1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/namei.h>
48
49 /* [Feb-1997 T. Schoebel-Theuer]
50 * Fundamental changes in the pathname lookup mechanisms (namei)
51 * were necessary because of omirr. The reason is that omirr needs
52 * to know the _real_ pathname, not the user-supplied one, in case
53 * of symlinks (and also when transname replacements occur).
54 *
55 * The new code replaces the old recursive symlink resolution with
56 * an iterative one (in case of non-nested symlink chains). It does
57 * this with calls to <fs>_follow_link().
58 * As a side effect, dir_namei(), _namei() and follow_link() are now
59 * replaced with a single function lookup_dentry() that can handle all
60 * the special cases of the former code.
61 *
62 * With the new dcache, the pathname is stored at each inode, at least as
63 * long as the refcount of the inode is positive. As a side effect, the
64 * size of the dcache depends on the inode cache and thus is dynamic.
65 *
66 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
67 * resolution to correspond with current state of the code.
68 *
69 * Note that the symlink resolution is not *completely* iterative.
70 * There is still a significant amount of tail- and mid- recursion in
71 * the algorithm. Also, note that <fs>_readlink() is not used in
72 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
73 * may return different results than <fs>_follow_link(). Many virtual
74 * filesystems (including /proc) exhibit this behavior.
75 */
76
77 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
78 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
79 * and the name already exists in form of a symlink, try to create the new
80 * name indicated by the symlink. The old code always complained that the
81 * name already exists, due to not following the symlink even if its target
82 * is nonexistent. The new semantics affects also mknod() and link() when
83 * the name is a symlink pointing to a non-existent name.
84 *
85 * I don't know which semantics is the right one, since I have no access
86 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
87 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
88 * "old" one. Personally, I think the new semantics is much more logical.
89 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
90 * file does succeed in both HP-UX and SunOs, but not in Solaris
91 * and in the old Linux semantics.
92 */
93
94 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
95 * semantics. See the comments in "open_namei" and "do_link" below.
96 *
97 * [10-Sep-98 Alan Modra] Another symlink change.
98 */
99
100 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
101 * inside the path - always follow.
102 * in the last component in creation/removal/renaming - never follow.
103 * if LOOKUP_FOLLOW passed - follow.
104 * if the pathname has trailing slashes - follow.
105 * otherwise - don't follow.
106 * (applied in that order).
107 *
108 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
109 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
110 * During the 2.4 we need to fix the userland stuff depending on it -
111 * hopefully we will be able to get rid of that wart in 2.5. So far only
112 * XEmacs seems to be relying on it...
113 */
114 /*
115 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
116 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
117 * any extra contention...
118 */
119
120 /* In order to reduce some races, while at the same time doing additional
121 * checking and hopefully speeding things up, we copy filenames to the
122 * kernel data space before using them..
123 *
124 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
125 * PATH_MAX includes the nul terminator --RR.
126 */
127
128 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
129
130 struct filename *
getname_flags(const char __user * filename,int flags,int * empty)131 getname_flags(const char __user *filename, int flags, int *empty)
132 {
133 struct filename *result;
134 char *kname;
135 int len;
136
137 result = audit_reusename(filename);
138 if (result)
139 return result;
140
141 result = __getname();
142 if (unlikely(!result))
143 return ERR_PTR(-ENOMEM);
144
145 /*
146 * First, try to embed the struct filename inside the names_cache
147 * allocation
148 */
149 kname = (char *)result->iname;
150 result->name = kname;
151
152 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
153 if (unlikely(len < 0)) {
154 __putname(result);
155 return ERR_PTR(len);
156 }
157
158 /*
159 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
160 * separate struct filename so we can dedicate the entire
161 * names_cache allocation for the pathname, and re-do the copy from
162 * userland.
163 */
164 if (unlikely(len == EMBEDDED_NAME_MAX)) {
165 const size_t size = offsetof(struct filename, iname[1]);
166 kname = (char *)result;
167
168 /*
169 * size is chosen that way we to guarantee that
170 * result->iname[0] is within the same object and that
171 * kname can't be equal to result->iname, no matter what.
172 */
173 result = kzalloc(size, GFP_KERNEL);
174 if (unlikely(!result)) {
175 __putname(kname);
176 return ERR_PTR(-ENOMEM);
177 }
178 result->name = kname;
179 len = strncpy_from_user(kname, filename, PATH_MAX);
180 if (unlikely(len < 0)) {
181 __putname(kname);
182 kfree(result);
183 return ERR_PTR(len);
184 }
185 if (unlikely(len == PATH_MAX)) {
186 __putname(kname);
187 kfree(result);
188 return ERR_PTR(-ENAMETOOLONG);
189 }
190 }
191
192 result->refcnt = 1;
193 /* The empty path is special. */
194 if (unlikely(!len)) {
195 if (empty)
196 *empty = 1;
197 if (!(flags & LOOKUP_EMPTY)) {
198 putname(result);
199 return ERR_PTR(-ENOENT);
200 }
201 }
202
203 result->uptr = filename;
204 result->aname = NULL;
205 audit_getname(result);
206 return result;
207 }
208
209 struct filename *
getname(const char __user * filename)210 getname(const char __user * filename)
211 {
212 return getname_flags(filename, 0, NULL);
213 }
214
215 struct filename *
getname_kernel(const char * filename)216 getname_kernel(const char * filename)
217 {
218 struct filename *result;
219 int len = strlen(filename) + 1;
220
221 result = __getname();
222 if (unlikely(!result))
223 return ERR_PTR(-ENOMEM);
224
225 if (len <= EMBEDDED_NAME_MAX) {
226 result->name = (char *)result->iname;
227 } else if (len <= PATH_MAX) {
228 const size_t size = offsetof(struct filename, iname[1]);
229 struct filename *tmp;
230
231 tmp = kmalloc(size, GFP_KERNEL);
232 if (unlikely(!tmp)) {
233 __putname(result);
234 return ERR_PTR(-ENOMEM);
235 }
236 tmp->name = (char *)result;
237 result = tmp;
238 } else {
239 __putname(result);
240 return ERR_PTR(-ENAMETOOLONG);
241 }
242 memcpy((char *)result->name, filename, len);
243 result->uptr = NULL;
244 result->aname = NULL;
245 result->refcnt = 1;
246 audit_getname(result);
247
248 return result;
249 }
250
putname(struct filename * name)251 void putname(struct filename *name)
252 {
253 BUG_ON(name->refcnt <= 0);
254
255 if (--name->refcnt > 0)
256 return;
257
258 if (name->name != name->iname) {
259 __putname(name->name);
260 kfree(name);
261 } else
262 __putname(name);
263 }
264
check_acl(struct inode * inode,int mask)265 static int check_acl(struct inode *inode, int mask)
266 {
267 #ifdef CONFIG_FS_POSIX_ACL
268 struct posix_acl *acl;
269
270 if (mask & MAY_NOT_BLOCK) {
271 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
272 if (!acl)
273 return -EAGAIN;
274 /* no ->get_acl() calls in RCU mode... */
275 if (is_uncached_acl(acl))
276 return -ECHILD;
277 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
278 }
279
280 acl = get_acl(inode, ACL_TYPE_ACCESS);
281 if (IS_ERR(acl))
282 return PTR_ERR(acl);
283 if (acl) {
284 int error = posix_acl_permission(inode, acl, mask);
285 posix_acl_release(acl);
286 return error;
287 }
288 #endif
289
290 return -EAGAIN;
291 }
292
293 /*
294 * This does the basic permission checking
295 */
acl_permission_check(struct inode * inode,int mask)296 static int acl_permission_check(struct inode *inode, int mask)
297 {
298 unsigned int mode = inode->i_mode;
299
300 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
301 mode >>= 6;
302 else {
303 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
304 int error = check_acl(inode, mask);
305 if (error != -EAGAIN)
306 return error;
307 }
308
309 if (in_group_p(inode->i_gid))
310 mode >>= 3;
311 }
312
313 /*
314 * If the DACs are ok we don't need any capability check.
315 */
316 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
317 return 0;
318 return -EACCES;
319 }
320
321 /**
322 * generic_permission - check for access rights on a Posix-like filesystem
323 * @inode: inode to check access rights for
324 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
325 *
326 * Used to check for read/write/execute permissions on a file.
327 * We use "fsuid" for this, letting us set arbitrary permissions
328 * for filesystem access without changing the "normal" uids which
329 * are used for other things.
330 *
331 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
332 * request cannot be satisfied (eg. requires blocking or too much complexity).
333 * It would then be called again in ref-walk mode.
334 */
generic_permission(struct inode * inode,int mask)335 int generic_permission(struct inode *inode, int mask)
336 {
337 int ret;
338
339 /*
340 * Do the basic permission checks.
341 */
342 ret = acl_permission_check(inode, mask);
343 if (ret != -EACCES)
344 return ret;
345
346 if (S_ISDIR(inode->i_mode)) {
347 /* DACs are overridable for directories */
348 if (!(mask & MAY_WRITE))
349 if (capable_wrt_inode_uidgid(inode,
350 CAP_DAC_READ_SEARCH))
351 return 0;
352 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
353 return 0;
354 return -EACCES;
355 }
356
357 /*
358 * Searching includes executable on directories, else just read.
359 */
360 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
361 if (mask == MAY_READ)
362 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
363 return 0;
364 /*
365 * Read/write DACs are always overridable.
366 * Executable DACs are overridable when there is
367 * at least one exec bit set.
368 */
369 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
370 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
371 return 0;
372
373 return -EACCES;
374 }
375 EXPORT_SYMBOL(generic_permission);
376
377 /*
378 * We _really_ want to just do "generic_permission()" without
379 * even looking at the inode->i_op values. So we keep a cache
380 * flag in inode->i_opflags, that says "this has not special
381 * permission function, use the fast case".
382 */
do_inode_permission(struct inode * inode,int mask)383 static inline int do_inode_permission(struct inode *inode, int mask)
384 {
385 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
386 if (likely(inode->i_op->permission))
387 return inode->i_op->permission(inode, mask);
388
389 /* This gets set once for the inode lifetime */
390 spin_lock(&inode->i_lock);
391 inode->i_opflags |= IOP_FASTPERM;
392 spin_unlock(&inode->i_lock);
393 }
394 return generic_permission(inode, mask);
395 }
396
397 /**
398 * sb_permission - Check superblock-level permissions
399 * @sb: Superblock of inode to check permission on
400 * @inode: Inode to check permission on
401 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
402 *
403 * Separate out file-system wide checks from inode-specific permission checks.
404 */
sb_permission(struct super_block * sb,struct inode * inode,int mask)405 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
406 {
407 if (unlikely(mask & MAY_WRITE)) {
408 umode_t mode = inode->i_mode;
409
410 /* Nobody gets write access to a read-only fs. */
411 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
412 return -EROFS;
413 }
414 return 0;
415 }
416
417 /**
418 * inode_permission - Check for access rights to a given inode
419 * @inode: Inode to check permission on
420 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
421 *
422 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
423 * this, letting us set arbitrary permissions for filesystem access without
424 * changing the "normal" UIDs which are used for other things.
425 *
426 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
427 */
inode_permission(struct inode * inode,int mask)428 int inode_permission(struct inode *inode, int mask)
429 {
430 int retval;
431
432 retval = sb_permission(inode->i_sb, inode, mask);
433 if (retval)
434 return retval;
435
436 if (unlikely(mask & MAY_WRITE)) {
437 /*
438 * Nobody gets write access to an immutable file.
439 */
440 if (IS_IMMUTABLE(inode))
441 return -EPERM;
442
443 /*
444 * Updating mtime will likely cause i_uid and i_gid to be
445 * written back improperly if their true value is unknown
446 * to the vfs.
447 */
448 if (HAS_UNMAPPED_ID(inode))
449 return -EACCES;
450 }
451
452 retval = do_inode_permission(inode, mask);
453 if (retval)
454 return retval;
455
456 retval = devcgroup_inode_permission(inode, mask);
457 if (retval)
458 return retval;
459
460 return security_inode_permission(inode, mask);
461 }
462 EXPORT_SYMBOL(inode_permission);
463
464 /**
465 * path_get - get a reference to a path
466 * @path: path to get the reference to
467 *
468 * Given a path increment the reference count to the dentry and the vfsmount.
469 */
path_get(const struct path * path)470 void path_get(const struct path *path)
471 {
472 mntget(path->mnt);
473 dget(path->dentry);
474 }
475 EXPORT_SYMBOL(path_get);
476
477 /**
478 * path_put - put a reference to a path
479 * @path: path to put the reference to
480 *
481 * Given a path decrement the reference count to the dentry and the vfsmount.
482 */
path_put(const struct path * path)483 void path_put(const struct path *path)
484 {
485 dput(path->dentry);
486 mntput(path->mnt);
487 }
488 EXPORT_SYMBOL(path_put);
489
490 #define EMBEDDED_LEVELS 2
491 struct nameidata {
492 struct path path;
493 struct qstr last;
494 struct path root;
495 struct inode *inode; /* path.dentry.d_inode */
496 unsigned int flags;
497 unsigned seq, m_seq;
498 int last_type;
499 unsigned depth;
500 int total_link_count;
501 struct saved {
502 struct path link;
503 struct delayed_call done;
504 const char *name;
505 unsigned seq;
506 } *stack, internal[EMBEDDED_LEVELS];
507 struct filename *name;
508 struct nameidata *saved;
509 struct inode *link_inode;
510 unsigned root_seq;
511 int dfd;
512 } __randomize_layout;
513
set_nameidata(struct nameidata * p,int dfd,struct filename * name)514 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
515 {
516 struct nameidata *old = current->nameidata;
517 p->stack = p->internal;
518 p->dfd = dfd;
519 p->name = name;
520 p->total_link_count = old ? old->total_link_count : 0;
521 p->saved = old;
522 current->nameidata = p;
523 }
524
restore_nameidata(void)525 static void restore_nameidata(void)
526 {
527 struct nameidata *now = current->nameidata, *old = now->saved;
528
529 current->nameidata = old;
530 if (old)
531 old->total_link_count = now->total_link_count;
532 if (now->stack != now->internal)
533 kfree(now->stack);
534 }
535
__nd_alloc_stack(struct nameidata * nd)536 static int __nd_alloc_stack(struct nameidata *nd)
537 {
538 struct saved *p;
539
540 if (nd->flags & LOOKUP_RCU) {
541 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
542 GFP_ATOMIC);
543 if (unlikely(!p))
544 return -ECHILD;
545 } else {
546 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
547 GFP_KERNEL);
548 if (unlikely(!p))
549 return -ENOMEM;
550 }
551 memcpy(p, nd->internal, sizeof(nd->internal));
552 nd->stack = p;
553 return 0;
554 }
555
556 /**
557 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
558 * @path: nameidate to verify
559 *
560 * Rename can sometimes move a file or directory outside of a bind
561 * mount, path_connected allows those cases to be detected.
562 */
path_connected(const struct path * path)563 static bool path_connected(const struct path *path)
564 {
565 struct vfsmount *mnt = path->mnt;
566 struct super_block *sb = mnt->mnt_sb;
567
568 /* Bind mounts and multi-root filesystems can have disconnected paths */
569 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
570 return true;
571
572 return is_subdir(path->dentry, mnt->mnt_root);
573 }
574
nd_alloc_stack(struct nameidata * nd)575 static inline int nd_alloc_stack(struct nameidata *nd)
576 {
577 if (likely(nd->depth != EMBEDDED_LEVELS))
578 return 0;
579 if (likely(nd->stack != nd->internal))
580 return 0;
581 return __nd_alloc_stack(nd);
582 }
583
drop_links(struct nameidata * nd)584 static void drop_links(struct nameidata *nd)
585 {
586 int i = nd->depth;
587 while (i--) {
588 struct saved *last = nd->stack + i;
589 do_delayed_call(&last->done);
590 clear_delayed_call(&last->done);
591 }
592 }
593
terminate_walk(struct nameidata * nd)594 static void terminate_walk(struct nameidata *nd)
595 {
596 drop_links(nd);
597 if (!(nd->flags & LOOKUP_RCU)) {
598 int i;
599 path_put(&nd->path);
600 for (i = 0; i < nd->depth; i++)
601 path_put(&nd->stack[i].link);
602 if (nd->flags & LOOKUP_ROOT_GRABBED) {
603 path_put(&nd->root);
604 nd->flags &= ~LOOKUP_ROOT_GRABBED;
605 }
606 } else {
607 nd->flags &= ~LOOKUP_RCU;
608 rcu_read_unlock();
609 }
610 nd->depth = 0;
611 }
612
613 /* path_put is needed afterwards regardless of success or failure */
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)614 static bool legitimize_path(struct nameidata *nd,
615 struct path *path, unsigned seq)
616 {
617 int res = __legitimize_mnt(path->mnt, nd->m_seq);
618 if (unlikely(res)) {
619 if (res > 0)
620 path->mnt = NULL;
621 path->dentry = NULL;
622 return false;
623 }
624 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
625 path->dentry = NULL;
626 return false;
627 }
628 return !read_seqcount_retry(&path->dentry->d_seq, seq);
629 }
630
legitimize_links(struct nameidata * nd)631 static bool legitimize_links(struct nameidata *nd)
632 {
633 int i;
634 for (i = 0; i < nd->depth; i++) {
635 struct saved *last = nd->stack + i;
636 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
637 drop_links(nd);
638 nd->depth = i + 1;
639 return false;
640 }
641 }
642 return true;
643 }
644
legitimize_root(struct nameidata * nd)645 static bool legitimize_root(struct nameidata *nd)
646 {
647 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
648 return true;
649 nd->flags |= LOOKUP_ROOT_GRABBED;
650 return legitimize_path(nd, &nd->root, nd->root_seq);
651 }
652
653 /*
654 * Path walking has 2 modes, rcu-walk and ref-walk (see
655 * Documentation/filesystems/path-lookup.txt). In situations when we can't
656 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
657 * normal reference counts on dentries and vfsmounts to transition to ref-walk
658 * mode. Refcounts are grabbed at the last known good point before rcu-walk
659 * got stuck, so ref-walk may continue from there. If this is not successful
660 * (eg. a seqcount has changed), then failure is returned and it's up to caller
661 * to restart the path walk from the beginning in ref-walk mode.
662 */
663
664 /**
665 * unlazy_walk - try to switch to ref-walk mode.
666 * @nd: nameidata pathwalk data
667 * Returns: 0 on success, -ECHILD on failure
668 *
669 * unlazy_walk attempts to legitimize the current nd->path and nd->root
670 * for ref-walk mode.
671 * Must be called from rcu-walk context.
672 * Nothing should touch nameidata between unlazy_walk() failure and
673 * terminate_walk().
674 */
unlazy_walk(struct nameidata * nd)675 static int unlazy_walk(struct nameidata *nd)
676 {
677 struct dentry *parent = nd->path.dentry;
678
679 BUG_ON(!(nd->flags & LOOKUP_RCU));
680
681 nd->flags &= ~LOOKUP_RCU;
682 if (unlikely(!legitimize_links(nd)))
683 goto out1;
684 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
685 goto out;
686 if (unlikely(!legitimize_root(nd)))
687 goto out;
688 rcu_read_unlock();
689 BUG_ON(nd->inode != parent->d_inode);
690 return 0;
691
692 out1:
693 nd->path.mnt = NULL;
694 nd->path.dentry = NULL;
695 out:
696 rcu_read_unlock();
697 return -ECHILD;
698 }
699
700 /**
701 * unlazy_child - try to switch to ref-walk mode.
702 * @nd: nameidata pathwalk data
703 * @dentry: child of nd->path.dentry
704 * @seq: seq number to check dentry against
705 * Returns: 0 on success, -ECHILD on failure
706 *
707 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
708 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
709 * @nd. Must be called from rcu-walk context.
710 * Nothing should touch nameidata between unlazy_child() failure and
711 * terminate_walk().
712 */
unlazy_child(struct nameidata * nd,struct dentry * dentry,unsigned seq)713 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
714 {
715 BUG_ON(!(nd->flags & LOOKUP_RCU));
716
717 nd->flags &= ~LOOKUP_RCU;
718 if (unlikely(!legitimize_links(nd)))
719 goto out2;
720 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
721 goto out2;
722 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
723 goto out1;
724
725 /*
726 * We need to move both the parent and the dentry from the RCU domain
727 * to be properly refcounted. And the sequence number in the dentry
728 * validates *both* dentry counters, since we checked the sequence
729 * number of the parent after we got the child sequence number. So we
730 * know the parent must still be valid if the child sequence number is
731 */
732 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
733 goto out;
734 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
735 goto out_dput;
736 /*
737 * Sequence counts matched. Now make sure that the root is
738 * still valid and get it if required.
739 */
740 if (unlikely(!legitimize_root(nd)))
741 goto out_dput;
742 rcu_read_unlock();
743 return 0;
744
745 out2:
746 nd->path.mnt = NULL;
747 out1:
748 nd->path.dentry = NULL;
749 out:
750 rcu_read_unlock();
751 return -ECHILD;
752 out_dput:
753 rcu_read_unlock();
754 dput(dentry);
755 return -ECHILD;
756 }
757
d_revalidate(struct dentry * dentry,unsigned int flags)758 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
759 {
760 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
761 return dentry->d_op->d_revalidate(dentry, flags);
762 else
763 return 1;
764 }
765
766 #define INIT_PATH_SIZE 64
767
success_walk_trace(struct nameidata * nd)768 static void success_walk_trace(struct nameidata *nd)
769 {
770 struct path *pt = &nd->path;
771 struct inode *i = nd->inode;
772 char buf[INIT_PATH_SIZE], *try_buf;
773 int cur_path_size;
774 char *p;
775
776 /* When eBPF/ tracepoint is disabled, keep overhead low. */
777 if (!trace_inodepath_enabled())
778 return;
779
780 /* First try stack allocated buffer. */
781 try_buf = buf;
782 cur_path_size = INIT_PATH_SIZE;
783
784 while (cur_path_size <= PATH_MAX) {
785 /* Free previous heap allocation if we are now trying
786 * a second or later heap allocation.
787 */
788 if (try_buf != buf)
789 kfree(try_buf);
790
791 /* All but the first alloc are on the heap. */
792 if (cur_path_size != INIT_PATH_SIZE) {
793 try_buf = kmalloc(cur_path_size, GFP_KERNEL);
794 if (!try_buf) {
795 try_buf = buf;
796 sprintf(try_buf, "error:buf_alloc_failed");
797 break;
798 }
799 }
800
801 p = d_path(pt, try_buf, cur_path_size);
802
803 if (!IS_ERR(p)) {
804 char *end = mangle_path(try_buf, p, "\n");
805
806 if (end) {
807 try_buf[end - try_buf] = 0;
808 break;
809 } else {
810 /* On mangle errors, double path size
811 * till PATH_MAX.
812 */
813 cur_path_size = cur_path_size << 1;
814 continue;
815 }
816 }
817
818 if (PTR_ERR(p) == -ENAMETOOLONG) {
819 /* If d_path complains that name is too long,
820 * then double path size till PATH_MAX.
821 */
822 cur_path_size = cur_path_size << 1;
823 continue;
824 }
825
826 sprintf(try_buf, "error:d_path_failed_%lu",
827 -1 * PTR_ERR(p));
828 break;
829 }
830
831 if (cur_path_size > PATH_MAX)
832 sprintf(try_buf, "error:d_path_name_too_long");
833
834 trace_inodepath(i, try_buf);
835
836 if (try_buf != buf)
837 kfree(try_buf);
838 return;
839 }
840
841 /**
842 * complete_walk - successful completion of path walk
843 * @nd: pointer nameidata
844 *
845 * If we had been in RCU mode, drop out of it and legitimize nd->path.
846 * Revalidate the final result, unless we'd already done that during
847 * the path walk or the filesystem doesn't ask for it. Return 0 on
848 * success, -error on failure. In case of failure caller does not
849 * need to drop nd->path.
850 */
complete_walk(struct nameidata * nd)851 static int complete_walk(struct nameidata *nd)
852 {
853 struct dentry *dentry = nd->path.dentry;
854 int status;
855
856 if (nd->flags & LOOKUP_RCU) {
857 if (!(nd->flags & LOOKUP_ROOT))
858 nd->root.mnt = NULL;
859 if (unlikely(unlazy_walk(nd)))
860 return -ECHILD;
861 }
862
863 if (likely(!(nd->flags & LOOKUP_JUMPED))) {
864 success_walk_trace(nd);
865 return 0;
866 }
867
868 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) {
869 success_walk_trace(nd);
870 return 0;
871 }
872
873 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
874 if (status > 0) {
875 success_walk_trace(nd);
876 return 0;
877 }
878
879 if (!status)
880 status = -ESTALE;
881
882 return status;
883 }
884
set_root(struct nameidata * nd)885 static void set_root(struct nameidata *nd)
886 {
887 struct fs_struct *fs = current->fs;
888
889 if (nd->flags & LOOKUP_RCU) {
890 unsigned seq;
891
892 do {
893 seq = read_seqcount_begin(&fs->seq);
894 nd->root = fs->root;
895 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
896 } while (read_seqcount_retry(&fs->seq, seq));
897 } else {
898 get_fs_root(fs, &nd->root);
899 nd->flags |= LOOKUP_ROOT_GRABBED;
900 }
901 }
902
path_put_conditional(struct path * path,struct nameidata * nd)903 static void path_put_conditional(struct path *path, struct nameidata *nd)
904 {
905 dput(path->dentry);
906 if (path->mnt != nd->path.mnt)
907 mntput(path->mnt);
908 }
909
path_to_nameidata(const struct path * path,struct nameidata * nd)910 static inline void path_to_nameidata(const struct path *path,
911 struct nameidata *nd)
912 {
913 if (!(nd->flags & LOOKUP_RCU)) {
914 dput(nd->path.dentry);
915 if (nd->path.mnt != path->mnt)
916 mntput(nd->path.mnt);
917 }
918 nd->path.mnt = path->mnt;
919 nd->path.dentry = path->dentry;
920 }
921
nd_jump_root(struct nameidata * nd)922 static int nd_jump_root(struct nameidata *nd)
923 {
924 if (nd->flags & LOOKUP_RCU) {
925 struct dentry *d;
926 nd->path = nd->root;
927 d = nd->path.dentry;
928 nd->inode = d->d_inode;
929 nd->seq = nd->root_seq;
930 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
931 return -ECHILD;
932 } else {
933 path_put(&nd->path);
934 nd->path = nd->root;
935 path_get(&nd->path);
936 nd->inode = nd->path.dentry->d_inode;
937 }
938 nd->flags |= LOOKUP_JUMPED;
939 return 0;
940 }
941
942 /*
943 * Helper to directly jump to a known parsed path from ->get_link,
944 * caller must have taken a reference to path beforehand.
945 */
nd_jump_link(struct path * path)946 void nd_jump_link(struct path *path)
947 {
948 struct nameidata *nd = current->nameidata;
949 path_put(&nd->path);
950
951 nd->path = *path;
952 nd->inode = nd->path.dentry->d_inode;
953 nd->flags |= LOOKUP_JUMPED;
954 }
955
put_link(struct nameidata * nd)956 static inline void put_link(struct nameidata *nd)
957 {
958 struct saved *last = nd->stack + --nd->depth;
959 do_delayed_call(&last->done);
960 if (!(nd->flags & LOOKUP_RCU))
961 path_put(&last->link);
962 }
963
964 int sysctl_protected_symlinks __read_mostly = 0;
965 int sysctl_protected_hardlinks __read_mostly = 0;
966 int sysctl_protected_fifos __read_mostly;
967 int sysctl_protected_regular __read_mostly;
968
969 /**
970 * may_follow_link - Check symlink following for unsafe situations
971 * @nd: nameidata pathwalk data
972 *
973 * In the case of the sysctl_protected_symlinks sysctl being enabled,
974 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
975 * in a sticky world-writable directory. This is to protect privileged
976 * processes from failing races against path names that may change out
977 * from under them by way of other users creating malicious symlinks.
978 * It will permit symlinks to be followed only when outside a sticky
979 * world-writable directory, or when the uid of the symlink and follower
980 * match, or when the directory owner matches the symlink's owner.
981 *
982 * Returns 0 if following the symlink is allowed, -ve on error.
983 */
may_follow_link(struct nameidata * nd)984 static inline int may_follow_link(struct nameidata *nd)
985 {
986 const struct inode *inode;
987 const struct inode *parent;
988 kuid_t puid;
989
990 if (!sysctl_protected_symlinks)
991 return 0;
992
993 /* Allowed if owner and follower match. */
994 inode = nd->link_inode;
995 if (uid_eq(current_cred()->fsuid, inode->i_uid))
996 return 0;
997
998 /* Allowed if parent directory not sticky and world-writable. */
999 parent = nd->inode;
1000 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1001 return 0;
1002
1003 /* Allowed if parent directory and link owner match. */
1004 puid = parent->i_uid;
1005 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
1006 return 0;
1007
1008 if (nd->flags & LOOKUP_RCU)
1009 return -ECHILD;
1010
1011 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1012 audit_log_link_denied("follow_link");
1013 return -EACCES;
1014 }
1015
1016 /**
1017 * safe_hardlink_source - Check for safe hardlink conditions
1018 * @inode: the source inode to hardlink from
1019 *
1020 * Return false if at least one of the following conditions:
1021 * - inode is not a regular file
1022 * - inode is setuid
1023 * - inode is setgid and group-exec
1024 * - access failure for read and write
1025 *
1026 * Otherwise returns true.
1027 */
safe_hardlink_source(struct inode * inode)1028 static bool safe_hardlink_source(struct inode *inode)
1029 {
1030 umode_t mode = inode->i_mode;
1031
1032 /* Special files should not get pinned to the filesystem. */
1033 if (!S_ISREG(mode))
1034 return false;
1035
1036 /* Setuid files should not get pinned to the filesystem. */
1037 if (mode & S_ISUID)
1038 return false;
1039
1040 /* Executable setgid files should not get pinned to the filesystem. */
1041 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1042 return false;
1043
1044 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1045 if (inode_permission(inode, MAY_READ | MAY_WRITE))
1046 return false;
1047
1048 return true;
1049 }
1050
1051 /**
1052 * may_linkat - Check permissions for creating a hardlink
1053 * @link: the source to hardlink from
1054 *
1055 * Block hardlink when all of:
1056 * - sysctl_protected_hardlinks enabled
1057 * - fsuid does not match inode
1058 * - hardlink source is unsafe (see safe_hardlink_source() above)
1059 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1060 *
1061 * Returns 0 if successful, -ve on error.
1062 */
may_linkat(struct path * link)1063 static int may_linkat(struct path *link)
1064 {
1065 struct inode *inode = link->dentry->d_inode;
1066
1067 /* Inode writeback is not safe when the uid or gid are invalid. */
1068 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
1069 return -EOVERFLOW;
1070
1071 if (!sysctl_protected_hardlinks)
1072 return 0;
1073
1074 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1075 * otherwise, it must be a safe source.
1076 */
1077 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1078 return 0;
1079
1080 audit_log_link_denied("linkat");
1081 return -EPERM;
1082 }
1083
1084 /**
1085 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1086 * should be allowed, or not, on files that already
1087 * exist.
1088 * @dir_mode: mode bits of directory
1089 * @dir_uid: owner of directory
1090 * @inode: the inode of the file to open
1091 *
1092 * Block an O_CREAT open of a FIFO (or a regular file) when:
1093 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1094 * - the file already exists
1095 * - we are in a sticky directory
1096 * - we don't own the file
1097 * - the owner of the directory doesn't own the file
1098 * - the directory is world writable
1099 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1100 * the directory doesn't have to be world writable: being group writable will
1101 * be enough.
1102 *
1103 * Returns 0 if the open is allowed, -ve on error.
1104 */
may_create_in_sticky(umode_t dir_mode,kuid_t dir_uid,struct inode * const inode)1105 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1106 struct inode * const inode)
1107 {
1108 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1109 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1110 likely(!(dir_mode & S_ISVTX)) ||
1111 uid_eq(inode->i_uid, dir_uid) ||
1112 uid_eq(current_fsuid(), inode->i_uid))
1113 return 0;
1114
1115 if (likely(dir_mode & 0002) ||
1116 (dir_mode & 0020 &&
1117 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1118 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1119 return -EACCES;
1120 }
1121 return 0;
1122 }
1123
1124 static __always_inline
get_link(struct nameidata * nd)1125 const char *get_link(struct nameidata *nd)
1126 {
1127 struct saved *last = nd->stack + nd->depth - 1;
1128 struct dentry *dentry = last->link.dentry;
1129 struct inode *inode = nd->link_inode;
1130 int error;
1131 const char *res;
1132
1133 if (!(nd->flags & LOOKUP_RCU)) {
1134 touch_atime(&last->link);
1135 cond_resched();
1136 } else if (atime_needs_update(&last->link, inode)) {
1137 if (unlikely(unlazy_walk(nd)))
1138 return ERR_PTR(-ECHILD);
1139 touch_atime(&last->link);
1140 }
1141
1142 error = security_inode_follow_link(dentry, inode,
1143 nd->flags & LOOKUP_RCU);
1144 if (unlikely(error))
1145 return ERR_PTR(error);
1146
1147 nd->last_type = LAST_BIND;
1148 res = READ_ONCE(inode->i_link);
1149 if (!res) {
1150 const char * (*get)(struct dentry *, struct inode *,
1151 struct delayed_call *);
1152 get = inode->i_op->get_link;
1153 if (nd->flags & LOOKUP_RCU) {
1154 res = get(NULL, inode, &last->done);
1155 if (res == ERR_PTR(-ECHILD)) {
1156 if (unlikely(unlazy_walk(nd)))
1157 return ERR_PTR(-ECHILD);
1158 res = get(dentry, inode, &last->done);
1159 }
1160 } else {
1161 res = get(dentry, inode, &last->done);
1162 }
1163 if (IS_ERR_OR_NULL(res))
1164 return res;
1165 }
1166 if (*res == '/') {
1167 if (!nd->root.mnt)
1168 set_root(nd);
1169 if (unlikely(nd_jump_root(nd)))
1170 return ERR_PTR(-ECHILD);
1171 while (unlikely(*++res == '/'))
1172 ;
1173 }
1174 if (!*res)
1175 res = NULL;
1176 return res;
1177 }
1178
1179 /*
1180 * follow_up - Find the mountpoint of path's vfsmount
1181 *
1182 * Given a path, find the mountpoint of its source file system.
1183 * Replace @path with the path of the mountpoint in the parent mount.
1184 * Up is towards /.
1185 *
1186 * Return 1 if we went up a level and 0 if we were already at the
1187 * root.
1188 */
follow_up(struct path * path)1189 int follow_up(struct path *path)
1190 {
1191 struct mount *mnt = real_mount(path->mnt);
1192 struct mount *parent;
1193 struct dentry *mountpoint;
1194
1195 read_seqlock_excl(&mount_lock);
1196 parent = mnt->mnt_parent;
1197 if (parent == mnt) {
1198 read_sequnlock_excl(&mount_lock);
1199 return 0;
1200 }
1201 mntget(&parent->mnt);
1202 mountpoint = dget(mnt->mnt_mountpoint);
1203 read_sequnlock_excl(&mount_lock);
1204 dput(path->dentry);
1205 path->dentry = mountpoint;
1206 mntput(path->mnt);
1207 path->mnt = &parent->mnt;
1208 return 1;
1209 }
1210 EXPORT_SYMBOL(follow_up);
1211
1212 /*
1213 * Perform an automount
1214 * - return -EISDIR to tell follow_managed() to stop and return the path we
1215 * were called with.
1216 */
follow_automount(struct path * path,struct nameidata * nd,bool * need_mntput)1217 static int follow_automount(struct path *path, struct nameidata *nd,
1218 bool *need_mntput)
1219 {
1220 struct vfsmount *mnt;
1221 int err;
1222
1223 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1224 return -EREMOTE;
1225
1226 /* We don't want to mount if someone's just doing a stat -
1227 * unless they're stat'ing a directory and appended a '/' to
1228 * the name.
1229 *
1230 * We do, however, want to mount if someone wants to open or
1231 * create a file of any type under the mountpoint, wants to
1232 * traverse through the mountpoint or wants to open the
1233 * mounted directory. Also, autofs may mark negative dentries
1234 * as being automount points. These will need the attentions
1235 * of the daemon to instantiate them before they can be used.
1236 */
1237 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1238 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1239 path->dentry->d_inode)
1240 return -EISDIR;
1241
1242 nd->total_link_count++;
1243 if (nd->total_link_count >= 40)
1244 return -ELOOP;
1245
1246 mnt = path->dentry->d_op->d_automount(path);
1247 if (IS_ERR(mnt)) {
1248 /*
1249 * The filesystem is allowed to return -EISDIR here to indicate
1250 * it doesn't want to automount. For instance, autofs would do
1251 * this so that its userspace daemon can mount on this dentry.
1252 *
1253 * However, we can only permit this if it's a terminal point in
1254 * the path being looked up; if it wasn't then the remainder of
1255 * the path is inaccessible and we should say so.
1256 */
1257 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1258 return -EREMOTE;
1259 return PTR_ERR(mnt);
1260 }
1261
1262 if (!mnt) /* mount collision */
1263 return 0;
1264
1265 if (!*need_mntput) {
1266 /* lock_mount() may release path->mnt on error */
1267 mntget(path->mnt);
1268 *need_mntput = true;
1269 }
1270 err = finish_automount(mnt, path);
1271
1272 switch (err) {
1273 case -EBUSY:
1274 /* Someone else made a mount here whilst we were busy */
1275 return 0;
1276 case 0:
1277 path_put(path);
1278 path->mnt = mnt;
1279 path->dentry = dget(mnt->mnt_root);
1280 return 0;
1281 default:
1282 return err;
1283 }
1284
1285 }
1286
1287 /*
1288 * Handle a dentry that is managed in some way.
1289 * - Flagged for transit management (autofs)
1290 * - Flagged as mountpoint
1291 * - Flagged as automount point
1292 *
1293 * This may only be called in refwalk mode.
1294 *
1295 * Serialization is taken care of in namespace.c
1296 */
follow_managed(struct path * path,struct nameidata * nd)1297 static int follow_managed(struct path *path, struct nameidata *nd)
1298 {
1299 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1300 unsigned managed;
1301 bool need_mntput = false;
1302 int ret = 0;
1303
1304 /* Given that we're not holding a lock here, we retain the value in a
1305 * local variable for each dentry as we look at it so that we don't see
1306 * the components of that value change under us */
1307 while (managed = READ_ONCE(path->dentry->d_flags),
1308 managed &= DCACHE_MANAGED_DENTRY,
1309 unlikely(managed != 0)) {
1310 /* Allow the filesystem to manage the transit without i_mutex
1311 * being held. */
1312 if (managed & DCACHE_MANAGE_TRANSIT) {
1313 BUG_ON(!path->dentry->d_op);
1314 BUG_ON(!path->dentry->d_op->d_manage);
1315 ret = path->dentry->d_op->d_manage(path, false);
1316 if (ret < 0)
1317 break;
1318 }
1319
1320 /* Transit to a mounted filesystem. */
1321 if (managed & DCACHE_MOUNTED) {
1322 struct vfsmount *mounted = lookup_mnt(path);
1323 if (mounted) {
1324 dput(path->dentry);
1325 if (need_mntput)
1326 mntput(path->mnt);
1327 path->mnt = mounted;
1328 path->dentry = dget(mounted->mnt_root);
1329 need_mntput = true;
1330 continue;
1331 }
1332
1333 /* Something is mounted on this dentry in another
1334 * namespace and/or whatever was mounted there in this
1335 * namespace got unmounted before lookup_mnt() could
1336 * get it */
1337 }
1338
1339 /* Handle an automount point */
1340 if (managed & DCACHE_NEED_AUTOMOUNT) {
1341 ret = follow_automount(path, nd, &need_mntput);
1342 if (ret < 0)
1343 break;
1344 continue;
1345 }
1346
1347 /* We didn't change the current path point */
1348 break;
1349 }
1350
1351 if (need_mntput && path->mnt == mnt)
1352 mntput(path->mnt);
1353 if (ret == -EISDIR || !ret)
1354 ret = 1;
1355 if (need_mntput)
1356 nd->flags |= LOOKUP_JUMPED;
1357 if (unlikely(ret < 0))
1358 path_put_conditional(path, nd);
1359 return ret;
1360 }
1361
follow_down_one(struct path * path)1362 int follow_down_one(struct path *path)
1363 {
1364 struct vfsmount *mounted;
1365
1366 mounted = lookup_mnt(path);
1367 if (mounted) {
1368 dput(path->dentry);
1369 mntput(path->mnt);
1370 path->mnt = mounted;
1371 path->dentry = dget(mounted->mnt_root);
1372 return 1;
1373 }
1374 return 0;
1375 }
1376 EXPORT_SYMBOL(follow_down_one);
1377
managed_dentry_rcu(const struct path * path)1378 static inline int managed_dentry_rcu(const struct path *path)
1379 {
1380 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1381 path->dentry->d_op->d_manage(path, true) : 0;
1382 }
1383
1384 /*
1385 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1386 * we meet a managed dentry that would need blocking.
1387 */
__follow_mount_rcu(struct nameidata * nd,struct path * path,struct inode ** inode,unsigned * seqp)1388 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1389 struct inode **inode, unsigned *seqp)
1390 {
1391 for (;;) {
1392 struct mount *mounted;
1393 /*
1394 * Don't forget we might have a non-mountpoint managed dentry
1395 * that wants to block transit.
1396 */
1397 switch (managed_dentry_rcu(path)) {
1398 case -ECHILD:
1399 default:
1400 return false;
1401 case -EISDIR:
1402 return true;
1403 case 0:
1404 break;
1405 }
1406
1407 if (!d_mountpoint(path->dentry))
1408 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1409
1410 mounted = __lookup_mnt(path->mnt, path->dentry);
1411 if (!mounted)
1412 break;
1413 path->mnt = &mounted->mnt;
1414 path->dentry = mounted->mnt.mnt_root;
1415 nd->flags |= LOOKUP_JUMPED;
1416 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1417 /*
1418 * Update the inode too. We don't need to re-check the
1419 * dentry sequence number here after this d_inode read,
1420 * because a mount-point is always pinned.
1421 */
1422 *inode = path->dentry->d_inode;
1423 }
1424 return !read_seqretry(&mount_lock, nd->m_seq) &&
1425 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1426 }
1427
follow_dotdot_rcu(struct nameidata * nd)1428 static int follow_dotdot_rcu(struct nameidata *nd)
1429 {
1430 struct inode *inode = nd->inode;
1431
1432 while (1) {
1433 if (path_equal(&nd->path, &nd->root))
1434 break;
1435 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1436 struct dentry *old = nd->path.dentry;
1437 struct dentry *parent = old->d_parent;
1438 unsigned seq;
1439
1440 inode = parent->d_inode;
1441 seq = read_seqcount_begin(&parent->d_seq);
1442 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1443 return -ECHILD;
1444 nd->path.dentry = parent;
1445 nd->seq = seq;
1446 if (unlikely(!path_connected(&nd->path)))
1447 return -ECHILD;
1448 break;
1449 } else {
1450 struct mount *mnt = real_mount(nd->path.mnt);
1451 struct mount *mparent = mnt->mnt_parent;
1452 struct dentry *mountpoint = mnt->mnt_mountpoint;
1453 struct inode *inode2 = mountpoint->d_inode;
1454 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1455 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1456 return -ECHILD;
1457 if (&mparent->mnt == nd->path.mnt)
1458 break;
1459 /* we know that mountpoint was pinned */
1460 nd->path.dentry = mountpoint;
1461 nd->path.mnt = &mparent->mnt;
1462 inode = inode2;
1463 nd->seq = seq;
1464 }
1465 }
1466 while (unlikely(d_mountpoint(nd->path.dentry))) {
1467 struct mount *mounted;
1468 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1469 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1470 return -ECHILD;
1471 if (!mounted)
1472 break;
1473 nd->path.mnt = &mounted->mnt;
1474 nd->path.dentry = mounted->mnt.mnt_root;
1475 inode = nd->path.dentry->d_inode;
1476 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1477 }
1478 nd->inode = inode;
1479 return 0;
1480 }
1481
1482 /*
1483 * Follow down to the covering mount currently visible to userspace. At each
1484 * point, the filesystem owning that dentry may be queried as to whether the
1485 * caller is permitted to proceed or not.
1486 */
follow_down(struct path * path)1487 int follow_down(struct path *path)
1488 {
1489 unsigned managed;
1490 int ret;
1491
1492 while (managed = READ_ONCE(path->dentry->d_flags),
1493 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1494 /* Allow the filesystem to manage the transit without i_mutex
1495 * being held.
1496 *
1497 * We indicate to the filesystem if someone is trying to mount
1498 * something here. This gives autofs the chance to deny anyone
1499 * other than its daemon the right to mount on its
1500 * superstructure.
1501 *
1502 * The filesystem may sleep at this point.
1503 */
1504 if (managed & DCACHE_MANAGE_TRANSIT) {
1505 BUG_ON(!path->dentry->d_op);
1506 BUG_ON(!path->dentry->d_op->d_manage);
1507 ret = path->dentry->d_op->d_manage(path, false);
1508 if (ret < 0)
1509 return ret == -EISDIR ? 0 : ret;
1510 }
1511
1512 /* Transit to a mounted filesystem. */
1513 if (managed & DCACHE_MOUNTED) {
1514 struct vfsmount *mounted = lookup_mnt(path);
1515 if (!mounted)
1516 break;
1517 dput(path->dentry);
1518 mntput(path->mnt);
1519 path->mnt = mounted;
1520 path->dentry = dget(mounted->mnt_root);
1521 continue;
1522 }
1523
1524 /* Don't handle automount points here */
1525 break;
1526 }
1527 return 0;
1528 }
1529 EXPORT_SYMBOL(follow_down);
1530
1531 /*
1532 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1533 */
follow_mount(struct path * path)1534 static void follow_mount(struct path *path)
1535 {
1536 while (d_mountpoint(path->dentry)) {
1537 struct vfsmount *mounted = lookup_mnt(path);
1538 if (!mounted)
1539 break;
1540 dput(path->dentry);
1541 mntput(path->mnt);
1542 path->mnt = mounted;
1543 path->dentry = dget(mounted->mnt_root);
1544 }
1545 }
1546
path_parent_directory(struct path * path)1547 static int path_parent_directory(struct path *path)
1548 {
1549 struct dentry *old = path->dentry;
1550 /* rare case of legitimate dget_parent()... */
1551 path->dentry = dget_parent(path->dentry);
1552 dput(old);
1553 if (unlikely(!path_connected(path)))
1554 return -ENOENT;
1555 return 0;
1556 }
1557
follow_dotdot(struct nameidata * nd)1558 static int follow_dotdot(struct nameidata *nd)
1559 {
1560 while(1) {
1561 if (path_equal(&nd->path, &nd->root))
1562 break;
1563 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1564 int ret = path_parent_directory(&nd->path);
1565 if (ret)
1566 return ret;
1567 break;
1568 }
1569 if (!follow_up(&nd->path))
1570 break;
1571 }
1572 follow_mount(&nd->path);
1573 nd->inode = nd->path.dentry->d_inode;
1574 return 0;
1575 }
1576
1577 /*
1578 * This looks up the name in dcache and possibly revalidates the found dentry.
1579 * NULL is returned if the dentry does not exist in the cache.
1580 */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1581 static struct dentry *lookup_dcache(const struct qstr *name,
1582 struct dentry *dir,
1583 unsigned int flags)
1584 {
1585 struct dentry *dentry = d_lookup(dir, name);
1586 if (dentry) {
1587 int error = d_revalidate(dentry, flags);
1588 if (unlikely(error <= 0)) {
1589 if (!error)
1590 d_invalidate(dentry);
1591 dput(dentry);
1592 return ERR_PTR(error);
1593 }
1594 }
1595 return dentry;
1596 }
1597
1598 /*
1599 * Parent directory has inode locked exclusive. This is one
1600 * and only case when ->lookup() gets called on non in-lookup
1601 * dentries - as the matter of fact, this only gets called
1602 * when directory is guaranteed to have no in-lookup children
1603 * at all.
1604 */
__lookup_hash(const struct qstr * name,struct dentry * base,unsigned int flags)1605 static struct dentry *__lookup_hash(const struct qstr *name,
1606 struct dentry *base, unsigned int flags)
1607 {
1608 struct dentry *dentry = lookup_dcache(name, base, flags);
1609 struct dentry *old;
1610 struct inode *dir = base->d_inode;
1611
1612 if (dentry)
1613 return dentry;
1614
1615 /* Don't create child dentry for a dead directory. */
1616 if (unlikely(IS_DEADDIR(dir)))
1617 return ERR_PTR(-ENOENT);
1618
1619 dentry = d_alloc(base, name);
1620 if (unlikely(!dentry))
1621 return ERR_PTR(-ENOMEM);
1622
1623 old = dir->i_op->lookup(dir, dentry, flags);
1624 if (unlikely(old)) {
1625 dput(dentry);
1626 dentry = old;
1627 }
1628 return dentry;
1629 }
1630
lookup_fast(struct nameidata * nd,struct path * path,struct inode ** inode,unsigned * seqp)1631 static int lookup_fast(struct nameidata *nd,
1632 struct path *path, struct inode **inode,
1633 unsigned *seqp)
1634 {
1635 struct vfsmount *mnt = nd->path.mnt;
1636 struct dentry *dentry, *parent = nd->path.dentry;
1637 int status = 1;
1638 int err;
1639
1640 /*
1641 * Rename seqlock is not required here because in the off chance
1642 * of a false negative due to a concurrent rename, the caller is
1643 * going to fall back to non-racy lookup.
1644 */
1645 if (nd->flags & LOOKUP_RCU) {
1646 unsigned seq;
1647 bool negative;
1648 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1649 if (unlikely(!dentry)) {
1650 if (unlazy_walk(nd))
1651 return -ECHILD;
1652 return 0;
1653 }
1654
1655 /*
1656 * This sequence count validates that the inode matches
1657 * the dentry name information from lookup.
1658 */
1659 *inode = d_backing_inode(dentry);
1660 negative = d_is_negative(dentry);
1661 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1662 return -ECHILD;
1663
1664 /*
1665 * This sequence count validates that the parent had no
1666 * changes while we did the lookup of the dentry above.
1667 *
1668 * The memory barrier in read_seqcount_begin of child is
1669 * enough, we can use __read_seqcount_retry here.
1670 */
1671 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1672 return -ECHILD;
1673
1674 *seqp = seq;
1675 status = d_revalidate(dentry, nd->flags);
1676 if (likely(status > 0)) {
1677 /*
1678 * Note: do negative dentry check after revalidation in
1679 * case that drops it.
1680 */
1681 if (unlikely(negative))
1682 return -ENOENT;
1683 path->mnt = mnt;
1684 path->dentry = dentry;
1685 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1686 return 1;
1687 }
1688 if (unlazy_child(nd, dentry, seq))
1689 return -ECHILD;
1690 if (unlikely(status == -ECHILD))
1691 /* we'd been told to redo it in non-rcu mode */
1692 status = d_revalidate(dentry, nd->flags);
1693 } else {
1694 dentry = __d_lookup(parent, &nd->last);
1695 if (unlikely(!dentry))
1696 return 0;
1697 status = d_revalidate(dentry, nd->flags);
1698 }
1699 if (unlikely(status <= 0)) {
1700 if (!status)
1701 d_invalidate(dentry);
1702 dput(dentry);
1703 return status;
1704 }
1705 if (unlikely(d_is_negative(dentry))) {
1706 dput(dentry);
1707 return -ENOENT;
1708 }
1709
1710 path->mnt = mnt;
1711 path->dentry = dentry;
1712 err = follow_managed(path, nd);
1713 if (likely(err > 0))
1714 *inode = d_backing_inode(path->dentry);
1715 return err;
1716 }
1717
1718 /* Fast lookup failed, do it the slow way */
__lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1719 static struct dentry *__lookup_slow(const struct qstr *name,
1720 struct dentry *dir,
1721 unsigned int flags)
1722 {
1723 struct dentry *dentry, *old;
1724 struct inode *inode = dir->d_inode;
1725 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1726
1727 /* Don't go there if it's already dead */
1728 if (unlikely(IS_DEADDIR(inode)))
1729 return ERR_PTR(-ENOENT);
1730 again:
1731 dentry = d_alloc_parallel(dir, name, &wq);
1732 if (IS_ERR(dentry))
1733 return dentry;
1734 if (unlikely(!d_in_lookup(dentry))) {
1735 if (!(flags & LOOKUP_NO_REVAL)) {
1736 int error = d_revalidate(dentry, flags);
1737 if (unlikely(error <= 0)) {
1738 if (!error) {
1739 d_invalidate(dentry);
1740 dput(dentry);
1741 goto again;
1742 }
1743 dput(dentry);
1744 dentry = ERR_PTR(error);
1745 }
1746 }
1747 } else {
1748 old = inode->i_op->lookup(inode, dentry, flags);
1749 d_lookup_done(dentry);
1750 if (unlikely(old)) {
1751 dput(dentry);
1752 dentry = old;
1753 }
1754 }
1755 return dentry;
1756 }
1757
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1758 static struct dentry *lookup_slow(const struct qstr *name,
1759 struct dentry *dir,
1760 unsigned int flags)
1761 {
1762 struct inode *inode = dir->d_inode;
1763 struct dentry *res;
1764 inode_lock_shared(inode);
1765 res = __lookup_slow(name, dir, flags);
1766 inode_unlock_shared(inode);
1767 return res;
1768 }
1769
may_lookup(struct nameidata * nd)1770 static inline int may_lookup(struct nameidata *nd)
1771 {
1772 if (nd->flags & LOOKUP_RCU) {
1773 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1774 if (err != -ECHILD)
1775 return err;
1776 if (unlazy_walk(nd))
1777 return -ECHILD;
1778 }
1779 return inode_permission(nd->inode, MAY_EXEC);
1780 }
1781
handle_dots(struct nameidata * nd,int type)1782 static inline int handle_dots(struct nameidata *nd, int type)
1783 {
1784 if (type == LAST_DOTDOT) {
1785 if (!nd->root.mnt)
1786 set_root(nd);
1787 if (nd->flags & LOOKUP_RCU) {
1788 return follow_dotdot_rcu(nd);
1789 } else
1790 return follow_dotdot(nd);
1791 }
1792 return 0;
1793 }
1794
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,unsigned seq)1795 static int pick_link(struct nameidata *nd, struct path *link,
1796 struct inode *inode, unsigned seq)
1797 {
1798 int error;
1799 struct saved *last;
1800 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1801 path_to_nameidata(link, nd);
1802 return -ELOOP;
1803 }
1804 if (!(nd->flags & LOOKUP_RCU)) {
1805 if (link->mnt == nd->path.mnt)
1806 mntget(link->mnt);
1807 }
1808 error = nd_alloc_stack(nd);
1809 if (unlikely(error)) {
1810 if (error == -ECHILD) {
1811 if (unlikely(!legitimize_path(nd, link, seq))) {
1812 drop_links(nd);
1813 nd->depth = 0;
1814 nd->flags &= ~LOOKUP_RCU;
1815 nd->path.mnt = NULL;
1816 nd->path.dentry = NULL;
1817 rcu_read_unlock();
1818 } else if (likely(unlazy_walk(nd)) == 0)
1819 error = nd_alloc_stack(nd);
1820 }
1821 if (error) {
1822 path_put(link);
1823 return error;
1824 }
1825 }
1826
1827 last = nd->stack + nd->depth++;
1828 last->link = *link;
1829 clear_delayed_call(&last->done);
1830 nd->link_inode = inode;
1831 last->seq = seq;
1832 return 1;
1833 }
1834
1835 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1836
1837 /*
1838 * Do we need to follow links? We _really_ want to be able
1839 * to do this check without having to look at inode->i_op,
1840 * so we keep a cache of "no, this doesn't need follow_link"
1841 * for the common case.
1842 */
step_into(struct nameidata * nd,struct path * path,int flags,struct inode * inode,unsigned seq)1843 static inline int step_into(struct nameidata *nd, struct path *path,
1844 int flags, struct inode *inode, unsigned seq)
1845 {
1846 if (!(flags & WALK_MORE) && nd->depth)
1847 put_link(nd);
1848 if (likely(!d_is_symlink(path->dentry)) ||
1849 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1850 /* not a symlink or should not follow */
1851 path_to_nameidata(path, nd);
1852 nd->inode = inode;
1853 nd->seq = seq;
1854 return 0;
1855 }
1856 /* make sure that d_is_symlink above matches inode */
1857 if (nd->flags & LOOKUP_RCU) {
1858 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1859 return -ECHILD;
1860 }
1861 return pick_link(nd, path, inode, seq);
1862 }
1863
walk_component(struct nameidata * nd,int flags)1864 static int walk_component(struct nameidata *nd, int flags)
1865 {
1866 struct path path;
1867 struct inode *inode;
1868 unsigned seq;
1869 int err;
1870 /*
1871 * "." and ".." are special - ".." especially so because it has
1872 * to be able to know about the current root directory and
1873 * parent relationships.
1874 */
1875 if (unlikely(nd->last_type != LAST_NORM)) {
1876 err = handle_dots(nd, nd->last_type);
1877 if (!(flags & WALK_MORE) && nd->depth)
1878 put_link(nd);
1879 return err;
1880 }
1881 err = lookup_fast(nd, &path, &inode, &seq);
1882 if (unlikely(err <= 0)) {
1883 if (err < 0)
1884 return err;
1885 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1886 nd->flags);
1887 if (IS_ERR(path.dentry))
1888 return PTR_ERR(path.dentry);
1889
1890 path.mnt = nd->path.mnt;
1891 err = follow_managed(&path, nd);
1892 if (unlikely(err < 0))
1893 return err;
1894
1895 if (unlikely(d_is_negative(path.dentry))) {
1896 path_to_nameidata(&path, nd);
1897 return -ENOENT;
1898 }
1899
1900 seq = 0; /* we are already out of RCU mode */
1901 inode = d_backing_inode(path.dentry);
1902 }
1903
1904 return step_into(nd, &path, flags, inode, seq);
1905 }
1906
1907 /*
1908 * We can do the critical dentry name comparison and hashing
1909 * operations one word at a time, but we are limited to:
1910 *
1911 * - Architectures with fast unaligned word accesses. We could
1912 * do a "get_unaligned()" if this helps and is sufficiently
1913 * fast.
1914 *
1915 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1916 * do not trap on the (extremely unlikely) case of a page
1917 * crossing operation.
1918 *
1919 * - Furthermore, we need an efficient 64-bit compile for the
1920 * 64-bit case in order to generate the "number of bytes in
1921 * the final mask". Again, that could be replaced with a
1922 * efficient population count instruction or similar.
1923 */
1924 #ifdef CONFIG_DCACHE_WORD_ACCESS
1925
1926 #include <asm/word-at-a-time.h>
1927
1928 #ifdef HASH_MIX
1929
1930 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1931
1932 #elif defined(CONFIG_64BIT)
1933 /*
1934 * Register pressure in the mixing function is an issue, particularly
1935 * on 32-bit x86, but almost any function requires one state value and
1936 * one temporary. Instead, use a function designed for two state values
1937 * and no temporaries.
1938 *
1939 * This function cannot create a collision in only two iterations, so
1940 * we have two iterations to achieve avalanche. In those two iterations,
1941 * we have six layers of mixing, which is enough to spread one bit's
1942 * influence out to 2^6 = 64 state bits.
1943 *
1944 * Rotate constants are scored by considering either 64 one-bit input
1945 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1946 * probability of that delta causing a change to each of the 128 output
1947 * bits, using a sample of random initial states.
1948 *
1949 * The Shannon entropy of the computed probabilities is then summed
1950 * to produce a score. Ideally, any input change has a 50% chance of
1951 * toggling any given output bit.
1952 *
1953 * Mixing scores (in bits) for (12,45):
1954 * Input delta: 1-bit 2-bit
1955 * 1 round: 713.3 42542.6
1956 * 2 rounds: 2753.7 140389.8
1957 * 3 rounds: 5954.1 233458.2
1958 * 4 rounds: 7862.6 256672.2
1959 * Perfect: 8192 258048
1960 * (64*128) (64*63/2 * 128)
1961 */
1962 #define HASH_MIX(x, y, a) \
1963 ( x ^= (a), \
1964 y ^= x, x = rol64(x,12),\
1965 x += y, y = rol64(y,45),\
1966 y *= 9 )
1967
1968 /*
1969 * Fold two longs into one 32-bit hash value. This must be fast, but
1970 * latency isn't quite as critical, as there is a fair bit of additional
1971 * work done before the hash value is used.
1972 */
fold_hash(unsigned long x,unsigned long y)1973 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1974 {
1975 y ^= x * GOLDEN_RATIO_64;
1976 y *= GOLDEN_RATIO_64;
1977 return y >> 32;
1978 }
1979
1980 #else /* 32-bit case */
1981
1982 /*
1983 * Mixing scores (in bits) for (7,20):
1984 * Input delta: 1-bit 2-bit
1985 * 1 round: 330.3 9201.6
1986 * 2 rounds: 1246.4 25475.4
1987 * 3 rounds: 1907.1 31295.1
1988 * 4 rounds: 2042.3 31718.6
1989 * Perfect: 2048 31744
1990 * (32*64) (32*31/2 * 64)
1991 */
1992 #define HASH_MIX(x, y, a) \
1993 ( x ^= (a), \
1994 y ^= x, x = rol32(x, 7),\
1995 x += y, y = rol32(y,20),\
1996 y *= 9 )
1997
fold_hash(unsigned long x,unsigned long y)1998 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1999 {
2000 /* Use arch-optimized multiply if one exists */
2001 return __hash_32(y ^ __hash_32(x));
2002 }
2003
2004 #endif
2005
2006 /*
2007 * Return the hash of a string of known length. This is carfully
2008 * designed to match hash_name(), which is the more critical function.
2009 * In particular, we must end by hashing a final word containing 0..7
2010 * payload bytes, to match the way that hash_name() iterates until it
2011 * finds the delimiter after the name.
2012 */
full_name_hash(const void * salt,const char * name,unsigned int len)2013 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2014 {
2015 unsigned long a, x = 0, y = (unsigned long)salt;
2016
2017 for (;;) {
2018 if (!len)
2019 goto done;
2020 a = load_unaligned_zeropad(name);
2021 if (len < sizeof(unsigned long))
2022 break;
2023 HASH_MIX(x, y, a);
2024 name += sizeof(unsigned long);
2025 len -= sizeof(unsigned long);
2026 }
2027 x ^= a & bytemask_from_count(len);
2028 done:
2029 return fold_hash(x, y);
2030 }
2031 EXPORT_SYMBOL(full_name_hash);
2032
2033 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2034 u64 hashlen_string(const void *salt, const char *name)
2035 {
2036 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2037 unsigned long adata, mask, len;
2038 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2039
2040 len = 0;
2041 goto inside;
2042
2043 do {
2044 HASH_MIX(x, y, a);
2045 len += sizeof(unsigned long);
2046 inside:
2047 a = load_unaligned_zeropad(name+len);
2048 } while (!has_zero(a, &adata, &constants));
2049
2050 adata = prep_zero_mask(a, adata, &constants);
2051 mask = create_zero_mask(adata);
2052 x ^= a & zero_bytemask(mask);
2053
2054 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2055 }
2056 EXPORT_SYMBOL(hashlen_string);
2057
2058 /*
2059 * Calculate the length and hash of the path component, and
2060 * return the "hash_len" as the result.
2061 */
hash_name(const void * salt,const char * name)2062 static inline u64 hash_name(const void *salt, const char *name)
2063 {
2064 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2065 unsigned long adata, bdata, mask, len;
2066 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2067
2068 len = 0;
2069 goto inside;
2070
2071 do {
2072 HASH_MIX(x, y, a);
2073 len += sizeof(unsigned long);
2074 inside:
2075 a = load_unaligned_zeropad(name+len);
2076 b = a ^ REPEAT_BYTE('/');
2077 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2078
2079 adata = prep_zero_mask(a, adata, &constants);
2080 bdata = prep_zero_mask(b, bdata, &constants);
2081 mask = create_zero_mask(adata | bdata);
2082 x ^= a & zero_bytemask(mask);
2083
2084 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2085 }
2086
2087 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2088
2089 /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)2090 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2091 {
2092 unsigned long hash = init_name_hash(salt);
2093 while (len--)
2094 hash = partial_name_hash((unsigned char)*name++, hash);
2095 return end_name_hash(hash);
2096 }
2097 EXPORT_SYMBOL(full_name_hash);
2098
2099 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2100 u64 hashlen_string(const void *salt, const char *name)
2101 {
2102 unsigned long hash = init_name_hash(salt);
2103 unsigned long len = 0, c;
2104
2105 c = (unsigned char)*name;
2106 while (c) {
2107 len++;
2108 hash = partial_name_hash(c, hash);
2109 c = (unsigned char)name[len];
2110 }
2111 return hashlen_create(end_name_hash(hash), len);
2112 }
2113 EXPORT_SYMBOL(hashlen_string);
2114
2115 /*
2116 * We know there's a real path component here of at least
2117 * one character.
2118 */
hash_name(const void * salt,const char * name)2119 static inline u64 hash_name(const void *salt, const char *name)
2120 {
2121 unsigned long hash = init_name_hash(salt);
2122 unsigned long len = 0, c;
2123
2124 c = (unsigned char)*name;
2125 do {
2126 len++;
2127 hash = partial_name_hash(c, hash);
2128 c = (unsigned char)name[len];
2129 } while (c && c != '/');
2130 return hashlen_create(end_name_hash(hash), len);
2131 }
2132
2133 #endif
2134
2135 /*
2136 * Name resolution.
2137 * This is the basic name resolution function, turning a pathname into
2138 * the final dentry. We expect 'base' to be positive and a directory.
2139 *
2140 * Returns 0 and nd will have valid dentry and mnt on success.
2141 * Returns error and drops reference to input namei data on failure.
2142 */
link_path_walk(const char * name,struct nameidata * nd)2143 static int link_path_walk(const char *name, struct nameidata *nd)
2144 {
2145 int err;
2146
2147 if (IS_ERR(name))
2148 return PTR_ERR(name);
2149 while (*name=='/')
2150 name++;
2151 if (!*name)
2152 return 0;
2153
2154 /* At this point we know we have a real path component. */
2155 for(;;) {
2156 u64 hash_len;
2157 int type;
2158
2159 err = may_lookup(nd);
2160 if (err)
2161 return err;
2162
2163 hash_len = hash_name(nd->path.dentry, name);
2164
2165 type = LAST_NORM;
2166 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2167 case 2:
2168 if (name[1] == '.') {
2169 type = LAST_DOTDOT;
2170 nd->flags |= LOOKUP_JUMPED;
2171 }
2172 break;
2173 case 1:
2174 type = LAST_DOT;
2175 }
2176 if (likely(type == LAST_NORM)) {
2177 struct dentry *parent = nd->path.dentry;
2178 nd->flags &= ~LOOKUP_JUMPED;
2179 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2180 struct qstr this = { { .hash_len = hash_len }, .name = name };
2181 err = parent->d_op->d_hash(parent, &this);
2182 if (err < 0)
2183 return err;
2184 hash_len = this.hash_len;
2185 name = this.name;
2186 }
2187 }
2188
2189 nd->last.hash_len = hash_len;
2190 nd->last.name = name;
2191 nd->last_type = type;
2192
2193 name += hashlen_len(hash_len);
2194 if (!*name)
2195 goto OK;
2196 /*
2197 * If it wasn't NUL, we know it was '/'. Skip that
2198 * slash, and continue until no more slashes.
2199 */
2200 do {
2201 name++;
2202 } while (unlikely(*name == '/'));
2203 if (unlikely(!*name)) {
2204 OK:
2205 /* pathname body, done */
2206 if (!nd->depth)
2207 return 0;
2208 name = nd->stack[nd->depth - 1].name;
2209 /* trailing symlink, done */
2210 if (!name)
2211 return 0;
2212 /* last component of nested symlink */
2213 err = walk_component(nd, WALK_FOLLOW);
2214 } else {
2215 /* not the last component */
2216 err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2217 }
2218 if (err < 0)
2219 return err;
2220
2221 if (err) {
2222 const char *s = get_link(nd);
2223
2224 if (IS_ERR(s))
2225 return PTR_ERR(s);
2226 err = 0;
2227 if (unlikely(!s)) {
2228 /* jumped */
2229 put_link(nd);
2230 } else {
2231 nd->stack[nd->depth - 1].name = name;
2232 name = s;
2233 continue;
2234 }
2235 }
2236 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2237 if (nd->flags & LOOKUP_RCU) {
2238 if (unlazy_walk(nd))
2239 return -ECHILD;
2240 }
2241 return -ENOTDIR;
2242 }
2243 }
2244 }
2245
2246 /* must be paired with terminate_walk() */
path_init(struct nameidata * nd,unsigned flags)2247 static const char *path_init(struct nameidata *nd, unsigned flags)
2248 {
2249 const char *s = nd->name->name;
2250
2251 if (!*s)
2252 flags &= ~LOOKUP_RCU;
2253 if (flags & LOOKUP_RCU)
2254 rcu_read_lock();
2255
2256 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2257 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2258 nd->depth = 0;
2259 if (flags & LOOKUP_ROOT) {
2260 struct dentry *root = nd->root.dentry;
2261 struct inode *inode = root->d_inode;
2262 if (*s && unlikely(!d_can_lookup(root)))
2263 return ERR_PTR(-ENOTDIR);
2264 nd->path = nd->root;
2265 nd->inode = inode;
2266 if (flags & LOOKUP_RCU) {
2267 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2268 nd->root_seq = nd->seq;
2269 nd->m_seq = read_seqbegin(&mount_lock);
2270 } else {
2271 path_get(&nd->path);
2272 }
2273 return s;
2274 }
2275
2276 nd->root.mnt = NULL;
2277 nd->path.mnt = NULL;
2278 nd->path.dentry = NULL;
2279
2280 nd->m_seq = read_seqbegin(&mount_lock);
2281 if (*s == '/') {
2282 set_root(nd);
2283 if (likely(!nd_jump_root(nd)))
2284 return s;
2285 return ERR_PTR(-ECHILD);
2286 } else if (nd->dfd == AT_FDCWD) {
2287 if (flags & LOOKUP_RCU) {
2288 struct fs_struct *fs = current->fs;
2289 unsigned seq;
2290
2291 do {
2292 seq = read_seqcount_begin(&fs->seq);
2293 nd->path = fs->pwd;
2294 nd->inode = nd->path.dentry->d_inode;
2295 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2296 } while (read_seqcount_retry(&fs->seq, seq));
2297 } else {
2298 get_fs_pwd(current->fs, &nd->path);
2299 nd->inode = nd->path.dentry->d_inode;
2300 }
2301 return s;
2302 } else {
2303 /* Caller must check execute permissions on the starting path component */
2304 struct fd f = fdget_raw(nd->dfd);
2305 struct dentry *dentry;
2306
2307 if (!f.file)
2308 return ERR_PTR(-EBADF);
2309
2310 dentry = f.file->f_path.dentry;
2311
2312 if (*s && unlikely(!d_can_lookup(dentry))) {
2313 fdput(f);
2314 return ERR_PTR(-ENOTDIR);
2315 }
2316
2317 nd->path = f.file->f_path;
2318 if (flags & LOOKUP_RCU) {
2319 nd->inode = nd->path.dentry->d_inode;
2320 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2321 } else {
2322 path_get(&nd->path);
2323 nd->inode = nd->path.dentry->d_inode;
2324 }
2325 fdput(f);
2326 return s;
2327 }
2328 }
2329
trailing_symlink(struct nameidata * nd)2330 static const char *trailing_symlink(struct nameidata *nd)
2331 {
2332 const char *s;
2333 int error = may_follow_link(nd);
2334 if (unlikely(error))
2335 return ERR_PTR(error);
2336 nd->flags |= LOOKUP_PARENT;
2337 nd->stack[0].name = NULL;
2338 s = get_link(nd);
2339 return s ? s : "";
2340 }
2341
lookup_last(struct nameidata * nd)2342 static inline int lookup_last(struct nameidata *nd)
2343 {
2344 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2345 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2346
2347 nd->flags &= ~LOOKUP_PARENT;
2348 return walk_component(nd, 0);
2349 }
2350
handle_lookup_down(struct nameidata * nd)2351 static int handle_lookup_down(struct nameidata *nd)
2352 {
2353 struct path path = nd->path;
2354 struct inode *inode = nd->inode;
2355 unsigned seq = nd->seq;
2356 int err;
2357
2358 if (nd->flags & LOOKUP_RCU) {
2359 /*
2360 * don't bother with unlazy_walk on failure - we are
2361 * at the very beginning of walk, so we lose nothing
2362 * if we simply redo everything in non-RCU mode
2363 */
2364 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2365 return -ECHILD;
2366 } else {
2367 dget(path.dentry);
2368 err = follow_managed(&path, nd);
2369 if (unlikely(err < 0))
2370 return err;
2371 inode = d_backing_inode(path.dentry);
2372 seq = 0;
2373 }
2374 path_to_nameidata(&path, nd);
2375 nd->inode = inode;
2376 nd->seq = seq;
2377 return 0;
2378 }
2379
2380 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2381 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2382 {
2383 const char *s = path_init(nd, flags);
2384 int err;
2385
2386 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2387 err = handle_lookup_down(nd);
2388 if (unlikely(err < 0))
2389 s = ERR_PTR(err);
2390 }
2391
2392 while (!(err = link_path_walk(s, nd))
2393 && ((err = lookup_last(nd)) > 0)) {
2394 s = trailing_symlink(nd);
2395 }
2396 if (!err)
2397 err = complete_walk(nd);
2398
2399 if (!err && nd->flags & LOOKUP_DIRECTORY)
2400 if (!d_can_lookup(nd->path.dentry))
2401 err = -ENOTDIR;
2402 if (!err) {
2403 *path = nd->path;
2404 nd->path.mnt = NULL;
2405 nd->path.dentry = NULL;
2406 }
2407 terminate_walk(nd);
2408 return err;
2409 }
2410
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,struct path * root)2411 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2412 struct path *path, struct path *root)
2413 {
2414 int retval;
2415 struct nameidata nd;
2416 if (IS_ERR(name))
2417 return PTR_ERR(name);
2418 if (unlikely(root)) {
2419 nd.root = *root;
2420 flags |= LOOKUP_ROOT;
2421 }
2422 set_nameidata(&nd, dfd, name);
2423 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2424 if (unlikely(retval == -ECHILD))
2425 retval = path_lookupat(&nd, flags, path);
2426 if (unlikely(retval == -ESTALE))
2427 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2428
2429 if (likely(!retval))
2430 audit_inode(name, path->dentry, 0);
2431 restore_nameidata();
2432 putname(name);
2433 return retval;
2434 }
2435
2436 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2437 static int path_parentat(struct nameidata *nd, unsigned flags,
2438 struct path *parent)
2439 {
2440 const char *s = path_init(nd, flags);
2441 int err = link_path_walk(s, nd);
2442 if (!err)
2443 err = complete_walk(nd);
2444 if (!err) {
2445 *parent = nd->path;
2446 nd->path.mnt = NULL;
2447 nd->path.dentry = NULL;
2448 }
2449 terminate_walk(nd);
2450 return err;
2451 }
2452
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2453 static struct filename *filename_parentat(int dfd, struct filename *name,
2454 unsigned int flags, struct path *parent,
2455 struct qstr *last, int *type)
2456 {
2457 int retval;
2458 struct nameidata nd;
2459
2460 if (IS_ERR(name))
2461 return name;
2462 set_nameidata(&nd, dfd, name);
2463 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2464 if (unlikely(retval == -ECHILD))
2465 retval = path_parentat(&nd, flags, parent);
2466 if (unlikely(retval == -ESTALE))
2467 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2468 if (likely(!retval)) {
2469 *last = nd.last;
2470 *type = nd.last_type;
2471 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2472 } else {
2473 putname(name);
2474 name = ERR_PTR(retval);
2475 }
2476 restore_nameidata();
2477 return name;
2478 }
2479
2480 /* does lookup, returns the object with parent locked */
kern_path_locked(const char * name,struct path * path)2481 struct dentry *kern_path_locked(const char *name, struct path *path)
2482 {
2483 struct filename *filename;
2484 struct dentry *d;
2485 struct qstr last;
2486 int type;
2487
2488 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2489 &last, &type);
2490 if (IS_ERR(filename))
2491 return ERR_CAST(filename);
2492 if (unlikely(type != LAST_NORM)) {
2493 path_put(path);
2494 putname(filename);
2495 return ERR_PTR(-EINVAL);
2496 }
2497 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2498 d = __lookup_hash(&last, path->dentry, 0);
2499 if (IS_ERR(d)) {
2500 inode_unlock(path->dentry->d_inode);
2501 path_put(path);
2502 }
2503 putname(filename);
2504 return d;
2505 }
2506
kern_path(const char * name,unsigned int flags,struct path * path)2507 int kern_path(const char *name, unsigned int flags, struct path *path)
2508 {
2509 return filename_lookup(AT_FDCWD, getname_kernel(name),
2510 flags, path, NULL);
2511 }
2512 EXPORT_SYMBOL_NS(kern_path, ANDROID_GKI_VFS_EXPORT_ONLY);
2513
2514 /**
2515 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2516 * @dentry: pointer to dentry of the base directory
2517 * @mnt: pointer to vfs mount of the base directory
2518 * @name: pointer to file name
2519 * @flags: lookup flags
2520 * @path: pointer to struct path to fill
2521 */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2522 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2523 const char *name, unsigned int flags,
2524 struct path *path)
2525 {
2526 struct path root = {.mnt = mnt, .dentry = dentry};
2527 /* the first argument of filename_lookup() is ignored with root */
2528 return filename_lookup(AT_FDCWD, getname_kernel(name),
2529 flags , path, &root);
2530 }
2531 EXPORT_SYMBOL(vfs_path_lookup);
2532
lookup_one_len_common(const char * name,struct dentry * base,int len,struct qstr * this)2533 static int lookup_one_len_common(const char *name, struct dentry *base,
2534 int len, struct qstr *this)
2535 {
2536 this->name = name;
2537 this->len = len;
2538 this->hash = full_name_hash(base, name, len);
2539 if (!len)
2540 return -EACCES;
2541
2542 if (unlikely(name[0] == '.')) {
2543 if (len < 2 || (len == 2 && name[1] == '.'))
2544 return -EACCES;
2545 }
2546
2547 while (len--) {
2548 unsigned int c = *(const unsigned char *)name++;
2549 if (c == '/' || c == '\0')
2550 return -EACCES;
2551 }
2552 /*
2553 * See if the low-level filesystem might want
2554 * to use its own hash..
2555 */
2556 if (base->d_flags & DCACHE_OP_HASH) {
2557 int err = base->d_op->d_hash(base, this);
2558 if (err < 0)
2559 return err;
2560 }
2561
2562 return inode_permission(base->d_inode, MAY_EXEC);
2563 }
2564
2565 /**
2566 * try_lookup_one_len - filesystem helper to lookup single pathname component
2567 * @name: pathname component to lookup
2568 * @base: base directory to lookup from
2569 * @len: maximum length @len should be interpreted to
2570 *
2571 * Look up a dentry by name in the dcache, returning NULL if it does not
2572 * currently exist. The function does not try to create a dentry.
2573 *
2574 * Note that this routine is purely a helper for filesystem usage and should
2575 * not be called by generic code.
2576 *
2577 * The caller must hold base->i_mutex.
2578 */
try_lookup_one_len(const char * name,struct dentry * base,int len)2579 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2580 {
2581 struct qstr this;
2582 int err;
2583
2584 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2585
2586 err = lookup_one_len_common(name, base, len, &this);
2587 if (err)
2588 return ERR_PTR(err);
2589
2590 return lookup_dcache(&this, base, 0);
2591 }
2592 EXPORT_SYMBOL(try_lookup_one_len);
2593
2594 /**
2595 * lookup_one_len - filesystem helper to lookup single pathname component
2596 * @name: pathname component to lookup
2597 * @base: base directory to lookup from
2598 * @len: maximum length @len should be interpreted to
2599 *
2600 * Note that this routine is purely a helper for filesystem usage and should
2601 * not be called by generic code.
2602 *
2603 * The caller must hold base->i_mutex.
2604 */
lookup_one_len(const char * name,struct dentry * base,int len)2605 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2606 {
2607 struct dentry *dentry;
2608 struct qstr this;
2609 int err;
2610
2611 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2612
2613 err = lookup_one_len_common(name, base, len, &this);
2614 if (err)
2615 return ERR_PTR(err);
2616
2617 dentry = lookup_dcache(&this, base, 0);
2618 return dentry ? dentry : __lookup_slow(&this, base, 0);
2619 }
2620 EXPORT_SYMBOL(lookup_one_len);
2621
2622 /**
2623 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2624 * @name: pathname component to lookup
2625 * @base: base directory to lookup from
2626 * @len: maximum length @len should be interpreted to
2627 *
2628 * Note that this routine is purely a helper for filesystem usage and should
2629 * not be called by generic code.
2630 *
2631 * Unlike lookup_one_len, it should be called without the parent
2632 * i_mutex held, and will take the i_mutex itself if necessary.
2633 */
lookup_one_len_unlocked(const char * name,struct dentry * base,int len)2634 struct dentry *lookup_one_len_unlocked(const char *name,
2635 struct dentry *base, int len)
2636 {
2637 struct qstr this;
2638 int err;
2639 struct dentry *ret;
2640
2641 err = lookup_one_len_common(name, base, len, &this);
2642 if (err)
2643 return ERR_PTR(err);
2644
2645 ret = lookup_dcache(&this, base, 0);
2646 if (!ret)
2647 ret = lookup_slow(&this, base, 0);
2648 return ret;
2649 }
2650 EXPORT_SYMBOL(lookup_one_len_unlocked);
2651
2652 /*
2653 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2654 * on negatives. Returns known positive or ERR_PTR(); that's what
2655 * most of the users want. Note that pinned negative with unlocked parent
2656 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2657 * need to be very careful; pinned positives have ->d_inode stable, so
2658 * this one avoids such problems.
2659 */
lookup_positive_unlocked(const char * name,struct dentry * base,int len)2660 struct dentry *lookup_positive_unlocked(const char *name,
2661 struct dentry *base, int len)
2662 {
2663 struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2664 if (!IS_ERR(ret) && d_is_negative(ret)) {
2665 dput(ret);
2666 ret = ERR_PTR(-ENOENT);
2667 }
2668 return ret;
2669 }
2670 EXPORT_SYMBOL(lookup_positive_unlocked);
2671
2672 #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)2673 int path_pts(struct path *path)
2674 {
2675 /* Find something mounted on "pts" in the same directory as
2676 * the input path.
2677 */
2678 struct dentry *child, *parent;
2679 struct qstr this;
2680 int ret;
2681
2682 ret = path_parent_directory(path);
2683 if (ret)
2684 return ret;
2685
2686 parent = path->dentry;
2687 this.name = "pts";
2688 this.len = 3;
2689 child = d_hash_and_lookup(parent, &this);
2690 if (IS_ERR_OR_NULL(child))
2691 return -ENOENT;
2692
2693 path->dentry = child;
2694 dput(parent);
2695 follow_mount(path);
2696 return 0;
2697 }
2698 #endif
2699
user_path_at_empty(int dfd,const char __user * name,unsigned flags,struct path * path,int * empty)2700 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2701 struct path *path, int *empty)
2702 {
2703 return filename_lookup(dfd, getname_flags(name, flags, empty),
2704 flags, path, NULL);
2705 }
2706 EXPORT_SYMBOL(user_path_at_empty);
2707
2708 /**
2709 * mountpoint_last - look up last component for umount
2710 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2711 *
2712 * This is a special lookup_last function just for umount. In this case, we
2713 * need to resolve the path without doing any revalidation.
2714 *
2715 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2716 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2717 * in almost all cases, this lookup will be served out of the dcache. The only
2718 * cases where it won't are if nd->last refers to a symlink or the path is
2719 * bogus and it doesn't exist.
2720 *
2721 * Returns:
2722 * -error: if there was an error during lookup. This includes -ENOENT if the
2723 * lookup found a negative dentry.
2724 *
2725 * 0: if we successfully resolved nd->last and found it to not to be a
2726 * symlink that needs to be followed.
2727 *
2728 * 1: if we successfully resolved nd->last and found it to be a symlink
2729 * that needs to be followed.
2730 */
2731 static int
mountpoint_last(struct nameidata * nd)2732 mountpoint_last(struct nameidata *nd)
2733 {
2734 int error = 0;
2735 struct dentry *dir = nd->path.dentry;
2736 struct path path;
2737
2738 /* If we're in rcuwalk, drop out of it to handle last component */
2739 if (nd->flags & LOOKUP_RCU) {
2740 if (unlazy_walk(nd))
2741 return -ECHILD;
2742 }
2743
2744 nd->flags &= ~LOOKUP_PARENT;
2745
2746 if (unlikely(nd->last_type != LAST_NORM)) {
2747 error = handle_dots(nd, nd->last_type);
2748 if (error)
2749 return error;
2750 path.dentry = dget(nd->path.dentry);
2751 } else {
2752 path.dentry = d_lookup(dir, &nd->last);
2753 if (!path.dentry) {
2754 /*
2755 * No cached dentry. Mounted dentries are pinned in the
2756 * cache, so that means that this dentry is probably
2757 * a symlink or the path doesn't actually point
2758 * to a mounted dentry.
2759 */
2760 path.dentry = lookup_slow(&nd->last, dir,
2761 nd->flags | LOOKUP_NO_REVAL);
2762 if (IS_ERR(path.dentry))
2763 return PTR_ERR(path.dentry);
2764 }
2765 }
2766 if (d_is_negative(path.dentry)) {
2767 dput(path.dentry);
2768 return -ENOENT;
2769 }
2770 path.mnt = nd->path.mnt;
2771 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2772 }
2773
2774 /**
2775 * path_mountpoint - look up a path to be umounted
2776 * @nd: lookup context
2777 * @flags: lookup flags
2778 * @path: pointer to container for result
2779 *
2780 * Look up the given name, but don't attempt to revalidate the last component.
2781 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2782 */
2783 static int
path_mountpoint(struct nameidata * nd,unsigned flags,struct path * path)2784 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2785 {
2786 const char *s = path_init(nd, flags);
2787 int err;
2788
2789 while (!(err = link_path_walk(s, nd)) &&
2790 (err = mountpoint_last(nd)) > 0) {
2791 s = trailing_symlink(nd);
2792 }
2793 if (!err) {
2794 *path = nd->path;
2795 nd->path.mnt = NULL;
2796 nd->path.dentry = NULL;
2797 follow_mount(path);
2798 }
2799 terminate_walk(nd);
2800 return err;
2801 }
2802
2803 static int
filename_mountpoint(int dfd,struct filename * name,struct path * path,unsigned int flags)2804 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2805 unsigned int flags)
2806 {
2807 struct nameidata nd;
2808 int error;
2809 if (IS_ERR(name))
2810 return PTR_ERR(name);
2811 set_nameidata(&nd, dfd, name);
2812 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2813 if (unlikely(error == -ECHILD))
2814 error = path_mountpoint(&nd, flags, path);
2815 if (unlikely(error == -ESTALE))
2816 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2817 if (likely(!error))
2818 audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL);
2819 restore_nameidata();
2820 putname(name);
2821 return error;
2822 }
2823
2824 /**
2825 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2826 * @dfd: directory file descriptor
2827 * @name: pathname from userland
2828 * @flags: lookup flags
2829 * @path: pointer to container to hold result
2830 *
2831 * A umount is a special case for path walking. We're not actually interested
2832 * in the inode in this situation, and ESTALE errors can be a problem. We
2833 * simply want track down the dentry and vfsmount attached at the mountpoint
2834 * and avoid revalidating the last component.
2835 *
2836 * Returns 0 and populates "path" on success.
2837 */
2838 int
user_path_mountpoint_at(int dfd,const char __user * name,unsigned int flags,struct path * path)2839 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2840 struct path *path)
2841 {
2842 return filename_mountpoint(dfd, getname(name), path, flags);
2843 }
2844
2845 int
kern_path_mountpoint(int dfd,const char * name,struct path * path,unsigned int flags)2846 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2847 unsigned int flags)
2848 {
2849 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2850 }
2851 EXPORT_SYMBOL(kern_path_mountpoint);
2852
__check_sticky(struct inode * dir,struct inode * inode)2853 int __check_sticky(struct inode *dir, struct inode *inode)
2854 {
2855 kuid_t fsuid = current_fsuid();
2856
2857 if (uid_eq(inode->i_uid, fsuid))
2858 return 0;
2859 if (uid_eq(dir->i_uid, fsuid))
2860 return 0;
2861 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2862 }
2863 EXPORT_SYMBOL(__check_sticky);
2864
2865 /*
2866 * Check whether we can remove a link victim from directory dir, check
2867 * whether the type of victim is right.
2868 * 1. We can't do it if dir is read-only (done in permission())
2869 * 2. We should have write and exec permissions on dir
2870 * 3. We can't remove anything from append-only dir
2871 * 4. We can't do anything with immutable dir (done in permission())
2872 * 5. If the sticky bit on dir is set we should either
2873 * a. be owner of dir, or
2874 * b. be owner of victim, or
2875 * c. have CAP_FOWNER capability
2876 * 6. If the victim is append-only or immutable we can't do antyhing with
2877 * links pointing to it.
2878 * 7. If the victim has an unknown uid or gid we can't change the inode.
2879 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2880 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2881 * 10. We can't remove a root or mountpoint.
2882 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2883 * nfs_async_unlink().
2884 */
may_delete(struct inode * dir,struct dentry * victim,bool isdir)2885 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2886 {
2887 struct inode *inode = d_backing_inode(victim);
2888 int error;
2889
2890 if (d_is_negative(victim))
2891 return -ENOENT;
2892 BUG_ON(!inode);
2893
2894 BUG_ON(victim->d_parent->d_inode != dir);
2895
2896 /* Inode writeback is not safe when the uid or gid are invalid. */
2897 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2898 return -EOVERFLOW;
2899
2900 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2901
2902 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2903 if (error)
2904 return error;
2905 if (IS_APPEND(dir))
2906 return -EPERM;
2907
2908 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2909 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2910 return -EPERM;
2911 if (isdir) {
2912 if (!d_is_dir(victim))
2913 return -ENOTDIR;
2914 if (IS_ROOT(victim))
2915 return -EBUSY;
2916 } else if (d_is_dir(victim))
2917 return -EISDIR;
2918 if (IS_DEADDIR(dir))
2919 return -ENOENT;
2920 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2921 return -EBUSY;
2922 return 0;
2923 }
2924
2925 /* Check whether we can create an object with dentry child in directory
2926 * dir.
2927 * 1. We can't do it if child already exists (open has special treatment for
2928 * this case, but since we are inlined it's OK)
2929 * 2. We can't do it if dir is read-only (done in permission())
2930 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2931 * 4. We should have write and exec permissions on dir
2932 * 5. We can't do it if dir is immutable (done in permission())
2933 */
may_create(struct inode * dir,struct dentry * child)2934 static inline int may_create(struct inode *dir, struct dentry *child)
2935 {
2936 struct user_namespace *s_user_ns;
2937 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2938 if (child->d_inode)
2939 return -EEXIST;
2940 if (IS_DEADDIR(dir))
2941 return -ENOENT;
2942 s_user_ns = dir->i_sb->s_user_ns;
2943 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2944 !kgid_has_mapping(s_user_ns, current_fsgid()))
2945 return -EOVERFLOW;
2946 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2947 }
2948
2949 /*
2950 * p1 and p2 should be directories on the same fs.
2951 */
lock_rename(struct dentry * p1,struct dentry * p2)2952 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2953 {
2954 struct dentry *p;
2955
2956 if (p1 == p2) {
2957 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2958 return NULL;
2959 }
2960
2961 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2962
2963 p = d_ancestor(p2, p1);
2964 if (p) {
2965 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2966 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
2967 return p;
2968 }
2969
2970 p = d_ancestor(p1, p2);
2971 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2972 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2973 return p;
2974 }
2975 EXPORT_SYMBOL(lock_rename);
2976
unlock_rename(struct dentry * p1,struct dentry * p2)2977 void unlock_rename(struct dentry *p1, struct dentry *p2)
2978 {
2979 inode_unlock(p1->d_inode);
2980 if (p1 != p2) {
2981 inode_unlock(p2->d_inode);
2982 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2983 }
2984 }
2985 EXPORT_SYMBOL(unlock_rename);
2986
2987 /**
2988 * mode_strip_umask - handle vfs umask stripping
2989 * @dir: parent directory of the new inode
2990 * @mode: mode of the new inode to be created in @dir
2991 *
2992 * Umask stripping depends on whether or not the filesystem supports POSIX
2993 * ACLs. If the filesystem doesn't support it umask stripping is done directly
2994 * in here. If the filesystem does support POSIX ACLs umask stripping is
2995 * deferred until the filesystem calls posix_acl_create().
2996 *
2997 * Returns: mode
2998 */
mode_strip_umask(const struct inode * dir,umode_t mode)2999 static inline umode_t mode_strip_umask(const struct inode *dir, umode_t mode)
3000 {
3001 if (!IS_POSIXACL(dir))
3002 mode &= ~current_umask();
3003 return mode;
3004 }
3005
3006 /**
3007 * vfs_prepare_mode - prepare the mode to be used for a new inode
3008 * @dir: parent directory of the new inode
3009 * @mode: mode of the new inode
3010 * @mask_perms: allowed permission by the vfs
3011 * @type: type of file to be created
3012 *
3013 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3014 * object to be created.
3015 *
3016 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3017 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3018 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3019 * POSIX ACL supporting filesystems.
3020 *
3021 * Note that it's currently valid for @type to be 0 if a directory is created.
3022 * Filesystems raise that flag individually and we need to check whether each
3023 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3024 * non-zero type.
3025 *
3026 * Returns: mode to be passed to the filesystem
3027 */
vfs_prepare_mode(const struct inode * dir,umode_t mode,umode_t mask_perms,umode_t type)3028 static inline umode_t vfs_prepare_mode(const struct inode *dir, umode_t mode,
3029 umode_t mask_perms, umode_t type)
3030 {
3031 mode = mode_strip_sgid(dir, mode);
3032 mode = mode_strip_umask(dir, mode);
3033
3034 /*
3035 * Apply the vfs mandated allowed permission mask and set the type of
3036 * file to be created before we call into the filesystem.
3037 */
3038 mode &= (mask_perms & ~S_IFMT);
3039 mode |= (type & S_IFMT);
3040
3041 return mode;
3042 }
3043
vfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)3044 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3045 bool want_excl)
3046 {
3047 int error = may_create(dir, dentry);
3048 if (error)
3049 return error;
3050
3051 if (!dir->i_op->create)
3052 return -EACCES; /* shouldn't it be ENOSYS? */
3053
3054 mode = vfs_prepare_mode(dir, mode, S_IALLUGO, S_IFREG);
3055 error = security_inode_create(dir, dentry, mode);
3056 if (error)
3057 return error;
3058 error = dir->i_op->create(dir, dentry, mode, want_excl);
3059 if (!error)
3060 fsnotify_create(dir, dentry);
3061 return error;
3062 }
3063 EXPORT_SYMBOL_NS(vfs_create, ANDROID_GKI_VFS_EXPORT_ONLY);
3064
vfs_mkobj(struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)3065 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3066 int (*f)(struct dentry *, umode_t, void *),
3067 void *arg)
3068 {
3069 struct inode *dir = dentry->d_parent->d_inode;
3070 int error = may_create(dir, dentry);
3071 if (error)
3072 return error;
3073
3074 mode &= S_IALLUGO;
3075 mode |= S_IFREG;
3076 error = security_inode_create(dir, dentry, mode);
3077 if (error)
3078 return error;
3079 error = f(dentry, mode, arg);
3080 if (!error)
3081 fsnotify_create(dir, dentry);
3082 return error;
3083 }
3084 EXPORT_SYMBOL(vfs_mkobj);
3085
may_open_dev(const struct path * path)3086 bool may_open_dev(const struct path *path)
3087 {
3088 return !(path->mnt->mnt_flags & MNT_NODEV) &&
3089 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3090 }
3091
may_open(const struct path * path,int acc_mode,int flag)3092 static int may_open(const struct path *path, int acc_mode, int flag)
3093 {
3094 struct dentry *dentry = path->dentry;
3095 struct inode *inode = dentry->d_inode;
3096 int error;
3097
3098 if (!inode)
3099 return -ENOENT;
3100
3101 switch (inode->i_mode & S_IFMT) {
3102 case S_IFLNK:
3103 return -ELOOP;
3104 case S_IFDIR:
3105 if (acc_mode & MAY_WRITE)
3106 return -EISDIR;
3107 break;
3108 case S_IFBLK:
3109 case S_IFCHR:
3110 if (!may_open_dev(path))
3111 return -EACCES;
3112 /*FALLTHRU*/
3113 case S_IFIFO:
3114 case S_IFSOCK:
3115 flag &= ~O_TRUNC;
3116 break;
3117 }
3118
3119 error = inode_permission(inode, MAY_OPEN | acc_mode);
3120 if (error)
3121 return error;
3122
3123 /*
3124 * An append-only file must be opened in append mode for writing.
3125 */
3126 if (IS_APPEND(inode)) {
3127 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3128 return -EPERM;
3129 if (flag & O_TRUNC)
3130 return -EPERM;
3131 }
3132
3133 /* O_NOATIME can only be set by the owner or superuser */
3134 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
3135 return -EPERM;
3136
3137 return 0;
3138 }
3139
handle_truncate(struct file * filp)3140 static int handle_truncate(struct file *filp)
3141 {
3142 const struct path *path = &filp->f_path;
3143 struct inode *inode = path->dentry->d_inode;
3144 int error = get_write_access(inode);
3145 if (error)
3146 return error;
3147 /*
3148 * Refuse to truncate files with mandatory locks held on them.
3149 */
3150 error = locks_verify_locked(filp);
3151 if (!error)
3152 error = security_path_truncate(path);
3153 if (!error) {
3154 error = do_truncate(path->dentry, 0,
3155 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3156 filp);
3157 }
3158 put_write_access(inode);
3159 return error;
3160 }
3161
open_to_namei_flags(int flag)3162 static inline int open_to_namei_flags(int flag)
3163 {
3164 if ((flag & O_ACCMODE) == 3)
3165 flag--;
3166 return flag;
3167 }
3168
may_o_create(const struct path * dir,struct dentry * dentry,umode_t mode)3169 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3170 {
3171 struct user_namespace *s_user_ns;
3172 int error = security_path_mknod(dir, dentry, mode, 0);
3173 if (error)
3174 return error;
3175
3176 s_user_ns = dir->dentry->d_sb->s_user_ns;
3177 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3178 !kgid_has_mapping(s_user_ns, current_fsgid()))
3179 return -EOVERFLOW;
3180
3181 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3182 if (error)
3183 return error;
3184
3185 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3186 }
3187
3188 /*
3189 * Attempt to atomically look up, create and open a file from a negative
3190 * dentry.
3191 *
3192 * Returns 0 if successful. The file will have been created and attached to
3193 * @file by the filesystem calling finish_open().
3194 *
3195 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3196 * be set. The caller will need to perform the open themselves. @path will
3197 * have been updated to point to the new dentry. This may be negative.
3198 *
3199 * Returns an error code otherwise.
3200 */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct path * path,struct file * file,const struct open_flags * op,int open_flag,umode_t mode)3201 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3202 struct path *path, struct file *file,
3203 const struct open_flags *op,
3204 int open_flag, umode_t mode)
3205 {
3206 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3207 struct inode *dir = nd->path.dentry->d_inode;
3208 int error;
3209
3210 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3211 open_flag &= ~O_TRUNC;
3212
3213 if (nd->flags & LOOKUP_DIRECTORY)
3214 open_flag |= O_DIRECTORY;
3215
3216 file->f_path.dentry = DENTRY_NOT_SET;
3217 file->f_path.mnt = nd->path.mnt;
3218 error = dir->i_op->atomic_open(dir, dentry, file,
3219 open_to_namei_flags(open_flag), mode);
3220 d_lookup_done(dentry);
3221 if (!error) {
3222 if (file->f_mode & FMODE_OPENED) {
3223 /*
3224 * We didn't have the inode before the open, so check open
3225 * permission here.
3226 */
3227 int acc_mode = op->acc_mode;
3228 if (file->f_mode & FMODE_CREATED) {
3229 WARN_ON(!(open_flag & O_CREAT));
3230 fsnotify_create(dir, dentry);
3231 acc_mode = 0;
3232 }
3233 error = may_open(&file->f_path, acc_mode, open_flag);
3234 if (WARN_ON(error > 0))
3235 error = -EINVAL;
3236 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3237 error = -EIO;
3238 } else {
3239 if (file->f_path.dentry) {
3240 dput(dentry);
3241 dentry = file->f_path.dentry;
3242 }
3243 if (file->f_mode & FMODE_CREATED)
3244 fsnotify_create(dir, dentry);
3245 if (unlikely(d_is_negative(dentry))) {
3246 error = -ENOENT;
3247 } else {
3248 path->dentry = dentry;
3249 path->mnt = nd->path.mnt;
3250 return 0;
3251 }
3252 }
3253 }
3254 dput(dentry);
3255 return error;
3256 }
3257
3258 /*
3259 * Look up and maybe create and open the last component.
3260 *
3261 * Must be called with parent locked (exclusive in O_CREAT case).
3262 *
3263 * Returns 0 on success, that is, if
3264 * the file was successfully atomically created (if necessary) and opened, or
3265 * the file was not completely opened at this time, though lookups and
3266 * creations were performed.
3267 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3268 * In the latter case dentry returned in @path might be negative if O_CREAT
3269 * hadn't been specified.
3270 *
3271 * An error code is returned on failure.
3272 */
lookup_open(struct nameidata * nd,struct path * path,struct file * file,const struct open_flags * op,bool got_write)3273 static int lookup_open(struct nameidata *nd, struct path *path,
3274 struct file *file,
3275 const struct open_flags *op,
3276 bool got_write)
3277 {
3278 struct dentry *dir = nd->path.dentry;
3279 struct inode *dir_inode = dir->d_inode;
3280 int open_flag = op->open_flag;
3281 struct dentry *dentry;
3282 int error, create_error = 0;
3283 umode_t mode = op->mode;
3284 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3285
3286 if (unlikely(IS_DEADDIR(dir_inode)))
3287 return -ENOENT;
3288
3289 file->f_mode &= ~FMODE_CREATED;
3290 dentry = d_lookup(dir, &nd->last);
3291 for (;;) {
3292 if (!dentry) {
3293 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3294 if (IS_ERR(dentry))
3295 return PTR_ERR(dentry);
3296 }
3297 if (d_in_lookup(dentry))
3298 break;
3299
3300 error = d_revalidate(dentry, nd->flags);
3301 if (likely(error > 0))
3302 break;
3303 if (error)
3304 goto out_dput;
3305 d_invalidate(dentry);
3306 dput(dentry);
3307 dentry = NULL;
3308 }
3309 if (dentry->d_inode) {
3310 /* Cached positive dentry: will open in f_op->open */
3311 goto out_no_open;
3312 }
3313
3314 /*
3315 * Checking write permission is tricky, bacuse we don't know if we are
3316 * going to actually need it: O_CREAT opens should work as long as the
3317 * file exists. But checking existence breaks atomicity. The trick is
3318 * to check access and if not granted clear O_CREAT from the flags.
3319 *
3320 * Another problem is returing the "right" error value (e.g. for an
3321 * O_EXCL open we want to return EEXIST not EROFS).
3322 */
3323 if (open_flag & O_CREAT) {
3324 mode = vfs_prepare_mode(dir->d_inode, mode, mode, mode);
3325 if (unlikely(!got_write)) {
3326 create_error = -EROFS;
3327 open_flag &= ~O_CREAT;
3328 if (open_flag & (O_EXCL | O_TRUNC))
3329 goto no_open;
3330 /* No side effects, safe to clear O_CREAT */
3331 } else {
3332 create_error = may_o_create(&nd->path, dentry, mode);
3333 if (create_error) {
3334 open_flag &= ~O_CREAT;
3335 if (open_flag & O_EXCL)
3336 goto no_open;
3337 }
3338 }
3339 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3340 unlikely(!got_write)) {
3341 /*
3342 * No O_CREATE -> atomicity not a requirement -> fall
3343 * back to lookup + open
3344 */
3345 goto no_open;
3346 }
3347
3348 if (dir_inode->i_op->atomic_open) {
3349 error = atomic_open(nd, dentry, path, file, op, open_flag,
3350 mode);
3351 if (unlikely(error == -ENOENT) && create_error)
3352 error = create_error;
3353 return error;
3354 }
3355
3356 no_open:
3357 if (d_in_lookup(dentry)) {
3358 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3359 nd->flags);
3360 d_lookup_done(dentry);
3361 if (unlikely(res)) {
3362 if (IS_ERR(res)) {
3363 error = PTR_ERR(res);
3364 goto out_dput;
3365 }
3366 dput(dentry);
3367 dentry = res;
3368 }
3369 }
3370
3371 /* Negative dentry, just create the file */
3372 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3373 file->f_mode |= FMODE_CREATED;
3374 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3375 if (!dir_inode->i_op->create) {
3376 error = -EACCES;
3377 goto out_dput;
3378 }
3379 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3380 open_flag & O_EXCL);
3381 if (error)
3382 goto out_dput;
3383 fsnotify_create(dir_inode, dentry);
3384 }
3385 if (unlikely(create_error) && !dentry->d_inode) {
3386 error = create_error;
3387 goto out_dput;
3388 }
3389 out_no_open:
3390 path->dentry = dentry;
3391 path->mnt = nd->path.mnt;
3392 return 0;
3393
3394 out_dput:
3395 dput(dentry);
3396 return error;
3397 }
3398
3399 /*
3400 * Handle the last step of open()
3401 */
do_last(struct nameidata * nd,struct file * file,const struct open_flags * op)3402 static int do_last(struct nameidata *nd,
3403 struct file *file, const struct open_flags *op)
3404 {
3405 struct dentry *dir = nd->path.dentry;
3406 kuid_t dir_uid = nd->inode->i_uid;
3407 umode_t dir_mode = nd->inode->i_mode;
3408 int open_flag = op->open_flag;
3409 bool will_truncate = (open_flag & O_TRUNC) != 0;
3410 bool got_write = false;
3411 int acc_mode = op->acc_mode;
3412 unsigned seq;
3413 struct inode *inode;
3414 struct path path;
3415 int error;
3416
3417 nd->flags &= ~LOOKUP_PARENT;
3418 nd->flags |= op->intent;
3419
3420 if (nd->last_type != LAST_NORM) {
3421 error = handle_dots(nd, nd->last_type);
3422 if (unlikely(error))
3423 return error;
3424 goto finish_open;
3425 }
3426
3427 if (!(open_flag & O_CREAT)) {
3428 if (nd->last.name[nd->last.len])
3429 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3430 /* we _can_ be in RCU mode here */
3431 error = lookup_fast(nd, &path, &inode, &seq);
3432 if (likely(error > 0))
3433 goto finish_lookup;
3434
3435 if (error < 0)
3436 return error;
3437
3438 BUG_ON(nd->inode != dir->d_inode);
3439 BUG_ON(nd->flags & LOOKUP_RCU);
3440 } else {
3441 /* create side of things */
3442 /*
3443 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3444 * has been cleared when we got to the last component we are
3445 * about to look up
3446 */
3447 error = complete_walk(nd);
3448 if (error)
3449 return error;
3450
3451 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3452 /* trailing slashes? */
3453 if (unlikely(nd->last.name[nd->last.len]))
3454 return -EISDIR;
3455 }
3456
3457 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3458 error = mnt_want_write(nd->path.mnt);
3459 if (!error)
3460 got_write = true;
3461 /*
3462 * do _not_ fail yet - we might not need that or fail with
3463 * a different error; let lookup_open() decide; we'll be
3464 * dropping this one anyway.
3465 */
3466 }
3467 if (open_flag & O_CREAT)
3468 inode_lock(dir->d_inode);
3469 else
3470 inode_lock_shared(dir->d_inode);
3471 error = lookup_open(nd, &path, file, op, got_write);
3472 if (open_flag & O_CREAT)
3473 inode_unlock(dir->d_inode);
3474 else
3475 inode_unlock_shared(dir->d_inode);
3476
3477 if (error)
3478 goto out;
3479
3480 if (file->f_mode & FMODE_OPENED) {
3481 if ((file->f_mode & FMODE_CREATED) ||
3482 !S_ISREG(file_inode(file)->i_mode))
3483 will_truncate = false;
3484
3485 audit_inode(nd->name, file->f_path.dentry, 0);
3486 goto opened;
3487 }
3488
3489 if (file->f_mode & FMODE_CREATED) {
3490 /* Don't check for write permission, don't truncate */
3491 open_flag &= ~O_TRUNC;
3492 will_truncate = false;
3493 acc_mode = 0;
3494 path_to_nameidata(&path, nd);
3495 goto finish_open_created;
3496 }
3497
3498 /*
3499 * If atomic_open() acquired write access it is dropped now due to
3500 * possible mount and symlink following (this might be optimized away if
3501 * necessary...)
3502 */
3503 if (got_write) {
3504 mnt_drop_write(nd->path.mnt);
3505 got_write = false;
3506 }
3507
3508 error = follow_managed(&path, nd);
3509 if (unlikely(error < 0))
3510 return error;
3511
3512 if (unlikely(d_is_negative(path.dentry))) {
3513 path_to_nameidata(&path, nd);
3514 return -ENOENT;
3515 }
3516
3517 /*
3518 * create/update audit record if it already exists.
3519 */
3520 audit_inode(nd->name, path.dentry, 0);
3521
3522 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3523 path_to_nameidata(&path, nd);
3524 return -EEXIST;
3525 }
3526
3527 seq = 0; /* out of RCU mode, so the value doesn't matter */
3528 inode = d_backing_inode(path.dentry);
3529 finish_lookup:
3530 error = step_into(nd, &path, 0, inode, seq);
3531 if (unlikely(error))
3532 return error;
3533 finish_open:
3534 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3535 error = complete_walk(nd);
3536 if (error)
3537 return error;
3538 audit_inode(nd->name, nd->path.dentry, 0);
3539 if (open_flag & O_CREAT) {
3540 error = -EISDIR;
3541 if (d_is_dir(nd->path.dentry))
3542 goto out;
3543 error = may_create_in_sticky(dir_mode, dir_uid,
3544 d_backing_inode(nd->path.dentry));
3545 if (unlikely(error))
3546 goto out;
3547 }
3548 error = -ENOTDIR;
3549 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3550 goto out;
3551 if (!d_is_reg(nd->path.dentry))
3552 will_truncate = false;
3553
3554 if (will_truncate) {
3555 error = mnt_want_write(nd->path.mnt);
3556 if (error)
3557 goto out;
3558 got_write = true;
3559 }
3560 finish_open_created:
3561 error = may_open(&nd->path, acc_mode, open_flag);
3562 if (error)
3563 goto out;
3564 BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3565 error = vfs_open(&nd->path, file);
3566 if (error)
3567 goto out;
3568 opened:
3569 error = ima_file_check(file, op->acc_mode);
3570 if (!error && will_truncate)
3571 error = handle_truncate(file);
3572 out:
3573 if (unlikely(error > 0)) {
3574 WARN_ON(1);
3575 error = -EINVAL;
3576 }
3577 if (got_write)
3578 mnt_drop_write(nd->path.mnt);
3579 return error;
3580 }
3581
vfs_tmpfile(struct dentry * dentry,umode_t mode,int open_flag)3582 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3583 {
3584 struct dentry *child = NULL;
3585 struct inode *dir = dentry->d_inode;
3586 struct inode *inode;
3587 int error;
3588
3589 /* we want directory to be writable */
3590 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3591 if (error)
3592 goto out_err;
3593 error = -EOPNOTSUPP;
3594 if (!dir->i_op->tmpfile)
3595 goto out_err;
3596 error = -ENOMEM;
3597 child = d_alloc(dentry, &slash_name);
3598 if (unlikely(!child))
3599 goto out_err;
3600 mode = vfs_prepare_mode(dir, mode, mode, mode);
3601 error = dir->i_op->tmpfile(dir, child, mode);
3602 if (error)
3603 goto out_err;
3604 error = -ENOENT;
3605 inode = child->d_inode;
3606 if (unlikely(!inode))
3607 goto out_err;
3608 if (!(open_flag & O_EXCL)) {
3609 spin_lock(&inode->i_lock);
3610 inode->i_state |= I_LINKABLE;
3611 spin_unlock(&inode->i_lock);
3612 }
3613 ima_post_create_tmpfile(inode);
3614 return child;
3615
3616 out_err:
3617 dput(child);
3618 return ERR_PTR(error);
3619 }
3620 EXPORT_SYMBOL(vfs_tmpfile);
3621
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file)3622 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3623 const struct open_flags *op,
3624 struct file *file)
3625 {
3626 struct dentry *child;
3627 struct path path;
3628 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3629 if (unlikely(error))
3630 return error;
3631 error = mnt_want_write(path.mnt);
3632 if (unlikely(error))
3633 goto out;
3634 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3635 error = PTR_ERR(child);
3636 if (IS_ERR(child))
3637 goto out2;
3638 dput(path.dentry);
3639 path.dentry = child;
3640 audit_inode(nd->name, child, 0);
3641 /* Don't check for other permissions, the inode was just created */
3642 error = may_open(&path, 0, op->open_flag);
3643 if (error)
3644 goto out2;
3645 file->f_path.mnt = path.mnt;
3646 error = finish_open(file, child, NULL);
3647 out2:
3648 mnt_drop_write(path.mnt);
3649 out:
3650 path_put(&path);
3651 return error;
3652 }
3653
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)3654 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3655 {
3656 struct path path;
3657 int error = path_lookupat(nd, flags, &path);
3658 if (!error) {
3659 audit_inode(nd->name, path.dentry, 0);
3660 error = vfs_open(&path, file);
3661 path_put(&path);
3662 }
3663 return error;
3664 }
3665
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)3666 static struct file *path_openat(struct nameidata *nd,
3667 const struct open_flags *op, unsigned flags)
3668 {
3669 struct file *file;
3670 int error;
3671
3672 file = alloc_empty_file(op->open_flag, current_cred());
3673 if (IS_ERR(file))
3674 return file;
3675
3676 if (unlikely(file->f_flags & __O_TMPFILE)) {
3677 error = do_tmpfile(nd, flags, op, file);
3678 } else if (unlikely(file->f_flags & O_PATH)) {
3679 error = do_o_path(nd, flags, file);
3680 } else {
3681 const char *s = path_init(nd, flags);
3682 while (!(error = link_path_walk(s, nd)) &&
3683 (error = do_last(nd, file, op)) > 0) {
3684 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3685 s = trailing_symlink(nd);
3686 }
3687 terminate_walk(nd);
3688 }
3689 if (likely(!error)) {
3690 if (likely(file->f_mode & FMODE_OPENED))
3691 return file;
3692 WARN_ON(1);
3693 error = -EINVAL;
3694 }
3695 fput(file);
3696 if (error == -EOPENSTALE) {
3697 if (flags & LOOKUP_RCU)
3698 error = -ECHILD;
3699 else
3700 error = -ESTALE;
3701 }
3702 return ERR_PTR(error);
3703 }
3704
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)3705 struct file *do_filp_open(int dfd, struct filename *pathname,
3706 const struct open_flags *op)
3707 {
3708 struct nameidata nd;
3709 int flags = op->lookup_flags;
3710 struct file *filp;
3711
3712 set_nameidata(&nd, dfd, pathname);
3713 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3714 if (unlikely(filp == ERR_PTR(-ECHILD)))
3715 filp = path_openat(&nd, op, flags);
3716 if (unlikely(filp == ERR_PTR(-ESTALE)))
3717 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3718 restore_nameidata();
3719 return filp;
3720 }
3721
do_file_open_root(struct dentry * dentry,struct vfsmount * mnt,const char * name,const struct open_flags * op)3722 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3723 const char *name, const struct open_flags *op)
3724 {
3725 struct nameidata nd;
3726 struct file *file;
3727 struct filename *filename;
3728 int flags = op->lookup_flags | LOOKUP_ROOT;
3729
3730 nd.root.mnt = mnt;
3731 nd.root.dentry = dentry;
3732
3733 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3734 return ERR_PTR(-ELOOP);
3735
3736 filename = getname_kernel(name);
3737 if (IS_ERR(filename))
3738 return ERR_CAST(filename);
3739
3740 set_nameidata(&nd, -1, filename);
3741 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3742 if (unlikely(file == ERR_PTR(-ECHILD)))
3743 file = path_openat(&nd, op, flags);
3744 if (unlikely(file == ERR_PTR(-ESTALE)))
3745 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3746 restore_nameidata();
3747 putname(filename);
3748 return file;
3749 }
3750
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)3751 static struct dentry *filename_create(int dfd, struct filename *name,
3752 struct path *path, unsigned int lookup_flags)
3753 {
3754 struct dentry *dentry = ERR_PTR(-EEXIST);
3755 struct qstr last;
3756 int type;
3757 int err2;
3758 int error;
3759 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3760
3761 /*
3762 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3763 * other flags passed in are ignored!
3764 */
3765 lookup_flags &= LOOKUP_REVAL;
3766
3767 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3768 if (IS_ERR(name))
3769 return ERR_CAST(name);
3770
3771 /*
3772 * Yucky last component or no last component at all?
3773 * (foo/., foo/.., /////)
3774 */
3775 if (unlikely(type != LAST_NORM))
3776 goto out;
3777
3778 /* don't fail immediately if it's r/o, at least try to report other errors */
3779 err2 = mnt_want_write(path->mnt);
3780 /*
3781 * Do the final lookup.
3782 */
3783 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3784 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3785 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3786 if (IS_ERR(dentry))
3787 goto unlock;
3788
3789 error = -EEXIST;
3790 if (d_is_positive(dentry))
3791 goto fail;
3792
3793 /*
3794 * Special case - lookup gave negative, but... we had foo/bar/
3795 * From the vfs_mknod() POV we just have a negative dentry -
3796 * all is fine. Let's be bastards - you had / on the end, you've
3797 * been asking for (non-existent) directory. -ENOENT for you.
3798 */
3799 if (unlikely(!is_dir && last.name[last.len])) {
3800 error = -ENOENT;
3801 goto fail;
3802 }
3803 if (unlikely(err2)) {
3804 error = err2;
3805 goto fail;
3806 }
3807 putname(name);
3808 return dentry;
3809 fail:
3810 dput(dentry);
3811 dentry = ERR_PTR(error);
3812 unlock:
3813 inode_unlock(path->dentry->d_inode);
3814 if (!err2)
3815 mnt_drop_write(path->mnt);
3816 out:
3817 path_put(path);
3818 putname(name);
3819 return dentry;
3820 }
3821
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)3822 struct dentry *kern_path_create(int dfd, const char *pathname,
3823 struct path *path, unsigned int lookup_flags)
3824 {
3825 return filename_create(dfd, getname_kernel(pathname),
3826 path, lookup_flags);
3827 }
3828 EXPORT_SYMBOL(kern_path_create);
3829
done_path_create(struct path * path,struct dentry * dentry)3830 void done_path_create(struct path *path, struct dentry *dentry)
3831 {
3832 dput(dentry);
3833 inode_unlock(path->dentry->d_inode);
3834 mnt_drop_write(path->mnt);
3835 path_put(path);
3836 }
3837 EXPORT_SYMBOL(done_path_create);
3838
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)3839 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3840 struct path *path, unsigned int lookup_flags)
3841 {
3842 return filename_create(dfd, getname(pathname), path, lookup_flags);
3843 }
3844 EXPORT_SYMBOL(user_path_create);
3845
vfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3846 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3847 {
3848 int error = may_create(dir, dentry);
3849
3850 if (error)
3851 return error;
3852
3853 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3854 return -EPERM;
3855
3856 if (!dir->i_op->mknod)
3857 return -EPERM;
3858
3859 mode = vfs_prepare_mode(dir, mode, mode, mode);
3860 error = devcgroup_inode_mknod(mode, dev);
3861 if (error)
3862 return error;
3863
3864 error = security_inode_mknod(dir, dentry, mode, dev);
3865 if (error)
3866 return error;
3867
3868 error = dir->i_op->mknod(dir, dentry, mode, dev);
3869 if (!error)
3870 fsnotify_create(dir, dentry);
3871 return error;
3872 }
3873 EXPORT_SYMBOL(vfs_mknod);
3874
may_mknod(umode_t mode)3875 static int may_mknod(umode_t mode)
3876 {
3877 switch (mode & S_IFMT) {
3878 case S_IFREG:
3879 case S_IFCHR:
3880 case S_IFBLK:
3881 case S_IFIFO:
3882 case S_IFSOCK:
3883 case 0: /* zero mode translates to S_IFREG */
3884 return 0;
3885 case S_IFDIR:
3886 return -EPERM;
3887 default:
3888 return -EINVAL;
3889 }
3890 }
3891
do_mknodat(int dfd,const char __user * filename,umode_t mode,unsigned int dev)3892 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3893 unsigned int dev)
3894 {
3895 struct dentry *dentry;
3896 struct path path;
3897 int error;
3898 unsigned int lookup_flags = 0;
3899
3900 error = may_mknod(mode);
3901 if (error)
3902 return error;
3903 retry:
3904 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3905 if (IS_ERR(dentry))
3906 return PTR_ERR(dentry);
3907
3908 error = security_path_mknod(&path, dentry,
3909 mode_strip_umask(path.dentry->d_inode, mode), dev);
3910 if (error)
3911 goto out;
3912 switch (mode & S_IFMT) {
3913 case 0: case S_IFREG:
3914 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3915 if (!error)
3916 ima_post_path_mknod(dentry);
3917 break;
3918 case S_IFCHR: case S_IFBLK:
3919 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3920 new_decode_dev(dev));
3921 break;
3922 case S_IFIFO: case S_IFSOCK:
3923 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3924 break;
3925 }
3926 out:
3927 done_path_create(&path, dentry);
3928 if (retry_estale(error, lookup_flags)) {
3929 lookup_flags |= LOOKUP_REVAL;
3930 goto retry;
3931 }
3932 return error;
3933 }
3934
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned int,dev)3935 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3936 unsigned int, dev)
3937 {
3938 return do_mknodat(dfd, filename, mode, dev);
3939 }
3940
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)3941 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3942 {
3943 return do_mknodat(AT_FDCWD, filename, mode, dev);
3944 }
3945
vfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)3946 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3947 {
3948 int error = may_create(dir, dentry);
3949 unsigned max_links = dir->i_sb->s_max_links;
3950
3951 if (error)
3952 return error;
3953
3954 if (!dir->i_op->mkdir)
3955 return -EPERM;
3956
3957 mode = vfs_prepare_mode(dir, mode, S_IRWXUGO | S_ISVTX, 0);
3958 error = security_inode_mkdir(dir, dentry, mode);
3959 if (error)
3960 return error;
3961
3962 if (max_links && dir->i_nlink >= max_links)
3963 return -EMLINK;
3964
3965 error = dir->i_op->mkdir(dir, dentry, mode);
3966 if (!error)
3967 fsnotify_mkdir(dir, dentry);
3968 return error;
3969 }
3970 EXPORT_SYMBOL_NS(vfs_mkdir, ANDROID_GKI_VFS_EXPORT_ONLY);
3971
do_mkdirat(int dfd,const char __user * pathname,umode_t mode)3972 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3973 {
3974 struct dentry *dentry;
3975 struct path path;
3976 int error;
3977 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3978
3979 retry:
3980 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3981 if (IS_ERR(dentry))
3982 return PTR_ERR(dentry);
3983
3984 error = security_path_mkdir(&path, dentry,
3985 mode_strip_umask(path.dentry->d_inode, mode));
3986 if (!error)
3987 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3988 done_path_create(&path, dentry);
3989 if (retry_estale(error, lookup_flags)) {
3990 lookup_flags |= LOOKUP_REVAL;
3991 goto retry;
3992 }
3993 return error;
3994 }
3995
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)3996 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3997 {
3998 return do_mkdirat(dfd, pathname, mode);
3999 }
4000
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)4001 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4002 {
4003 return do_mkdirat(AT_FDCWD, pathname, mode);
4004 }
4005
vfs_rmdir(struct inode * dir,struct dentry * dentry)4006 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
4007 {
4008 int error = may_delete(dir, dentry, 1);
4009
4010 if (error)
4011 return error;
4012
4013 if (!dir->i_op->rmdir)
4014 return -EPERM;
4015
4016 dget(dentry);
4017 inode_lock(dentry->d_inode);
4018
4019 error = -EBUSY;
4020 if (is_local_mountpoint(dentry))
4021 goto out;
4022
4023 error = security_inode_rmdir(dir, dentry);
4024 if (error)
4025 goto out;
4026
4027 error = dir->i_op->rmdir(dir, dentry);
4028 if (error)
4029 goto out;
4030
4031 shrink_dcache_parent(dentry);
4032 dentry->d_inode->i_flags |= S_DEAD;
4033 dont_mount(dentry);
4034 detach_mounts(dentry);
4035
4036 out:
4037 inode_unlock(dentry->d_inode);
4038 dput(dentry);
4039 if (!error)
4040 d_delete_notify(dir, dentry);
4041 return error;
4042 }
4043 EXPORT_SYMBOL_NS(vfs_rmdir, ANDROID_GKI_VFS_EXPORT_ONLY);
4044
do_rmdir(int dfd,const char __user * pathname)4045 long do_rmdir(int dfd, const char __user *pathname)
4046 {
4047 int error = 0;
4048 struct filename *name;
4049 struct dentry *dentry;
4050 struct path path;
4051 struct qstr last;
4052 int type;
4053 unsigned int lookup_flags = 0;
4054 retry:
4055 name = filename_parentat(dfd, getname(pathname), lookup_flags,
4056 &path, &last, &type);
4057 if (IS_ERR(name))
4058 return PTR_ERR(name);
4059
4060 switch (type) {
4061 case LAST_DOTDOT:
4062 error = -ENOTEMPTY;
4063 goto exit1;
4064 case LAST_DOT:
4065 error = -EINVAL;
4066 goto exit1;
4067 case LAST_ROOT:
4068 error = -EBUSY;
4069 goto exit1;
4070 }
4071
4072 error = mnt_want_write(path.mnt);
4073 if (error)
4074 goto exit1;
4075
4076 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4077 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4078 error = PTR_ERR(dentry);
4079 if (IS_ERR(dentry))
4080 goto exit2;
4081 if (!dentry->d_inode) {
4082 error = -ENOENT;
4083 goto exit3;
4084 }
4085 error = security_path_rmdir(&path, dentry);
4086 if (error)
4087 goto exit3;
4088 error = vfs_rmdir(path.dentry->d_inode, dentry);
4089 exit3:
4090 dput(dentry);
4091 exit2:
4092 inode_unlock(path.dentry->d_inode);
4093 mnt_drop_write(path.mnt);
4094 exit1:
4095 path_put(&path);
4096 putname(name);
4097 if (retry_estale(error, lookup_flags)) {
4098 lookup_flags |= LOOKUP_REVAL;
4099 goto retry;
4100 }
4101 return error;
4102 }
4103
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)4104 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4105 {
4106 return do_rmdir(AT_FDCWD, pathname);
4107 }
4108
4109 /**
4110 * vfs_unlink - unlink a filesystem object
4111 * @dir: parent directory
4112 * @dentry: victim
4113 * @delegated_inode: returns victim inode, if the inode is delegated.
4114 *
4115 * The caller must hold dir->i_mutex.
4116 *
4117 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4118 * return a reference to the inode in delegated_inode. The caller
4119 * should then break the delegation on that inode and retry. Because
4120 * breaking a delegation may take a long time, the caller should drop
4121 * dir->i_mutex before doing so.
4122 *
4123 * Alternatively, a caller may pass NULL for delegated_inode. This may
4124 * be appropriate for callers that expect the underlying filesystem not
4125 * to be NFS exported.
4126 */
vfs_unlink(struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)4127 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
4128 {
4129 struct inode *target = dentry->d_inode;
4130 int error = may_delete(dir, dentry, 0);
4131
4132 if (error)
4133 return error;
4134
4135 if (!dir->i_op->unlink)
4136 return -EPERM;
4137
4138 inode_lock(target);
4139 if (is_local_mountpoint(dentry))
4140 error = -EBUSY;
4141 else {
4142 error = security_inode_unlink(dir, dentry);
4143 if (!error) {
4144 error = try_break_deleg(target, delegated_inode);
4145 if (error)
4146 goto out;
4147 error = dir->i_op->unlink(dir, dentry);
4148 if (!error) {
4149 dont_mount(dentry);
4150 detach_mounts(dentry);
4151 }
4152 }
4153 }
4154 out:
4155 inode_unlock(target);
4156
4157 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4158 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4159 fsnotify_unlink(dir, dentry);
4160 } else if (!error) {
4161 fsnotify_link_count(target);
4162 d_delete_notify(dir, dentry);
4163 }
4164
4165 return error;
4166 }
4167 EXPORT_SYMBOL_NS(vfs_unlink, ANDROID_GKI_VFS_EXPORT_ONLY);
4168
4169 /*
4170 * Make sure that the actual truncation of the file will occur outside its
4171 * directory's i_mutex. Truncate can take a long time if there is a lot of
4172 * writeout happening, and we don't want to prevent access to the directory
4173 * while waiting on the I/O.
4174 */
do_unlinkat(int dfd,struct filename * name)4175 long do_unlinkat(int dfd, struct filename *name)
4176 {
4177 int error;
4178 struct dentry *dentry;
4179 struct path path;
4180 struct qstr last;
4181 int type;
4182 struct inode *inode = NULL;
4183 struct inode *delegated_inode = NULL;
4184 unsigned int lookup_flags = 0;
4185 retry:
4186 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4187 if (IS_ERR(name))
4188 return PTR_ERR(name);
4189
4190 error = -EISDIR;
4191 if (type != LAST_NORM)
4192 goto exit1;
4193
4194 error = mnt_want_write(path.mnt);
4195 if (error)
4196 goto exit1;
4197 retry_deleg:
4198 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4199 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4200 error = PTR_ERR(dentry);
4201 if (!IS_ERR(dentry)) {
4202 /* Why not before? Because we want correct error value */
4203 if (last.name[last.len])
4204 goto slashes;
4205 inode = dentry->d_inode;
4206 if (d_is_negative(dentry))
4207 goto slashes;
4208 ihold(inode);
4209 error = security_path_unlink(&path, dentry);
4210 if (error)
4211 goto exit2;
4212 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4213 exit2:
4214 dput(dentry);
4215 }
4216 inode_unlock(path.dentry->d_inode);
4217 if (inode)
4218 iput(inode); /* truncate the inode here */
4219 inode = NULL;
4220 if (delegated_inode) {
4221 error = break_deleg_wait(&delegated_inode);
4222 if (!error)
4223 goto retry_deleg;
4224 }
4225 mnt_drop_write(path.mnt);
4226 exit1:
4227 path_put(&path);
4228 if (retry_estale(error, lookup_flags)) {
4229 lookup_flags |= LOOKUP_REVAL;
4230 inode = NULL;
4231 goto retry;
4232 }
4233 putname(name);
4234 return error;
4235
4236 slashes:
4237 if (d_is_negative(dentry))
4238 error = -ENOENT;
4239 else if (d_is_dir(dentry))
4240 error = -EISDIR;
4241 else
4242 error = -ENOTDIR;
4243 goto exit2;
4244 }
4245
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)4246 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4247 {
4248 if ((flag & ~AT_REMOVEDIR) != 0)
4249 return -EINVAL;
4250
4251 if (flag & AT_REMOVEDIR)
4252 return do_rmdir(dfd, pathname);
4253
4254 return do_unlinkat(dfd, getname(pathname));
4255 }
4256
SYSCALL_DEFINE1(unlink,const char __user *,pathname)4257 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4258 {
4259 return do_unlinkat(AT_FDCWD, getname(pathname));
4260 }
4261
vfs_symlink(struct inode * dir,struct dentry * dentry,const char * oldname)4262 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4263 {
4264 int error = may_create(dir, dentry);
4265
4266 if (error)
4267 return error;
4268
4269 if (!dir->i_op->symlink)
4270 return -EPERM;
4271
4272 error = security_inode_symlink(dir, dentry, oldname);
4273 if (error)
4274 return error;
4275
4276 error = dir->i_op->symlink(dir, dentry, oldname);
4277 if (!error)
4278 fsnotify_create(dir, dentry);
4279 return error;
4280 }
4281 EXPORT_SYMBOL(vfs_symlink);
4282
do_symlinkat(const char __user * oldname,int newdfd,const char __user * newname)4283 long do_symlinkat(const char __user *oldname, int newdfd,
4284 const char __user *newname)
4285 {
4286 int error;
4287 struct filename *from;
4288 struct dentry *dentry;
4289 struct path path;
4290 unsigned int lookup_flags = 0;
4291
4292 from = getname(oldname);
4293 if (IS_ERR(from))
4294 return PTR_ERR(from);
4295 retry:
4296 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4297 error = PTR_ERR(dentry);
4298 if (IS_ERR(dentry))
4299 goto out_putname;
4300
4301 error = security_path_symlink(&path, dentry, from->name);
4302 if (!error)
4303 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4304 done_path_create(&path, dentry);
4305 if (retry_estale(error, lookup_flags)) {
4306 lookup_flags |= LOOKUP_REVAL;
4307 goto retry;
4308 }
4309 out_putname:
4310 putname(from);
4311 return error;
4312 }
4313
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)4314 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4315 int, newdfd, const char __user *, newname)
4316 {
4317 return do_symlinkat(oldname, newdfd, newname);
4318 }
4319
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4320 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4321 {
4322 return do_symlinkat(oldname, AT_FDCWD, newname);
4323 }
4324
4325 /**
4326 * vfs_link - create a new link
4327 * @old_dentry: object to be linked
4328 * @dir: new parent
4329 * @new_dentry: where to create the new link
4330 * @delegated_inode: returns inode needing a delegation break
4331 *
4332 * The caller must hold dir->i_mutex
4333 *
4334 * If vfs_link discovers a delegation on the to-be-linked file in need
4335 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4336 * inode in delegated_inode. The caller should then break the delegation
4337 * and retry. Because breaking a delegation may take a long time, the
4338 * caller should drop the i_mutex before doing so.
4339 *
4340 * Alternatively, a caller may pass NULL for delegated_inode. This may
4341 * be appropriate for callers that expect the underlying filesystem not
4342 * to be NFS exported.
4343 */
vfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4344 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4345 {
4346 struct inode *inode = old_dentry->d_inode;
4347 unsigned max_links = dir->i_sb->s_max_links;
4348 int error;
4349
4350 if (!inode)
4351 return -ENOENT;
4352
4353 error = may_create(dir, new_dentry);
4354 if (error)
4355 return error;
4356
4357 if (dir->i_sb != inode->i_sb)
4358 return -EXDEV;
4359
4360 /*
4361 * A link to an append-only or immutable file cannot be created.
4362 */
4363 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4364 return -EPERM;
4365 /*
4366 * Updating the link count will likely cause i_uid and i_gid to
4367 * be writen back improperly if their true value is unknown to
4368 * the vfs.
4369 */
4370 if (HAS_UNMAPPED_ID(inode))
4371 return -EPERM;
4372 if (!dir->i_op->link)
4373 return -EPERM;
4374 if (S_ISDIR(inode->i_mode))
4375 return -EPERM;
4376
4377 error = security_inode_link(old_dentry, dir, new_dentry);
4378 if (error)
4379 return error;
4380
4381 inode_lock(inode);
4382 /* Make sure we don't allow creating hardlink to an unlinked file */
4383 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4384 error = -ENOENT;
4385 else if (max_links && inode->i_nlink >= max_links)
4386 error = -EMLINK;
4387 else {
4388 error = try_break_deleg(inode, delegated_inode);
4389 if (!error)
4390 error = dir->i_op->link(old_dentry, dir, new_dentry);
4391 }
4392
4393 if (!error && (inode->i_state & I_LINKABLE)) {
4394 spin_lock(&inode->i_lock);
4395 inode->i_state &= ~I_LINKABLE;
4396 spin_unlock(&inode->i_lock);
4397 }
4398 inode_unlock(inode);
4399 if (!error)
4400 fsnotify_link(dir, inode, new_dentry);
4401 return error;
4402 }
4403 EXPORT_SYMBOL_NS(vfs_link, ANDROID_GKI_VFS_EXPORT_ONLY);
4404
4405 /*
4406 * Hardlinks are often used in delicate situations. We avoid
4407 * security-related surprises by not following symlinks on the
4408 * newname. --KAB
4409 *
4410 * We don't follow them on the oldname either to be compatible
4411 * with linux 2.0, and to avoid hard-linking to directories
4412 * and other special files. --ADM
4413 */
do_linkat(int olddfd,const char __user * oldname,int newdfd,const char __user * newname,int flags)4414 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4415 const char __user *newname, int flags)
4416 {
4417 struct dentry *new_dentry;
4418 struct path old_path, new_path;
4419 struct inode *delegated_inode = NULL;
4420 int how = 0;
4421 int error;
4422
4423 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4424 return -EINVAL;
4425 /*
4426 * To use null names we require CAP_DAC_READ_SEARCH
4427 * This ensures that not everyone will be able to create
4428 * handlink using the passed filedescriptor.
4429 */
4430 if (flags & AT_EMPTY_PATH) {
4431 if (!capable(CAP_DAC_READ_SEARCH))
4432 return -ENOENT;
4433 how = LOOKUP_EMPTY;
4434 }
4435
4436 if (flags & AT_SYMLINK_FOLLOW)
4437 how |= LOOKUP_FOLLOW;
4438 retry:
4439 error = user_path_at(olddfd, oldname, how, &old_path);
4440 if (error)
4441 return error;
4442
4443 new_dentry = user_path_create(newdfd, newname, &new_path,
4444 (how & LOOKUP_REVAL));
4445 error = PTR_ERR(new_dentry);
4446 if (IS_ERR(new_dentry))
4447 goto out;
4448
4449 error = -EXDEV;
4450 if (old_path.mnt != new_path.mnt)
4451 goto out_dput;
4452 error = may_linkat(&old_path);
4453 if (unlikely(error))
4454 goto out_dput;
4455 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4456 if (error)
4457 goto out_dput;
4458 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4459 out_dput:
4460 done_path_create(&new_path, new_dentry);
4461 if (delegated_inode) {
4462 error = break_deleg_wait(&delegated_inode);
4463 if (!error) {
4464 path_put(&old_path);
4465 goto retry;
4466 }
4467 }
4468 if (retry_estale(error, how)) {
4469 path_put(&old_path);
4470 how |= LOOKUP_REVAL;
4471 goto retry;
4472 }
4473 out:
4474 path_put(&old_path);
4475
4476 return error;
4477 }
4478
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)4479 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4480 int, newdfd, const char __user *, newname, int, flags)
4481 {
4482 return do_linkat(olddfd, oldname, newdfd, newname, flags);
4483 }
4484
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)4485 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4486 {
4487 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4488 }
4489
4490 /**
4491 * vfs_rename - rename a filesystem object
4492 * @old_dir: parent of source
4493 * @old_dentry: source
4494 * @new_dir: parent of destination
4495 * @new_dentry: destination
4496 * @delegated_inode: returns an inode needing a delegation break
4497 * @flags: rename flags
4498 *
4499 * The caller must hold multiple mutexes--see lock_rename()).
4500 *
4501 * If vfs_rename discovers a delegation in need of breaking at either
4502 * the source or destination, it will return -EWOULDBLOCK and return a
4503 * reference to the inode in delegated_inode. The caller should then
4504 * break the delegation and retry. Because breaking a delegation may
4505 * take a long time, the caller should drop all locks before doing
4506 * so.
4507 *
4508 * Alternatively, a caller may pass NULL for delegated_inode. This may
4509 * be appropriate for callers that expect the underlying filesystem not
4510 * to be NFS exported.
4511 *
4512 * The worst of all namespace operations - renaming directory. "Perverted"
4513 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4514 * Problems:
4515 *
4516 * a) we can get into loop creation.
4517 * b) race potential - two innocent renames can create a loop together.
4518 * That's where 4.4BSD screws up. Current fix: serialization on
4519 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4520 * story.
4521 * c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4522 * and source (if it's a non-directory or a subdirectory that moves to
4523 * different parent).
4524 * And that - after we got ->i_mutex on parents (until then we don't know
4525 * whether the target exists). Solution: try to be smart with locking
4526 * order for inodes. We rely on the fact that tree topology may change
4527 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4528 * move will be locked. Thus we can rank directories by the tree
4529 * (ancestors first) and rank all non-directories after them.
4530 * That works since everybody except rename does "lock parent, lookup,
4531 * lock child" and rename is under ->s_vfs_rename_mutex.
4532 * HOWEVER, it relies on the assumption that any object with ->lookup()
4533 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4534 * we'd better make sure that there's no link(2) for them.
4535 * d) conversion from fhandle to dentry may come in the wrong moment - when
4536 * we are removing the target. Solution: we will have to grab ->i_mutex
4537 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4538 * ->i_mutex on parents, which works but leads to some truly excessive
4539 * locking].
4540 */
vfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,struct inode ** delegated_inode,unsigned int flags)4541 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4542 struct inode *new_dir, struct dentry *new_dentry,
4543 struct inode **delegated_inode, unsigned int flags)
4544 {
4545 int error;
4546 bool is_dir = d_is_dir(old_dentry);
4547 struct inode *source = old_dentry->d_inode;
4548 struct inode *target = new_dentry->d_inode;
4549 bool new_is_dir = false;
4550 unsigned max_links = new_dir->i_sb->s_max_links;
4551 struct name_snapshot old_name;
4552 bool lock_old_subdir, lock_new_subdir;
4553
4554 if (source == target)
4555 return 0;
4556
4557 error = may_delete(old_dir, old_dentry, is_dir);
4558 if (error)
4559 return error;
4560
4561 if (!target) {
4562 error = may_create(new_dir, new_dentry);
4563 } else {
4564 new_is_dir = d_is_dir(new_dentry);
4565
4566 if (!(flags & RENAME_EXCHANGE))
4567 error = may_delete(new_dir, new_dentry, is_dir);
4568 else
4569 error = may_delete(new_dir, new_dentry, new_is_dir);
4570 }
4571 if (error)
4572 return error;
4573
4574 if (!old_dir->i_op->rename)
4575 return -EPERM;
4576
4577 /*
4578 * If we are going to change the parent - check write permissions,
4579 * we'll need to flip '..'.
4580 */
4581 if (new_dir != old_dir) {
4582 if (is_dir) {
4583 error = inode_permission(source, MAY_WRITE);
4584 if (error)
4585 return error;
4586 }
4587 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4588 error = inode_permission(target, MAY_WRITE);
4589 if (error)
4590 return error;
4591 }
4592 }
4593
4594 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4595 flags);
4596 if (error)
4597 return error;
4598
4599 take_dentry_name_snapshot(&old_name, old_dentry);
4600 dget(new_dentry);
4601 /*
4602 * Lock children.
4603 * The source subdirectory needs to be locked on cross-directory
4604 * rename or cross-directory exchange since its parent changes.
4605 * The target subdirectory needs to be locked on cross-directory
4606 * exchange due to parent change and on any rename due to becoming
4607 * a victim.
4608 * Non-directories need locking in all cases (for NFS reasons);
4609 * they get locked after any subdirectories (in inode address order).
4610 *
4611 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
4612 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
4613 */
4614 lock_old_subdir = new_dir != old_dir;
4615 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
4616 if (is_dir) {
4617 if (lock_old_subdir)
4618 inode_lock_nested(source, I_MUTEX_CHILD);
4619 if (target && (!new_is_dir || lock_new_subdir))
4620 inode_lock(target);
4621 } else if (new_is_dir) {
4622 if (lock_new_subdir)
4623 inode_lock_nested(target, I_MUTEX_CHILD);
4624 inode_lock(source);
4625 } else {
4626 lock_two_nondirectories(source, target);
4627 }
4628
4629 error = -EBUSY;
4630 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4631 goto out;
4632
4633 if (max_links && new_dir != old_dir) {
4634 error = -EMLINK;
4635 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4636 goto out;
4637 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4638 old_dir->i_nlink >= max_links)
4639 goto out;
4640 }
4641 if (!is_dir) {
4642 error = try_break_deleg(source, delegated_inode);
4643 if (error)
4644 goto out;
4645 }
4646 if (target && !new_is_dir) {
4647 error = try_break_deleg(target, delegated_inode);
4648 if (error)
4649 goto out;
4650 }
4651 error = old_dir->i_op->rename(old_dir, old_dentry,
4652 new_dir, new_dentry, flags);
4653 if (error)
4654 goto out;
4655
4656 if (!(flags & RENAME_EXCHANGE) && target) {
4657 if (is_dir) {
4658 shrink_dcache_parent(new_dentry);
4659 target->i_flags |= S_DEAD;
4660 }
4661 dont_mount(new_dentry);
4662 detach_mounts(new_dentry);
4663 }
4664 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4665 if (!(flags & RENAME_EXCHANGE))
4666 d_move(old_dentry, new_dentry);
4667 else
4668 d_exchange(old_dentry, new_dentry);
4669 }
4670 out:
4671 if (!is_dir || lock_old_subdir)
4672 inode_unlock(source);
4673 if (target && (!new_is_dir || lock_new_subdir))
4674 inode_unlock(target);
4675 dput(new_dentry);
4676 if (!error) {
4677 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4678 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4679 if (flags & RENAME_EXCHANGE) {
4680 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4681 new_is_dir, NULL, new_dentry);
4682 }
4683 }
4684 release_dentry_name_snapshot(&old_name);
4685
4686 return error;
4687 }
4688 EXPORT_SYMBOL_NS(vfs_rename, ANDROID_GKI_VFS_EXPORT_ONLY);
4689
do_renameat2(int olddfd,const char __user * oldname,int newdfd,const char __user * newname,unsigned int flags)4690 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4691 const char __user *newname, unsigned int flags)
4692 {
4693 struct dentry *old_dentry, *new_dentry;
4694 struct dentry *trap;
4695 struct path old_path, new_path;
4696 struct qstr old_last, new_last;
4697 int old_type, new_type;
4698 struct inode *delegated_inode = NULL;
4699 struct filename *from;
4700 struct filename *to;
4701 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4702 bool should_retry = false;
4703 int error;
4704
4705 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4706 return -EINVAL;
4707
4708 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4709 (flags & RENAME_EXCHANGE))
4710 return -EINVAL;
4711
4712 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4713 return -EPERM;
4714
4715 if (flags & RENAME_EXCHANGE)
4716 target_flags = 0;
4717
4718 retry:
4719 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4720 &old_path, &old_last, &old_type);
4721 if (IS_ERR(from)) {
4722 error = PTR_ERR(from);
4723 goto exit;
4724 }
4725
4726 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4727 &new_path, &new_last, &new_type);
4728 if (IS_ERR(to)) {
4729 error = PTR_ERR(to);
4730 goto exit1;
4731 }
4732
4733 error = -EXDEV;
4734 if (old_path.mnt != new_path.mnt)
4735 goto exit2;
4736
4737 error = -EBUSY;
4738 if (old_type != LAST_NORM)
4739 goto exit2;
4740
4741 if (flags & RENAME_NOREPLACE)
4742 error = -EEXIST;
4743 if (new_type != LAST_NORM)
4744 goto exit2;
4745
4746 error = mnt_want_write(old_path.mnt);
4747 if (error)
4748 goto exit2;
4749
4750 retry_deleg:
4751 trap = lock_rename(new_path.dentry, old_path.dentry);
4752
4753 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4754 error = PTR_ERR(old_dentry);
4755 if (IS_ERR(old_dentry))
4756 goto exit3;
4757 /* source must exist */
4758 error = -ENOENT;
4759 if (d_is_negative(old_dentry))
4760 goto exit4;
4761 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4762 error = PTR_ERR(new_dentry);
4763 if (IS_ERR(new_dentry))
4764 goto exit4;
4765 error = -EEXIST;
4766 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4767 goto exit5;
4768 if (flags & RENAME_EXCHANGE) {
4769 error = -ENOENT;
4770 if (d_is_negative(new_dentry))
4771 goto exit5;
4772
4773 if (!d_is_dir(new_dentry)) {
4774 error = -ENOTDIR;
4775 if (new_last.name[new_last.len])
4776 goto exit5;
4777 }
4778 }
4779 /* unless the source is a directory trailing slashes give -ENOTDIR */
4780 if (!d_is_dir(old_dentry)) {
4781 error = -ENOTDIR;
4782 if (old_last.name[old_last.len])
4783 goto exit5;
4784 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4785 goto exit5;
4786 }
4787 /* source should not be ancestor of target */
4788 error = -EINVAL;
4789 if (old_dentry == trap)
4790 goto exit5;
4791 /* target should not be an ancestor of source */
4792 if (!(flags & RENAME_EXCHANGE))
4793 error = -ENOTEMPTY;
4794 if (new_dentry == trap)
4795 goto exit5;
4796
4797 error = security_path_rename(&old_path, old_dentry,
4798 &new_path, new_dentry, flags);
4799 if (error)
4800 goto exit5;
4801 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4802 new_path.dentry->d_inode, new_dentry,
4803 &delegated_inode, flags);
4804 exit5:
4805 dput(new_dentry);
4806 exit4:
4807 dput(old_dentry);
4808 exit3:
4809 unlock_rename(new_path.dentry, old_path.dentry);
4810 if (delegated_inode) {
4811 error = break_deleg_wait(&delegated_inode);
4812 if (!error)
4813 goto retry_deleg;
4814 }
4815 mnt_drop_write(old_path.mnt);
4816 exit2:
4817 if (retry_estale(error, lookup_flags))
4818 should_retry = true;
4819 path_put(&new_path);
4820 putname(to);
4821 exit1:
4822 path_put(&old_path);
4823 putname(from);
4824 if (should_retry) {
4825 should_retry = false;
4826 lookup_flags |= LOOKUP_REVAL;
4827 goto retry;
4828 }
4829 exit:
4830 return error;
4831 }
4832
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)4833 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4834 int, newdfd, const char __user *, newname, unsigned int, flags)
4835 {
4836 return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4837 }
4838
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)4839 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4840 int, newdfd, const char __user *, newname)
4841 {
4842 return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4843 }
4844
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)4845 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4846 {
4847 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4848 }
4849
vfs_whiteout(struct inode * dir,struct dentry * dentry)4850 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4851 {
4852 int error = may_create(dir, dentry);
4853 if (error)
4854 return error;
4855
4856 if (!dir->i_op->mknod)
4857 return -EPERM;
4858
4859 return dir->i_op->mknod(dir, dentry,
4860 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4861 }
4862 EXPORT_SYMBOL(vfs_whiteout);
4863
readlink_copy(char __user * buffer,int buflen,const char * link)4864 int readlink_copy(char __user *buffer, int buflen, const char *link)
4865 {
4866 int len = PTR_ERR(link);
4867 if (IS_ERR(link))
4868 goto out;
4869
4870 len = strlen(link);
4871 if (len > (unsigned) buflen)
4872 len = buflen;
4873 if (copy_to_user(buffer, link, len))
4874 len = -EFAULT;
4875 out:
4876 return len;
4877 }
4878
4879 /**
4880 * vfs_readlink - copy symlink body into userspace buffer
4881 * @dentry: dentry on which to get symbolic link
4882 * @buffer: user memory pointer
4883 * @buflen: size of buffer
4884 *
4885 * Does not touch atime. That's up to the caller if necessary
4886 *
4887 * Does not call security hook.
4888 */
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen)4889 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4890 {
4891 struct inode *inode = d_inode(dentry);
4892 DEFINE_DELAYED_CALL(done);
4893 const char *link;
4894 int res;
4895
4896 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4897 if (unlikely(inode->i_op->readlink))
4898 return inode->i_op->readlink(dentry, buffer, buflen);
4899
4900 if (!d_is_symlink(dentry))
4901 return -EINVAL;
4902
4903 spin_lock(&inode->i_lock);
4904 inode->i_opflags |= IOP_DEFAULT_READLINK;
4905 spin_unlock(&inode->i_lock);
4906 }
4907
4908 link = READ_ONCE(inode->i_link);
4909 if (!link) {
4910 link = inode->i_op->get_link(dentry, inode, &done);
4911 if (IS_ERR(link))
4912 return PTR_ERR(link);
4913 }
4914 res = readlink_copy(buffer, buflen, link);
4915 do_delayed_call(&done);
4916 return res;
4917 }
4918 EXPORT_SYMBOL(vfs_readlink);
4919
4920 /**
4921 * vfs_get_link - get symlink body
4922 * @dentry: dentry on which to get symbolic link
4923 * @done: caller needs to free returned data with this
4924 *
4925 * Calls security hook and i_op->get_link() on the supplied inode.
4926 *
4927 * It does not touch atime. That's up to the caller if necessary.
4928 *
4929 * Does not work on "special" symlinks like /proc/$$/fd/N
4930 */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)4931 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4932 {
4933 const char *res = ERR_PTR(-EINVAL);
4934 struct inode *inode = d_inode(dentry);
4935
4936 if (d_is_symlink(dentry)) {
4937 res = ERR_PTR(security_inode_readlink(dentry));
4938 if (!res)
4939 res = inode->i_op->get_link(dentry, inode, done);
4940 }
4941 return res;
4942 }
4943 EXPORT_SYMBOL(vfs_get_link);
4944
4945 /* get the link contents into pagecache */
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)4946 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4947 struct delayed_call *callback)
4948 {
4949 char *kaddr;
4950 struct page *page;
4951 struct address_space *mapping = inode->i_mapping;
4952
4953 if (!dentry) {
4954 page = find_get_page(mapping, 0);
4955 if (!page)
4956 return ERR_PTR(-ECHILD);
4957 if (!PageUptodate(page)) {
4958 put_page(page);
4959 return ERR_PTR(-ECHILD);
4960 }
4961 } else {
4962 page = read_mapping_page(mapping, 0, NULL);
4963 if (IS_ERR(page))
4964 return (char*)page;
4965 }
4966 set_delayed_call(callback, page_put_link, page);
4967 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4968 kaddr = page_address(page);
4969 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4970 return kaddr;
4971 }
4972
4973 EXPORT_SYMBOL(page_get_link);
4974
page_put_link(void * arg)4975 void page_put_link(void *arg)
4976 {
4977 put_page(arg);
4978 }
4979 EXPORT_SYMBOL(page_put_link);
4980
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)4981 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4982 {
4983 DEFINE_DELAYED_CALL(done);
4984 int res = readlink_copy(buffer, buflen,
4985 page_get_link(dentry, d_inode(dentry),
4986 &done));
4987 do_delayed_call(&done);
4988 return res;
4989 }
4990 EXPORT_SYMBOL(page_readlink);
4991
4992 /*
4993 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4994 */
__page_symlink(struct inode * inode,const char * symname,int len,int nofs)4995 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4996 {
4997 struct address_space *mapping = inode->i_mapping;
4998 struct page *page;
4999 void *fsdata = NULL;
5000 int err;
5001 unsigned int flags = 0;
5002 if (nofs)
5003 flags |= AOP_FLAG_NOFS;
5004
5005 retry:
5006 err = pagecache_write_begin(NULL, mapping, 0, len-1,
5007 flags, &page, &fsdata);
5008 if (err)
5009 goto fail;
5010
5011 memcpy(page_address(page), symname, len-1);
5012
5013 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
5014 page, fsdata);
5015 if (err < 0)
5016 goto fail;
5017 if (err < len-1)
5018 goto retry;
5019
5020 mark_inode_dirty(inode);
5021 return 0;
5022 fail:
5023 return err;
5024 }
5025 EXPORT_SYMBOL(__page_symlink);
5026
page_symlink(struct inode * inode,const char * symname,int len)5027 int page_symlink(struct inode *inode, const char *symname, int len)
5028 {
5029 return __page_symlink(inode, symname, len,
5030 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
5031 }
5032 EXPORT_SYMBOL(page_symlink);
5033
5034 const struct inode_operations page_symlink_inode_operations = {
5035 .get_link = page_get_link,
5036 };
5037 EXPORT_SYMBOL(page_symlink_inode_operations);
5038