info_struct->lock
427 */
428 ci_tail = ci + tail;
429 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
430 cluster_set_next(ci_tail, idx);
431 spin_unlock(&ci_tail->lock);
432 cluster_set_next_flag(&list->tail, idx, 0);
433 }
434 }
435
cluster_list_del_first(struct swap_cluster_list * list,struct swap_cluster_info * ci)436 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
437 struct swap_cluster_info *ci)
438 {
439 unsigned int idx;
440
441 idx = cluster_next(&list->head);
442 if (cluster_next(&list->tail) == idx) {
443 cluster_set_null(&list->head);
444 cluster_set_null(&list->tail);
445 } else
446 cluster_set_next_flag(&list->head,
447 cluster_next(&ci[idx]), 0);
448
449 return idx;
450 }
451
452 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct * si,unsigned int idx)453 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
454 unsigned int idx)
455 {
456 /*
457 * If scan_swap_map() can't find a free cluster, it will check
458 * si->swap_map directly. To make sure the discarding cluster isn't
459 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
460 * will be cleared after discard
461 */
462 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
463 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
464
465 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
466
467 schedule_work(&si->discard_work);
468 }
469
__free_cluster(struct swap_info_struct * si,unsigned long idx)470 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
471 {
472 struct swap_cluster_info *ci = si->cluster_info;
473
474 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
475 cluster_list_add_tail(&si->free_clusters, ci, idx);
476 }
477
478 /*
479 * Doing discard actually. After a cluster discard is finished, the cluster
480 * will be added to free cluster list. caller should hold si->lock.
481 */
swap_do_scheduled_discard(struct swap_info_struct * si)482 static void swap_do_scheduled_discard(struct swap_info_struct *si)
483 {
484 struct swap_cluster_info *info, *ci;
485 unsigned int idx;
486
487 info = si->cluster_info;
488
489 while (!cluster_list_empty(&si->discard_clusters)) {
490 idx = cluster_list_del_first(&si->discard_clusters, info);
491 spin_unlock(&si->lock);
492
493 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
494 SWAPFILE_CLUSTER);
495
496 spin_lock(&si->lock);
497 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
498 __free_cluster(si, idx);
499 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
500 0, SWAPFILE_CLUSTER);
501 unlock_cluster(ci);
502 }
503 }
504
swap_discard_work(struct work_struct * work)505 static void swap_discard_work(struct work_struct *work)
506 {
507 struct swap_info_struct *si;
508
509 si = container_of(work, struct swap_info_struct, discard_work);
510
511 spin_lock(&si->lock);
512 swap_do_scheduled_discard(si);
513 spin_unlock(&si->lock);
514 }
515
alloc_cluster(struct swap_info_struct * si,unsigned long idx)516 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
517 {
518 struct swap_cluster_info *ci = si->cluster_info;
519
520 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
521 cluster_list_del_first(&si->free_clusters, ci);
522 cluster_set_count_flag(ci + idx, 0, 0);
523 }
524
free_cluster(struct swap_info_struct * si,unsigned long idx)525 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
526 {
527 struct swap_cluster_info *ci = si->cluster_info + idx;
528
529 VM_BUG_ON(cluster_count(ci) != 0);
530 /*
531 * If the swap is discardable, prepare discard the cluster
532 * instead of free it immediately. The cluster will be freed
533 * after discard.
534 */
535 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
536 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
537 swap_cluster_schedule_discard(si, idx);
538 return;
539 }
540
541 __free_cluster(si, idx);
542 }
543
544 /*
545 * The cluster corresponding to page_nr will be used. The cluster will be
546 * removed from free cluster list and its usage counter will be increased.
547 */
inc_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)548 static void inc_cluster_info_page(struct swap_info_struct *p,
549 struct swap_cluster_info *cluster_info, unsigned long page_nr)
550 {
551 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
552
553 if (!cluster_info)
554 return;
555 if (cluster_is_free(&cluster_info[idx]))
556 alloc_cluster(p, idx);
557
558 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
559 cluster_set_count(&cluster_info[idx],
560 cluster_count(&cluster_info[idx]) + 1);
561 }
562
563 /*
564 * The cluster corresponding to page_nr decreases one usage. If the usage
565 * counter becomes 0, which means no page in the cluster is in using, we can
566 * optionally discard the cluster and add it to free cluster list.
567 */
dec_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)568 static void dec_cluster_info_page(struct swap_info_struct *p,
569 struct swap_cluster_info *cluster_info, unsigned long page_nr)
570 {
571 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
572
573 if (!cluster_info)
574 return;
575
576 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
577 cluster_set_count(&cluster_info[idx],
578 cluster_count(&cluster_info[idx]) - 1);
579
580 if (cluster_count(&cluster_info[idx]) == 0)
581 free_cluster(p, idx);
582 }
583
584 /*
585 * It's possible scan_swap_map() uses a free cluster in the middle of free
586 * cluster list. Avoiding such abuse to avoid list corruption.
587 */
588 static bool
scan_swap_map_ssd_cluster_conflict(struct swap_info_struct * si,unsigned long offset)589 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
590 unsigned long offset)
591 {
592 struct percpu_cluster *percpu_cluster;
593 bool conflict;
594
595 offset /= SWAPFILE_CLUSTER;
596 conflict = !cluster_list_empty(&si->free_clusters) &&
597 offset != cluster_list_first(&si->free_clusters) &&
598 cluster_is_free(&si->cluster_info[offset]);
599
600 if (!conflict)
601 return false;
602
603 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
604 cluster_set_null(&percpu_cluster->index);
605 return true;
606 }
607
608 /*
609 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
610 * might involve allocating a new cluster for current CPU too.
611 */
scan_swap_map_try_ssd_cluster(struct swap_info_struct * si,unsigned long * offset,unsigned long * scan_base)612 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
613 unsigned long *offset, unsigned long *scan_base)
614 {
615 struct percpu_cluster *cluster;
616 struct swap_cluster_info *ci;
617 bool found_free;
618 unsigned long tmp, max;
619
620 new_cluster:
621 cluster = this_cpu_ptr(si->percpu_cluster);
622 if (cluster_is_null(&cluster->index)) {
623 if (!cluster_list_empty(&si->free_clusters)) {
624 cluster->index = si->free_clusters.head;
625 cluster->next = cluster_next(&cluster->index) *
626 SWAPFILE_CLUSTER;
627 } else if (!cluster_list_empty(&si->discard_clusters)) {
628 /*
629 * we don't have free cluster but have some clusters in
630 * discarding, do discard now and reclaim them
631 */
632 swap_do_scheduled_discard(si);
633 *scan_base = *offset = si->cluster_next;
634 goto new_cluster;
635 } else
636 return false;
637 }
638
639 found_free = false;
640
641 /*
642 * Other CPUs can use our cluster if they can't find a free cluster,
643 * check if there is still free entry in the cluster
644 */
645 tmp = cluster->next;
646 max = min_t(unsigned long, si->max,
647 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
648 if (tmp >= max) {
649 cluster_set_null(&cluster->index);
650 goto new_cluster;
651 }
652 ci = lock_cluster(si, tmp);
653 while (tmp < max) {
654 if (!si->swap_map[tmp]) {
655 found_free = true;
656 break;
657 }
658 tmp++;
659 }
660 unlock_cluster(ci);
661 if (!found_free) {
662 cluster_set_null(&cluster->index);
663 goto new_cluster;
664 }
665 cluster->next = tmp + 1;
666 *offset = tmp;
667 *scan_base = tmp;
668 return found_free;
669 }
670
__del_from_avail_list(struct swap_info_struct * p)671 static void __del_from_avail_list(struct swap_info_struct *p)
672 {
673 int nid;
674
675 assert_spin_locked(&p->lock);
676 for_each_node(nid)
677 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
678 }
679
del_from_avail_list(struct swap_info_struct * p)680 static void del_from_avail_list(struct swap_info_struct *p)
681 {
682 spin_lock(&swap_avail_lock);
683 __del_from_avail_list(p);
684 spin_unlock(&swap_avail_lock);
685 }
686
swap_range_alloc(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)687 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
688 unsigned int nr_entries)
689 {
690 unsigned int end = offset + nr_entries - 1;
691
692 if (offset == si->lowest_bit)
693 si->lowest_bit += nr_entries;
694 if (end == si->highest_bit)
695 si->highest_bit -= nr_entries;
696 si->inuse_pages += nr_entries;
697 if (si->inuse_pages == si->pages) {
698 si->lowest_bit = si->max;
699 si->highest_bit = 0;
700 del_from_avail_list(si);
701 }
702 }
703
add_to_avail_list(struct swap_info_struct * p)704 static void add_to_avail_list(struct swap_info_struct *p)
705 {
706 int nid;
707
708 spin_lock(&swap_avail_lock);
709 for_each_node(nid) {
710 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
711 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
712 }
713 spin_unlock(&swap_avail_lock);
714 }
715
swap_range_free(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)716 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
717 unsigned int nr_entries)
718 {
719 unsigned long end = offset + nr_entries - 1;
720 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
721
722 if (offset < si->lowest_bit)
723 si->lowest_bit = offset;
724 if (end > si->highest_bit) {
725 bool was_full = !si->highest_bit;
726
727 si->highest_bit = end;
728 if (was_full && (si->flags & SWP_WRITEOK))
729 add_to_avail_list(si);
730 }
731 atomic_long_add(nr_entries, &nr_swap_pages);
732 si->inuse_pages -= nr_entries;
733 if (si->flags & SWP_BLKDEV)
734 swap_slot_free_notify =
735 si->bdev->bd_disk->fops->swap_slot_free_notify;
736 else
737 swap_slot_free_notify = NULL;
738 while (offset <= end) {
739 frontswap_invalidate_page(si->type, offset);
740 if (swap_slot_free_notify)
741 swap_slot_free_notify(si->bdev, offset);
742 offset++;
743 }
744 }
745
scan_swap_map_slots(struct swap_info_struct * si,unsigned char usage,int nr,swp_entry_t slots[])746 static int scan_swap_map_slots(struct swap_info_struct *si,
747 unsigned char usage, int nr,
748 swp_entry_t slots[])
749 {
750 struct swap_cluster_info *ci;
751 unsigned long offset;
752 unsigned long scan_base;
753 unsigned long last_in_cluster = 0;
754 int latency_ration = LATENCY_LIMIT;
755 int n_ret = 0;
756
757 if (nr > SWAP_BATCH)
758 nr = SWAP_BATCH;
759
760 /*
761 * We try to cluster swap pages by allocating them sequentially
762 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
763 * way, however, we resort to first-free allocation, starting
764 * a new cluster. This prevents us from scattering swap pages
765 * all over the entire swap partition, so that we reduce
766 * overall disk seek times between swap pages. -- sct
767 * But we do now try to find an empty cluster. -Andrea
768 * And we let swap pages go all over an SSD partition. Hugh
769 */
770
771 si->flags += SWP_SCANNING;
772 scan_base = offset = si->cluster_next;
773
774 /* SSD algorithm */
775 if (si->cluster_info) {
776 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
777 goto checks;
778 else
779 goto scan;
780 }
781
782 if (unlikely(!si->cluster_nr--)) {
783 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
784 si->cluster_nr = SWAPFILE_CLUSTER - 1;
785 goto checks;
786 }
787
788 spin_unlock(&si->lock);
789
790 /*
791 * If seek is expensive, start searching for new cluster from
792 * start of partition, to minimize the span of allocated swap.
793 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
794 * case, just handled by scan_swap_map_try_ssd_cluster() above.
795 */
796 scan_base = offset = si->lowest_bit;
797 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
798
799 /* Locate the first empty (unaligned) cluster */
800 for (; last_in_cluster <= si->highest_bit; offset++) {
801 if (si->swap_map[offset])
802 last_in_cluster = offset + SWAPFILE_CLUSTER;
803 else if (offset == last_in_cluster) {
804 spin_lock(&si->lock);
805 offset -= SWAPFILE_CLUSTER - 1;
806 si->cluster_next = offset;
807 si->cluster_nr = SWAPFILE_CLUSTER - 1;
808 goto checks;
809 }
810 if (unlikely(--latency_ration < 0)) {
811 cond_resched();
812 latency_ration = LATENCY_LIMIT;
813 }
814 }
815
816 offset = scan_base;
817 spin_lock(&si->lock);
818 si->cluster_nr = SWAPFILE_CLUSTER - 1;
819 }
820
821 checks:
822 if (si->cluster_info) {
823 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
824 /* take a break if we already got some slots */
825 if (n_ret)
826 goto done;
827 if (!scan_swap_map_try_ssd_cluster(si, &offset,
828 &scan_base))
829 goto scan;
830 }
831 }
832 if (!(si->flags & SWP_WRITEOK))
833 goto no_page;
834 if (!si->highest_bit)
835 goto no_page;
836 if (offset > si->highest_bit)
837 scan_base = offset = si->lowest_bit;
838
839 ci = lock_cluster(si, offset);
840 /* reuse swap entry of cache-only swap if not busy. */
841 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
842 int swap_was_freed;
843 unlock_cluster(ci);
844 spin_unlock(&si->lock);
845 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
846 spin_lock(&si->lock);
847 /* entry was freed successfully, try to use this again */
848 if (swap_was_freed)
849 goto checks;
850 goto scan; /* check next one */
851 }
852
853 if (si->swap_map[offset]) {
854 unlock_cluster(ci);
855 if (!n_ret)
856 goto scan;
857 else
858 goto done;
859 }
860 si->swap_map[offset] = usage;
861 inc_cluster_info_page(si, si->cluster_info, offset);
862 unlock_cluster(ci);
863
864 swap_range_alloc(si, offset, 1);
865 si->cluster_next = offset + 1;
866 slots[n_ret++] = swp_entry(si->type, offset);
867
868 /* got enough slots or reach max slots? */
869 if ((n_ret == nr) || (offset >= si->highest_bit))
870 goto done;
871
872 /* search for next available slot */
873
874 /* time to take a break? */
875 if (unlikely(--latency_ration < 0)) {
876 if (n_ret)
877 goto done;
878 spin_unlock(&si->lock);
879 cond_resched();
880 spin_lock(&si->lock);
881 latency_ration = LATENCY_LIMIT;
882 }
883
884 /* try to get more slots in cluster */
885 if (si->cluster_info) {
886 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
887 goto checks;
888 else
889 goto done;
890 }
891 /* non-ssd case */
892 ++offset;
893
894 /* non-ssd case, still more slots in cluster? */
895 if (si->cluster_nr && !si->swap_map[offset]) {
896 --si->cluster_nr;
897 goto checks;
898 }
899
900 done:
901 si->flags -= SWP_SCANNING;
902 return n_ret;
903
904 scan:
905 spin_unlock(&si->lock);
906 while (++offset <= si->highest_bit) {
907 if (!si->swap_map[offset]) {
908 spin_lock(&si->lock);
909 goto checks;
910 }
911 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
912 spin_lock(&si->lock);
913 goto checks;
914 }
915 if (unlikely(--latency_ration < 0)) {
916 cond_resched();
917 latency_ration = LATENCY_LIMIT;
918 }
919 }
920 offset = si->lowest_bit;
921 while (offset < scan_base) {
922 if (!si->swap_map[offset]) {
923 spin_lock(&si->lock);
924 goto checks;
925 }
926 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
927 spin_lock(&si->lock);
928 goto checks;
929 }
930 if (unlikely(--latency_ration < 0)) {
931 cond_resched();
932 latency_ration = LATENCY_LIMIT;
933 }
934 offset++;
935 }
936 spin_lock(&si->lock);
937
938 no_page:
939 si->flags -= SWP_SCANNING;
940 return n_ret;
941 }
942
swap_alloc_cluster(struct swap_info_struct * si,swp_entry_t * slot)943 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
944 {
945 unsigned long idx;
946 struct swap_cluster_info *ci;
947 unsigned long offset, i;
948 unsigned char *map;
949
950 /*
951 * Should not even be attempting cluster allocations when huge
952 * page swap is disabled. Warn and fail the allocation.
953 */
954 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
955 VM_WARN_ON_ONCE(1);
956 return 0;
957 }
958
959 if (cluster_list_empty(&si->free_clusters))
960 return 0;
961
962 idx = cluster_list_first(&si->free_clusters);
963 offset = idx * SWAPFILE_CLUSTER;
964 ci = lock_cluster(si, offset);
965 alloc_cluster(si, idx);
966 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
967
968 map = si->swap_map + offset;
969 for (i = 0; i < SWAPFILE_CLUSTER; i++)
970 map[i] = SWAP_HAS_CACHE;
971 unlock_cluster(ci);
972 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
973 *slot = swp_entry(si->type, offset);
974
975 return 1;
976 }
977
swap_free_cluster(struct swap_info_struct * si,unsigned long idx)978 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
979 {
980 unsigned long offset = idx * SWAPFILE_CLUSTER;
981 struct swap_cluster_info *ci;
982
983 ci = lock_cluster(si, offset);
984 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
985 cluster_set_count_flag(ci, 0, 0);
986 free_cluster(si, idx);
987 unlock_cluster(ci);
988 swap_range_free(si, offset, SWAPFILE_CLUSTER);
989 }
990
scan_swap_map(struct swap_info_struct * si,unsigned char usage)991 static unsigned long scan_swap_map(struct swap_info_struct *si,
992 unsigned char usage)
993 {
994 swp_entry_t entry;
995 int n_ret;
996
997 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
998
999 if (n_ret)
1000 return swp_offset(entry);
1001 else
1002 return 0;
1003
1004 }
1005
get_swap_pages(int n_goal,swp_entry_t swp_entries[],int entry_size)1006 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1007 {
1008 unsigned long size = swap_entry_size(entry_size);
1009 struct swap_info_struct *si, *next;
1010 long avail_pgs;
1011 int n_ret = 0;
1012 int node;
1013
1014 /* Only single cluster request supported */
1015 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1016
1017 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1018 if (avail_pgs <= 0)
1019 goto noswap;
1020
1021 if (n_goal > SWAP_BATCH)
1022 n_goal = SWAP_BATCH;
1023
1024 if (n_goal > avail_pgs)
1025 n_goal = avail_pgs;
1026
1027 atomic_long_sub(n_goal * size, &nr_swap_pages);
1028
1029 spin_lock(&swap_avail_lock);
1030
1031 start_over:
1032 node = numa_node_id();
1033 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1034 /* requeue si to after same-priority siblings */
1035 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1036 spin_unlock(&swap_avail_lock);
1037 spin_lock(&si->lock);
1038 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1039 spin_lock(&swap_avail_lock);
1040 if (plist_node_empty(&si->avail_lists[node])) {
1041 spin_unlock(&si->lock);
1042 goto nextsi;
1043 }
1044 WARN(!si->highest_bit,
1045 "swap_info %d in list but !highest_bit\n",
1046 si->type);
1047 WARN(!(si->flags & SWP_WRITEOK),
1048 "swap_info %d in list but !SWP_WRITEOK\n",
1049 si->type);
1050 __del_from_avail_list(si);
1051 spin_unlock(&si->lock);
1052 goto nextsi;
1053 }
1054 if (size == SWAPFILE_CLUSTER) {
1055 if (si->flags & SWP_BLKDEV)
1056 n_ret = swap_alloc_cluster(si, swp_entries);
1057 } else
1058 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1059 n_goal, swp_entries);
1060 spin_unlock(&si->lock);
1061 if (n_ret || size == SWAPFILE_CLUSTER)
1062 goto check_out;
1063 pr_debug("scan_swap_map of si %d failed to find offset\n",
1064 si->type);
1065 cond_resched();
1066
1067 spin_lock(&swap_avail_lock);
1068 nextsi:
1069 /*
1070 * if we got here, it's likely that si was almost full before,
1071 * and since scan_swap_map() can drop the si->lock, multiple
1072 * callers probably all tried to get a page from the same si
1073 * and it filled up before we could get one; or, the si filled
1074 * up between us dropping swap_avail_lock and taking si->lock.
1075 * Since we dropped the swap_avail_lock, the swap_avail_head
1076 * list may have been modified; so if next is still in the
1077 * swap_avail_head list then try it, otherwise start over
1078 * if we have not gotten any slots.
1079 */
1080 if (plist_node_empty(&next->avail_lists[node]))
1081 goto start_over;
1082 }
1083
1084 spin_unlock(&swap_avail_lock);
1085
1086 check_out:
1087 if (n_ret < n_goal)
1088 atomic_long_add((long)(n_goal - n_ret) * size,
1089 &nr_swap_pages);
1090 noswap:
1091 return n_ret;
1092 }
1093
1094 /* The only caller of this function is now suspend routine */
get_swap_page_of_type(int type)1095 swp_entry_t get_swap_page_of_type(int type)
1096 {
1097 struct swap_info_struct *si = swap_type_to_swap_info(type);
1098 pgoff_t offset;
1099
1100 if (!si)
1101 goto fail;
1102
1103 spin_lock(&si->lock);
1104 if (si->flags & SWP_WRITEOK) {
1105 atomic_long_dec(&nr_swap_pages);
1106 /* This is called for allocating swap entry, not cache */
1107 offset = scan_swap_map(si, 1);
1108 if (offset) {
1109 spin_unlock(&si->lock);
1110 return swp_entry(type, offset);
1111 }
1112 atomic_long_inc(&nr_swap_pages);
1113 }
1114 spin_unlock(&si->lock);
1115 fail:
1116 return (swp_entry_t) {0};
1117 }
1118
__swap_info_get(swp_entry_t entry)1119 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1120 {
1121 struct swap_info_struct *p;
1122 unsigned long offset;
1123
1124 if (!entry.val)
1125 goto out;
1126 p = swp_swap_info(entry);
1127 if (!p)
1128 goto bad_nofile;
1129 if (!(p->flags & SWP_USED))
1130 goto bad_device;
1131 offset = swp_offset(entry);
1132 if (offset >= p->max)
1133 goto bad_offset;
1134 return p;
1135
1136 bad_offset:
1137 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1138 goto out;
1139 bad_device:
1140 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1141 goto out;
1142 bad_nofile:
1143 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1144 out:
1145 return NULL;
1146 }
1147
_swap_info_get(swp_entry_t entry)1148 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1149 {
1150 struct swap_info_struct *p;
1151
1152 p = __swap_info_get(entry);
1153 if (!p)
1154 goto out;
1155 if (!p->swap_map[swp_offset(entry)])
1156 goto bad_free;
1157 return p;
1158
1159 bad_free:
1160 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1161 goto out;
1162 out:
1163 return NULL;
1164 }
1165
swap_info_get(swp_entry_t entry)1166 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1167 {
1168 struct swap_info_struct *p;
1169
1170 p = _swap_info_get(entry);
1171 if (p)
1172 spin_lock(&p->lock);
1173 return p;
1174 }
1175
swap_info_get_cont(swp_entry_t entry,struct swap_info_struct * q)1176 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1177 struct swap_info_struct *q)
1178 {
1179 struct swap_info_struct *p;
1180
1181 p = _swap_info_get(entry);
1182
1183 if (p != q) {
1184 if (q != NULL)
1185 spin_unlock(&q->lock);
1186 if (p != NULL)
1187 spin_lock(&p->lock);
1188 }
1189 return p;
1190 }
1191
__swap_entry_free_locked(struct swap_info_struct * p,unsigned long offset,unsigned char usage)1192 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1193 unsigned long offset,
1194 unsigned char usage)
1195 {
1196 unsigned char count;
1197 unsigned char has_cache;
1198
1199 count = p->swap_map[offset];
1200
1201 has_cache = count & SWAP_HAS_CACHE;
1202 count &= ~SWAP_HAS_CACHE;
1203
1204 if (usage == SWAP_HAS_CACHE) {
1205 VM_BUG_ON(!has_cache);
1206 has_cache = 0;
1207 } else if (count == SWAP_MAP_SHMEM) {
1208 /*
1209 * Or we could insist on shmem.c using a special
1210 * swap_shmem_free() and free_shmem_swap_and_cache()...
1211 */
1212 count = 0;
1213 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1214 if (count == COUNT_CONTINUED) {
1215 if (swap_count_continued(p, offset, count))
1216 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1217 else
1218 count = SWAP_MAP_MAX;
1219 } else
1220 count--;
1221 }
1222
1223 usage = count | has_cache;
1224 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1225
1226 return usage;
1227 }
1228
1229 /*
1230 * Check whether swap entry is valid in the swap device. If so,
1231 * return pointer to swap_info_struct, and keep the swap entry valid
1232 * via preventing the swap device from being swapoff, until
1233 * put_swap_device() is called. Otherwise return NULL.
1234 *
1235 * The entirety of the RCU read critical section must come before the
1236 * return from or after the call to synchronize_rcu() in
1237 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1238 * true, the si->map, si->cluster_info, etc. must be valid in the
1239 * critical section.
1240 *
1241 * Notice that swapoff or swapoff+swapon can still happen before the
1242 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1243 * in put_swap_device() if there isn't any other way to prevent
1244 * swapoff, such as page lock, page table lock, etc. The caller must
1245 * be prepared for that. For example, the following situation is
1246 * possible.
1247 *
1248 * CPU1 CPU2
1249 * do_swap_page()
1250 * ... swapoff+swapon
1251 * __read_swap_cache_async()
1252 * swapcache_prepare()
1253 * __swap_duplicate()
1254 * // check swap_map
1255 * // verify PTE not changed
1256 *
1257 * In __swap_duplicate(), the swap_map need to be checked before
1258 * changing partly because the specified swap entry may be for another
1259 * swap device which has been swapoff. And in do_swap_page(), after
1260 * the page is read from the swap device, the PTE is verified not
1261 * changed with the page table locked to check whether the swap device
1262 * has been swapoff or swapoff+swapon.
1263 */
get_swap_device(swp_entry_t entry)1264 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1265 {
1266 struct swap_info_struct *si;
1267 unsigned long offset;
1268
1269 if (!entry.val)
1270 goto out;
1271 si = swp_swap_info(entry);
1272 if (!si)
1273 goto bad_nofile;
1274
1275 rcu_read_lock();
1276 if (!(si->flags & SWP_VALID))
1277 goto unlock_out;
1278 offset = swp_offset(entry);
1279 if (offset >= si->max)
1280 goto unlock_out;
1281
1282 return si;
1283 bad_nofile:
1284 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1285 out:
1286 return NULL;
1287 unlock_out:
1288 rcu_read_unlock();
1289 return NULL;
1290 }
1291
__swap_entry_free(struct swap_info_struct * p,swp_entry_t entry,unsigned char usage)1292 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1293 swp_entry_t entry, unsigned char usage)
1294 {
1295 struct swap_cluster_info *ci;
1296 unsigned long offset = swp_offset(entry);
1297
1298 ci = lock_cluster_or_swap_info(p, offset);
1299 usage = __swap_entry_free_locked(p, offset, usage);
1300 unlock_cluster_or_swap_info(p, ci);
1301 if (!usage)
1302 free_swap_slot(entry);
1303
1304 return usage;
1305 }
1306
swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1307 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1308 {
1309 struct swap_cluster_info *ci;
1310 unsigned long offset = swp_offset(entry);
1311 unsigned char count;
1312
1313 ci = lock_cluster(p, offset);
1314 count = p->swap_map[offset];
1315 VM_BUG_ON(count != SWAP_HAS_CACHE);
1316 p->swap_map[offset] = 0;
1317 dec_cluster_info_page(p, p->cluster_info, offset);
1318 unlock_cluster(ci);
1319
1320 mem_cgroup_uncharge_swap(entry, 1);
1321 swap_range_free(p, offset, 1);
1322 }
1323
1324 /*
1325 * Caller has made sure that the swap device corresponding to entry
1326 * is still around or has not been recycled.
1327 */
swap_free(swp_entry_t entry)1328 void swap_free(swp_entry_t entry)
1329 {
1330 struct swap_info_struct *p;
1331
1332 p = _swap_info_get(entry);
1333 if (p)
1334 __swap_entry_free(p, entry, 1);
1335 }
1336
1337 /*
1338 * Called after dropping swapcache to decrease refcnt to swap entries.
1339 */
put_swap_page(struct page * page,swp_entry_t entry)1340 void put_swap_page(struct page *page, swp_entry_t entry)
1341 {
1342 unsigned long offset = swp_offset(entry);
1343 unsigned long idx = offset / SWAPFILE_CLUSTER;
1344 struct swap_cluster_info *ci;
1345 struct swap_info_struct *si;
1346 unsigned char *map;
1347 unsigned int i, free_entries = 0;
1348 unsigned char val;
1349 int size = swap_entry_size(hpage_nr_pages(page));
1350
1351 si = _swap_info_get(entry);
1352 if (!si)
1353 return;
1354
1355 ci = lock_cluster_or_swap_info(si, offset);
1356 if (size == SWAPFILE_CLUSTER) {
1357 VM_BUG_ON(!cluster_is_huge(ci));
1358 map = si->swap_map + offset;
1359 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1360 val = map[i];
1361 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1362 if (val == SWAP_HAS_CACHE)
1363 free_entries++;
1364 }
1365 cluster_clear_huge(ci);
1366 if (free_entries == SWAPFILE_CLUSTER) {
1367 unlock_cluster_or_swap_info(si, ci);
1368 spin_lock(&si->lock);
1369 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1370 swap_free_cluster(si, idx);
1371 spin_unlock(&si->lock);
1372 return;
1373 }
1374 }
1375 for (i = 0; i < size; i++, entry.val++) {
1376 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1377 unlock_cluster_or_swap_info(si, ci);
1378 free_swap_slot(entry);
1379 if (i == size - 1)
1380 return;
1381 lock_cluster_or_swap_info(si, offset);
1382 }
1383 }
1384 unlock_cluster_or_swap_info(si, ci);
1385 }
1386
1387 #ifdef CONFIG_THP_SWAP
split_swap_cluster(swp_entry_t entry)1388 int split_swap_cluster(swp_entry_t entry)
1389 {
1390 struct swap_info_struct *si;
1391 struct swap_cluster_info *ci;
1392 unsigned long offset = swp_offset(entry);
1393
1394 si = _swap_info_get(entry);
1395 if (!si)
1396 return -EBUSY;
1397 ci = lock_cluster(si, offset);
1398 cluster_clear_huge(ci);
1399 unlock_cluster(ci);
1400 return 0;
1401 }
1402 #endif
1403
swp_entry_cmp(const void * ent1,const void * ent2)1404 static int swp_entry_cmp(const void *ent1, const void *ent2)
1405 {
1406 const swp_entry_t *e1 = ent1, *e2 = ent2;
1407
1408 return (int)swp_type(*e1) - (int)swp_type(*e2);
1409 }
1410
swapcache_free_entries(swp_entry_t * entries,int n)1411 void swapcache_free_entries(swp_entry_t *entries, int n)
1412 {
1413 struct swap_info_struct *p, *prev;
1414 int i;
1415
1416 if (n <= 0)
1417 return;
1418
1419 prev = NULL;
1420 p = NULL;
1421
1422 /*
1423 * Sort swap entries by swap device, so each lock is only taken once.
1424 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1425 * so low that it isn't necessary to optimize further.
1426 */
1427 if (nr_swapfiles > 1)
1428 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1429 for (i = 0; i < n; ++i) {
1430 p = swap_info_get_cont(entries[i], prev);
1431 if (p)
1432 swap_entry_free(p, entries[i]);
1433 prev = p;
1434 }
1435 if (p)
1436 spin_unlock(&p->lock);
1437 }
1438
1439 /*
1440 * How many references to page are currently swapped out?
1441 * This does not give an exact answer when swap count is continued,
1442 * but does include the high COUNT_CONTINUED flag to allow for that.
1443 */
page_swapcount(struct page * page)1444 int page_swapcount(struct page *page)
1445 {
1446 int count = 0;
1447 struct swap_info_struct *p;
1448 struct swap_cluster_info *ci;
1449 swp_entry_t entry;
1450 unsigned long offset;
1451
1452 entry.val = page_private(page);
1453 p = _swap_info_get(entry);
1454 if (p) {
1455 offset = swp_offset(entry);
1456 ci = lock_cluster_or_swap_info(p, offset);
1457 count = swap_count(p->swap_map[offset]);
1458 unlock_cluster_or_swap_info(p, ci);
1459 }
1460 return count;
1461 }
1462
__swap_count(swp_entry_t entry)1463 int __swap_count(swp_entry_t entry)
1464 {
1465 struct swap_info_struct *si;
1466 pgoff_t offset = swp_offset(entry);
1467 int count = 0;
1468
1469 si = get_swap_device(entry);
1470 if (si) {
1471 count = swap_count(si->swap_map[offset]);
1472 put_swap_device(si);
1473 }
1474 return count;
1475 }
1476
swap_swapcount(struct swap_info_struct * si,swp_entry_t entry)1477 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1478 {
1479 int count = 0;
1480 pgoff_t offset = swp_offset(entry);
1481 struct swap_cluster_info *ci;
1482
1483 ci = lock_cluster_or_swap_info(si, offset);
1484 count = swap_count(si->swap_map[offset]);
1485 unlock_cluster_or_swap_info(si, ci);
1486 return count;
1487 }
1488
1489 /*
1490 * How many references to @entry are currently swapped out?
1491 * This does not give an exact answer when swap count is continued,
1492 * but does include the high COUNT_CONTINUED flag to allow for that.
1493 */
__swp_swapcount(swp_entry_t entry)1494 int __swp_swapcount(swp_entry_t entry)
1495 {
1496 int count = 0;
1497 struct swap_info_struct *si;
1498
1499 si = get_swap_device(entry);
1500 if (si) {
1501 count = swap_swapcount(si, entry);
1502 put_swap_device(si);
1503 }
1504 return count;
1505 }
1506
1507 /*
1508 * How many references to @entry are currently swapped out?
1509 * This considers COUNT_CONTINUED so it returns exact answer.
1510 */
swp_swapcount(swp_entry_t entry)1511 int swp_swapcount(swp_entry_t entry)
1512 {
1513 int count, tmp_count, n;
1514 struct swap_info_struct *p;
1515 struct swap_cluster_info *ci;
1516 struct page *page;
1517 pgoff_t offset;
1518 unsigned char *map;
1519
1520 p = _swap_info_get(entry);
1521 if (!p)
1522 return 0;
1523
1524 offset = swp_offset(entry);
1525
1526 ci = lock_cluster_or_swap_info(p, offset);
1527
1528 count = swap_count(p->swap_map[offset]);
1529 if (!(count & COUNT_CONTINUED))
1530 goto out;
1531
1532 count &= ~COUNT_CONTINUED;
1533 n = SWAP_MAP_MAX + 1;
1534
1535 page = vmalloc_to_page(p->swap_map + offset);
1536 offset &= ~PAGE_MASK;
1537 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1538
1539 do {
1540 page = list_next_entry(page, lru);
1541 map = kmap_atomic(page);
1542 tmp_count = map[offset];
1543 kunmap_atomic(map);
1544
1545 count += (tmp_count & ~COUNT_CONTINUED) * n;
1546 n *= (SWAP_CONT_MAX + 1);
1547 } while (tmp_count & COUNT_CONTINUED);
1548 out:
1549 unlock_cluster_or_swap_info(p, ci);
1550 return count;
1551 }
1552
swap_page_trans_huge_swapped(struct swap_info_struct * si,swp_entry_t entry)1553 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1554 swp_entry_t entry)
1555 {
1556 struct swap_cluster_info *ci;
1557 unsigned char *map = si->swap_map;
1558 unsigned long roffset = swp_offset(entry);
1559 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1560 int i;
1561 bool ret = false;
1562
1563 ci = lock_cluster_or_swap_info(si, offset);
1564 if (!ci || !cluster_is_huge(ci)) {
1565 if (swap_count(map[roffset]))
1566 ret = true;
1567 goto unlock_out;
1568 }
1569 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1570 if (swap_count(map[offset + i])) {
1571 ret = true;
1572 break;
1573 }
1574 }
1575 unlock_out:
1576 unlock_cluster_or_swap_info(si, ci);
1577 return ret;
1578 }
1579
page_swapped(struct page * page)1580 static bool page_swapped(struct page *page)
1581 {
1582 swp_entry_t entry;
1583 struct swap_info_struct *si;
1584
1585 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1586 return page_swapcount(page) != 0;
1587
1588 page = compound_head(page);
1589 entry.val = page_private(page);
1590 si = _swap_info_get(entry);
1591 if (si)
1592 return swap_page_trans_huge_swapped(si, entry);
1593 return false;
1594 }
1595
page_trans_huge_map_swapcount(struct page * page,int * total_mapcount,int * total_swapcount)1596 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1597 int *total_swapcount)
1598 {
1599 int i, map_swapcount, _total_mapcount, _total_swapcount;
1600 unsigned long offset = 0;
1601 struct swap_info_struct *si;
1602 struct swap_cluster_info *ci = NULL;
1603 unsigned char *map = NULL;
1604 int mapcount, swapcount = 0;
1605
1606 /* hugetlbfs shouldn't call it */
1607 VM_BUG_ON_PAGE(PageHuge(page), page);
1608
1609 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1610 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1611 if (PageSwapCache(page))
1612 swapcount = page_swapcount(page);
1613 if (total_swapcount)
1614 *total_swapcount = swapcount;
1615 return mapcount + swapcount;
1616 }
1617
1618 page = compound_head(page);
1619
1620 _total_mapcount = _total_swapcount = map_swapcount = 0;
1621 if (PageSwapCache(page)) {
1622 swp_entry_t entry;
1623
1624 entry.val = page_private(page);
1625 si = _swap_info_get(entry);
1626 if (si) {
1627 map = si->swap_map;
1628 offset = swp_offset(entry);
1629 }
1630 }
1631 if (map)
1632 ci = lock_cluster(si, offset);
1633 for (i = 0; i < HPAGE_PMD_NR; i++) {
1634 mapcount = atomic_read(&page[i]._mapcount) + 1;
1635 _total_mapcount += mapcount;
1636 if (map) {
1637 swapcount = swap_count(map[offset + i]);
1638 _total_swapcount += swapcount;
1639 }
1640 map_swapcount = max(map_swapcount, mapcount + swapcount);
1641 }
1642 unlock_cluster(ci);
1643 if (PageDoubleMap(page)) {
1644 map_swapcount -= 1;
1645 _total_mapcount -= HPAGE_PMD_NR;
1646 }
1647 mapcount = compound_mapcount(page);
1648 map_swapcount += mapcount;
1649 _total_mapcount += mapcount;
1650 if (total_mapcount)
1651 *total_mapcount = _total_mapcount;
1652 if (total_swapcount)
1653 *total_swapcount = _total_swapcount;
1654
1655 return map_swapcount;
1656 }
1657
1658 /*
1659 * We can write to an anon page without COW if there are no other references
1660 * to it. And as a side-effect, free up its swap: because the old content
1661 * on disk will never be read, and seeking back there to write new content
1662 * later would only waste time away from clustering.
1663 *
1664 * NOTE: total_map_swapcount should not be relied upon by the caller if
1665 * reuse_swap_page() returns false, but it may be always overwritten
1666 * (see the other implementation for CONFIG_SWAP=n).
1667 */
reuse_swap_page(struct page * page,int * total_map_swapcount)1668 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1669 {
1670 int count, total_mapcount, total_swapcount;
1671
1672 VM_BUG_ON_PAGE(!PageLocked(page), page);
1673 if (unlikely(PageKsm(page)))
1674 return false;
1675 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1676 &total_swapcount);
1677 if (total_map_swapcount)
1678 *total_map_swapcount = total_mapcount + total_swapcount;
1679 if (count == 1 && PageSwapCache(page) &&
1680 (likely(!PageTransCompound(page)) ||
1681 /* The remaining swap count will be freed soon */
1682 total_swapcount == page_swapcount(page))) {
1683 if (!PageWriteback(page)) {
1684 page = compound_head(page);
1685 delete_from_swap_cache(page);
1686 SetPageDirty(page);
1687 } else {
1688 swp_entry_t entry;
1689 struct swap_info_struct *p;
1690
1691 entry.val = page_private(page);
1692 p = swap_info_get(entry);
1693 if (p->flags & SWP_STABLE_WRITES) {
1694 spin_unlock(&p->lock);
1695 return false;
1696 }
1697 spin_unlock(&p->lock);
1698 }
1699 }
1700
1701 return count <= 1;
1702 }
1703
1704 /*
1705 * If swap is getting full, or if there are no more mappings of this page,
1706 * then try_to_free_swap is called to free its swap space.
1707 */
try_to_free_swap(struct page * page)1708 int try_to_free_swap(struct page *page)
1709 {
1710 VM_BUG_ON_PAGE(!PageLocked(page), page);
1711
1712 if (!PageSwapCache(page))
1713 return 0;
1714 if (PageWriteback(page))
1715 return 0;
1716 if (page_swapped(page))
1717 return 0;
1718
1719 /*
1720 * Once hibernation has begun to create its image of memory,
1721 * there's a danger that one of the calls to try_to_free_swap()
1722 * - most probably a call from __try_to_reclaim_swap() while
1723 * hibernation is allocating its own swap pages for the image,
1724 * but conceivably even a call from memory reclaim - will free
1725 * the swap from a page which has already been recorded in the
1726 * image as a clean swapcache page, and then reuse its swap for
1727 * another page of the image. On waking from hibernation, the
1728 * original page might be freed under memory pressure, then
1729 * later read back in from swap, now with the wrong data.
1730 *
1731 * Hibernation suspends storage while it is writing the image
1732 * to disk so check that here.
1733 */
1734 if (pm_suspended_storage())
1735 return 0;
1736
1737 page = compound_head(page);
1738 delete_from_swap_cache(page);
1739 SetPageDirty(page);
1740 return 1;
1741 }
1742
1743 /*
1744 * Free the swap entry like above, but also try to
1745 * free the page cache entry if it is the last user.
1746 */
free_swap_and_cache(swp_entry_t entry)1747 int free_swap_and_cache(swp_entry_t entry)
1748 {
1749 struct swap_info_struct *p;
1750 unsigned char count;
1751
1752 if (non_swap_entry(entry))
1753 return 1;
1754
1755 p = _swap_info_get(entry);
1756 if (p) {
1757 count = __swap_entry_free(p, entry, 1);
1758 if (count == SWAP_HAS_CACHE &&
1759 !swap_page_trans_huge_swapped(p, entry))
1760 __try_to_reclaim_swap(p, swp_offset(entry),
1761 TTRS_UNMAPPED | TTRS_FULL);
1762 }
1763 return p != NULL;
1764 }
1765
1766 #ifdef CONFIG_HIBERNATION
1767 /*
1768 * Find the swap type that corresponds to given device (if any).
1769 *
1770 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1771 * from 0, in which the swap header is expected to be located.
1772 *
1773 * This is needed for the suspend to disk (aka swsusp).
1774 */
swap_type_of(dev_t device,sector_t offset,struct block_device ** bdev_p)1775 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1776 {
1777 struct block_device *bdev = NULL;
1778 int type;
1779
1780 if (device)
1781 bdev = bdget(device);
1782
1783 spin_lock(&swap_lock);
1784 for (type = 0; type < nr_swapfiles; type++) {
1785 struct swap_info_struct *sis = swap_info[type];
1786
1787 if (!(sis->flags & SWP_WRITEOK))
1788 continue;
1789
1790 if (!bdev) {
1791 if (bdev_p)
1792 *bdev_p = bdgrab(sis->bdev);
1793
1794 spin_unlock(&swap_lock);
1795 return type;
1796 }
1797 if (bdev == sis->bdev) {
1798 struct swap_extent *se = first_se(sis);
1799
1800 if (se->start_block == offset) {
1801 if (bdev_p)
1802 *bdev_p = bdgrab(sis->bdev);
1803
1804 spin_unlock(&swap_lock);
1805 bdput(bdev);
1806 return type;
1807 }
1808 }
1809 }
1810 spin_unlock(&swap_lock);
1811 if (bdev)
1812 bdput(bdev);
1813
1814 return -ENODEV;
1815 }
1816
1817 /*
1818 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1819 * corresponding to given index in swap_info (swap type).
1820 */
swapdev_block(int type,pgoff_t offset)1821 sector_t swapdev_block(int type, pgoff_t offset)
1822 {
1823 struct block_device *bdev;
1824 struct swap_info_struct *si = swap_type_to_swap_info(type);
1825
1826 if (!si || !(si->flags & SWP_WRITEOK))
1827 return 0;
1828 return map_swap_entry(swp_entry(type, offset), &bdev);
1829 }
1830
1831 /*
1832 * Return either the total number of swap pages of given type, or the number
1833 * of free pages of that type (depending on @free)
1834 *
1835 * This is needed for software suspend
1836 */
count_swap_pages(int type,int free)1837 unsigned int count_swap_pages(int type, int free)
1838 {
1839 unsigned int n = 0;
1840
1841 spin_lock(&swap_lock);
1842 if ((unsigned int)type < nr_swapfiles) {
1843 struct swap_info_struct *sis = swap_info[type];
1844
1845 spin_lock(&sis->lock);
1846 if (sis->flags & SWP_WRITEOK) {
1847 n = sis->pages;
1848 if (free)
1849 n -= sis->inuse_pages;
1850 }
1851 spin_unlock(&sis->lock);
1852 }
1853 spin_unlock(&swap_lock);
1854 return n;
1855 }
1856 #endif /* CONFIG_HIBERNATION */
1857
pte_same_as_swp(pte_t pte,pte_t swp_pte)1858 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1859 {
1860 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1861 }
1862
1863 /*
1864 * No need to decide whether this PTE shares the swap entry with others,
1865 * just let do_wp_page work it out if a write is requested later - to
1866 * force COW, vm_page_prot omits write permission from any private vma.
1867 */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct page * page)1868 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1869 unsigned long addr, swp_entry_t entry, struct page *page)
1870 {
1871 struct page *swapcache;
1872 struct mem_cgroup *memcg;
1873 spinlock_t *ptl;
1874 pte_t *pte;
1875 int ret = 1;
1876
1877 swapcache = page;
1878 page = ksm_might_need_to_copy(page, vma, addr);
1879 if (unlikely(!page))
1880 return -ENOMEM;
1881
1882 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1883 &memcg, false)) {
1884 ret = -ENOMEM;
1885 goto out_nolock;
1886 }
1887
1888 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1889 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1890 mem_cgroup_cancel_charge(page, memcg, false);
1891 ret = 0;
1892 goto out;
1893 }
1894
1895 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1896 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1897 get_page(page);
1898 set_pte_at(vma->vm_mm, addr, pte,
1899 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1900 if (page == swapcache) {
1901 page_add_anon_rmap(page, vma, addr, false);
1902 mem_cgroup_commit_charge(page, memcg, true, false);
1903 } else { /* ksm created a completely new copy */
1904 page_add_new_anon_rmap(page, vma, addr, false);
1905 mem_cgroup_commit_charge(page, memcg, false, false);
1906 lru_cache_add_active_or_unevictable(page, vma);
1907 }
1908 swap_free(entry);
1909 /*
1910 * Move the page to the active list so it is not
1911 * immediately swapped out again after swapon.
1912 */
1913 activate_page(page);
1914 out:
1915 pte_unmap_unlock(pte, ptl);
1916 out_nolock:
1917 if (page != swapcache) {
1918 unlock_page(page);
1919 put_page(page);
1920 }
1921 return ret;
1922 }
1923
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1924 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1925 unsigned long addr, unsigned long end,
1926 unsigned int type, bool frontswap,
1927 unsigned long *fs_pages_to_unuse)
1928 {
1929 struct page *page;
1930 swp_entry_t entry;
1931 pte_t *pte;
1932 struct swap_info_struct *si;
1933 unsigned long offset;
1934 int ret = 0;
1935 volatile unsigned char *swap_map;
1936
1937 si = swap_info[type];
1938 pte = pte_offset_map(pmd, addr);
1939 do {
1940 struct vm_fault vmf;
1941
1942 if (!is_swap_pte(*pte))
1943 continue;
1944
1945 entry = pte_to_swp_entry(*pte);
1946 if (swp_type(entry) != type)
1947 continue;
1948
1949 offset = swp_offset(entry);
1950 if (frontswap && !frontswap_test(si, offset))
1951 continue;
1952
1953 pte_unmap(pte);
1954 swap_map = &si->swap_map[offset];
1955 page = lookup_swap_cache(entry, vma, addr);
1956 if (!page) {
1957 vmf.vma = vma;
1958 vmf.address = addr;
1959 vmf.pmd = pmd;
1960 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1961 &vmf);
1962 }
1963 if (!page) {
1964 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1965 goto try_next;
1966 return -ENOMEM;
1967 }
1968
1969 lock_page(page);
1970 wait_on_page_writeback(page);
1971 ret = unuse_pte(vma, pmd, addr, entry, page);
1972 if (ret < 0) {
1973 unlock_page(page);
1974 put_page(page);
1975 goto out;
1976 }
1977
1978 try_to_free_swap(page);
1979 unlock_page(page);
1980 put_page(page);
1981
1982 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1983 ret = FRONTSWAP_PAGES_UNUSED;
1984 goto out;
1985 }
1986 try_next:
1987 pte = pte_offset_map(pmd, addr);
1988 } while (pte++, addr += PAGE_SIZE, addr != end);
1989 pte_unmap(pte - 1);
1990
1991 ret = 0;
1992 out:
1993 return ret;
1994 }
1995
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1996 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1997 unsigned long addr, unsigned long end,
1998 unsigned int type, bool frontswap,
1999 unsigned long *fs_pages_to_unuse)
2000 {
2001 pmd_t *pmd;
2002 unsigned long next;
2003 int ret;
2004
2005 pmd = pmd_offset(pud, addr);
2006 do {
2007 cond_resched();
2008 next = pmd_addr_end(addr, end);
2009 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2010 continue;
2011 ret = unuse_pte_range(vma, pmd, addr, next, type,
2012 frontswap, fs_pages_to_unuse);
2013 if (ret)
2014 return ret;
2015 } while (pmd++, addr = next, addr != end);
2016 return 0;
2017 }
2018
unuse_pud_range(struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2019 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2020 unsigned long addr, unsigned long end,
2021 unsigned int type, bool frontswap,
2022 unsigned long *fs_pages_to_unuse)
2023 {
2024 pud_t *pud;
2025 unsigned long next;
2026 int ret;
2027
2028 pud = pud_offset(p4d, addr);
2029 do {
2030 next = pud_addr_end(addr, end);
2031 if (pud_none_or_clear_bad(pud))
2032 continue;
2033 ret = unuse_pmd_range(vma, pud, addr, next, type,
2034 frontswap, fs_pages_to_unuse);
2035 if (ret)
2036 return ret;
2037 } while (pud++, addr = next, addr != end);
2038 return 0;
2039 }
2040
unuse_p4d_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2041 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2042 unsigned long addr, unsigned long end,
2043 unsigned int type, bool frontswap,
2044 unsigned long *fs_pages_to_unuse)
2045 {
2046 p4d_t *p4d;
2047 unsigned long next;
2048 int ret;
2049
2050 p4d = p4d_offset(pgd, addr);
2051 do {
2052 next = p4d_addr_end(addr, end);
2053 if (p4d_none_or_clear_bad(p4d))
2054 continue;
2055 ret = unuse_pud_range(vma, p4d, addr, next, type,
2056 frontswap, fs_pages_to_unuse);
2057 if (ret)
2058 return ret;
2059 } while (p4d++, addr = next, addr != end);
2060 return 0;
2061 }
2062
unuse_vma(struct vm_area_struct * vma,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2063 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2064 bool frontswap, unsigned long *fs_pages_to_unuse)
2065 {
2066 pgd_t *pgd;
2067 unsigned long addr, end, next;
2068 int ret;
2069
2070 addr = vma->vm_start;
2071 end = vma->vm_end;
2072
2073 pgd = pgd_offset(vma->vm_mm, addr);
2074 do {
2075 next = pgd_addr_end(addr, end);
2076 if (pgd_none_or_clear_bad(pgd))
2077 continue;
2078 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2079 frontswap, fs_pages_to_unuse);
2080 if (ret)
2081 return ret;
2082 } while (pgd++, addr = next, addr != end);
2083 return 0;
2084 }
2085
unuse_mm(struct mm_struct * mm,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2086 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2087 bool frontswap, unsigned long *fs_pages_to_unuse)
2088 {
2089 struct vm_area_struct *vma;
2090 int ret = 0;
2091
2092 down_read(&mm->mmap_sem);
2093 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2094 if (vma->anon_vma) {
2095 ret = unuse_vma(vma, type, frontswap,
2096 fs_pages_to_unuse);
2097 if (ret)
2098 break;
2099 }
2100 cond_resched();
2101 }
2102 up_read(&mm->mmap_sem);
2103 return ret;
2104 }
2105
2106 /*
2107 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2108 * from current position to next entry still in use. Return 0
2109 * if there are no inuse entries after prev till end of the map.
2110 */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev,bool frontswap)2111 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2112 unsigned int prev, bool frontswap)
2113 {
2114 unsigned int i;
2115 unsigned char count;
2116
2117 /*
2118 * No need for swap_lock here: we're just looking
2119 * for whether an entry is in use, not modifying it; false
2120 * hits are okay, and sys_swapoff() has already prevented new
2121 * allocations from this area (while holding swap_lock).
2122 */
2123 for (i = prev + 1; i < si->max; i++) {
2124 count = READ_ONCE(si->swap_map[i]);
2125 if (count && swap_count(count) != SWAP_MAP_BAD)
2126 if (!frontswap || frontswap_test(si, i))
2127 break;
2128 if ((i % LATENCY_LIMIT) == 0)
2129 cond_resched();
2130 }
2131
2132 if (i == si->max)
2133 i = 0;
2134
2135 return i;
2136 }
2137
2138 /*
2139 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2140 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2141 */
try_to_unuse(unsigned int type,bool frontswap,unsigned long pages_to_unuse)2142 int try_to_unuse(unsigned int type, bool frontswap,
2143 unsigned long pages_to_unuse)
2144 {
2145 struct mm_struct *prev_mm;
2146 struct mm_struct *mm;
2147 struct list_head *p;
2148 int retval = 0;
2149 struct swap_info_struct *si = swap_info[type];
2150 struct page *page;
2151 swp_entry_t entry;
2152 unsigned int i;
2153
2154 if (!READ_ONCE(si->inuse_pages))
2155 return 0;
2156
2157 if (!frontswap)
2158 pages_to_unuse = 0;
2159
2160 retry:
2161 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2162 if (retval)
2163 goto out;
2164
2165 prev_mm = &init_mm;
2166 mmget(prev_mm);
2167
2168 spin_lock(&mmlist_lock);
2169 p = &init_mm.mmlist;
2170 while (READ_ONCE(si->inuse_pages) &&
2171 !signal_pending(current) &&
2172 (p = p->next) != &init_mm.mmlist) {
2173
2174 mm = list_entry(p, struct mm_struct, mmlist);
2175 if (!mmget_not_zero(mm))
2176 continue;
2177 spin_unlock(&mmlist_lock);
2178 mmput(prev_mm);
2179 prev_mm = mm;
2180 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2181
2182 if (retval) {
2183 mmput(prev_mm);
2184 goto out;
2185 }
2186
2187 /*
2188 * Make sure that we aren't completely killing
2189 * interactive performance.
2190 */
2191 cond_resched();
2192 spin_lock(&mmlist_lock);
2193 }
2194 spin_unlock(&mmlist_lock);
2195
2196 mmput(prev_mm);
2197
2198 i = 0;
2199 while (READ_ONCE(si->inuse_pages) &&
2200 !signal_pending(current) &&
2201 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2202
2203 entry = swp_entry(type, i);
2204 page = find_get_page(swap_address_space(entry), i);
2205 if (!page)
2206 continue;
2207
2208 /*
2209 * It is conceivable that a racing task removed this page from
2210 * swap cache just before we acquired the page lock. The page
2211 * might even be back in swap cache on another swap area. But
2212 * that is okay, try_to_free_swap() only removes stale pages.
2213 */
2214 lock_page(page);
2215 wait_on_page_writeback(page);
2216 try_to_free_swap(page);
2217 unlock_page(page);
2218 put_page(page);
2219
2220 /*
2221 * For frontswap, we just need to unuse pages_to_unuse, if
2222 * it was specified. Need not check frontswap again here as
2223 * we already zeroed out pages_to_unuse if not frontswap.
2224 */
2225 if (pages_to_unuse && --pages_to_unuse == 0)
2226 goto out;
2227 }
2228
2229 /*
2230 * Lets check again to see if there are still swap entries in the map.
2231 * If yes, we would need to do retry the unuse logic again.
2232 * Under global memory pressure, swap entries can be reinserted back
2233 * into process space after the mmlist loop above passes over them.
2234 *
2235 * Limit the number of retries? No: when mmget_not_zero() above fails,
2236 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2237 * at its own independent pace; and even shmem_writepage() could have
2238 * been preempted after get_swap_page(), temporarily hiding that swap.
2239 * It's easy and robust (though cpu-intensive) just to keep retrying.
2240 */
2241 if (READ_ONCE(si->inuse_pages)) {
2242 if (!signal_pending(current))
2243 goto retry;
2244 retval = -EINTR;
2245 }
2246 out:
2247 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2248 }
2249
2250 /*
2251 * After a successful try_to_unuse, if no swap is now in use, we know
2252 * we can empty the mmlist. swap_lock must be held on entry and exit.
2253 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2254 * added to the mmlist just after page_duplicate - before would be racy.
2255 */
drain_mmlist(void)2256 static void drain_mmlist(void)
2257 {
2258 struct list_head *p, *next;
2259 unsigned int type;
2260
2261 for (type = 0; type < nr_swapfiles; type++)
2262 if (swap_info[type]->inuse_pages)
2263 return;
2264 spin_lock(&mmlist_lock);
2265 list_for_each_safe(p, next, &init_mm.mmlist)
2266 list_del_init(p);
2267 spin_unlock(&mmlist_lock);
2268 }
2269
2270 /*
2271 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2272 * corresponds to page offset for the specified swap entry.
2273 * Note that the type of this function is sector_t, but it returns page offset
2274 * into the bdev, not sector offset.
2275 */
map_swap_entry(swp_entry_t entry,struct block_device ** bdev)2276 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2277 {
2278 struct swap_info_struct *sis;
2279 struct swap_extent *se;
2280 pgoff_t offset;
2281
2282 sis = swp_swap_info(entry);
2283 *bdev = sis->bdev;
2284
2285 offset = swp_offset(entry);
2286 se = offset_to_swap_extent(sis, offset);
2287 return se->start_block + (offset - se->start_page);
2288 }
2289
2290 /*
2291 * Returns the page offset into bdev for the specified page's swap entry.
2292 */
map_swap_page(struct page * page,struct block_device ** bdev)2293 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2294 {
2295 swp_entry_t entry;
2296 entry.val = page_private(page);
2297 return map_swap_entry(entry, bdev);
2298 }
2299
2300 /*
2301 * Free all of a swapdev's extent information
2302 */
destroy_swap_extents(struct swap_info_struct * sis)2303 static void destroy_swap_extents(struct swap_info_struct *sis)
2304 {
2305 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2306 struct rb_node *rb = sis->swap_extent_root.rb_node;
2307 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2308
2309 rb_erase(rb, &sis->swap_extent_root);
2310 kfree(se);
2311 }
2312
2313 if (sis->flags & SWP_ACTIVATED) {
2314 struct file *swap_file = sis->swap_file;
2315 struct address_space *mapping = swap_file->f_mapping;
2316
2317 sis->flags &= ~SWP_ACTIVATED;
2318 if (mapping->a_ops->swap_deactivate)
2319 mapping->a_ops->swap_deactivate(swap_file);
2320 }
2321 }
2322
2323 /*
2324 * Add a block range (and the corresponding page range) into this swapdev's
2325 * extent tree.
2326 *
2327 * This function rather assumes that it is called in ascending page order.
2328 */
2329 int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)2330 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2331 unsigned long nr_pages, sector_t start_block)
2332 {
2333 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2334 struct swap_extent *se;
2335 struct swap_extent *new_se;
2336
2337 /*
2338 * place the new node at the right most since the
2339 * function is called in ascending page order.
2340 */
2341 while (*link) {
2342 parent = *link;
2343 link = &parent->rb_right;
2344 }
2345
2346 if (parent) {
2347 se = rb_entry(parent, struct swap_extent, rb_node);
2348 BUG_ON(se->start_page + se->nr_pages != start_page);
2349 if (se->start_block + se->nr_pages == start_block) {
2350 /* Merge it */
2351 se->nr_pages += nr_pages;
2352 return 0;
2353 }
2354 }
2355
2356 /* No merge, insert a new extent. */
2357 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2358 if (new_se == NULL)
2359 return -ENOMEM;
2360 new_se->start_page = start_page;
2361 new_se->nr_pages = nr_pages;
2362 new_se->start_block = start_block;
2363
2364 rb_link_node(&new_se->rb_node, parent, link);
2365 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2366 return 1;
2367 }
2368 EXPORT_SYMBOL_GPL(add_swap_extent);
2369
2370 /*
2371 * A `swap extent' is a simple thing which maps a contiguous range of pages
2372 * onto a contiguous range of disk blocks. An ordered list of swap extents
2373 * is built at swapon time and is then used at swap_writepage/swap_readpage
2374 * time for locating where on disk a page belongs.
2375 *
2376 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2377 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2378 * swap files identically.
2379 *
2380 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2381 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2382 * swapfiles are handled *identically* after swapon time.
2383 *
2384 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2385 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2386 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2387 * requirements, they are simply tossed out - we will never use those blocks
2388 * for swapping.
2389 *
2390 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2391 * prevents users from writing to the swap device, which will corrupt memory.
2392 *
2393 * The amount of disk space which a single swap extent represents varies.
2394 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2395 * extents in the list. To avoid much list walking, we cache the previous
2396 * search location in `curr_swap_extent', and start new searches from there.
2397 * This is extremely effective. The average number of iterations in
2398 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2399 */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)2400 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2401 {
2402 struct file *swap_file = sis->swap_file;
2403 struct address_space *mapping = swap_file->f_mapping;
2404 struct inode *inode = mapping->host;
2405 int ret;
2406
2407 if (S_ISBLK(inode->i_mode)) {
2408 ret = add_swap_extent(sis, 0, sis->max, 0);
2409 *span = sis->pages;
2410 return ret;
2411 }
2412
2413 if (mapping->a_ops->swap_activate) {
2414 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2415 if (ret >= 0)
2416 sis->flags |= SWP_ACTIVATED;
2417 if (!ret) {
2418 sis->flags |= SWP_FS;
2419 ret = add_swap_extent(sis, 0, sis->max, 0);
2420 *span = sis->pages;
2421 }
2422 return ret;
2423 }
2424
2425 return generic_swapfile_activate(sis, swap_file, span);
2426 }
2427
swap_node(struct swap_info_struct * p)2428 static int swap_node(struct swap_info_struct *p)
2429 {
2430 struct block_device *bdev;
2431
2432 if (p->bdev)
2433 bdev = p->bdev;
2434 else
2435 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2436
2437 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2438 }
2439
setup_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info)2440 static void setup_swap_info(struct swap_info_struct *p, int prio,
2441 unsigned char *swap_map,
2442 struct swap_cluster_info *cluster_info)
2443 {
2444 int i;
2445
2446 if (prio >= 0)
2447 p->prio = prio;
2448 else
2449 p->prio = --least_priority;
2450 /*
2451 * the plist prio is negated because plist ordering is
2452 * low-to-high, while swap ordering is high-to-low
2453 */
2454 p->list.prio = -p->prio;
2455 for_each_node(i) {
2456 if (p->prio >= 0)
2457 p->avail_lists[i].prio = -p->prio;
2458 else {
2459 if (swap_node(p) == i)
2460 p->avail_lists[i].prio = 1;
2461 else
2462 p->avail_lists[i].prio = -p->prio;
2463 }
2464 }
2465 p->swap_map = swap_map;
2466 p->cluster_info = cluster_info;
2467 }
2468
_enable_swap_info(struct swap_info_struct * p)2469 static void _enable_swap_info(struct swap_info_struct *p)
2470 {
2471 p->flags |= SWP_WRITEOK | SWP_VALID;
2472 atomic_long_add(p->pages, &nr_swap_pages);
2473 total_swap_pages += p->pages;
2474
2475 assert_spin_locked(&swap_lock);
2476 /*
2477 * both lists are plists, and thus priority ordered.
2478 * swap_active_head needs to be priority ordered for swapoff(),
2479 * which on removal of any swap_info_struct with an auto-assigned
2480 * (i.e. negative) priority increments the auto-assigned priority
2481 * of any lower-priority swap_info_structs.
2482 * swap_avail_head needs to be priority ordered for get_swap_page(),
2483 * which allocates swap pages from the highest available priority
2484 * swap_info_struct.
2485 */
2486 plist_add(&p->list, &swap_active_head);
2487 add_to_avail_list(p);
2488 }
2489
enable_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * frontswap_map)2490 static void enable_swap_info(struct swap_info_struct *p, int prio,
2491 unsigned char *swap_map,
2492 struct swap_cluster_info *cluster_info,
2493 unsigned long *frontswap_map)
2494 {
2495 frontswap_init(p->type, frontswap_map);
2496 spin_lock(&swap_lock);
2497 spin_lock(&p->lock);
2498 setup_swap_info(p, prio, swap_map, cluster_info);
2499 spin_unlock(&p->lock);
2500 spin_unlock(&swap_lock);
2501 /*
2502 * Guarantee swap_map, cluster_info, etc. fields are valid
2503 * between get/put_swap_device() if SWP_VALID bit is set
2504 */
2505 synchronize_rcu();
2506 spin_lock(&swap_lock);
2507 spin_lock(&p->lock);
2508 _enable_swap_info(p);
2509 spin_unlock(&p->lock);
2510 spin_unlock(&swap_lock);
2511 }
2512
reinsert_swap_info(struct swap_info_struct * p)2513 static void reinsert_swap_info(struct swap_info_struct *p)
2514 {
2515 spin_lock(&swap_lock);
2516 spin_lock(&p->lock);
2517 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2518 _enable_swap_info(p);
2519 spin_unlock(&p->lock);
2520 spin_unlock(&swap_lock);
2521 }
2522
has_usable_swap(void)2523 bool has_usable_swap(void)
2524 {
2525 bool ret = true;
2526
2527 spin_lock(&swap_lock);
2528 if (plist_head_empty(&swap_active_head))
2529 ret = false;
2530 spin_unlock(&swap_lock);
2531 return ret;
2532 }
2533
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)2534 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2535 {
2536 struct swap_info_struct *p = NULL;
2537 unsigned char *swap_map;
2538 struct swap_cluster_info *cluster_info;
2539 unsigned long *frontswap_map;
2540 struct file *swap_file, *victim;
2541 struct address_space *mapping;
2542 struct inode *inode;
2543 struct filename *pathname;
2544 int err, found = 0;
2545 unsigned int old_block_size;
2546
2547 if (!capable(CAP_SYS_ADMIN))
2548 return -EPERM;
2549
2550 BUG_ON(!current->mm);
2551
2552 pathname = getname(specialfile);
2553 if (IS_ERR(pathname))
2554 return PTR_ERR(pathname);
2555
2556 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2557 err = PTR_ERR(victim);
2558 if (IS_ERR(victim))
2559 goto out;
2560
2561 mapping = victim->f_mapping;
2562 spin_lock(&swap_lock);
2563 plist_for_each_entry(p, &swap_active_head, list) {
2564 if (p->flags & SWP_WRITEOK) {
2565 if (p->swap_file->f_mapping == mapping) {
2566 found = 1;
2567 break;
2568 }
2569 }
2570 }
2571 if (!found) {
2572 err = -EINVAL;
2573 spin_unlock(&swap_lock);
2574 goto out_dput;
2575 }
2576 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2577 vm_unacct_memory(p->pages);
2578 else {
2579 err = -ENOMEM;
2580 spin_unlock(&swap_lock);
2581 goto out_dput;
2582 }
2583 spin_lock(&p->lock);
2584 del_from_avail_list(p);
2585 if (p->prio < 0) {
2586 struct swap_info_struct *si = p;
2587 int nid;
2588
2589 plist_for_each_entry_continue(si, &swap_active_head, list) {
2590 si->prio++;
2591 si->list.prio--;
2592 for_each_node(nid) {
2593 if (si->avail_lists[nid].prio != 1)
2594 si->avail_lists[nid].prio--;
2595 }
2596 }
2597 least_priority++;
2598 }
2599 plist_del(&p->list, &swap_active_head);
2600 atomic_long_sub(p->pages, &nr_swap_pages);
2601 total_swap_pages -= p->pages;
2602 p->flags &= ~SWP_WRITEOK;
2603 spin_unlock(&p->lock);
2604 spin_unlock(&swap_lock);
2605
2606 disable_swap_slots_cache_lock();
2607
2608 set_current_oom_origin();
2609 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2610 clear_current_oom_origin();
2611
2612 if (err) {
2613 /* re-insert swap space back into swap_list */
2614 reinsert_swap_info(p);
2615 reenable_swap_slots_cache_unlock();
2616 goto out_dput;
2617 }
2618
2619 reenable_swap_slots_cache_unlock();
2620
2621 spin_lock(&swap_lock);
2622 spin_lock(&p->lock);
2623 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2624 spin_unlock(&p->lock);
2625 spin_unlock(&swap_lock);
2626 /*
2627 * wait for swap operations protected by get/put_swap_device()
2628 * to complete
2629 */
2630 synchronize_rcu();
2631
2632 flush_work(&p->discard_work);
2633
2634 destroy_swap_extents(p);
2635 if (p->flags & SWP_CONTINUED)
2636 free_swap_count_continuations(p);
2637
2638 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2639 atomic_dec(&nr_rotate_swap);
2640
2641 mutex_lock(&swapon_mutex);
2642 spin_lock(&swap_lock);
2643 spin_lock(&p->lock);
2644 drain_mmlist();
2645
2646 /* wait for anyone still in scan_swap_map */
2647 p->highest_bit = 0; /* cuts scans short */
2648 while (p->flags >= SWP_SCANNING) {
2649 spin_unlock(&p->lock);
2650 spin_unlock(&swap_lock);
2651 schedule_timeout_uninterruptible(1);
2652 spin_lock(&swap_lock);
2653 spin_lock(&p->lock);
2654 }
2655
2656 swap_file = p->swap_file;
2657 old_block_size = p->old_block_size;
2658 p->swap_file = NULL;
2659 p->max = 0;
2660 swap_map = p->swap_map;
2661 p->swap_map = NULL;
2662 cluster_info = p->cluster_info;
2663 p->cluster_info = NULL;
2664 frontswap_map = frontswap_map_get(p);
2665 spin_unlock(&p->lock);
2666 spin_unlock(&swap_lock);
2667 frontswap_invalidate_area(p->type);
2668 frontswap_map_set(p, NULL);
2669 mutex_unlock(&swapon_mutex);
2670 free_percpu(p->percpu_cluster);
2671 p->percpu_cluster = NULL;
2672 vfree(swap_map);
2673 kvfree(cluster_info);
2674 kvfree(frontswap_map);
2675 /* Destroy swap account information */
2676 swap_cgroup_swapoff(p->type);
2677 exit_swap_address_space(p->type);
2678
2679 inode = mapping->host;
2680 if (S_ISBLK(inode->i_mode)) {
2681 struct block_device *bdev = I_BDEV(inode);
2682
2683 set_blocksize(bdev, old_block_size);
2684 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2685 }
2686
2687 inode_lock(inode);
2688 inode->i_flags &= ~S_SWAPFILE;
2689 inode_unlock(inode);
2690 filp_close(swap_file, NULL);
2691
2692 /*
2693 * Clear the SWP_USED flag after all resources are freed so that swapon
2694 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2695 * not hold p->lock after we cleared its SWP_WRITEOK.
2696 */
2697 spin_lock(&swap_lock);
2698 p->flags = 0;
2699 spin_unlock(&swap_lock);
2700
2701 err = 0;
2702 atomic_inc(&proc_poll_event);
2703 wake_up_interruptible(&proc_poll_wait);
2704
2705 out_dput:
2706 filp_close(victim, NULL);
2707 out:
2708 putname(pathname);
2709 return err;
2710 }
2711
2712 #ifdef CONFIG_PROC_FS
swaps_poll(struct file * file,poll_table * wait)2713 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2714 {
2715 struct seq_file *seq = file->private_data;
2716
2717 poll_wait(file, &proc_poll_wait, wait);
2718
2719 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2720 seq->poll_event = atomic_read(&proc_poll_event);
2721 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2722 }
2723
2724 return EPOLLIN | EPOLLRDNORM;
2725 }
2726
2727 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)2728 static void *swap_start(struct seq_file *swap, loff_t *pos)
2729 {
2730 struct swap_info_struct *si;
2731 int type;
2732 loff_t l = *pos;
2733
2734 mutex_lock(&swapon_mutex);
2735
2736 if (!l)
2737 return SEQ_START_TOKEN;
2738
2739 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2740 if (!(si->flags & SWP_USED) || !si->swap_map)
2741 continue;
2742 if (!--l)
2743 return si;
2744 }
2745
2746 return NULL;
2747 }
2748
swap_next(struct seq_file * swap,void * v,loff_t * pos)2749 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2750 {
2751 struct swap_info_struct *si = v;
2752 int type;
2753
2754 if (v == SEQ_START_TOKEN)
2755 type = 0;
2756 else
2757 type = si->type + 1;
2758
2759 ++(*pos);
2760 for (; (si = swap_type_to_swap_info(type)); type++) {
2761 if (!(si->flags & SWP_USED) || !si->swap_map)
2762 continue;
2763 return si;
2764 }
2765
2766 return NULL;
2767 }
2768
swap_stop(struct seq_file * swap,void * v)2769 static void swap_stop(struct seq_file *swap, void *v)
2770 {
2771 mutex_unlock(&swapon_mutex);
2772 }
2773
swap_show(struct seq_file * swap,void * v)2774 static int swap_show(struct seq_file *swap, void *v)
2775 {
2776 struct swap_info_struct *si = v;
2777 struct file *file;
2778 int len;
2779
2780 if (si == SEQ_START_TOKEN) {
2781 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2782 return 0;
2783 }
2784
2785 file = si->swap_file;
2786 len = seq_file_path(swap, file, " \t\n\\");
2787 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2788 len < 40 ? 40 - len : 1, " ",
2789 S_ISBLK(file_inode(file)->i_mode) ?
2790 "partition" : "file\t",
2791 si->pages << (PAGE_SHIFT - 10),
2792 si->inuse_pages << (PAGE_SHIFT - 10),
2793 si->prio);
2794 return 0;
2795 }
2796
2797 static const struct seq_operations swaps_op = {
2798 .start = swap_start,
2799 .next = swap_next,
2800 .stop = swap_stop,
2801 .show = swap_show
2802 };
2803
swaps_open(struct inode * inode,struct file * file)2804 static int swaps_open(struct inode *inode, struct file *file)
2805 {
2806 struct seq_file *seq;
2807 int ret;
2808
2809 ret = seq_open(file, &swaps_op);
2810 if (ret)
2811 return ret;
2812
2813 seq = file->private_data;
2814 seq->poll_event = atomic_read(&proc_poll_event);
2815 return 0;
2816 }
2817
2818 static const struct file_operations proc_swaps_operations = {
2819 .open = swaps_open,
2820 .read = seq_read,
2821 .llseek = seq_lseek,
2822 .release = seq_release,
2823 .poll = swaps_poll,
2824 };
2825
procswaps_init(void)2826 static int __init procswaps_init(void)
2827 {
2828 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2829 return 0;
2830 }
2831 __initcall(procswaps_init);
2832 #endif /* CONFIG_PROC_FS */
2833
2834 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)2835 static int __init max_swapfiles_check(void)
2836 {
2837 MAX_SWAPFILES_CHECK();
2838 return 0;
2839 }
2840 late_initcall(max_swapfiles_check);
2841 #endif
2842
alloc_swap_info(void)2843 static struct swap_info_struct *alloc_swap_info(void)
2844 {
2845 struct swap_info_struct *p;
2846 struct swap_info_struct *defer = NULL;
2847 unsigned int type;
2848 int i;
2849
2850 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2851 if (!p)
2852 return ERR_PTR(-ENOMEM);
2853
2854 spin_lock(&swap_lock);
2855 for (type = 0; type < nr_swapfiles; type++) {
2856 if (!(swap_info[type]->flags & SWP_USED))
2857 break;
2858 }
2859 if (type >= MAX_SWAPFILES) {
2860 spin_unlock(&swap_lock);
2861 kvfree(p);
2862 return ERR_PTR(-EPERM);
2863 }
2864 if (type >= nr_swapfiles) {
2865 p->type = type;
2866 WRITE_ONCE(swap_info[type], p);
2867 /*
2868 * Write swap_info[type] before nr_swapfiles, in case a
2869 * racing procfs swap_start() or swap_next() is reading them.
2870 * (We never shrink nr_swapfiles, we never free this entry.)
2871 */
2872 smp_wmb();
2873 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2874 } else {
2875 defer = p;
2876 p = swap_info[type];
2877 /*
2878 * Do not memset this entry: a racing procfs swap_next()
2879 * would be relying on p->type to remain valid.
2880 */
2881 }
2882 p->swap_extent_root = RB_ROOT;
2883 plist_node_init(&p->list, 0);
2884 for_each_node(i)
2885 plist_node_init(&p->avail_lists[i], 0);
2886 p->flags = SWP_USED;
2887 spin_unlock(&swap_lock);
2888 kvfree(defer);
2889 spin_lock_init(&p->lock);
2890 spin_lock_init(&p->cont_lock);
2891
2892 return p;
2893 }
2894
claim_swapfile(struct swap_info_struct * p,struct inode * inode)2895 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2896 {
2897 int error;
2898
2899 if (S_ISBLK(inode->i_mode)) {
2900 p->bdev = bdgrab(I_BDEV(inode));
2901 error = blkdev_get(p->bdev,
2902 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2903 if (error < 0) {
2904 p->bdev = NULL;
2905 return error;
2906 }
2907 p->old_block_size = block_size(p->bdev);
2908 error = set_blocksize(p->bdev, PAGE_SIZE);
2909 if (error < 0)
2910 return error;
2911 p->flags |= SWP_BLKDEV;
2912 } else if (S_ISREG(inode->i_mode)) {
2913 p->bdev = inode->i_sb->s_bdev;
2914 }
2915
2916 return 0;
2917 }
2918
2919
2920 /*
2921 * Find out how many pages are allowed for a single swap device. There
2922 * are two limiting factors:
2923 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2924 * 2) the number of bits in the swap pte, as defined by the different
2925 * architectures.
2926 *
2927 * In order to find the largest possible bit mask, a swap entry with
2928 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2929 * decoded to a swp_entry_t again, and finally the swap offset is
2930 * extracted.
2931 *
2932 * This will mask all the bits from the initial ~0UL mask that can't
2933 * be encoded in either the swp_entry_t or the architecture definition
2934 * of a swap pte.
2935 */
generic_max_swapfile_size(void)2936 unsigned long generic_max_swapfile_size(void)
2937 {
2938 return swp_offset(pte_to_swp_entry(
2939 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2940 }
2941
2942 /* Can be overridden by an architecture for additional checks. */
max_swapfile_size(void)2943 __weak unsigned long max_swapfile_size(void)
2944 {
2945 return generic_max_swapfile_size();
2946 }
2947
read_swap_header(struct swap_info_struct * p,union swap_header * swap_header,struct inode * inode)2948 static unsigned long read_swap_header(struct swap_info_struct *p,
2949 union swap_header *swap_header,
2950 struct inode *inode)
2951 {
2952 int i;
2953 unsigned long maxpages;
2954 unsigned long swapfilepages;
2955 unsigned long last_page;
2956
2957 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2958 pr_err("Unable to find swap-space signature\n");
2959 return 0;
2960 }
2961
2962 /* swap partition endianess hack... */
2963 if (swab32(swap_header->info.version) == 1) {
2964 swab32s(&swap_header->info.version);
2965 swab32s(&swap_header->info.last_page);
2966 swab32s(&swap_header->info.nr_badpages);
2967 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2968 return 0;
2969 for (i = 0; i < swap_header->info.nr_badpages; i++)
2970 swab32s(&swap_header->info.badpages[i]);
2971 }
2972 /* Check the swap header's sub-version */
2973 if (swap_header->info.version != 1) {
2974 pr_warn("Unable to handle swap header version %d\n",
2975 swap_header->info.version);
2976 return 0;
2977 }
2978
2979 p->lowest_bit = 1;
2980 p->cluster_next = 1;
2981 p->cluster_nr = 0;
2982
2983 maxpages = max_swapfile_size();
2984 last_page = swap_header->info.last_page;
2985 if (!last_page) {
2986 pr_warn("Empty swap-file\n");
2987 return 0;
2988 }
2989 if (last_page > maxpages) {
2990 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2991 maxpages << (PAGE_SHIFT - 10),
2992 last_page << (PAGE_SHIFT - 10));
2993 }
2994 if (maxpages > last_page) {
2995 maxpages = last_page + 1;
2996 /* p->max is an unsigned int: don't overflow it */
2997 if ((unsigned int)maxpages == 0)
2998 maxpages = UINT_MAX;
2999 }
3000 p->highest_bit = maxpages - 1;
3001
3002 if (!maxpages)
3003 return 0;
3004 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3005 if (swapfilepages && maxpages > swapfilepages) {
3006 pr_warn("Swap area shorter than signature indicates\n");
3007 return 0;
3008 }
3009 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3010 return 0;
3011 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3012 return 0;
3013
3014 return maxpages;
3015 }
3016
3017 #define SWAP_CLUSTER_INFO_COLS \
3018 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3019 #define SWAP_CLUSTER_SPACE_COLS \
3020 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3021 #define SWAP_CLUSTER_COLS \
3022 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3023
setup_swap_map_and_extents(struct swap_info_struct * p,union swap_header * swap_header,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long maxpages,sector_t * span)3024 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3025 union swap_header *swap_header,
3026 unsigned char *swap_map,
3027 struct swap_cluster_info *cluster_info,
3028 unsigned long maxpages,
3029 sector_t *span)
3030 {
3031 unsigned int j, k;
3032 unsigned int nr_good_pages;
3033 int nr_extents;
3034 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3035 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3036 unsigned long i, idx;
3037
3038 nr_good_pages = maxpages - 1; /* omit header page */
3039
3040 cluster_list_init(&p->free_clusters);
3041 cluster_list_init(&p->discard_clusters);
3042
3043 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3044 unsigned int page_nr = swap_header->info.badpages[i];
3045 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3046 return -EINVAL;
3047 if (page_nr < maxpages) {
3048 swap_map[page_nr] = SWAP_MAP_BAD;
3049 nr_good_pages--;
3050 /*
3051 * Haven't marked the cluster free yet, no list
3052 * operation involved
3053 */
3054 inc_cluster_info_page(p, cluster_info, page_nr);
3055 }
3056 }
3057
3058 /* Haven't marked the cluster free yet, no list operation involved */
3059 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3060 inc_cluster_info_page(p, cluster_info, i);
3061
3062 if (nr_good_pages) {
3063 swap_map[0] = SWAP_MAP_BAD;
3064 /*
3065 * Not mark the cluster free yet, no list
3066 * operation involved
3067 */
3068 inc_cluster_info_page(p, cluster_info, 0);
3069 p->max = maxpages;
3070 p->pages = nr_good_pages;
3071 nr_extents = setup_swap_extents(p, span);
3072 if (nr_extents < 0)
3073 return nr_extents;
3074 nr_good_pages = p->pages;
3075 }
3076 if (!nr_good_pages) {
3077 pr_warn("Empty swap-file\n");
3078 return -EINVAL;
3079 }
3080
3081 if (!cluster_info)
3082 return nr_extents;
3083
3084
3085 /*
3086 * Reduce false cache line sharing between cluster_info and
3087 * sharing same address space.
3088 */
3089 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3090 j = (k + col) % SWAP_CLUSTER_COLS;
3091 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3092 idx = i * SWAP_CLUSTER_COLS + j;
3093 if (idx >= nr_clusters)
3094 continue;
3095 if (cluster_count(&cluster_info[idx]))
3096 continue;
3097 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3098 cluster_list_add_tail(&p->free_clusters, cluster_info,
3099 idx);
3100 }
3101 }
3102 return nr_extents;
3103 }
3104
3105 /*
3106 * Helper to sys_swapon determining if a given swap
3107 * backing device queue supports DISCARD operations.
3108 */
swap_discardable(struct swap_info_struct * si)3109 static bool swap_discardable(struct swap_info_struct *si)
3110 {
3111 struct request_queue *q = bdev_get_queue(si->bdev);
3112
3113 if (!q || !blk_queue_discard(q))
3114 return false;
3115
3116 return true;
3117 }
3118
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)3119 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3120 {
3121 struct swap_info_struct *p;
3122 struct filename *name;
3123 struct file *swap_file = NULL;
3124 struct address_space *mapping;
3125 int prio;
3126 int error;
3127 union swap_header *swap_header;
3128 int nr_extents;
3129 sector_t span;
3130 unsigned long maxpages;
3131 unsigned char *swap_map = NULL;
3132 struct swap_cluster_info *cluster_info = NULL;
3133 unsigned long *frontswap_map = NULL;
3134 struct page *page = NULL;
3135 struct inode *inode = NULL;
3136 bool inced_nr_rotate_swap = false;
3137
3138 if (swap_flags & ~SWAP_FLAGS_VALID)
3139 return -EINVAL;
3140
3141 if (!capable(CAP_SYS_ADMIN))
3142 return -EPERM;
3143
3144 if (!swap_avail_heads)
3145 return -ENOMEM;
3146
3147 p = alloc_swap_info();
3148 if (IS_ERR(p))
3149 return PTR_ERR(p);
3150
3151 INIT_WORK(&p->discard_work, swap_discard_work);
3152
3153 name = getname(specialfile);
3154 if (IS_ERR(name)) {
3155 error = PTR_ERR(name);
3156 name = NULL;
3157 goto bad_swap;
3158 }
3159 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3160 if (IS_ERR(swap_file)) {
3161 error = PTR_ERR(swap_file);
3162 swap_file = NULL;
3163 goto bad_swap;
3164 }
3165
3166 p->swap_file = swap_file;
3167 mapping = swap_file->f_mapping;
3168 inode = mapping->host;
3169
3170 error = claim_swapfile(p, inode);
3171 if (unlikely(error))
3172 goto bad_swap;
3173
3174 inode_lock(inode);
3175 if (IS_SWAPFILE(inode)) {
3176 error = -EBUSY;
3177 goto bad_swap_unlock_inode;
3178 }
3179 /*
3180 * Read the swap header.
3181 */
3182 if (!mapping->a_ops->readpage) {
3183 error = -EINVAL;
3184 goto bad_swap_unlock_inode;
3185 }
3186 page = read_mapping_page(mapping, 0, swap_file);
3187 if (IS_ERR(page)) {
3188 error = PTR_ERR(page);
3189 goto bad_swap_unlock_inode;
3190 }
3191 swap_header = kmap(page);
3192
3193 maxpages = read_swap_header(p, swap_header, inode);
3194 if (unlikely(!maxpages)) {
3195 error = -EINVAL;
3196 goto bad_swap_unlock_inode;
3197 }
3198
3199 /* OK, set up the swap map and apply the bad block list */
3200 swap_map = vzalloc(maxpages);
3201 if (!swap_map) {
3202 error = -ENOMEM;
3203 goto bad_swap_unlock_inode;
3204 }
3205
3206 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3207 p->flags |= SWP_STABLE_WRITES;
3208
3209 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3210 p->flags |= SWP_SYNCHRONOUS_IO;
3211
3212 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3213 int cpu;
3214 unsigned long ci, nr_cluster;
3215
3216 p->flags |= SWP_SOLIDSTATE;
3217 /*
3218 * select a random position to start with to help wear leveling
3219 * SSD
3220 */
3221 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3222 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3223
3224 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3225 GFP_KERNEL);
3226 if (!cluster_info) {
3227 error = -ENOMEM;
3228 goto bad_swap_unlock_inode;
3229 }
3230
3231 for (ci = 0; ci < nr_cluster; ci++)
3232 spin_lock_init(&((cluster_info + ci)->lock));
3233
3234 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3235 if (!p->percpu_cluster) {
3236 error = -ENOMEM;
3237 goto bad_swap_unlock_inode;
3238 }
3239 for_each_possible_cpu(cpu) {
3240 struct percpu_cluster *cluster;
3241 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3242 cluster_set_null(&cluster->index);
3243 }
3244 } else {
3245 atomic_inc(&nr_rotate_swap);
3246 inced_nr_rotate_swap = true;
3247 }
3248
3249 error = swap_cgroup_swapon(p->type, maxpages);
3250 if (error)
3251 goto bad_swap_unlock_inode;
3252
3253 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3254 cluster_info, maxpages, &span);
3255 if (unlikely(nr_extents < 0)) {
3256 error = nr_extents;
3257 goto bad_swap_unlock_inode;
3258 }
3259 /* frontswap enabled? set up bit-per-page map for frontswap */
3260 if (IS_ENABLED(CONFIG_FRONTSWAP))
3261 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3262 sizeof(long),
3263 GFP_KERNEL);
3264
3265 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3266 /*
3267 * When discard is enabled for swap with no particular
3268 * policy flagged, we set all swap discard flags here in
3269 * order to sustain backward compatibility with older
3270 * swapon(8) releases.
3271 */
3272 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3273 SWP_PAGE_DISCARD);
3274
3275 /*
3276 * By flagging sys_swapon, a sysadmin can tell us to
3277 * either do single-time area discards only, or to just
3278 * perform discards for released swap page-clusters.
3279 * Now it's time to adjust the p->flags accordingly.
3280 */
3281 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3282 p->flags &= ~SWP_PAGE_DISCARD;
3283 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3284 p->flags &= ~SWP_AREA_DISCARD;
3285
3286 /* issue a swapon-time discard if it's still required */
3287 if (p->flags & SWP_AREA_DISCARD) {
3288 int err = discard_swap(p);
3289 if (unlikely(err))
3290 pr_err("swapon: discard_swap(%p): %d\n",
3291 p, err);
3292 }
3293 }
3294
3295 error = init_swap_address_space(p->type, maxpages);
3296 if (error)
3297 goto bad_swap_unlock_inode;
3298
3299 /*
3300 * Flush any pending IO and dirty mappings before we start using this
3301 * swap device.
3302 */
3303 inode->i_flags |= S_SWAPFILE;
3304 error = inode_drain_writes(inode);
3305 if (error) {
3306 inode->i_flags &= ~S_SWAPFILE;
3307 goto free_swap_address_space;
3308 }
3309
3310 mutex_lock(&swapon_mutex);
3311 prio = -1;
3312 if (swap_flags & SWAP_FLAG_PREFER)
3313 prio =
3314 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3315 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3316
3317 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3318 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3319 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3320 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3321 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3322 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3323 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3324 (frontswap_map) ? "FS" : "");
3325
3326 mutex_unlock(&swapon_mutex);
3327 atomic_inc(&proc_poll_event);
3328 wake_up_interruptible(&proc_poll_wait);
3329
3330 error = 0;
3331 goto out;
3332 free_swap_address_space:
3333 exit_swap_address_space(p->type);
3334 bad_swap_unlock_inode:
3335 inode_unlock(inode);
3336 bad_swap:
3337 free_percpu(p->percpu_cluster);
3338 p->percpu_cluster = NULL;
3339 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3340 set_blocksize(p->bdev, p->old_block_size);
3341 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3342 }
3343 inode = NULL;
3344 destroy_swap_extents(p);
3345 swap_cgroup_swapoff(p->type);
3346 spin_lock(&swap_lock);
3347 p->swap_file = NULL;
3348 p->flags = 0;
3349 spin_unlock(&swap_lock);
3350 vfree(swap_map);
3351 kvfree(cluster_info);
3352 kvfree(frontswap_map);
3353 if (inced_nr_rotate_swap)
3354 atomic_dec(&nr_rotate_swap);
3355 if (swap_file)
3356 filp_close(swap_file, NULL);
3357 out:
3358 if (page && !IS_ERR(page)) {
3359 kunmap(page);
3360 put_page(page);
3361 }
3362 if (name)
3363 putname(name);
3364 if (inode)
3365 inode_unlock(inode);
3366 if (!error)
3367 enable_swap_slots_cache();
3368 return error;
3369 }
3370
si_swapinfo(struct sysinfo * val)3371 void si_swapinfo(struct sysinfo *val)
3372 {
3373 unsigned int type;
3374 unsigned long nr_to_be_unused = 0;
3375
3376 spin_lock(&swap_lock);
3377 for (type = 0; type < nr_swapfiles; type++) {
3378 struct swap_info_struct *si = swap_info[type];
3379
3380 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3381 nr_to_be_unused += si->inuse_pages;
3382 }
3383 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3384 val->totalswap = total_swap_pages + nr_to_be_unused;
3385 spin_unlock(&swap_lock);
3386 }
3387
3388 /*
3389 * Verify that a swap entry is valid and increment its swap map count.
3390 *
3391 * Returns error code in following case.
3392 * - success -> 0
3393 * - swp_entry is invalid -> EINVAL
3394 * - swp_entry is migration entry -> EINVAL
3395 * - swap-cache reference is requested but there is already one. -> EEXIST
3396 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3397 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3398 */
__swap_duplicate(swp_entry_t entry,unsigned char usage)3399 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3400 {
3401 struct swap_info_struct *p;
3402 struct swap_cluster_info *ci;
3403 unsigned long offset;
3404 unsigned char count;
3405 unsigned char has_cache;
3406 int err = -EINVAL;
3407
3408 p = get_swap_device(entry);
3409 if (!p)
3410 goto out;
3411
3412 offset = swp_offset(entry);
3413 ci = lock_cluster_or_swap_info(p, offset);
3414
3415 count = p->swap_map[offset];
3416
3417 /*
3418 * swapin_readahead() doesn't check if a swap entry is valid, so the
3419 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3420 */
3421 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3422 err = -ENOENT;
3423 goto unlock_out;
3424 }
3425
3426 has_cache = count & SWAP_HAS_CACHE;
3427 count &= ~SWAP_HAS_CACHE;
3428 err = 0;
3429
3430 if (usage == SWAP_HAS_CACHE) {
3431
3432 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3433 if (!has_cache && count)
3434 has_cache = SWAP_HAS_CACHE;
3435 else if (has_cache) /* someone else added cache */
3436 err = -EEXIST;
3437 else /* no users remaining */
3438 err = -ENOENT;
3439
3440 } else if (count || has_cache) {
3441
3442 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3443 count += usage;
3444 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3445 err = -EINVAL;
3446 else if (swap_count_continued(p, offset, count))
3447 count = COUNT_CONTINUED;
3448 else
3449 err = -ENOMEM;
3450 } else
3451 err = -ENOENT; /* unused swap entry */
3452
3453 p->swap_map[offset] = count | has_cache;
3454
3455 unlock_out:
3456 unlock_cluster_or_swap_info(p, ci);
3457 out:
3458 if (p)
3459 put_swap_device(p);
3460 return err;
3461 }
3462
3463 /*
3464 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3465 * (in which case its reference count is never incremented).
3466 */
swap_shmem_alloc(swp_entry_t entry)3467 void swap_shmem_alloc(swp_entry_t entry)
3468 {
3469 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3470 }
3471
3472 /*
3473 * Increase reference count of swap entry by 1.
3474 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3475 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3476 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3477 * might occur if a page table entry has got corrupted.
3478 */
swap_duplicate(swp_entry_t entry)3479 int swap_duplicate(swp_entry_t entry)
3480 {
3481 int err = 0;
3482
3483 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3484 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3485 return err;
3486 }
3487
3488 /*
3489 * @entry: swap entry for which we allocate swap cache.
3490 *
3491 * Called when allocating swap cache for existing swap entry,
3492 * This can return error codes. Returns 0 at success.
3493 * -EBUSY means there is a swap cache.
3494 * Note: return code is different from swap_duplicate().
3495 */
swapcache_prepare(swp_entry_t entry)3496 int swapcache_prepare(swp_entry_t entry)
3497 {
3498 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3499 }
3500
swp_swap_info(swp_entry_t entry)3501 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3502 {
3503 return swap_type_to_swap_info(swp_type(entry));
3504 }
3505
page_swap_info(struct page * page)3506 struct swap_info_struct *page_swap_info(struct page *page)
3507 {
3508 swp_entry_t entry = { .val = page_private(page) };
3509 return swp_swap_info(entry);
3510 }
3511
3512 /*
3513 * out-of-line __page_file_ methods to avoid include hell.
3514 */
__page_file_mapping(struct page * page)3515 struct address_space *__page_file_mapping(struct page *page)
3516 {
3517 return page_swap_info(page)->swap_file->f_mapping;
3518 }
3519 EXPORT_SYMBOL_GPL(__page_file_mapping);
3520
__page_file_index(struct page * page)3521 pgoff_t __page_file_index(struct page *page)
3522 {
3523 swp_entry_t swap = { .val = page_private(page) };
3524 return swp_offset(swap);
3525 }
3526 EXPORT_SYMBOL_GPL(__page_file_index);
3527
3528 /*
3529 * add_swap_count_continuation - called when a swap count is duplicated
3530 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3531 * page of the original vmalloc'ed swap_map, to hold the continuation count
3532 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3533 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3534 *
3535 * These continuation pages are seldom referenced: the common paths all work
3536 * on the original swap_map, only referring to a continuation page when the
3537 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3538 *
3539 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3540 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3541 * can be called after dropping locks.
3542 */
add_swap_count_continuation(swp_entry_t entry,gfp_t gfp_mask)3543 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3544 {
3545 struct swap_info_struct *si;
3546 struct swap_cluster_info *ci;
3547 struct page *head;
3548 struct page *page;
3549 struct page *list_page;
3550 pgoff_t offset;
3551 unsigned char count;
3552 int ret = 0;
3553
3554 /*
3555 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3556 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3557 */
3558 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3559
3560 si = get_swap_device(entry);
3561 if (!si) {
3562 /*
3563 * An acceptable race has occurred since the failing
3564 * __swap_duplicate(): the swap device may be swapoff
3565 */
3566 goto outer;
3567 }
3568 spin_lock(&si->lock);
3569
3570 offset = swp_offset(entry);
3571
3572 ci = lock_cluster(si, offset);
3573
3574 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3575
3576 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3577 /*
3578 * The higher the swap count, the more likely it is that tasks
3579 * will race to add swap count continuation: we need to avoid
3580 * over-provisioning.
3581 */
3582 goto out;
3583 }
3584
3585 if (!page) {
3586 ret = -ENOMEM;
3587 goto out;
3588 }
3589
3590 /*
3591 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3592 * no architecture is using highmem pages for kernel page tables: so it
3593 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3594 */
3595 head = vmalloc_to_page(si->swap_map + offset);
3596 offset &= ~PAGE_MASK;
3597
3598 spin_lock(&si->cont_lock);
3599 /*
3600 * Page allocation does not initialize the page's lru field,
3601 * but it does always reset its private field.
3602 */
3603 if (!page_private(head)) {
3604 BUG_ON(count & COUNT_CONTINUED);
3605 INIT_LIST_HEAD(&head->lru);
3606 set_page_private(head, SWP_CONTINUED);
3607 si->flags |= SWP_CONTINUED;
3608 }
3609
3610 list_for_each_entry(list_page, &head->lru, lru) {
3611 unsigned char *map;
3612
3613 /*
3614 * If the previous map said no continuation, but we've found
3615 * a continuation page, free our allocation and use this one.
3616 */
3617 if (!(count & COUNT_CONTINUED))
3618 goto out_unlock_cont;
3619
3620 map = kmap_atomic(list_page) + offset;
3621 count = *map;
3622 kunmap_atomic(map);
3623
3624 /*
3625 * If this continuation count now has some space in it,
3626 * free our allocation and use this one.
3627 */
3628 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3629 goto out_unlock_cont;
3630 }
3631
3632 list_add_tail(&page->lru, &head->lru);
3633 page = NULL; /* now it's attached, don't free it */
3634 out_unlock_cont:
3635 spin_unlock(&si->cont_lock);
3636 out:
3637 unlock_cluster(ci);
3638 spin_unlock(&si->lock);
3639 put_swap_device(si);
3640 outer:
3641 if (page)
3642 __free_page(page);
3643 return ret;
3644 }
3645
3646 /*
3647 * swap_count_continued - when the original swap_map count is incremented
3648 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3649 * into, carry if so, or else fail until a new continuation page is allocated;
3650 * when the original swap_map count is decremented from 0 with continuation,
3651 * borrow from the continuation and report whether it still holds more.
3652 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3653 * lock.
3654 */
swap_count_continued(struct swap_info_struct * si,pgoff_t offset,unsigned char count)3655 static bool swap_count_continued(struct swap_info_struct *si,
3656 pgoff_t offset, unsigned char count)
3657 {
3658 struct page *head;
3659 struct page *page;
3660 unsigned char *map;
3661 bool ret;
3662
3663 head = vmalloc_to_page(si->swap_map + offset);
3664 if (page_private(head) != SWP_CONTINUED) {
3665 BUG_ON(count & COUNT_CONTINUED);
3666 return false; /* need to add count continuation */
3667 }
3668
3669 spin_lock(&si->cont_lock);
3670 offset &= ~PAGE_MASK;
3671 page = list_entry(head->lru.next, struct page, lru);
3672 map = kmap_atomic(page) + offset;
3673
3674 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3675 goto init_map; /* jump over SWAP_CONT_MAX checks */
3676
3677 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3678 /*
3679 * Think of how you add 1 to 999
3680 */
3681 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3682 kunmap_atomic(map);
3683 page = list_entry(page->lru.next, struct page, lru);
3684 BUG_ON(page == head);
3685 map = kmap_atomic(page) + offset;
3686 }
3687 if (*map == SWAP_CONT_MAX) {
3688 kunmap_atomic(map);
3689 page = list_entry(page->lru.next, struct page, lru);
3690 if (page == head) {
3691 ret = false; /* add count continuation */
3692 goto out;
3693 }
3694 map = kmap_atomic(page) + offset;
3695 init_map: *map = 0; /* we didn't zero the page */
3696 }
3697 *map += 1;
3698 kunmap_atomic(map);
3699 page = list_entry(page->lru.prev, struct page, lru);
3700 while (page != head) {
3701 map = kmap_atomic(page) + offset;
3702 *map = COUNT_CONTINUED;
3703 kunmap_atomic(map);
3704 page = list_entry(page->lru.prev, struct page, lru);
3705 }
3706 ret = true; /* incremented */
3707
3708 } else { /* decrementing */
3709 /*
3710 * Think of how you subtract 1 from 1000
3711 */
3712 BUG_ON(count != COUNT_CONTINUED);
3713 while (*map == COUNT_CONTINUED) {
3714 kunmap_atomic(map);
3715 page = list_entry(page->lru.next, struct page, lru);
3716 BUG_ON(page == head);
3717 map = kmap_atomic(page) + offset;
3718 }
3719 BUG_ON(*map == 0);
3720 *map -= 1;
3721 if (*map == 0)
3722 count = 0;
3723 kunmap_atomic(map);
3724 page = list_entry(page->lru.prev, struct page, lru);
3725 while (page != head) {
3726 map = kmap_atomic(page) + offset;
3727 *map = SWAP_CONT_MAX | count;
3728 count = COUNT_CONTINUED;
3729 kunmap_atomic(map);
3730 page = list_entry(page->lru.prev, struct page, lru);
3731 }
3732 ret = count == COUNT_CONTINUED;
3733 }
3734 out:
3735 spin_unlock(&si->cont_lock);
3736 return ret;
3737 }
3738
3739 /*
3740 * free_swap_count_continuations - swapoff free all the continuation pages
3741 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3742 */
free_swap_count_continuations(struct swap_info_struct * si)3743 static void free_swap_count_continuations(struct swap_info_struct *si)
3744 {
3745 pgoff_t offset;
3746
3747 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3748 struct page *head;
3749 head = vmalloc_to_page(si->swap_map + offset);
3750 if (page_private(head)) {
3751 struct page *page, *next;
3752
3753 list_for_each_entry_safe(page, next, &head->lru, lru) {
3754 list_del(&page->lru);
3755 __free_page(page);
3756 }
3757 }
3758 }
3759 }
3760
3761 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
mem_cgroup_throttle_swaprate(struct mem_cgroup * memcg,int node,gfp_t gfp_mask)3762 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3763 gfp_t gfp_mask)
3764 {
3765 struct swap_info_struct *si, *next;
3766 if (!(gfp_mask & __GFP_IO) || !memcg)
3767 return;
3768
3769 if (!blk_cgroup_congested())
3770 return;
3771
3772 /*
3773 * We've already scheduled a throttle, avoid taking the global swap
3774 * lock.
3775 */
3776 if (current->throttle_queue)
3777 return;
3778
3779 spin_lock(&swap_avail_lock);
3780 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3781 avail_lists[node]) {
3782 if (si->bdev) {
3783 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3784 true);
3785 break;
3786 }
3787 }
3788 spin_unlock(&swap_avail_lock);
3789 }
3790 #endif
3791
swapfile_init(void)3792 static int __init swapfile_init(void)
3793 {
3794 int nid;
3795
3796 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3797 GFP_KERNEL);
3798 if (!swap_avail_heads) {
3799 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3800 return -ENOMEM;
3801 }
3802
3803 for_each_node(nid)
3804 plist_head_init(&swap_avail_heads[nid]);
3805
3806 return 0;
3807 }
3808 subsys_initcall(swapfile_init);
3809