1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/filter.h>
11 #include <linux/uaccess.h>
12 #include <linux/ctype.h>
13 #include <linux/kprobes.h>
14 #include <linux/syscalls.h>
15 #include <linux/error-injection.h>
16
17 #include <asm/tlb.h>
18
19 #include "trace_probe.h"
20 #include "trace.h"
21
22 #define bpf_event_rcu_dereference(p) \
23 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
24
25 #ifdef CONFIG_MODULES
26 struct bpf_trace_module {
27 struct module *module;
28 struct list_head list;
29 };
30
31 static LIST_HEAD(bpf_trace_modules);
32 static DEFINE_MUTEX(bpf_module_mutex);
33
bpf_get_raw_tracepoint_module(const char * name)34 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
35 {
36 struct bpf_raw_event_map *btp, *ret = NULL;
37 struct bpf_trace_module *btm;
38 unsigned int i;
39
40 mutex_lock(&bpf_module_mutex);
41 list_for_each_entry(btm, &bpf_trace_modules, list) {
42 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
43 btp = &btm->module->bpf_raw_events[i];
44 if (!strcmp(btp->tp->name, name)) {
45 if (try_module_get(btm->module))
46 ret = btp;
47 goto out;
48 }
49 }
50 }
51 out:
52 mutex_unlock(&bpf_module_mutex);
53 return ret;
54 }
55 #else
bpf_get_raw_tracepoint_module(const char * name)56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
57 {
58 return NULL;
59 }
60 #endif /* CONFIG_MODULES */
61
62 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
63 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
64
65 /**
66 * trace_call_bpf - invoke BPF program
67 * @call: tracepoint event
68 * @ctx: opaque context pointer
69 *
70 * kprobe handlers execute BPF programs via this helper.
71 * Can be used from static tracepoints in the future.
72 *
73 * Return: BPF programs always return an integer which is interpreted by
74 * kprobe handler as:
75 * 0 - return from kprobe (event is filtered out)
76 * 1 - store kprobe event into ring buffer
77 * Other values are reserved and currently alias to 1
78 */
trace_call_bpf(struct trace_event_call * call,void * ctx)79 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
80 {
81 unsigned int ret;
82
83 if (in_nmi()) /* not supported yet */
84 return 1;
85
86 preempt_disable();
87
88 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
89 /*
90 * since some bpf program is already running on this cpu,
91 * don't call into another bpf program (same or different)
92 * and don't send kprobe event into ring-buffer,
93 * so return zero here
94 */
95 ret = 0;
96 goto out;
97 }
98
99 /*
100 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
101 * to all call sites, we did a bpf_prog_array_valid() there to check
102 * whether call->prog_array is empty or not, which is
103 * a heurisitc to speed up execution.
104 *
105 * If bpf_prog_array_valid() fetched prog_array was
106 * non-NULL, we go into trace_call_bpf() and do the actual
107 * proper rcu_dereference() under RCU lock.
108 * If it turns out that prog_array is NULL then, we bail out.
109 * For the opposite, if the bpf_prog_array_valid() fetched pointer
110 * was NULL, you'll skip the prog_array with the risk of missing
111 * out of events when it was updated in between this and the
112 * rcu_dereference() which is accepted risk.
113 */
114 ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
115
116 out:
117 __this_cpu_dec(bpf_prog_active);
118 preempt_enable();
119
120 return ret;
121 }
122 EXPORT_SYMBOL_GPL(trace_call_bpf);
123
124 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
BPF_CALL_2(bpf_override_return,struct pt_regs *,regs,unsigned long,rc)125 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
126 {
127 regs_set_return_value(regs, rc);
128 override_function_with_return(regs);
129 return 0;
130 }
131
132 static const struct bpf_func_proto bpf_override_return_proto = {
133 .func = bpf_override_return,
134 .gpl_only = true,
135 .ret_type = RET_INTEGER,
136 .arg1_type = ARG_PTR_TO_CTX,
137 .arg2_type = ARG_ANYTHING,
138 };
139 #endif
140
BPF_CALL_3(bpf_probe_read,void *,dst,u32,size,const void *,unsafe_ptr)141 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
142 {
143 int ret;
144
145 ret = security_locked_down(LOCKDOWN_BPF_READ);
146 if (ret < 0)
147 goto out;
148
149 ret = probe_kernel_read(dst, unsafe_ptr, size);
150 if (unlikely(ret < 0))
151 out:
152 memset(dst, 0, size);
153
154 return ret;
155 }
156
157 static const struct bpf_func_proto bpf_probe_read_proto = {
158 .func = bpf_probe_read,
159 .gpl_only = true,
160 .ret_type = RET_INTEGER,
161 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
162 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
163 .arg3_type = ARG_ANYTHING,
164 };
165
BPF_CALL_3(bpf_probe_write_user,void __user *,unsafe_ptr,const void *,src,u32,size)166 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
167 u32, size)
168 {
169 /*
170 * Ensure we're in user context which is safe for the helper to
171 * run. This helper has no business in a kthread.
172 *
173 * access_ok() should prevent writing to non-user memory, but in
174 * some situations (nommu, temporary switch, etc) access_ok() does
175 * not provide enough validation, hence the check on KERNEL_DS.
176 *
177 * nmi_uaccess_okay() ensures the probe is not run in an interim
178 * state, when the task or mm are switched. This is specifically
179 * required to prevent the use of temporary mm.
180 */
181
182 if (unlikely(in_interrupt() ||
183 current->flags & (PF_KTHREAD | PF_EXITING)))
184 return -EPERM;
185 if (unlikely(uaccess_kernel()))
186 return -EPERM;
187 if (unlikely(!nmi_uaccess_okay()))
188 return -EPERM;
189
190 return probe_user_write(unsafe_ptr, src, size);
191 }
192
193 static const struct bpf_func_proto bpf_probe_write_user_proto = {
194 .func = bpf_probe_write_user,
195 .gpl_only = true,
196 .ret_type = RET_INTEGER,
197 .arg1_type = ARG_ANYTHING,
198 .arg2_type = ARG_PTR_TO_MEM,
199 .arg3_type = ARG_CONST_SIZE,
200 };
201
bpf_get_probe_write_proto(void)202 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
203 {
204 pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
205 current->comm, task_pid_nr(current));
206
207 return &bpf_probe_write_user_proto;
208 }
209
210 /*
211 * Only limited trace_printk() conversion specifiers allowed:
212 * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
213 */
BPF_CALL_5(bpf_trace_printk,char *,fmt,u32,fmt_size,u64,arg1,u64,arg2,u64,arg3)214 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
215 u64, arg2, u64, arg3)
216 {
217 bool str_seen = false;
218 int mod[3] = {};
219 int fmt_cnt = 0;
220 u64 unsafe_addr;
221 char buf[64];
222 int i;
223
224 /*
225 * bpf_check()->check_func_arg()->check_stack_boundary()
226 * guarantees that fmt points to bpf program stack,
227 * fmt_size bytes of it were initialized and fmt_size > 0
228 */
229 if (fmt[--fmt_size] != 0)
230 return -EINVAL;
231
232 /* check format string for allowed specifiers */
233 for (i = 0; i < fmt_size; i++) {
234 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
235 return -EINVAL;
236
237 if (fmt[i] != '%')
238 continue;
239
240 if (fmt_cnt >= 3)
241 return -EINVAL;
242
243 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
244 i++;
245 if (fmt[i] == 'l') {
246 mod[fmt_cnt]++;
247 i++;
248 } else if (fmt[i] == 'p' || fmt[i] == 's') {
249 mod[fmt_cnt]++;
250 /* disallow any further format extensions */
251 if (fmt[i + 1] != 0 &&
252 !isspace(fmt[i + 1]) &&
253 !ispunct(fmt[i + 1]))
254 return -EINVAL;
255 fmt_cnt++;
256 if (fmt[i] == 's') {
257 if (str_seen)
258 /* allow only one '%s' per fmt string */
259 return -EINVAL;
260 str_seen = true;
261
262 switch (fmt_cnt) {
263 case 1:
264 unsafe_addr = arg1;
265 arg1 = (long) buf;
266 break;
267 case 2:
268 unsafe_addr = arg2;
269 arg2 = (long) buf;
270 break;
271 case 3:
272 unsafe_addr = arg3;
273 arg3 = (long) buf;
274 break;
275 }
276 buf[0] = 0;
277 strncpy_from_unsafe(buf,
278 (void *) (long) unsafe_addr,
279 sizeof(buf));
280 }
281 continue;
282 }
283
284 if (fmt[i] == 'l') {
285 mod[fmt_cnt]++;
286 i++;
287 }
288
289 if (fmt[i] != 'i' && fmt[i] != 'd' &&
290 fmt[i] != 'u' && fmt[i] != 'x')
291 return -EINVAL;
292 fmt_cnt++;
293 }
294
295 /* Horrid workaround for getting va_list handling working with different
296 * argument type combinations generically for 32 and 64 bit archs.
297 */
298 #define __BPF_TP_EMIT() __BPF_ARG3_TP()
299 #define __BPF_TP(...) \
300 __trace_printk(0 /* Fake ip */, \
301 fmt, ##__VA_ARGS__)
302
303 #define __BPF_ARG1_TP(...) \
304 ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \
305 ? __BPF_TP(arg1, ##__VA_ARGS__) \
306 : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \
307 ? __BPF_TP((long)arg1, ##__VA_ARGS__) \
308 : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
309
310 #define __BPF_ARG2_TP(...) \
311 ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \
312 ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \
313 : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \
314 ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \
315 : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
316
317 #define __BPF_ARG3_TP(...) \
318 ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \
319 ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \
320 : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \
321 ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \
322 : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
323
324 return __BPF_TP_EMIT();
325 }
326
327 static const struct bpf_func_proto bpf_trace_printk_proto = {
328 .func = bpf_trace_printk,
329 .gpl_only = true,
330 .ret_type = RET_INTEGER,
331 .arg1_type = ARG_PTR_TO_MEM,
332 .arg2_type = ARG_CONST_SIZE,
333 };
334
bpf_get_trace_printk_proto(void)335 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
336 {
337 /*
338 * this program might be calling bpf_trace_printk,
339 * so allocate per-cpu printk buffers
340 */
341 trace_printk_init_buffers();
342
343 return &bpf_trace_printk_proto;
344 }
345
346 static __always_inline int
get_map_perf_counter(struct bpf_map * map,u64 flags,u64 * value,u64 * enabled,u64 * running)347 get_map_perf_counter(struct bpf_map *map, u64 flags,
348 u64 *value, u64 *enabled, u64 *running)
349 {
350 struct bpf_array *array = container_of(map, struct bpf_array, map);
351 unsigned int cpu = smp_processor_id();
352 u64 index = flags & BPF_F_INDEX_MASK;
353 struct bpf_event_entry *ee;
354
355 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
356 return -EINVAL;
357 if (index == BPF_F_CURRENT_CPU)
358 index = cpu;
359 if (unlikely(index >= array->map.max_entries))
360 return -E2BIG;
361
362 ee = READ_ONCE(array->ptrs[index]);
363 if (!ee)
364 return -ENOENT;
365
366 return perf_event_read_local(ee->event, value, enabled, running);
367 }
368
BPF_CALL_2(bpf_perf_event_read,struct bpf_map *,map,u64,flags)369 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
370 {
371 u64 value = 0;
372 int err;
373
374 err = get_map_perf_counter(map, flags, &value, NULL, NULL);
375 /*
376 * this api is ugly since we miss [-22..-2] range of valid
377 * counter values, but that's uapi
378 */
379 if (err)
380 return err;
381 return value;
382 }
383
384 static const struct bpf_func_proto bpf_perf_event_read_proto = {
385 .func = bpf_perf_event_read,
386 .gpl_only = true,
387 .ret_type = RET_INTEGER,
388 .arg1_type = ARG_CONST_MAP_PTR,
389 .arg2_type = ARG_ANYTHING,
390 };
391
BPF_CALL_4(bpf_perf_event_read_value,struct bpf_map *,map,u64,flags,struct bpf_perf_event_value *,buf,u32,size)392 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
393 struct bpf_perf_event_value *, buf, u32, size)
394 {
395 int err = -EINVAL;
396
397 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
398 goto clear;
399 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
400 &buf->running);
401 if (unlikely(err))
402 goto clear;
403 return 0;
404 clear:
405 memset(buf, 0, size);
406 return err;
407 }
408
409 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
410 .func = bpf_perf_event_read_value,
411 .gpl_only = true,
412 .ret_type = RET_INTEGER,
413 .arg1_type = ARG_CONST_MAP_PTR,
414 .arg2_type = ARG_ANYTHING,
415 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
416 .arg4_type = ARG_CONST_SIZE,
417 };
418
419 static __always_inline u64
__bpf_perf_event_output(struct pt_regs * regs,struct bpf_map * map,u64 flags,struct perf_sample_data * sd)420 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
421 u64 flags, struct perf_sample_data *sd)
422 {
423 struct bpf_array *array = container_of(map, struct bpf_array, map);
424 unsigned int cpu = smp_processor_id();
425 u64 index = flags & BPF_F_INDEX_MASK;
426 struct bpf_event_entry *ee;
427 struct perf_event *event;
428
429 if (index == BPF_F_CURRENT_CPU)
430 index = cpu;
431 if (unlikely(index >= array->map.max_entries))
432 return -E2BIG;
433
434 ee = READ_ONCE(array->ptrs[index]);
435 if (!ee)
436 return -ENOENT;
437
438 event = ee->event;
439 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
440 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
441 return -EINVAL;
442
443 if (unlikely(event->oncpu != cpu))
444 return -EOPNOTSUPP;
445
446 return perf_event_output(event, sd, regs);
447 }
448
449 /*
450 * Support executing tracepoints in normal, irq, and nmi context that each call
451 * bpf_perf_event_output
452 */
453 struct bpf_trace_sample_data {
454 struct perf_sample_data sds[3];
455 };
456
457 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
458 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
BPF_CALL_5(bpf_perf_event_output,struct pt_regs *,regs,struct bpf_map *,map,u64,flags,void *,data,u64,size)459 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
460 u64, flags, void *, data, u64, size)
461 {
462 struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
463 int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
464 struct perf_raw_record raw = {
465 .frag = {
466 .size = size,
467 .data = data,
468 },
469 };
470 struct perf_sample_data *sd;
471 int err;
472
473 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
474 err = -EBUSY;
475 goto out;
476 }
477
478 sd = &sds->sds[nest_level - 1];
479
480 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
481 err = -EINVAL;
482 goto out;
483 }
484
485 perf_sample_data_init(sd, 0, 0);
486 sd->raw = &raw;
487
488 err = __bpf_perf_event_output(regs, map, flags, sd);
489
490 out:
491 this_cpu_dec(bpf_trace_nest_level);
492 return err;
493 }
494
495 static const struct bpf_func_proto bpf_perf_event_output_proto = {
496 .func = bpf_perf_event_output,
497 .gpl_only = true,
498 .ret_type = RET_INTEGER,
499 .arg1_type = ARG_PTR_TO_CTX,
500 .arg2_type = ARG_CONST_MAP_PTR,
501 .arg3_type = ARG_ANYTHING,
502 .arg4_type = ARG_PTR_TO_MEM,
503 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
504 };
505
506 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
507 struct bpf_nested_pt_regs {
508 struct pt_regs regs[3];
509 };
510 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
511 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
512
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)513 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
514 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
515 {
516 int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
517 struct perf_raw_frag frag = {
518 .copy = ctx_copy,
519 .size = ctx_size,
520 .data = ctx,
521 };
522 struct perf_raw_record raw = {
523 .frag = {
524 {
525 .next = ctx_size ? &frag : NULL,
526 },
527 .size = meta_size,
528 .data = meta,
529 },
530 };
531 struct perf_sample_data *sd;
532 struct pt_regs *regs;
533 u64 ret;
534
535 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
536 ret = -EBUSY;
537 goto out;
538 }
539 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
540 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
541
542 perf_fetch_caller_regs(regs);
543 perf_sample_data_init(sd, 0, 0);
544 sd->raw = &raw;
545
546 ret = __bpf_perf_event_output(regs, map, flags, sd);
547 out:
548 this_cpu_dec(bpf_event_output_nest_level);
549 return ret;
550 }
551
BPF_CALL_0(bpf_get_current_task)552 BPF_CALL_0(bpf_get_current_task)
553 {
554 return (long) current;
555 }
556
557 static const struct bpf_func_proto bpf_get_current_task_proto = {
558 .func = bpf_get_current_task,
559 .gpl_only = true,
560 .ret_type = RET_INTEGER,
561 };
562
BPF_CALL_2(bpf_current_task_under_cgroup,struct bpf_map *,map,u32,idx)563 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
564 {
565 struct bpf_array *array = container_of(map, struct bpf_array, map);
566 struct cgroup *cgrp;
567
568 if (unlikely(idx >= array->map.max_entries))
569 return -E2BIG;
570
571 cgrp = READ_ONCE(array->ptrs[idx]);
572 if (unlikely(!cgrp))
573 return -EAGAIN;
574
575 return task_under_cgroup_hierarchy(current, cgrp);
576 }
577
578 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
579 .func = bpf_current_task_under_cgroup,
580 .gpl_only = false,
581 .ret_type = RET_INTEGER,
582 .arg1_type = ARG_CONST_MAP_PTR,
583 .arg2_type = ARG_ANYTHING,
584 };
585
BPF_CALL_3(bpf_probe_read_str,void *,dst,u32,size,const void *,unsafe_ptr)586 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
587 const void *, unsafe_ptr)
588 {
589 int ret;
590
591 ret = security_locked_down(LOCKDOWN_BPF_READ);
592 if (ret < 0)
593 goto out;
594
595 /*
596 * The strncpy_from_unsafe() call will likely not fill the entire
597 * buffer, but that's okay in this circumstance as we're probing
598 * arbitrary memory anyway similar to bpf_probe_read() and might
599 * as well probe the stack. Thus, memory is explicitly cleared
600 * only in error case, so that improper users ignoring return
601 * code altogether don't copy garbage; otherwise length of string
602 * is returned that can be used for bpf_perf_event_output() et al.
603 */
604 ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
605 if (unlikely(ret < 0))
606 out:
607 memset(dst, 0, size);
608
609 return ret;
610 }
611
612 static const struct bpf_func_proto bpf_probe_read_str_proto = {
613 .func = bpf_probe_read_str,
614 .gpl_only = true,
615 .ret_type = RET_INTEGER,
616 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
617 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
618 .arg3_type = ARG_ANYTHING,
619 };
620
621 struct send_signal_irq_work {
622 struct irq_work irq_work;
623 struct task_struct *task;
624 u32 sig;
625 };
626
627 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
628
do_bpf_send_signal(struct irq_work * entry)629 static void do_bpf_send_signal(struct irq_work *entry)
630 {
631 struct send_signal_irq_work *work;
632
633 work = container_of(entry, struct send_signal_irq_work, irq_work);
634 group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, PIDTYPE_TGID);
635 }
636
BPF_CALL_1(bpf_send_signal,u32,sig)637 BPF_CALL_1(bpf_send_signal, u32, sig)
638 {
639 struct send_signal_irq_work *work = NULL;
640
641 /* Similar to bpf_probe_write_user, task needs to be
642 * in a sound condition and kernel memory access be
643 * permitted in order to send signal to the current
644 * task.
645 */
646 if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
647 return -EPERM;
648 if (unlikely(uaccess_kernel()))
649 return -EPERM;
650 if (unlikely(!nmi_uaccess_okay()))
651 return -EPERM;
652 /* Task should not be pid=1 to avoid kernel panic. */
653 if (unlikely(is_global_init(current)))
654 return -EPERM;
655
656 if (irqs_disabled()) {
657 /* Do an early check on signal validity. Otherwise,
658 * the error is lost in deferred irq_work.
659 */
660 if (unlikely(!valid_signal(sig)))
661 return -EINVAL;
662
663 work = this_cpu_ptr(&send_signal_work);
664 if (work->irq_work.flags & IRQ_WORK_BUSY)
665 return -EBUSY;
666
667 /* Add the current task, which is the target of sending signal,
668 * to the irq_work. The current task may change when queued
669 * irq works get executed.
670 */
671 work->task = current;
672 work->sig = sig;
673 irq_work_queue(&work->irq_work);
674 return 0;
675 }
676
677 return group_send_sig_info(sig, SEND_SIG_PRIV, current, PIDTYPE_TGID);
678 }
679
680 static const struct bpf_func_proto bpf_send_signal_proto = {
681 .func = bpf_send_signal,
682 .gpl_only = false,
683 .ret_type = RET_INTEGER,
684 .arg1_type = ARG_ANYTHING,
685 };
686
687 static const struct bpf_func_proto *
tracing_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)688 tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
689 {
690 switch (func_id) {
691 case BPF_FUNC_map_lookup_elem:
692 return &bpf_map_lookup_elem_proto;
693 case BPF_FUNC_map_update_elem:
694 return &bpf_map_update_elem_proto;
695 case BPF_FUNC_map_delete_elem:
696 return &bpf_map_delete_elem_proto;
697 case BPF_FUNC_map_push_elem:
698 return &bpf_map_push_elem_proto;
699 case BPF_FUNC_map_pop_elem:
700 return &bpf_map_pop_elem_proto;
701 case BPF_FUNC_map_peek_elem:
702 return &bpf_map_peek_elem_proto;
703 case BPF_FUNC_probe_read:
704 return &bpf_probe_read_proto;
705 case BPF_FUNC_ktime_get_ns:
706 return &bpf_ktime_get_ns_proto;
707 case BPF_FUNC_ktime_get_boot_ns:
708 return &bpf_ktime_get_boot_ns_proto;
709 case BPF_FUNC_tail_call:
710 return &bpf_tail_call_proto;
711 case BPF_FUNC_get_current_pid_tgid:
712 return &bpf_get_current_pid_tgid_proto;
713 case BPF_FUNC_get_current_task:
714 return &bpf_get_current_task_proto;
715 case BPF_FUNC_get_current_uid_gid:
716 return &bpf_get_current_uid_gid_proto;
717 case BPF_FUNC_get_current_comm:
718 return &bpf_get_current_comm_proto;
719 case BPF_FUNC_trace_printk:
720 return bpf_get_trace_printk_proto();
721 case BPF_FUNC_get_smp_processor_id:
722 return &bpf_get_smp_processor_id_proto;
723 case BPF_FUNC_get_numa_node_id:
724 return &bpf_get_numa_node_id_proto;
725 case BPF_FUNC_perf_event_read:
726 return &bpf_perf_event_read_proto;
727 case BPF_FUNC_probe_write_user:
728 return bpf_get_probe_write_proto();
729 case BPF_FUNC_current_task_under_cgroup:
730 return &bpf_current_task_under_cgroup_proto;
731 case BPF_FUNC_get_prandom_u32:
732 return &bpf_get_prandom_u32_proto;
733 case BPF_FUNC_probe_read_str:
734 return &bpf_probe_read_str_proto;
735 #ifdef CONFIG_CGROUPS
736 case BPF_FUNC_get_current_cgroup_id:
737 return &bpf_get_current_cgroup_id_proto;
738 #endif
739 case BPF_FUNC_send_signal:
740 return &bpf_send_signal_proto;
741 default:
742 return NULL;
743 }
744 }
745
746 static const struct bpf_func_proto *
kprobe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)747 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
748 {
749 switch (func_id) {
750 case BPF_FUNC_perf_event_output:
751 return &bpf_perf_event_output_proto;
752 case BPF_FUNC_get_stackid:
753 return &bpf_get_stackid_proto;
754 case BPF_FUNC_get_stack:
755 return &bpf_get_stack_proto;
756 case BPF_FUNC_perf_event_read_value:
757 return &bpf_perf_event_read_value_proto;
758 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
759 case BPF_FUNC_override_return:
760 return &bpf_override_return_proto;
761 #endif
762 default:
763 return tracing_func_proto(func_id, prog);
764 }
765 }
766
767 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
kprobe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)768 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
769 const struct bpf_prog *prog,
770 struct bpf_insn_access_aux *info)
771 {
772 if (off < 0 || off >= sizeof(struct pt_regs))
773 return false;
774 if (type != BPF_READ)
775 return false;
776 if (off % size != 0)
777 return false;
778 /*
779 * Assertion for 32 bit to make sure last 8 byte access
780 * (BPF_DW) to the last 4 byte member is disallowed.
781 */
782 if (off + size > sizeof(struct pt_regs))
783 return false;
784
785 return true;
786 }
787
788 const struct bpf_verifier_ops kprobe_verifier_ops = {
789 .get_func_proto = kprobe_prog_func_proto,
790 .is_valid_access = kprobe_prog_is_valid_access,
791 };
792
793 const struct bpf_prog_ops kprobe_prog_ops = {
794 };
795
BPF_CALL_5(bpf_perf_event_output_tp,void *,tp_buff,struct bpf_map *,map,u64,flags,void *,data,u64,size)796 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
797 u64, flags, void *, data, u64, size)
798 {
799 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
800
801 /*
802 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
803 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
804 * from there and call the same bpf_perf_event_output() helper inline.
805 */
806 return ____bpf_perf_event_output(regs, map, flags, data, size);
807 }
808
809 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
810 .func = bpf_perf_event_output_tp,
811 .gpl_only = true,
812 .ret_type = RET_INTEGER,
813 .arg1_type = ARG_PTR_TO_CTX,
814 .arg2_type = ARG_CONST_MAP_PTR,
815 .arg3_type = ARG_ANYTHING,
816 .arg4_type = ARG_PTR_TO_MEM,
817 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
818 };
819
BPF_CALL_3(bpf_get_stackid_tp,void *,tp_buff,struct bpf_map *,map,u64,flags)820 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
821 u64, flags)
822 {
823 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
824
825 /*
826 * Same comment as in bpf_perf_event_output_tp(), only that this time
827 * the other helper's function body cannot be inlined due to being
828 * external, thus we need to call raw helper function.
829 */
830 return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
831 flags, 0, 0);
832 }
833
834 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
835 .func = bpf_get_stackid_tp,
836 .gpl_only = true,
837 .ret_type = RET_INTEGER,
838 .arg1_type = ARG_PTR_TO_CTX,
839 .arg2_type = ARG_CONST_MAP_PTR,
840 .arg3_type = ARG_ANYTHING,
841 };
842
BPF_CALL_4(bpf_get_stack_tp,void *,tp_buff,void *,buf,u32,size,u64,flags)843 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
844 u64, flags)
845 {
846 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
847
848 return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
849 (unsigned long) size, flags, 0);
850 }
851
852 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
853 .func = bpf_get_stack_tp,
854 .gpl_only = true,
855 .ret_type = RET_INTEGER,
856 .arg1_type = ARG_PTR_TO_CTX,
857 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
858 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
859 .arg4_type = ARG_ANYTHING,
860 };
861
862 static const struct bpf_func_proto *
tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)863 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
864 {
865 switch (func_id) {
866 case BPF_FUNC_perf_event_output:
867 return &bpf_perf_event_output_proto_tp;
868 case BPF_FUNC_get_stackid:
869 return &bpf_get_stackid_proto_tp;
870 case BPF_FUNC_get_stack:
871 return &bpf_get_stack_proto_tp;
872 default:
873 return tracing_func_proto(func_id, prog);
874 }
875 }
876
tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)877 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
878 const struct bpf_prog *prog,
879 struct bpf_insn_access_aux *info)
880 {
881 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
882 return false;
883 if (type != BPF_READ)
884 return false;
885 if (off % size != 0)
886 return false;
887
888 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
889 return true;
890 }
891
892 const struct bpf_verifier_ops tracepoint_verifier_ops = {
893 .get_func_proto = tp_prog_func_proto,
894 .is_valid_access = tp_prog_is_valid_access,
895 };
896
897 const struct bpf_prog_ops tracepoint_prog_ops = {
898 };
899
BPF_CALL_3(bpf_perf_prog_read_value,struct bpf_perf_event_data_kern *,ctx,struct bpf_perf_event_value *,buf,u32,size)900 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
901 struct bpf_perf_event_value *, buf, u32, size)
902 {
903 int err = -EINVAL;
904
905 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
906 goto clear;
907 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
908 &buf->running);
909 if (unlikely(err))
910 goto clear;
911 return 0;
912 clear:
913 memset(buf, 0, size);
914 return err;
915 }
916
917 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
918 .func = bpf_perf_prog_read_value,
919 .gpl_only = true,
920 .ret_type = RET_INTEGER,
921 .arg1_type = ARG_PTR_TO_CTX,
922 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
923 .arg3_type = ARG_CONST_SIZE,
924 };
925
926 static const struct bpf_func_proto *
pe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)927 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
928 {
929 switch (func_id) {
930 case BPF_FUNC_perf_event_output:
931 return &bpf_perf_event_output_proto_tp;
932 case BPF_FUNC_get_stackid:
933 return &bpf_get_stackid_proto_tp;
934 case BPF_FUNC_get_stack:
935 return &bpf_get_stack_proto_tp;
936 case BPF_FUNC_perf_prog_read_value:
937 return &bpf_perf_prog_read_value_proto;
938 default:
939 return tracing_func_proto(func_id, prog);
940 }
941 }
942
943 /*
944 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
945 * to avoid potential recursive reuse issue when/if tracepoints are added
946 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
947 *
948 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
949 * in normal, irq, and nmi context.
950 */
951 struct bpf_raw_tp_regs {
952 struct pt_regs regs[3];
953 };
954 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
955 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
get_bpf_raw_tp_regs(void)956 static struct pt_regs *get_bpf_raw_tp_regs(void)
957 {
958 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
959 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
960
961 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
962 this_cpu_dec(bpf_raw_tp_nest_level);
963 return ERR_PTR(-EBUSY);
964 }
965
966 return &tp_regs->regs[nest_level - 1];
967 }
968
put_bpf_raw_tp_regs(void)969 static void put_bpf_raw_tp_regs(void)
970 {
971 this_cpu_dec(bpf_raw_tp_nest_level);
972 }
973
BPF_CALL_5(bpf_perf_event_output_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags,void *,data,u64,size)974 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
975 struct bpf_map *, map, u64, flags, void *, data, u64, size)
976 {
977 struct pt_regs *regs = get_bpf_raw_tp_regs();
978 int ret;
979
980 if (IS_ERR(regs))
981 return PTR_ERR(regs);
982
983 perf_fetch_caller_regs(regs);
984 ret = ____bpf_perf_event_output(regs, map, flags, data, size);
985
986 put_bpf_raw_tp_regs();
987 return ret;
988 }
989
990 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
991 .func = bpf_perf_event_output_raw_tp,
992 .gpl_only = true,
993 .ret_type = RET_INTEGER,
994 .arg1_type = ARG_PTR_TO_CTX,
995 .arg2_type = ARG_CONST_MAP_PTR,
996 .arg3_type = ARG_ANYTHING,
997 .arg4_type = ARG_PTR_TO_MEM,
998 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
999 };
1000
BPF_CALL_3(bpf_get_stackid_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags)1001 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1002 struct bpf_map *, map, u64, flags)
1003 {
1004 struct pt_regs *regs = get_bpf_raw_tp_regs();
1005 int ret;
1006
1007 if (IS_ERR(regs))
1008 return PTR_ERR(regs);
1009
1010 perf_fetch_caller_regs(regs);
1011 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1012 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1013 flags, 0, 0);
1014 put_bpf_raw_tp_regs();
1015 return ret;
1016 }
1017
1018 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1019 .func = bpf_get_stackid_raw_tp,
1020 .gpl_only = true,
1021 .ret_type = RET_INTEGER,
1022 .arg1_type = ARG_PTR_TO_CTX,
1023 .arg2_type = ARG_CONST_MAP_PTR,
1024 .arg3_type = ARG_ANYTHING,
1025 };
1026
BPF_CALL_4(bpf_get_stack_raw_tp,struct bpf_raw_tracepoint_args *,args,void *,buf,u32,size,u64,flags)1027 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1028 void *, buf, u32, size, u64, flags)
1029 {
1030 struct pt_regs *regs = get_bpf_raw_tp_regs();
1031 int ret;
1032
1033 if (IS_ERR(regs))
1034 return PTR_ERR(regs);
1035
1036 perf_fetch_caller_regs(regs);
1037 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1038 (unsigned long) size, flags, 0);
1039 put_bpf_raw_tp_regs();
1040 return ret;
1041 }
1042
1043 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1044 .func = bpf_get_stack_raw_tp,
1045 .gpl_only = true,
1046 .ret_type = RET_INTEGER,
1047 .arg1_type = ARG_PTR_TO_CTX,
1048 .arg2_type = ARG_PTR_TO_MEM,
1049 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1050 .arg4_type = ARG_ANYTHING,
1051 };
1052
1053 static const struct bpf_func_proto *
raw_tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1054 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1055 {
1056 switch (func_id) {
1057 case BPF_FUNC_perf_event_output:
1058 return &bpf_perf_event_output_proto_raw_tp;
1059 case BPF_FUNC_get_stackid:
1060 return &bpf_get_stackid_proto_raw_tp;
1061 case BPF_FUNC_get_stack:
1062 return &bpf_get_stack_proto_raw_tp;
1063 default:
1064 return tracing_func_proto(func_id, prog);
1065 }
1066 }
1067
raw_tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1068 static bool raw_tp_prog_is_valid_access(int off, int size,
1069 enum bpf_access_type type,
1070 const struct bpf_prog *prog,
1071 struct bpf_insn_access_aux *info)
1072 {
1073 /* largest tracepoint in the kernel has 12 args */
1074 if (off < 0 || off >= sizeof(__u64) * 12)
1075 return false;
1076 if (type != BPF_READ)
1077 return false;
1078 if (off % size != 0)
1079 return false;
1080 return true;
1081 }
1082
1083 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1084 .get_func_proto = raw_tp_prog_func_proto,
1085 .is_valid_access = raw_tp_prog_is_valid_access,
1086 };
1087
1088 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1089 };
1090
raw_tp_writable_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1091 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1092 enum bpf_access_type type,
1093 const struct bpf_prog *prog,
1094 struct bpf_insn_access_aux *info)
1095 {
1096 if (off == 0) {
1097 if (size != sizeof(u64) || type != BPF_READ)
1098 return false;
1099 info->reg_type = PTR_TO_TP_BUFFER;
1100 }
1101 return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1102 }
1103
1104 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1105 .get_func_proto = raw_tp_prog_func_proto,
1106 .is_valid_access = raw_tp_writable_prog_is_valid_access,
1107 };
1108
1109 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1110 };
1111
pe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1112 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1113 const struct bpf_prog *prog,
1114 struct bpf_insn_access_aux *info)
1115 {
1116 const int size_u64 = sizeof(u64);
1117
1118 if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1119 return false;
1120 if (type != BPF_READ)
1121 return false;
1122 if (off % size != 0) {
1123 if (sizeof(unsigned long) != 4)
1124 return false;
1125 if (size != 8)
1126 return false;
1127 if (off % size != 4)
1128 return false;
1129 }
1130
1131 switch (off) {
1132 case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1133 bpf_ctx_record_field_size(info, size_u64);
1134 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1135 return false;
1136 break;
1137 case bpf_ctx_range(struct bpf_perf_event_data, addr):
1138 bpf_ctx_record_field_size(info, size_u64);
1139 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1140 return false;
1141 break;
1142 default:
1143 if (size != sizeof(long))
1144 return false;
1145 }
1146
1147 return true;
1148 }
1149
pe_prog_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)1150 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1151 const struct bpf_insn *si,
1152 struct bpf_insn *insn_buf,
1153 struct bpf_prog *prog, u32 *target_size)
1154 {
1155 struct bpf_insn *insn = insn_buf;
1156
1157 switch (si->off) {
1158 case offsetof(struct bpf_perf_event_data, sample_period):
1159 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1160 data), si->dst_reg, si->src_reg,
1161 offsetof(struct bpf_perf_event_data_kern, data));
1162 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1163 bpf_target_off(struct perf_sample_data, period, 8,
1164 target_size));
1165 break;
1166 case offsetof(struct bpf_perf_event_data, addr):
1167 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1168 data), si->dst_reg, si->src_reg,
1169 offsetof(struct bpf_perf_event_data_kern, data));
1170 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1171 bpf_target_off(struct perf_sample_data, addr, 8,
1172 target_size));
1173 break;
1174 default:
1175 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1176 regs), si->dst_reg, si->src_reg,
1177 offsetof(struct bpf_perf_event_data_kern, regs));
1178 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1179 si->off);
1180 break;
1181 }
1182
1183 return insn - insn_buf;
1184 }
1185
1186 const struct bpf_verifier_ops perf_event_verifier_ops = {
1187 .get_func_proto = pe_prog_func_proto,
1188 .is_valid_access = pe_prog_is_valid_access,
1189 .convert_ctx_access = pe_prog_convert_ctx_access,
1190 };
1191
1192 const struct bpf_prog_ops perf_event_prog_ops = {
1193 };
1194
1195 static DEFINE_MUTEX(bpf_event_mutex);
1196
1197 #define BPF_TRACE_MAX_PROGS 64
1198
perf_event_attach_bpf_prog(struct perf_event * event,struct bpf_prog * prog)1199 int perf_event_attach_bpf_prog(struct perf_event *event,
1200 struct bpf_prog *prog)
1201 {
1202 struct bpf_prog_array *old_array;
1203 struct bpf_prog_array *new_array;
1204 int ret = -EEXIST;
1205
1206 /*
1207 * Kprobe override only works if they are on the function entry,
1208 * and only if they are on the opt-in list.
1209 */
1210 if (prog->kprobe_override &&
1211 (!trace_kprobe_on_func_entry(event->tp_event) ||
1212 !trace_kprobe_error_injectable(event->tp_event)))
1213 return -EINVAL;
1214
1215 mutex_lock(&bpf_event_mutex);
1216
1217 if (event->prog)
1218 goto unlock;
1219
1220 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1221 if (old_array &&
1222 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1223 ret = -E2BIG;
1224 goto unlock;
1225 }
1226
1227 ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1228 if (ret < 0)
1229 goto unlock;
1230
1231 /* set the new array to event->tp_event and set event->prog */
1232 event->prog = prog;
1233 rcu_assign_pointer(event->tp_event->prog_array, new_array);
1234 bpf_prog_array_free(old_array);
1235
1236 unlock:
1237 mutex_unlock(&bpf_event_mutex);
1238 return ret;
1239 }
1240
perf_event_detach_bpf_prog(struct perf_event * event)1241 void perf_event_detach_bpf_prog(struct perf_event *event)
1242 {
1243 struct bpf_prog_array *old_array;
1244 struct bpf_prog_array *new_array;
1245 int ret;
1246
1247 mutex_lock(&bpf_event_mutex);
1248
1249 if (!event->prog)
1250 goto unlock;
1251
1252 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1253 ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1254 if (ret == -ENOENT)
1255 goto unlock;
1256 if (ret < 0) {
1257 bpf_prog_array_delete_safe(old_array, event->prog);
1258 } else {
1259 rcu_assign_pointer(event->tp_event->prog_array, new_array);
1260 bpf_prog_array_free(old_array);
1261 }
1262
1263 bpf_prog_put(event->prog);
1264 event->prog = NULL;
1265
1266 unlock:
1267 mutex_unlock(&bpf_event_mutex);
1268 }
1269
perf_event_query_prog_array(struct perf_event * event,void __user * info)1270 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1271 {
1272 struct perf_event_query_bpf __user *uquery = info;
1273 struct perf_event_query_bpf query = {};
1274 struct bpf_prog_array *progs;
1275 u32 *ids, prog_cnt, ids_len;
1276 int ret;
1277
1278 if (!capable(CAP_SYS_ADMIN))
1279 return -EPERM;
1280 if (event->attr.type != PERF_TYPE_TRACEPOINT)
1281 return -EINVAL;
1282 if (copy_from_user(&query, uquery, sizeof(query)))
1283 return -EFAULT;
1284
1285 ids_len = query.ids_len;
1286 if (ids_len > BPF_TRACE_MAX_PROGS)
1287 return -E2BIG;
1288 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1289 if (!ids)
1290 return -ENOMEM;
1291 /*
1292 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1293 * is required when user only wants to check for uquery->prog_cnt.
1294 * There is no need to check for it since the case is handled
1295 * gracefully in bpf_prog_array_copy_info.
1296 */
1297
1298 mutex_lock(&bpf_event_mutex);
1299 progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1300 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1301 mutex_unlock(&bpf_event_mutex);
1302
1303 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1304 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1305 ret = -EFAULT;
1306
1307 kfree(ids);
1308 return ret;
1309 }
1310
1311 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1312 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1313
bpf_get_raw_tracepoint(const char * name)1314 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1315 {
1316 struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1317
1318 for (; btp < __stop__bpf_raw_tp; btp++) {
1319 if (!strcmp(btp->tp->name, name))
1320 return btp;
1321 }
1322
1323 return bpf_get_raw_tracepoint_module(name);
1324 }
1325
bpf_put_raw_tracepoint(struct bpf_raw_event_map * btp)1326 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1327 {
1328 struct module *mod;
1329
1330 preempt_disable();
1331 mod = __module_address((unsigned long)btp);
1332 module_put(mod);
1333 preempt_enable();
1334 }
1335
1336 static __always_inline
__bpf_trace_run(struct bpf_prog * prog,u64 * args)1337 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1338 {
1339 rcu_read_lock();
1340 preempt_disable();
1341 (void) BPF_PROG_RUN(prog, args);
1342 preempt_enable();
1343 rcu_read_unlock();
1344 }
1345
1346 #define UNPACK(...) __VA_ARGS__
1347 #define REPEAT_1(FN, DL, X, ...) FN(X)
1348 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1349 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1350 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1351 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1352 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1353 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1354 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1355 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1356 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1357 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1358 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1359 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__)
1360
1361 #define SARG(X) u64 arg##X
1362 #define COPY(X) args[X] = arg##X
1363
1364 #define __DL_COM (,)
1365 #define __DL_SEM (;)
1366
1367 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1368
1369 #define BPF_TRACE_DEFN_x(x) \
1370 void bpf_trace_run##x(struct bpf_prog *prog, \
1371 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \
1372 { \
1373 u64 args[x]; \
1374 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \
1375 __bpf_trace_run(prog, args); \
1376 } \
1377 EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1378 BPF_TRACE_DEFN_x(1);
1379 BPF_TRACE_DEFN_x(2);
1380 BPF_TRACE_DEFN_x(3);
1381 BPF_TRACE_DEFN_x(4);
1382 BPF_TRACE_DEFN_x(5);
1383 BPF_TRACE_DEFN_x(6);
1384 BPF_TRACE_DEFN_x(7);
1385 BPF_TRACE_DEFN_x(8);
1386 BPF_TRACE_DEFN_x(9);
1387 BPF_TRACE_DEFN_x(10);
1388 BPF_TRACE_DEFN_x(11);
1389 BPF_TRACE_DEFN_x(12);
1390
__bpf_probe_register(struct bpf_raw_event_map * btp,struct bpf_prog * prog)1391 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1392 {
1393 struct tracepoint *tp = btp->tp;
1394
1395 /*
1396 * check that program doesn't access arguments beyond what's
1397 * available in this tracepoint
1398 */
1399 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1400 return -EINVAL;
1401
1402 if (prog->aux->max_tp_access > btp->writable_size)
1403 return -EINVAL;
1404
1405 return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func,
1406 prog);
1407 }
1408
bpf_probe_register(struct bpf_raw_event_map * btp,struct bpf_prog * prog)1409 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1410 {
1411 return __bpf_probe_register(btp, prog);
1412 }
1413
bpf_probe_unregister(struct bpf_raw_event_map * btp,struct bpf_prog * prog)1414 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1415 {
1416 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1417 }
1418
bpf_get_perf_event_info(const struct perf_event * event,u32 * prog_id,u32 * fd_type,const char ** buf,u64 * probe_offset,u64 * probe_addr)1419 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1420 u32 *fd_type, const char **buf,
1421 u64 *probe_offset, u64 *probe_addr)
1422 {
1423 bool is_tracepoint, is_syscall_tp;
1424 struct bpf_prog *prog;
1425 int flags, err = 0;
1426
1427 prog = event->prog;
1428 if (!prog)
1429 return -ENOENT;
1430
1431 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1432 if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1433 return -EOPNOTSUPP;
1434
1435 *prog_id = prog->aux->id;
1436 flags = event->tp_event->flags;
1437 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1438 is_syscall_tp = is_syscall_trace_event(event->tp_event);
1439
1440 if (is_tracepoint || is_syscall_tp) {
1441 *buf = is_tracepoint ? event->tp_event->tp->name
1442 : event->tp_event->name;
1443 *fd_type = BPF_FD_TYPE_TRACEPOINT;
1444 *probe_offset = 0x0;
1445 *probe_addr = 0x0;
1446 } else {
1447 /* kprobe/uprobe */
1448 err = -EOPNOTSUPP;
1449 #ifdef CONFIG_KPROBE_EVENTS
1450 if (flags & TRACE_EVENT_FL_KPROBE)
1451 err = bpf_get_kprobe_info(event, fd_type, buf,
1452 probe_offset, probe_addr,
1453 event->attr.type == PERF_TYPE_TRACEPOINT);
1454 #endif
1455 #ifdef CONFIG_UPROBE_EVENTS
1456 if (flags & TRACE_EVENT_FL_UPROBE)
1457 err = bpf_get_uprobe_info(event, fd_type, buf,
1458 probe_offset, probe_addr,
1459 event->attr.type == PERF_TYPE_TRACEPOINT);
1460 #endif
1461 }
1462
1463 return err;
1464 }
1465
send_signal_irq_work_init(void)1466 static int __init send_signal_irq_work_init(void)
1467 {
1468 int cpu;
1469 struct send_signal_irq_work *work;
1470
1471 for_each_possible_cpu(cpu) {
1472 work = per_cpu_ptr(&send_signal_work, cpu);
1473 init_irq_work(&work->irq_work, do_bpf_send_signal);
1474 }
1475 return 0;
1476 }
1477
1478 subsys_initcall(send_signal_irq_work_init);
1479
1480 #ifdef CONFIG_MODULES
bpf_event_notify(struct notifier_block * nb,unsigned long op,void * module)1481 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
1482 void *module)
1483 {
1484 struct bpf_trace_module *btm, *tmp;
1485 struct module *mod = module;
1486
1487 if (mod->num_bpf_raw_events == 0 ||
1488 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
1489 return 0;
1490
1491 mutex_lock(&bpf_module_mutex);
1492
1493 switch (op) {
1494 case MODULE_STATE_COMING:
1495 btm = kzalloc(sizeof(*btm), GFP_KERNEL);
1496 if (btm) {
1497 btm->module = module;
1498 list_add(&btm->list, &bpf_trace_modules);
1499 }
1500 break;
1501 case MODULE_STATE_GOING:
1502 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
1503 if (btm->module == module) {
1504 list_del(&btm->list);
1505 kfree(btm);
1506 break;
1507 }
1508 }
1509 break;
1510 }
1511
1512 mutex_unlock(&bpf_module_mutex);
1513
1514 return 0;
1515 }
1516
1517 static struct notifier_block bpf_module_nb = {
1518 .notifier_call = bpf_event_notify,
1519 };
1520
bpf_event_init(void)1521 static int __init bpf_event_init(void)
1522 {
1523 register_module_notifier(&bpf_module_nb);
1524 return 0;
1525 }
1526
1527 fs_initcall(bpf_event_init);
1528 #endif /* CONFIG_MODULES */
1529