1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 STRATO. All rights reserved.
4 */
5
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16
17 /* Just an arbitrary number so we can be sure this happened */
18 #define BACKREF_FOUND_SHARED 6
19
20 struct extent_inode_elem {
21 u64 inum;
22 u64 offset;
23 struct extent_inode_elem *next;
24 };
25
check_extent_in_eb(const struct btrfs_key * key,const struct extent_buffer * eb,const struct btrfs_file_extent_item * fi,u64 extent_item_pos,struct extent_inode_elem ** eie,bool ignore_offset)26 static int check_extent_in_eb(const struct btrfs_key *key,
27 const struct extent_buffer *eb,
28 const struct btrfs_file_extent_item *fi,
29 u64 extent_item_pos,
30 struct extent_inode_elem **eie,
31 bool ignore_offset)
32 {
33 u64 offset = 0;
34 struct extent_inode_elem *e;
35
36 if (!ignore_offset &&
37 !btrfs_file_extent_compression(eb, fi) &&
38 !btrfs_file_extent_encryption(eb, fi) &&
39 !btrfs_file_extent_other_encoding(eb, fi)) {
40 u64 data_offset;
41 u64 data_len;
42
43 data_offset = btrfs_file_extent_offset(eb, fi);
44 data_len = btrfs_file_extent_num_bytes(eb, fi);
45
46 if (extent_item_pos < data_offset ||
47 extent_item_pos >= data_offset + data_len)
48 return 1;
49 offset = extent_item_pos - data_offset;
50 }
51
52 e = kmalloc(sizeof(*e), GFP_NOFS);
53 if (!e)
54 return -ENOMEM;
55
56 e->next = *eie;
57 e->inum = key->objectid;
58 e->offset = key->offset + offset;
59 *eie = e;
60
61 return 0;
62 }
63
free_inode_elem_list(struct extent_inode_elem * eie)64 static void free_inode_elem_list(struct extent_inode_elem *eie)
65 {
66 struct extent_inode_elem *eie_next;
67
68 for (; eie; eie = eie_next) {
69 eie_next = eie->next;
70 kfree(eie);
71 }
72 }
73
find_extent_in_eb(const struct extent_buffer * eb,u64 wanted_disk_byte,u64 extent_item_pos,struct extent_inode_elem ** eie,bool ignore_offset)74 static int find_extent_in_eb(const struct extent_buffer *eb,
75 u64 wanted_disk_byte, u64 extent_item_pos,
76 struct extent_inode_elem **eie,
77 bool ignore_offset)
78 {
79 u64 disk_byte;
80 struct btrfs_key key;
81 struct btrfs_file_extent_item *fi;
82 int slot;
83 int nritems;
84 int extent_type;
85 int ret;
86
87 /*
88 * from the shared data ref, we only have the leaf but we need
89 * the key. thus, we must look into all items and see that we
90 * find one (some) with a reference to our extent item.
91 */
92 nritems = btrfs_header_nritems(eb);
93 for (slot = 0; slot < nritems; ++slot) {
94 btrfs_item_key_to_cpu(eb, &key, slot);
95 if (key.type != BTRFS_EXTENT_DATA_KEY)
96 continue;
97 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
98 extent_type = btrfs_file_extent_type(eb, fi);
99 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
100 continue;
101 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
102 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
103 if (disk_byte != wanted_disk_byte)
104 continue;
105
106 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
107 if (ret < 0)
108 return ret;
109 }
110
111 return 0;
112 }
113
114 struct preftree {
115 struct rb_root_cached root;
116 unsigned int count;
117 };
118
119 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
120
121 struct preftrees {
122 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
123 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
124 struct preftree indirect_missing_keys;
125 };
126
127 /*
128 * Checks for a shared extent during backref search.
129 *
130 * The share_count tracks prelim_refs (direct and indirect) having a
131 * ref->count >0:
132 * - incremented when a ref->count transitions to >0
133 * - decremented when a ref->count transitions to <1
134 */
135 struct share_check {
136 u64 root_objectid;
137 u64 inum;
138 int share_count;
139 bool have_delayed_delete_refs;
140 };
141
extent_is_shared(struct share_check * sc)142 static inline int extent_is_shared(struct share_check *sc)
143 {
144 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
145 }
146
147 static struct kmem_cache *btrfs_prelim_ref_cache;
148
btrfs_prelim_ref_init(void)149 int __init btrfs_prelim_ref_init(void)
150 {
151 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
152 sizeof(struct prelim_ref),
153 0,
154 SLAB_MEM_SPREAD,
155 NULL);
156 if (!btrfs_prelim_ref_cache)
157 return -ENOMEM;
158 return 0;
159 }
160
btrfs_prelim_ref_exit(void)161 void __cold btrfs_prelim_ref_exit(void)
162 {
163 kmem_cache_destroy(btrfs_prelim_ref_cache);
164 }
165
free_pref(struct prelim_ref * ref)166 static void free_pref(struct prelim_ref *ref)
167 {
168 kmem_cache_free(btrfs_prelim_ref_cache, ref);
169 }
170
171 /*
172 * Return 0 when both refs are for the same block (and can be merged).
173 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
174 * indicates a 'higher' block.
175 */
prelim_ref_compare(struct prelim_ref * ref1,struct prelim_ref * ref2)176 static int prelim_ref_compare(struct prelim_ref *ref1,
177 struct prelim_ref *ref2)
178 {
179 if (ref1->level < ref2->level)
180 return -1;
181 if (ref1->level > ref2->level)
182 return 1;
183 if (ref1->root_id < ref2->root_id)
184 return -1;
185 if (ref1->root_id > ref2->root_id)
186 return 1;
187 if (ref1->key_for_search.type < ref2->key_for_search.type)
188 return -1;
189 if (ref1->key_for_search.type > ref2->key_for_search.type)
190 return 1;
191 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
192 return -1;
193 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
194 return 1;
195 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
196 return -1;
197 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
198 return 1;
199 if (ref1->parent < ref2->parent)
200 return -1;
201 if (ref1->parent > ref2->parent)
202 return 1;
203
204 return 0;
205 }
206
update_share_count(struct share_check * sc,int oldcount,int newcount)207 static void update_share_count(struct share_check *sc, int oldcount,
208 int newcount)
209 {
210 if ((!sc) || (oldcount == 0 && newcount < 1))
211 return;
212
213 if (oldcount > 0 && newcount < 1)
214 sc->share_count--;
215 else if (oldcount < 1 && newcount > 0)
216 sc->share_count++;
217 }
218
219 /*
220 * Add @newref to the @root rbtree, merging identical refs.
221 *
222 * Callers should assume that newref has been freed after calling.
223 */
prelim_ref_insert(const struct btrfs_fs_info * fs_info,struct preftree * preftree,struct prelim_ref * newref,struct share_check * sc)224 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
225 struct preftree *preftree,
226 struct prelim_ref *newref,
227 struct share_check *sc)
228 {
229 struct rb_root_cached *root;
230 struct rb_node **p;
231 struct rb_node *parent = NULL;
232 struct prelim_ref *ref;
233 int result;
234 bool leftmost = true;
235
236 root = &preftree->root;
237 p = &root->rb_root.rb_node;
238
239 while (*p) {
240 parent = *p;
241 ref = rb_entry(parent, struct prelim_ref, rbnode);
242 result = prelim_ref_compare(ref, newref);
243 if (result < 0) {
244 p = &(*p)->rb_left;
245 } else if (result > 0) {
246 p = &(*p)->rb_right;
247 leftmost = false;
248 } else {
249 /* Identical refs, merge them and free @newref */
250 struct extent_inode_elem *eie = ref->inode_list;
251
252 while (eie && eie->next)
253 eie = eie->next;
254
255 if (!eie)
256 ref->inode_list = newref->inode_list;
257 else
258 eie->next = newref->inode_list;
259 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
260 preftree->count);
261 /*
262 * A delayed ref can have newref->count < 0.
263 * The ref->count is updated to follow any
264 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
265 */
266 update_share_count(sc, ref->count,
267 ref->count + newref->count);
268 ref->count += newref->count;
269 free_pref(newref);
270 return;
271 }
272 }
273
274 update_share_count(sc, 0, newref->count);
275 preftree->count++;
276 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
277 rb_link_node(&newref->rbnode, parent, p);
278 rb_insert_color_cached(&newref->rbnode, root, leftmost);
279 }
280
281 /*
282 * Release the entire tree. We don't care about internal consistency so
283 * just free everything and then reset the tree root.
284 */
prelim_release(struct preftree * preftree)285 static void prelim_release(struct preftree *preftree)
286 {
287 struct prelim_ref *ref, *next_ref;
288
289 rbtree_postorder_for_each_entry_safe(ref, next_ref,
290 &preftree->root.rb_root, rbnode) {
291 free_inode_elem_list(ref->inode_list);
292 free_pref(ref);
293 }
294
295 preftree->root = RB_ROOT_CACHED;
296 preftree->count = 0;
297 }
298
299 /*
300 * the rules for all callers of this function are:
301 * - obtaining the parent is the goal
302 * - if you add a key, you must know that it is a correct key
303 * - if you cannot add the parent or a correct key, then we will look into the
304 * block later to set a correct key
305 *
306 * delayed refs
307 * ============
308 * backref type | shared | indirect | shared | indirect
309 * information | tree | tree | data | data
310 * --------------------+--------+----------+--------+----------
311 * parent logical | y | - | - | -
312 * key to resolve | - | y | y | y
313 * tree block logical | - | - | - | -
314 * root for resolving | y | y | y | y
315 *
316 * - column 1: we've the parent -> done
317 * - column 2, 3, 4: we use the key to find the parent
318 *
319 * on disk refs (inline or keyed)
320 * ==============================
321 * backref type | shared | indirect | shared | indirect
322 * information | tree | tree | data | data
323 * --------------------+--------+----------+--------+----------
324 * parent logical | y | - | y | -
325 * key to resolve | - | - | - | y
326 * tree block logical | y | y | y | y
327 * root for resolving | - | y | y | y
328 *
329 * - column 1, 3: we've the parent -> done
330 * - column 2: we take the first key from the block to find the parent
331 * (see add_missing_keys)
332 * - column 4: we use the key to find the parent
333 *
334 * additional information that's available but not required to find the parent
335 * block might help in merging entries to gain some speed.
336 */
add_prelim_ref(const struct btrfs_fs_info * fs_info,struct preftree * preftree,u64 root_id,const struct btrfs_key * key,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)337 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
338 struct preftree *preftree, u64 root_id,
339 const struct btrfs_key *key, int level, u64 parent,
340 u64 wanted_disk_byte, int count,
341 struct share_check *sc, gfp_t gfp_mask)
342 {
343 struct prelim_ref *ref;
344
345 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
346 return 0;
347
348 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
349 if (!ref)
350 return -ENOMEM;
351
352 ref->root_id = root_id;
353 if (key)
354 ref->key_for_search = *key;
355 else
356 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
357
358 ref->inode_list = NULL;
359 ref->level = level;
360 ref->count = count;
361 ref->parent = parent;
362 ref->wanted_disk_byte = wanted_disk_byte;
363 prelim_ref_insert(fs_info, preftree, ref, sc);
364 return extent_is_shared(sc);
365 }
366
367 /* direct refs use root == 0, key == NULL */
add_direct_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)368 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
369 struct preftrees *preftrees, int level, u64 parent,
370 u64 wanted_disk_byte, int count,
371 struct share_check *sc, gfp_t gfp_mask)
372 {
373 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
374 parent, wanted_disk_byte, count, sc, gfp_mask);
375 }
376
377 /* indirect refs use parent == 0 */
add_indirect_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,u64 root_id,const struct btrfs_key * key,int level,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)378 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
379 struct preftrees *preftrees, u64 root_id,
380 const struct btrfs_key *key, int level,
381 u64 wanted_disk_byte, int count,
382 struct share_check *sc, gfp_t gfp_mask)
383 {
384 struct preftree *tree = &preftrees->indirect;
385
386 if (!key)
387 tree = &preftrees->indirect_missing_keys;
388 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
389 wanted_disk_byte, count, sc, gfp_mask);
390 }
391
is_shared_data_backref(struct preftrees * preftrees,u64 bytenr)392 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
393 {
394 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
395 struct rb_node *parent = NULL;
396 struct prelim_ref *ref = NULL;
397 struct prelim_ref target = {0};
398 int result;
399
400 target.parent = bytenr;
401
402 while (*p) {
403 parent = *p;
404 ref = rb_entry(parent, struct prelim_ref, rbnode);
405 result = prelim_ref_compare(ref, &target);
406
407 if (result < 0)
408 p = &(*p)->rb_left;
409 else if (result > 0)
410 p = &(*p)->rb_right;
411 else
412 return 1;
413 }
414 return 0;
415 }
416
add_all_parents(struct btrfs_root * root,struct btrfs_path * path,struct ulist * parents,struct preftrees * preftrees,struct prelim_ref * ref,int level,u64 time_seq,const u64 * extent_item_pos,bool ignore_offset)417 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
418 struct ulist *parents,
419 struct preftrees *preftrees, struct prelim_ref *ref,
420 int level, u64 time_seq, const u64 *extent_item_pos,
421 bool ignore_offset)
422 {
423 int ret = 0;
424 int slot;
425 struct extent_buffer *eb;
426 struct btrfs_key key;
427 struct btrfs_key *key_for_search = &ref->key_for_search;
428 struct btrfs_file_extent_item *fi;
429 struct extent_inode_elem *eie = NULL, *old = NULL;
430 u64 disk_byte;
431 u64 wanted_disk_byte = ref->wanted_disk_byte;
432 u64 count = 0;
433 u64 data_offset;
434 u8 type;
435
436 if (level != 0) {
437 eb = path->nodes[level];
438 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
439 if (ret < 0)
440 return ret;
441 return 0;
442 }
443
444 /*
445 * 1. We normally enter this function with the path already pointing to
446 * the first item to check. But sometimes, we may enter it with
447 * slot == nritems.
448 * 2. We are searching for normal backref but bytenr of this leaf
449 * matches shared data backref
450 * 3. The leaf owner is not equal to the root we are searching
451 *
452 * For these cases, go to the next leaf before we continue.
453 */
454 eb = path->nodes[0];
455 if (path->slots[0] >= btrfs_header_nritems(eb) ||
456 is_shared_data_backref(preftrees, eb->start) ||
457 ref->root_id != btrfs_header_owner(eb)) {
458 if (time_seq == SEQ_LAST)
459 ret = btrfs_next_leaf(root, path);
460 else
461 ret = btrfs_next_old_leaf(root, path, time_seq);
462 }
463
464 while (!ret && count < ref->count) {
465 eb = path->nodes[0];
466 slot = path->slots[0];
467
468 btrfs_item_key_to_cpu(eb, &key, slot);
469
470 if (key.objectid != key_for_search->objectid ||
471 key.type != BTRFS_EXTENT_DATA_KEY)
472 break;
473
474 /*
475 * We are searching for normal backref but bytenr of this leaf
476 * matches shared data backref, OR
477 * the leaf owner is not equal to the root we are searching for
478 */
479 if (slot == 0 &&
480 (is_shared_data_backref(preftrees, eb->start) ||
481 ref->root_id != btrfs_header_owner(eb))) {
482 if (time_seq == SEQ_LAST)
483 ret = btrfs_next_leaf(root, path);
484 else
485 ret = btrfs_next_old_leaf(root, path, time_seq);
486 continue;
487 }
488 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
489 type = btrfs_file_extent_type(eb, fi);
490 if (type == BTRFS_FILE_EXTENT_INLINE)
491 goto next;
492 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
493 data_offset = btrfs_file_extent_offset(eb, fi);
494
495 if (disk_byte == wanted_disk_byte) {
496 eie = NULL;
497 old = NULL;
498 if (ref->key_for_search.offset == key.offset - data_offset)
499 count++;
500 else
501 goto next;
502 if (extent_item_pos) {
503 ret = check_extent_in_eb(&key, eb, fi,
504 *extent_item_pos,
505 &eie, ignore_offset);
506 if (ret < 0)
507 break;
508 }
509 if (ret > 0)
510 goto next;
511 ret = ulist_add_merge_ptr(parents, eb->start,
512 eie, (void **)&old, GFP_NOFS);
513 if (ret < 0)
514 break;
515 if (!ret && extent_item_pos) {
516 while (old->next)
517 old = old->next;
518 old->next = eie;
519 }
520 eie = NULL;
521 }
522 next:
523 if (time_seq == SEQ_LAST)
524 ret = btrfs_next_item(root, path);
525 else
526 ret = btrfs_next_old_item(root, path, time_seq);
527 }
528
529 if (ret > 0)
530 ret = 0;
531 else if (ret < 0)
532 free_inode_elem_list(eie);
533 return ret;
534 }
535
536 /*
537 * resolve an indirect backref in the form (root_id, key, level)
538 * to a logical address
539 */
resolve_indirect_ref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct preftrees * preftrees,struct prelim_ref * ref,struct ulist * parents,const u64 * extent_item_pos,bool ignore_offset)540 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
541 struct btrfs_path *path, u64 time_seq,
542 struct preftrees *preftrees,
543 struct prelim_ref *ref, struct ulist *parents,
544 const u64 *extent_item_pos, bool ignore_offset)
545 {
546 struct btrfs_root *root;
547 struct btrfs_key root_key;
548 struct extent_buffer *eb;
549 int ret = 0;
550 int root_level;
551 int level = ref->level;
552 int index;
553 struct btrfs_key search_key = ref->key_for_search;
554
555 root_key.objectid = ref->root_id;
556 root_key.type = BTRFS_ROOT_ITEM_KEY;
557 root_key.offset = (u64)-1;
558
559 index = srcu_read_lock(&fs_info->subvol_srcu);
560
561 root = btrfs_get_fs_root(fs_info, &root_key, false);
562 if (IS_ERR(root)) {
563 srcu_read_unlock(&fs_info->subvol_srcu, index);
564 ret = PTR_ERR(root);
565 goto out;
566 }
567
568 if (btrfs_is_testing(fs_info)) {
569 srcu_read_unlock(&fs_info->subvol_srcu, index);
570 ret = -ENOENT;
571 goto out;
572 }
573
574 if (path->search_commit_root)
575 root_level = btrfs_header_level(root->commit_root);
576 else if (time_seq == SEQ_LAST)
577 root_level = btrfs_header_level(root->node);
578 else
579 root_level = btrfs_old_root_level(root, time_seq);
580
581 if (root_level + 1 == level) {
582 srcu_read_unlock(&fs_info->subvol_srcu, index);
583 goto out;
584 }
585
586 /*
587 * We can often find data backrefs with an offset that is too large
588 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
589 * subtracting a file's offset with the data offset of its
590 * corresponding extent data item. This can happen for example in the
591 * clone ioctl.
592 *
593 * So if we detect such case we set the search key's offset to zero to
594 * make sure we will find the matching file extent item at
595 * add_all_parents(), otherwise we will miss it because the offset
596 * taken form the backref is much larger then the offset of the file
597 * extent item. This can make us scan a very large number of file
598 * extent items, but at least it will not make us miss any.
599 *
600 * This is an ugly workaround for a behaviour that should have never
601 * existed, but it does and a fix for the clone ioctl would touch a lot
602 * of places, cause backwards incompatibility and would not fix the
603 * problem for extents cloned with older kernels.
604 */
605 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
606 search_key.offset >= LLONG_MAX)
607 search_key.offset = 0;
608 path->lowest_level = level;
609 if (time_seq == SEQ_LAST)
610 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
611 else
612 ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
613
614 /* root node has been locked, we can release @subvol_srcu safely here */
615 srcu_read_unlock(&fs_info->subvol_srcu, index);
616
617 btrfs_debug(fs_info,
618 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
619 ref->root_id, level, ref->count, ret,
620 ref->key_for_search.objectid, ref->key_for_search.type,
621 ref->key_for_search.offset);
622 if (ret < 0)
623 goto out;
624
625 eb = path->nodes[level];
626 while (!eb) {
627 if (WARN_ON(!level)) {
628 ret = 1;
629 goto out;
630 }
631 level--;
632 eb = path->nodes[level];
633 }
634
635 ret = add_all_parents(root, path, parents, preftrees, ref, level,
636 time_seq, extent_item_pos, ignore_offset);
637 out:
638 path->lowest_level = 0;
639 btrfs_release_path(path);
640 return ret;
641 }
642
643 static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node * node)644 unode_aux_to_inode_list(struct ulist_node *node)
645 {
646 if (!node)
647 return NULL;
648 return (struct extent_inode_elem *)(uintptr_t)node->aux;
649 }
650
free_leaf_list(struct ulist * ulist)651 static void free_leaf_list(struct ulist *ulist)
652 {
653 struct ulist_node *node;
654 struct ulist_iterator uiter;
655
656 ULIST_ITER_INIT(&uiter);
657 while ((node = ulist_next(ulist, &uiter)))
658 free_inode_elem_list(unode_aux_to_inode_list(node));
659
660 ulist_free(ulist);
661 }
662
663 /*
664 * We maintain three separate rbtrees: one for direct refs, one for
665 * indirect refs which have a key, and one for indirect refs which do not
666 * have a key. Each tree does merge on insertion.
667 *
668 * Once all of the references are located, we iterate over the tree of
669 * indirect refs with missing keys. An appropriate key is located and
670 * the ref is moved onto the tree for indirect refs. After all missing
671 * keys are thus located, we iterate over the indirect ref tree, resolve
672 * each reference, and then insert the resolved reference onto the
673 * direct tree (merging there too).
674 *
675 * New backrefs (i.e., for parent nodes) are added to the appropriate
676 * rbtree as they are encountered. The new backrefs are subsequently
677 * resolved as above.
678 */
resolve_indirect_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct preftrees * preftrees,const u64 * extent_item_pos,struct share_check * sc,bool ignore_offset)679 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
680 struct btrfs_path *path, u64 time_seq,
681 struct preftrees *preftrees,
682 const u64 *extent_item_pos,
683 struct share_check *sc, bool ignore_offset)
684 {
685 int err;
686 int ret = 0;
687 struct ulist *parents;
688 struct ulist_node *node;
689 struct ulist_iterator uiter;
690 struct rb_node *rnode;
691
692 parents = ulist_alloc(GFP_NOFS);
693 if (!parents)
694 return -ENOMEM;
695
696 /*
697 * We could trade memory usage for performance here by iterating
698 * the tree, allocating new refs for each insertion, and then
699 * freeing the entire indirect tree when we're done. In some test
700 * cases, the tree can grow quite large (~200k objects).
701 */
702 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
703 struct prelim_ref *ref;
704
705 ref = rb_entry(rnode, struct prelim_ref, rbnode);
706 if (WARN(ref->parent,
707 "BUG: direct ref found in indirect tree")) {
708 ret = -EINVAL;
709 goto out;
710 }
711
712 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
713 preftrees->indirect.count--;
714
715 if (ref->count == 0) {
716 free_pref(ref);
717 continue;
718 }
719
720 if (sc && sc->root_objectid &&
721 ref->root_id != sc->root_objectid) {
722 free_pref(ref);
723 ret = BACKREF_FOUND_SHARED;
724 goto out;
725 }
726 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
727 ref, parents, extent_item_pos,
728 ignore_offset);
729 /*
730 * we can only tolerate ENOENT,otherwise,we should catch error
731 * and return directly.
732 */
733 if (err == -ENOENT) {
734 prelim_ref_insert(fs_info, &preftrees->direct, ref,
735 NULL);
736 continue;
737 } else if (err) {
738 free_pref(ref);
739 ret = err;
740 goto out;
741 }
742
743 /* we put the first parent into the ref at hand */
744 ULIST_ITER_INIT(&uiter);
745 node = ulist_next(parents, &uiter);
746 ref->parent = node ? node->val : 0;
747 ref->inode_list = unode_aux_to_inode_list(node);
748
749 /* Add a prelim_ref(s) for any other parent(s). */
750 while ((node = ulist_next(parents, &uiter))) {
751 struct prelim_ref *new_ref;
752
753 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
754 GFP_NOFS);
755 if (!new_ref) {
756 free_pref(ref);
757 ret = -ENOMEM;
758 goto out;
759 }
760 memcpy(new_ref, ref, sizeof(*ref));
761 new_ref->parent = node->val;
762 new_ref->inode_list = unode_aux_to_inode_list(node);
763 prelim_ref_insert(fs_info, &preftrees->direct,
764 new_ref, NULL);
765 }
766
767 /*
768 * Now it's a direct ref, put it in the direct tree. We must
769 * do this last because the ref could be merged/freed here.
770 */
771 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
772
773 ulist_reinit(parents);
774 cond_resched();
775 }
776 out:
777 /*
778 * We may have inode lists attached to refs in the parents ulist, so we
779 * must free them before freeing the ulist and its refs.
780 */
781 free_leaf_list(parents);
782 return ret;
783 }
784
785 /*
786 * read tree blocks and add keys where required.
787 */
add_missing_keys(struct btrfs_fs_info * fs_info,struct preftrees * preftrees,bool lock)788 static int add_missing_keys(struct btrfs_fs_info *fs_info,
789 struct preftrees *preftrees, bool lock)
790 {
791 struct prelim_ref *ref;
792 struct extent_buffer *eb;
793 struct preftree *tree = &preftrees->indirect_missing_keys;
794 struct rb_node *node;
795
796 while ((node = rb_first_cached(&tree->root))) {
797 ref = rb_entry(node, struct prelim_ref, rbnode);
798 rb_erase_cached(node, &tree->root);
799
800 BUG_ON(ref->parent); /* should not be a direct ref */
801 BUG_ON(ref->key_for_search.type);
802 BUG_ON(!ref->wanted_disk_byte);
803
804 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
805 ref->level - 1, NULL);
806 if (IS_ERR(eb)) {
807 free_pref(ref);
808 return PTR_ERR(eb);
809 } else if (!extent_buffer_uptodate(eb)) {
810 free_pref(ref);
811 free_extent_buffer(eb);
812 return -EIO;
813 }
814 if (lock)
815 btrfs_tree_read_lock(eb);
816 if (btrfs_header_level(eb) == 0)
817 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
818 else
819 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
820 if (lock)
821 btrfs_tree_read_unlock(eb);
822 free_extent_buffer(eb);
823 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
824 cond_resched();
825 }
826 return 0;
827 }
828
829 /*
830 * add all currently queued delayed refs from this head whose seq nr is
831 * smaller or equal that seq to the list
832 */
add_delayed_refs(const struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_head * head,u64 seq,struct preftrees * preftrees,struct share_check * sc)833 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
834 struct btrfs_delayed_ref_head *head, u64 seq,
835 struct preftrees *preftrees, struct share_check *sc)
836 {
837 struct btrfs_delayed_ref_node *node;
838 struct btrfs_key key;
839 struct rb_node *n;
840 int count;
841 int ret = 0;
842
843 spin_lock(&head->lock);
844 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
845 node = rb_entry(n, struct btrfs_delayed_ref_node,
846 ref_node);
847 if (node->seq > seq)
848 continue;
849
850 switch (node->action) {
851 case BTRFS_ADD_DELAYED_EXTENT:
852 case BTRFS_UPDATE_DELAYED_HEAD:
853 WARN_ON(1);
854 continue;
855 case BTRFS_ADD_DELAYED_REF:
856 count = node->ref_mod;
857 break;
858 case BTRFS_DROP_DELAYED_REF:
859 count = node->ref_mod * -1;
860 break;
861 default:
862 BUG();
863 }
864 switch (node->type) {
865 case BTRFS_TREE_BLOCK_REF_KEY: {
866 /* NORMAL INDIRECT METADATA backref */
867 struct btrfs_delayed_tree_ref *ref;
868 struct btrfs_key *key_ptr = NULL;
869
870 if (head->extent_op && head->extent_op->update_key) {
871 btrfs_disk_key_to_cpu(&key, &head->extent_op->key);
872 key_ptr = &key;
873 }
874
875 ref = btrfs_delayed_node_to_tree_ref(node);
876 ret = add_indirect_ref(fs_info, preftrees, ref->root,
877 key_ptr, ref->level + 1,
878 node->bytenr, count, sc,
879 GFP_ATOMIC);
880 break;
881 }
882 case BTRFS_SHARED_BLOCK_REF_KEY: {
883 /* SHARED DIRECT METADATA backref */
884 struct btrfs_delayed_tree_ref *ref;
885
886 ref = btrfs_delayed_node_to_tree_ref(node);
887
888 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
889 ref->parent, node->bytenr, count,
890 sc, GFP_ATOMIC);
891 break;
892 }
893 case BTRFS_EXTENT_DATA_REF_KEY: {
894 /* NORMAL INDIRECT DATA backref */
895 struct btrfs_delayed_data_ref *ref;
896 ref = btrfs_delayed_node_to_data_ref(node);
897
898 key.objectid = ref->objectid;
899 key.type = BTRFS_EXTENT_DATA_KEY;
900 key.offset = ref->offset;
901
902 /*
903 * If we have a share check context and a reference for
904 * another inode, we can't exit immediately. This is
905 * because even if this is a BTRFS_ADD_DELAYED_REF
906 * reference we may find next a BTRFS_DROP_DELAYED_REF
907 * which cancels out this ADD reference.
908 *
909 * If this is a DROP reference and there was no previous
910 * ADD reference, then we need to signal that when we
911 * process references from the extent tree (through
912 * add_inline_refs() and add_keyed_refs()), we should
913 * not exit early if we find a reference for another
914 * inode, because one of the delayed DROP references
915 * may cancel that reference in the extent tree.
916 */
917 if (sc && count < 0)
918 sc->have_delayed_delete_refs = true;
919
920 ret = add_indirect_ref(fs_info, preftrees, ref->root,
921 &key, 0, node->bytenr, count, sc,
922 GFP_ATOMIC);
923 break;
924 }
925 case BTRFS_SHARED_DATA_REF_KEY: {
926 /* SHARED DIRECT FULL backref */
927 struct btrfs_delayed_data_ref *ref;
928
929 ref = btrfs_delayed_node_to_data_ref(node);
930
931 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
932 node->bytenr, count, sc,
933 GFP_ATOMIC);
934 break;
935 }
936 default:
937 WARN_ON(1);
938 }
939 /*
940 * We must ignore BACKREF_FOUND_SHARED until all delayed
941 * refs have been checked.
942 */
943 if (ret && (ret != BACKREF_FOUND_SHARED))
944 break;
945 }
946 if (!ret)
947 ret = extent_is_shared(sc);
948
949 spin_unlock(&head->lock);
950 return ret;
951 }
952
953 /*
954 * add all inline backrefs for bytenr to the list
955 *
956 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
957 */
add_inline_refs(const struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,int * info_level,struct preftrees * preftrees,struct share_check * sc)958 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
959 struct btrfs_path *path, u64 bytenr,
960 int *info_level, struct preftrees *preftrees,
961 struct share_check *sc)
962 {
963 int ret = 0;
964 int slot;
965 struct extent_buffer *leaf;
966 struct btrfs_key key;
967 struct btrfs_key found_key;
968 unsigned long ptr;
969 unsigned long end;
970 struct btrfs_extent_item *ei;
971 u64 flags;
972 u64 item_size;
973
974 /*
975 * enumerate all inline refs
976 */
977 leaf = path->nodes[0];
978 slot = path->slots[0];
979
980 item_size = btrfs_item_size_nr(leaf, slot);
981 BUG_ON(item_size < sizeof(*ei));
982
983 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
984 flags = btrfs_extent_flags(leaf, ei);
985 btrfs_item_key_to_cpu(leaf, &found_key, slot);
986
987 ptr = (unsigned long)(ei + 1);
988 end = (unsigned long)ei + item_size;
989
990 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
991 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
992 struct btrfs_tree_block_info *info;
993
994 info = (struct btrfs_tree_block_info *)ptr;
995 *info_level = btrfs_tree_block_level(leaf, info);
996 ptr += sizeof(struct btrfs_tree_block_info);
997 BUG_ON(ptr > end);
998 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
999 *info_level = found_key.offset;
1000 } else {
1001 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1002 }
1003
1004 while (ptr < end) {
1005 struct btrfs_extent_inline_ref *iref;
1006 u64 offset;
1007 int type;
1008
1009 iref = (struct btrfs_extent_inline_ref *)ptr;
1010 type = btrfs_get_extent_inline_ref_type(leaf, iref,
1011 BTRFS_REF_TYPE_ANY);
1012 if (type == BTRFS_REF_TYPE_INVALID)
1013 return -EUCLEAN;
1014
1015 offset = btrfs_extent_inline_ref_offset(leaf, iref);
1016
1017 switch (type) {
1018 case BTRFS_SHARED_BLOCK_REF_KEY:
1019 ret = add_direct_ref(fs_info, preftrees,
1020 *info_level + 1, offset,
1021 bytenr, 1, NULL, GFP_NOFS);
1022 break;
1023 case BTRFS_SHARED_DATA_REF_KEY: {
1024 struct btrfs_shared_data_ref *sdref;
1025 int count;
1026
1027 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1028 count = btrfs_shared_data_ref_count(leaf, sdref);
1029
1030 ret = add_direct_ref(fs_info, preftrees, 0, offset,
1031 bytenr, count, sc, GFP_NOFS);
1032 break;
1033 }
1034 case BTRFS_TREE_BLOCK_REF_KEY:
1035 ret = add_indirect_ref(fs_info, preftrees, offset,
1036 NULL, *info_level + 1,
1037 bytenr, 1, NULL, GFP_NOFS);
1038 break;
1039 case BTRFS_EXTENT_DATA_REF_KEY: {
1040 struct btrfs_extent_data_ref *dref;
1041 int count;
1042 u64 root;
1043
1044 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1045 count = btrfs_extent_data_ref_count(leaf, dref);
1046 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1047 dref);
1048 key.type = BTRFS_EXTENT_DATA_KEY;
1049 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1050
1051 if (sc && sc->inum && key.objectid != sc->inum &&
1052 !sc->have_delayed_delete_refs) {
1053 ret = BACKREF_FOUND_SHARED;
1054 break;
1055 }
1056
1057 root = btrfs_extent_data_ref_root(leaf, dref);
1058
1059 ret = add_indirect_ref(fs_info, preftrees, root,
1060 &key, 0, bytenr, count,
1061 sc, GFP_NOFS);
1062
1063 break;
1064 }
1065 default:
1066 WARN_ON(1);
1067 }
1068 if (ret)
1069 return ret;
1070 ptr += btrfs_extent_inline_ref_size(type);
1071 }
1072
1073 return 0;
1074 }
1075
1076 /*
1077 * add all non-inline backrefs for bytenr to the list
1078 *
1079 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1080 */
add_keyed_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,int info_level,struct preftrees * preftrees,struct share_check * sc)1081 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1082 struct btrfs_path *path, u64 bytenr,
1083 int info_level, struct preftrees *preftrees,
1084 struct share_check *sc)
1085 {
1086 struct btrfs_root *extent_root = fs_info->extent_root;
1087 int ret;
1088 int slot;
1089 struct extent_buffer *leaf;
1090 struct btrfs_key key;
1091
1092 while (1) {
1093 ret = btrfs_next_item(extent_root, path);
1094 if (ret < 0)
1095 break;
1096 if (ret) {
1097 ret = 0;
1098 break;
1099 }
1100
1101 slot = path->slots[0];
1102 leaf = path->nodes[0];
1103 btrfs_item_key_to_cpu(leaf, &key, slot);
1104
1105 if (key.objectid != bytenr)
1106 break;
1107 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1108 continue;
1109 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1110 break;
1111
1112 switch (key.type) {
1113 case BTRFS_SHARED_BLOCK_REF_KEY:
1114 /* SHARED DIRECT METADATA backref */
1115 ret = add_direct_ref(fs_info, preftrees,
1116 info_level + 1, key.offset,
1117 bytenr, 1, NULL, GFP_NOFS);
1118 break;
1119 case BTRFS_SHARED_DATA_REF_KEY: {
1120 /* SHARED DIRECT FULL backref */
1121 struct btrfs_shared_data_ref *sdref;
1122 int count;
1123
1124 sdref = btrfs_item_ptr(leaf, slot,
1125 struct btrfs_shared_data_ref);
1126 count = btrfs_shared_data_ref_count(leaf, sdref);
1127 ret = add_direct_ref(fs_info, preftrees, 0,
1128 key.offset, bytenr, count,
1129 sc, GFP_NOFS);
1130 break;
1131 }
1132 case BTRFS_TREE_BLOCK_REF_KEY:
1133 /* NORMAL INDIRECT METADATA backref */
1134 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1135 NULL, info_level + 1, bytenr,
1136 1, NULL, GFP_NOFS);
1137 break;
1138 case BTRFS_EXTENT_DATA_REF_KEY: {
1139 /* NORMAL INDIRECT DATA backref */
1140 struct btrfs_extent_data_ref *dref;
1141 int count;
1142 u64 root;
1143
1144 dref = btrfs_item_ptr(leaf, slot,
1145 struct btrfs_extent_data_ref);
1146 count = btrfs_extent_data_ref_count(leaf, dref);
1147 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1148 dref);
1149 key.type = BTRFS_EXTENT_DATA_KEY;
1150 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1151
1152 if (sc && sc->inum && key.objectid != sc->inum &&
1153 !sc->have_delayed_delete_refs) {
1154 ret = BACKREF_FOUND_SHARED;
1155 break;
1156 }
1157
1158 root = btrfs_extent_data_ref_root(leaf, dref);
1159 ret = add_indirect_ref(fs_info, preftrees, root,
1160 &key, 0, bytenr, count,
1161 sc, GFP_NOFS);
1162 break;
1163 }
1164 default:
1165 WARN_ON(1);
1166 }
1167 if (ret)
1168 return ret;
1169
1170 }
1171
1172 return ret;
1173 }
1174
1175 /*
1176 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1177 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1178 * indirect refs to their parent bytenr.
1179 * When roots are found, they're added to the roots list
1180 *
1181 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1182 * much like trans == NULL case, the difference only lies in it will not
1183 * commit root.
1184 * The special case is for qgroup to search roots in commit_transaction().
1185 *
1186 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1187 * shared extent is detected.
1188 *
1189 * Otherwise this returns 0 for success and <0 for an error.
1190 *
1191 * If ignore_offset is set to false, only extent refs whose offsets match
1192 * extent_item_pos are returned. If true, every extent ref is returned
1193 * and extent_item_pos is ignored.
1194 *
1195 * FIXME some caching might speed things up
1196 */
find_parent_nodes(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 time_seq,struct ulist * refs,struct ulist * roots,const u64 * extent_item_pos,struct share_check * sc,bool ignore_offset)1197 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1198 struct btrfs_fs_info *fs_info, u64 bytenr,
1199 u64 time_seq, struct ulist *refs,
1200 struct ulist *roots, const u64 *extent_item_pos,
1201 struct share_check *sc, bool ignore_offset)
1202 {
1203 struct btrfs_key key;
1204 struct btrfs_path *path;
1205 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1206 struct btrfs_delayed_ref_head *head;
1207 int info_level = 0;
1208 int ret;
1209 struct prelim_ref *ref;
1210 struct rb_node *node;
1211 struct extent_inode_elem *eie = NULL;
1212 struct preftrees preftrees = {
1213 .direct = PREFTREE_INIT,
1214 .indirect = PREFTREE_INIT,
1215 .indirect_missing_keys = PREFTREE_INIT
1216 };
1217
1218 key.objectid = bytenr;
1219 key.offset = (u64)-1;
1220 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1221 key.type = BTRFS_METADATA_ITEM_KEY;
1222 else
1223 key.type = BTRFS_EXTENT_ITEM_KEY;
1224
1225 path = btrfs_alloc_path();
1226 if (!path)
1227 return -ENOMEM;
1228 if (!trans) {
1229 path->search_commit_root = 1;
1230 path->skip_locking = 1;
1231 }
1232
1233 if (time_seq == SEQ_LAST)
1234 path->skip_locking = 1;
1235
1236 /*
1237 * grab both a lock on the path and a lock on the delayed ref head.
1238 * We need both to get a consistent picture of how the refs look
1239 * at a specified point in time
1240 */
1241 again:
1242 head = NULL;
1243
1244 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1245 if (ret < 0)
1246 goto out;
1247 if (ret == 0) {
1248 /* This shouldn't happen, indicates a bug or fs corruption. */
1249 ASSERT(ret != 0);
1250 ret = -EUCLEAN;
1251 goto out;
1252 }
1253
1254 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1255 if (trans && likely(trans->type != __TRANS_DUMMY) &&
1256 time_seq != SEQ_LAST) {
1257 #else
1258 if (trans && time_seq != SEQ_LAST) {
1259 #endif
1260 /*
1261 * look if there are updates for this ref queued and lock the
1262 * head
1263 */
1264 delayed_refs = &trans->transaction->delayed_refs;
1265 spin_lock(&delayed_refs->lock);
1266 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1267 if (head) {
1268 if (!mutex_trylock(&head->mutex)) {
1269 refcount_inc(&head->refs);
1270 spin_unlock(&delayed_refs->lock);
1271
1272 btrfs_release_path(path);
1273
1274 /*
1275 * Mutex was contended, block until it's
1276 * released and try again
1277 */
1278 mutex_lock(&head->mutex);
1279 mutex_unlock(&head->mutex);
1280 btrfs_put_delayed_ref_head(head);
1281 goto again;
1282 }
1283 spin_unlock(&delayed_refs->lock);
1284 ret = add_delayed_refs(fs_info, head, time_seq,
1285 &preftrees, sc);
1286 mutex_unlock(&head->mutex);
1287 if (ret)
1288 goto out;
1289 } else {
1290 spin_unlock(&delayed_refs->lock);
1291 }
1292 }
1293
1294 if (path->slots[0]) {
1295 struct extent_buffer *leaf;
1296 int slot;
1297
1298 path->slots[0]--;
1299 leaf = path->nodes[0];
1300 slot = path->slots[0];
1301 btrfs_item_key_to_cpu(leaf, &key, slot);
1302 if (key.objectid == bytenr &&
1303 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1304 key.type == BTRFS_METADATA_ITEM_KEY)) {
1305 ret = add_inline_refs(fs_info, path, bytenr,
1306 &info_level, &preftrees, sc);
1307 if (ret)
1308 goto out;
1309 ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1310 &preftrees, sc);
1311 if (ret)
1312 goto out;
1313 }
1314 }
1315
1316 btrfs_release_path(path);
1317
1318 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1319 if (ret)
1320 goto out;
1321
1322 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1323
1324 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1325 extent_item_pos, sc, ignore_offset);
1326 if (ret)
1327 goto out;
1328
1329 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1330
1331 /*
1332 * This walks the tree of merged and resolved refs. Tree blocks are
1333 * read in as needed. Unique entries are added to the ulist, and
1334 * the list of found roots is updated.
1335 *
1336 * We release the entire tree in one go before returning.
1337 */
1338 node = rb_first_cached(&preftrees.direct.root);
1339 while (node) {
1340 ref = rb_entry(node, struct prelim_ref, rbnode);
1341 node = rb_next(&ref->rbnode);
1342 /*
1343 * ref->count < 0 can happen here if there are delayed
1344 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1345 * prelim_ref_insert() relies on this when merging
1346 * identical refs to keep the overall count correct.
1347 * prelim_ref_insert() will merge only those refs
1348 * which compare identically. Any refs having
1349 * e.g. different offsets would not be merged,
1350 * and would retain their original ref->count < 0.
1351 */
1352 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1353 if (sc && sc->root_objectid &&
1354 ref->root_id != sc->root_objectid) {
1355 ret = BACKREF_FOUND_SHARED;
1356 goto out;
1357 }
1358
1359 /* no parent == root of tree */
1360 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1361 if (ret < 0)
1362 goto out;
1363 }
1364 if (ref->count && ref->parent) {
1365 if (extent_item_pos && !ref->inode_list &&
1366 ref->level == 0) {
1367 struct extent_buffer *eb;
1368
1369 eb = read_tree_block(fs_info, ref->parent, 0,
1370 ref->level, NULL);
1371 if (IS_ERR(eb)) {
1372 ret = PTR_ERR(eb);
1373 goto out;
1374 } else if (!extent_buffer_uptodate(eb)) {
1375 free_extent_buffer(eb);
1376 ret = -EIO;
1377 goto out;
1378 }
1379
1380 if (!path->skip_locking) {
1381 btrfs_tree_read_lock(eb);
1382 btrfs_set_lock_blocking_read(eb);
1383 }
1384 ret = find_extent_in_eb(eb, bytenr,
1385 *extent_item_pos, &eie, ignore_offset);
1386 if (!path->skip_locking)
1387 btrfs_tree_read_unlock_blocking(eb);
1388 free_extent_buffer(eb);
1389 if (ret < 0)
1390 goto out;
1391 ref->inode_list = eie;
1392 /*
1393 * We transferred the list ownership to the ref,
1394 * so set to NULL to avoid a double free in case
1395 * an error happens after this.
1396 */
1397 eie = NULL;
1398 }
1399 ret = ulist_add_merge_ptr(refs, ref->parent,
1400 ref->inode_list,
1401 (void **)&eie, GFP_NOFS);
1402 if (ret < 0)
1403 goto out;
1404 if (!ret && extent_item_pos) {
1405 /*
1406 * We've recorded that parent, so we must extend
1407 * its inode list here.
1408 *
1409 * However if there was corruption we may not
1410 * have found an eie, return an error in this
1411 * case.
1412 */
1413 ASSERT(eie);
1414 if (!eie) {
1415 ret = -EUCLEAN;
1416 goto out;
1417 }
1418 while (eie->next)
1419 eie = eie->next;
1420 eie->next = ref->inode_list;
1421 }
1422 eie = NULL;
1423 /*
1424 * We have transferred the inode list ownership from
1425 * this ref to the ref we added to the 'refs' ulist.
1426 * So set this ref's inode list to NULL to avoid
1427 * use-after-free when our caller uses it or double
1428 * frees in case an error happens before we return.
1429 */
1430 ref->inode_list = NULL;
1431 }
1432 cond_resched();
1433 }
1434
1435 out:
1436 btrfs_free_path(path);
1437
1438 prelim_release(&preftrees.direct);
1439 prelim_release(&preftrees.indirect);
1440 prelim_release(&preftrees.indirect_missing_keys);
1441
1442 if (ret < 0)
1443 free_inode_elem_list(eie);
1444 return ret;
1445 }
1446
1447 /*
1448 * Finds all leafs with a reference to the specified combination of bytenr and
1449 * offset. key_list_head will point to a list of corresponding keys (caller must
1450 * free each list element). The leafs will be stored in the leafs ulist, which
1451 * must be freed with ulist_free.
1452 *
1453 * returns 0 on success, <0 on error
1454 */
1455 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1456 struct btrfs_fs_info *fs_info, u64 bytenr,
1457 u64 time_seq, struct ulist **leafs,
1458 const u64 *extent_item_pos, bool ignore_offset)
1459 {
1460 int ret;
1461
1462 *leafs = ulist_alloc(GFP_NOFS);
1463 if (!*leafs)
1464 return -ENOMEM;
1465
1466 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1467 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
1468 if (ret < 0 && ret != -ENOENT) {
1469 free_leaf_list(*leafs);
1470 return ret;
1471 }
1472
1473 return 0;
1474 }
1475
1476 /*
1477 * walk all backrefs for a given extent to find all roots that reference this
1478 * extent. Walking a backref means finding all extents that reference this
1479 * extent and in turn walk the backrefs of those, too. Naturally this is a
1480 * recursive process, but here it is implemented in an iterative fashion: We
1481 * find all referencing extents for the extent in question and put them on a
1482 * list. In turn, we find all referencing extents for those, further appending
1483 * to the list. The way we iterate the list allows adding more elements after
1484 * the current while iterating. The process stops when we reach the end of the
1485 * list. Found roots are added to the roots list.
1486 *
1487 * returns 0 on success, < 0 on error.
1488 */
1489 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1490 struct btrfs_fs_info *fs_info, u64 bytenr,
1491 u64 time_seq, struct ulist **roots,
1492 bool ignore_offset)
1493 {
1494 struct ulist *tmp;
1495 struct ulist_node *node = NULL;
1496 struct ulist_iterator uiter;
1497 int ret;
1498
1499 tmp = ulist_alloc(GFP_NOFS);
1500 if (!tmp)
1501 return -ENOMEM;
1502 *roots = ulist_alloc(GFP_NOFS);
1503 if (!*roots) {
1504 ulist_free(tmp);
1505 return -ENOMEM;
1506 }
1507
1508 ULIST_ITER_INIT(&uiter);
1509 while (1) {
1510 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1511 tmp, *roots, NULL, NULL, ignore_offset);
1512 if (ret < 0 && ret != -ENOENT) {
1513 ulist_free(tmp);
1514 ulist_free(*roots);
1515 *roots = NULL;
1516 return ret;
1517 }
1518 node = ulist_next(tmp, &uiter);
1519 if (!node)
1520 break;
1521 bytenr = node->val;
1522 cond_resched();
1523 }
1524
1525 ulist_free(tmp);
1526 return 0;
1527 }
1528
1529 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1530 struct btrfs_fs_info *fs_info, u64 bytenr,
1531 u64 time_seq, struct ulist **roots,
1532 bool ignore_offset)
1533 {
1534 int ret;
1535
1536 if (!trans)
1537 down_read(&fs_info->commit_root_sem);
1538 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1539 time_seq, roots, ignore_offset);
1540 if (!trans)
1541 up_read(&fs_info->commit_root_sem);
1542 return ret;
1543 }
1544
1545 /**
1546 * btrfs_check_shared - tell us whether an extent is shared
1547 *
1548 * btrfs_check_shared uses the backref walking code but will short
1549 * circuit as soon as it finds a root or inode that doesn't match the
1550 * one passed in. This provides a significant performance benefit for
1551 * callers (such as fiemap) which want to know whether the extent is
1552 * shared but do not need a ref count.
1553 *
1554 * This attempts to attach to the running transaction in order to account for
1555 * delayed refs, but continues on even when no running transaction exists.
1556 *
1557 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1558 */
1559 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1560 struct ulist *roots, struct ulist *tmp)
1561 {
1562 struct btrfs_fs_info *fs_info = root->fs_info;
1563 struct btrfs_trans_handle *trans;
1564 struct ulist_iterator uiter;
1565 struct ulist_node *node;
1566 struct seq_list elem = SEQ_LIST_INIT(elem);
1567 int ret = 0;
1568 struct share_check shared = {
1569 .root_objectid = root->root_key.objectid,
1570 .inum = inum,
1571 .share_count = 0,
1572 .have_delayed_delete_refs = false,
1573 };
1574
1575 ulist_init(roots);
1576 ulist_init(tmp);
1577
1578 trans = btrfs_join_transaction_nostart(root);
1579 if (IS_ERR(trans)) {
1580 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1581 ret = PTR_ERR(trans);
1582 goto out;
1583 }
1584 trans = NULL;
1585 down_read(&fs_info->commit_root_sem);
1586 } else {
1587 btrfs_get_tree_mod_seq(fs_info, &elem);
1588 }
1589
1590 ULIST_ITER_INIT(&uiter);
1591 while (1) {
1592 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1593 roots, NULL, &shared, false);
1594 if (ret == BACKREF_FOUND_SHARED) {
1595 /* this is the only condition under which we return 1 */
1596 ret = 1;
1597 break;
1598 }
1599 if (ret < 0 && ret != -ENOENT)
1600 break;
1601 ret = 0;
1602 node = ulist_next(tmp, &uiter);
1603 if (!node)
1604 break;
1605 bytenr = node->val;
1606 shared.share_count = 0;
1607 shared.have_delayed_delete_refs = false;
1608 cond_resched();
1609 }
1610
1611 if (trans) {
1612 btrfs_put_tree_mod_seq(fs_info, &elem);
1613 btrfs_end_transaction(trans);
1614 } else {
1615 up_read(&fs_info->commit_root_sem);
1616 }
1617 out:
1618 ulist_release(roots);
1619 ulist_release(tmp);
1620 return ret;
1621 }
1622
1623 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1624 u64 start_off, struct btrfs_path *path,
1625 struct btrfs_inode_extref **ret_extref,
1626 u64 *found_off)
1627 {
1628 int ret, slot;
1629 struct btrfs_key key;
1630 struct btrfs_key found_key;
1631 struct btrfs_inode_extref *extref;
1632 const struct extent_buffer *leaf;
1633 unsigned long ptr;
1634
1635 key.objectid = inode_objectid;
1636 key.type = BTRFS_INODE_EXTREF_KEY;
1637 key.offset = start_off;
1638
1639 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1640 if (ret < 0)
1641 return ret;
1642
1643 while (1) {
1644 leaf = path->nodes[0];
1645 slot = path->slots[0];
1646 if (slot >= btrfs_header_nritems(leaf)) {
1647 /*
1648 * If the item at offset is not found,
1649 * btrfs_search_slot will point us to the slot
1650 * where it should be inserted. In our case
1651 * that will be the slot directly before the
1652 * next INODE_REF_KEY_V2 item. In the case
1653 * that we're pointing to the last slot in a
1654 * leaf, we must move one leaf over.
1655 */
1656 ret = btrfs_next_leaf(root, path);
1657 if (ret) {
1658 if (ret >= 1)
1659 ret = -ENOENT;
1660 break;
1661 }
1662 continue;
1663 }
1664
1665 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1666
1667 /*
1668 * Check that we're still looking at an extended ref key for
1669 * this particular objectid. If we have different
1670 * objectid or type then there are no more to be found
1671 * in the tree and we can exit.
1672 */
1673 ret = -ENOENT;
1674 if (found_key.objectid != inode_objectid)
1675 break;
1676 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1677 break;
1678
1679 ret = 0;
1680 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1681 extref = (struct btrfs_inode_extref *)ptr;
1682 *ret_extref = extref;
1683 if (found_off)
1684 *found_off = found_key.offset;
1685 break;
1686 }
1687
1688 return ret;
1689 }
1690
1691 /*
1692 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1693 * Elements of the path are separated by '/' and the path is guaranteed to be
1694 * 0-terminated. the path is only given within the current file system.
1695 * Therefore, it never starts with a '/'. the caller is responsible to provide
1696 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1697 * the start point of the resulting string is returned. this pointer is within
1698 * dest, normally.
1699 * in case the path buffer would overflow, the pointer is decremented further
1700 * as if output was written to the buffer, though no more output is actually
1701 * generated. that way, the caller can determine how much space would be
1702 * required for the path to fit into the buffer. in that case, the returned
1703 * value will be smaller than dest. callers must check this!
1704 */
1705 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1706 u32 name_len, unsigned long name_off,
1707 struct extent_buffer *eb_in, u64 parent,
1708 char *dest, u32 size)
1709 {
1710 int slot;
1711 u64 next_inum;
1712 int ret;
1713 s64 bytes_left = ((s64)size) - 1;
1714 struct extent_buffer *eb = eb_in;
1715 struct btrfs_key found_key;
1716 int leave_spinning = path->leave_spinning;
1717 struct btrfs_inode_ref *iref;
1718
1719 if (bytes_left >= 0)
1720 dest[bytes_left] = '\0';
1721
1722 path->leave_spinning = 1;
1723 while (1) {
1724 bytes_left -= name_len;
1725 if (bytes_left >= 0)
1726 read_extent_buffer(eb, dest + bytes_left,
1727 name_off, name_len);
1728 if (eb != eb_in) {
1729 if (!path->skip_locking)
1730 btrfs_tree_read_unlock_blocking(eb);
1731 free_extent_buffer(eb);
1732 }
1733 ret = btrfs_find_item(fs_root, path, parent, 0,
1734 BTRFS_INODE_REF_KEY, &found_key);
1735 if (ret > 0)
1736 ret = -ENOENT;
1737 if (ret)
1738 break;
1739
1740 next_inum = found_key.offset;
1741
1742 /* regular exit ahead */
1743 if (parent == next_inum)
1744 break;
1745
1746 slot = path->slots[0];
1747 eb = path->nodes[0];
1748 /* make sure we can use eb after releasing the path */
1749 if (eb != eb_in) {
1750 if (!path->skip_locking)
1751 btrfs_set_lock_blocking_read(eb);
1752 path->nodes[0] = NULL;
1753 path->locks[0] = 0;
1754 }
1755 btrfs_release_path(path);
1756 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1757
1758 name_len = btrfs_inode_ref_name_len(eb, iref);
1759 name_off = (unsigned long)(iref + 1);
1760
1761 parent = next_inum;
1762 --bytes_left;
1763 if (bytes_left >= 0)
1764 dest[bytes_left] = '/';
1765 }
1766
1767 btrfs_release_path(path);
1768 path->leave_spinning = leave_spinning;
1769
1770 if (ret)
1771 return ERR_PTR(ret);
1772
1773 return dest + bytes_left;
1774 }
1775
1776 /*
1777 * this makes the path point to (logical EXTENT_ITEM *)
1778 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1779 * tree blocks and <0 on error.
1780 */
1781 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1782 struct btrfs_path *path, struct btrfs_key *found_key,
1783 u64 *flags_ret)
1784 {
1785 int ret;
1786 u64 flags;
1787 u64 size = 0;
1788 u32 item_size;
1789 const struct extent_buffer *eb;
1790 struct btrfs_extent_item *ei;
1791 struct btrfs_key key;
1792
1793 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1794 key.type = BTRFS_METADATA_ITEM_KEY;
1795 else
1796 key.type = BTRFS_EXTENT_ITEM_KEY;
1797 key.objectid = logical;
1798 key.offset = (u64)-1;
1799
1800 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1801 if (ret < 0)
1802 return ret;
1803
1804 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1805 if (ret) {
1806 if (ret > 0)
1807 ret = -ENOENT;
1808 return ret;
1809 }
1810 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1811 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1812 size = fs_info->nodesize;
1813 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1814 size = found_key->offset;
1815
1816 if (found_key->objectid > logical ||
1817 found_key->objectid + size <= logical) {
1818 btrfs_debug(fs_info,
1819 "logical %llu is not within any extent", logical);
1820 return -ENOENT;
1821 }
1822
1823 eb = path->nodes[0];
1824 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1825 BUG_ON(item_size < sizeof(*ei));
1826
1827 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1828 flags = btrfs_extent_flags(eb, ei);
1829
1830 btrfs_debug(fs_info,
1831 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1832 logical, logical - found_key->objectid, found_key->objectid,
1833 found_key->offset, flags, item_size);
1834
1835 WARN_ON(!flags_ret);
1836 if (flags_ret) {
1837 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1838 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1839 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1840 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1841 else
1842 BUG();
1843 return 0;
1844 }
1845
1846 return -EIO;
1847 }
1848
1849 /*
1850 * helper function to iterate extent inline refs. ptr must point to a 0 value
1851 * for the first call and may be modified. it is used to track state.
1852 * if more refs exist, 0 is returned and the next call to
1853 * get_extent_inline_ref must pass the modified ptr parameter to get the
1854 * next ref. after the last ref was processed, 1 is returned.
1855 * returns <0 on error
1856 */
1857 static int get_extent_inline_ref(unsigned long *ptr,
1858 const struct extent_buffer *eb,
1859 const struct btrfs_key *key,
1860 const struct btrfs_extent_item *ei,
1861 u32 item_size,
1862 struct btrfs_extent_inline_ref **out_eiref,
1863 int *out_type)
1864 {
1865 unsigned long end;
1866 u64 flags;
1867 struct btrfs_tree_block_info *info;
1868
1869 if (!*ptr) {
1870 /* first call */
1871 flags = btrfs_extent_flags(eb, ei);
1872 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1873 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1874 /* a skinny metadata extent */
1875 *out_eiref =
1876 (struct btrfs_extent_inline_ref *)(ei + 1);
1877 } else {
1878 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1879 info = (struct btrfs_tree_block_info *)(ei + 1);
1880 *out_eiref =
1881 (struct btrfs_extent_inline_ref *)(info + 1);
1882 }
1883 } else {
1884 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1885 }
1886 *ptr = (unsigned long)*out_eiref;
1887 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1888 return -ENOENT;
1889 }
1890
1891 end = (unsigned long)ei + item_size;
1892 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1893 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1894 BTRFS_REF_TYPE_ANY);
1895 if (*out_type == BTRFS_REF_TYPE_INVALID)
1896 return -EUCLEAN;
1897
1898 *ptr += btrfs_extent_inline_ref_size(*out_type);
1899 WARN_ON(*ptr > end);
1900 if (*ptr == end)
1901 return 1; /* last */
1902
1903 return 0;
1904 }
1905
1906 /*
1907 * reads the tree block backref for an extent. tree level and root are returned
1908 * through out_level and out_root. ptr must point to a 0 value for the first
1909 * call and may be modified (see get_extent_inline_ref comment).
1910 * returns 0 if data was provided, 1 if there was no more data to provide or
1911 * <0 on error.
1912 */
1913 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1914 struct btrfs_key *key, struct btrfs_extent_item *ei,
1915 u32 item_size, u64 *out_root, u8 *out_level)
1916 {
1917 int ret;
1918 int type;
1919 struct btrfs_extent_inline_ref *eiref;
1920
1921 if (*ptr == (unsigned long)-1)
1922 return 1;
1923
1924 while (1) {
1925 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1926 &eiref, &type);
1927 if (ret < 0)
1928 return ret;
1929
1930 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1931 type == BTRFS_SHARED_BLOCK_REF_KEY)
1932 break;
1933
1934 if (ret == 1)
1935 return 1;
1936 }
1937
1938 /* we can treat both ref types equally here */
1939 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1940
1941 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1942 struct btrfs_tree_block_info *info;
1943
1944 info = (struct btrfs_tree_block_info *)(ei + 1);
1945 *out_level = btrfs_tree_block_level(eb, info);
1946 } else {
1947 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1948 *out_level = (u8)key->offset;
1949 }
1950
1951 if (ret == 1)
1952 *ptr = (unsigned long)-1;
1953
1954 return 0;
1955 }
1956
1957 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1958 struct extent_inode_elem *inode_list,
1959 u64 root, u64 extent_item_objectid,
1960 iterate_extent_inodes_t *iterate, void *ctx)
1961 {
1962 struct extent_inode_elem *eie;
1963 int ret = 0;
1964
1965 for (eie = inode_list; eie; eie = eie->next) {
1966 btrfs_debug(fs_info,
1967 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1968 extent_item_objectid, eie->inum,
1969 eie->offset, root);
1970 ret = iterate(eie->inum, eie->offset, root, ctx);
1971 if (ret) {
1972 btrfs_debug(fs_info,
1973 "stopping iteration for %llu due to ret=%d",
1974 extent_item_objectid, ret);
1975 break;
1976 }
1977 }
1978
1979 return ret;
1980 }
1981
1982 /*
1983 * calls iterate() for every inode that references the extent identified by
1984 * the given parameters.
1985 * when the iterator function returns a non-zero value, iteration stops.
1986 */
1987 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1988 u64 extent_item_objectid, u64 extent_item_pos,
1989 int search_commit_root,
1990 iterate_extent_inodes_t *iterate, void *ctx,
1991 bool ignore_offset)
1992 {
1993 int ret;
1994 struct btrfs_trans_handle *trans = NULL;
1995 struct ulist *refs = NULL;
1996 struct ulist *roots = NULL;
1997 struct ulist_node *ref_node = NULL;
1998 struct ulist_node *root_node = NULL;
1999 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
2000 struct ulist_iterator ref_uiter;
2001 struct ulist_iterator root_uiter;
2002
2003 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
2004 extent_item_objectid);
2005
2006 if (!search_commit_root) {
2007 trans = btrfs_attach_transaction(fs_info->extent_root);
2008 if (IS_ERR(trans)) {
2009 if (PTR_ERR(trans) != -ENOENT &&
2010 PTR_ERR(trans) != -EROFS)
2011 return PTR_ERR(trans);
2012 trans = NULL;
2013 }
2014 }
2015
2016 if (trans)
2017 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2018 else
2019 down_read(&fs_info->commit_root_sem);
2020
2021 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
2022 tree_mod_seq_elem.seq, &refs,
2023 &extent_item_pos, ignore_offset);
2024 if (ret)
2025 goto out;
2026
2027 ULIST_ITER_INIT(&ref_uiter);
2028 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2029 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
2030 tree_mod_seq_elem.seq, &roots,
2031 ignore_offset);
2032 if (ret)
2033 break;
2034 ULIST_ITER_INIT(&root_uiter);
2035 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2036 btrfs_debug(fs_info,
2037 "root %llu references leaf %llu, data list %#llx",
2038 root_node->val, ref_node->val,
2039 ref_node->aux);
2040 ret = iterate_leaf_refs(fs_info,
2041 (struct extent_inode_elem *)
2042 (uintptr_t)ref_node->aux,
2043 root_node->val,
2044 extent_item_objectid,
2045 iterate, ctx);
2046 }
2047 ulist_free(roots);
2048 }
2049
2050 free_leaf_list(refs);
2051 out:
2052 if (trans) {
2053 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2054 btrfs_end_transaction(trans);
2055 } else {
2056 up_read(&fs_info->commit_root_sem);
2057 }
2058
2059 return ret;
2060 }
2061
2062 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2063 struct btrfs_path *path,
2064 iterate_extent_inodes_t *iterate, void *ctx,
2065 bool ignore_offset)
2066 {
2067 int ret;
2068 u64 extent_item_pos;
2069 u64 flags = 0;
2070 struct btrfs_key found_key;
2071 int search_commit_root = path->search_commit_root;
2072
2073 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2074 btrfs_release_path(path);
2075 if (ret < 0)
2076 return ret;
2077 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2078 return -EINVAL;
2079
2080 extent_item_pos = logical - found_key.objectid;
2081 ret = iterate_extent_inodes(fs_info, found_key.objectid,
2082 extent_item_pos, search_commit_root,
2083 iterate, ctx, ignore_offset);
2084
2085 return ret;
2086 }
2087
2088 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2089 struct extent_buffer *eb, void *ctx);
2090
2091 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2092 struct btrfs_path *path,
2093 iterate_irefs_t *iterate, void *ctx)
2094 {
2095 int ret = 0;
2096 int slot;
2097 u32 cur;
2098 u32 len;
2099 u32 name_len;
2100 u64 parent = 0;
2101 int found = 0;
2102 struct extent_buffer *eb;
2103 struct btrfs_item *item;
2104 struct btrfs_inode_ref *iref;
2105 struct btrfs_key found_key;
2106
2107 while (!ret) {
2108 ret = btrfs_find_item(fs_root, path, inum,
2109 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2110 &found_key);
2111
2112 if (ret < 0)
2113 break;
2114 if (ret) {
2115 ret = found ? 0 : -ENOENT;
2116 break;
2117 }
2118 ++found;
2119
2120 parent = found_key.offset;
2121 slot = path->slots[0];
2122 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2123 if (!eb) {
2124 ret = -ENOMEM;
2125 break;
2126 }
2127 btrfs_release_path(path);
2128
2129 item = btrfs_item_nr(slot);
2130 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2131
2132 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2133 name_len = btrfs_inode_ref_name_len(eb, iref);
2134 /* path must be released before calling iterate()! */
2135 btrfs_debug(fs_root->fs_info,
2136 "following ref at offset %u for inode %llu in tree %llu",
2137 cur, found_key.objectid,
2138 fs_root->root_key.objectid);
2139 ret = iterate(parent, name_len,
2140 (unsigned long)(iref + 1), eb, ctx);
2141 if (ret)
2142 break;
2143 len = sizeof(*iref) + name_len;
2144 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2145 }
2146 free_extent_buffer(eb);
2147 }
2148
2149 btrfs_release_path(path);
2150
2151 return ret;
2152 }
2153
2154 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2155 struct btrfs_path *path,
2156 iterate_irefs_t *iterate, void *ctx)
2157 {
2158 int ret;
2159 int slot;
2160 u64 offset = 0;
2161 u64 parent;
2162 int found = 0;
2163 struct extent_buffer *eb;
2164 struct btrfs_inode_extref *extref;
2165 u32 item_size;
2166 u32 cur_offset;
2167 unsigned long ptr;
2168
2169 while (1) {
2170 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2171 &offset);
2172 if (ret < 0)
2173 break;
2174 if (ret) {
2175 ret = found ? 0 : -ENOENT;
2176 break;
2177 }
2178 ++found;
2179
2180 slot = path->slots[0];
2181 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2182 if (!eb) {
2183 ret = -ENOMEM;
2184 break;
2185 }
2186 btrfs_release_path(path);
2187
2188 item_size = btrfs_item_size_nr(eb, slot);
2189 ptr = btrfs_item_ptr_offset(eb, slot);
2190 cur_offset = 0;
2191
2192 while (cur_offset < item_size) {
2193 u32 name_len;
2194
2195 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2196 parent = btrfs_inode_extref_parent(eb, extref);
2197 name_len = btrfs_inode_extref_name_len(eb, extref);
2198 ret = iterate(parent, name_len,
2199 (unsigned long)&extref->name, eb, ctx);
2200 if (ret)
2201 break;
2202
2203 cur_offset += btrfs_inode_extref_name_len(eb, extref);
2204 cur_offset += sizeof(*extref);
2205 }
2206 free_extent_buffer(eb);
2207
2208 offset++;
2209 }
2210
2211 btrfs_release_path(path);
2212
2213 return ret;
2214 }
2215
2216 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2217 struct btrfs_path *path, iterate_irefs_t *iterate,
2218 void *ctx)
2219 {
2220 int ret;
2221 int found_refs = 0;
2222
2223 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2224 if (!ret)
2225 ++found_refs;
2226 else if (ret != -ENOENT)
2227 return ret;
2228
2229 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2230 if (ret == -ENOENT && found_refs)
2231 return 0;
2232
2233 return ret;
2234 }
2235
2236 /*
2237 * returns 0 if the path could be dumped (probably truncated)
2238 * returns <0 in case of an error
2239 */
2240 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2241 struct extent_buffer *eb, void *ctx)
2242 {
2243 struct inode_fs_paths *ipath = ctx;
2244 char *fspath;
2245 char *fspath_min;
2246 int i = ipath->fspath->elem_cnt;
2247 const int s_ptr = sizeof(char *);
2248 u32 bytes_left;
2249
2250 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2251 ipath->fspath->bytes_left - s_ptr : 0;
2252
2253 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2254 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2255 name_off, eb, inum, fspath_min, bytes_left);
2256 if (IS_ERR(fspath))
2257 return PTR_ERR(fspath);
2258
2259 if (fspath > fspath_min) {
2260 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2261 ++ipath->fspath->elem_cnt;
2262 ipath->fspath->bytes_left = fspath - fspath_min;
2263 } else {
2264 ++ipath->fspath->elem_missed;
2265 ipath->fspath->bytes_missing += fspath_min - fspath;
2266 ipath->fspath->bytes_left = 0;
2267 }
2268
2269 return 0;
2270 }
2271
2272 /*
2273 * this dumps all file system paths to the inode into the ipath struct, provided
2274 * is has been created large enough. each path is zero-terminated and accessed
2275 * from ipath->fspath->val[i].
2276 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2277 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2278 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2279 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2280 * have been needed to return all paths.
2281 */
2282 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2283 {
2284 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2285 inode_to_path, ipath);
2286 }
2287
2288 struct btrfs_data_container *init_data_container(u32 total_bytes)
2289 {
2290 struct btrfs_data_container *data;
2291 size_t alloc_bytes;
2292
2293 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2294 data = kvmalloc(alloc_bytes, GFP_KERNEL);
2295 if (!data)
2296 return ERR_PTR(-ENOMEM);
2297
2298 if (total_bytes >= sizeof(*data)) {
2299 data->bytes_left = total_bytes - sizeof(*data);
2300 data->bytes_missing = 0;
2301 } else {
2302 data->bytes_missing = sizeof(*data) - total_bytes;
2303 data->bytes_left = 0;
2304 }
2305
2306 data->elem_cnt = 0;
2307 data->elem_missed = 0;
2308
2309 return data;
2310 }
2311
2312 /*
2313 * allocates space to return multiple file system paths for an inode.
2314 * total_bytes to allocate are passed, note that space usable for actual path
2315 * information will be total_bytes - sizeof(struct inode_fs_paths).
2316 * the returned pointer must be freed with free_ipath() in the end.
2317 */
2318 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2319 struct btrfs_path *path)
2320 {
2321 struct inode_fs_paths *ifp;
2322 struct btrfs_data_container *fspath;
2323
2324 fspath = init_data_container(total_bytes);
2325 if (IS_ERR(fspath))
2326 return ERR_CAST(fspath);
2327
2328 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2329 if (!ifp) {
2330 kvfree(fspath);
2331 return ERR_PTR(-ENOMEM);
2332 }
2333
2334 ifp->btrfs_path = path;
2335 ifp->fspath = fspath;
2336 ifp->fs_root = fs_root;
2337
2338 return ifp;
2339 }
2340
2341 void free_ipath(struct inode_fs_paths *ipath)
2342 {
2343 if (!ipath)
2344 return;
2345 kvfree(ipath->fspath);
2346 kfree(ipath);
2347 }
2348