• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52 
53 #include "internal.h"
54 
55 #include <asm/irq_regs.h>
56 
57 typedef int (*remote_function_f)(void *);
58 
59 struct remote_function_call {
60 	struct task_struct	*p;
61 	remote_function_f	func;
62 	void			*info;
63 	int			ret;
64 };
65 
remote_function(void * data)66 static void remote_function(void *data)
67 {
68 	struct remote_function_call *tfc = data;
69 	struct task_struct *p = tfc->p;
70 
71 	if (p) {
72 		/* -EAGAIN */
73 		if (task_cpu(p) != smp_processor_id())
74 			return;
75 
76 		/*
77 		 * Now that we're on right CPU with IRQs disabled, we can test
78 		 * if we hit the right task without races.
79 		 */
80 
81 		tfc->ret = -ESRCH; /* No such (running) process */
82 		if (p != current)
83 			return;
84 	}
85 
86 	tfc->ret = tfc->func(tfc->info);
87 }
88 
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:		the task to evaluate
92  * @func:	the function to be called
93  * @info:	the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly.  This will
97  * retry due to any failures in smp_call_function_single(), such as if the
98  * task_cpu() goes offline concurrently.
99  *
100  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
101  */
102 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105 	struct remote_function_call data = {
106 		.p	= p,
107 		.func	= func,
108 		.info	= info,
109 		.ret	= -EAGAIN,
110 	};
111 	int ret;
112 
113 	for (;;) {
114 		ret = smp_call_function_single(task_cpu(p), remote_function,
115 					       &data, 1);
116 		if (!ret)
117 			ret = data.ret;
118 
119 		if (ret != -EAGAIN)
120 			break;
121 
122 		cond_resched();
123 	}
124 
125 	return ret;
126 }
127 
128 /**
129  * cpu_function_call - call a function on the cpu
130  * @func:	the function to be called
131  * @info:	the function call argument
132  *
133  * Calls the function @func on the remote cpu.
134  *
135  * returns: @func return value or -ENXIO when the cpu is offline
136  */
cpu_function_call(int cpu,remote_function_f func,void * info)137 static int cpu_function_call(int cpu, remote_function_f func, void *info)
138 {
139 	struct remote_function_call data = {
140 		.p	= NULL,
141 		.func	= func,
142 		.info	= info,
143 		.ret	= -ENXIO, /* No such CPU */
144 	};
145 
146 	smp_call_function_single(cpu, remote_function, &data, 1);
147 
148 	return data.ret;
149 }
150 
151 static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context * ctx)152 __get_cpu_context(struct perf_event_context *ctx)
153 {
154 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
155 }
156 
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)157 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
158 			  struct perf_event_context *ctx)
159 {
160 	raw_spin_lock(&cpuctx->ctx.lock);
161 	if (ctx)
162 		raw_spin_lock(&ctx->lock);
163 }
164 
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)165 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
166 			    struct perf_event_context *ctx)
167 {
168 	if (ctx)
169 		raw_spin_unlock(&ctx->lock);
170 	raw_spin_unlock(&cpuctx->ctx.lock);
171 }
172 
173 #define TASK_TOMBSTONE ((void *)-1L)
174 
is_kernel_event(struct perf_event * event)175 static bool is_kernel_event(struct perf_event *event)
176 {
177 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
178 }
179 
180 /*
181  * On task ctx scheduling...
182  *
183  * When !ctx->nr_events a task context will not be scheduled. This means
184  * we can disable the scheduler hooks (for performance) without leaving
185  * pending task ctx state.
186  *
187  * This however results in two special cases:
188  *
189  *  - removing the last event from a task ctx; this is relatively straight
190  *    forward and is done in __perf_remove_from_context.
191  *
192  *  - adding the first event to a task ctx; this is tricky because we cannot
193  *    rely on ctx->is_active and therefore cannot use event_function_call().
194  *    See perf_install_in_context().
195  *
196  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
197  */
198 
199 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
200 			struct perf_event_context *, void *);
201 
202 struct event_function_struct {
203 	struct perf_event *event;
204 	event_f func;
205 	void *data;
206 };
207 
event_function(void * info)208 static int event_function(void *info)
209 {
210 	struct event_function_struct *efs = info;
211 	struct perf_event *event = efs->event;
212 	struct perf_event_context *ctx = event->ctx;
213 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
214 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
215 	int ret = 0;
216 
217 	lockdep_assert_irqs_disabled();
218 
219 	perf_ctx_lock(cpuctx, task_ctx);
220 	/*
221 	 * Since we do the IPI call without holding ctx->lock things can have
222 	 * changed, double check we hit the task we set out to hit.
223 	 */
224 	if (ctx->task) {
225 		if (ctx->task != current) {
226 			ret = -ESRCH;
227 			goto unlock;
228 		}
229 
230 		/*
231 		 * We only use event_function_call() on established contexts,
232 		 * and event_function() is only ever called when active (or
233 		 * rather, we'll have bailed in task_function_call() or the
234 		 * above ctx->task != current test), therefore we must have
235 		 * ctx->is_active here.
236 		 */
237 		WARN_ON_ONCE(!ctx->is_active);
238 		/*
239 		 * And since we have ctx->is_active, cpuctx->task_ctx must
240 		 * match.
241 		 */
242 		WARN_ON_ONCE(task_ctx != ctx);
243 	} else {
244 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
245 	}
246 
247 	efs->func(event, cpuctx, ctx, efs->data);
248 unlock:
249 	perf_ctx_unlock(cpuctx, task_ctx);
250 
251 	return ret;
252 }
253 
event_function_call(struct perf_event * event,event_f func,void * data)254 static void event_function_call(struct perf_event *event, event_f func, void *data)
255 {
256 	struct perf_event_context *ctx = event->ctx;
257 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
258 	struct event_function_struct efs = {
259 		.event = event,
260 		.func = func,
261 		.data = data,
262 	};
263 
264 	if (!event->parent) {
265 		/*
266 		 * If this is a !child event, we must hold ctx::mutex to
267 		 * stabilize the the event->ctx relation. See
268 		 * perf_event_ctx_lock().
269 		 */
270 		lockdep_assert_held(&ctx->mutex);
271 	}
272 
273 	if (!task) {
274 		cpu_function_call(event->cpu, event_function, &efs);
275 		return;
276 	}
277 
278 	if (task == TASK_TOMBSTONE)
279 		return;
280 
281 again:
282 	if (!task_function_call(task, event_function, &efs))
283 		return;
284 
285 	raw_spin_lock_irq(&ctx->lock);
286 	/*
287 	 * Reload the task pointer, it might have been changed by
288 	 * a concurrent perf_event_context_sched_out().
289 	 */
290 	task = ctx->task;
291 	if (task == TASK_TOMBSTONE) {
292 		raw_spin_unlock_irq(&ctx->lock);
293 		return;
294 	}
295 	if (ctx->is_active) {
296 		raw_spin_unlock_irq(&ctx->lock);
297 		goto again;
298 	}
299 	func(event, NULL, ctx, data);
300 	raw_spin_unlock_irq(&ctx->lock);
301 }
302 
303 /*
304  * Similar to event_function_call() + event_function(), but hard assumes IRQs
305  * are already disabled and we're on the right CPU.
306  */
event_function_local(struct perf_event * event,event_f func,void * data)307 static void event_function_local(struct perf_event *event, event_f func, void *data)
308 {
309 	struct perf_event_context *ctx = event->ctx;
310 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
311 	struct task_struct *task = READ_ONCE(ctx->task);
312 	struct perf_event_context *task_ctx = NULL;
313 
314 	lockdep_assert_irqs_disabled();
315 
316 	if (task) {
317 		if (task == TASK_TOMBSTONE)
318 			return;
319 
320 		task_ctx = ctx;
321 	}
322 
323 	perf_ctx_lock(cpuctx, task_ctx);
324 
325 	task = ctx->task;
326 	if (task == TASK_TOMBSTONE)
327 		goto unlock;
328 
329 	if (task) {
330 		/*
331 		 * We must be either inactive or active and the right task,
332 		 * otherwise we're screwed, since we cannot IPI to somewhere
333 		 * else.
334 		 */
335 		if (ctx->is_active) {
336 			if (WARN_ON_ONCE(task != current))
337 				goto unlock;
338 
339 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
340 				goto unlock;
341 		}
342 	} else {
343 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
344 	}
345 
346 	func(event, cpuctx, ctx, data);
347 unlock:
348 	perf_ctx_unlock(cpuctx, task_ctx);
349 }
350 
351 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
352 		       PERF_FLAG_FD_OUTPUT  |\
353 		       PERF_FLAG_PID_CGROUP |\
354 		       PERF_FLAG_FD_CLOEXEC)
355 
356 /*
357  * branch priv levels that need permission checks
358  */
359 #define PERF_SAMPLE_BRANCH_PERM_PLM \
360 	(PERF_SAMPLE_BRANCH_KERNEL |\
361 	 PERF_SAMPLE_BRANCH_HV)
362 
363 enum event_type_t {
364 	EVENT_FLEXIBLE = 0x1,
365 	EVENT_PINNED = 0x2,
366 	EVENT_TIME = 0x4,
367 	/* see ctx_resched() for details */
368 	EVENT_CPU = 0x8,
369 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
370 };
371 
372 /*
373  * perf_sched_events : >0 events exist
374  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
375  */
376 
377 static void perf_sched_delayed(struct work_struct *work);
378 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
379 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
380 static DEFINE_MUTEX(perf_sched_mutex);
381 static atomic_t perf_sched_count;
382 
383 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
384 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
385 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
386 
387 static atomic_t nr_mmap_events __read_mostly;
388 static atomic_t nr_comm_events __read_mostly;
389 static atomic_t nr_namespaces_events __read_mostly;
390 static atomic_t nr_task_events __read_mostly;
391 static atomic_t nr_freq_events __read_mostly;
392 static atomic_t nr_switch_events __read_mostly;
393 static atomic_t nr_ksymbol_events __read_mostly;
394 static atomic_t nr_bpf_events __read_mostly;
395 
396 static LIST_HEAD(pmus);
397 static DEFINE_MUTEX(pmus_lock);
398 static struct srcu_struct pmus_srcu;
399 static cpumask_var_t perf_online_mask;
400 
401 /*
402  * perf event paranoia level:
403  *  -1 - not paranoid at all
404  *   0 - disallow raw tracepoint access for unpriv
405  *   1 - disallow cpu events for unpriv
406  *   2 - disallow kernel profiling for unpriv
407  */
408 int sysctl_perf_event_paranoid __read_mostly = 2;
409 
410 /* Minimum for 512 kiB + 1 user control page */
411 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
412 
413 /*
414  * max perf event sample rate
415  */
416 #define DEFAULT_MAX_SAMPLE_RATE		100000
417 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
418 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
419 
420 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
421 
422 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
423 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
424 
425 static int perf_sample_allowed_ns __read_mostly =
426 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
427 
update_perf_cpu_limits(void)428 static void update_perf_cpu_limits(void)
429 {
430 	u64 tmp = perf_sample_period_ns;
431 
432 	tmp *= sysctl_perf_cpu_time_max_percent;
433 	tmp = div_u64(tmp, 100);
434 	if (!tmp)
435 		tmp = 1;
436 
437 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
438 }
439 
440 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
441 
perf_proc_update_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)442 int perf_proc_update_handler(struct ctl_table *table, int write,
443 		void __user *buffer, size_t *lenp,
444 		loff_t *ppos)
445 {
446 	int ret;
447 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
448 	/*
449 	 * If throttling is disabled don't allow the write:
450 	 */
451 	if (write && (perf_cpu == 100 || perf_cpu == 0))
452 		return -EINVAL;
453 
454 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
455 	if (ret || !write)
456 		return ret;
457 
458 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
459 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
460 	update_perf_cpu_limits();
461 
462 	return 0;
463 }
464 
465 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
466 
perf_cpu_time_max_percent_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)467 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
468 				void __user *buffer, size_t *lenp,
469 				loff_t *ppos)
470 {
471 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
472 
473 	if (ret || !write)
474 		return ret;
475 
476 	if (sysctl_perf_cpu_time_max_percent == 100 ||
477 	    sysctl_perf_cpu_time_max_percent == 0) {
478 		printk(KERN_WARNING
479 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
480 		WRITE_ONCE(perf_sample_allowed_ns, 0);
481 	} else {
482 		update_perf_cpu_limits();
483 	}
484 
485 	return 0;
486 }
487 
488 /*
489  * perf samples are done in some very critical code paths (NMIs).
490  * If they take too much CPU time, the system can lock up and not
491  * get any real work done.  This will drop the sample rate when
492  * we detect that events are taking too long.
493  */
494 #define NR_ACCUMULATED_SAMPLES 128
495 static DEFINE_PER_CPU(u64, running_sample_length);
496 
497 static u64 __report_avg;
498 static u64 __report_allowed;
499 
perf_duration_warn(struct irq_work * w)500 static void perf_duration_warn(struct irq_work *w)
501 {
502 	printk_ratelimited(KERN_INFO
503 		"perf: interrupt took too long (%lld > %lld), lowering "
504 		"kernel.perf_event_max_sample_rate to %d\n",
505 		__report_avg, __report_allowed,
506 		sysctl_perf_event_sample_rate);
507 }
508 
509 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
510 
perf_sample_event_took(u64 sample_len_ns)511 void perf_sample_event_took(u64 sample_len_ns)
512 {
513 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
514 	u64 running_len;
515 	u64 avg_len;
516 	u32 max;
517 
518 	if (max_len == 0)
519 		return;
520 
521 	/* Decay the counter by 1 average sample. */
522 	running_len = __this_cpu_read(running_sample_length);
523 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
524 	running_len += sample_len_ns;
525 	__this_cpu_write(running_sample_length, running_len);
526 
527 	/*
528 	 * Note: this will be biased artifically low until we have
529 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
530 	 * from having to maintain a count.
531 	 */
532 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
533 	if (avg_len <= max_len)
534 		return;
535 
536 	__report_avg = avg_len;
537 	__report_allowed = max_len;
538 
539 	/*
540 	 * Compute a throttle threshold 25% below the current duration.
541 	 */
542 	avg_len += avg_len / 4;
543 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
544 	if (avg_len < max)
545 		max /= (u32)avg_len;
546 	else
547 		max = 1;
548 
549 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
550 	WRITE_ONCE(max_samples_per_tick, max);
551 
552 	sysctl_perf_event_sample_rate = max * HZ;
553 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
554 
555 	if (!irq_work_queue(&perf_duration_work)) {
556 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
557 			     "kernel.perf_event_max_sample_rate to %d\n",
558 			     __report_avg, __report_allowed,
559 			     sysctl_perf_event_sample_rate);
560 	}
561 }
562 
563 static atomic64_t perf_event_id;
564 
565 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
566 			      enum event_type_t event_type);
567 
568 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
569 			     enum event_type_t event_type,
570 			     struct task_struct *task);
571 
572 static void update_context_time(struct perf_event_context *ctx);
573 static u64 perf_event_time(struct perf_event *event);
574 
perf_event_print_debug(void)575 void __weak perf_event_print_debug(void)	{ }
576 
perf_pmu_name(void)577 extern __weak const char *perf_pmu_name(void)
578 {
579 	return "pmu";
580 }
581 
perf_clock(void)582 static inline u64 perf_clock(void)
583 {
584 	return local_clock();
585 }
586 
perf_event_clock(struct perf_event * event)587 static inline u64 perf_event_clock(struct perf_event *event)
588 {
589 	return event->clock();
590 }
591 
592 /*
593  * State based event timekeeping...
594  *
595  * The basic idea is to use event->state to determine which (if any) time
596  * fields to increment with the current delta. This means we only need to
597  * update timestamps when we change state or when they are explicitly requested
598  * (read).
599  *
600  * Event groups make things a little more complicated, but not terribly so. The
601  * rules for a group are that if the group leader is OFF the entire group is
602  * OFF, irrespecive of what the group member states are. This results in
603  * __perf_effective_state().
604  *
605  * A futher ramification is that when a group leader flips between OFF and
606  * !OFF, we need to update all group member times.
607  *
608  *
609  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
610  * need to make sure the relevant context time is updated before we try and
611  * update our timestamps.
612  */
613 
614 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)615 __perf_effective_state(struct perf_event *event)
616 {
617 	struct perf_event *leader = event->group_leader;
618 
619 	if (leader->state <= PERF_EVENT_STATE_OFF)
620 		return leader->state;
621 
622 	return event->state;
623 }
624 
625 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)626 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
627 {
628 	enum perf_event_state state = __perf_effective_state(event);
629 	u64 delta = now - event->tstamp;
630 
631 	*enabled = event->total_time_enabled;
632 	if (state >= PERF_EVENT_STATE_INACTIVE)
633 		*enabled += delta;
634 
635 	*running = event->total_time_running;
636 	if (state >= PERF_EVENT_STATE_ACTIVE)
637 		*running += delta;
638 }
639 
perf_event_update_time(struct perf_event * event)640 static void perf_event_update_time(struct perf_event *event)
641 {
642 	u64 now = perf_event_time(event);
643 
644 	__perf_update_times(event, now, &event->total_time_enabled,
645 					&event->total_time_running);
646 	event->tstamp = now;
647 }
648 
perf_event_update_sibling_time(struct perf_event * leader)649 static void perf_event_update_sibling_time(struct perf_event *leader)
650 {
651 	struct perf_event *sibling;
652 
653 	for_each_sibling_event(sibling, leader)
654 		perf_event_update_time(sibling);
655 }
656 
657 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)658 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
659 {
660 	if (event->state == state)
661 		return;
662 
663 	perf_event_update_time(event);
664 	/*
665 	 * If a group leader gets enabled/disabled all its siblings
666 	 * are affected too.
667 	 */
668 	if ((event->state < 0) ^ (state < 0))
669 		perf_event_update_sibling_time(event);
670 
671 	WRITE_ONCE(event->state, state);
672 }
673 
674 #ifdef CONFIG_CGROUP_PERF
675 
676 static inline bool
perf_cgroup_match(struct perf_event * event)677 perf_cgroup_match(struct perf_event *event)
678 {
679 	struct perf_event_context *ctx = event->ctx;
680 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
681 
682 	/* @event doesn't care about cgroup */
683 	if (!event->cgrp)
684 		return true;
685 
686 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
687 	if (!cpuctx->cgrp)
688 		return false;
689 
690 	/*
691 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
692 	 * also enabled for all its descendant cgroups.  If @cpuctx's
693 	 * cgroup is a descendant of @event's (the test covers identity
694 	 * case), it's a match.
695 	 */
696 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
697 				    event->cgrp->css.cgroup);
698 }
699 
perf_detach_cgroup(struct perf_event * event)700 static inline void perf_detach_cgroup(struct perf_event *event)
701 {
702 	css_put(&event->cgrp->css);
703 	event->cgrp = NULL;
704 }
705 
is_cgroup_event(struct perf_event * event)706 static inline int is_cgroup_event(struct perf_event *event)
707 {
708 	return event->cgrp != NULL;
709 }
710 
perf_cgroup_event_time(struct perf_event * event)711 static inline u64 perf_cgroup_event_time(struct perf_event *event)
712 {
713 	struct perf_cgroup_info *t;
714 
715 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
716 	return t->time;
717 }
718 
__update_cgrp_time(struct perf_cgroup * cgrp)719 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
720 {
721 	struct perf_cgroup_info *info;
722 	u64 now;
723 
724 	now = perf_clock();
725 
726 	info = this_cpu_ptr(cgrp->info);
727 
728 	info->time += now - info->timestamp;
729 	info->timestamp = now;
730 }
731 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)732 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
733 {
734 	struct perf_cgroup *cgrp = cpuctx->cgrp;
735 	struct cgroup_subsys_state *css;
736 
737 	if (cgrp) {
738 		for (css = &cgrp->css; css; css = css->parent) {
739 			cgrp = container_of(css, struct perf_cgroup, css);
740 			__update_cgrp_time(cgrp);
741 		}
742 	}
743 }
744 
update_cgrp_time_from_event(struct perf_event * event)745 static inline void update_cgrp_time_from_event(struct perf_event *event)
746 {
747 	struct perf_cgroup *cgrp;
748 
749 	/*
750 	 * ensure we access cgroup data only when needed and
751 	 * when we know the cgroup is pinned (css_get)
752 	 */
753 	if (!is_cgroup_event(event))
754 		return;
755 
756 	cgrp = perf_cgroup_from_task(current, event->ctx);
757 	/*
758 	 * Do not update time when cgroup is not active
759 	 */
760 	if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
761 		__update_cgrp_time(event->cgrp);
762 }
763 
764 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)765 perf_cgroup_set_timestamp(struct task_struct *task,
766 			  struct perf_event_context *ctx)
767 {
768 	struct perf_cgroup *cgrp;
769 	struct perf_cgroup_info *info;
770 	struct cgroup_subsys_state *css;
771 
772 	/*
773 	 * ctx->lock held by caller
774 	 * ensure we do not access cgroup data
775 	 * unless we have the cgroup pinned (css_get)
776 	 */
777 	if (!task || !ctx->nr_cgroups)
778 		return;
779 
780 	cgrp = perf_cgroup_from_task(task, ctx);
781 
782 	for (css = &cgrp->css; css; css = css->parent) {
783 		cgrp = container_of(css, struct perf_cgroup, css);
784 		info = this_cpu_ptr(cgrp->info);
785 		info->timestamp = ctx->timestamp;
786 	}
787 }
788 
789 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
790 
791 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
792 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
793 
794 /*
795  * reschedule events based on the cgroup constraint of task.
796  *
797  * mode SWOUT : schedule out everything
798  * mode SWIN : schedule in based on cgroup for next
799  */
perf_cgroup_switch(struct task_struct * task,int mode)800 static void perf_cgroup_switch(struct task_struct *task, int mode)
801 {
802 	struct perf_cpu_context *cpuctx, *tmp;
803 	struct list_head *list;
804 	unsigned long flags;
805 
806 	/*
807 	 * Disable interrupts and preemption to avoid this CPU's
808 	 * cgrp_cpuctx_entry to change under us.
809 	 */
810 	local_irq_save(flags);
811 
812 	list = this_cpu_ptr(&cgrp_cpuctx_list);
813 	list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
814 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
815 
816 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
817 		perf_pmu_disable(cpuctx->ctx.pmu);
818 
819 		if (mode & PERF_CGROUP_SWOUT) {
820 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
821 			/*
822 			 * must not be done before ctxswout due
823 			 * to event_filter_match() in event_sched_out()
824 			 */
825 			cpuctx->cgrp = NULL;
826 		}
827 
828 		if (mode & PERF_CGROUP_SWIN) {
829 			WARN_ON_ONCE(cpuctx->cgrp);
830 			/*
831 			 * set cgrp before ctxsw in to allow
832 			 * event_filter_match() to not have to pass
833 			 * task around
834 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
835 			 * because cgorup events are only per-cpu
836 			 */
837 			cpuctx->cgrp = perf_cgroup_from_task(task,
838 							     &cpuctx->ctx);
839 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
840 		}
841 		perf_pmu_enable(cpuctx->ctx.pmu);
842 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
843 	}
844 
845 	local_irq_restore(flags);
846 }
847 
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)848 static inline void perf_cgroup_sched_out(struct task_struct *task,
849 					 struct task_struct *next)
850 {
851 	struct perf_cgroup *cgrp1;
852 	struct perf_cgroup *cgrp2 = NULL;
853 
854 	rcu_read_lock();
855 	/*
856 	 * we come here when we know perf_cgroup_events > 0
857 	 * we do not need to pass the ctx here because we know
858 	 * we are holding the rcu lock
859 	 */
860 	cgrp1 = perf_cgroup_from_task(task, NULL);
861 	cgrp2 = perf_cgroup_from_task(next, NULL);
862 
863 	/*
864 	 * only schedule out current cgroup events if we know
865 	 * that we are switching to a different cgroup. Otherwise,
866 	 * do no touch the cgroup events.
867 	 */
868 	if (cgrp1 != cgrp2)
869 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
870 
871 	rcu_read_unlock();
872 }
873 
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)874 static inline void perf_cgroup_sched_in(struct task_struct *prev,
875 					struct task_struct *task)
876 {
877 	struct perf_cgroup *cgrp1;
878 	struct perf_cgroup *cgrp2 = NULL;
879 
880 	rcu_read_lock();
881 	/*
882 	 * we come here when we know perf_cgroup_events > 0
883 	 * we do not need to pass the ctx here because we know
884 	 * we are holding the rcu lock
885 	 */
886 	cgrp1 = perf_cgroup_from_task(task, NULL);
887 	cgrp2 = perf_cgroup_from_task(prev, NULL);
888 
889 	/*
890 	 * only need to schedule in cgroup events if we are changing
891 	 * cgroup during ctxsw. Cgroup events were not scheduled
892 	 * out of ctxsw out if that was not the case.
893 	 */
894 	if (cgrp1 != cgrp2)
895 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
896 
897 	rcu_read_unlock();
898 }
899 
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)900 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
901 				      struct perf_event_attr *attr,
902 				      struct perf_event *group_leader)
903 {
904 	struct perf_cgroup *cgrp;
905 	struct cgroup_subsys_state *css;
906 	struct fd f = fdget(fd);
907 	int ret = 0;
908 
909 	if (!f.file)
910 		return -EBADF;
911 
912 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
913 					 &perf_event_cgrp_subsys);
914 	if (IS_ERR(css)) {
915 		ret = PTR_ERR(css);
916 		goto out;
917 	}
918 
919 	cgrp = container_of(css, struct perf_cgroup, css);
920 	event->cgrp = cgrp;
921 
922 	/*
923 	 * all events in a group must monitor
924 	 * the same cgroup because a task belongs
925 	 * to only one perf cgroup at a time
926 	 */
927 	if (group_leader && group_leader->cgrp != cgrp) {
928 		perf_detach_cgroup(event);
929 		ret = -EINVAL;
930 	}
931 out:
932 	fdput(f);
933 	return ret;
934 }
935 
936 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)937 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
938 {
939 	struct perf_cgroup_info *t;
940 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
941 	event->shadow_ctx_time = now - t->timestamp;
942 }
943 
944 /*
945  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
946  * cleared when last cgroup event is removed.
947  */
948 static inline void
list_update_cgroup_event(struct perf_event * event,struct perf_event_context * ctx,bool add)949 list_update_cgroup_event(struct perf_event *event,
950 			 struct perf_event_context *ctx, bool add)
951 {
952 	struct perf_cpu_context *cpuctx;
953 	struct list_head *cpuctx_entry;
954 
955 	if (!is_cgroup_event(event))
956 		return;
957 
958 	/*
959 	 * Because cgroup events are always per-cpu events,
960 	 * this will always be called from the right CPU.
961 	 */
962 	cpuctx = __get_cpu_context(ctx);
963 
964 	/*
965 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
966 	 * matching the event's cgroup, we must do this for every new event,
967 	 * because if the first would mismatch, the second would not try again
968 	 * and we would leave cpuctx->cgrp unset.
969 	 */
970 	if (add && !cpuctx->cgrp) {
971 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
972 
973 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
974 			cpuctx->cgrp = cgrp;
975 	}
976 
977 	if (add && ctx->nr_cgroups++)
978 		return;
979 	else if (!add && --ctx->nr_cgroups)
980 		return;
981 
982 	/* no cgroup running */
983 	if (!add)
984 		cpuctx->cgrp = NULL;
985 
986 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
987 	if (add)
988 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
989 	else
990 		list_del(cpuctx_entry);
991 }
992 
993 #else /* !CONFIG_CGROUP_PERF */
994 
995 static inline bool
perf_cgroup_match(struct perf_event * event)996 perf_cgroup_match(struct perf_event *event)
997 {
998 	return true;
999 }
1000 
perf_detach_cgroup(struct perf_event * event)1001 static inline void perf_detach_cgroup(struct perf_event *event)
1002 {}
1003 
is_cgroup_event(struct perf_event * event)1004 static inline int is_cgroup_event(struct perf_event *event)
1005 {
1006 	return 0;
1007 }
1008 
update_cgrp_time_from_event(struct perf_event * event)1009 static inline void update_cgrp_time_from_event(struct perf_event *event)
1010 {
1011 }
1012 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)1013 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1014 {
1015 }
1016 
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)1017 static inline void perf_cgroup_sched_out(struct task_struct *task,
1018 					 struct task_struct *next)
1019 {
1020 }
1021 
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)1022 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1023 					struct task_struct *task)
1024 {
1025 }
1026 
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1027 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1028 				      struct perf_event_attr *attr,
1029 				      struct perf_event *group_leader)
1030 {
1031 	return -EINVAL;
1032 }
1033 
1034 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)1035 perf_cgroup_set_timestamp(struct task_struct *task,
1036 			  struct perf_event_context *ctx)
1037 {
1038 }
1039 
1040 static inline void
perf_cgroup_switch(struct task_struct * task,struct task_struct * next)1041 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1042 {
1043 }
1044 
1045 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)1046 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1047 {
1048 }
1049 
perf_cgroup_event_time(struct perf_event * event)1050 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1051 {
1052 	return 0;
1053 }
1054 
1055 static inline void
list_update_cgroup_event(struct perf_event * event,struct perf_event_context * ctx,bool add)1056 list_update_cgroup_event(struct perf_event *event,
1057 			 struct perf_event_context *ctx, bool add)
1058 {
1059 }
1060 
1061 #endif
1062 
1063 /*
1064  * set default to be dependent on timer tick just
1065  * like original code
1066  */
1067 #define PERF_CPU_HRTIMER (1000 / HZ)
1068 /*
1069  * function must be called with interrupts disabled
1070  */
perf_mux_hrtimer_handler(struct hrtimer * hr)1071 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1072 {
1073 	struct perf_cpu_context *cpuctx;
1074 	bool rotations;
1075 
1076 	lockdep_assert_irqs_disabled();
1077 
1078 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1079 	rotations = perf_rotate_context(cpuctx);
1080 
1081 	raw_spin_lock(&cpuctx->hrtimer_lock);
1082 	if (rotations)
1083 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1084 	else
1085 		cpuctx->hrtimer_active = 0;
1086 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1087 
1088 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1089 }
1090 
__perf_mux_hrtimer_init(struct perf_cpu_context * cpuctx,int cpu)1091 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1092 {
1093 	struct hrtimer *timer = &cpuctx->hrtimer;
1094 	struct pmu *pmu = cpuctx->ctx.pmu;
1095 	u64 interval;
1096 
1097 	/* no multiplexing needed for SW PMU */
1098 	if (pmu->task_ctx_nr == perf_sw_context)
1099 		return;
1100 
1101 	/*
1102 	 * check default is sane, if not set then force to
1103 	 * default interval (1/tick)
1104 	 */
1105 	interval = pmu->hrtimer_interval_ms;
1106 	if (interval < 1)
1107 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1108 
1109 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1110 
1111 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1112 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1113 	timer->function = perf_mux_hrtimer_handler;
1114 }
1115 
perf_mux_hrtimer_restart(struct perf_cpu_context * cpuctx)1116 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1117 {
1118 	struct hrtimer *timer = &cpuctx->hrtimer;
1119 	struct pmu *pmu = cpuctx->ctx.pmu;
1120 	unsigned long flags;
1121 
1122 	/* not for SW PMU */
1123 	if (pmu->task_ctx_nr == perf_sw_context)
1124 		return 0;
1125 
1126 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1127 	if (!cpuctx->hrtimer_active) {
1128 		cpuctx->hrtimer_active = 1;
1129 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1130 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1131 	}
1132 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1133 
1134 	return 0;
1135 }
1136 
perf_mux_hrtimer_restart_ipi(void * arg)1137 static int perf_mux_hrtimer_restart_ipi(void *arg)
1138 {
1139 	return perf_mux_hrtimer_restart(arg);
1140 }
1141 
perf_pmu_disable(struct pmu * pmu)1142 void perf_pmu_disable(struct pmu *pmu)
1143 {
1144 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1145 	if (!(*count)++)
1146 		pmu->pmu_disable(pmu);
1147 }
1148 
perf_pmu_enable(struct pmu * pmu)1149 void perf_pmu_enable(struct pmu *pmu)
1150 {
1151 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1152 	if (!--(*count))
1153 		pmu->pmu_enable(pmu);
1154 }
1155 
1156 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1157 
1158 /*
1159  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1160  * perf_event_task_tick() are fully serialized because they're strictly cpu
1161  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1162  * disabled, while perf_event_task_tick is called from IRQ context.
1163  */
perf_event_ctx_activate(struct perf_event_context * ctx)1164 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1165 {
1166 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1167 
1168 	lockdep_assert_irqs_disabled();
1169 
1170 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1171 
1172 	list_add(&ctx->active_ctx_list, head);
1173 }
1174 
perf_event_ctx_deactivate(struct perf_event_context * ctx)1175 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1176 {
1177 	lockdep_assert_irqs_disabled();
1178 
1179 	WARN_ON(list_empty(&ctx->active_ctx_list));
1180 
1181 	list_del_init(&ctx->active_ctx_list);
1182 }
1183 
get_ctx(struct perf_event_context * ctx)1184 static void get_ctx(struct perf_event_context *ctx)
1185 {
1186 	refcount_inc(&ctx->refcount);
1187 }
1188 
free_ctx(struct rcu_head * head)1189 static void free_ctx(struct rcu_head *head)
1190 {
1191 	struct perf_event_context *ctx;
1192 
1193 	ctx = container_of(head, struct perf_event_context, rcu_head);
1194 	kfree(ctx->task_ctx_data);
1195 	kfree(ctx);
1196 }
1197 
put_ctx(struct perf_event_context * ctx)1198 static void put_ctx(struct perf_event_context *ctx)
1199 {
1200 	if (refcount_dec_and_test(&ctx->refcount)) {
1201 		if (ctx->parent_ctx)
1202 			put_ctx(ctx->parent_ctx);
1203 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1204 			put_task_struct(ctx->task);
1205 		call_rcu(&ctx->rcu_head, free_ctx);
1206 	}
1207 }
1208 
1209 /*
1210  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1211  * perf_pmu_migrate_context() we need some magic.
1212  *
1213  * Those places that change perf_event::ctx will hold both
1214  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1215  *
1216  * Lock ordering is by mutex address. There are two other sites where
1217  * perf_event_context::mutex nests and those are:
1218  *
1219  *  - perf_event_exit_task_context()	[ child , 0 ]
1220  *      perf_event_exit_event()
1221  *        put_event()			[ parent, 1 ]
1222  *
1223  *  - perf_event_init_context()		[ parent, 0 ]
1224  *      inherit_task_group()
1225  *        inherit_group()
1226  *          inherit_event()
1227  *            perf_event_alloc()
1228  *              perf_init_event()
1229  *                perf_try_init_event()	[ child , 1 ]
1230  *
1231  * While it appears there is an obvious deadlock here -- the parent and child
1232  * nesting levels are inverted between the two. This is in fact safe because
1233  * life-time rules separate them. That is an exiting task cannot fork, and a
1234  * spawning task cannot (yet) exit.
1235  *
1236  * But remember that that these are parent<->child context relations, and
1237  * migration does not affect children, therefore these two orderings should not
1238  * interact.
1239  *
1240  * The change in perf_event::ctx does not affect children (as claimed above)
1241  * because the sys_perf_event_open() case will install a new event and break
1242  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1243  * concerned with cpuctx and that doesn't have children.
1244  *
1245  * The places that change perf_event::ctx will issue:
1246  *
1247  *   perf_remove_from_context();
1248  *   synchronize_rcu();
1249  *   perf_install_in_context();
1250  *
1251  * to affect the change. The remove_from_context() + synchronize_rcu() should
1252  * quiesce the event, after which we can install it in the new location. This
1253  * means that only external vectors (perf_fops, prctl) can perturb the event
1254  * while in transit. Therefore all such accessors should also acquire
1255  * perf_event_context::mutex to serialize against this.
1256  *
1257  * However; because event->ctx can change while we're waiting to acquire
1258  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1259  * function.
1260  *
1261  * Lock order:
1262  *    cred_guard_mutex
1263  *	task_struct::perf_event_mutex
1264  *	  perf_event_context::mutex
1265  *	    perf_event::child_mutex;
1266  *	      perf_event_context::lock
1267  *	    perf_event::mmap_mutex
1268  *	    mmap_sem
1269  *	      perf_addr_filters_head::lock
1270  *
1271  *    cpu_hotplug_lock
1272  *      pmus_lock
1273  *	  cpuctx->mutex / perf_event_context::mutex
1274  */
1275 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1276 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1277 {
1278 	struct perf_event_context *ctx;
1279 
1280 again:
1281 	rcu_read_lock();
1282 	ctx = READ_ONCE(event->ctx);
1283 	if (!refcount_inc_not_zero(&ctx->refcount)) {
1284 		rcu_read_unlock();
1285 		goto again;
1286 	}
1287 	rcu_read_unlock();
1288 
1289 	mutex_lock_nested(&ctx->mutex, nesting);
1290 	if (event->ctx != ctx) {
1291 		mutex_unlock(&ctx->mutex);
1292 		put_ctx(ctx);
1293 		goto again;
1294 	}
1295 
1296 	return ctx;
1297 }
1298 
1299 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1300 perf_event_ctx_lock(struct perf_event *event)
1301 {
1302 	return perf_event_ctx_lock_nested(event, 0);
1303 }
1304 
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1305 static void perf_event_ctx_unlock(struct perf_event *event,
1306 				  struct perf_event_context *ctx)
1307 {
1308 	mutex_unlock(&ctx->mutex);
1309 	put_ctx(ctx);
1310 }
1311 
1312 /*
1313  * This must be done under the ctx->lock, such as to serialize against
1314  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1315  * calling scheduler related locks and ctx->lock nests inside those.
1316  */
1317 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1318 unclone_ctx(struct perf_event_context *ctx)
1319 {
1320 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1321 
1322 	lockdep_assert_held(&ctx->lock);
1323 
1324 	if (parent_ctx)
1325 		ctx->parent_ctx = NULL;
1326 	ctx->generation++;
1327 
1328 	return parent_ctx;
1329 }
1330 
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1331 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1332 				enum pid_type type)
1333 {
1334 	u32 nr;
1335 	/*
1336 	 * only top level events have the pid namespace they were created in
1337 	 */
1338 	if (event->parent)
1339 		event = event->parent;
1340 
1341 	nr = __task_pid_nr_ns(p, type, event->ns);
1342 	/* avoid -1 if it is idle thread or runs in another ns */
1343 	if (!nr && !pid_alive(p))
1344 		nr = -1;
1345 	return nr;
1346 }
1347 
perf_event_pid(struct perf_event * event,struct task_struct * p)1348 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1349 {
1350 	return perf_event_pid_type(event, p, PIDTYPE_TGID);
1351 }
1352 
perf_event_tid(struct perf_event * event,struct task_struct * p)1353 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1354 {
1355 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1356 }
1357 
1358 /*
1359  * If we inherit events we want to return the parent event id
1360  * to userspace.
1361  */
primary_event_id(struct perf_event * event)1362 static u64 primary_event_id(struct perf_event *event)
1363 {
1364 	u64 id = event->id;
1365 
1366 	if (event->parent)
1367 		id = event->parent->id;
1368 
1369 	return id;
1370 }
1371 
1372 /*
1373  * Get the perf_event_context for a task and lock it.
1374  *
1375  * This has to cope with with the fact that until it is locked,
1376  * the context could get moved to another task.
1377  */
1378 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,int ctxn,unsigned long * flags)1379 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1380 {
1381 	struct perf_event_context *ctx;
1382 
1383 retry:
1384 	/*
1385 	 * One of the few rules of preemptible RCU is that one cannot do
1386 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1387 	 * part of the read side critical section was irqs-enabled -- see
1388 	 * rcu_read_unlock_special().
1389 	 *
1390 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1391 	 * side critical section has interrupts disabled.
1392 	 */
1393 	local_irq_save(*flags);
1394 	rcu_read_lock();
1395 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1396 	if (ctx) {
1397 		/*
1398 		 * If this context is a clone of another, it might
1399 		 * get swapped for another underneath us by
1400 		 * perf_event_task_sched_out, though the
1401 		 * rcu_read_lock() protects us from any context
1402 		 * getting freed.  Lock the context and check if it
1403 		 * got swapped before we could get the lock, and retry
1404 		 * if so.  If we locked the right context, then it
1405 		 * can't get swapped on us any more.
1406 		 */
1407 		raw_spin_lock(&ctx->lock);
1408 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1409 			raw_spin_unlock(&ctx->lock);
1410 			rcu_read_unlock();
1411 			local_irq_restore(*flags);
1412 			goto retry;
1413 		}
1414 
1415 		if (ctx->task == TASK_TOMBSTONE ||
1416 		    !refcount_inc_not_zero(&ctx->refcount)) {
1417 			raw_spin_unlock(&ctx->lock);
1418 			ctx = NULL;
1419 		} else {
1420 			WARN_ON_ONCE(ctx->task != task);
1421 		}
1422 	}
1423 	rcu_read_unlock();
1424 	if (!ctx)
1425 		local_irq_restore(*flags);
1426 	return ctx;
1427 }
1428 
1429 /*
1430  * Get the context for a task and increment its pin_count so it
1431  * can't get swapped to another task.  This also increments its
1432  * reference count so that the context can't get freed.
1433  */
1434 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task,int ctxn)1435 perf_pin_task_context(struct task_struct *task, int ctxn)
1436 {
1437 	struct perf_event_context *ctx;
1438 	unsigned long flags;
1439 
1440 	ctx = perf_lock_task_context(task, ctxn, &flags);
1441 	if (ctx) {
1442 		++ctx->pin_count;
1443 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 	}
1445 	return ctx;
1446 }
1447 
perf_unpin_context(struct perf_event_context * ctx)1448 static void perf_unpin_context(struct perf_event_context *ctx)
1449 {
1450 	unsigned long flags;
1451 
1452 	raw_spin_lock_irqsave(&ctx->lock, flags);
1453 	--ctx->pin_count;
1454 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1455 }
1456 
1457 /*
1458  * Update the record of the current time in a context.
1459  */
update_context_time(struct perf_event_context * ctx)1460 static void update_context_time(struct perf_event_context *ctx)
1461 {
1462 	u64 now = perf_clock();
1463 
1464 	ctx->time += now - ctx->timestamp;
1465 	ctx->timestamp = now;
1466 }
1467 
perf_event_time(struct perf_event * event)1468 static u64 perf_event_time(struct perf_event *event)
1469 {
1470 	struct perf_event_context *ctx = event->ctx;
1471 
1472 	if (is_cgroup_event(event))
1473 		return perf_cgroup_event_time(event);
1474 
1475 	return ctx ? ctx->time : 0;
1476 }
1477 
get_event_type(struct perf_event * event)1478 static enum event_type_t get_event_type(struct perf_event *event)
1479 {
1480 	struct perf_event_context *ctx = event->ctx;
1481 	enum event_type_t event_type;
1482 
1483 	lockdep_assert_held(&ctx->lock);
1484 
1485 	/*
1486 	 * It's 'group type', really, because if our group leader is
1487 	 * pinned, so are we.
1488 	 */
1489 	if (event->group_leader != event)
1490 		event = event->group_leader;
1491 
1492 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1493 	if (!ctx->task)
1494 		event_type |= EVENT_CPU;
1495 
1496 	return event_type;
1497 }
1498 
1499 /*
1500  * Helper function to initialize event group nodes.
1501  */
init_event_group(struct perf_event * event)1502 static void init_event_group(struct perf_event *event)
1503 {
1504 	RB_CLEAR_NODE(&event->group_node);
1505 	event->group_index = 0;
1506 }
1507 
1508 /*
1509  * Extract pinned or flexible groups from the context
1510  * based on event attrs bits.
1511  */
1512 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1513 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1514 {
1515 	if (event->attr.pinned)
1516 		return &ctx->pinned_groups;
1517 	else
1518 		return &ctx->flexible_groups;
1519 }
1520 
1521 /*
1522  * Helper function to initializes perf_event_group trees.
1523  */
perf_event_groups_init(struct perf_event_groups * groups)1524 static void perf_event_groups_init(struct perf_event_groups *groups)
1525 {
1526 	groups->tree = RB_ROOT;
1527 	groups->index = 0;
1528 }
1529 
1530 /*
1531  * Compare function for event groups;
1532  *
1533  * Implements complex key that first sorts by CPU and then by virtual index
1534  * which provides ordering when rotating groups for the same CPU.
1535  */
1536 static bool
perf_event_groups_less(struct perf_event * left,struct perf_event * right)1537 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1538 {
1539 	if (left->cpu < right->cpu)
1540 		return true;
1541 	if (left->cpu > right->cpu)
1542 		return false;
1543 
1544 	if (left->group_index < right->group_index)
1545 		return true;
1546 	if (left->group_index > right->group_index)
1547 		return false;
1548 
1549 	return false;
1550 }
1551 
1552 /*
1553  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1554  * key (see perf_event_groups_less). This places it last inside the CPU
1555  * subtree.
1556  */
1557 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1558 perf_event_groups_insert(struct perf_event_groups *groups,
1559 			 struct perf_event *event)
1560 {
1561 	struct perf_event *node_event;
1562 	struct rb_node *parent;
1563 	struct rb_node **node;
1564 
1565 	event->group_index = ++groups->index;
1566 
1567 	node = &groups->tree.rb_node;
1568 	parent = *node;
1569 
1570 	while (*node) {
1571 		parent = *node;
1572 		node_event = container_of(*node, struct perf_event, group_node);
1573 
1574 		if (perf_event_groups_less(event, node_event))
1575 			node = &parent->rb_left;
1576 		else
1577 			node = &parent->rb_right;
1578 	}
1579 
1580 	rb_link_node(&event->group_node, parent, node);
1581 	rb_insert_color(&event->group_node, &groups->tree);
1582 }
1583 
1584 /*
1585  * Helper function to insert event into the pinned or flexible groups.
1586  */
1587 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1588 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1589 {
1590 	struct perf_event_groups *groups;
1591 
1592 	groups = get_event_groups(event, ctx);
1593 	perf_event_groups_insert(groups, event);
1594 }
1595 
1596 /*
1597  * Delete a group from a tree.
1598  */
1599 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1600 perf_event_groups_delete(struct perf_event_groups *groups,
1601 			 struct perf_event *event)
1602 {
1603 	WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1604 		     RB_EMPTY_ROOT(&groups->tree));
1605 
1606 	rb_erase(&event->group_node, &groups->tree);
1607 	init_event_group(event);
1608 }
1609 
1610 /*
1611  * Helper function to delete event from its groups.
1612  */
1613 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1614 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1615 {
1616 	struct perf_event_groups *groups;
1617 
1618 	groups = get_event_groups(event, ctx);
1619 	perf_event_groups_delete(groups, event);
1620 }
1621 
1622 /*
1623  * Get the leftmost event in the @cpu subtree.
1624  */
1625 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu)1626 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1627 {
1628 	struct perf_event *node_event = NULL, *match = NULL;
1629 	struct rb_node *node = groups->tree.rb_node;
1630 
1631 	while (node) {
1632 		node_event = container_of(node, struct perf_event, group_node);
1633 
1634 		if (cpu < node_event->cpu) {
1635 			node = node->rb_left;
1636 		} else if (cpu > node_event->cpu) {
1637 			node = node->rb_right;
1638 		} else {
1639 			match = node_event;
1640 			node = node->rb_left;
1641 		}
1642 	}
1643 
1644 	return match;
1645 }
1646 
1647 /*
1648  * Like rb_entry_next_safe() for the @cpu subtree.
1649  */
1650 static struct perf_event *
perf_event_groups_next(struct perf_event * event)1651 perf_event_groups_next(struct perf_event *event)
1652 {
1653 	struct perf_event *next;
1654 
1655 	next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1656 	if (next && next->cpu == event->cpu)
1657 		return next;
1658 
1659 	return NULL;
1660 }
1661 
1662 /*
1663  * Iterate through the whole groups tree.
1664  */
1665 #define perf_event_groups_for_each(event, groups)			\
1666 	for (event = rb_entry_safe(rb_first(&((groups)->tree)),		\
1667 				typeof(*event), group_node); event;	\
1668 		event = rb_entry_safe(rb_next(&event->group_node),	\
1669 				typeof(*event), group_node))
1670 
1671 /*
1672  * Add an event from the lists for its context.
1673  * Must be called with ctx->mutex and ctx->lock held.
1674  */
1675 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1676 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1677 {
1678 	lockdep_assert_held(&ctx->lock);
1679 
1680 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1681 	event->attach_state |= PERF_ATTACH_CONTEXT;
1682 
1683 	event->tstamp = perf_event_time(event);
1684 
1685 	/*
1686 	 * If we're a stand alone event or group leader, we go to the context
1687 	 * list, group events are kept attached to the group so that
1688 	 * perf_group_detach can, at all times, locate all siblings.
1689 	 */
1690 	if (event->group_leader == event) {
1691 		event->group_caps = event->event_caps;
1692 		add_event_to_groups(event, ctx);
1693 	}
1694 
1695 	list_update_cgroup_event(event, ctx, true);
1696 
1697 	list_add_rcu(&event->event_entry, &ctx->event_list);
1698 	ctx->nr_events++;
1699 	if (event->attr.inherit_stat)
1700 		ctx->nr_stat++;
1701 
1702 	ctx->generation++;
1703 }
1704 
1705 /*
1706  * Initialize event state based on the perf_event_attr::disabled.
1707  */
perf_event__state_init(struct perf_event * event)1708 static inline void perf_event__state_init(struct perf_event *event)
1709 {
1710 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1711 					      PERF_EVENT_STATE_INACTIVE;
1712 }
1713 
__perf_event_read_size(u64 read_format,int nr_siblings)1714 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1715 {
1716 	int entry = sizeof(u64); /* value */
1717 	int size = 0;
1718 	int nr = 1;
1719 
1720 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1721 		size += sizeof(u64);
1722 
1723 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1724 		size += sizeof(u64);
1725 
1726 	if (read_format & PERF_FORMAT_ID)
1727 		entry += sizeof(u64);
1728 
1729 	if (read_format & PERF_FORMAT_GROUP) {
1730 		nr += nr_siblings;
1731 		size += sizeof(u64);
1732 	}
1733 
1734 	/*
1735 	 * Since perf_event_validate_size() limits this to 16k and inhibits
1736 	 * adding more siblings, this will never overflow.
1737 	 */
1738 	return size + nr * entry;
1739 }
1740 
__perf_event_header_size(struct perf_event * event,u64 sample_type)1741 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1742 {
1743 	struct perf_sample_data *data;
1744 	u16 size = 0;
1745 
1746 	if (sample_type & PERF_SAMPLE_IP)
1747 		size += sizeof(data->ip);
1748 
1749 	if (sample_type & PERF_SAMPLE_ADDR)
1750 		size += sizeof(data->addr);
1751 
1752 	if (sample_type & PERF_SAMPLE_PERIOD)
1753 		size += sizeof(data->period);
1754 
1755 	if (sample_type & PERF_SAMPLE_WEIGHT)
1756 		size += sizeof(data->weight);
1757 
1758 	if (sample_type & PERF_SAMPLE_READ)
1759 		size += event->read_size;
1760 
1761 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1762 		size += sizeof(data->data_src.val);
1763 
1764 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1765 		size += sizeof(data->txn);
1766 
1767 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1768 		size += sizeof(data->phys_addr);
1769 
1770 	event->header_size = size;
1771 }
1772 
1773 /*
1774  * Called at perf_event creation and when events are attached/detached from a
1775  * group.
1776  */
perf_event__header_size(struct perf_event * event)1777 static void perf_event__header_size(struct perf_event *event)
1778 {
1779 	event->read_size =
1780 		__perf_event_read_size(event->attr.read_format,
1781 				       event->group_leader->nr_siblings);
1782 	__perf_event_header_size(event, event->attr.sample_type);
1783 }
1784 
perf_event__id_header_size(struct perf_event * event)1785 static void perf_event__id_header_size(struct perf_event *event)
1786 {
1787 	struct perf_sample_data *data;
1788 	u64 sample_type = event->attr.sample_type;
1789 	u16 size = 0;
1790 
1791 	if (sample_type & PERF_SAMPLE_TID)
1792 		size += sizeof(data->tid_entry);
1793 
1794 	if (sample_type & PERF_SAMPLE_TIME)
1795 		size += sizeof(data->time);
1796 
1797 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1798 		size += sizeof(data->id);
1799 
1800 	if (sample_type & PERF_SAMPLE_ID)
1801 		size += sizeof(data->id);
1802 
1803 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1804 		size += sizeof(data->stream_id);
1805 
1806 	if (sample_type & PERF_SAMPLE_CPU)
1807 		size += sizeof(data->cpu_entry);
1808 
1809 	event->id_header_size = size;
1810 }
1811 
1812 /*
1813  * Check that adding an event to the group does not result in anybody
1814  * overflowing the 64k event limit imposed by the output buffer.
1815  *
1816  * Specifically, check that the read_size for the event does not exceed 16k,
1817  * read_size being the one term that grows with groups size. Since read_size
1818  * depends on per-event read_format, also (re)check the existing events.
1819  *
1820  * This leaves 48k for the constant size fields and things like callchains,
1821  * branch stacks and register sets.
1822  */
perf_event_validate_size(struct perf_event * event)1823 static bool perf_event_validate_size(struct perf_event *event)
1824 {
1825 	struct perf_event *sibling, *group_leader = event->group_leader;
1826 
1827 	if (__perf_event_read_size(event->attr.read_format,
1828 				   group_leader->nr_siblings + 1) > 16*1024)
1829 		return false;
1830 
1831 	if (__perf_event_read_size(group_leader->attr.read_format,
1832 				   group_leader->nr_siblings + 1) > 16*1024)
1833 		return false;
1834 
1835 	for_each_sibling_event(sibling, group_leader) {
1836 		if (__perf_event_read_size(sibling->attr.read_format,
1837 					   group_leader->nr_siblings + 1) > 16*1024)
1838 			return false;
1839 	}
1840 
1841 	return true;
1842 }
1843 
perf_group_attach(struct perf_event * event)1844 static void perf_group_attach(struct perf_event *event)
1845 {
1846 	struct perf_event *group_leader = event->group_leader, *pos;
1847 
1848 	lockdep_assert_held(&event->ctx->lock);
1849 
1850 	/*
1851 	 * We can have double attach due to group movement in perf_event_open.
1852 	 */
1853 	if (event->attach_state & PERF_ATTACH_GROUP)
1854 		return;
1855 
1856 	event->attach_state |= PERF_ATTACH_GROUP;
1857 
1858 	if (group_leader == event)
1859 		return;
1860 
1861 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1862 
1863 	group_leader->group_caps &= event->event_caps;
1864 
1865 	list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1866 	group_leader->nr_siblings++;
1867 	group_leader->group_generation++;
1868 
1869 	perf_event__header_size(group_leader);
1870 
1871 	for_each_sibling_event(pos, group_leader)
1872 		perf_event__header_size(pos);
1873 }
1874 
1875 /*
1876  * Remove an event from the lists for its context.
1877  * Must be called with ctx->mutex and ctx->lock held.
1878  */
1879 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)1880 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1881 {
1882 	WARN_ON_ONCE(event->ctx != ctx);
1883 	lockdep_assert_held(&ctx->lock);
1884 
1885 	/*
1886 	 * We can have double detach due to exit/hot-unplug + close.
1887 	 */
1888 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1889 		return;
1890 
1891 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1892 
1893 	list_update_cgroup_event(event, ctx, false);
1894 
1895 	ctx->nr_events--;
1896 	if (event->attr.inherit_stat)
1897 		ctx->nr_stat--;
1898 
1899 	list_del_rcu(&event->event_entry);
1900 
1901 	if (event->group_leader == event)
1902 		del_event_from_groups(event, ctx);
1903 
1904 	/*
1905 	 * If event was in error state, then keep it
1906 	 * that way, otherwise bogus counts will be
1907 	 * returned on read(). The only way to get out
1908 	 * of error state is by explicit re-enabling
1909 	 * of the event
1910 	 */
1911 	if (event->state > PERF_EVENT_STATE_OFF)
1912 		perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1913 
1914 	ctx->generation++;
1915 }
1916 
1917 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)1918 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
1919 {
1920 	if (!has_aux(aux_event))
1921 		return 0;
1922 
1923 	if (!event->pmu->aux_output_match)
1924 		return 0;
1925 
1926 	return event->pmu->aux_output_match(aux_event);
1927 }
1928 
1929 static void put_event(struct perf_event *event);
1930 static void event_sched_out(struct perf_event *event,
1931 			    struct perf_cpu_context *cpuctx,
1932 			    struct perf_event_context *ctx);
1933 
perf_put_aux_event(struct perf_event * event)1934 static void perf_put_aux_event(struct perf_event *event)
1935 {
1936 	struct perf_event_context *ctx = event->ctx;
1937 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1938 	struct perf_event *iter;
1939 
1940 	/*
1941 	 * If event uses aux_event tear down the link
1942 	 */
1943 	if (event->aux_event) {
1944 		iter = event->aux_event;
1945 		event->aux_event = NULL;
1946 		put_event(iter);
1947 		return;
1948 	}
1949 
1950 	/*
1951 	 * If the event is an aux_event, tear down all links to
1952 	 * it from other events.
1953 	 */
1954 	for_each_sibling_event(iter, event->group_leader) {
1955 		if (iter->aux_event != event)
1956 			continue;
1957 
1958 		iter->aux_event = NULL;
1959 		put_event(event);
1960 
1961 		/*
1962 		 * If it's ACTIVE, schedule it out and put it into ERROR
1963 		 * state so that we don't try to schedule it again. Note
1964 		 * that perf_event_enable() will clear the ERROR status.
1965 		 */
1966 		event_sched_out(iter, cpuctx, ctx);
1967 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1968 	}
1969 }
1970 
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)1971 static int perf_get_aux_event(struct perf_event *event,
1972 			      struct perf_event *group_leader)
1973 {
1974 	/*
1975 	 * Our group leader must be an aux event if we want to be
1976 	 * an aux_output. This way, the aux event will precede its
1977 	 * aux_output events in the group, and therefore will always
1978 	 * schedule first.
1979 	 */
1980 	if (!group_leader)
1981 		return 0;
1982 
1983 	if (!perf_aux_output_match(event, group_leader))
1984 		return 0;
1985 
1986 	if (!atomic_long_inc_not_zero(&group_leader->refcount))
1987 		return 0;
1988 
1989 	/*
1990 	 * Link aux_outputs to their aux event; this is undone in
1991 	 * perf_group_detach() by perf_put_aux_event(). When the
1992 	 * group in torn down, the aux_output events loose their
1993 	 * link to the aux_event and can't schedule any more.
1994 	 */
1995 	event->aux_event = group_leader;
1996 
1997 	return 1;
1998 }
1999 
perf_group_detach(struct perf_event * event)2000 static void perf_group_detach(struct perf_event *event)
2001 {
2002 	struct perf_event *sibling, *tmp;
2003 	struct perf_event_context *ctx = event->ctx;
2004 
2005 	lockdep_assert_held(&ctx->lock);
2006 
2007 	/*
2008 	 * We can have double detach due to exit/hot-unplug + close.
2009 	 */
2010 	if (!(event->attach_state & PERF_ATTACH_GROUP))
2011 		return;
2012 
2013 	event->attach_state &= ~PERF_ATTACH_GROUP;
2014 
2015 	perf_put_aux_event(event);
2016 
2017 	/*
2018 	 * If this is a sibling, remove it from its group.
2019 	 */
2020 	if (event->group_leader != event) {
2021 		list_del_init(&event->sibling_list);
2022 		event->group_leader->nr_siblings--;
2023 		event->group_leader->group_generation++;
2024 		goto out;
2025 	}
2026 
2027 	/*
2028 	 * If this was a group event with sibling events then
2029 	 * upgrade the siblings to singleton events by adding them
2030 	 * to whatever list we are on.
2031 	 */
2032 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2033 
2034 		sibling->group_leader = sibling;
2035 		list_del_init(&sibling->sibling_list);
2036 
2037 		/* Inherit group flags from the previous leader */
2038 		sibling->group_caps = event->group_caps;
2039 
2040 		if (!RB_EMPTY_NODE(&event->group_node)) {
2041 			add_event_to_groups(sibling, event->ctx);
2042 
2043 			if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
2044 				struct list_head *list = sibling->attr.pinned ?
2045 					&ctx->pinned_active : &ctx->flexible_active;
2046 
2047 				list_add_tail(&sibling->active_list, list);
2048 			}
2049 		}
2050 
2051 		WARN_ON_ONCE(sibling->ctx != event->ctx);
2052 	}
2053 
2054 out:
2055 	perf_event__header_size(event->group_leader);
2056 
2057 	for_each_sibling_event(tmp, event->group_leader)
2058 		perf_event__header_size(tmp);
2059 }
2060 
is_orphaned_event(struct perf_event * event)2061 static bool is_orphaned_event(struct perf_event *event)
2062 {
2063 	return event->state == PERF_EVENT_STATE_DEAD;
2064 }
2065 
__pmu_filter_match(struct perf_event * event)2066 static inline int __pmu_filter_match(struct perf_event *event)
2067 {
2068 	struct pmu *pmu = event->pmu;
2069 	return pmu->filter_match ? pmu->filter_match(event) : 1;
2070 }
2071 
2072 /*
2073  * Check whether we should attempt to schedule an event group based on
2074  * PMU-specific filtering. An event group can consist of HW and SW events,
2075  * potentially with a SW leader, so we must check all the filters, to
2076  * determine whether a group is schedulable:
2077  */
pmu_filter_match(struct perf_event * event)2078 static inline int pmu_filter_match(struct perf_event *event)
2079 {
2080 	struct perf_event *sibling;
2081 
2082 	if (!__pmu_filter_match(event))
2083 		return 0;
2084 
2085 	for_each_sibling_event(sibling, event) {
2086 		if (!__pmu_filter_match(sibling))
2087 			return 0;
2088 	}
2089 
2090 	return 1;
2091 }
2092 
2093 static inline int
event_filter_match(struct perf_event * event)2094 event_filter_match(struct perf_event *event)
2095 {
2096 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2097 	       perf_cgroup_match(event) && pmu_filter_match(event);
2098 }
2099 
2100 static void
event_sched_out(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2101 event_sched_out(struct perf_event *event,
2102 		  struct perf_cpu_context *cpuctx,
2103 		  struct perf_event_context *ctx)
2104 {
2105 	enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2106 
2107 	WARN_ON_ONCE(event->ctx != ctx);
2108 	lockdep_assert_held(&ctx->lock);
2109 
2110 	if (event->state != PERF_EVENT_STATE_ACTIVE)
2111 		return;
2112 
2113 	/*
2114 	 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2115 	 * we can schedule events _OUT_ individually through things like
2116 	 * __perf_remove_from_context().
2117 	 */
2118 	list_del_init(&event->active_list);
2119 
2120 	perf_pmu_disable(event->pmu);
2121 
2122 	event->pmu->del(event, 0);
2123 	event->oncpu = -1;
2124 
2125 	if (READ_ONCE(event->pending_disable) >= 0) {
2126 		WRITE_ONCE(event->pending_disable, -1);
2127 		state = PERF_EVENT_STATE_OFF;
2128 	}
2129 	perf_event_set_state(event, state);
2130 
2131 	if (!is_software_event(event))
2132 		cpuctx->active_oncpu--;
2133 	if (!--ctx->nr_active)
2134 		perf_event_ctx_deactivate(ctx);
2135 	if (event->attr.freq && event->attr.sample_freq)
2136 		ctx->nr_freq--;
2137 	if (event->attr.exclusive || !cpuctx->active_oncpu)
2138 		cpuctx->exclusive = 0;
2139 
2140 	perf_pmu_enable(event->pmu);
2141 }
2142 
2143 static void
group_sched_out(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2144 group_sched_out(struct perf_event *group_event,
2145 		struct perf_cpu_context *cpuctx,
2146 		struct perf_event_context *ctx)
2147 {
2148 	struct perf_event *event;
2149 
2150 	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2151 		return;
2152 
2153 	perf_pmu_disable(ctx->pmu);
2154 
2155 	event_sched_out(group_event, cpuctx, ctx);
2156 
2157 	/*
2158 	 * Schedule out siblings (if any):
2159 	 */
2160 	for_each_sibling_event(event, group_event)
2161 		event_sched_out(event, cpuctx, ctx);
2162 
2163 	perf_pmu_enable(ctx->pmu);
2164 
2165 	if (group_event->attr.exclusive)
2166 		cpuctx->exclusive = 0;
2167 }
2168 
2169 #define DETACH_GROUP	0x01UL
2170 
2171 /*
2172  * Cross CPU call to remove a performance event
2173  *
2174  * We disable the event on the hardware level first. After that we
2175  * remove it from the context list.
2176  */
2177 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2178 __perf_remove_from_context(struct perf_event *event,
2179 			   struct perf_cpu_context *cpuctx,
2180 			   struct perf_event_context *ctx,
2181 			   void *info)
2182 {
2183 	unsigned long flags = (unsigned long)info;
2184 
2185 	if (ctx->is_active & EVENT_TIME) {
2186 		update_context_time(ctx);
2187 		update_cgrp_time_from_cpuctx(cpuctx);
2188 	}
2189 
2190 	event_sched_out(event, cpuctx, ctx);
2191 	if (flags & DETACH_GROUP)
2192 		perf_group_detach(event);
2193 	list_del_event(event, ctx);
2194 
2195 	if (!ctx->nr_events && ctx->is_active) {
2196 		ctx->is_active = 0;
2197 		ctx->rotate_necessary = 0;
2198 		if (ctx->task) {
2199 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2200 			cpuctx->task_ctx = NULL;
2201 		}
2202 	}
2203 }
2204 
2205 /*
2206  * Remove the event from a task's (or a CPU's) list of events.
2207  *
2208  * If event->ctx is a cloned context, callers must make sure that
2209  * every task struct that event->ctx->task could possibly point to
2210  * remains valid.  This is OK when called from perf_release since
2211  * that only calls us on the top-level context, which can't be a clone.
2212  * When called from perf_event_exit_task, it's OK because the
2213  * context has been detached from its task.
2214  */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2215 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2216 {
2217 	struct perf_event_context *ctx = event->ctx;
2218 
2219 	lockdep_assert_held(&ctx->mutex);
2220 
2221 	event_function_call(event, __perf_remove_from_context, (void *)flags);
2222 
2223 	/*
2224 	 * The above event_function_call() can NO-OP when it hits
2225 	 * TASK_TOMBSTONE. In that case we must already have been detached
2226 	 * from the context (by perf_event_exit_event()) but the grouping
2227 	 * might still be in-tact.
2228 	 */
2229 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2230 	if ((flags & DETACH_GROUP) &&
2231 	    (event->attach_state & PERF_ATTACH_GROUP)) {
2232 		/*
2233 		 * Since in that case we cannot possibly be scheduled, simply
2234 		 * detach now.
2235 		 */
2236 		raw_spin_lock_irq(&ctx->lock);
2237 		perf_group_detach(event);
2238 		raw_spin_unlock_irq(&ctx->lock);
2239 	}
2240 }
2241 
2242 /*
2243  * Cross CPU call to disable a performance event
2244  */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2245 static void __perf_event_disable(struct perf_event *event,
2246 				 struct perf_cpu_context *cpuctx,
2247 				 struct perf_event_context *ctx,
2248 				 void *info)
2249 {
2250 	if (event->state < PERF_EVENT_STATE_INACTIVE)
2251 		return;
2252 
2253 	if (ctx->is_active & EVENT_TIME) {
2254 		update_context_time(ctx);
2255 		update_cgrp_time_from_event(event);
2256 	}
2257 
2258 	if (event == event->group_leader)
2259 		group_sched_out(event, cpuctx, ctx);
2260 	else
2261 		event_sched_out(event, cpuctx, ctx);
2262 
2263 	perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2264 }
2265 
2266 /*
2267  * Disable an event.
2268  *
2269  * If event->ctx is a cloned context, callers must make sure that
2270  * every task struct that event->ctx->task could possibly point to
2271  * remains valid.  This condition is satisfied when called through
2272  * perf_event_for_each_child or perf_event_for_each because they
2273  * hold the top-level event's child_mutex, so any descendant that
2274  * goes to exit will block in perf_event_exit_event().
2275  *
2276  * When called from perf_pending_event it's OK because event->ctx
2277  * is the current context on this CPU and preemption is disabled,
2278  * hence we can't get into perf_event_task_sched_out for this context.
2279  */
_perf_event_disable(struct perf_event * event)2280 static void _perf_event_disable(struct perf_event *event)
2281 {
2282 	struct perf_event_context *ctx = event->ctx;
2283 
2284 	raw_spin_lock_irq(&ctx->lock);
2285 	if (event->state <= PERF_EVENT_STATE_OFF) {
2286 		raw_spin_unlock_irq(&ctx->lock);
2287 		return;
2288 	}
2289 	raw_spin_unlock_irq(&ctx->lock);
2290 
2291 	event_function_call(event, __perf_event_disable, NULL);
2292 }
2293 
perf_event_disable_local(struct perf_event * event)2294 void perf_event_disable_local(struct perf_event *event)
2295 {
2296 	event_function_local(event, __perf_event_disable, NULL);
2297 }
2298 
2299 /*
2300  * Strictly speaking kernel users cannot create groups and therefore this
2301  * interface does not need the perf_event_ctx_lock() magic.
2302  */
perf_event_disable(struct perf_event * event)2303 void perf_event_disable(struct perf_event *event)
2304 {
2305 	struct perf_event_context *ctx;
2306 
2307 	ctx = perf_event_ctx_lock(event);
2308 	_perf_event_disable(event);
2309 	perf_event_ctx_unlock(event, ctx);
2310 }
2311 EXPORT_SYMBOL_GPL(perf_event_disable);
2312 
perf_event_disable_inatomic(struct perf_event * event)2313 void perf_event_disable_inatomic(struct perf_event *event)
2314 {
2315 	WRITE_ONCE(event->pending_disable, smp_processor_id());
2316 	/* can fail, see perf_pending_event_disable() */
2317 	irq_work_queue(&event->pending);
2318 }
2319 
perf_set_shadow_time(struct perf_event * event,struct perf_event_context * ctx)2320 static void perf_set_shadow_time(struct perf_event *event,
2321 				 struct perf_event_context *ctx)
2322 {
2323 	/*
2324 	 * use the correct time source for the time snapshot
2325 	 *
2326 	 * We could get by without this by leveraging the
2327 	 * fact that to get to this function, the caller
2328 	 * has most likely already called update_context_time()
2329 	 * and update_cgrp_time_xx() and thus both timestamp
2330 	 * are identical (or very close). Given that tstamp is,
2331 	 * already adjusted for cgroup, we could say that:
2332 	 *    tstamp - ctx->timestamp
2333 	 * is equivalent to
2334 	 *    tstamp - cgrp->timestamp.
2335 	 *
2336 	 * Then, in perf_output_read(), the calculation would
2337 	 * work with no changes because:
2338 	 * - event is guaranteed scheduled in
2339 	 * - no scheduled out in between
2340 	 * - thus the timestamp would be the same
2341 	 *
2342 	 * But this is a bit hairy.
2343 	 *
2344 	 * So instead, we have an explicit cgroup call to remain
2345 	 * within the time time source all along. We believe it
2346 	 * is cleaner and simpler to understand.
2347 	 */
2348 	if (is_cgroup_event(event))
2349 		perf_cgroup_set_shadow_time(event, event->tstamp);
2350 	else
2351 		event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2352 }
2353 
2354 #define MAX_INTERRUPTS (~0ULL)
2355 
2356 static void perf_log_throttle(struct perf_event *event, int enable);
2357 static void perf_log_itrace_start(struct perf_event *event);
2358 
2359 static int
event_sched_in(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2360 event_sched_in(struct perf_event *event,
2361 		 struct perf_cpu_context *cpuctx,
2362 		 struct perf_event_context *ctx)
2363 {
2364 	int ret = 0;
2365 
2366 	lockdep_assert_held(&ctx->lock);
2367 
2368 	if (event->state <= PERF_EVENT_STATE_OFF)
2369 		return 0;
2370 
2371 	WRITE_ONCE(event->oncpu, smp_processor_id());
2372 	/*
2373 	 * Order event::oncpu write to happen before the ACTIVE state is
2374 	 * visible. This allows perf_event_{stop,read}() to observe the correct
2375 	 * ->oncpu if it sees ACTIVE.
2376 	 */
2377 	smp_wmb();
2378 	perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2379 
2380 	/*
2381 	 * Unthrottle events, since we scheduled we might have missed several
2382 	 * ticks already, also for a heavily scheduling task there is little
2383 	 * guarantee it'll get a tick in a timely manner.
2384 	 */
2385 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2386 		perf_log_throttle(event, 1);
2387 		event->hw.interrupts = 0;
2388 	}
2389 
2390 	perf_pmu_disable(event->pmu);
2391 
2392 	perf_set_shadow_time(event, ctx);
2393 
2394 	perf_log_itrace_start(event);
2395 
2396 	if (event->pmu->add(event, PERF_EF_START)) {
2397 		perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2398 		event->oncpu = -1;
2399 		ret = -EAGAIN;
2400 		goto out;
2401 	}
2402 
2403 	if (!is_software_event(event))
2404 		cpuctx->active_oncpu++;
2405 	if (!ctx->nr_active++)
2406 		perf_event_ctx_activate(ctx);
2407 	if (event->attr.freq && event->attr.sample_freq)
2408 		ctx->nr_freq++;
2409 
2410 	if (event->attr.exclusive)
2411 		cpuctx->exclusive = 1;
2412 
2413 out:
2414 	perf_pmu_enable(event->pmu);
2415 
2416 	return ret;
2417 }
2418 
2419 static int
group_sched_in(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2420 group_sched_in(struct perf_event *group_event,
2421 	       struct perf_cpu_context *cpuctx,
2422 	       struct perf_event_context *ctx)
2423 {
2424 	struct perf_event *event, *partial_group = NULL;
2425 	struct pmu *pmu = ctx->pmu;
2426 
2427 	if (group_event->state == PERF_EVENT_STATE_OFF)
2428 		return 0;
2429 
2430 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2431 
2432 	if (event_sched_in(group_event, cpuctx, ctx)) {
2433 		pmu->cancel_txn(pmu);
2434 		perf_mux_hrtimer_restart(cpuctx);
2435 		return -EAGAIN;
2436 	}
2437 
2438 	/*
2439 	 * Schedule in siblings as one group (if any):
2440 	 */
2441 	for_each_sibling_event(event, group_event) {
2442 		if (event_sched_in(event, cpuctx, ctx)) {
2443 			partial_group = event;
2444 			goto group_error;
2445 		}
2446 	}
2447 
2448 	if (!pmu->commit_txn(pmu))
2449 		return 0;
2450 
2451 group_error:
2452 	/*
2453 	 * Groups can be scheduled in as one unit only, so undo any
2454 	 * partial group before returning:
2455 	 * The events up to the failed event are scheduled out normally.
2456 	 */
2457 	for_each_sibling_event(event, group_event) {
2458 		if (event == partial_group)
2459 			break;
2460 
2461 		event_sched_out(event, cpuctx, ctx);
2462 	}
2463 	event_sched_out(group_event, cpuctx, ctx);
2464 
2465 	pmu->cancel_txn(pmu);
2466 
2467 	perf_mux_hrtimer_restart(cpuctx);
2468 
2469 	return -EAGAIN;
2470 }
2471 
2472 /*
2473  * Work out whether we can put this event group on the CPU now.
2474  */
group_can_go_on(struct perf_event * event,struct perf_cpu_context * cpuctx,int can_add_hw)2475 static int group_can_go_on(struct perf_event *event,
2476 			   struct perf_cpu_context *cpuctx,
2477 			   int can_add_hw)
2478 {
2479 	/*
2480 	 * Groups consisting entirely of software events can always go on.
2481 	 */
2482 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2483 		return 1;
2484 	/*
2485 	 * If an exclusive group is already on, no other hardware
2486 	 * events can go on.
2487 	 */
2488 	if (cpuctx->exclusive)
2489 		return 0;
2490 	/*
2491 	 * If this group is exclusive and there are already
2492 	 * events on the CPU, it can't go on.
2493 	 */
2494 	if (event->attr.exclusive && cpuctx->active_oncpu)
2495 		return 0;
2496 	/*
2497 	 * Otherwise, try to add it if all previous groups were able
2498 	 * to go on.
2499 	 */
2500 	return can_add_hw;
2501 }
2502 
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2503 static void add_event_to_ctx(struct perf_event *event,
2504 			       struct perf_event_context *ctx)
2505 {
2506 	list_add_event(event, ctx);
2507 	perf_group_attach(event);
2508 }
2509 
2510 static void ctx_sched_out(struct perf_event_context *ctx,
2511 			  struct perf_cpu_context *cpuctx,
2512 			  enum event_type_t event_type);
2513 static void
2514 ctx_sched_in(struct perf_event_context *ctx,
2515 	     struct perf_cpu_context *cpuctx,
2516 	     enum event_type_t event_type,
2517 	     struct task_struct *task);
2518 
task_ctx_sched_out(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,enum event_type_t event_type)2519 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2520 			       struct perf_event_context *ctx,
2521 			       enum event_type_t event_type)
2522 {
2523 	if (!cpuctx->task_ctx)
2524 		return;
2525 
2526 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2527 		return;
2528 
2529 	ctx_sched_out(ctx, cpuctx, event_type);
2530 }
2531 
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct task_struct * task)2532 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2533 				struct perf_event_context *ctx,
2534 				struct task_struct *task)
2535 {
2536 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2537 	if (ctx)
2538 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2539 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2540 	if (ctx)
2541 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2542 }
2543 
2544 /*
2545  * We want to maintain the following priority of scheduling:
2546  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2547  *  - task pinned (EVENT_PINNED)
2548  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2549  *  - task flexible (EVENT_FLEXIBLE).
2550  *
2551  * In order to avoid unscheduling and scheduling back in everything every
2552  * time an event is added, only do it for the groups of equal priority and
2553  * below.
2554  *
2555  * This can be called after a batch operation on task events, in which case
2556  * event_type is a bit mask of the types of events involved. For CPU events,
2557  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2558  */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,enum event_type_t event_type)2559 static void ctx_resched(struct perf_cpu_context *cpuctx,
2560 			struct perf_event_context *task_ctx,
2561 			enum event_type_t event_type)
2562 {
2563 	enum event_type_t ctx_event_type;
2564 	bool cpu_event = !!(event_type & EVENT_CPU);
2565 
2566 	/*
2567 	 * If pinned groups are involved, flexible groups also need to be
2568 	 * scheduled out.
2569 	 */
2570 	if (event_type & EVENT_PINNED)
2571 		event_type |= EVENT_FLEXIBLE;
2572 
2573 	ctx_event_type = event_type & EVENT_ALL;
2574 
2575 	perf_pmu_disable(cpuctx->ctx.pmu);
2576 	if (task_ctx)
2577 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2578 
2579 	/*
2580 	 * Decide which cpu ctx groups to schedule out based on the types
2581 	 * of events that caused rescheduling:
2582 	 *  - EVENT_CPU: schedule out corresponding groups;
2583 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2584 	 *  - otherwise, do nothing more.
2585 	 */
2586 	if (cpu_event)
2587 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2588 	else if (ctx_event_type & EVENT_PINNED)
2589 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2590 
2591 	perf_event_sched_in(cpuctx, task_ctx, current);
2592 	perf_pmu_enable(cpuctx->ctx.pmu);
2593 }
2594 
perf_pmu_resched(struct pmu * pmu)2595 void perf_pmu_resched(struct pmu *pmu)
2596 {
2597 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2598 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2599 
2600 	perf_ctx_lock(cpuctx, task_ctx);
2601 	ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2602 	perf_ctx_unlock(cpuctx, task_ctx);
2603 }
2604 
2605 /*
2606  * Cross CPU call to install and enable a performance event
2607  *
2608  * Very similar to remote_function() + event_function() but cannot assume that
2609  * things like ctx->is_active and cpuctx->task_ctx are set.
2610  */
__perf_install_in_context(void * info)2611 static int  __perf_install_in_context(void *info)
2612 {
2613 	struct perf_event *event = info;
2614 	struct perf_event_context *ctx = event->ctx;
2615 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2616 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2617 	bool reprogram = true;
2618 	int ret = 0;
2619 
2620 	raw_spin_lock(&cpuctx->ctx.lock);
2621 	if (ctx->task) {
2622 		raw_spin_lock(&ctx->lock);
2623 		task_ctx = ctx;
2624 
2625 		reprogram = (ctx->task == current);
2626 
2627 		/*
2628 		 * If the task is running, it must be running on this CPU,
2629 		 * otherwise we cannot reprogram things.
2630 		 *
2631 		 * If its not running, we don't care, ctx->lock will
2632 		 * serialize against it becoming runnable.
2633 		 */
2634 		if (task_curr(ctx->task) && !reprogram) {
2635 			ret = -ESRCH;
2636 			goto unlock;
2637 		}
2638 
2639 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2640 	} else if (task_ctx) {
2641 		raw_spin_lock(&task_ctx->lock);
2642 	}
2643 
2644 #ifdef CONFIG_CGROUP_PERF
2645 	if (is_cgroup_event(event)) {
2646 		/*
2647 		 * If the current cgroup doesn't match the event's
2648 		 * cgroup, we should not try to schedule it.
2649 		 */
2650 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2651 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2652 					event->cgrp->css.cgroup);
2653 	}
2654 #endif
2655 
2656 	if (reprogram) {
2657 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2658 		add_event_to_ctx(event, ctx);
2659 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2660 	} else {
2661 		add_event_to_ctx(event, ctx);
2662 	}
2663 
2664 unlock:
2665 	perf_ctx_unlock(cpuctx, task_ctx);
2666 
2667 	return ret;
2668 }
2669 
2670 static bool exclusive_event_installable(struct perf_event *event,
2671 					struct perf_event_context *ctx);
2672 
2673 /*
2674  * Attach a performance event to a context.
2675  *
2676  * Very similar to event_function_call, see comment there.
2677  */
2678 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2679 perf_install_in_context(struct perf_event_context *ctx,
2680 			struct perf_event *event,
2681 			int cpu)
2682 {
2683 	struct task_struct *task = READ_ONCE(ctx->task);
2684 
2685 	lockdep_assert_held(&ctx->mutex);
2686 
2687 	WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2688 
2689 	if (event->cpu != -1)
2690 		event->cpu = cpu;
2691 
2692 	/*
2693 	 * Ensures that if we can observe event->ctx, both the event and ctx
2694 	 * will be 'complete'. See perf_iterate_sb_cpu().
2695 	 */
2696 	smp_store_release(&event->ctx, ctx);
2697 
2698 	if (!task) {
2699 		cpu_function_call(cpu, __perf_install_in_context, event);
2700 		return;
2701 	}
2702 
2703 	/*
2704 	 * Should not happen, we validate the ctx is still alive before calling.
2705 	 */
2706 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2707 		return;
2708 
2709 	/*
2710 	 * Installing events is tricky because we cannot rely on ctx->is_active
2711 	 * to be set in case this is the nr_events 0 -> 1 transition.
2712 	 *
2713 	 * Instead we use task_curr(), which tells us if the task is running.
2714 	 * However, since we use task_curr() outside of rq::lock, we can race
2715 	 * against the actual state. This means the result can be wrong.
2716 	 *
2717 	 * If we get a false positive, we retry, this is harmless.
2718 	 *
2719 	 * If we get a false negative, things are complicated. If we are after
2720 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2721 	 * value must be correct. If we're before, it doesn't matter since
2722 	 * perf_event_context_sched_in() will program the counter.
2723 	 *
2724 	 * However, this hinges on the remote context switch having observed
2725 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2726 	 * ctx::lock in perf_event_context_sched_in().
2727 	 *
2728 	 * We do this by task_function_call(), if the IPI fails to hit the task
2729 	 * we know any future context switch of task must see the
2730 	 * perf_event_ctpx[] store.
2731 	 */
2732 
2733 	/*
2734 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2735 	 * task_cpu() load, such that if the IPI then does not find the task
2736 	 * running, a future context switch of that task must observe the
2737 	 * store.
2738 	 */
2739 	smp_mb();
2740 again:
2741 	if (!task_function_call(task, __perf_install_in_context, event))
2742 		return;
2743 
2744 	raw_spin_lock_irq(&ctx->lock);
2745 	task = ctx->task;
2746 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2747 		/*
2748 		 * Cannot happen because we already checked above (which also
2749 		 * cannot happen), and we hold ctx->mutex, which serializes us
2750 		 * against perf_event_exit_task_context().
2751 		 */
2752 		raw_spin_unlock_irq(&ctx->lock);
2753 		return;
2754 	}
2755 	/*
2756 	 * If the task is not running, ctx->lock will avoid it becoming so,
2757 	 * thus we can safely install the event.
2758 	 */
2759 	if (task_curr(task)) {
2760 		raw_spin_unlock_irq(&ctx->lock);
2761 		goto again;
2762 	}
2763 	add_event_to_ctx(event, ctx);
2764 	raw_spin_unlock_irq(&ctx->lock);
2765 }
2766 
2767 /*
2768  * Cross CPU call to enable a performance event
2769  */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2770 static void __perf_event_enable(struct perf_event *event,
2771 				struct perf_cpu_context *cpuctx,
2772 				struct perf_event_context *ctx,
2773 				void *info)
2774 {
2775 	struct perf_event *leader = event->group_leader;
2776 	struct perf_event_context *task_ctx;
2777 
2778 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2779 	    event->state <= PERF_EVENT_STATE_ERROR)
2780 		return;
2781 
2782 	if (ctx->is_active)
2783 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2784 
2785 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2786 
2787 	if (!ctx->is_active)
2788 		return;
2789 
2790 	if (!event_filter_match(event)) {
2791 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2792 		return;
2793 	}
2794 
2795 	/*
2796 	 * If the event is in a group and isn't the group leader,
2797 	 * then don't put it on unless the group is on.
2798 	 */
2799 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2800 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2801 		return;
2802 	}
2803 
2804 	task_ctx = cpuctx->task_ctx;
2805 	if (ctx->task)
2806 		WARN_ON_ONCE(task_ctx != ctx);
2807 
2808 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2809 }
2810 
2811 /*
2812  * Enable an event.
2813  *
2814  * If event->ctx is a cloned context, callers must make sure that
2815  * every task struct that event->ctx->task could possibly point to
2816  * remains valid.  This condition is satisfied when called through
2817  * perf_event_for_each_child or perf_event_for_each as described
2818  * for perf_event_disable.
2819  */
_perf_event_enable(struct perf_event * event)2820 static void _perf_event_enable(struct perf_event *event)
2821 {
2822 	struct perf_event_context *ctx = event->ctx;
2823 
2824 	raw_spin_lock_irq(&ctx->lock);
2825 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2826 	    event->state <  PERF_EVENT_STATE_ERROR) {
2827 		raw_spin_unlock_irq(&ctx->lock);
2828 		return;
2829 	}
2830 
2831 	/*
2832 	 * If the event is in error state, clear that first.
2833 	 *
2834 	 * That way, if we see the event in error state below, we know that it
2835 	 * has gone back into error state, as distinct from the task having
2836 	 * been scheduled away before the cross-call arrived.
2837 	 */
2838 	if (event->state == PERF_EVENT_STATE_ERROR)
2839 		event->state = PERF_EVENT_STATE_OFF;
2840 	raw_spin_unlock_irq(&ctx->lock);
2841 
2842 	event_function_call(event, __perf_event_enable, NULL);
2843 }
2844 
2845 /*
2846  * See perf_event_disable();
2847  */
perf_event_enable(struct perf_event * event)2848 void perf_event_enable(struct perf_event *event)
2849 {
2850 	struct perf_event_context *ctx;
2851 
2852 	ctx = perf_event_ctx_lock(event);
2853 	_perf_event_enable(event);
2854 	perf_event_ctx_unlock(event, ctx);
2855 }
2856 EXPORT_SYMBOL_GPL(perf_event_enable);
2857 
2858 struct stop_event_data {
2859 	struct perf_event	*event;
2860 	unsigned int		restart;
2861 };
2862 
__perf_event_stop(void * info)2863 static int __perf_event_stop(void *info)
2864 {
2865 	struct stop_event_data *sd = info;
2866 	struct perf_event *event = sd->event;
2867 
2868 	/* if it's already INACTIVE, do nothing */
2869 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2870 		return 0;
2871 
2872 	/* matches smp_wmb() in event_sched_in() */
2873 	smp_rmb();
2874 
2875 	/*
2876 	 * There is a window with interrupts enabled before we get here,
2877 	 * so we need to check again lest we try to stop another CPU's event.
2878 	 */
2879 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2880 		return -EAGAIN;
2881 
2882 	event->pmu->stop(event, PERF_EF_UPDATE);
2883 
2884 	/*
2885 	 * May race with the actual stop (through perf_pmu_output_stop()),
2886 	 * but it is only used for events with AUX ring buffer, and such
2887 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2888 	 * see comments in perf_aux_output_begin().
2889 	 *
2890 	 * Since this is happening on an event-local CPU, no trace is lost
2891 	 * while restarting.
2892 	 */
2893 	if (sd->restart)
2894 		event->pmu->start(event, 0);
2895 
2896 	return 0;
2897 }
2898 
perf_event_stop(struct perf_event * event,int restart)2899 static int perf_event_stop(struct perf_event *event, int restart)
2900 {
2901 	struct stop_event_data sd = {
2902 		.event		= event,
2903 		.restart	= restart,
2904 	};
2905 	int ret = 0;
2906 
2907 	do {
2908 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2909 			return 0;
2910 
2911 		/* matches smp_wmb() in event_sched_in() */
2912 		smp_rmb();
2913 
2914 		/*
2915 		 * We only want to restart ACTIVE events, so if the event goes
2916 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2917 		 * fall through with ret==-ENXIO.
2918 		 */
2919 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2920 					__perf_event_stop, &sd);
2921 	} while (ret == -EAGAIN);
2922 
2923 	return ret;
2924 }
2925 
2926 /*
2927  * In order to contain the amount of racy and tricky in the address filter
2928  * configuration management, it is a two part process:
2929  *
2930  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2931  *      we update the addresses of corresponding vmas in
2932  *	event::addr_filter_ranges array and bump the event::addr_filters_gen;
2933  * (p2) when an event is scheduled in (pmu::add), it calls
2934  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2935  *      if the generation has changed since the previous call.
2936  *
2937  * If (p1) happens while the event is active, we restart it to force (p2).
2938  *
2939  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2940  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2941  *     ioctl;
2942  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2943  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2944  *     for reading;
2945  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2946  *     of exec.
2947  */
perf_event_addr_filters_sync(struct perf_event * event)2948 void perf_event_addr_filters_sync(struct perf_event *event)
2949 {
2950 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2951 
2952 	if (!has_addr_filter(event))
2953 		return;
2954 
2955 	raw_spin_lock(&ifh->lock);
2956 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2957 		event->pmu->addr_filters_sync(event);
2958 		event->hw.addr_filters_gen = event->addr_filters_gen;
2959 	}
2960 	raw_spin_unlock(&ifh->lock);
2961 }
2962 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2963 
_perf_event_refresh(struct perf_event * event,int refresh)2964 static int _perf_event_refresh(struct perf_event *event, int refresh)
2965 {
2966 	/*
2967 	 * not supported on inherited events
2968 	 */
2969 	if (event->attr.inherit || !is_sampling_event(event))
2970 		return -EINVAL;
2971 
2972 	atomic_add(refresh, &event->event_limit);
2973 	_perf_event_enable(event);
2974 
2975 	return 0;
2976 }
2977 
2978 /*
2979  * See perf_event_disable()
2980  */
perf_event_refresh(struct perf_event * event,int refresh)2981 int perf_event_refresh(struct perf_event *event, int refresh)
2982 {
2983 	struct perf_event_context *ctx;
2984 	int ret;
2985 
2986 	ctx = perf_event_ctx_lock(event);
2987 	ret = _perf_event_refresh(event, refresh);
2988 	perf_event_ctx_unlock(event, ctx);
2989 
2990 	return ret;
2991 }
2992 EXPORT_SYMBOL_GPL(perf_event_refresh);
2993 
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)2994 static int perf_event_modify_breakpoint(struct perf_event *bp,
2995 					 struct perf_event_attr *attr)
2996 {
2997 	int err;
2998 
2999 	_perf_event_disable(bp);
3000 
3001 	err = modify_user_hw_breakpoint_check(bp, attr, true);
3002 
3003 	if (!bp->attr.disabled)
3004 		_perf_event_enable(bp);
3005 
3006 	return err;
3007 }
3008 
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3009 static int perf_event_modify_attr(struct perf_event *event,
3010 				  struct perf_event_attr *attr)
3011 {
3012 	if (event->attr.type != attr->type)
3013 		return -EINVAL;
3014 
3015 	switch (event->attr.type) {
3016 	case PERF_TYPE_BREAKPOINT:
3017 		return perf_event_modify_breakpoint(event, attr);
3018 	default:
3019 		/* Place holder for future additions. */
3020 		return -EOPNOTSUPP;
3021 	}
3022 }
3023 
ctx_sched_out(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type)3024 static void ctx_sched_out(struct perf_event_context *ctx,
3025 			  struct perf_cpu_context *cpuctx,
3026 			  enum event_type_t event_type)
3027 {
3028 	struct perf_event *event, *tmp;
3029 	int is_active = ctx->is_active;
3030 
3031 	lockdep_assert_held(&ctx->lock);
3032 
3033 	if (likely(!ctx->nr_events)) {
3034 		/*
3035 		 * See __perf_remove_from_context().
3036 		 */
3037 		WARN_ON_ONCE(ctx->is_active);
3038 		if (ctx->task)
3039 			WARN_ON_ONCE(cpuctx->task_ctx);
3040 		return;
3041 	}
3042 
3043 	ctx->is_active &= ~event_type;
3044 	if (!(ctx->is_active & EVENT_ALL))
3045 		ctx->is_active = 0;
3046 
3047 	if (ctx->task) {
3048 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3049 		if (!ctx->is_active)
3050 			cpuctx->task_ctx = NULL;
3051 	}
3052 
3053 	/*
3054 	 * Always update time if it was set; not only when it changes.
3055 	 * Otherwise we can 'forget' to update time for any but the last
3056 	 * context we sched out. For example:
3057 	 *
3058 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3059 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
3060 	 *
3061 	 * would only update time for the pinned events.
3062 	 */
3063 	if (is_active & EVENT_TIME) {
3064 		/* update (and stop) ctx time */
3065 		update_context_time(ctx);
3066 		update_cgrp_time_from_cpuctx(cpuctx);
3067 	}
3068 
3069 	is_active ^= ctx->is_active; /* changed bits */
3070 
3071 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
3072 		return;
3073 
3074 	perf_pmu_disable(ctx->pmu);
3075 	if (is_active & EVENT_PINNED) {
3076 		list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3077 			group_sched_out(event, cpuctx, ctx);
3078 	}
3079 
3080 	if (is_active & EVENT_FLEXIBLE) {
3081 		list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3082 			group_sched_out(event, cpuctx, ctx);
3083 
3084 		/*
3085 		 * Since we cleared EVENT_FLEXIBLE, also clear
3086 		 * rotate_necessary, is will be reset by
3087 		 * ctx_flexible_sched_in() when needed.
3088 		 */
3089 		ctx->rotate_necessary = 0;
3090 	}
3091 	perf_pmu_enable(ctx->pmu);
3092 }
3093 
3094 /*
3095  * Test whether two contexts are equivalent, i.e. whether they have both been
3096  * cloned from the same version of the same context.
3097  *
3098  * Equivalence is measured using a generation number in the context that is
3099  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3100  * and list_del_event().
3101  */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3102 static int context_equiv(struct perf_event_context *ctx1,
3103 			 struct perf_event_context *ctx2)
3104 {
3105 	lockdep_assert_held(&ctx1->lock);
3106 	lockdep_assert_held(&ctx2->lock);
3107 
3108 	/* Pinning disables the swap optimization */
3109 	if (ctx1->pin_count || ctx2->pin_count)
3110 		return 0;
3111 
3112 	/* If ctx1 is the parent of ctx2 */
3113 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3114 		return 1;
3115 
3116 	/* If ctx2 is the parent of ctx1 */
3117 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3118 		return 1;
3119 
3120 	/*
3121 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
3122 	 * hierarchy, see perf_event_init_context().
3123 	 */
3124 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3125 			ctx1->parent_gen == ctx2->parent_gen)
3126 		return 1;
3127 
3128 	/* Unmatched */
3129 	return 0;
3130 }
3131 
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3132 static void __perf_event_sync_stat(struct perf_event *event,
3133 				     struct perf_event *next_event)
3134 {
3135 	u64 value;
3136 
3137 	if (!event->attr.inherit_stat)
3138 		return;
3139 
3140 	/*
3141 	 * Update the event value, we cannot use perf_event_read()
3142 	 * because we're in the middle of a context switch and have IRQs
3143 	 * disabled, which upsets smp_call_function_single(), however
3144 	 * we know the event must be on the current CPU, therefore we
3145 	 * don't need to use it.
3146 	 */
3147 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3148 		event->pmu->read(event);
3149 
3150 	perf_event_update_time(event);
3151 
3152 	/*
3153 	 * In order to keep per-task stats reliable we need to flip the event
3154 	 * values when we flip the contexts.
3155 	 */
3156 	value = local64_read(&next_event->count);
3157 	value = local64_xchg(&event->count, value);
3158 	local64_set(&next_event->count, value);
3159 
3160 	swap(event->total_time_enabled, next_event->total_time_enabled);
3161 	swap(event->total_time_running, next_event->total_time_running);
3162 
3163 	/*
3164 	 * Since we swizzled the values, update the user visible data too.
3165 	 */
3166 	perf_event_update_userpage(event);
3167 	perf_event_update_userpage(next_event);
3168 }
3169 
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3170 static void perf_event_sync_stat(struct perf_event_context *ctx,
3171 				   struct perf_event_context *next_ctx)
3172 {
3173 	struct perf_event *event, *next_event;
3174 
3175 	if (!ctx->nr_stat)
3176 		return;
3177 
3178 	update_context_time(ctx);
3179 
3180 	event = list_first_entry(&ctx->event_list,
3181 				   struct perf_event, event_entry);
3182 
3183 	next_event = list_first_entry(&next_ctx->event_list,
3184 					struct perf_event, event_entry);
3185 
3186 	while (&event->event_entry != &ctx->event_list &&
3187 	       &next_event->event_entry != &next_ctx->event_list) {
3188 
3189 		__perf_event_sync_stat(event, next_event);
3190 
3191 		event = list_next_entry(event, event_entry);
3192 		next_event = list_next_entry(next_event, event_entry);
3193 	}
3194 }
3195 
perf_event_context_sched_out(struct task_struct * task,int ctxn,struct task_struct * next)3196 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3197 					 struct task_struct *next)
3198 {
3199 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3200 	struct perf_event_context *next_ctx;
3201 	struct perf_event_context *parent, *next_parent;
3202 	struct perf_cpu_context *cpuctx;
3203 	int do_switch = 1;
3204 
3205 	if (likely(!ctx))
3206 		return;
3207 
3208 	cpuctx = __get_cpu_context(ctx);
3209 	if (!cpuctx->task_ctx)
3210 		return;
3211 
3212 	rcu_read_lock();
3213 	next_ctx = next->perf_event_ctxp[ctxn];
3214 	if (!next_ctx)
3215 		goto unlock;
3216 
3217 	parent = rcu_dereference(ctx->parent_ctx);
3218 	next_parent = rcu_dereference(next_ctx->parent_ctx);
3219 
3220 	/* If neither context have a parent context; they cannot be clones. */
3221 	if (!parent && !next_parent)
3222 		goto unlock;
3223 
3224 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3225 		/*
3226 		 * Looks like the two contexts are clones, so we might be
3227 		 * able to optimize the context switch.  We lock both
3228 		 * contexts and check that they are clones under the
3229 		 * lock (including re-checking that neither has been
3230 		 * uncloned in the meantime).  It doesn't matter which
3231 		 * order we take the locks because no other cpu could
3232 		 * be trying to lock both of these tasks.
3233 		 */
3234 		raw_spin_lock(&ctx->lock);
3235 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3236 		if (context_equiv(ctx, next_ctx)) {
3237 			WRITE_ONCE(ctx->task, next);
3238 			WRITE_ONCE(next_ctx->task, task);
3239 
3240 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3241 
3242 			/*
3243 			 * RCU_INIT_POINTER here is safe because we've not
3244 			 * modified the ctx and the above modification of
3245 			 * ctx->task and ctx->task_ctx_data are immaterial
3246 			 * since those values are always verified under
3247 			 * ctx->lock which we're now holding.
3248 			 */
3249 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3250 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3251 
3252 			do_switch = 0;
3253 
3254 			perf_event_sync_stat(ctx, next_ctx);
3255 		}
3256 		raw_spin_unlock(&next_ctx->lock);
3257 		raw_spin_unlock(&ctx->lock);
3258 	}
3259 unlock:
3260 	rcu_read_unlock();
3261 
3262 	if (do_switch) {
3263 		raw_spin_lock(&ctx->lock);
3264 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3265 		raw_spin_unlock(&ctx->lock);
3266 	}
3267 }
3268 
3269 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3270 
perf_sched_cb_dec(struct pmu * pmu)3271 void perf_sched_cb_dec(struct pmu *pmu)
3272 {
3273 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3274 
3275 	this_cpu_dec(perf_sched_cb_usages);
3276 
3277 	if (!--cpuctx->sched_cb_usage)
3278 		list_del(&cpuctx->sched_cb_entry);
3279 }
3280 
3281 
perf_sched_cb_inc(struct pmu * pmu)3282 void perf_sched_cb_inc(struct pmu *pmu)
3283 {
3284 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3285 
3286 	if (!cpuctx->sched_cb_usage++)
3287 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3288 
3289 	this_cpu_inc(perf_sched_cb_usages);
3290 }
3291 
3292 /*
3293  * This function provides the context switch callback to the lower code
3294  * layer. It is invoked ONLY when the context switch callback is enabled.
3295  *
3296  * This callback is relevant even to per-cpu events; for example multi event
3297  * PEBS requires this to provide PID/TID information. This requires we flush
3298  * all queued PEBS records before we context switch to a new task.
3299  */
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3300 static void perf_pmu_sched_task(struct task_struct *prev,
3301 				struct task_struct *next,
3302 				bool sched_in)
3303 {
3304 	struct perf_cpu_context *cpuctx;
3305 	struct pmu *pmu;
3306 
3307 	if (prev == next)
3308 		return;
3309 
3310 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3311 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3312 
3313 		if (WARN_ON_ONCE(!pmu->sched_task))
3314 			continue;
3315 
3316 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3317 		perf_pmu_disable(pmu);
3318 
3319 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3320 
3321 		perf_pmu_enable(pmu);
3322 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3323 	}
3324 }
3325 
3326 static void perf_event_switch(struct task_struct *task,
3327 			      struct task_struct *next_prev, bool sched_in);
3328 
3329 #define for_each_task_context_nr(ctxn)					\
3330 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3331 
3332 /*
3333  * Called from scheduler to remove the events of the current task,
3334  * with interrupts disabled.
3335  *
3336  * We stop each event and update the event value in event->count.
3337  *
3338  * This does not protect us against NMI, but disable()
3339  * sets the disabled bit in the control field of event _before_
3340  * accessing the event control register. If a NMI hits, then it will
3341  * not restart the event.
3342  */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3343 void __perf_event_task_sched_out(struct task_struct *task,
3344 				 struct task_struct *next)
3345 {
3346 	int ctxn;
3347 
3348 	if (__this_cpu_read(perf_sched_cb_usages))
3349 		perf_pmu_sched_task(task, next, false);
3350 
3351 	if (atomic_read(&nr_switch_events))
3352 		perf_event_switch(task, next, false);
3353 
3354 	for_each_task_context_nr(ctxn)
3355 		perf_event_context_sched_out(task, ctxn, next);
3356 
3357 	/*
3358 	 * if cgroup events exist on this CPU, then we need
3359 	 * to check if we have to switch out PMU state.
3360 	 * cgroup event are system-wide mode only
3361 	 */
3362 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3363 		perf_cgroup_sched_out(task, next);
3364 }
3365 
3366 /*
3367  * Called with IRQs disabled
3368  */
cpu_ctx_sched_out(struct perf_cpu_context * cpuctx,enum event_type_t event_type)3369 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3370 			      enum event_type_t event_type)
3371 {
3372 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3373 }
3374 
visit_groups_merge(struct perf_event_groups * groups,int cpu,int (* func)(struct perf_event *,void *),void * data)3375 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3376 			      int (*func)(struct perf_event *, void *), void *data)
3377 {
3378 	struct perf_event **evt, *evt1, *evt2;
3379 	int ret;
3380 
3381 	evt1 = perf_event_groups_first(groups, -1);
3382 	evt2 = perf_event_groups_first(groups, cpu);
3383 
3384 	while (evt1 || evt2) {
3385 		if (evt1 && evt2) {
3386 			if (evt1->group_index < evt2->group_index)
3387 				evt = &evt1;
3388 			else
3389 				evt = &evt2;
3390 		} else if (evt1) {
3391 			evt = &evt1;
3392 		} else {
3393 			evt = &evt2;
3394 		}
3395 
3396 		ret = func(*evt, data);
3397 		if (ret)
3398 			return ret;
3399 
3400 		*evt = perf_event_groups_next(*evt);
3401 	}
3402 
3403 	return 0;
3404 }
3405 
3406 struct sched_in_data {
3407 	struct perf_event_context *ctx;
3408 	struct perf_cpu_context *cpuctx;
3409 	int can_add_hw;
3410 };
3411 
pinned_sched_in(struct perf_event * event,void * data)3412 static int pinned_sched_in(struct perf_event *event, void *data)
3413 {
3414 	struct sched_in_data *sid = data;
3415 
3416 	if (event->state <= PERF_EVENT_STATE_OFF)
3417 		return 0;
3418 
3419 	if (!event_filter_match(event))
3420 		return 0;
3421 
3422 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3423 		if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3424 			list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3425 	}
3426 
3427 	/*
3428 	 * If this pinned group hasn't been scheduled,
3429 	 * put it in error state.
3430 	 */
3431 	if (event->state == PERF_EVENT_STATE_INACTIVE)
3432 		perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3433 
3434 	return 0;
3435 }
3436 
flexible_sched_in(struct perf_event * event,void * data)3437 static int flexible_sched_in(struct perf_event *event, void *data)
3438 {
3439 	struct sched_in_data *sid = data;
3440 
3441 	if (event->state <= PERF_EVENT_STATE_OFF)
3442 		return 0;
3443 
3444 	if (!event_filter_match(event))
3445 		return 0;
3446 
3447 	if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3448 		int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3449 		if (ret) {
3450 			sid->can_add_hw = 0;
3451 			sid->ctx->rotate_necessary = 1;
3452 			return 0;
3453 		}
3454 		list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3455 	}
3456 
3457 	return 0;
3458 }
3459 
3460 static void
ctx_pinned_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3461 ctx_pinned_sched_in(struct perf_event_context *ctx,
3462 		    struct perf_cpu_context *cpuctx)
3463 {
3464 	struct sched_in_data sid = {
3465 		.ctx = ctx,
3466 		.cpuctx = cpuctx,
3467 		.can_add_hw = 1,
3468 	};
3469 
3470 	visit_groups_merge(&ctx->pinned_groups,
3471 			   smp_processor_id(),
3472 			   pinned_sched_in, &sid);
3473 }
3474 
3475 static void
ctx_flexible_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3476 ctx_flexible_sched_in(struct perf_event_context *ctx,
3477 		      struct perf_cpu_context *cpuctx)
3478 {
3479 	struct sched_in_data sid = {
3480 		.ctx = ctx,
3481 		.cpuctx = cpuctx,
3482 		.can_add_hw = 1,
3483 	};
3484 
3485 	visit_groups_merge(&ctx->flexible_groups,
3486 			   smp_processor_id(),
3487 			   flexible_sched_in, &sid);
3488 }
3489 
3490 static void
ctx_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3491 ctx_sched_in(struct perf_event_context *ctx,
3492 	     struct perf_cpu_context *cpuctx,
3493 	     enum event_type_t event_type,
3494 	     struct task_struct *task)
3495 {
3496 	int is_active = ctx->is_active;
3497 	u64 now;
3498 
3499 	lockdep_assert_held(&ctx->lock);
3500 
3501 	if (likely(!ctx->nr_events))
3502 		return;
3503 
3504 	ctx->is_active |= (event_type | EVENT_TIME);
3505 	if (ctx->task) {
3506 		if (!is_active)
3507 			cpuctx->task_ctx = ctx;
3508 		else
3509 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3510 	}
3511 
3512 	is_active ^= ctx->is_active; /* changed bits */
3513 
3514 	if (is_active & EVENT_TIME) {
3515 		/* start ctx time */
3516 		now = perf_clock();
3517 		ctx->timestamp = now;
3518 		perf_cgroup_set_timestamp(task, ctx);
3519 	}
3520 
3521 	/*
3522 	 * First go through the list and put on any pinned groups
3523 	 * in order to give them the best chance of going on.
3524 	 */
3525 	if (is_active & EVENT_PINNED)
3526 		ctx_pinned_sched_in(ctx, cpuctx);
3527 
3528 	/* Then walk through the lower prio flexible groups */
3529 	if (is_active & EVENT_FLEXIBLE)
3530 		ctx_flexible_sched_in(ctx, cpuctx);
3531 }
3532 
cpu_ctx_sched_in(struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3533 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3534 			     enum event_type_t event_type,
3535 			     struct task_struct *task)
3536 {
3537 	struct perf_event_context *ctx = &cpuctx->ctx;
3538 
3539 	ctx_sched_in(ctx, cpuctx, event_type, task);
3540 }
3541 
perf_event_context_sched_in(struct perf_event_context * ctx,struct task_struct * task)3542 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3543 					struct task_struct *task)
3544 {
3545 	struct perf_cpu_context *cpuctx;
3546 
3547 	cpuctx = __get_cpu_context(ctx);
3548 	if (cpuctx->task_ctx == ctx)
3549 		return;
3550 
3551 	perf_ctx_lock(cpuctx, ctx);
3552 	/*
3553 	 * We must check ctx->nr_events while holding ctx->lock, such
3554 	 * that we serialize against perf_install_in_context().
3555 	 */
3556 	if (!ctx->nr_events)
3557 		goto unlock;
3558 
3559 	perf_pmu_disable(ctx->pmu);
3560 	/*
3561 	 * We want to keep the following priority order:
3562 	 * cpu pinned (that don't need to move), task pinned,
3563 	 * cpu flexible, task flexible.
3564 	 *
3565 	 * However, if task's ctx is not carrying any pinned
3566 	 * events, no need to flip the cpuctx's events around.
3567 	 */
3568 	if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3569 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3570 	perf_event_sched_in(cpuctx, ctx, task);
3571 	perf_pmu_enable(ctx->pmu);
3572 
3573 unlock:
3574 	perf_ctx_unlock(cpuctx, ctx);
3575 }
3576 
3577 /*
3578  * Called from scheduler to add the events of the current task
3579  * with interrupts disabled.
3580  *
3581  * We restore the event value and then enable it.
3582  *
3583  * This does not protect us against NMI, but enable()
3584  * sets the enabled bit in the control field of event _before_
3585  * accessing the event control register. If a NMI hits, then it will
3586  * keep the event running.
3587  */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)3588 void __perf_event_task_sched_in(struct task_struct *prev,
3589 				struct task_struct *task)
3590 {
3591 	struct perf_event_context *ctx;
3592 	int ctxn;
3593 
3594 	/*
3595 	 * If cgroup events exist on this CPU, then we need to check if we have
3596 	 * to switch in PMU state; cgroup event are system-wide mode only.
3597 	 *
3598 	 * Since cgroup events are CPU events, we must schedule these in before
3599 	 * we schedule in the task events.
3600 	 */
3601 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3602 		perf_cgroup_sched_in(prev, task);
3603 
3604 	for_each_task_context_nr(ctxn) {
3605 		ctx = task->perf_event_ctxp[ctxn];
3606 		if (likely(!ctx))
3607 			continue;
3608 
3609 		perf_event_context_sched_in(ctx, task);
3610 	}
3611 
3612 	if (atomic_read(&nr_switch_events))
3613 		perf_event_switch(task, prev, true);
3614 
3615 	if (__this_cpu_read(perf_sched_cb_usages))
3616 		perf_pmu_sched_task(prev, task, true);
3617 }
3618 
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)3619 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3620 {
3621 	u64 frequency = event->attr.sample_freq;
3622 	u64 sec = NSEC_PER_SEC;
3623 	u64 divisor, dividend;
3624 
3625 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3626 
3627 	count_fls = fls64(count);
3628 	nsec_fls = fls64(nsec);
3629 	frequency_fls = fls64(frequency);
3630 	sec_fls = 30;
3631 
3632 	/*
3633 	 * We got @count in @nsec, with a target of sample_freq HZ
3634 	 * the target period becomes:
3635 	 *
3636 	 *             @count * 10^9
3637 	 * period = -------------------
3638 	 *          @nsec * sample_freq
3639 	 *
3640 	 */
3641 
3642 	/*
3643 	 * Reduce accuracy by one bit such that @a and @b converge
3644 	 * to a similar magnitude.
3645 	 */
3646 #define REDUCE_FLS(a, b)		\
3647 do {					\
3648 	if (a##_fls > b##_fls) {	\
3649 		a >>= 1;		\
3650 		a##_fls--;		\
3651 	} else {			\
3652 		b >>= 1;		\
3653 		b##_fls--;		\
3654 	}				\
3655 } while (0)
3656 
3657 	/*
3658 	 * Reduce accuracy until either term fits in a u64, then proceed with
3659 	 * the other, so that finally we can do a u64/u64 division.
3660 	 */
3661 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3662 		REDUCE_FLS(nsec, frequency);
3663 		REDUCE_FLS(sec, count);
3664 	}
3665 
3666 	if (count_fls + sec_fls > 64) {
3667 		divisor = nsec * frequency;
3668 
3669 		while (count_fls + sec_fls > 64) {
3670 			REDUCE_FLS(count, sec);
3671 			divisor >>= 1;
3672 		}
3673 
3674 		dividend = count * sec;
3675 	} else {
3676 		dividend = count * sec;
3677 
3678 		while (nsec_fls + frequency_fls > 64) {
3679 			REDUCE_FLS(nsec, frequency);
3680 			dividend >>= 1;
3681 		}
3682 
3683 		divisor = nsec * frequency;
3684 	}
3685 
3686 	if (!divisor)
3687 		return dividend;
3688 
3689 	return div64_u64(dividend, divisor);
3690 }
3691 
3692 static DEFINE_PER_CPU(int, perf_throttled_count);
3693 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3694 
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)3695 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3696 {
3697 	struct hw_perf_event *hwc = &event->hw;
3698 	s64 period, sample_period;
3699 	s64 delta;
3700 
3701 	period = perf_calculate_period(event, nsec, count);
3702 
3703 	delta = (s64)(period - hwc->sample_period);
3704 	delta = (delta + 7) / 8; /* low pass filter */
3705 
3706 	sample_period = hwc->sample_period + delta;
3707 
3708 	if (!sample_period)
3709 		sample_period = 1;
3710 
3711 	hwc->sample_period = sample_period;
3712 
3713 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3714 		if (disable)
3715 			event->pmu->stop(event, PERF_EF_UPDATE);
3716 
3717 		local64_set(&hwc->period_left, 0);
3718 
3719 		if (disable)
3720 			event->pmu->start(event, PERF_EF_RELOAD);
3721 	}
3722 }
3723 
3724 /*
3725  * combine freq adjustment with unthrottling to avoid two passes over the
3726  * events. At the same time, make sure, having freq events does not change
3727  * the rate of unthrottling as that would introduce bias.
3728  */
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,int needs_unthr)3729 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3730 					   int needs_unthr)
3731 {
3732 	struct perf_event *event;
3733 	struct hw_perf_event *hwc;
3734 	u64 now, period = TICK_NSEC;
3735 	s64 delta;
3736 
3737 	/*
3738 	 * only need to iterate over all events iff:
3739 	 * - context have events in frequency mode (needs freq adjust)
3740 	 * - there are events to unthrottle on this cpu
3741 	 */
3742 	if (!(ctx->nr_freq || needs_unthr))
3743 		return;
3744 
3745 	raw_spin_lock(&ctx->lock);
3746 	perf_pmu_disable(ctx->pmu);
3747 
3748 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3749 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3750 			continue;
3751 
3752 		if (!event_filter_match(event))
3753 			continue;
3754 
3755 		perf_pmu_disable(event->pmu);
3756 
3757 		hwc = &event->hw;
3758 
3759 		if (hwc->interrupts == MAX_INTERRUPTS) {
3760 			hwc->interrupts = 0;
3761 			perf_log_throttle(event, 1);
3762 			event->pmu->start(event, 0);
3763 		}
3764 
3765 		if (!event->attr.freq || !event->attr.sample_freq)
3766 			goto next;
3767 
3768 		/*
3769 		 * stop the event and update event->count
3770 		 */
3771 		event->pmu->stop(event, PERF_EF_UPDATE);
3772 
3773 		now = local64_read(&event->count);
3774 		delta = now - hwc->freq_count_stamp;
3775 		hwc->freq_count_stamp = now;
3776 
3777 		/*
3778 		 * restart the event
3779 		 * reload only if value has changed
3780 		 * we have stopped the event so tell that
3781 		 * to perf_adjust_period() to avoid stopping it
3782 		 * twice.
3783 		 */
3784 		if (delta > 0)
3785 			perf_adjust_period(event, period, delta, false);
3786 
3787 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3788 	next:
3789 		perf_pmu_enable(event->pmu);
3790 	}
3791 
3792 	perf_pmu_enable(ctx->pmu);
3793 	raw_spin_unlock(&ctx->lock);
3794 }
3795 
3796 /*
3797  * Move @event to the tail of the @ctx's elegible events.
3798  */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)3799 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3800 {
3801 	/*
3802 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3803 	 * disabled by the inheritance code.
3804 	 */
3805 	if (ctx->rotate_disable)
3806 		return;
3807 
3808 	perf_event_groups_delete(&ctx->flexible_groups, event);
3809 	perf_event_groups_insert(&ctx->flexible_groups, event);
3810 }
3811 
3812 /* pick an event from the flexible_groups to rotate */
3813 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_context * ctx)3814 ctx_event_to_rotate(struct perf_event_context *ctx)
3815 {
3816 	struct perf_event *event;
3817 
3818 	/* pick the first active flexible event */
3819 	event = list_first_entry_or_null(&ctx->flexible_active,
3820 					 struct perf_event, active_list);
3821 
3822 	/* if no active flexible event, pick the first event */
3823 	if (!event) {
3824 		event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3825 				      typeof(*event), group_node);
3826 	}
3827 
3828 	/*
3829 	 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
3830 	 * finds there are unschedulable events, it will set it again.
3831 	 */
3832 	ctx->rotate_necessary = 0;
3833 
3834 	return event;
3835 }
3836 
perf_rotate_context(struct perf_cpu_context * cpuctx)3837 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3838 {
3839 	struct perf_event *cpu_event = NULL, *task_event = NULL;
3840 	struct perf_event_context *task_ctx = NULL;
3841 	int cpu_rotate, task_rotate;
3842 
3843 	/*
3844 	 * Since we run this from IRQ context, nobody can install new
3845 	 * events, thus the event count values are stable.
3846 	 */
3847 
3848 	cpu_rotate = cpuctx->ctx.rotate_necessary;
3849 	task_ctx = cpuctx->task_ctx;
3850 	task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3851 
3852 	if (!(cpu_rotate || task_rotate))
3853 		return false;
3854 
3855 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3856 	perf_pmu_disable(cpuctx->ctx.pmu);
3857 
3858 	if (task_rotate)
3859 		task_event = ctx_event_to_rotate(task_ctx);
3860 	if (cpu_rotate)
3861 		cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
3862 
3863 	/*
3864 	 * As per the order given at ctx_resched() first 'pop' task flexible
3865 	 * and then, if needed CPU flexible.
3866 	 */
3867 	if (task_event || (task_ctx && cpu_event))
3868 		ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3869 	if (cpu_event)
3870 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3871 
3872 	if (task_event)
3873 		rotate_ctx(task_ctx, task_event);
3874 	if (cpu_event)
3875 		rotate_ctx(&cpuctx->ctx, cpu_event);
3876 
3877 	perf_event_sched_in(cpuctx, task_ctx, current);
3878 
3879 	perf_pmu_enable(cpuctx->ctx.pmu);
3880 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3881 
3882 	return true;
3883 }
3884 
perf_event_task_tick(void)3885 void perf_event_task_tick(void)
3886 {
3887 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3888 	struct perf_event_context *ctx, *tmp;
3889 	int throttled;
3890 
3891 	lockdep_assert_irqs_disabled();
3892 
3893 	__this_cpu_inc(perf_throttled_seq);
3894 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3895 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3896 
3897 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3898 		perf_adjust_freq_unthr_context(ctx, throttled);
3899 }
3900 
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)3901 static int event_enable_on_exec(struct perf_event *event,
3902 				struct perf_event_context *ctx)
3903 {
3904 	if (!event->attr.enable_on_exec)
3905 		return 0;
3906 
3907 	event->attr.enable_on_exec = 0;
3908 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3909 		return 0;
3910 
3911 	perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3912 
3913 	return 1;
3914 }
3915 
3916 /*
3917  * Enable all of a task's events that have been marked enable-on-exec.
3918  * This expects task == current.
3919  */
perf_event_enable_on_exec(int ctxn)3920 static void perf_event_enable_on_exec(int ctxn)
3921 {
3922 	struct perf_event_context *ctx, *clone_ctx = NULL;
3923 	enum event_type_t event_type = 0;
3924 	struct perf_cpu_context *cpuctx;
3925 	struct perf_event *event;
3926 	unsigned long flags;
3927 	int enabled = 0;
3928 
3929 	local_irq_save(flags);
3930 	ctx = current->perf_event_ctxp[ctxn];
3931 	if (!ctx || !ctx->nr_events)
3932 		goto out;
3933 
3934 	cpuctx = __get_cpu_context(ctx);
3935 	perf_ctx_lock(cpuctx, ctx);
3936 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3937 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3938 		enabled |= event_enable_on_exec(event, ctx);
3939 		event_type |= get_event_type(event);
3940 	}
3941 
3942 	/*
3943 	 * Unclone and reschedule this context if we enabled any event.
3944 	 */
3945 	if (enabled) {
3946 		clone_ctx = unclone_ctx(ctx);
3947 		ctx_resched(cpuctx, ctx, event_type);
3948 	} else {
3949 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3950 	}
3951 	perf_ctx_unlock(cpuctx, ctx);
3952 
3953 out:
3954 	local_irq_restore(flags);
3955 
3956 	if (clone_ctx)
3957 		put_ctx(clone_ctx);
3958 }
3959 
3960 struct perf_read_data {
3961 	struct perf_event *event;
3962 	bool group;
3963 	int ret;
3964 };
3965 
__perf_event_read_cpu(struct perf_event * event,int event_cpu)3966 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3967 {
3968 	u16 local_pkg, event_pkg;
3969 
3970 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3971 		int local_cpu = smp_processor_id();
3972 
3973 		event_pkg = topology_physical_package_id(event_cpu);
3974 		local_pkg = topology_physical_package_id(local_cpu);
3975 
3976 		if (event_pkg == local_pkg)
3977 			return local_cpu;
3978 	}
3979 
3980 	return event_cpu;
3981 }
3982 
3983 /*
3984  * Cross CPU call to read the hardware event
3985  */
__perf_event_read(void * info)3986 static void __perf_event_read(void *info)
3987 {
3988 	struct perf_read_data *data = info;
3989 	struct perf_event *sub, *event = data->event;
3990 	struct perf_event_context *ctx = event->ctx;
3991 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3992 	struct pmu *pmu = event->pmu;
3993 
3994 	/*
3995 	 * If this is a task context, we need to check whether it is
3996 	 * the current task context of this cpu.  If not it has been
3997 	 * scheduled out before the smp call arrived.  In that case
3998 	 * event->count would have been updated to a recent sample
3999 	 * when the event was scheduled out.
4000 	 */
4001 	if (ctx->task && cpuctx->task_ctx != ctx)
4002 		return;
4003 
4004 	raw_spin_lock(&ctx->lock);
4005 	if (ctx->is_active & EVENT_TIME) {
4006 		update_context_time(ctx);
4007 		update_cgrp_time_from_event(event);
4008 	}
4009 
4010 	perf_event_update_time(event);
4011 	if (data->group)
4012 		perf_event_update_sibling_time(event);
4013 
4014 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4015 		goto unlock;
4016 
4017 	if (!data->group) {
4018 		pmu->read(event);
4019 		data->ret = 0;
4020 		goto unlock;
4021 	}
4022 
4023 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4024 
4025 	pmu->read(event);
4026 
4027 	for_each_sibling_event(sub, event) {
4028 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4029 			/*
4030 			 * Use sibling's PMU rather than @event's since
4031 			 * sibling could be on different (eg: software) PMU.
4032 			 */
4033 			sub->pmu->read(sub);
4034 		}
4035 	}
4036 
4037 	data->ret = pmu->commit_txn(pmu);
4038 
4039 unlock:
4040 	raw_spin_unlock(&ctx->lock);
4041 }
4042 
perf_event_count(struct perf_event * event)4043 static inline u64 perf_event_count(struct perf_event *event)
4044 {
4045 	return local64_read(&event->count) + atomic64_read(&event->child_count);
4046 }
4047 
4048 /*
4049  * NMI-safe method to read a local event, that is an event that
4050  * is:
4051  *   - either for the current task, or for this CPU
4052  *   - does not have inherit set, for inherited task events
4053  *     will not be local and we cannot read them atomically
4054  *   - must not have a pmu::count method
4055  */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4056 int perf_event_read_local(struct perf_event *event, u64 *value,
4057 			  u64 *enabled, u64 *running)
4058 {
4059 	unsigned long flags;
4060 	int ret = 0;
4061 
4062 	/*
4063 	 * Disabling interrupts avoids all counter scheduling (context
4064 	 * switches, timer based rotation and IPIs).
4065 	 */
4066 	local_irq_save(flags);
4067 
4068 	/*
4069 	 * It must not be an event with inherit set, we cannot read
4070 	 * all child counters from atomic context.
4071 	 */
4072 	if (event->attr.inherit) {
4073 		ret = -EOPNOTSUPP;
4074 		goto out;
4075 	}
4076 
4077 	/* If this is a per-task event, it must be for current */
4078 	if ((event->attach_state & PERF_ATTACH_TASK) &&
4079 	    event->hw.target != current) {
4080 		ret = -EINVAL;
4081 		goto out;
4082 	}
4083 
4084 	/* If this is a per-CPU event, it must be for this CPU */
4085 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
4086 	    event->cpu != smp_processor_id()) {
4087 		ret = -EINVAL;
4088 		goto out;
4089 	}
4090 
4091 	/* If this is a pinned event it must be running on this CPU */
4092 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4093 		ret = -EBUSY;
4094 		goto out;
4095 	}
4096 
4097 	/*
4098 	 * If the event is currently on this CPU, its either a per-task event,
4099 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4100 	 * oncpu == -1).
4101 	 */
4102 	if (event->oncpu == smp_processor_id())
4103 		event->pmu->read(event);
4104 
4105 	*value = local64_read(&event->count);
4106 	if (enabled || running) {
4107 		u64 now = event->shadow_ctx_time + perf_clock();
4108 		u64 __enabled, __running;
4109 
4110 		__perf_update_times(event, now, &__enabled, &__running);
4111 		if (enabled)
4112 			*enabled = __enabled;
4113 		if (running)
4114 			*running = __running;
4115 	}
4116 out:
4117 	local_irq_restore(flags);
4118 
4119 	return ret;
4120 }
4121 
perf_event_read(struct perf_event * event,bool group)4122 static int perf_event_read(struct perf_event *event, bool group)
4123 {
4124 	enum perf_event_state state = READ_ONCE(event->state);
4125 	int event_cpu, ret = 0;
4126 
4127 	/*
4128 	 * If event is enabled and currently active on a CPU, update the
4129 	 * value in the event structure:
4130 	 */
4131 again:
4132 	if (state == PERF_EVENT_STATE_ACTIVE) {
4133 		struct perf_read_data data;
4134 
4135 		/*
4136 		 * Orders the ->state and ->oncpu loads such that if we see
4137 		 * ACTIVE we must also see the right ->oncpu.
4138 		 *
4139 		 * Matches the smp_wmb() from event_sched_in().
4140 		 */
4141 		smp_rmb();
4142 
4143 		event_cpu = READ_ONCE(event->oncpu);
4144 		if ((unsigned)event_cpu >= nr_cpu_ids)
4145 			return 0;
4146 
4147 		data = (struct perf_read_data){
4148 			.event = event,
4149 			.group = group,
4150 			.ret = 0,
4151 		};
4152 
4153 		preempt_disable();
4154 		event_cpu = __perf_event_read_cpu(event, event_cpu);
4155 
4156 		/*
4157 		 * Purposely ignore the smp_call_function_single() return
4158 		 * value.
4159 		 *
4160 		 * If event_cpu isn't a valid CPU it means the event got
4161 		 * scheduled out and that will have updated the event count.
4162 		 *
4163 		 * Therefore, either way, we'll have an up-to-date event count
4164 		 * after this.
4165 		 */
4166 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4167 		preempt_enable();
4168 		ret = data.ret;
4169 
4170 	} else if (state == PERF_EVENT_STATE_INACTIVE) {
4171 		struct perf_event_context *ctx = event->ctx;
4172 		unsigned long flags;
4173 
4174 		raw_spin_lock_irqsave(&ctx->lock, flags);
4175 		state = event->state;
4176 		if (state != PERF_EVENT_STATE_INACTIVE) {
4177 			raw_spin_unlock_irqrestore(&ctx->lock, flags);
4178 			goto again;
4179 		}
4180 
4181 		/*
4182 		 * May read while context is not active (e.g., thread is
4183 		 * blocked), in that case we cannot update context time
4184 		 */
4185 		if (ctx->is_active & EVENT_TIME) {
4186 			update_context_time(ctx);
4187 			update_cgrp_time_from_event(event);
4188 		}
4189 
4190 		perf_event_update_time(event);
4191 		if (group)
4192 			perf_event_update_sibling_time(event);
4193 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4194 	}
4195 
4196 	return ret;
4197 }
4198 
4199 /*
4200  * Initialize the perf_event context in a task_struct:
4201  */
__perf_event_init_context(struct perf_event_context * ctx)4202 static void __perf_event_init_context(struct perf_event_context *ctx)
4203 {
4204 	raw_spin_lock_init(&ctx->lock);
4205 	mutex_init(&ctx->mutex);
4206 	INIT_LIST_HEAD(&ctx->active_ctx_list);
4207 	perf_event_groups_init(&ctx->pinned_groups);
4208 	perf_event_groups_init(&ctx->flexible_groups);
4209 	INIT_LIST_HEAD(&ctx->event_list);
4210 	INIT_LIST_HEAD(&ctx->pinned_active);
4211 	INIT_LIST_HEAD(&ctx->flexible_active);
4212 	refcount_set(&ctx->refcount, 1);
4213 }
4214 
4215 static struct perf_event_context *
alloc_perf_context(struct pmu * pmu,struct task_struct * task)4216 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4217 {
4218 	struct perf_event_context *ctx;
4219 
4220 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4221 	if (!ctx)
4222 		return NULL;
4223 
4224 	__perf_event_init_context(ctx);
4225 	if (task)
4226 		ctx->task = get_task_struct(task);
4227 	ctx->pmu = pmu;
4228 
4229 	return ctx;
4230 }
4231 
4232 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4233 find_lively_task_by_vpid(pid_t vpid)
4234 {
4235 	struct task_struct *task;
4236 
4237 	rcu_read_lock();
4238 	if (!vpid)
4239 		task = current;
4240 	else
4241 		task = find_task_by_vpid(vpid);
4242 	if (task)
4243 		get_task_struct(task);
4244 	rcu_read_unlock();
4245 
4246 	if (!task)
4247 		return ERR_PTR(-ESRCH);
4248 
4249 	return task;
4250 }
4251 
4252 /*
4253  * Returns a matching context with refcount and pincount.
4254  */
4255 static struct perf_event_context *
find_get_context(struct pmu * pmu,struct task_struct * task,struct perf_event * event)4256 find_get_context(struct pmu *pmu, struct task_struct *task,
4257 		struct perf_event *event)
4258 {
4259 	struct perf_event_context *ctx, *clone_ctx = NULL;
4260 	struct perf_cpu_context *cpuctx;
4261 	void *task_ctx_data = NULL;
4262 	unsigned long flags;
4263 	int ctxn, err;
4264 	int cpu = event->cpu;
4265 
4266 	if (!task) {
4267 		/* Must be root to operate on a CPU event: */
4268 		err = perf_allow_cpu(&event->attr);
4269 		if (err)
4270 			return ERR_PTR(err);
4271 
4272 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4273 		ctx = &cpuctx->ctx;
4274 		get_ctx(ctx);
4275 		raw_spin_lock_irqsave(&ctx->lock, flags);
4276 		++ctx->pin_count;
4277 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4278 
4279 		return ctx;
4280 	}
4281 
4282 	err = -EINVAL;
4283 	ctxn = pmu->task_ctx_nr;
4284 	if (ctxn < 0)
4285 		goto errout;
4286 
4287 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4288 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4289 		if (!task_ctx_data) {
4290 			err = -ENOMEM;
4291 			goto errout;
4292 		}
4293 	}
4294 
4295 retry:
4296 	ctx = perf_lock_task_context(task, ctxn, &flags);
4297 	if (ctx) {
4298 		clone_ctx = unclone_ctx(ctx);
4299 		++ctx->pin_count;
4300 
4301 		if (task_ctx_data && !ctx->task_ctx_data) {
4302 			ctx->task_ctx_data = task_ctx_data;
4303 			task_ctx_data = NULL;
4304 		}
4305 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
4306 
4307 		if (clone_ctx)
4308 			put_ctx(clone_ctx);
4309 	} else {
4310 		ctx = alloc_perf_context(pmu, task);
4311 		err = -ENOMEM;
4312 		if (!ctx)
4313 			goto errout;
4314 
4315 		if (task_ctx_data) {
4316 			ctx->task_ctx_data = task_ctx_data;
4317 			task_ctx_data = NULL;
4318 		}
4319 
4320 		err = 0;
4321 		mutex_lock(&task->perf_event_mutex);
4322 		/*
4323 		 * If it has already passed perf_event_exit_task().
4324 		 * we must see PF_EXITING, it takes this mutex too.
4325 		 */
4326 		if (task->flags & PF_EXITING)
4327 			err = -ESRCH;
4328 		else if (task->perf_event_ctxp[ctxn])
4329 			err = -EAGAIN;
4330 		else {
4331 			get_ctx(ctx);
4332 			++ctx->pin_count;
4333 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4334 		}
4335 		mutex_unlock(&task->perf_event_mutex);
4336 
4337 		if (unlikely(err)) {
4338 			put_ctx(ctx);
4339 
4340 			if (err == -EAGAIN)
4341 				goto retry;
4342 			goto errout;
4343 		}
4344 	}
4345 
4346 	kfree(task_ctx_data);
4347 	return ctx;
4348 
4349 errout:
4350 	kfree(task_ctx_data);
4351 	return ERR_PTR(err);
4352 }
4353 
4354 static void perf_event_free_filter(struct perf_event *event);
4355 static void perf_event_free_bpf_prog(struct perf_event *event);
4356 
free_event_rcu(struct rcu_head * head)4357 static void free_event_rcu(struct rcu_head *head)
4358 {
4359 	struct perf_event *event;
4360 
4361 	event = container_of(head, struct perf_event, rcu_head);
4362 	if (event->ns)
4363 		put_pid_ns(event->ns);
4364 	perf_event_free_filter(event);
4365 	kfree(event);
4366 }
4367 
4368 static void ring_buffer_attach(struct perf_event *event,
4369 			       struct ring_buffer *rb);
4370 
detach_sb_event(struct perf_event * event)4371 static void detach_sb_event(struct perf_event *event)
4372 {
4373 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4374 
4375 	raw_spin_lock(&pel->lock);
4376 	list_del_rcu(&event->sb_list);
4377 	raw_spin_unlock(&pel->lock);
4378 }
4379 
is_sb_event(struct perf_event * event)4380 static bool is_sb_event(struct perf_event *event)
4381 {
4382 	struct perf_event_attr *attr = &event->attr;
4383 
4384 	if (event->parent)
4385 		return false;
4386 
4387 	if (event->attach_state & PERF_ATTACH_TASK)
4388 		return false;
4389 
4390 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4391 	    attr->comm || attr->comm_exec ||
4392 	    attr->task || attr->ksymbol ||
4393 	    attr->context_switch ||
4394 	    attr->bpf_event)
4395 		return true;
4396 	return false;
4397 }
4398 
unaccount_pmu_sb_event(struct perf_event * event)4399 static void unaccount_pmu_sb_event(struct perf_event *event)
4400 {
4401 	if (is_sb_event(event))
4402 		detach_sb_event(event);
4403 }
4404 
unaccount_event_cpu(struct perf_event * event,int cpu)4405 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4406 {
4407 	if (event->parent)
4408 		return;
4409 
4410 	if (is_cgroup_event(event))
4411 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4412 }
4413 
4414 #ifdef CONFIG_NO_HZ_FULL
4415 static DEFINE_SPINLOCK(nr_freq_lock);
4416 #endif
4417 
unaccount_freq_event_nohz(void)4418 static void unaccount_freq_event_nohz(void)
4419 {
4420 #ifdef CONFIG_NO_HZ_FULL
4421 	spin_lock(&nr_freq_lock);
4422 	if (atomic_dec_and_test(&nr_freq_events))
4423 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4424 	spin_unlock(&nr_freq_lock);
4425 #endif
4426 }
4427 
unaccount_freq_event(void)4428 static void unaccount_freq_event(void)
4429 {
4430 	if (tick_nohz_full_enabled())
4431 		unaccount_freq_event_nohz();
4432 	else
4433 		atomic_dec(&nr_freq_events);
4434 }
4435 
unaccount_event(struct perf_event * event)4436 static void unaccount_event(struct perf_event *event)
4437 {
4438 	bool dec = false;
4439 
4440 	if (event->parent)
4441 		return;
4442 
4443 	if (event->attach_state & PERF_ATTACH_TASK)
4444 		dec = true;
4445 	if (event->attr.mmap || event->attr.mmap_data)
4446 		atomic_dec(&nr_mmap_events);
4447 	if (event->attr.comm)
4448 		atomic_dec(&nr_comm_events);
4449 	if (event->attr.namespaces)
4450 		atomic_dec(&nr_namespaces_events);
4451 	if (event->attr.task)
4452 		atomic_dec(&nr_task_events);
4453 	if (event->attr.freq)
4454 		unaccount_freq_event();
4455 	if (event->attr.context_switch) {
4456 		dec = true;
4457 		atomic_dec(&nr_switch_events);
4458 	}
4459 	if (is_cgroup_event(event))
4460 		dec = true;
4461 	if (has_branch_stack(event))
4462 		dec = true;
4463 	if (event->attr.ksymbol)
4464 		atomic_dec(&nr_ksymbol_events);
4465 	if (event->attr.bpf_event)
4466 		atomic_dec(&nr_bpf_events);
4467 
4468 	if (dec) {
4469 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4470 			schedule_delayed_work(&perf_sched_work, HZ);
4471 	}
4472 
4473 	unaccount_event_cpu(event, event->cpu);
4474 
4475 	unaccount_pmu_sb_event(event);
4476 }
4477 
perf_sched_delayed(struct work_struct * work)4478 static void perf_sched_delayed(struct work_struct *work)
4479 {
4480 	mutex_lock(&perf_sched_mutex);
4481 	if (atomic_dec_and_test(&perf_sched_count))
4482 		static_branch_disable(&perf_sched_events);
4483 	mutex_unlock(&perf_sched_mutex);
4484 }
4485 
4486 /*
4487  * The following implement mutual exclusion of events on "exclusive" pmus
4488  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4489  * at a time, so we disallow creating events that might conflict, namely:
4490  *
4491  *  1) cpu-wide events in the presence of per-task events,
4492  *  2) per-task events in the presence of cpu-wide events,
4493  *  3) two matching events on the same context.
4494  *
4495  * The former two cases are handled in the allocation path (perf_event_alloc(),
4496  * _free_event()), the latter -- before the first perf_install_in_context().
4497  */
exclusive_event_init(struct perf_event * event)4498 static int exclusive_event_init(struct perf_event *event)
4499 {
4500 	struct pmu *pmu = event->pmu;
4501 
4502 	if (!is_exclusive_pmu(pmu))
4503 		return 0;
4504 
4505 	/*
4506 	 * Prevent co-existence of per-task and cpu-wide events on the
4507 	 * same exclusive pmu.
4508 	 *
4509 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4510 	 * events on this "exclusive" pmu, positive means there are
4511 	 * per-task events.
4512 	 *
4513 	 * Since this is called in perf_event_alloc() path, event::ctx
4514 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4515 	 * to mean "per-task event", because unlike other attach states it
4516 	 * never gets cleared.
4517 	 */
4518 	if (event->attach_state & PERF_ATTACH_TASK) {
4519 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4520 			return -EBUSY;
4521 	} else {
4522 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4523 			return -EBUSY;
4524 	}
4525 
4526 	return 0;
4527 }
4528 
exclusive_event_destroy(struct perf_event * event)4529 static void exclusive_event_destroy(struct perf_event *event)
4530 {
4531 	struct pmu *pmu = event->pmu;
4532 
4533 	if (!is_exclusive_pmu(pmu))
4534 		return;
4535 
4536 	/* see comment in exclusive_event_init() */
4537 	if (event->attach_state & PERF_ATTACH_TASK)
4538 		atomic_dec(&pmu->exclusive_cnt);
4539 	else
4540 		atomic_inc(&pmu->exclusive_cnt);
4541 }
4542 
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)4543 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4544 {
4545 	if ((e1->pmu == e2->pmu) &&
4546 	    (e1->cpu == e2->cpu ||
4547 	     e1->cpu == -1 ||
4548 	     e2->cpu == -1))
4549 		return true;
4550 	return false;
4551 }
4552 
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)4553 static bool exclusive_event_installable(struct perf_event *event,
4554 					struct perf_event_context *ctx)
4555 {
4556 	struct perf_event *iter_event;
4557 	struct pmu *pmu = event->pmu;
4558 
4559 	lockdep_assert_held(&ctx->mutex);
4560 
4561 	if (!is_exclusive_pmu(pmu))
4562 		return true;
4563 
4564 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4565 		if (exclusive_event_match(iter_event, event))
4566 			return false;
4567 	}
4568 
4569 	return true;
4570 }
4571 
4572 static void perf_addr_filters_splice(struct perf_event *event,
4573 				       struct list_head *head);
4574 
_free_event(struct perf_event * event)4575 static void _free_event(struct perf_event *event)
4576 {
4577 	irq_work_sync(&event->pending);
4578 
4579 	unaccount_event(event);
4580 
4581 	security_perf_event_free(event);
4582 
4583 	if (event->rb) {
4584 		/*
4585 		 * Can happen when we close an event with re-directed output.
4586 		 *
4587 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4588 		 * over us; possibly making our ring_buffer_put() the last.
4589 		 */
4590 		mutex_lock(&event->mmap_mutex);
4591 		ring_buffer_attach(event, NULL);
4592 		mutex_unlock(&event->mmap_mutex);
4593 	}
4594 
4595 	if (is_cgroup_event(event))
4596 		perf_detach_cgroup(event);
4597 
4598 	if (!event->parent) {
4599 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4600 			put_callchain_buffers();
4601 	}
4602 
4603 	perf_event_free_bpf_prog(event);
4604 	perf_addr_filters_splice(event, NULL);
4605 	kfree(event->addr_filter_ranges);
4606 
4607 	if (event->destroy)
4608 		event->destroy(event);
4609 
4610 	/*
4611 	 * Must be after ->destroy(), due to uprobe_perf_close() using
4612 	 * hw.target.
4613 	 */
4614 	if (event->hw.target)
4615 		put_task_struct(event->hw.target);
4616 
4617 	/*
4618 	 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4619 	 * all task references must be cleaned up.
4620 	 */
4621 	if (event->ctx)
4622 		put_ctx(event->ctx);
4623 
4624 	exclusive_event_destroy(event);
4625 	module_put(event->pmu->module);
4626 
4627 	call_rcu(&event->rcu_head, free_event_rcu);
4628 }
4629 
4630 /*
4631  * Used to free events which have a known refcount of 1, such as in error paths
4632  * where the event isn't exposed yet and inherited events.
4633  */
free_event(struct perf_event * event)4634 static void free_event(struct perf_event *event)
4635 {
4636 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4637 				"unexpected event refcount: %ld; ptr=%p\n",
4638 				atomic_long_read(&event->refcount), event)) {
4639 		/* leak to avoid use-after-free */
4640 		return;
4641 	}
4642 
4643 	_free_event(event);
4644 }
4645 
4646 /*
4647  * Remove user event from the owner task.
4648  */
perf_remove_from_owner(struct perf_event * event)4649 static void perf_remove_from_owner(struct perf_event *event)
4650 {
4651 	struct task_struct *owner;
4652 
4653 	rcu_read_lock();
4654 	/*
4655 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4656 	 * observe !owner it means the list deletion is complete and we can
4657 	 * indeed free this event, otherwise we need to serialize on
4658 	 * owner->perf_event_mutex.
4659 	 */
4660 	owner = READ_ONCE(event->owner);
4661 	if (owner) {
4662 		/*
4663 		 * Since delayed_put_task_struct() also drops the last
4664 		 * task reference we can safely take a new reference
4665 		 * while holding the rcu_read_lock().
4666 		 */
4667 		get_task_struct(owner);
4668 	}
4669 	rcu_read_unlock();
4670 
4671 	if (owner) {
4672 		/*
4673 		 * If we're here through perf_event_exit_task() we're already
4674 		 * holding ctx->mutex which would be an inversion wrt. the
4675 		 * normal lock order.
4676 		 *
4677 		 * However we can safely take this lock because its the child
4678 		 * ctx->mutex.
4679 		 */
4680 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4681 
4682 		/*
4683 		 * We have to re-check the event->owner field, if it is cleared
4684 		 * we raced with perf_event_exit_task(), acquiring the mutex
4685 		 * ensured they're done, and we can proceed with freeing the
4686 		 * event.
4687 		 */
4688 		if (event->owner) {
4689 			list_del_init(&event->owner_entry);
4690 			smp_store_release(&event->owner, NULL);
4691 		}
4692 		mutex_unlock(&owner->perf_event_mutex);
4693 		put_task_struct(owner);
4694 	}
4695 }
4696 
put_event(struct perf_event * event)4697 static void put_event(struct perf_event *event)
4698 {
4699 	if (!atomic_long_dec_and_test(&event->refcount))
4700 		return;
4701 
4702 	_free_event(event);
4703 }
4704 
4705 /*
4706  * Kill an event dead; while event:refcount will preserve the event
4707  * object, it will not preserve its functionality. Once the last 'user'
4708  * gives up the object, we'll destroy the thing.
4709  */
perf_event_release_kernel(struct perf_event * event)4710 int perf_event_release_kernel(struct perf_event *event)
4711 {
4712 	struct perf_event_context *ctx = event->ctx;
4713 	struct perf_event *child, *tmp;
4714 	LIST_HEAD(free_list);
4715 
4716 	/*
4717 	 * If we got here through err_file: fput(event_file); we will not have
4718 	 * attached to a context yet.
4719 	 */
4720 	if (!ctx) {
4721 		WARN_ON_ONCE(event->attach_state &
4722 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4723 		goto no_ctx;
4724 	}
4725 
4726 	if (!is_kernel_event(event))
4727 		perf_remove_from_owner(event);
4728 
4729 	ctx = perf_event_ctx_lock(event);
4730 	WARN_ON_ONCE(ctx->parent_ctx);
4731 	perf_remove_from_context(event, DETACH_GROUP);
4732 
4733 	raw_spin_lock_irq(&ctx->lock);
4734 	/*
4735 	 * Mark this event as STATE_DEAD, there is no external reference to it
4736 	 * anymore.
4737 	 *
4738 	 * Anybody acquiring event->child_mutex after the below loop _must_
4739 	 * also see this, most importantly inherit_event() which will avoid
4740 	 * placing more children on the list.
4741 	 *
4742 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4743 	 * child events.
4744 	 */
4745 	event->state = PERF_EVENT_STATE_DEAD;
4746 	raw_spin_unlock_irq(&ctx->lock);
4747 
4748 	perf_event_ctx_unlock(event, ctx);
4749 
4750 again:
4751 	mutex_lock(&event->child_mutex);
4752 	list_for_each_entry(child, &event->child_list, child_list) {
4753 
4754 		/*
4755 		 * Cannot change, child events are not migrated, see the
4756 		 * comment with perf_event_ctx_lock_nested().
4757 		 */
4758 		ctx = READ_ONCE(child->ctx);
4759 		/*
4760 		 * Since child_mutex nests inside ctx::mutex, we must jump
4761 		 * through hoops. We start by grabbing a reference on the ctx.
4762 		 *
4763 		 * Since the event cannot get freed while we hold the
4764 		 * child_mutex, the context must also exist and have a !0
4765 		 * reference count.
4766 		 */
4767 		get_ctx(ctx);
4768 
4769 		/*
4770 		 * Now that we have a ctx ref, we can drop child_mutex, and
4771 		 * acquire ctx::mutex without fear of it going away. Then we
4772 		 * can re-acquire child_mutex.
4773 		 */
4774 		mutex_unlock(&event->child_mutex);
4775 		mutex_lock(&ctx->mutex);
4776 		mutex_lock(&event->child_mutex);
4777 
4778 		/*
4779 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4780 		 * state, if child is still the first entry, it didn't get freed
4781 		 * and we can continue doing so.
4782 		 */
4783 		tmp = list_first_entry_or_null(&event->child_list,
4784 					       struct perf_event, child_list);
4785 		if (tmp == child) {
4786 			perf_remove_from_context(child, DETACH_GROUP);
4787 			list_move(&child->child_list, &free_list);
4788 			/*
4789 			 * This matches the refcount bump in inherit_event();
4790 			 * this can't be the last reference.
4791 			 */
4792 			put_event(event);
4793 		}
4794 
4795 		mutex_unlock(&event->child_mutex);
4796 		mutex_unlock(&ctx->mutex);
4797 		put_ctx(ctx);
4798 		goto again;
4799 	}
4800 	mutex_unlock(&event->child_mutex);
4801 
4802 	list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4803 		void *var = &child->ctx->refcount;
4804 
4805 		list_del(&child->child_list);
4806 		free_event(child);
4807 
4808 		/*
4809 		 * Wake any perf_event_free_task() waiting for this event to be
4810 		 * freed.
4811 		 */
4812 		smp_mb(); /* pairs with wait_var_event() */
4813 		wake_up_var(var);
4814 	}
4815 
4816 no_ctx:
4817 	put_event(event); /* Must be the 'last' reference */
4818 	return 0;
4819 }
4820 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4821 
4822 /*
4823  * Called when the last reference to the file is gone.
4824  */
perf_release(struct inode * inode,struct file * file)4825 static int perf_release(struct inode *inode, struct file *file)
4826 {
4827 	perf_event_release_kernel(file->private_data);
4828 	return 0;
4829 }
4830 
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)4831 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4832 {
4833 	struct perf_event *child;
4834 	u64 total = 0;
4835 
4836 	*enabled = 0;
4837 	*running = 0;
4838 
4839 	mutex_lock(&event->child_mutex);
4840 
4841 	(void)perf_event_read(event, false);
4842 	total += perf_event_count(event);
4843 
4844 	*enabled += event->total_time_enabled +
4845 			atomic64_read(&event->child_total_time_enabled);
4846 	*running += event->total_time_running +
4847 			atomic64_read(&event->child_total_time_running);
4848 
4849 	list_for_each_entry(child, &event->child_list, child_list) {
4850 		(void)perf_event_read(child, false);
4851 		total += perf_event_count(child);
4852 		*enabled += child->total_time_enabled;
4853 		*running += child->total_time_running;
4854 	}
4855 	mutex_unlock(&event->child_mutex);
4856 
4857 	return total;
4858 }
4859 
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)4860 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4861 {
4862 	struct perf_event_context *ctx;
4863 	u64 count;
4864 
4865 	ctx = perf_event_ctx_lock(event);
4866 	count = __perf_event_read_value(event, enabled, running);
4867 	perf_event_ctx_unlock(event, ctx);
4868 
4869 	return count;
4870 }
4871 EXPORT_SYMBOL_GPL(perf_event_read_value);
4872 
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)4873 static int __perf_read_group_add(struct perf_event *leader,
4874 					u64 read_format, u64 *values)
4875 {
4876 	struct perf_event_context *ctx = leader->ctx;
4877 	struct perf_event *sub, *parent;
4878 	unsigned long flags;
4879 	int n = 1; /* skip @nr */
4880 	int ret;
4881 
4882 	ret = perf_event_read(leader, true);
4883 	if (ret)
4884 		return ret;
4885 
4886 	raw_spin_lock_irqsave(&ctx->lock, flags);
4887 	/*
4888 	 * Verify the grouping between the parent and child (inherited)
4889 	 * events is still in tact.
4890 	 *
4891 	 * Specifically:
4892 	 *  - leader->ctx->lock pins leader->sibling_list
4893 	 *  - parent->child_mutex pins parent->child_list
4894 	 *  - parent->ctx->mutex pins parent->sibling_list
4895 	 *
4896 	 * Because parent->ctx != leader->ctx (and child_list nests inside
4897 	 * ctx->mutex), group destruction is not atomic between children, also
4898 	 * see perf_event_release_kernel(). Additionally, parent can grow the
4899 	 * group.
4900 	 *
4901 	 * Therefore it is possible to have parent and child groups in a
4902 	 * different configuration and summing over such a beast makes no sense
4903 	 * what so ever.
4904 	 *
4905 	 * Reject this.
4906 	 */
4907 	parent = leader->parent;
4908 	if (parent &&
4909 	    (parent->group_generation != leader->group_generation ||
4910 	     parent->nr_siblings != leader->nr_siblings)) {
4911 		ret = -ECHILD;
4912 		goto unlock;
4913 	}
4914 
4915 	/*
4916 	 * Since we co-schedule groups, {enabled,running} times of siblings
4917 	 * will be identical to those of the leader, so we only publish one
4918 	 * set.
4919 	 */
4920 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4921 		values[n++] += leader->total_time_enabled +
4922 			atomic64_read(&leader->child_total_time_enabled);
4923 	}
4924 
4925 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4926 		values[n++] += leader->total_time_running +
4927 			atomic64_read(&leader->child_total_time_running);
4928 	}
4929 
4930 	/*
4931 	 * Write {count,id} tuples for every sibling.
4932 	 */
4933 	values[n++] += perf_event_count(leader);
4934 	if (read_format & PERF_FORMAT_ID)
4935 		values[n++] = primary_event_id(leader);
4936 
4937 	for_each_sibling_event(sub, leader) {
4938 		values[n++] += perf_event_count(sub);
4939 		if (read_format & PERF_FORMAT_ID)
4940 			values[n++] = primary_event_id(sub);
4941 	}
4942 
4943 unlock:
4944 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4945 	return ret;
4946 }
4947 
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)4948 static int perf_read_group(struct perf_event *event,
4949 				   u64 read_format, char __user *buf)
4950 {
4951 	struct perf_event *leader = event->group_leader, *child;
4952 	struct perf_event_context *ctx = leader->ctx;
4953 	int ret;
4954 	u64 *values;
4955 
4956 	lockdep_assert_held(&ctx->mutex);
4957 
4958 	values = kzalloc(event->read_size, GFP_KERNEL);
4959 	if (!values)
4960 		return -ENOMEM;
4961 
4962 	values[0] = 1 + leader->nr_siblings;
4963 
4964 	mutex_lock(&leader->child_mutex);
4965 
4966 	ret = __perf_read_group_add(leader, read_format, values);
4967 	if (ret)
4968 		goto unlock;
4969 
4970 	list_for_each_entry(child, &leader->child_list, child_list) {
4971 		ret = __perf_read_group_add(child, read_format, values);
4972 		if (ret)
4973 			goto unlock;
4974 	}
4975 
4976 	mutex_unlock(&leader->child_mutex);
4977 
4978 	ret = event->read_size;
4979 	if (copy_to_user(buf, values, event->read_size))
4980 		ret = -EFAULT;
4981 	goto out;
4982 
4983 unlock:
4984 	mutex_unlock(&leader->child_mutex);
4985 out:
4986 	kfree(values);
4987 	return ret;
4988 }
4989 
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)4990 static int perf_read_one(struct perf_event *event,
4991 				 u64 read_format, char __user *buf)
4992 {
4993 	u64 enabled, running;
4994 	u64 values[4];
4995 	int n = 0;
4996 
4997 	values[n++] = __perf_event_read_value(event, &enabled, &running);
4998 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4999 		values[n++] = enabled;
5000 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5001 		values[n++] = running;
5002 	if (read_format & PERF_FORMAT_ID)
5003 		values[n++] = primary_event_id(event);
5004 
5005 	if (copy_to_user(buf, values, n * sizeof(u64)))
5006 		return -EFAULT;
5007 
5008 	return n * sizeof(u64);
5009 }
5010 
is_event_hup(struct perf_event * event)5011 static bool is_event_hup(struct perf_event *event)
5012 {
5013 	bool no_children;
5014 
5015 	if (event->state > PERF_EVENT_STATE_EXIT)
5016 		return false;
5017 
5018 	mutex_lock(&event->child_mutex);
5019 	no_children = list_empty(&event->child_list);
5020 	mutex_unlock(&event->child_mutex);
5021 	return no_children;
5022 }
5023 
5024 /*
5025  * Read the performance event - simple non blocking version for now
5026  */
5027 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)5028 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5029 {
5030 	u64 read_format = event->attr.read_format;
5031 	int ret;
5032 
5033 	/*
5034 	 * Return end-of-file for a read on an event that is in
5035 	 * error state (i.e. because it was pinned but it couldn't be
5036 	 * scheduled on to the CPU at some point).
5037 	 */
5038 	if (event->state == PERF_EVENT_STATE_ERROR)
5039 		return 0;
5040 
5041 	if (count < event->read_size)
5042 		return -ENOSPC;
5043 
5044 	WARN_ON_ONCE(event->ctx->parent_ctx);
5045 	if (read_format & PERF_FORMAT_GROUP)
5046 		ret = perf_read_group(event, read_format, buf);
5047 	else
5048 		ret = perf_read_one(event, read_format, buf);
5049 
5050 	return ret;
5051 }
5052 
5053 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)5054 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5055 {
5056 	struct perf_event *event = file->private_data;
5057 	struct perf_event_context *ctx;
5058 	int ret;
5059 
5060 	ret = security_perf_event_read(event);
5061 	if (ret)
5062 		return ret;
5063 
5064 	ctx = perf_event_ctx_lock(event);
5065 	ret = __perf_read(event, buf, count);
5066 	perf_event_ctx_unlock(event, ctx);
5067 
5068 	return ret;
5069 }
5070 
perf_poll(struct file * file,poll_table * wait)5071 static __poll_t perf_poll(struct file *file, poll_table *wait)
5072 {
5073 	struct perf_event *event = file->private_data;
5074 	struct ring_buffer *rb;
5075 	__poll_t events = EPOLLHUP;
5076 
5077 	poll_wait(file, &event->waitq, wait);
5078 
5079 	if (is_event_hup(event))
5080 		return events;
5081 
5082 	/*
5083 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
5084 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5085 	 */
5086 	mutex_lock(&event->mmap_mutex);
5087 	rb = event->rb;
5088 	if (rb)
5089 		events = atomic_xchg(&rb->poll, 0);
5090 	mutex_unlock(&event->mmap_mutex);
5091 	return events;
5092 }
5093 
_perf_event_reset(struct perf_event * event)5094 static void _perf_event_reset(struct perf_event *event)
5095 {
5096 	(void)perf_event_read(event, false);
5097 	local64_set(&event->count, 0);
5098 	perf_event_update_userpage(event);
5099 }
5100 
5101 /*
5102  * Holding the top-level event's child_mutex means that any
5103  * descendant process that has inherited this event will block
5104  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5105  * task existence requirements of perf_event_enable/disable.
5106  */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5107 static void perf_event_for_each_child(struct perf_event *event,
5108 					void (*func)(struct perf_event *))
5109 {
5110 	struct perf_event *child;
5111 
5112 	WARN_ON_ONCE(event->ctx->parent_ctx);
5113 
5114 	mutex_lock(&event->child_mutex);
5115 	func(event);
5116 	list_for_each_entry(child, &event->child_list, child_list)
5117 		func(child);
5118 	mutex_unlock(&event->child_mutex);
5119 }
5120 
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5121 static void perf_event_for_each(struct perf_event *event,
5122 				  void (*func)(struct perf_event *))
5123 {
5124 	struct perf_event_context *ctx = event->ctx;
5125 	struct perf_event *sibling;
5126 
5127 	lockdep_assert_held(&ctx->mutex);
5128 
5129 	event = event->group_leader;
5130 
5131 	perf_event_for_each_child(event, func);
5132 	for_each_sibling_event(sibling, event)
5133 		perf_event_for_each_child(sibling, func);
5134 }
5135 
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5136 static void __perf_event_period(struct perf_event *event,
5137 				struct perf_cpu_context *cpuctx,
5138 				struct perf_event_context *ctx,
5139 				void *info)
5140 {
5141 	u64 value = *((u64 *)info);
5142 	bool active;
5143 
5144 	if (event->attr.freq) {
5145 		event->attr.sample_freq = value;
5146 	} else {
5147 		event->attr.sample_period = value;
5148 		event->hw.sample_period = value;
5149 	}
5150 
5151 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
5152 	if (active) {
5153 		perf_pmu_disable(ctx->pmu);
5154 		/*
5155 		 * We could be throttled; unthrottle now to avoid the tick
5156 		 * trying to unthrottle while we already re-started the event.
5157 		 */
5158 		if (event->hw.interrupts == MAX_INTERRUPTS) {
5159 			event->hw.interrupts = 0;
5160 			perf_log_throttle(event, 1);
5161 		}
5162 		event->pmu->stop(event, PERF_EF_UPDATE);
5163 	}
5164 
5165 	local64_set(&event->hw.period_left, 0);
5166 
5167 	if (active) {
5168 		event->pmu->start(event, PERF_EF_RELOAD);
5169 		perf_pmu_enable(ctx->pmu);
5170 	}
5171 }
5172 
perf_event_check_period(struct perf_event * event,u64 value)5173 static int perf_event_check_period(struct perf_event *event, u64 value)
5174 {
5175 	return event->pmu->check_period(event, value);
5176 }
5177 
perf_event_period(struct perf_event * event,u64 __user * arg)5178 static int perf_event_period(struct perf_event *event, u64 __user *arg)
5179 {
5180 	u64 value;
5181 
5182 	if (!is_sampling_event(event))
5183 		return -EINVAL;
5184 
5185 	if (copy_from_user(&value, arg, sizeof(value)))
5186 		return -EFAULT;
5187 
5188 	if (!value)
5189 		return -EINVAL;
5190 
5191 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5192 		return -EINVAL;
5193 
5194 	if (perf_event_check_period(event, value))
5195 		return -EINVAL;
5196 
5197 	if (!event->attr.freq && (value & (1ULL << 63)))
5198 		return -EINVAL;
5199 
5200 	event_function_call(event, __perf_event_period, &value);
5201 
5202 	return 0;
5203 }
5204 
5205 static const struct file_operations perf_fops;
5206 
perf_fget_light(int fd,struct fd * p)5207 static inline int perf_fget_light(int fd, struct fd *p)
5208 {
5209 	struct fd f = fdget(fd);
5210 	if (!f.file)
5211 		return -EBADF;
5212 
5213 	if (f.file->f_op != &perf_fops) {
5214 		fdput(f);
5215 		return -EBADF;
5216 	}
5217 	*p = f;
5218 	return 0;
5219 }
5220 
5221 static int perf_event_set_output(struct perf_event *event,
5222 				 struct perf_event *output_event);
5223 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5224 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5225 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5226 			  struct perf_event_attr *attr);
5227 
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)5228 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5229 {
5230 	void (*func)(struct perf_event *);
5231 	u32 flags = arg;
5232 
5233 	switch (cmd) {
5234 	case PERF_EVENT_IOC_ENABLE:
5235 		func = _perf_event_enable;
5236 		break;
5237 	case PERF_EVENT_IOC_DISABLE:
5238 		func = _perf_event_disable;
5239 		break;
5240 	case PERF_EVENT_IOC_RESET:
5241 		func = _perf_event_reset;
5242 		break;
5243 
5244 	case PERF_EVENT_IOC_REFRESH:
5245 		return _perf_event_refresh(event, arg);
5246 
5247 	case PERF_EVENT_IOC_PERIOD:
5248 		return perf_event_period(event, (u64 __user *)arg);
5249 
5250 	case PERF_EVENT_IOC_ID:
5251 	{
5252 		u64 id = primary_event_id(event);
5253 
5254 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5255 			return -EFAULT;
5256 		return 0;
5257 	}
5258 
5259 	case PERF_EVENT_IOC_SET_OUTPUT:
5260 	{
5261 		int ret;
5262 		if (arg != -1) {
5263 			struct perf_event *output_event;
5264 			struct fd output;
5265 			ret = perf_fget_light(arg, &output);
5266 			if (ret)
5267 				return ret;
5268 			output_event = output.file->private_data;
5269 			ret = perf_event_set_output(event, output_event);
5270 			fdput(output);
5271 		} else {
5272 			ret = perf_event_set_output(event, NULL);
5273 		}
5274 		return ret;
5275 	}
5276 
5277 	case PERF_EVENT_IOC_SET_FILTER:
5278 		return perf_event_set_filter(event, (void __user *)arg);
5279 
5280 	case PERF_EVENT_IOC_SET_BPF:
5281 		return perf_event_set_bpf_prog(event, arg);
5282 
5283 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5284 		struct ring_buffer *rb;
5285 
5286 		rcu_read_lock();
5287 		rb = rcu_dereference(event->rb);
5288 		if (!rb || !rb->nr_pages) {
5289 			rcu_read_unlock();
5290 			return -EINVAL;
5291 		}
5292 		rb_toggle_paused(rb, !!arg);
5293 		rcu_read_unlock();
5294 		return 0;
5295 	}
5296 
5297 	case PERF_EVENT_IOC_QUERY_BPF:
5298 		return perf_event_query_prog_array(event, (void __user *)arg);
5299 
5300 	case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5301 		struct perf_event_attr new_attr;
5302 		int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5303 					 &new_attr);
5304 
5305 		if (err)
5306 			return err;
5307 
5308 		return perf_event_modify_attr(event,  &new_attr);
5309 	}
5310 	default:
5311 		return -ENOTTY;
5312 	}
5313 
5314 	if (flags & PERF_IOC_FLAG_GROUP)
5315 		perf_event_for_each(event, func);
5316 	else
5317 		perf_event_for_each_child(event, func);
5318 
5319 	return 0;
5320 }
5321 
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5322 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5323 {
5324 	struct perf_event *event = file->private_data;
5325 	struct perf_event_context *ctx;
5326 	long ret;
5327 
5328 	/* Treat ioctl like writes as it is likely a mutating operation. */
5329 	ret = security_perf_event_write(event);
5330 	if (ret)
5331 		return ret;
5332 
5333 	ctx = perf_event_ctx_lock(event);
5334 	ret = _perf_ioctl(event, cmd, arg);
5335 	perf_event_ctx_unlock(event, ctx);
5336 
5337 	return ret;
5338 }
5339 
5340 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5341 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5342 				unsigned long arg)
5343 {
5344 	switch (_IOC_NR(cmd)) {
5345 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5346 	case _IOC_NR(PERF_EVENT_IOC_ID):
5347 	case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5348 	case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5349 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5350 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5351 			cmd &= ~IOCSIZE_MASK;
5352 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5353 		}
5354 		break;
5355 	}
5356 	return perf_ioctl(file, cmd, arg);
5357 }
5358 #else
5359 # define perf_compat_ioctl NULL
5360 #endif
5361 
perf_event_task_enable(void)5362 int perf_event_task_enable(void)
5363 {
5364 	struct perf_event_context *ctx;
5365 	struct perf_event *event;
5366 
5367 	mutex_lock(&current->perf_event_mutex);
5368 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5369 		ctx = perf_event_ctx_lock(event);
5370 		perf_event_for_each_child(event, _perf_event_enable);
5371 		perf_event_ctx_unlock(event, ctx);
5372 	}
5373 	mutex_unlock(&current->perf_event_mutex);
5374 
5375 	return 0;
5376 }
5377 
perf_event_task_disable(void)5378 int perf_event_task_disable(void)
5379 {
5380 	struct perf_event_context *ctx;
5381 	struct perf_event *event;
5382 
5383 	mutex_lock(&current->perf_event_mutex);
5384 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5385 		ctx = perf_event_ctx_lock(event);
5386 		perf_event_for_each_child(event, _perf_event_disable);
5387 		perf_event_ctx_unlock(event, ctx);
5388 	}
5389 	mutex_unlock(&current->perf_event_mutex);
5390 
5391 	return 0;
5392 }
5393 
perf_event_index(struct perf_event * event)5394 static int perf_event_index(struct perf_event *event)
5395 {
5396 	if (event->hw.state & PERF_HES_STOPPED)
5397 		return 0;
5398 
5399 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5400 		return 0;
5401 
5402 	return event->pmu->event_idx(event);
5403 }
5404 
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)5405 static void calc_timer_values(struct perf_event *event,
5406 				u64 *now,
5407 				u64 *enabled,
5408 				u64 *running)
5409 {
5410 	u64 ctx_time;
5411 
5412 	*now = perf_clock();
5413 	ctx_time = event->shadow_ctx_time + *now;
5414 	__perf_update_times(event, ctx_time, enabled, running);
5415 }
5416 
perf_event_init_userpage(struct perf_event * event)5417 static void perf_event_init_userpage(struct perf_event *event)
5418 {
5419 	struct perf_event_mmap_page *userpg;
5420 	struct ring_buffer *rb;
5421 
5422 	rcu_read_lock();
5423 	rb = rcu_dereference(event->rb);
5424 	if (!rb)
5425 		goto unlock;
5426 
5427 	userpg = rb->user_page;
5428 
5429 	/* Allow new userspace to detect that bit 0 is deprecated */
5430 	userpg->cap_bit0_is_deprecated = 1;
5431 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5432 	userpg->data_offset = PAGE_SIZE;
5433 	userpg->data_size = perf_data_size(rb);
5434 
5435 unlock:
5436 	rcu_read_unlock();
5437 }
5438 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)5439 void __weak arch_perf_update_userpage(
5440 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5441 {
5442 }
5443 
5444 /*
5445  * Callers need to ensure there can be no nesting of this function, otherwise
5446  * the seqlock logic goes bad. We can not serialize this because the arch
5447  * code calls this from NMI context.
5448  */
perf_event_update_userpage(struct perf_event * event)5449 void perf_event_update_userpage(struct perf_event *event)
5450 {
5451 	struct perf_event_mmap_page *userpg;
5452 	struct ring_buffer *rb;
5453 	u64 enabled, running, now;
5454 
5455 	rcu_read_lock();
5456 	rb = rcu_dereference(event->rb);
5457 	if (!rb)
5458 		goto unlock;
5459 
5460 	/*
5461 	 * compute total_time_enabled, total_time_running
5462 	 * based on snapshot values taken when the event
5463 	 * was last scheduled in.
5464 	 *
5465 	 * we cannot simply called update_context_time()
5466 	 * because of locking issue as we can be called in
5467 	 * NMI context
5468 	 */
5469 	calc_timer_values(event, &now, &enabled, &running);
5470 
5471 	userpg = rb->user_page;
5472 	/*
5473 	 * Disable preemption to guarantee consistent time stamps are stored to
5474 	 * the user page.
5475 	 */
5476 	preempt_disable();
5477 	++userpg->lock;
5478 	barrier();
5479 	userpg->index = perf_event_index(event);
5480 	userpg->offset = perf_event_count(event);
5481 	if (userpg->index)
5482 		userpg->offset -= local64_read(&event->hw.prev_count);
5483 
5484 	userpg->time_enabled = enabled +
5485 			atomic64_read(&event->child_total_time_enabled);
5486 
5487 	userpg->time_running = running +
5488 			atomic64_read(&event->child_total_time_running);
5489 
5490 	arch_perf_update_userpage(event, userpg, now);
5491 
5492 	barrier();
5493 	++userpg->lock;
5494 	preempt_enable();
5495 unlock:
5496 	rcu_read_unlock();
5497 }
5498 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5499 
perf_mmap_fault(struct vm_fault * vmf)5500 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5501 {
5502 	struct perf_event *event = vmf->vma->vm_file->private_data;
5503 	struct ring_buffer *rb;
5504 	vm_fault_t ret = VM_FAULT_SIGBUS;
5505 
5506 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5507 		if (vmf->pgoff == 0)
5508 			ret = 0;
5509 		return ret;
5510 	}
5511 
5512 	rcu_read_lock();
5513 	rb = rcu_dereference(event->rb);
5514 	if (!rb)
5515 		goto unlock;
5516 
5517 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5518 		goto unlock;
5519 
5520 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5521 	if (!vmf->page)
5522 		goto unlock;
5523 
5524 	get_page(vmf->page);
5525 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5526 	vmf->page->index   = vmf->pgoff;
5527 
5528 	ret = 0;
5529 unlock:
5530 	rcu_read_unlock();
5531 
5532 	return ret;
5533 }
5534 
ring_buffer_attach(struct perf_event * event,struct ring_buffer * rb)5535 static void ring_buffer_attach(struct perf_event *event,
5536 			       struct ring_buffer *rb)
5537 {
5538 	struct ring_buffer *old_rb = NULL;
5539 	unsigned long flags;
5540 
5541 	if (event->rb) {
5542 		/*
5543 		 * Should be impossible, we set this when removing
5544 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5545 		 */
5546 		WARN_ON_ONCE(event->rcu_pending);
5547 
5548 		old_rb = event->rb;
5549 		spin_lock_irqsave(&old_rb->event_lock, flags);
5550 		list_del_rcu(&event->rb_entry);
5551 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5552 
5553 		event->rcu_batches = get_state_synchronize_rcu();
5554 		event->rcu_pending = 1;
5555 	}
5556 
5557 	if (rb) {
5558 		if (event->rcu_pending) {
5559 			cond_synchronize_rcu(event->rcu_batches);
5560 			event->rcu_pending = 0;
5561 		}
5562 
5563 		spin_lock_irqsave(&rb->event_lock, flags);
5564 		list_add_rcu(&event->rb_entry, &rb->event_list);
5565 		spin_unlock_irqrestore(&rb->event_lock, flags);
5566 	}
5567 
5568 	/*
5569 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5570 	 * before swizzling the event::rb pointer; if it's getting
5571 	 * unmapped, its aux_mmap_count will be 0 and it won't
5572 	 * restart. See the comment in __perf_pmu_output_stop().
5573 	 *
5574 	 * Data will inevitably be lost when set_output is done in
5575 	 * mid-air, but then again, whoever does it like this is
5576 	 * not in for the data anyway.
5577 	 */
5578 	if (has_aux(event))
5579 		perf_event_stop(event, 0);
5580 
5581 	rcu_assign_pointer(event->rb, rb);
5582 
5583 	if (old_rb) {
5584 		ring_buffer_put(old_rb);
5585 		/*
5586 		 * Since we detached before setting the new rb, so that we
5587 		 * could attach the new rb, we could have missed a wakeup.
5588 		 * Provide it now.
5589 		 */
5590 		wake_up_all(&event->waitq);
5591 	}
5592 }
5593 
ring_buffer_wakeup(struct perf_event * event)5594 static void ring_buffer_wakeup(struct perf_event *event)
5595 {
5596 	struct ring_buffer *rb;
5597 
5598 	rcu_read_lock();
5599 	rb = rcu_dereference(event->rb);
5600 	if (rb) {
5601 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5602 			wake_up_all(&event->waitq);
5603 	}
5604 	rcu_read_unlock();
5605 }
5606 
ring_buffer_get(struct perf_event * event)5607 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5608 {
5609 	struct ring_buffer *rb;
5610 
5611 	rcu_read_lock();
5612 	rb = rcu_dereference(event->rb);
5613 	if (rb) {
5614 		if (!refcount_inc_not_zero(&rb->refcount))
5615 			rb = NULL;
5616 	}
5617 	rcu_read_unlock();
5618 
5619 	return rb;
5620 }
5621 
ring_buffer_put(struct ring_buffer * rb)5622 void ring_buffer_put(struct ring_buffer *rb)
5623 {
5624 	if (!refcount_dec_and_test(&rb->refcount))
5625 		return;
5626 
5627 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5628 
5629 	call_rcu(&rb->rcu_head, rb_free_rcu);
5630 }
5631 
perf_mmap_open(struct vm_area_struct * vma)5632 static void perf_mmap_open(struct vm_area_struct *vma)
5633 {
5634 	struct perf_event *event = vma->vm_file->private_data;
5635 
5636 	atomic_inc(&event->mmap_count);
5637 	atomic_inc(&event->rb->mmap_count);
5638 
5639 	if (vma->vm_pgoff)
5640 		atomic_inc(&event->rb->aux_mmap_count);
5641 
5642 	if (event->pmu->event_mapped)
5643 		event->pmu->event_mapped(event, vma->vm_mm);
5644 }
5645 
5646 static void perf_pmu_output_stop(struct perf_event *event);
5647 
5648 /*
5649  * A buffer can be mmap()ed multiple times; either directly through the same
5650  * event, or through other events by use of perf_event_set_output().
5651  *
5652  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5653  * the buffer here, where we still have a VM context. This means we need
5654  * to detach all events redirecting to us.
5655  */
perf_mmap_close(struct vm_area_struct * vma)5656 static void perf_mmap_close(struct vm_area_struct *vma)
5657 {
5658 	struct perf_event *event = vma->vm_file->private_data;
5659 	struct ring_buffer *rb = ring_buffer_get(event);
5660 	struct user_struct *mmap_user = rb->mmap_user;
5661 	int mmap_locked = rb->mmap_locked;
5662 	unsigned long size = perf_data_size(rb);
5663 	bool detach_rest = false;
5664 
5665 	if (event->pmu->event_unmapped)
5666 		event->pmu->event_unmapped(event, vma->vm_mm);
5667 
5668 	/*
5669 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5670 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5671 	 * serialize with perf_mmap here.
5672 	 */
5673 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5674 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5675 		/*
5676 		 * Stop all AUX events that are writing to this buffer,
5677 		 * so that we can free its AUX pages and corresponding PMU
5678 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5679 		 * they won't start any more (see perf_aux_output_begin()).
5680 		 */
5681 		perf_pmu_output_stop(event);
5682 
5683 		/* now it's safe to free the pages */
5684 		atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5685 		atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5686 
5687 		/* this has to be the last one */
5688 		rb_free_aux(rb);
5689 		WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5690 
5691 		mutex_unlock(&event->mmap_mutex);
5692 	}
5693 
5694 	if (atomic_dec_and_test(&rb->mmap_count))
5695 		detach_rest = true;
5696 
5697 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5698 		goto out_put;
5699 
5700 	ring_buffer_attach(event, NULL);
5701 	mutex_unlock(&event->mmap_mutex);
5702 
5703 	/* If there's still other mmap()s of this buffer, we're done. */
5704 	if (!detach_rest)
5705 		goto out_put;
5706 
5707 	/*
5708 	 * No other mmap()s, detach from all other events that might redirect
5709 	 * into the now unreachable buffer. Somewhat complicated by the
5710 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5711 	 */
5712 again:
5713 	rcu_read_lock();
5714 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5715 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5716 			/*
5717 			 * This event is en-route to free_event() which will
5718 			 * detach it and remove it from the list.
5719 			 */
5720 			continue;
5721 		}
5722 		rcu_read_unlock();
5723 
5724 		mutex_lock(&event->mmap_mutex);
5725 		/*
5726 		 * Check we didn't race with perf_event_set_output() which can
5727 		 * swizzle the rb from under us while we were waiting to
5728 		 * acquire mmap_mutex.
5729 		 *
5730 		 * If we find a different rb; ignore this event, a next
5731 		 * iteration will no longer find it on the list. We have to
5732 		 * still restart the iteration to make sure we're not now
5733 		 * iterating the wrong list.
5734 		 */
5735 		if (event->rb == rb)
5736 			ring_buffer_attach(event, NULL);
5737 
5738 		mutex_unlock(&event->mmap_mutex);
5739 		put_event(event);
5740 
5741 		/*
5742 		 * Restart the iteration; either we're on the wrong list or
5743 		 * destroyed its integrity by doing a deletion.
5744 		 */
5745 		goto again;
5746 	}
5747 	rcu_read_unlock();
5748 
5749 	/*
5750 	 * It could be there's still a few 0-ref events on the list; they'll
5751 	 * get cleaned up by free_event() -- they'll also still have their
5752 	 * ref on the rb and will free it whenever they are done with it.
5753 	 *
5754 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5755 	 * undo the VM accounting.
5756 	 */
5757 
5758 	atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5759 			&mmap_user->locked_vm);
5760 	atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5761 	free_uid(mmap_user);
5762 
5763 out_put:
5764 	ring_buffer_put(rb); /* could be last */
5765 }
5766 
5767 static const struct vm_operations_struct perf_mmap_vmops = {
5768 	.open		= perf_mmap_open,
5769 	.close		= perf_mmap_close, /* non mergeable */
5770 	.fault		= perf_mmap_fault,
5771 	.page_mkwrite	= perf_mmap_fault,
5772 };
5773 
perf_mmap(struct file * file,struct vm_area_struct * vma)5774 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5775 {
5776 	struct perf_event *event = file->private_data;
5777 	unsigned long user_locked, user_lock_limit;
5778 	struct user_struct *user = current_user();
5779 	unsigned long locked, lock_limit;
5780 	struct ring_buffer *rb = NULL;
5781 	unsigned long vma_size;
5782 	unsigned long nr_pages;
5783 	long user_extra = 0, extra = 0;
5784 	int ret = 0, flags = 0;
5785 
5786 	/*
5787 	 * Don't allow mmap() of inherited per-task counters. This would
5788 	 * create a performance issue due to all children writing to the
5789 	 * same rb.
5790 	 */
5791 	if (event->cpu == -1 && event->attr.inherit)
5792 		return -EINVAL;
5793 
5794 	if (!(vma->vm_flags & VM_SHARED))
5795 		return -EINVAL;
5796 
5797 	ret = security_perf_event_read(event);
5798 	if (ret)
5799 		return ret;
5800 
5801 	vma_size = vma->vm_end - vma->vm_start;
5802 
5803 	if (vma->vm_pgoff == 0) {
5804 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5805 	} else {
5806 		/*
5807 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5808 		 * mapped, all subsequent mappings should have the same size
5809 		 * and offset. Must be above the normal perf buffer.
5810 		 */
5811 		u64 aux_offset, aux_size;
5812 
5813 		if (!event->rb)
5814 			return -EINVAL;
5815 
5816 		nr_pages = vma_size / PAGE_SIZE;
5817 
5818 		mutex_lock(&event->mmap_mutex);
5819 		ret = -EINVAL;
5820 
5821 		rb = event->rb;
5822 		if (!rb)
5823 			goto aux_unlock;
5824 
5825 		aux_offset = READ_ONCE(rb->user_page->aux_offset);
5826 		aux_size = READ_ONCE(rb->user_page->aux_size);
5827 
5828 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5829 			goto aux_unlock;
5830 
5831 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5832 			goto aux_unlock;
5833 
5834 		/* already mapped with a different offset */
5835 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5836 			goto aux_unlock;
5837 
5838 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5839 			goto aux_unlock;
5840 
5841 		/* already mapped with a different size */
5842 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5843 			goto aux_unlock;
5844 
5845 		if (!is_power_of_2(nr_pages))
5846 			goto aux_unlock;
5847 
5848 		if (!atomic_inc_not_zero(&rb->mmap_count))
5849 			goto aux_unlock;
5850 
5851 		if (rb_has_aux(rb)) {
5852 			atomic_inc(&rb->aux_mmap_count);
5853 			ret = 0;
5854 			goto unlock;
5855 		}
5856 
5857 		atomic_set(&rb->aux_mmap_count, 1);
5858 		user_extra = nr_pages;
5859 
5860 		goto accounting;
5861 	}
5862 
5863 	/*
5864 	 * If we have rb pages ensure they're a power-of-two number, so we
5865 	 * can do bitmasks instead of modulo.
5866 	 */
5867 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5868 		return -EINVAL;
5869 
5870 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5871 		return -EINVAL;
5872 
5873 	WARN_ON_ONCE(event->ctx->parent_ctx);
5874 again:
5875 	mutex_lock(&event->mmap_mutex);
5876 	if (event->rb) {
5877 		if (event->rb->nr_pages != nr_pages) {
5878 			ret = -EINVAL;
5879 			goto unlock;
5880 		}
5881 
5882 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5883 			/*
5884 			 * Raced against perf_mmap_close(); remove the
5885 			 * event and try again.
5886 			 */
5887 			ring_buffer_attach(event, NULL);
5888 			mutex_unlock(&event->mmap_mutex);
5889 			goto again;
5890 		}
5891 
5892 		goto unlock;
5893 	}
5894 
5895 	user_extra = nr_pages + 1;
5896 
5897 accounting:
5898 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5899 
5900 	/*
5901 	 * Increase the limit linearly with more CPUs:
5902 	 */
5903 	user_lock_limit *= num_online_cpus();
5904 
5905 	user_locked = atomic_long_read(&user->locked_vm);
5906 
5907 	/*
5908 	 * sysctl_perf_event_mlock may have changed, so that
5909 	 *     user->locked_vm > user_lock_limit
5910 	 */
5911 	if (user_locked > user_lock_limit)
5912 		user_locked = user_lock_limit;
5913 	user_locked += user_extra;
5914 
5915 	if (user_locked <= user_lock_limit) {
5916 		/* charge all to locked_vm */
5917 	} else if (atomic_long_read(&user->locked_vm) >= user_lock_limit) {
5918 		/* charge all to pinned_vm */
5919 		extra = user_extra;
5920 		user_extra = 0;
5921 	} else {
5922 		/*
5923 		 * charge locked_vm until it hits user_lock_limit;
5924 		 * charge the rest from pinned_vm
5925 		 */
5926 		extra = user_locked - user_lock_limit;
5927 		user_extra -= extra;
5928 	}
5929 
5930 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5931 	lock_limit >>= PAGE_SHIFT;
5932 	locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5933 
5934 	if ((locked > lock_limit) && perf_is_paranoid() &&
5935 		!capable(CAP_IPC_LOCK)) {
5936 		ret = -EPERM;
5937 		goto unlock;
5938 	}
5939 
5940 	WARN_ON(!rb && event->rb);
5941 
5942 	if (vma->vm_flags & VM_WRITE)
5943 		flags |= RING_BUFFER_WRITABLE;
5944 
5945 	if (!rb) {
5946 		rb = rb_alloc(nr_pages,
5947 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5948 			      event->cpu, flags);
5949 
5950 		if (!rb) {
5951 			ret = -ENOMEM;
5952 			goto unlock;
5953 		}
5954 
5955 		atomic_set(&rb->mmap_count, 1);
5956 		rb->mmap_user = get_current_user();
5957 		rb->mmap_locked = extra;
5958 
5959 		ring_buffer_attach(event, rb);
5960 
5961 		perf_event_init_userpage(event);
5962 		perf_event_update_userpage(event);
5963 	} else {
5964 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5965 				   event->attr.aux_watermark, flags);
5966 		if (!ret)
5967 			rb->aux_mmap_locked = extra;
5968 	}
5969 
5970 unlock:
5971 	if (!ret) {
5972 		atomic_long_add(user_extra, &user->locked_vm);
5973 		atomic64_add(extra, &vma->vm_mm->pinned_vm);
5974 
5975 		atomic_inc(&event->mmap_count);
5976 	} else if (rb) {
5977 		atomic_dec(&rb->mmap_count);
5978 	}
5979 aux_unlock:
5980 	mutex_unlock(&event->mmap_mutex);
5981 
5982 	/*
5983 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5984 	 * vma.
5985 	 */
5986 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5987 	vma->vm_ops = &perf_mmap_vmops;
5988 
5989 	if (event->pmu->event_mapped)
5990 		event->pmu->event_mapped(event, vma->vm_mm);
5991 
5992 	return ret;
5993 }
5994 
perf_fasync(int fd,struct file * filp,int on)5995 static int perf_fasync(int fd, struct file *filp, int on)
5996 {
5997 	struct inode *inode = file_inode(filp);
5998 	struct perf_event *event = filp->private_data;
5999 	int retval;
6000 
6001 	inode_lock(inode);
6002 	retval = fasync_helper(fd, filp, on, &event->fasync);
6003 	inode_unlock(inode);
6004 
6005 	if (retval < 0)
6006 		return retval;
6007 
6008 	return 0;
6009 }
6010 
6011 static const struct file_operations perf_fops = {
6012 	.llseek			= no_llseek,
6013 	.release		= perf_release,
6014 	.read			= perf_read,
6015 	.poll			= perf_poll,
6016 	.unlocked_ioctl		= perf_ioctl,
6017 	.compat_ioctl		= perf_compat_ioctl,
6018 	.mmap			= perf_mmap,
6019 	.fasync			= perf_fasync,
6020 };
6021 
6022 /*
6023  * Perf event wakeup
6024  *
6025  * If there's data, ensure we set the poll() state and publish everything
6026  * to user-space before waking everybody up.
6027  */
6028 
perf_event_fasync(struct perf_event * event)6029 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6030 {
6031 	/* only the parent has fasync state */
6032 	if (event->parent)
6033 		event = event->parent;
6034 	return &event->fasync;
6035 }
6036 
perf_event_wakeup(struct perf_event * event)6037 void perf_event_wakeup(struct perf_event *event)
6038 {
6039 	ring_buffer_wakeup(event);
6040 
6041 	if (event->pending_kill) {
6042 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6043 		event->pending_kill = 0;
6044 	}
6045 }
6046 
perf_pending_event_disable(struct perf_event * event)6047 static void perf_pending_event_disable(struct perf_event *event)
6048 {
6049 	int cpu = READ_ONCE(event->pending_disable);
6050 
6051 	if (cpu < 0)
6052 		return;
6053 
6054 	if (cpu == smp_processor_id()) {
6055 		WRITE_ONCE(event->pending_disable, -1);
6056 		perf_event_disable_local(event);
6057 		return;
6058 	}
6059 
6060 	/*
6061 	 *  CPU-A			CPU-B
6062 	 *
6063 	 *  perf_event_disable_inatomic()
6064 	 *    @pending_disable = CPU-A;
6065 	 *    irq_work_queue();
6066 	 *
6067 	 *  sched-out
6068 	 *    @pending_disable = -1;
6069 	 *
6070 	 *				sched-in
6071 	 *				perf_event_disable_inatomic()
6072 	 *				  @pending_disable = CPU-B;
6073 	 *				  irq_work_queue(); // FAILS
6074 	 *
6075 	 *  irq_work_run()
6076 	 *    perf_pending_event()
6077 	 *
6078 	 * But the event runs on CPU-B and wants disabling there.
6079 	 */
6080 	irq_work_queue_on(&event->pending, cpu);
6081 }
6082 
perf_pending_event(struct irq_work * entry)6083 static void perf_pending_event(struct irq_work *entry)
6084 {
6085 	struct perf_event *event = container_of(entry, struct perf_event, pending);
6086 	int rctx;
6087 
6088 	rctx = perf_swevent_get_recursion_context();
6089 	/*
6090 	 * If we 'fail' here, that's OK, it means recursion is already disabled
6091 	 * and we won't recurse 'further'.
6092 	 */
6093 
6094 	perf_pending_event_disable(event);
6095 
6096 	if (event->pending_wakeup) {
6097 		event->pending_wakeup = 0;
6098 		perf_event_wakeup(event);
6099 	}
6100 
6101 	if (rctx >= 0)
6102 		perf_swevent_put_recursion_context(rctx);
6103 }
6104 
6105 /*
6106  * We assume there is only KVM supporting the callbacks.
6107  * Later on, we might change it to a list if there is
6108  * another virtualization implementation supporting the callbacks.
6109  */
6110 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6111 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6112 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6113 {
6114 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6115 		return -EBUSY;
6116 
6117 	rcu_assign_pointer(perf_guest_cbs, cbs);
6118 	return 0;
6119 }
6120 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6121 
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6122 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6123 {
6124 	if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6125 		return -EINVAL;
6126 
6127 	rcu_assign_pointer(perf_guest_cbs, NULL);
6128 	synchronize_rcu();
6129 	return 0;
6130 }
6131 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6132 
6133 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)6134 perf_output_sample_regs(struct perf_output_handle *handle,
6135 			struct pt_regs *regs, u64 mask)
6136 {
6137 	int bit;
6138 	DECLARE_BITMAP(_mask, 64);
6139 
6140 	bitmap_from_u64(_mask, mask);
6141 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6142 		u64 val;
6143 
6144 		val = perf_reg_value(regs, bit);
6145 		perf_output_put(handle, val);
6146 	}
6147 }
6148 
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs,struct pt_regs * regs_user_copy)6149 static void perf_sample_regs_user(struct perf_regs *regs_user,
6150 				  struct pt_regs *regs,
6151 				  struct pt_regs *regs_user_copy)
6152 {
6153 	if (user_mode(regs)) {
6154 		regs_user->abi = perf_reg_abi(current);
6155 		regs_user->regs = regs;
6156 	} else if (!(current->flags & PF_KTHREAD)) {
6157 		perf_get_regs_user(regs_user, regs, regs_user_copy);
6158 	} else {
6159 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6160 		regs_user->regs = NULL;
6161 	}
6162 }
6163 
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)6164 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6165 				  struct pt_regs *regs)
6166 {
6167 	regs_intr->regs = regs;
6168 	regs_intr->abi  = perf_reg_abi(current);
6169 }
6170 
6171 
6172 /*
6173  * Get remaining task size from user stack pointer.
6174  *
6175  * It'd be better to take stack vma map and limit this more
6176  * precisely, but there's no way to get it safely under interrupt,
6177  * so using TASK_SIZE as limit.
6178  */
perf_ustack_task_size(struct pt_regs * regs)6179 static u64 perf_ustack_task_size(struct pt_regs *regs)
6180 {
6181 	unsigned long addr = perf_user_stack_pointer(regs);
6182 
6183 	if (!addr || addr >= TASK_SIZE)
6184 		return 0;
6185 
6186 	return TASK_SIZE - addr;
6187 }
6188 
6189 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)6190 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6191 			struct pt_regs *regs)
6192 {
6193 	u64 task_size;
6194 
6195 	/* No regs, no stack pointer, no dump. */
6196 	if (!regs)
6197 		return 0;
6198 
6199 	/*
6200 	 * Check if we fit in with the requested stack size into the:
6201 	 * - TASK_SIZE
6202 	 *   If we don't, we limit the size to the TASK_SIZE.
6203 	 *
6204 	 * - remaining sample size
6205 	 *   If we don't, we customize the stack size to
6206 	 *   fit in to the remaining sample size.
6207 	 */
6208 
6209 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6210 	stack_size = min(stack_size, (u16) task_size);
6211 
6212 	/* Current header size plus static size and dynamic size. */
6213 	header_size += 2 * sizeof(u64);
6214 
6215 	/* Do we fit in with the current stack dump size? */
6216 	if ((u16) (header_size + stack_size) < header_size) {
6217 		/*
6218 		 * If we overflow the maximum size for the sample,
6219 		 * we customize the stack dump size to fit in.
6220 		 */
6221 		stack_size = USHRT_MAX - header_size - sizeof(u64);
6222 		stack_size = round_up(stack_size, sizeof(u64));
6223 	}
6224 
6225 	return stack_size;
6226 }
6227 
6228 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)6229 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6230 			  struct pt_regs *regs)
6231 {
6232 	/* Case of a kernel thread, nothing to dump */
6233 	if (!regs) {
6234 		u64 size = 0;
6235 		perf_output_put(handle, size);
6236 	} else {
6237 		unsigned long sp;
6238 		unsigned int rem;
6239 		u64 dyn_size;
6240 		mm_segment_t fs;
6241 
6242 		/*
6243 		 * We dump:
6244 		 * static size
6245 		 *   - the size requested by user or the best one we can fit
6246 		 *     in to the sample max size
6247 		 * data
6248 		 *   - user stack dump data
6249 		 * dynamic size
6250 		 *   - the actual dumped size
6251 		 */
6252 
6253 		/* Static size. */
6254 		perf_output_put(handle, dump_size);
6255 
6256 		/* Data. */
6257 		sp = perf_user_stack_pointer(regs);
6258 		fs = get_fs();
6259 		set_fs(USER_DS);
6260 		rem = __output_copy_user(handle, (void *) sp, dump_size);
6261 		set_fs(fs);
6262 		dyn_size = dump_size - rem;
6263 
6264 		perf_output_skip(handle, rem);
6265 
6266 		/* Dynamic size. */
6267 		perf_output_put(handle, dyn_size);
6268 	}
6269 }
6270 
__perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6271 static void __perf_event_header__init_id(struct perf_event_header *header,
6272 					 struct perf_sample_data *data,
6273 					 struct perf_event *event)
6274 {
6275 	u64 sample_type = event->attr.sample_type;
6276 
6277 	data->type = sample_type;
6278 	header->size += event->id_header_size;
6279 
6280 	if (sample_type & PERF_SAMPLE_TID) {
6281 		/* namespace issues */
6282 		data->tid_entry.pid = perf_event_pid(event, current);
6283 		data->tid_entry.tid = perf_event_tid(event, current);
6284 	}
6285 
6286 	if (sample_type & PERF_SAMPLE_TIME)
6287 		data->time = perf_event_clock(event);
6288 
6289 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6290 		data->id = primary_event_id(event);
6291 
6292 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6293 		data->stream_id = event->id;
6294 
6295 	if (sample_type & PERF_SAMPLE_CPU) {
6296 		data->cpu_entry.cpu	 = raw_smp_processor_id();
6297 		data->cpu_entry.reserved = 0;
6298 	}
6299 }
6300 
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6301 void perf_event_header__init_id(struct perf_event_header *header,
6302 				struct perf_sample_data *data,
6303 				struct perf_event *event)
6304 {
6305 	if (event->attr.sample_id_all)
6306 		__perf_event_header__init_id(header, data, event);
6307 }
6308 
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)6309 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6310 					   struct perf_sample_data *data)
6311 {
6312 	u64 sample_type = data->type;
6313 
6314 	if (sample_type & PERF_SAMPLE_TID)
6315 		perf_output_put(handle, data->tid_entry);
6316 
6317 	if (sample_type & PERF_SAMPLE_TIME)
6318 		perf_output_put(handle, data->time);
6319 
6320 	if (sample_type & PERF_SAMPLE_ID)
6321 		perf_output_put(handle, data->id);
6322 
6323 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6324 		perf_output_put(handle, data->stream_id);
6325 
6326 	if (sample_type & PERF_SAMPLE_CPU)
6327 		perf_output_put(handle, data->cpu_entry);
6328 
6329 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6330 		perf_output_put(handle, data->id);
6331 }
6332 
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)6333 void perf_event__output_id_sample(struct perf_event *event,
6334 				  struct perf_output_handle *handle,
6335 				  struct perf_sample_data *sample)
6336 {
6337 	if (event->attr.sample_id_all)
6338 		__perf_event__output_id_sample(handle, sample);
6339 }
6340 
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)6341 static void perf_output_read_one(struct perf_output_handle *handle,
6342 				 struct perf_event *event,
6343 				 u64 enabled, u64 running)
6344 {
6345 	u64 read_format = event->attr.read_format;
6346 	u64 values[4];
6347 	int n = 0;
6348 
6349 	values[n++] = perf_event_count(event);
6350 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6351 		values[n++] = enabled +
6352 			atomic64_read(&event->child_total_time_enabled);
6353 	}
6354 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6355 		values[n++] = running +
6356 			atomic64_read(&event->child_total_time_running);
6357 	}
6358 	if (read_format & PERF_FORMAT_ID)
6359 		values[n++] = primary_event_id(event);
6360 
6361 	__output_copy(handle, values, n * sizeof(u64));
6362 }
6363 
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)6364 static void perf_output_read_group(struct perf_output_handle *handle,
6365 			    struct perf_event *event,
6366 			    u64 enabled, u64 running)
6367 {
6368 	struct perf_event *leader = event->group_leader, *sub;
6369 	u64 read_format = event->attr.read_format;
6370 	unsigned long flags;
6371 	u64 values[5];
6372 	int n = 0;
6373 
6374 	/*
6375 	 * Disabling interrupts avoids all counter scheduling
6376 	 * (context switches, timer based rotation and IPIs).
6377 	 */
6378 	local_irq_save(flags);
6379 
6380 	values[n++] = 1 + leader->nr_siblings;
6381 
6382 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6383 		values[n++] = enabled;
6384 
6385 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6386 		values[n++] = running;
6387 
6388 	if ((leader != event) &&
6389 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
6390 		leader->pmu->read(leader);
6391 
6392 	values[n++] = perf_event_count(leader);
6393 	if (read_format & PERF_FORMAT_ID)
6394 		values[n++] = primary_event_id(leader);
6395 
6396 	__output_copy(handle, values, n * sizeof(u64));
6397 
6398 	for_each_sibling_event(sub, leader) {
6399 		n = 0;
6400 
6401 		if ((sub != event) &&
6402 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
6403 			sub->pmu->read(sub);
6404 
6405 		values[n++] = perf_event_count(sub);
6406 		if (read_format & PERF_FORMAT_ID)
6407 			values[n++] = primary_event_id(sub);
6408 
6409 		__output_copy(handle, values, n * sizeof(u64));
6410 	}
6411 
6412 	local_irq_restore(flags);
6413 }
6414 
6415 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6416 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
6417 
6418 /*
6419  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6420  *
6421  * The problem is that its both hard and excessively expensive to iterate the
6422  * child list, not to mention that its impossible to IPI the children running
6423  * on another CPU, from interrupt/NMI context.
6424  */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)6425 static void perf_output_read(struct perf_output_handle *handle,
6426 			     struct perf_event *event)
6427 {
6428 	u64 enabled = 0, running = 0, now;
6429 	u64 read_format = event->attr.read_format;
6430 
6431 	/*
6432 	 * compute total_time_enabled, total_time_running
6433 	 * based on snapshot values taken when the event
6434 	 * was last scheduled in.
6435 	 *
6436 	 * we cannot simply called update_context_time()
6437 	 * because of locking issue as we are called in
6438 	 * NMI context
6439 	 */
6440 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
6441 		calc_timer_values(event, &now, &enabled, &running);
6442 
6443 	if (event->attr.read_format & PERF_FORMAT_GROUP)
6444 		perf_output_read_group(handle, event, enabled, running);
6445 	else
6446 		perf_output_read_one(handle, event, enabled, running);
6447 }
6448 
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)6449 void perf_output_sample(struct perf_output_handle *handle,
6450 			struct perf_event_header *header,
6451 			struct perf_sample_data *data,
6452 			struct perf_event *event)
6453 {
6454 	u64 sample_type = data->type;
6455 
6456 	perf_output_put(handle, *header);
6457 
6458 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
6459 		perf_output_put(handle, data->id);
6460 
6461 	if (sample_type & PERF_SAMPLE_IP)
6462 		perf_output_put(handle, data->ip);
6463 
6464 	if (sample_type & PERF_SAMPLE_TID)
6465 		perf_output_put(handle, data->tid_entry);
6466 
6467 	if (sample_type & PERF_SAMPLE_TIME)
6468 		perf_output_put(handle, data->time);
6469 
6470 	if (sample_type & PERF_SAMPLE_ADDR)
6471 		perf_output_put(handle, data->addr);
6472 
6473 	if (sample_type & PERF_SAMPLE_ID)
6474 		perf_output_put(handle, data->id);
6475 
6476 	if (sample_type & PERF_SAMPLE_STREAM_ID)
6477 		perf_output_put(handle, data->stream_id);
6478 
6479 	if (sample_type & PERF_SAMPLE_CPU)
6480 		perf_output_put(handle, data->cpu_entry);
6481 
6482 	if (sample_type & PERF_SAMPLE_PERIOD)
6483 		perf_output_put(handle, data->period);
6484 
6485 	if (sample_type & PERF_SAMPLE_READ)
6486 		perf_output_read(handle, event);
6487 
6488 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6489 		int size = 1;
6490 
6491 		size += data->callchain->nr;
6492 		size *= sizeof(u64);
6493 		__output_copy(handle, data->callchain, size);
6494 	}
6495 
6496 	if (sample_type & PERF_SAMPLE_RAW) {
6497 		struct perf_raw_record *raw = data->raw;
6498 
6499 		if (raw) {
6500 			struct perf_raw_frag *frag = &raw->frag;
6501 
6502 			perf_output_put(handle, raw->size);
6503 			do {
6504 				if (frag->copy) {
6505 					__output_custom(handle, frag->copy,
6506 							frag->data, frag->size);
6507 				} else {
6508 					__output_copy(handle, frag->data,
6509 						      frag->size);
6510 				}
6511 				if (perf_raw_frag_last(frag))
6512 					break;
6513 				frag = frag->next;
6514 			} while (1);
6515 			if (frag->pad)
6516 				__output_skip(handle, NULL, frag->pad);
6517 		} else {
6518 			struct {
6519 				u32	size;
6520 				u32	data;
6521 			} raw = {
6522 				.size = sizeof(u32),
6523 				.data = 0,
6524 			};
6525 			perf_output_put(handle, raw);
6526 		}
6527 	}
6528 
6529 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6530 		if (data->br_stack) {
6531 			size_t size;
6532 
6533 			size = data->br_stack->nr
6534 			     * sizeof(struct perf_branch_entry);
6535 
6536 			perf_output_put(handle, data->br_stack->nr);
6537 			perf_output_copy(handle, data->br_stack->entries, size);
6538 		} else {
6539 			/*
6540 			 * we always store at least the value of nr
6541 			 */
6542 			u64 nr = 0;
6543 			perf_output_put(handle, nr);
6544 		}
6545 	}
6546 
6547 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6548 		u64 abi = data->regs_user.abi;
6549 
6550 		/*
6551 		 * If there are no regs to dump, notice it through
6552 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6553 		 */
6554 		perf_output_put(handle, abi);
6555 
6556 		if (abi) {
6557 			u64 mask = event->attr.sample_regs_user;
6558 			perf_output_sample_regs(handle,
6559 						data->regs_user.regs,
6560 						mask);
6561 		}
6562 	}
6563 
6564 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6565 		perf_output_sample_ustack(handle,
6566 					  data->stack_user_size,
6567 					  data->regs_user.regs);
6568 	}
6569 
6570 	if (sample_type & PERF_SAMPLE_WEIGHT)
6571 		perf_output_put(handle, data->weight);
6572 
6573 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6574 		perf_output_put(handle, data->data_src.val);
6575 
6576 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6577 		perf_output_put(handle, data->txn);
6578 
6579 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6580 		u64 abi = data->regs_intr.abi;
6581 		/*
6582 		 * If there are no regs to dump, notice it through
6583 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6584 		 */
6585 		perf_output_put(handle, abi);
6586 
6587 		if (abi) {
6588 			u64 mask = event->attr.sample_regs_intr;
6589 
6590 			perf_output_sample_regs(handle,
6591 						data->regs_intr.regs,
6592 						mask);
6593 		}
6594 	}
6595 
6596 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6597 		perf_output_put(handle, data->phys_addr);
6598 
6599 	if (!event->attr.watermark) {
6600 		int wakeup_events = event->attr.wakeup_events;
6601 
6602 		if (wakeup_events) {
6603 			struct ring_buffer *rb = handle->rb;
6604 			int events = local_inc_return(&rb->events);
6605 
6606 			if (events >= wakeup_events) {
6607 				local_sub(wakeup_events, &rb->events);
6608 				local_inc(&rb->wakeup);
6609 			}
6610 		}
6611 	}
6612 }
6613 
perf_virt_to_phys(u64 virt)6614 static u64 perf_virt_to_phys(u64 virt)
6615 {
6616 	u64 phys_addr = 0;
6617 
6618 	if (!virt)
6619 		return 0;
6620 
6621 	if (virt >= TASK_SIZE) {
6622 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6623 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6624 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6625 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6626 	} else {
6627 		/*
6628 		 * Walking the pages tables for user address.
6629 		 * Interrupts are disabled, so it prevents any tear down
6630 		 * of the page tables.
6631 		 * Try IRQ-safe __get_user_pages_fast first.
6632 		 * If failed, leave phys_addr as 0.
6633 		 */
6634 		if (current->mm != NULL) {
6635 			struct page *p;
6636 
6637 			pagefault_disable();
6638 			if (__get_user_pages_fast(virt, 1, 0, &p) == 1) {
6639 				phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6640 				put_page(p);
6641 			}
6642 			pagefault_enable();
6643 		}
6644 	}
6645 
6646 	return phys_addr;
6647 }
6648 
6649 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6650 
6651 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)6652 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6653 {
6654 	bool kernel = !event->attr.exclude_callchain_kernel;
6655 	bool user   = !event->attr.exclude_callchain_user;
6656 	/* Disallow cross-task user callchains. */
6657 	bool crosstask = event->ctx->task && event->ctx->task != current;
6658 	const u32 max_stack = event->attr.sample_max_stack;
6659 	struct perf_callchain_entry *callchain;
6660 
6661 	if (!kernel && !user)
6662 		return &__empty_callchain;
6663 
6664 	callchain = get_perf_callchain(regs, 0, kernel, user,
6665 				       max_stack, crosstask, true);
6666 	return callchain ?: &__empty_callchain;
6667 }
6668 
perf_prepare_sample(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)6669 void perf_prepare_sample(struct perf_event_header *header,
6670 			 struct perf_sample_data *data,
6671 			 struct perf_event *event,
6672 			 struct pt_regs *regs)
6673 {
6674 	u64 sample_type = event->attr.sample_type;
6675 
6676 	header->type = PERF_RECORD_SAMPLE;
6677 	header->size = sizeof(*header) + event->header_size;
6678 
6679 	header->misc = 0;
6680 	header->misc |= perf_misc_flags(regs);
6681 
6682 	__perf_event_header__init_id(header, data, event);
6683 
6684 	if (sample_type & PERF_SAMPLE_IP)
6685 		data->ip = perf_instruction_pointer(regs);
6686 
6687 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6688 		int size = 1;
6689 
6690 		if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6691 			data->callchain = perf_callchain(event, regs);
6692 
6693 		size += data->callchain->nr;
6694 
6695 		header->size += size * sizeof(u64);
6696 	}
6697 
6698 	if (sample_type & PERF_SAMPLE_RAW) {
6699 		struct perf_raw_record *raw = data->raw;
6700 		int size;
6701 
6702 		if (raw) {
6703 			struct perf_raw_frag *frag = &raw->frag;
6704 			u32 sum = 0;
6705 
6706 			do {
6707 				sum += frag->size;
6708 				if (perf_raw_frag_last(frag))
6709 					break;
6710 				frag = frag->next;
6711 			} while (1);
6712 
6713 			size = round_up(sum + sizeof(u32), sizeof(u64));
6714 			raw->size = size - sizeof(u32);
6715 			frag->pad = raw->size - sum;
6716 		} else {
6717 			size = sizeof(u64);
6718 		}
6719 
6720 		header->size += size;
6721 	}
6722 
6723 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6724 		int size = sizeof(u64); /* nr */
6725 		if (data->br_stack) {
6726 			size += data->br_stack->nr
6727 			      * sizeof(struct perf_branch_entry);
6728 		}
6729 		header->size += size;
6730 	}
6731 
6732 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6733 		perf_sample_regs_user(&data->regs_user, regs,
6734 				      &data->regs_user_copy);
6735 
6736 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6737 		/* regs dump ABI info */
6738 		int size = sizeof(u64);
6739 
6740 		if (data->regs_user.regs) {
6741 			u64 mask = event->attr.sample_regs_user;
6742 			size += hweight64(mask) * sizeof(u64);
6743 		}
6744 
6745 		header->size += size;
6746 	}
6747 
6748 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6749 		/*
6750 		 * Either we need PERF_SAMPLE_STACK_USER bit to be always
6751 		 * processed as the last one or have additional check added
6752 		 * in case new sample type is added, because we could eat
6753 		 * up the rest of the sample size.
6754 		 */
6755 		u16 stack_size = event->attr.sample_stack_user;
6756 		u16 size = sizeof(u64);
6757 
6758 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6759 						     data->regs_user.regs);
6760 
6761 		/*
6762 		 * If there is something to dump, add space for the dump
6763 		 * itself and for the field that tells the dynamic size,
6764 		 * which is how many have been actually dumped.
6765 		 */
6766 		if (stack_size)
6767 			size += sizeof(u64) + stack_size;
6768 
6769 		data->stack_user_size = stack_size;
6770 		header->size += size;
6771 	}
6772 
6773 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6774 		/* regs dump ABI info */
6775 		int size = sizeof(u64);
6776 
6777 		perf_sample_regs_intr(&data->regs_intr, regs);
6778 
6779 		if (data->regs_intr.regs) {
6780 			u64 mask = event->attr.sample_regs_intr;
6781 
6782 			size += hweight64(mask) * sizeof(u64);
6783 		}
6784 
6785 		header->size += size;
6786 	}
6787 
6788 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6789 		data->phys_addr = perf_virt_to_phys(data->addr);
6790 }
6791 
6792 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_event *,unsigned int))6793 __perf_event_output(struct perf_event *event,
6794 		    struct perf_sample_data *data,
6795 		    struct pt_regs *regs,
6796 		    int (*output_begin)(struct perf_output_handle *,
6797 					struct perf_event *,
6798 					unsigned int))
6799 {
6800 	struct perf_output_handle handle;
6801 	struct perf_event_header header;
6802 	int err;
6803 
6804 	/* protect the callchain buffers */
6805 	rcu_read_lock();
6806 
6807 	perf_prepare_sample(&header, data, event, regs);
6808 
6809 	err = output_begin(&handle, event, header.size);
6810 	if (err)
6811 		goto exit;
6812 
6813 	perf_output_sample(&handle, &header, data, event);
6814 
6815 	perf_output_end(&handle);
6816 
6817 exit:
6818 	rcu_read_unlock();
6819 	return err;
6820 }
6821 
6822 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)6823 perf_event_output_forward(struct perf_event *event,
6824 			 struct perf_sample_data *data,
6825 			 struct pt_regs *regs)
6826 {
6827 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6828 }
6829 
6830 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)6831 perf_event_output_backward(struct perf_event *event,
6832 			   struct perf_sample_data *data,
6833 			   struct pt_regs *regs)
6834 {
6835 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6836 }
6837 
6838 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)6839 perf_event_output(struct perf_event *event,
6840 		  struct perf_sample_data *data,
6841 		  struct pt_regs *regs)
6842 {
6843 	return __perf_event_output(event, data, regs, perf_output_begin);
6844 }
6845 
6846 /*
6847  * read event_id
6848  */
6849 
6850 struct perf_read_event {
6851 	struct perf_event_header	header;
6852 
6853 	u32				pid;
6854 	u32				tid;
6855 };
6856 
6857 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)6858 perf_event_read_event(struct perf_event *event,
6859 			struct task_struct *task)
6860 {
6861 	struct perf_output_handle handle;
6862 	struct perf_sample_data sample;
6863 	struct perf_read_event read_event = {
6864 		.header = {
6865 			.type = PERF_RECORD_READ,
6866 			.misc = 0,
6867 			.size = sizeof(read_event) + event->read_size,
6868 		},
6869 		.pid = perf_event_pid(event, task),
6870 		.tid = perf_event_tid(event, task),
6871 	};
6872 	int ret;
6873 
6874 	perf_event_header__init_id(&read_event.header, &sample, event);
6875 	ret = perf_output_begin(&handle, event, read_event.header.size);
6876 	if (ret)
6877 		return;
6878 
6879 	perf_output_put(&handle, read_event);
6880 	perf_output_read(&handle, event);
6881 	perf_event__output_id_sample(event, &handle, &sample);
6882 
6883 	perf_output_end(&handle);
6884 }
6885 
6886 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6887 
6888 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)6889 perf_iterate_ctx(struct perf_event_context *ctx,
6890 		   perf_iterate_f output,
6891 		   void *data, bool all)
6892 {
6893 	struct perf_event *event;
6894 
6895 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6896 		if (!all) {
6897 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6898 				continue;
6899 			if (!event_filter_match(event))
6900 				continue;
6901 		}
6902 
6903 		output(event, data);
6904 	}
6905 }
6906 
perf_iterate_sb_cpu(perf_iterate_f output,void * data)6907 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6908 {
6909 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6910 	struct perf_event *event;
6911 
6912 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6913 		/*
6914 		 * Skip events that are not fully formed yet; ensure that
6915 		 * if we observe event->ctx, both event and ctx will be
6916 		 * complete enough. See perf_install_in_context().
6917 		 */
6918 		if (!smp_load_acquire(&event->ctx))
6919 			continue;
6920 
6921 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6922 			continue;
6923 		if (!event_filter_match(event))
6924 			continue;
6925 		output(event, data);
6926 	}
6927 }
6928 
6929 /*
6930  * Iterate all events that need to receive side-band events.
6931  *
6932  * For new callers; ensure that account_pmu_sb_event() includes
6933  * your event, otherwise it might not get delivered.
6934  */
6935 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)6936 perf_iterate_sb(perf_iterate_f output, void *data,
6937 	       struct perf_event_context *task_ctx)
6938 {
6939 	struct perf_event_context *ctx;
6940 	int ctxn;
6941 
6942 	rcu_read_lock();
6943 	preempt_disable();
6944 
6945 	/*
6946 	 * If we have task_ctx != NULL we only notify the task context itself.
6947 	 * The task_ctx is set only for EXIT events before releasing task
6948 	 * context.
6949 	 */
6950 	if (task_ctx) {
6951 		perf_iterate_ctx(task_ctx, output, data, false);
6952 		goto done;
6953 	}
6954 
6955 	perf_iterate_sb_cpu(output, data);
6956 
6957 	for_each_task_context_nr(ctxn) {
6958 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6959 		if (ctx)
6960 			perf_iterate_ctx(ctx, output, data, false);
6961 	}
6962 done:
6963 	preempt_enable();
6964 	rcu_read_unlock();
6965 }
6966 
6967 /*
6968  * Clear all file-based filters at exec, they'll have to be
6969  * re-instated when/if these objects are mmapped again.
6970  */
perf_event_addr_filters_exec(struct perf_event * event,void * data)6971 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6972 {
6973 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6974 	struct perf_addr_filter *filter;
6975 	unsigned int restart = 0, count = 0;
6976 	unsigned long flags;
6977 
6978 	if (!has_addr_filter(event))
6979 		return;
6980 
6981 	raw_spin_lock_irqsave(&ifh->lock, flags);
6982 	list_for_each_entry(filter, &ifh->list, entry) {
6983 		if (filter->path.dentry) {
6984 			event->addr_filter_ranges[count].start = 0;
6985 			event->addr_filter_ranges[count].size = 0;
6986 			restart++;
6987 		}
6988 
6989 		count++;
6990 	}
6991 
6992 	if (restart)
6993 		event->addr_filters_gen++;
6994 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6995 
6996 	if (restart)
6997 		perf_event_stop(event, 1);
6998 }
6999 
perf_event_exec(void)7000 void perf_event_exec(void)
7001 {
7002 	struct perf_event_context *ctx;
7003 	int ctxn;
7004 
7005 	rcu_read_lock();
7006 	for_each_task_context_nr(ctxn) {
7007 		ctx = current->perf_event_ctxp[ctxn];
7008 		if (!ctx)
7009 			continue;
7010 
7011 		perf_event_enable_on_exec(ctxn);
7012 
7013 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7014 				   true);
7015 	}
7016 	rcu_read_unlock();
7017 }
7018 
7019 struct remote_output {
7020 	struct ring_buffer	*rb;
7021 	int			err;
7022 };
7023 
__perf_event_output_stop(struct perf_event * event,void * data)7024 static void __perf_event_output_stop(struct perf_event *event, void *data)
7025 {
7026 	struct perf_event *parent = event->parent;
7027 	struct remote_output *ro = data;
7028 	struct ring_buffer *rb = ro->rb;
7029 	struct stop_event_data sd = {
7030 		.event	= event,
7031 	};
7032 
7033 	if (!has_aux(event))
7034 		return;
7035 
7036 	if (!parent)
7037 		parent = event;
7038 
7039 	/*
7040 	 * In case of inheritance, it will be the parent that links to the
7041 	 * ring-buffer, but it will be the child that's actually using it.
7042 	 *
7043 	 * We are using event::rb to determine if the event should be stopped,
7044 	 * however this may race with ring_buffer_attach() (through set_output),
7045 	 * which will make us skip the event that actually needs to be stopped.
7046 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
7047 	 * its rb pointer.
7048 	 */
7049 	if (rcu_dereference(parent->rb) == rb)
7050 		ro->err = __perf_event_stop(&sd);
7051 }
7052 
__perf_pmu_output_stop(void * info)7053 static int __perf_pmu_output_stop(void *info)
7054 {
7055 	struct perf_event *event = info;
7056 	struct pmu *pmu = event->ctx->pmu;
7057 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7058 	struct remote_output ro = {
7059 		.rb	= event->rb,
7060 	};
7061 
7062 	rcu_read_lock();
7063 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7064 	if (cpuctx->task_ctx)
7065 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7066 				   &ro, false);
7067 	rcu_read_unlock();
7068 
7069 	return ro.err;
7070 }
7071 
perf_pmu_output_stop(struct perf_event * event)7072 static void perf_pmu_output_stop(struct perf_event *event)
7073 {
7074 	struct perf_event *iter;
7075 	int err, cpu;
7076 
7077 restart:
7078 	rcu_read_lock();
7079 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7080 		/*
7081 		 * For per-CPU events, we need to make sure that neither they
7082 		 * nor their children are running; for cpu==-1 events it's
7083 		 * sufficient to stop the event itself if it's active, since
7084 		 * it can't have children.
7085 		 */
7086 		cpu = iter->cpu;
7087 		if (cpu == -1)
7088 			cpu = READ_ONCE(iter->oncpu);
7089 
7090 		if (cpu == -1)
7091 			continue;
7092 
7093 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7094 		if (err == -EAGAIN) {
7095 			rcu_read_unlock();
7096 			goto restart;
7097 		}
7098 	}
7099 	rcu_read_unlock();
7100 }
7101 
7102 /*
7103  * task tracking -- fork/exit
7104  *
7105  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7106  */
7107 
7108 struct perf_task_event {
7109 	struct task_struct		*task;
7110 	struct perf_event_context	*task_ctx;
7111 
7112 	struct {
7113 		struct perf_event_header	header;
7114 
7115 		u32				pid;
7116 		u32				ppid;
7117 		u32				tid;
7118 		u32				ptid;
7119 		u64				time;
7120 	} event_id;
7121 };
7122 
perf_event_task_match(struct perf_event * event)7123 static int perf_event_task_match(struct perf_event *event)
7124 {
7125 	return event->attr.comm  || event->attr.mmap ||
7126 	       event->attr.mmap2 || event->attr.mmap_data ||
7127 	       event->attr.task;
7128 }
7129 
perf_event_task_output(struct perf_event * event,void * data)7130 static void perf_event_task_output(struct perf_event *event,
7131 				   void *data)
7132 {
7133 	struct perf_task_event *task_event = data;
7134 	struct perf_output_handle handle;
7135 	struct perf_sample_data	sample;
7136 	struct task_struct *task = task_event->task;
7137 	int ret, size = task_event->event_id.header.size;
7138 
7139 	if (!perf_event_task_match(event))
7140 		return;
7141 
7142 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7143 
7144 	ret = perf_output_begin(&handle, event,
7145 				task_event->event_id.header.size);
7146 	if (ret)
7147 		goto out;
7148 
7149 	task_event->event_id.pid = perf_event_pid(event, task);
7150 	task_event->event_id.tid = perf_event_tid(event, task);
7151 
7152 	if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7153 		task_event->event_id.ppid = perf_event_pid(event,
7154 							task->real_parent);
7155 		task_event->event_id.ptid = perf_event_pid(event,
7156 							task->real_parent);
7157 	} else {  /* PERF_RECORD_FORK */
7158 		task_event->event_id.ppid = perf_event_pid(event, current);
7159 		task_event->event_id.ptid = perf_event_tid(event, current);
7160 	}
7161 
7162 	task_event->event_id.time = perf_event_clock(event);
7163 
7164 	perf_output_put(&handle, task_event->event_id);
7165 
7166 	perf_event__output_id_sample(event, &handle, &sample);
7167 
7168 	perf_output_end(&handle);
7169 out:
7170 	task_event->event_id.header.size = size;
7171 }
7172 
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)7173 static void perf_event_task(struct task_struct *task,
7174 			      struct perf_event_context *task_ctx,
7175 			      int new)
7176 {
7177 	struct perf_task_event task_event;
7178 
7179 	if (!atomic_read(&nr_comm_events) &&
7180 	    !atomic_read(&nr_mmap_events) &&
7181 	    !atomic_read(&nr_task_events))
7182 		return;
7183 
7184 	task_event = (struct perf_task_event){
7185 		.task	  = task,
7186 		.task_ctx = task_ctx,
7187 		.event_id    = {
7188 			.header = {
7189 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7190 				.misc = 0,
7191 				.size = sizeof(task_event.event_id),
7192 			},
7193 			/* .pid  */
7194 			/* .ppid */
7195 			/* .tid  */
7196 			/* .ptid */
7197 			/* .time */
7198 		},
7199 	};
7200 
7201 	perf_iterate_sb(perf_event_task_output,
7202 		       &task_event,
7203 		       task_ctx);
7204 }
7205 
perf_event_fork(struct task_struct * task)7206 void perf_event_fork(struct task_struct *task)
7207 {
7208 	perf_event_task(task, NULL, 1);
7209 	perf_event_namespaces(task);
7210 }
7211 
7212 /*
7213  * comm tracking
7214  */
7215 
7216 struct perf_comm_event {
7217 	struct task_struct	*task;
7218 	char			*comm;
7219 	int			comm_size;
7220 
7221 	struct {
7222 		struct perf_event_header	header;
7223 
7224 		u32				pid;
7225 		u32				tid;
7226 	} event_id;
7227 };
7228 
perf_event_comm_match(struct perf_event * event)7229 static int perf_event_comm_match(struct perf_event *event)
7230 {
7231 	return event->attr.comm;
7232 }
7233 
perf_event_comm_output(struct perf_event * event,void * data)7234 static void perf_event_comm_output(struct perf_event *event,
7235 				   void *data)
7236 {
7237 	struct perf_comm_event *comm_event = data;
7238 	struct perf_output_handle handle;
7239 	struct perf_sample_data sample;
7240 	int size = comm_event->event_id.header.size;
7241 	int ret;
7242 
7243 	if (!perf_event_comm_match(event))
7244 		return;
7245 
7246 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7247 	ret = perf_output_begin(&handle, event,
7248 				comm_event->event_id.header.size);
7249 
7250 	if (ret)
7251 		goto out;
7252 
7253 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7254 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7255 
7256 	perf_output_put(&handle, comm_event->event_id);
7257 	__output_copy(&handle, comm_event->comm,
7258 				   comm_event->comm_size);
7259 
7260 	perf_event__output_id_sample(event, &handle, &sample);
7261 
7262 	perf_output_end(&handle);
7263 out:
7264 	comm_event->event_id.header.size = size;
7265 }
7266 
perf_event_comm_event(struct perf_comm_event * comm_event)7267 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7268 {
7269 	char comm[TASK_COMM_LEN];
7270 	unsigned int size;
7271 
7272 	memset(comm, 0, sizeof(comm));
7273 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
7274 	size = ALIGN(strlen(comm)+1, sizeof(u64));
7275 
7276 	comm_event->comm = comm;
7277 	comm_event->comm_size = size;
7278 
7279 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7280 
7281 	perf_iterate_sb(perf_event_comm_output,
7282 		       comm_event,
7283 		       NULL);
7284 }
7285 
perf_event_comm(struct task_struct * task,bool exec)7286 void perf_event_comm(struct task_struct *task, bool exec)
7287 {
7288 	struct perf_comm_event comm_event;
7289 
7290 	if (!atomic_read(&nr_comm_events))
7291 		return;
7292 
7293 	comm_event = (struct perf_comm_event){
7294 		.task	= task,
7295 		/* .comm      */
7296 		/* .comm_size */
7297 		.event_id  = {
7298 			.header = {
7299 				.type = PERF_RECORD_COMM,
7300 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7301 				/* .size */
7302 			},
7303 			/* .pid */
7304 			/* .tid */
7305 		},
7306 	};
7307 
7308 	perf_event_comm_event(&comm_event);
7309 }
7310 
7311 /*
7312  * namespaces tracking
7313  */
7314 
7315 struct perf_namespaces_event {
7316 	struct task_struct		*task;
7317 
7318 	struct {
7319 		struct perf_event_header	header;
7320 
7321 		u32				pid;
7322 		u32				tid;
7323 		u64				nr_namespaces;
7324 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
7325 	} event_id;
7326 };
7327 
perf_event_namespaces_match(struct perf_event * event)7328 static int perf_event_namespaces_match(struct perf_event *event)
7329 {
7330 	return event->attr.namespaces;
7331 }
7332 
perf_event_namespaces_output(struct perf_event * event,void * data)7333 static void perf_event_namespaces_output(struct perf_event *event,
7334 					 void *data)
7335 {
7336 	struct perf_namespaces_event *namespaces_event = data;
7337 	struct perf_output_handle handle;
7338 	struct perf_sample_data sample;
7339 	u16 header_size = namespaces_event->event_id.header.size;
7340 	int ret;
7341 
7342 	if (!perf_event_namespaces_match(event))
7343 		return;
7344 
7345 	perf_event_header__init_id(&namespaces_event->event_id.header,
7346 				   &sample, event);
7347 	ret = perf_output_begin(&handle, event,
7348 				namespaces_event->event_id.header.size);
7349 	if (ret)
7350 		goto out;
7351 
7352 	namespaces_event->event_id.pid = perf_event_pid(event,
7353 							namespaces_event->task);
7354 	namespaces_event->event_id.tid = perf_event_tid(event,
7355 							namespaces_event->task);
7356 
7357 	perf_output_put(&handle, namespaces_event->event_id);
7358 
7359 	perf_event__output_id_sample(event, &handle, &sample);
7360 
7361 	perf_output_end(&handle);
7362 out:
7363 	namespaces_event->event_id.header.size = header_size;
7364 }
7365 
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)7366 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7367 				   struct task_struct *task,
7368 				   const struct proc_ns_operations *ns_ops)
7369 {
7370 	struct path ns_path;
7371 	struct inode *ns_inode;
7372 	void *error;
7373 
7374 	error = ns_get_path(&ns_path, task, ns_ops);
7375 	if (!error) {
7376 		ns_inode = ns_path.dentry->d_inode;
7377 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7378 		ns_link_info->ino = ns_inode->i_ino;
7379 		path_put(&ns_path);
7380 	}
7381 }
7382 
perf_event_namespaces(struct task_struct * task)7383 void perf_event_namespaces(struct task_struct *task)
7384 {
7385 	struct perf_namespaces_event namespaces_event;
7386 	struct perf_ns_link_info *ns_link_info;
7387 
7388 	if (!atomic_read(&nr_namespaces_events))
7389 		return;
7390 
7391 	namespaces_event = (struct perf_namespaces_event){
7392 		.task	= task,
7393 		.event_id  = {
7394 			.header = {
7395 				.type = PERF_RECORD_NAMESPACES,
7396 				.misc = 0,
7397 				.size = sizeof(namespaces_event.event_id),
7398 			},
7399 			/* .pid */
7400 			/* .tid */
7401 			.nr_namespaces = NR_NAMESPACES,
7402 			/* .link_info[NR_NAMESPACES] */
7403 		},
7404 	};
7405 
7406 	ns_link_info = namespaces_event.event_id.link_info;
7407 
7408 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7409 			       task, &mntns_operations);
7410 
7411 #ifdef CONFIG_USER_NS
7412 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7413 			       task, &userns_operations);
7414 #endif
7415 #ifdef CONFIG_NET_NS
7416 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7417 			       task, &netns_operations);
7418 #endif
7419 #ifdef CONFIG_UTS_NS
7420 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7421 			       task, &utsns_operations);
7422 #endif
7423 #ifdef CONFIG_IPC_NS
7424 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7425 			       task, &ipcns_operations);
7426 #endif
7427 #ifdef CONFIG_PID_NS
7428 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7429 			       task, &pidns_operations);
7430 #endif
7431 #ifdef CONFIG_CGROUPS
7432 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7433 			       task, &cgroupns_operations);
7434 #endif
7435 
7436 	perf_iterate_sb(perf_event_namespaces_output,
7437 			&namespaces_event,
7438 			NULL);
7439 }
7440 
7441 /*
7442  * mmap tracking
7443  */
7444 
7445 struct perf_mmap_event {
7446 	struct vm_area_struct	*vma;
7447 
7448 	const char		*file_name;
7449 	int			file_size;
7450 	int			maj, min;
7451 	u64			ino;
7452 	u64			ino_generation;
7453 	u32			prot, flags;
7454 
7455 	struct {
7456 		struct perf_event_header	header;
7457 
7458 		u32				pid;
7459 		u32				tid;
7460 		u64				start;
7461 		u64				len;
7462 		u64				pgoff;
7463 	} event_id;
7464 };
7465 
perf_event_mmap_match(struct perf_event * event,void * data)7466 static int perf_event_mmap_match(struct perf_event *event,
7467 				 void *data)
7468 {
7469 	struct perf_mmap_event *mmap_event = data;
7470 	struct vm_area_struct *vma = mmap_event->vma;
7471 	int executable = vma->vm_flags & VM_EXEC;
7472 
7473 	return (!executable && event->attr.mmap_data) ||
7474 	       (executable && (event->attr.mmap || event->attr.mmap2));
7475 }
7476 
perf_event_mmap_output(struct perf_event * event,void * data)7477 static void perf_event_mmap_output(struct perf_event *event,
7478 				   void *data)
7479 {
7480 	struct perf_mmap_event *mmap_event = data;
7481 	struct perf_output_handle handle;
7482 	struct perf_sample_data sample;
7483 	int size = mmap_event->event_id.header.size;
7484 	u32 type = mmap_event->event_id.header.type;
7485 	int ret;
7486 
7487 	if (!perf_event_mmap_match(event, data))
7488 		return;
7489 
7490 	if (event->attr.mmap2) {
7491 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7492 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7493 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
7494 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7495 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7496 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7497 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7498 	}
7499 
7500 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7501 	ret = perf_output_begin(&handle, event,
7502 				mmap_event->event_id.header.size);
7503 	if (ret)
7504 		goto out;
7505 
7506 	mmap_event->event_id.pid = perf_event_pid(event, current);
7507 	mmap_event->event_id.tid = perf_event_tid(event, current);
7508 
7509 	perf_output_put(&handle, mmap_event->event_id);
7510 
7511 	if (event->attr.mmap2) {
7512 		perf_output_put(&handle, mmap_event->maj);
7513 		perf_output_put(&handle, mmap_event->min);
7514 		perf_output_put(&handle, mmap_event->ino);
7515 		perf_output_put(&handle, mmap_event->ino_generation);
7516 		perf_output_put(&handle, mmap_event->prot);
7517 		perf_output_put(&handle, mmap_event->flags);
7518 	}
7519 
7520 	__output_copy(&handle, mmap_event->file_name,
7521 				   mmap_event->file_size);
7522 
7523 	perf_event__output_id_sample(event, &handle, &sample);
7524 
7525 	perf_output_end(&handle);
7526 out:
7527 	mmap_event->event_id.header.size = size;
7528 	mmap_event->event_id.header.type = type;
7529 }
7530 
perf_event_mmap_event(struct perf_mmap_event * mmap_event)7531 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7532 {
7533 	struct vm_area_struct *vma = mmap_event->vma;
7534 	struct file *file = vma->vm_file;
7535 	int maj = 0, min = 0;
7536 	u64 ino = 0, gen = 0;
7537 	u32 prot = 0, flags = 0;
7538 	unsigned int size;
7539 	char tmp[16];
7540 	char *buf = NULL;
7541 	char *name;
7542 
7543 	if (vma->vm_flags & VM_READ)
7544 		prot |= PROT_READ;
7545 	if (vma->vm_flags & VM_WRITE)
7546 		prot |= PROT_WRITE;
7547 	if (vma->vm_flags & VM_EXEC)
7548 		prot |= PROT_EXEC;
7549 
7550 	if (vma->vm_flags & VM_MAYSHARE)
7551 		flags = MAP_SHARED;
7552 	else
7553 		flags = MAP_PRIVATE;
7554 
7555 	if (vma->vm_flags & VM_DENYWRITE)
7556 		flags |= MAP_DENYWRITE;
7557 	if (vma->vm_flags & VM_MAYEXEC)
7558 		flags |= MAP_EXECUTABLE;
7559 	if (vma->vm_flags & VM_LOCKED)
7560 		flags |= MAP_LOCKED;
7561 	if (vma->vm_flags & VM_HUGETLB)
7562 		flags |= MAP_HUGETLB;
7563 
7564 	if (file) {
7565 		struct inode *inode;
7566 		dev_t dev;
7567 
7568 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7569 		if (!buf) {
7570 			name = "//enomem";
7571 			goto cpy_name;
7572 		}
7573 		/*
7574 		 * d_path() works from the end of the rb backwards, so we
7575 		 * need to add enough zero bytes after the string to handle
7576 		 * the 64bit alignment we do later.
7577 		 */
7578 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7579 		if (IS_ERR(name)) {
7580 			name = "//toolong";
7581 			goto cpy_name;
7582 		}
7583 		inode = file_inode(vma->vm_file);
7584 		dev = inode->i_sb->s_dev;
7585 		ino = inode->i_ino;
7586 		gen = inode->i_generation;
7587 		maj = MAJOR(dev);
7588 		min = MINOR(dev);
7589 
7590 		goto got_name;
7591 	} else {
7592 		if (vma->vm_ops && vma->vm_ops->name) {
7593 			name = (char *) vma->vm_ops->name(vma);
7594 			if (name)
7595 				goto cpy_name;
7596 		}
7597 
7598 		name = (char *)arch_vma_name(vma);
7599 		if (name)
7600 			goto cpy_name;
7601 
7602 		if (vma->vm_start <= vma->vm_mm->start_brk &&
7603 				vma->vm_end >= vma->vm_mm->brk) {
7604 			name = "[heap]";
7605 			goto cpy_name;
7606 		}
7607 		if (vma->vm_start <= vma->vm_mm->start_stack &&
7608 				vma->vm_end >= vma->vm_mm->start_stack) {
7609 			name = "[stack]";
7610 			goto cpy_name;
7611 		}
7612 
7613 		name = "//anon";
7614 		goto cpy_name;
7615 	}
7616 
7617 cpy_name:
7618 	strlcpy(tmp, name, sizeof(tmp));
7619 	name = tmp;
7620 got_name:
7621 	/*
7622 	 * Since our buffer works in 8 byte units we need to align our string
7623 	 * size to a multiple of 8. However, we must guarantee the tail end is
7624 	 * zero'd out to avoid leaking random bits to userspace.
7625 	 */
7626 	size = strlen(name)+1;
7627 	while (!IS_ALIGNED(size, sizeof(u64)))
7628 		name[size++] = '\0';
7629 
7630 	mmap_event->file_name = name;
7631 	mmap_event->file_size = size;
7632 	mmap_event->maj = maj;
7633 	mmap_event->min = min;
7634 	mmap_event->ino = ino;
7635 	mmap_event->ino_generation = gen;
7636 	mmap_event->prot = prot;
7637 	mmap_event->flags = flags;
7638 
7639 	if (!(vma->vm_flags & VM_EXEC))
7640 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7641 
7642 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7643 
7644 	perf_iterate_sb(perf_event_mmap_output,
7645 		       mmap_event,
7646 		       NULL);
7647 
7648 	kfree(buf);
7649 }
7650 
7651 /*
7652  * Check whether inode and address range match filter criteria.
7653  */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)7654 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7655 				     struct file *file, unsigned long offset,
7656 				     unsigned long size)
7657 {
7658 	/* d_inode(NULL) won't be equal to any mapped user-space file */
7659 	if (!filter->path.dentry)
7660 		return false;
7661 
7662 	if (d_inode(filter->path.dentry) != file_inode(file))
7663 		return false;
7664 
7665 	if (filter->offset > offset + size)
7666 		return false;
7667 
7668 	if (filter->offset + filter->size < offset)
7669 		return false;
7670 
7671 	return true;
7672 }
7673 
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)7674 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7675 					struct vm_area_struct *vma,
7676 					struct perf_addr_filter_range *fr)
7677 {
7678 	unsigned long vma_size = vma->vm_end - vma->vm_start;
7679 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7680 	struct file *file = vma->vm_file;
7681 
7682 	if (!perf_addr_filter_match(filter, file, off, vma_size))
7683 		return false;
7684 
7685 	if (filter->offset < off) {
7686 		fr->start = vma->vm_start;
7687 		fr->size = min(vma_size, filter->size - (off - filter->offset));
7688 	} else {
7689 		fr->start = vma->vm_start + filter->offset - off;
7690 		fr->size = min(vma->vm_end - fr->start, filter->size);
7691 	}
7692 
7693 	return true;
7694 }
7695 
__perf_addr_filters_adjust(struct perf_event * event,void * data)7696 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7697 {
7698 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7699 	struct vm_area_struct *vma = data;
7700 	struct perf_addr_filter *filter;
7701 	unsigned int restart = 0, count = 0;
7702 	unsigned long flags;
7703 
7704 	if (!has_addr_filter(event))
7705 		return;
7706 
7707 	if (!vma->vm_file)
7708 		return;
7709 
7710 	raw_spin_lock_irqsave(&ifh->lock, flags);
7711 	list_for_each_entry(filter, &ifh->list, entry) {
7712 		if (perf_addr_filter_vma_adjust(filter, vma,
7713 						&event->addr_filter_ranges[count]))
7714 			restart++;
7715 
7716 		count++;
7717 	}
7718 
7719 	if (restart)
7720 		event->addr_filters_gen++;
7721 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7722 
7723 	if (restart)
7724 		perf_event_stop(event, 1);
7725 }
7726 
7727 /*
7728  * Adjust all task's events' filters to the new vma
7729  */
perf_addr_filters_adjust(struct vm_area_struct * vma)7730 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7731 {
7732 	struct perf_event_context *ctx;
7733 	int ctxn;
7734 
7735 	/*
7736 	 * Data tracing isn't supported yet and as such there is no need
7737 	 * to keep track of anything that isn't related to executable code:
7738 	 */
7739 	if (!(vma->vm_flags & VM_EXEC))
7740 		return;
7741 
7742 	rcu_read_lock();
7743 	for_each_task_context_nr(ctxn) {
7744 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7745 		if (!ctx)
7746 			continue;
7747 
7748 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7749 	}
7750 	rcu_read_unlock();
7751 }
7752 
perf_event_mmap(struct vm_area_struct * vma)7753 void perf_event_mmap(struct vm_area_struct *vma)
7754 {
7755 	struct perf_mmap_event mmap_event;
7756 
7757 	if (!atomic_read(&nr_mmap_events))
7758 		return;
7759 
7760 	mmap_event = (struct perf_mmap_event){
7761 		.vma	= vma,
7762 		/* .file_name */
7763 		/* .file_size */
7764 		.event_id  = {
7765 			.header = {
7766 				.type = PERF_RECORD_MMAP,
7767 				.misc = PERF_RECORD_MISC_USER,
7768 				/* .size */
7769 			},
7770 			/* .pid */
7771 			/* .tid */
7772 			.start  = vma->vm_start,
7773 			.len    = vma->vm_end - vma->vm_start,
7774 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7775 		},
7776 		/* .maj (attr_mmap2 only) */
7777 		/* .min (attr_mmap2 only) */
7778 		/* .ino (attr_mmap2 only) */
7779 		/* .ino_generation (attr_mmap2 only) */
7780 		/* .prot (attr_mmap2 only) */
7781 		/* .flags (attr_mmap2 only) */
7782 	};
7783 
7784 	perf_addr_filters_adjust(vma);
7785 	perf_event_mmap_event(&mmap_event);
7786 }
7787 
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)7788 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7789 			  unsigned long size, u64 flags)
7790 {
7791 	struct perf_output_handle handle;
7792 	struct perf_sample_data sample;
7793 	struct perf_aux_event {
7794 		struct perf_event_header	header;
7795 		u64				offset;
7796 		u64				size;
7797 		u64				flags;
7798 	} rec = {
7799 		.header = {
7800 			.type = PERF_RECORD_AUX,
7801 			.misc = 0,
7802 			.size = sizeof(rec),
7803 		},
7804 		.offset		= head,
7805 		.size		= size,
7806 		.flags		= flags,
7807 	};
7808 	int ret;
7809 
7810 	perf_event_header__init_id(&rec.header, &sample, event);
7811 	ret = perf_output_begin(&handle, event, rec.header.size);
7812 
7813 	if (ret)
7814 		return;
7815 
7816 	perf_output_put(&handle, rec);
7817 	perf_event__output_id_sample(event, &handle, &sample);
7818 
7819 	perf_output_end(&handle);
7820 }
7821 
7822 /*
7823  * Lost/dropped samples logging
7824  */
perf_log_lost_samples(struct perf_event * event,u64 lost)7825 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7826 {
7827 	struct perf_output_handle handle;
7828 	struct perf_sample_data sample;
7829 	int ret;
7830 
7831 	struct {
7832 		struct perf_event_header	header;
7833 		u64				lost;
7834 	} lost_samples_event = {
7835 		.header = {
7836 			.type = PERF_RECORD_LOST_SAMPLES,
7837 			.misc = 0,
7838 			.size = sizeof(lost_samples_event),
7839 		},
7840 		.lost		= lost,
7841 	};
7842 
7843 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7844 
7845 	ret = perf_output_begin(&handle, event,
7846 				lost_samples_event.header.size);
7847 	if (ret)
7848 		return;
7849 
7850 	perf_output_put(&handle, lost_samples_event);
7851 	perf_event__output_id_sample(event, &handle, &sample);
7852 	perf_output_end(&handle);
7853 }
7854 
7855 /*
7856  * context_switch tracking
7857  */
7858 
7859 struct perf_switch_event {
7860 	struct task_struct	*task;
7861 	struct task_struct	*next_prev;
7862 
7863 	struct {
7864 		struct perf_event_header	header;
7865 		u32				next_prev_pid;
7866 		u32				next_prev_tid;
7867 	} event_id;
7868 };
7869 
perf_event_switch_match(struct perf_event * event)7870 static int perf_event_switch_match(struct perf_event *event)
7871 {
7872 	return event->attr.context_switch;
7873 }
7874 
perf_event_switch_output(struct perf_event * event,void * data)7875 static void perf_event_switch_output(struct perf_event *event, void *data)
7876 {
7877 	struct perf_switch_event *se = data;
7878 	struct perf_output_handle handle;
7879 	struct perf_sample_data sample;
7880 	int ret;
7881 
7882 	if (!perf_event_switch_match(event))
7883 		return;
7884 
7885 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7886 	if (event->ctx->task) {
7887 		se->event_id.header.type = PERF_RECORD_SWITCH;
7888 		se->event_id.header.size = sizeof(se->event_id.header);
7889 	} else {
7890 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7891 		se->event_id.header.size = sizeof(se->event_id);
7892 		se->event_id.next_prev_pid =
7893 					perf_event_pid(event, se->next_prev);
7894 		se->event_id.next_prev_tid =
7895 					perf_event_tid(event, se->next_prev);
7896 	}
7897 
7898 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7899 
7900 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7901 	if (ret)
7902 		return;
7903 
7904 	if (event->ctx->task)
7905 		perf_output_put(&handle, se->event_id.header);
7906 	else
7907 		perf_output_put(&handle, se->event_id);
7908 
7909 	perf_event__output_id_sample(event, &handle, &sample);
7910 
7911 	perf_output_end(&handle);
7912 }
7913 
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)7914 static void perf_event_switch(struct task_struct *task,
7915 			      struct task_struct *next_prev, bool sched_in)
7916 {
7917 	struct perf_switch_event switch_event;
7918 
7919 	/* N.B. caller checks nr_switch_events != 0 */
7920 
7921 	switch_event = (struct perf_switch_event){
7922 		.task		= task,
7923 		.next_prev	= next_prev,
7924 		.event_id	= {
7925 			.header = {
7926 				/* .type */
7927 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7928 				/* .size */
7929 			},
7930 			/* .next_prev_pid */
7931 			/* .next_prev_tid */
7932 		},
7933 	};
7934 
7935 	if (!sched_in && task->state == TASK_RUNNING)
7936 		switch_event.event_id.header.misc |=
7937 				PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7938 
7939 	perf_iterate_sb(perf_event_switch_output,
7940 		       &switch_event,
7941 		       NULL);
7942 }
7943 
7944 /*
7945  * IRQ throttle logging
7946  */
7947 
perf_log_throttle(struct perf_event * event,int enable)7948 static void perf_log_throttle(struct perf_event *event, int enable)
7949 {
7950 	struct perf_output_handle handle;
7951 	struct perf_sample_data sample;
7952 	int ret;
7953 
7954 	struct {
7955 		struct perf_event_header	header;
7956 		u64				time;
7957 		u64				id;
7958 		u64				stream_id;
7959 	} throttle_event = {
7960 		.header = {
7961 			.type = PERF_RECORD_THROTTLE,
7962 			.misc = 0,
7963 			.size = sizeof(throttle_event),
7964 		},
7965 		.time		= perf_event_clock(event),
7966 		.id		= primary_event_id(event),
7967 		.stream_id	= event->id,
7968 	};
7969 
7970 	if (enable)
7971 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7972 
7973 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7974 
7975 	ret = perf_output_begin(&handle, event,
7976 				throttle_event.header.size);
7977 	if (ret)
7978 		return;
7979 
7980 	perf_output_put(&handle, throttle_event);
7981 	perf_event__output_id_sample(event, &handle, &sample);
7982 	perf_output_end(&handle);
7983 }
7984 
7985 /*
7986  * ksymbol register/unregister tracking
7987  */
7988 
7989 struct perf_ksymbol_event {
7990 	const char	*name;
7991 	int		name_len;
7992 	struct {
7993 		struct perf_event_header        header;
7994 		u64				addr;
7995 		u32				len;
7996 		u16				ksym_type;
7997 		u16				flags;
7998 	} event_id;
7999 };
8000 
perf_event_ksymbol_match(struct perf_event * event)8001 static int perf_event_ksymbol_match(struct perf_event *event)
8002 {
8003 	return event->attr.ksymbol;
8004 }
8005 
perf_event_ksymbol_output(struct perf_event * event,void * data)8006 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8007 {
8008 	struct perf_ksymbol_event *ksymbol_event = data;
8009 	struct perf_output_handle handle;
8010 	struct perf_sample_data sample;
8011 	int ret;
8012 
8013 	if (!perf_event_ksymbol_match(event))
8014 		return;
8015 
8016 	perf_event_header__init_id(&ksymbol_event->event_id.header,
8017 				   &sample, event);
8018 	ret = perf_output_begin(&handle, event,
8019 				ksymbol_event->event_id.header.size);
8020 	if (ret)
8021 		return;
8022 
8023 	perf_output_put(&handle, ksymbol_event->event_id);
8024 	__output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8025 	perf_event__output_id_sample(event, &handle, &sample);
8026 
8027 	perf_output_end(&handle);
8028 }
8029 
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)8030 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8031 			const char *sym)
8032 {
8033 	struct perf_ksymbol_event ksymbol_event;
8034 	char name[KSYM_NAME_LEN];
8035 	u16 flags = 0;
8036 	int name_len;
8037 
8038 	if (!atomic_read(&nr_ksymbol_events))
8039 		return;
8040 
8041 	if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8042 	    ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8043 		goto err;
8044 
8045 	strlcpy(name, sym, KSYM_NAME_LEN);
8046 	name_len = strlen(name) + 1;
8047 	while (!IS_ALIGNED(name_len, sizeof(u64)))
8048 		name[name_len++] = '\0';
8049 	BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8050 
8051 	if (unregister)
8052 		flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8053 
8054 	ksymbol_event = (struct perf_ksymbol_event){
8055 		.name = name,
8056 		.name_len = name_len,
8057 		.event_id = {
8058 			.header = {
8059 				.type = PERF_RECORD_KSYMBOL,
8060 				.size = sizeof(ksymbol_event.event_id) +
8061 					name_len,
8062 			},
8063 			.addr = addr,
8064 			.len = len,
8065 			.ksym_type = ksym_type,
8066 			.flags = flags,
8067 		},
8068 	};
8069 
8070 	perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8071 	return;
8072 err:
8073 	WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8074 }
8075 
8076 /*
8077  * bpf program load/unload tracking
8078  */
8079 
8080 struct perf_bpf_event {
8081 	struct bpf_prog	*prog;
8082 	struct {
8083 		struct perf_event_header        header;
8084 		u16				type;
8085 		u16				flags;
8086 		u32				id;
8087 		u8				tag[BPF_TAG_SIZE];
8088 	} event_id;
8089 };
8090 
perf_event_bpf_match(struct perf_event * event)8091 static int perf_event_bpf_match(struct perf_event *event)
8092 {
8093 	return event->attr.bpf_event;
8094 }
8095 
perf_event_bpf_output(struct perf_event * event,void * data)8096 static void perf_event_bpf_output(struct perf_event *event, void *data)
8097 {
8098 	struct perf_bpf_event *bpf_event = data;
8099 	struct perf_output_handle handle;
8100 	struct perf_sample_data sample;
8101 	int ret;
8102 
8103 	if (!perf_event_bpf_match(event))
8104 		return;
8105 
8106 	perf_event_header__init_id(&bpf_event->event_id.header,
8107 				   &sample, event);
8108 	ret = perf_output_begin(&handle, event,
8109 				bpf_event->event_id.header.size);
8110 	if (ret)
8111 		return;
8112 
8113 	perf_output_put(&handle, bpf_event->event_id);
8114 	perf_event__output_id_sample(event, &handle, &sample);
8115 
8116 	perf_output_end(&handle);
8117 }
8118 
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)8119 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8120 					 enum perf_bpf_event_type type)
8121 {
8122 	bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8123 	char sym[KSYM_NAME_LEN];
8124 	int i;
8125 
8126 	if (prog->aux->func_cnt == 0) {
8127 		bpf_get_prog_name(prog, sym);
8128 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8129 				   (u64)(unsigned long)prog->bpf_func,
8130 				   prog->jited_len, unregister, sym);
8131 	} else {
8132 		for (i = 0; i < prog->aux->func_cnt; i++) {
8133 			struct bpf_prog *subprog = prog->aux->func[i];
8134 
8135 			bpf_get_prog_name(subprog, sym);
8136 			perf_event_ksymbol(
8137 				PERF_RECORD_KSYMBOL_TYPE_BPF,
8138 				(u64)(unsigned long)subprog->bpf_func,
8139 				subprog->jited_len, unregister, sym);
8140 		}
8141 	}
8142 }
8143 
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)8144 void perf_event_bpf_event(struct bpf_prog *prog,
8145 			  enum perf_bpf_event_type type,
8146 			  u16 flags)
8147 {
8148 	struct perf_bpf_event bpf_event;
8149 
8150 	if (type <= PERF_BPF_EVENT_UNKNOWN ||
8151 	    type >= PERF_BPF_EVENT_MAX)
8152 		return;
8153 
8154 	switch (type) {
8155 	case PERF_BPF_EVENT_PROG_LOAD:
8156 	case PERF_BPF_EVENT_PROG_UNLOAD:
8157 		if (atomic_read(&nr_ksymbol_events))
8158 			perf_event_bpf_emit_ksymbols(prog, type);
8159 		break;
8160 	default:
8161 		break;
8162 	}
8163 
8164 	if (!atomic_read(&nr_bpf_events))
8165 		return;
8166 
8167 	bpf_event = (struct perf_bpf_event){
8168 		.prog = prog,
8169 		.event_id = {
8170 			.header = {
8171 				.type = PERF_RECORD_BPF_EVENT,
8172 				.size = sizeof(bpf_event.event_id),
8173 			},
8174 			.type = type,
8175 			.flags = flags,
8176 			.id = prog->aux->id,
8177 		},
8178 	};
8179 
8180 	BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8181 
8182 	memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8183 	perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8184 }
8185 
perf_event_itrace_started(struct perf_event * event)8186 void perf_event_itrace_started(struct perf_event *event)
8187 {
8188 	event->attach_state |= PERF_ATTACH_ITRACE;
8189 }
8190 
perf_log_itrace_start(struct perf_event * event)8191 static void perf_log_itrace_start(struct perf_event *event)
8192 {
8193 	struct perf_output_handle handle;
8194 	struct perf_sample_data sample;
8195 	struct perf_aux_event {
8196 		struct perf_event_header        header;
8197 		u32				pid;
8198 		u32				tid;
8199 	} rec;
8200 	int ret;
8201 
8202 	if (event->parent)
8203 		event = event->parent;
8204 
8205 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8206 	    event->attach_state & PERF_ATTACH_ITRACE)
8207 		return;
8208 
8209 	rec.header.type	= PERF_RECORD_ITRACE_START;
8210 	rec.header.misc	= 0;
8211 	rec.header.size	= sizeof(rec);
8212 	rec.pid	= perf_event_pid(event, current);
8213 	rec.tid	= perf_event_tid(event, current);
8214 
8215 	perf_event_header__init_id(&rec.header, &sample, event);
8216 	ret = perf_output_begin(&handle, event, rec.header.size);
8217 
8218 	if (ret)
8219 		return;
8220 
8221 	perf_output_put(&handle, rec);
8222 	perf_event__output_id_sample(event, &handle, &sample);
8223 
8224 	perf_output_end(&handle);
8225 }
8226 
8227 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)8228 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8229 {
8230 	struct hw_perf_event *hwc = &event->hw;
8231 	int ret = 0;
8232 	u64 seq;
8233 
8234 	seq = __this_cpu_read(perf_throttled_seq);
8235 	if (seq != hwc->interrupts_seq) {
8236 		hwc->interrupts_seq = seq;
8237 		hwc->interrupts = 1;
8238 	} else {
8239 		hwc->interrupts++;
8240 		if (unlikely(throttle &&
8241 			     hwc->interrupts > max_samples_per_tick)) {
8242 			__this_cpu_inc(perf_throttled_count);
8243 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8244 			hwc->interrupts = MAX_INTERRUPTS;
8245 			perf_log_throttle(event, 0);
8246 			ret = 1;
8247 		}
8248 	}
8249 
8250 	if (event->attr.freq) {
8251 		u64 now = perf_clock();
8252 		s64 delta = now - hwc->freq_time_stamp;
8253 
8254 		hwc->freq_time_stamp = now;
8255 
8256 		if (delta > 0 && delta < 2*TICK_NSEC)
8257 			perf_adjust_period(event, delta, hwc->last_period, true);
8258 	}
8259 
8260 	return ret;
8261 }
8262 
perf_event_account_interrupt(struct perf_event * event)8263 int perf_event_account_interrupt(struct perf_event *event)
8264 {
8265 	return __perf_event_account_interrupt(event, 1);
8266 }
8267 
8268 /*
8269  * Generic event overflow handling, sampling.
8270  */
8271 
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)8272 static int __perf_event_overflow(struct perf_event *event,
8273 				   int throttle, struct perf_sample_data *data,
8274 				   struct pt_regs *regs)
8275 {
8276 	int events = atomic_read(&event->event_limit);
8277 	int ret = 0;
8278 
8279 	/*
8280 	 * Non-sampling counters might still use the PMI to fold short
8281 	 * hardware counters, ignore those.
8282 	 */
8283 	if (unlikely(!is_sampling_event(event)))
8284 		return 0;
8285 
8286 	ret = __perf_event_account_interrupt(event, throttle);
8287 
8288 	/*
8289 	 * XXX event_limit might not quite work as expected on inherited
8290 	 * events
8291 	 */
8292 
8293 	event->pending_kill = POLL_IN;
8294 	if (events && atomic_dec_and_test(&event->event_limit)) {
8295 		ret = 1;
8296 		event->pending_kill = POLL_HUP;
8297 
8298 		perf_event_disable_inatomic(event);
8299 	}
8300 
8301 	READ_ONCE(event->overflow_handler)(event, data, regs);
8302 
8303 	if (*perf_event_fasync(event) && event->pending_kill) {
8304 		event->pending_wakeup = 1;
8305 		irq_work_queue(&event->pending);
8306 	}
8307 
8308 	return ret;
8309 }
8310 
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8311 int perf_event_overflow(struct perf_event *event,
8312 			  struct perf_sample_data *data,
8313 			  struct pt_regs *regs)
8314 {
8315 	return __perf_event_overflow(event, 1, data, regs);
8316 }
8317 
8318 /*
8319  * Generic software event infrastructure
8320  */
8321 
8322 struct swevent_htable {
8323 	struct swevent_hlist		*swevent_hlist;
8324 	struct mutex			hlist_mutex;
8325 	int				hlist_refcount;
8326 
8327 	/* Recursion avoidance in each contexts */
8328 	int				recursion[PERF_NR_CONTEXTS];
8329 };
8330 
8331 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8332 
8333 /*
8334  * We directly increment event->count and keep a second value in
8335  * event->hw.period_left to count intervals. This period event
8336  * is kept in the range [-sample_period, 0] so that we can use the
8337  * sign as trigger.
8338  */
8339 
perf_swevent_set_period(struct perf_event * event)8340 u64 perf_swevent_set_period(struct perf_event *event)
8341 {
8342 	struct hw_perf_event *hwc = &event->hw;
8343 	u64 period = hwc->last_period;
8344 	u64 nr, offset;
8345 	s64 old, val;
8346 
8347 	hwc->last_period = hwc->sample_period;
8348 
8349 again:
8350 	old = val = local64_read(&hwc->period_left);
8351 	if (val < 0)
8352 		return 0;
8353 
8354 	nr = div64_u64(period + val, period);
8355 	offset = nr * period;
8356 	val -= offset;
8357 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8358 		goto again;
8359 
8360 	return nr;
8361 }
8362 
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)8363 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8364 				    struct perf_sample_data *data,
8365 				    struct pt_regs *regs)
8366 {
8367 	struct hw_perf_event *hwc = &event->hw;
8368 	int throttle = 0;
8369 
8370 	if (!overflow)
8371 		overflow = perf_swevent_set_period(event);
8372 
8373 	if (hwc->interrupts == MAX_INTERRUPTS)
8374 		return;
8375 
8376 	for (; overflow; overflow--) {
8377 		if (__perf_event_overflow(event, throttle,
8378 					    data, regs)) {
8379 			/*
8380 			 * We inhibit the overflow from happening when
8381 			 * hwc->interrupts == MAX_INTERRUPTS.
8382 			 */
8383 			break;
8384 		}
8385 		throttle = 1;
8386 	}
8387 }
8388 
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)8389 static void perf_swevent_event(struct perf_event *event, u64 nr,
8390 			       struct perf_sample_data *data,
8391 			       struct pt_regs *regs)
8392 {
8393 	struct hw_perf_event *hwc = &event->hw;
8394 
8395 	local64_add(nr, &event->count);
8396 
8397 	if (!regs)
8398 		return;
8399 
8400 	if (!is_sampling_event(event))
8401 		return;
8402 
8403 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8404 		data->period = nr;
8405 		return perf_swevent_overflow(event, 1, data, regs);
8406 	} else
8407 		data->period = event->hw.last_period;
8408 
8409 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8410 		return perf_swevent_overflow(event, 1, data, regs);
8411 
8412 	if (local64_add_negative(nr, &hwc->period_left))
8413 		return;
8414 
8415 	perf_swevent_overflow(event, 0, data, regs);
8416 }
8417 
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)8418 static int perf_exclude_event(struct perf_event *event,
8419 			      struct pt_regs *regs)
8420 {
8421 	if (event->hw.state & PERF_HES_STOPPED)
8422 		return 1;
8423 
8424 	if (regs) {
8425 		if (event->attr.exclude_user && user_mode(regs))
8426 			return 1;
8427 
8428 		if (event->attr.exclude_kernel && !user_mode(regs))
8429 			return 1;
8430 	}
8431 
8432 	return 0;
8433 }
8434 
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)8435 static int perf_swevent_match(struct perf_event *event,
8436 				enum perf_type_id type,
8437 				u32 event_id,
8438 				struct perf_sample_data *data,
8439 				struct pt_regs *regs)
8440 {
8441 	if (event->attr.type != type)
8442 		return 0;
8443 
8444 	if (event->attr.config != event_id)
8445 		return 0;
8446 
8447 	if (perf_exclude_event(event, regs))
8448 		return 0;
8449 
8450 	return 1;
8451 }
8452 
swevent_hash(u64 type,u32 event_id)8453 static inline u64 swevent_hash(u64 type, u32 event_id)
8454 {
8455 	u64 val = event_id | (type << 32);
8456 
8457 	return hash_64(val, SWEVENT_HLIST_BITS);
8458 }
8459 
8460 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)8461 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8462 {
8463 	u64 hash = swevent_hash(type, event_id);
8464 
8465 	return &hlist->heads[hash];
8466 }
8467 
8468 /* For the read side: events when they trigger */
8469 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)8470 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8471 {
8472 	struct swevent_hlist *hlist;
8473 
8474 	hlist = rcu_dereference(swhash->swevent_hlist);
8475 	if (!hlist)
8476 		return NULL;
8477 
8478 	return __find_swevent_head(hlist, type, event_id);
8479 }
8480 
8481 /* For the event head insertion and removal in the hlist */
8482 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)8483 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8484 {
8485 	struct swevent_hlist *hlist;
8486 	u32 event_id = event->attr.config;
8487 	u64 type = event->attr.type;
8488 
8489 	/*
8490 	 * Event scheduling is always serialized against hlist allocation
8491 	 * and release. Which makes the protected version suitable here.
8492 	 * The context lock guarantees that.
8493 	 */
8494 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
8495 					  lockdep_is_held(&event->ctx->lock));
8496 	if (!hlist)
8497 		return NULL;
8498 
8499 	return __find_swevent_head(hlist, type, event_id);
8500 }
8501 
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)8502 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8503 				    u64 nr,
8504 				    struct perf_sample_data *data,
8505 				    struct pt_regs *regs)
8506 {
8507 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8508 	struct perf_event *event;
8509 	struct hlist_head *head;
8510 
8511 	rcu_read_lock();
8512 	head = find_swevent_head_rcu(swhash, type, event_id);
8513 	if (!head)
8514 		goto end;
8515 
8516 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8517 		if (perf_swevent_match(event, type, event_id, data, regs))
8518 			perf_swevent_event(event, nr, data, regs);
8519 	}
8520 end:
8521 	rcu_read_unlock();
8522 }
8523 
8524 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8525 
perf_swevent_get_recursion_context(void)8526 int perf_swevent_get_recursion_context(void)
8527 {
8528 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8529 
8530 	return get_recursion_context(swhash->recursion);
8531 }
8532 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8533 
perf_swevent_put_recursion_context(int rctx)8534 void perf_swevent_put_recursion_context(int rctx)
8535 {
8536 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8537 
8538 	put_recursion_context(swhash->recursion, rctx);
8539 }
8540 
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)8541 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8542 {
8543 	struct perf_sample_data data;
8544 
8545 	if (WARN_ON_ONCE(!regs))
8546 		return;
8547 
8548 	perf_sample_data_init(&data, addr, 0);
8549 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8550 }
8551 
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)8552 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8553 {
8554 	int rctx;
8555 
8556 	preempt_disable_notrace();
8557 	rctx = perf_swevent_get_recursion_context();
8558 	if (unlikely(rctx < 0))
8559 		goto fail;
8560 
8561 	___perf_sw_event(event_id, nr, regs, addr);
8562 
8563 	perf_swevent_put_recursion_context(rctx);
8564 fail:
8565 	preempt_enable_notrace();
8566 }
8567 
perf_swevent_read(struct perf_event * event)8568 static void perf_swevent_read(struct perf_event *event)
8569 {
8570 }
8571 
perf_swevent_add(struct perf_event * event,int flags)8572 static int perf_swevent_add(struct perf_event *event, int flags)
8573 {
8574 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8575 	struct hw_perf_event *hwc = &event->hw;
8576 	struct hlist_head *head;
8577 
8578 	if (is_sampling_event(event)) {
8579 		hwc->last_period = hwc->sample_period;
8580 		perf_swevent_set_period(event);
8581 	}
8582 
8583 	hwc->state = !(flags & PERF_EF_START);
8584 
8585 	head = find_swevent_head(swhash, event);
8586 	if (WARN_ON_ONCE(!head))
8587 		return -EINVAL;
8588 
8589 	hlist_add_head_rcu(&event->hlist_entry, head);
8590 	perf_event_update_userpage(event);
8591 
8592 	return 0;
8593 }
8594 
perf_swevent_del(struct perf_event * event,int flags)8595 static void perf_swevent_del(struct perf_event *event, int flags)
8596 {
8597 	hlist_del_rcu(&event->hlist_entry);
8598 }
8599 
perf_swevent_start(struct perf_event * event,int flags)8600 static void perf_swevent_start(struct perf_event *event, int flags)
8601 {
8602 	event->hw.state = 0;
8603 }
8604 
perf_swevent_stop(struct perf_event * event,int flags)8605 static void perf_swevent_stop(struct perf_event *event, int flags)
8606 {
8607 	event->hw.state = PERF_HES_STOPPED;
8608 }
8609 
8610 /* Deref the hlist from the update side */
8611 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)8612 swevent_hlist_deref(struct swevent_htable *swhash)
8613 {
8614 	return rcu_dereference_protected(swhash->swevent_hlist,
8615 					 lockdep_is_held(&swhash->hlist_mutex));
8616 }
8617 
swevent_hlist_release(struct swevent_htable * swhash)8618 static void swevent_hlist_release(struct swevent_htable *swhash)
8619 {
8620 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8621 
8622 	if (!hlist)
8623 		return;
8624 
8625 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8626 	kfree_rcu(hlist, rcu_head);
8627 }
8628 
swevent_hlist_put_cpu(int cpu)8629 static void swevent_hlist_put_cpu(int cpu)
8630 {
8631 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8632 
8633 	mutex_lock(&swhash->hlist_mutex);
8634 
8635 	if (!--swhash->hlist_refcount)
8636 		swevent_hlist_release(swhash);
8637 
8638 	mutex_unlock(&swhash->hlist_mutex);
8639 }
8640 
swevent_hlist_put(void)8641 static void swevent_hlist_put(void)
8642 {
8643 	int cpu;
8644 
8645 	for_each_possible_cpu(cpu)
8646 		swevent_hlist_put_cpu(cpu);
8647 }
8648 
swevent_hlist_get_cpu(int cpu)8649 static int swevent_hlist_get_cpu(int cpu)
8650 {
8651 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8652 	int err = 0;
8653 
8654 	mutex_lock(&swhash->hlist_mutex);
8655 	if (!swevent_hlist_deref(swhash) &&
8656 	    cpumask_test_cpu(cpu, perf_online_mask)) {
8657 		struct swevent_hlist *hlist;
8658 
8659 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8660 		if (!hlist) {
8661 			err = -ENOMEM;
8662 			goto exit;
8663 		}
8664 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
8665 	}
8666 	swhash->hlist_refcount++;
8667 exit:
8668 	mutex_unlock(&swhash->hlist_mutex);
8669 
8670 	return err;
8671 }
8672 
swevent_hlist_get(void)8673 static int swevent_hlist_get(void)
8674 {
8675 	int err, cpu, failed_cpu;
8676 
8677 	mutex_lock(&pmus_lock);
8678 	for_each_possible_cpu(cpu) {
8679 		err = swevent_hlist_get_cpu(cpu);
8680 		if (err) {
8681 			failed_cpu = cpu;
8682 			goto fail;
8683 		}
8684 	}
8685 	mutex_unlock(&pmus_lock);
8686 	return 0;
8687 fail:
8688 	for_each_possible_cpu(cpu) {
8689 		if (cpu == failed_cpu)
8690 			break;
8691 		swevent_hlist_put_cpu(cpu);
8692 	}
8693 	mutex_unlock(&pmus_lock);
8694 	return err;
8695 }
8696 
8697 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8698 
sw_perf_event_destroy(struct perf_event * event)8699 static void sw_perf_event_destroy(struct perf_event *event)
8700 {
8701 	u64 event_id = event->attr.config;
8702 
8703 	WARN_ON(event->parent);
8704 
8705 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
8706 	swevent_hlist_put();
8707 }
8708 
perf_swevent_init(struct perf_event * event)8709 static int perf_swevent_init(struct perf_event *event)
8710 {
8711 	u64 event_id = event->attr.config;
8712 
8713 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8714 		return -ENOENT;
8715 
8716 	/*
8717 	 * no branch sampling for software events
8718 	 */
8719 	if (has_branch_stack(event))
8720 		return -EOPNOTSUPP;
8721 
8722 	switch (event_id) {
8723 	case PERF_COUNT_SW_CPU_CLOCK:
8724 	case PERF_COUNT_SW_TASK_CLOCK:
8725 		return -ENOENT;
8726 
8727 	default:
8728 		break;
8729 	}
8730 
8731 	if (event_id >= PERF_COUNT_SW_MAX)
8732 		return -ENOENT;
8733 
8734 	if (!event->parent) {
8735 		int err;
8736 
8737 		err = swevent_hlist_get();
8738 		if (err)
8739 			return err;
8740 
8741 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
8742 		event->destroy = sw_perf_event_destroy;
8743 	}
8744 
8745 	return 0;
8746 }
8747 
8748 static struct pmu perf_swevent = {
8749 	.task_ctx_nr	= perf_sw_context,
8750 
8751 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8752 
8753 	.event_init	= perf_swevent_init,
8754 	.add		= perf_swevent_add,
8755 	.del		= perf_swevent_del,
8756 	.start		= perf_swevent_start,
8757 	.stop		= perf_swevent_stop,
8758 	.read		= perf_swevent_read,
8759 };
8760 
8761 #ifdef CONFIG_EVENT_TRACING
8762 
perf_tp_filter_match(struct perf_event * event,struct perf_sample_data * data)8763 static int perf_tp_filter_match(struct perf_event *event,
8764 				struct perf_sample_data *data)
8765 {
8766 	void *record = data->raw->frag.data;
8767 
8768 	/* only top level events have filters set */
8769 	if (event->parent)
8770 		event = event->parent;
8771 
8772 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
8773 		return 1;
8774 	return 0;
8775 }
8776 
perf_tp_event_match(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8777 static int perf_tp_event_match(struct perf_event *event,
8778 				struct perf_sample_data *data,
8779 				struct pt_regs *regs)
8780 {
8781 	if (event->hw.state & PERF_HES_STOPPED)
8782 		return 0;
8783 	/*
8784 	 * If exclude_kernel, only trace user-space tracepoints (uprobes)
8785 	 */
8786 	if (event->attr.exclude_kernel && !user_mode(regs))
8787 		return 0;
8788 
8789 	if (!perf_tp_filter_match(event, data))
8790 		return 0;
8791 
8792 	return 1;
8793 }
8794 
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)8795 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8796 			       struct trace_event_call *call, u64 count,
8797 			       struct pt_regs *regs, struct hlist_head *head,
8798 			       struct task_struct *task)
8799 {
8800 	if (bpf_prog_array_valid(call)) {
8801 		*(struct pt_regs **)raw_data = regs;
8802 		if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8803 			perf_swevent_put_recursion_context(rctx);
8804 			return;
8805 		}
8806 	}
8807 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8808 		      rctx, task);
8809 }
8810 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8811 
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)8812 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8813 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8814 		   struct task_struct *task)
8815 {
8816 	struct perf_sample_data data;
8817 	struct perf_event *event;
8818 
8819 	struct perf_raw_record raw = {
8820 		.frag = {
8821 			.size = entry_size,
8822 			.data = record,
8823 		},
8824 	};
8825 
8826 	perf_sample_data_init(&data, 0, 0);
8827 	data.raw = &raw;
8828 
8829 	perf_trace_buf_update(record, event_type);
8830 
8831 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
8832 		if (perf_tp_event_match(event, &data, regs))
8833 			perf_swevent_event(event, count, &data, regs);
8834 	}
8835 
8836 	/*
8837 	 * If we got specified a target task, also iterate its context and
8838 	 * deliver this event there too.
8839 	 */
8840 	if (task && task != current) {
8841 		struct perf_event_context *ctx;
8842 		struct trace_entry *entry = record;
8843 
8844 		rcu_read_lock();
8845 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8846 		if (!ctx)
8847 			goto unlock;
8848 
8849 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8850 			if (event->cpu != smp_processor_id())
8851 				continue;
8852 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8853 				continue;
8854 			if (event->attr.config != entry->type)
8855 				continue;
8856 			if (perf_tp_event_match(event, &data, regs))
8857 				perf_swevent_event(event, count, &data, regs);
8858 		}
8859 unlock:
8860 		rcu_read_unlock();
8861 	}
8862 
8863 	perf_swevent_put_recursion_context(rctx);
8864 }
8865 EXPORT_SYMBOL_GPL(perf_tp_event);
8866 
tp_perf_event_destroy(struct perf_event * event)8867 static void tp_perf_event_destroy(struct perf_event *event)
8868 {
8869 	perf_trace_destroy(event);
8870 }
8871 
perf_tp_event_init(struct perf_event * event)8872 static int perf_tp_event_init(struct perf_event *event)
8873 {
8874 	int err;
8875 
8876 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8877 		return -ENOENT;
8878 
8879 	/*
8880 	 * no branch sampling for tracepoint events
8881 	 */
8882 	if (has_branch_stack(event))
8883 		return -EOPNOTSUPP;
8884 
8885 	err = perf_trace_init(event);
8886 	if (err)
8887 		return err;
8888 
8889 	event->destroy = tp_perf_event_destroy;
8890 
8891 	return 0;
8892 }
8893 
8894 static struct pmu perf_tracepoint = {
8895 	.task_ctx_nr	= perf_sw_context,
8896 
8897 	.event_init	= perf_tp_event_init,
8898 	.add		= perf_trace_add,
8899 	.del		= perf_trace_del,
8900 	.start		= perf_swevent_start,
8901 	.stop		= perf_swevent_stop,
8902 	.read		= perf_swevent_read,
8903 };
8904 
8905 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8906 /*
8907  * Flags in config, used by dynamic PMU kprobe and uprobe
8908  * The flags should match following PMU_FORMAT_ATTR().
8909  *
8910  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8911  *                               if not set, create kprobe/uprobe
8912  *
8913  * The following values specify a reference counter (or semaphore in the
8914  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8915  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8916  *
8917  * PERF_UPROBE_REF_CTR_OFFSET_BITS	# of bits in config as th offset
8918  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT	# of bits to shift left
8919  */
8920 enum perf_probe_config {
8921 	PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8922 	PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8923 	PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8924 };
8925 
8926 PMU_FORMAT_ATTR(retprobe, "config:0");
8927 #endif
8928 
8929 #ifdef CONFIG_KPROBE_EVENTS
8930 static struct attribute *kprobe_attrs[] = {
8931 	&format_attr_retprobe.attr,
8932 	NULL,
8933 };
8934 
8935 static struct attribute_group kprobe_format_group = {
8936 	.name = "format",
8937 	.attrs = kprobe_attrs,
8938 };
8939 
8940 static const struct attribute_group *kprobe_attr_groups[] = {
8941 	&kprobe_format_group,
8942 	NULL,
8943 };
8944 
8945 static int perf_kprobe_event_init(struct perf_event *event);
8946 static struct pmu perf_kprobe = {
8947 	.task_ctx_nr	= perf_sw_context,
8948 	.event_init	= perf_kprobe_event_init,
8949 	.add		= perf_trace_add,
8950 	.del		= perf_trace_del,
8951 	.start		= perf_swevent_start,
8952 	.stop		= perf_swevent_stop,
8953 	.read		= perf_swevent_read,
8954 	.attr_groups	= kprobe_attr_groups,
8955 };
8956 
perf_kprobe_event_init(struct perf_event * event)8957 static int perf_kprobe_event_init(struct perf_event *event)
8958 {
8959 	int err;
8960 	bool is_retprobe;
8961 
8962 	if (event->attr.type != perf_kprobe.type)
8963 		return -ENOENT;
8964 
8965 	if (!capable(CAP_SYS_ADMIN))
8966 		return -EACCES;
8967 
8968 	/*
8969 	 * no branch sampling for probe events
8970 	 */
8971 	if (has_branch_stack(event))
8972 		return -EOPNOTSUPP;
8973 
8974 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8975 	err = perf_kprobe_init(event, is_retprobe);
8976 	if (err)
8977 		return err;
8978 
8979 	event->destroy = perf_kprobe_destroy;
8980 
8981 	return 0;
8982 }
8983 #endif /* CONFIG_KPROBE_EVENTS */
8984 
8985 #ifdef CONFIG_UPROBE_EVENTS
8986 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8987 
8988 static struct attribute *uprobe_attrs[] = {
8989 	&format_attr_retprobe.attr,
8990 	&format_attr_ref_ctr_offset.attr,
8991 	NULL,
8992 };
8993 
8994 static struct attribute_group uprobe_format_group = {
8995 	.name = "format",
8996 	.attrs = uprobe_attrs,
8997 };
8998 
8999 static const struct attribute_group *uprobe_attr_groups[] = {
9000 	&uprobe_format_group,
9001 	NULL,
9002 };
9003 
9004 static int perf_uprobe_event_init(struct perf_event *event);
9005 static struct pmu perf_uprobe = {
9006 	.task_ctx_nr	= perf_sw_context,
9007 	.event_init	= perf_uprobe_event_init,
9008 	.add		= perf_trace_add,
9009 	.del		= perf_trace_del,
9010 	.start		= perf_swevent_start,
9011 	.stop		= perf_swevent_stop,
9012 	.read		= perf_swevent_read,
9013 	.attr_groups	= uprobe_attr_groups,
9014 };
9015 
perf_uprobe_event_init(struct perf_event * event)9016 static int perf_uprobe_event_init(struct perf_event *event)
9017 {
9018 	int err;
9019 	unsigned long ref_ctr_offset;
9020 	bool is_retprobe;
9021 
9022 	if (event->attr.type != perf_uprobe.type)
9023 		return -ENOENT;
9024 
9025 	if (!capable(CAP_SYS_ADMIN))
9026 		return -EACCES;
9027 
9028 	/*
9029 	 * no branch sampling for probe events
9030 	 */
9031 	if (has_branch_stack(event))
9032 		return -EOPNOTSUPP;
9033 
9034 	is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9035 	ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9036 	err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9037 	if (err)
9038 		return err;
9039 
9040 	event->destroy = perf_uprobe_destroy;
9041 
9042 	return 0;
9043 }
9044 #endif /* CONFIG_UPROBE_EVENTS */
9045 
perf_tp_register(void)9046 static inline void perf_tp_register(void)
9047 {
9048 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9049 #ifdef CONFIG_KPROBE_EVENTS
9050 	perf_pmu_register(&perf_kprobe, "kprobe", -1);
9051 #endif
9052 #ifdef CONFIG_UPROBE_EVENTS
9053 	perf_pmu_register(&perf_uprobe, "uprobe", -1);
9054 #endif
9055 }
9056 
perf_event_free_filter(struct perf_event * event)9057 static void perf_event_free_filter(struct perf_event *event)
9058 {
9059 	ftrace_profile_free_filter(event);
9060 }
9061 
9062 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9063 static void bpf_overflow_handler(struct perf_event *event,
9064 				 struct perf_sample_data *data,
9065 				 struct pt_regs *regs)
9066 {
9067 	struct bpf_perf_event_data_kern ctx = {
9068 		.data = data,
9069 		.event = event,
9070 	};
9071 	int ret = 0;
9072 
9073 	ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9074 	preempt_disable();
9075 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9076 		goto out;
9077 	rcu_read_lock();
9078 	ret = BPF_PROG_RUN(event->prog, &ctx);
9079 	rcu_read_unlock();
9080 out:
9081 	__this_cpu_dec(bpf_prog_active);
9082 	preempt_enable();
9083 	if (!ret)
9084 		return;
9085 
9086 	event->orig_overflow_handler(event, data, regs);
9087 }
9088 
perf_event_set_bpf_handler(struct perf_event * event,u32 prog_fd)9089 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9090 {
9091 	struct bpf_prog *prog;
9092 
9093 	if (event->overflow_handler_context)
9094 		/* hw breakpoint or kernel counter */
9095 		return -EINVAL;
9096 
9097 	if (event->prog)
9098 		return -EEXIST;
9099 
9100 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9101 	if (IS_ERR(prog))
9102 		return PTR_ERR(prog);
9103 
9104 	event->prog = prog;
9105 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9106 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9107 	return 0;
9108 }
9109 
perf_event_free_bpf_handler(struct perf_event * event)9110 static void perf_event_free_bpf_handler(struct perf_event *event)
9111 {
9112 	struct bpf_prog *prog = event->prog;
9113 
9114 	if (!prog)
9115 		return;
9116 
9117 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9118 	event->prog = NULL;
9119 	bpf_prog_put(prog);
9120 }
9121 #else
perf_event_set_bpf_handler(struct perf_event * event,u32 prog_fd)9122 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9123 {
9124 	return -EOPNOTSUPP;
9125 }
perf_event_free_bpf_handler(struct perf_event * event)9126 static void perf_event_free_bpf_handler(struct perf_event *event)
9127 {
9128 }
9129 #endif
9130 
9131 /*
9132  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9133  * with perf_event_open()
9134  */
perf_event_is_tracing(struct perf_event * event)9135 static inline bool perf_event_is_tracing(struct perf_event *event)
9136 {
9137 	if (event->pmu == &perf_tracepoint)
9138 		return true;
9139 #ifdef CONFIG_KPROBE_EVENTS
9140 	if (event->pmu == &perf_kprobe)
9141 		return true;
9142 #endif
9143 #ifdef CONFIG_UPROBE_EVENTS
9144 	if (event->pmu == &perf_uprobe)
9145 		return true;
9146 #endif
9147 	return false;
9148 }
9149 
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)9150 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9151 {
9152 	bool is_kprobe, is_tracepoint, is_syscall_tp;
9153 	struct bpf_prog *prog;
9154 	int ret;
9155 
9156 	if (!perf_event_is_tracing(event))
9157 		return perf_event_set_bpf_handler(event, prog_fd);
9158 
9159 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9160 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9161 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
9162 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9163 		/* bpf programs can only be attached to u/kprobe or tracepoint */
9164 		return -EINVAL;
9165 
9166 	prog = bpf_prog_get(prog_fd);
9167 	if (IS_ERR(prog))
9168 		return PTR_ERR(prog);
9169 
9170 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9171 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9172 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9173 		/* valid fd, but invalid bpf program type */
9174 		bpf_prog_put(prog);
9175 		return -EINVAL;
9176 	}
9177 
9178 	/* Kprobe override only works for kprobes, not uprobes. */
9179 	if (prog->kprobe_override &&
9180 	    !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9181 		bpf_prog_put(prog);
9182 		return -EINVAL;
9183 	}
9184 
9185 	if (is_tracepoint || is_syscall_tp) {
9186 		int off = trace_event_get_offsets(event->tp_event);
9187 
9188 		if (prog->aux->max_ctx_offset > off) {
9189 			bpf_prog_put(prog);
9190 			return -EACCES;
9191 		}
9192 	}
9193 
9194 	ret = perf_event_attach_bpf_prog(event, prog);
9195 	if (ret)
9196 		bpf_prog_put(prog);
9197 	return ret;
9198 }
9199 
perf_event_free_bpf_prog(struct perf_event * event)9200 static void perf_event_free_bpf_prog(struct perf_event *event)
9201 {
9202 	if (!perf_event_is_tracing(event)) {
9203 		perf_event_free_bpf_handler(event);
9204 		return;
9205 	}
9206 	perf_event_detach_bpf_prog(event);
9207 }
9208 
9209 #else
9210 
perf_tp_register(void)9211 static inline void perf_tp_register(void)
9212 {
9213 }
9214 
perf_event_free_filter(struct perf_event * event)9215 static void perf_event_free_filter(struct perf_event *event)
9216 {
9217 }
9218 
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)9219 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9220 {
9221 	return -ENOENT;
9222 }
9223 
perf_event_free_bpf_prog(struct perf_event * event)9224 static void perf_event_free_bpf_prog(struct perf_event *event)
9225 {
9226 }
9227 #endif /* CONFIG_EVENT_TRACING */
9228 
9229 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)9230 void perf_bp_event(struct perf_event *bp, void *data)
9231 {
9232 	struct perf_sample_data sample;
9233 	struct pt_regs *regs = data;
9234 
9235 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9236 
9237 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
9238 		perf_swevent_event(bp, 1, &sample, regs);
9239 }
9240 #endif
9241 
9242 /*
9243  * Allocate a new address filter
9244  */
9245 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)9246 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9247 {
9248 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9249 	struct perf_addr_filter *filter;
9250 
9251 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9252 	if (!filter)
9253 		return NULL;
9254 
9255 	INIT_LIST_HEAD(&filter->entry);
9256 	list_add_tail(&filter->entry, filters);
9257 
9258 	return filter;
9259 }
9260 
free_filters_list(struct list_head * filters)9261 static void free_filters_list(struct list_head *filters)
9262 {
9263 	struct perf_addr_filter *filter, *iter;
9264 
9265 	list_for_each_entry_safe(filter, iter, filters, entry) {
9266 		path_put(&filter->path);
9267 		list_del(&filter->entry);
9268 		kfree(filter);
9269 	}
9270 }
9271 
9272 /*
9273  * Free existing address filters and optionally install new ones
9274  */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)9275 static void perf_addr_filters_splice(struct perf_event *event,
9276 				     struct list_head *head)
9277 {
9278 	unsigned long flags;
9279 	LIST_HEAD(list);
9280 
9281 	if (!has_addr_filter(event))
9282 		return;
9283 
9284 	/* don't bother with children, they don't have their own filters */
9285 	if (event->parent)
9286 		return;
9287 
9288 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9289 
9290 	list_splice_init(&event->addr_filters.list, &list);
9291 	if (head)
9292 		list_splice(head, &event->addr_filters.list);
9293 
9294 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9295 
9296 	free_filters_list(&list);
9297 }
9298 
9299 /*
9300  * Scan through mm's vmas and see if one of them matches the
9301  * @filter; if so, adjust filter's address range.
9302  * Called with mm::mmap_sem down for reading.
9303  */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)9304 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9305 				   struct mm_struct *mm,
9306 				   struct perf_addr_filter_range *fr)
9307 {
9308 	struct vm_area_struct *vma;
9309 
9310 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
9311 		if (!vma->vm_file)
9312 			continue;
9313 
9314 		if (perf_addr_filter_vma_adjust(filter, vma, fr))
9315 			return;
9316 	}
9317 }
9318 
9319 /*
9320  * Update event's address range filters based on the
9321  * task's existing mappings, if any.
9322  */
perf_event_addr_filters_apply(struct perf_event * event)9323 static void perf_event_addr_filters_apply(struct perf_event *event)
9324 {
9325 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9326 	struct task_struct *task = READ_ONCE(event->ctx->task);
9327 	struct perf_addr_filter *filter;
9328 	struct mm_struct *mm = NULL;
9329 	unsigned int count = 0;
9330 	unsigned long flags;
9331 
9332 	/*
9333 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9334 	 * will stop on the parent's child_mutex that our caller is also holding
9335 	 */
9336 	if (task == TASK_TOMBSTONE)
9337 		return;
9338 
9339 	if (ifh->nr_file_filters) {
9340 		mm = get_task_mm(task);
9341 		if (!mm)
9342 			goto restart;
9343 
9344 		down_read(&mm->mmap_sem);
9345 	}
9346 
9347 	raw_spin_lock_irqsave(&ifh->lock, flags);
9348 	list_for_each_entry(filter, &ifh->list, entry) {
9349 		if (filter->path.dentry) {
9350 			/*
9351 			 * Adjust base offset if the filter is associated to a
9352 			 * binary that needs to be mapped:
9353 			 */
9354 			event->addr_filter_ranges[count].start = 0;
9355 			event->addr_filter_ranges[count].size = 0;
9356 
9357 			perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9358 		} else {
9359 			event->addr_filter_ranges[count].start = filter->offset;
9360 			event->addr_filter_ranges[count].size  = filter->size;
9361 		}
9362 
9363 		count++;
9364 	}
9365 
9366 	event->addr_filters_gen++;
9367 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
9368 
9369 	if (ifh->nr_file_filters) {
9370 		up_read(&mm->mmap_sem);
9371 
9372 		mmput(mm);
9373 	}
9374 
9375 restart:
9376 	perf_event_stop(event, 1);
9377 }
9378 
9379 /*
9380  * Address range filtering: limiting the data to certain
9381  * instruction address ranges. Filters are ioctl()ed to us from
9382  * userspace as ascii strings.
9383  *
9384  * Filter string format:
9385  *
9386  * ACTION RANGE_SPEC
9387  * where ACTION is one of the
9388  *  * "filter": limit the trace to this region
9389  *  * "start": start tracing from this address
9390  *  * "stop": stop tracing at this address/region;
9391  * RANGE_SPEC is
9392  *  * for kernel addresses: <start address>[/<size>]
9393  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9394  *
9395  * if <size> is not specified or is zero, the range is treated as a single
9396  * address; not valid for ACTION=="filter".
9397  */
9398 enum {
9399 	IF_ACT_NONE = -1,
9400 	IF_ACT_FILTER,
9401 	IF_ACT_START,
9402 	IF_ACT_STOP,
9403 	IF_SRC_FILE,
9404 	IF_SRC_KERNEL,
9405 	IF_SRC_FILEADDR,
9406 	IF_SRC_KERNELADDR,
9407 };
9408 
9409 enum {
9410 	IF_STATE_ACTION = 0,
9411 	IF_STATE_SOURCE,
9412 	IF_STATE_END,
9413 };
9414 
9415 static const match_table_t if_tokens = {
9416 	{ IF_ACT_FILTER,	"filter" },
9417 	{ IF_ACT_START,		"start" },
9418 	{ IF_ACT_STOP,		"stop" },
9419 	{ IF_SRC_FILE,		"%u/%u@%s" },
9420 	{ IF_SRC_KERNEL,	"%u/%u" },
9421 	{ IF_SRC_FILEADDR,	"%u@%s" },
9422 	{ IF_SRC_KERNELADDR,	"%u" },
9423 	{ IF_ACT_NONE,		NULL },
9424 };
9425 
9426 /*
9427  * Address filter string parser
9428  */
9429 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)9430 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9431 			     struct list_head *filters)
9432 {
9433 	struct perf_addr_filter *filter = NULL;
9434 	char *start, *orig, *filename = NULL;
9435 	substring_t args[MAX_OPT_ARGS];
9436 	int state = IF_STATE_ACTION, token;
9437 	unsigned int kernel = 0;
9438 	int ret = -EINVAL;
9439 
9440 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
9441 	if (!fstr)
9442 		return -ENOMEM;
9443 
9444 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
9445 		static const enum perf_addr_filter_action_t actions[] = {
9446 			[IF_ACT_FILTER]	= PERF_ADDR_FILTER_ACTION_FILTER,
9447 			[IF_ACT_START]	= PERF_ADDR_FILTER_ACTION_START,
9448 			[IF_ACT_STOP]	= PERF_ADDR_FILTER_ACTION_STOP,
9449 		};
9450 		ret = -EINVAL;
9451 
9452 		if (!*start)
9453 			continue;
9454 
9455 		/* filter definition begins */
9456 		if (state == IF_STATE_ACTION) {
9457 			filter = perf_addr_filter_new(event, filters);
9458 			if (!filter)
9459 				goto fail;
9460 		}
9461 
9462 		token = match_token(start, if_tokens, args);
9463 		switch (token) {
9464 		case IF_ACT_FILTER:
9465 		case IF_ACT_START:
9466 		case IF_ACT_STOP:
9467 			if (state != IF_STATE_ACTION)
9468 				goto fail;
9469 
9470 			filter->action = actions[token];
9471 			state = IF_STATE_SOURCE;
9472 			break;
9473 
9474 		case IF_SRC_KERNELADDR:
9475 		case IF_SRC_KERNEL:
9476 			kernel = 1;
9477 			/* fall through */
9478 
9479 		case IF_SRC_FILEADDR:
9480 		case IF_SRC_FILE:
9481 			if (state != IF_STATE_SOURCE)
9482 				goto fail;
9483 
9484 			*args[0].to = 0;
9485 			ret = kstrtoul(args[0].from, 0, &filter->offset);
9486 			if (ret)
9487 				goto fail;
9488 
9489 			if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9490 				*args[1].to = 0;
9491 				ret = kstrtoul(args[1].from, 0, &filter->size);
9492 				if (ret)
9493 					goto fail;
9494 			}
9495 
9496 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9497 				int fpos = token == IF_SRC_FILE ? 2 : 1;
9498 
9499 				kfree(filename);
9500 				filename = match_strdup(&args[fpos]);
9501 				if (!filename) {
9502 					ret = -ENOMEM;
9503 					goto fail;
9504 				}
9505 			}
9506 
9507 			state = IF_STATE_END;
9508 			break;
9509 
9510 		default:
9511 			goto fail;
9512 		}
9513 
9514 		/*
9515 		 * Filter definition is fully parsed, validate and install it.
9516 		 * Make sure that it doesn't contradict itself or the event's
9517 		 * attribute.
9518 		 */
9519 		if (state == IF_STATE_END) {
9520 			ret = -EINVAL;
9521 			if (kernel && event->attr.exclude_kernel)
9522 				goto fail;
9523 
9524 			/*
9525 			 * ACTION "filter" must have a non-zero length region
9526 			 * specified.
9527 			 */
9528 			if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9529 			    !filter->size)
9530 				goto fail;
9531 
9532 			if (!kernel) {
9533 				if (!filename)
9534 					goto fail;
9535 
9536 				/*
9537 				 * For now, we only support file-based filters
9538 				 * in per-task events; doing so for CPU-wide
9539 				 * events requires additional context switching
9540 				 * trickery, since same object code will be
9541 				 * mapped at different virtual addresses in
9542 				 * different processes.
9543 				 */
9544 				ret = -EOPNOTSUPP;
9545 				if (!event->ctx->task)
9546 					goto fail;
9547 
9548 				/* look up the path and grab its inode */
9549 				ret = kern_path(filename, LOOKUP_FOLLOW,
9550 						&filter->path);
9551 				if (ret)
9552 					goto fail;
9553 
9554 				ret = -EINVAL;
9555 				if (!filter->path.dentry ||
9556 				    !S_ISREG(d_inode(filter->path.dentry)
9557 					     ->i_mode))
9558 					goto fail;
9559 
9560 				event->addr_filters.nr_file_filters++;
9561 			}
9562 
9563 			/* ready to consume more filters */
9564 			kfree(filename);
9565 			filename = NULL;
9566 			state = IF_STATE_ACTION;
9567 			filter = NULL;
9568 			kernel = 0;
9569 		}
9570 	}
9571 
9572 	if (state != IF_STATE_ACTION)
9573 		goto fail;
9574 
9575 	kfree(filename);
9576 	kfree(orig);
9577 
9578 	return 0;
9579 
9580 fail:
9581 	kfree(filename);
9582 	free_filters_list(filters);
9583 	kfree(orig);
9584 
9585 	return ret;
9586 }
9587 
9588 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)9589 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9590 {
9591 	LIST_HEAD(filters);
9592 	int ret;
9593 
9594 	/*
9595 	 * Since this is called in perf_ioctl() path, we're already holding
9596 	 * ctx::mutex.
9597 	 */
9598 	lockdep_assert_held(&event->ctx->mutex);
9599 
9600 	if (WARN_ON_ONCE(event->parent))
9601 		return -EINVAL;
9602 
9603 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9604 	if (ret)
9605 		goto fail_clear_files;
9606 
9607 	ret = event->pmu->addr_filters_validate(&filters);
9608 	if (ret)
9609 		goto fail_free_filters;
9610 
9611 	/* remove existing filters, if any */
9612 	perf_addr_filters_splice(event, &filters);
9613 
9614 	/* install new filters */
9615 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
9616 
9617 	return ret;
9618 
9619 fail_free_filters:
9620 	free_filters_list(&filters);
9621 
9622 fail_clear_files:
9623 	event->addr_filters.nr_file_filters = 0;
9624 
9625 	return ret;
9626 }
9627 
perf_event_set_filter(struct perf_event * event,void __user * arg)9628 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9629 {
9630 	int ret = -EINVAL;
9631 	char *filter_str;
9632 
9633 	filter_str = strndup_user(arg, PAGE_SIZE);
9634 	if (IS_ERR(filter_str))
9635 		return PTR_ERR(filter_str);
9636 
9637 #ifdef CONFIG_EVENT_TRACING
9638 	if (perf_event_is_tracing(event)) {
9639 		struct perf_event_context *ctx = event->ctx;
9640 
9641 		/*
9642 		 * Beware, here be dragons!!
9643 		 *
9644 		 * the tracepoint muck will deadlock against ctx->mutex, but
9645 		 * the tracepoint stuff does not actually need it. So
9646 		 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9647 		 * already have a reference on ctx.
9648 		 *
9649 		 * This can result in event getting moved to a different ctx,
9650 		 * but that does not affect the tracepoint state.
9651 		 */
9652 		mutex_unlock(&ctx->mutex);
9653 		ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9654 		mutex_lock(&ctx->mutex);
9655 	} else
9656 #endif
9657 	if (has_addr_filter(event))
9658 		ret = perf_event_set_addr_filter(event, filter_str);
9659 
9660 	kfree(filter_str);
9661 	return ret;
9662 }
9663 
9664 /*
9665  * hrtimer based swevent callback
9666  */
9667 
perf_swevent_hrtimer(struct hrtimer * hrtimer)9668 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9669 {
9670 	enum hrtimer_restart ret = HRTIMER_RESTART;
9671 	struct perf_sample_data data;
9672 	struct pt_regs *regs;
9673 	struct perf_event *event;
9674 	u64 period;
9675 
9676 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9677 
9678 	if (event->state != PERF_EVENT_STATE_ACTIVE)
9679 		return HRTIMER_NORESTART;
9680 
9681 	event->pmu->read(event);
9682 
9683 	perf_sample_data_init(&data, 0, event->hw.last_period);
9684 	regs = get_irq_regs();
9685 
9686 	if (regs && !perf_exclude_event(event, regs)) {
9687 		if (!(event->attr.exclude_idle && is_idle_task(current)))
9688 			if (__perf_event_overflow(event, 1, &data, regs))
9689 				ret = HRTIMER_NORESTART;
9690 	}
9691 
9692 	period = max_t(u64, 10000, event->hw.sample_period);
9693 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9694 
9695 	return ret;
9696 }
9697 
perf_swevent_start_hrtimer(struct perf_event * event)9698 static void perf_swevent_start_hrtimer(struct perf_event *event)
9699 {
9700 	struct hw_perf_event *hwc = &event->hw;
9701 	s64 period;
9702 
9703 	if (!is_sampling_event(event))
9704 		return;
9705 
9706 	period = local64_read(&hwc->period_left);
9707 	if (period) {
9708 		if (period < 0)
9709 			period = 10000;
9710 
9711 		local64_set(&hwc->period_left, 0);
9712 	} else {
9713 		period = max_t(u64, 10000, hwc->sample_period);
9714 	}
9715 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9716 		      HRTIMER_MODE_REL_PINNED_HARD);
9717 }
9718 
perf_swevent_cancel_hrtimer(struct perf_event * event)9719 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9720 {
9721 	struct hw_perf_event *hwc = &event->hw;
9722 
9723 	if (is_sampling_event(event)) {
9724 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9725 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
9726 
9727 		hrtimer_cancel(&hwc->hrtimer);
9728 	}
9729 }
9730 
perf_swevent_init_hrtimer(struct perf_event * event)9731 static void perf_swevent_init_hrtimer(struct perf_event *event)
9732 {
9733 	struct hw_perf_event *hwc = &event->hw;
9734 
9735 	if (!is_sampling_event(event))
9736 		return;
9737 
9738 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
9739 	hwc->hrtimer.function = perf_swevent_hrtimer;
9740 
9741 	/*
9742 	 * Since hrtimers have a fixed rate, we can do a static freq->period
9743 	 * mapping and avoid the whole period adjust feedback stuff.
9744 	 */
9745 	if (event->attr.freq) {
9746 		long freq = event->attr.sample_freq;
9747 
9748 		event->attr.sample_period = NSEC_PER_SEC / freq;
9749 		hwc->sample_period = event->attr.sample_period;
9750 		local64_set(&hwc->period_left, hwc->sample_period);
9751 		hwc->last_period = hwc->sample_period;
9752 		event->attr.freq = 0;
9753 	}
9754 }
9755 
9756 /*
9757  * Software event: cpu wall time clock
9758  */
9759 
cpu_clock_event_update(struct perf_event * event)9760 static void cpu_clock_event_update(struct perf_event *event)
9761 {
9762 	s64 prev;
9763 	u64 now;
9764 
9765 	now = local_clock();
9766 	prev = local64_xchg(&event->hw.prev_count, now);
9767 	local64_add(now - prev, &event->count);
9768 }
9769 
cpu_clock_event_start(struct perf_event * event,int flags)9770 static void cpu_clock_event_start(struct perf_event *event, int flags)
9771 {
9772 	local64_set(&event->hw.prev_count, local_clock());
9773 	perf_swevent_start_hrtimer(event);
9774 }
9775 
cpu_clock_event_stop(struct perf_event * event,int flags)9776 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9777 {
9778 	perf_swevent_cancel_hrtimer(event);
9779 	cpu_clock_event_update(event);
9780 }
9781 
cpu_clock_event_add(struct perf_event * event,int flags)9782 static int cpu_clock_event_add(struct perf_event *event, int flags)
9783 {
9784 	if (flags & PERF_EF_START)
9785 		cpu_clock_event_start(event, flags);
9786 	perf_event_update_userpage(event);
9787 
9788 	return 0;
9789 }
9790 
cpu_clock_event_del(struct perf_event * event,int flags)9791 static void cpu_clock_event_del(struct perf_event *event, int flags)
9792 {
9793 	cpu_clock_event_stop(event, flags);
9794 }
9795 
cpu_clock_event_read(struct perf_event * event)9796 static void cpu_clock_event_read(struct perf_event *event)
9797 {
9798 	cpu_clock_event_update(event);
9799 }
9800 
cpu_clock_event_init(struct perf_event * event)9801 static int cpu_clock_event_init(struct perf_event *event)
9802 {
9803 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9804 		return -ENOENT;
9805 
9806 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9807 		return -ENOENT;
9808 
9809 	/*
9810 	 * no branch sampling for software events
9811 	 */
9812 	if (has_branch_stack(event))
9813 		return -EOPNOTSUPP;
9814 
9815 	perf_swevent_init_hrtimer(event);
9816 
9817 	return 0;
9818 }
9819 
9820 static struct pmu perf_cpu_clock = {
9821 	.task_ctx_nr	= perf_sw_context,
9822 
9823 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9824 
9825 	.event_init	= cpu_clock_event_init,
9826 	.add		= cpu_clock_event_add,
9827 	.del		= cpu_clock_event_del,
9828 	.start		= cpu_clock_event_start,
9829 	.stop		= cpu_clock_event_stop,
9830 	.read		= cpu_clock_event_read,
9831 };
9832 
9833 /*
9834  * Software event: task time clock
9835  */
9836 
task_clock_event_update(struct perf_event * event,u64 now)9837 static void task_clock_event_update(struct perf_event *event, u64 now)
9838 {
9839 	u64 prev;
9840 	s64 delta;
9841 
9842 	prev = local64_xchg(&event->hw.prev_count, now);
9843 	delta = now - prev;
9844 	local64_add(delta, &event->count);
9845 }
9846 
task_clock_event_start(struct perf_event * event,int flags)9847 static void task_clock_event_start(struct perf_event *event, int flags)
9848 {
9849 	local64_set(&event->hw.prev_count, event->ctx->time);
9850 	perf_swevent_start_hrtimer(event);
9851 }
9852 
task_clock_event_stop(struct perf_event * event,int flags)9853 static void task_clock_event_stop(struct perf_event *event, int flags)
9854 {
9855 	perf_swevent_cancel_hrtimer(event);
9856 	task_clock_event_update(event, event->ctx->time);
9857 }
9858 
task_clock_event_add(struct perf_event * event,int flags)9859 static int task_clock_event_add(struct perf_event *event, int flags)
9860 {
9861 	if (flags & PERF_EF_START)
9862 		task_clock_event_start(event, flags);
9863 	perf_event_update_userpage(event);
9864 
9865 	return 0;
9866 }
9867 
task_clock_event_del(struct perf_event * event,int flags)9868 static void task_clock_event_del(struct perf_event *event, int flags)
9869 {
9870 	task_clock_event_stop(event, PERF_EF_UPDATE);
9871 }
9872 
task_clock_event_read(struct perf_event * event)9873 static void task_clock_event_read(struct perf_event *event)
9874 {
9875 	u64 now = perf_clock();
9876 	u64 delta = now - event->ctx->timestamp;
9877 	u64 time = event->ctx->time + delta;
9878 
9879 	task_clock_event_update(event, time);
9880 }
9881 
task_clock_event_init(struct perf_event * event)9882 static int task_clock_event_init(struct perf_event *event)
9883 {
9884 	if (event->attr.type != PERF_TYPE_SOFTWARE)
9885 		return -ENOENT;
9886 
9887 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9888 		return -ENOENT;
9889 
9890 	/*
9891 	 * no branch sampling for software events
9892 	 */
9893 	if (has_branch_stack(event))
9894 		return -EOPNOTSUPP;
9895 
9896 	perf_swevent_init_hrtimer(event);
9897 
9898 	return 0;
9899 }
9900 
9901 static struct pmu perf_task_clock = {
9902 	.task_ctx_nr	= perf_sw_context,
9903 
9904 	.capabilities	= PERF_PMU_CAP_NO_NMI,
9905 
9906 	.event_init	= task_clock_event_init,
9907 	.add		= task_clock_event_add,
9908 	.del		= task_clock_event_del,
9909 	.start		= task_clock_event_start,
9910 	.stop		= task_clock_event_stop,
9911 	.read		= task_clock_event_read,
9912 };
9913 
perf_pmu_nop_void(struct pmu * pmu)9914 static void perf_pmu_nop_void(struct pmu *pmu)
9915 {
9916 }
9917 
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)9918 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9919 {
9920 }
9921 
perf_pmu_nop_int(struct pmu * pmu)9922 static int perf_pmu_nop_int(struct pmu *pmu)
9923 {
9924 	return 0;
9925 }
9926 
perf_event_nop_int(struct perf_event * event,u64 value)9927 static int perf_event_nop_int(struct perf_event *event, u64 value)
9928 {
9929 	return 0;
9930 }
9931 
9932 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9933 
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)9934 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9935 {
9936 	__this_cpu_write(nop_txn_flags, flags);
9937 
9938 	if (flags & ~PERF_PMU_TXN_ADD)
9939 		return;
9940 
9941 	perf_pmu_disable(pmu);
9942 }
9943 
perf_pmu_commit_txn(struct pmu * pmu)9944 static int perf_pmu_commit_txn(struct pmu *pmu)
9945 {
9946 	unsigned int flags = __this_cpu_read(nop_txn_flags);
9947 
9948 	__this_cpu_write(nop_txn_flags, 0);
9949 
9950 	if (flags & ~PERF_PMU_TXN_ADD)
9951 		return 0;
9952 
9953 	perf_pmu_enable(pmu);
9954 	return 0;
9955 }
9956 
perf_pmu_cancel_txn(struct pmu * pmu)9957 static void perf_pmu_cancel_txn(struct pmu *pmu)
9958 {
9959 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
9960 
9961 	__this_cpu_write(nop_txn_flags, 0);
9962 
9963 	if (flags & ~PERF_PMU_TXN_ADD)
9964 		return;
9965 
9966 	perf_pmu_enable(pmu);
9967 }
9968 
perf_event_idx_default(struct perf_event * event)9969 static int perf_event_idx_default(struct perf_event *event)
9970 {
9971 	return 0;
9972 }
9973 
9974 /*
9975  * Ensures all contexts with the same task_ctx_nr have the same
9976  * pmu_cpu_context too.
9977  */
find_pmu_context(int ctxn)9978 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9979 {
9980 	struct pmu *pmu;
9981 
9982 	if (ctxn < 0)
9983 		return NULL;
9984 
9985 	list_for_each_entry(pmu, &pmus, entry) {
9986 		if (pmu->task_ctx_nr == ctxn)
9987 			return pmu->pmu_cpu_context;
9988 	}
9989 
9990 	return NULL;
9991 }
9992 
free_pmu_context(struct pmu * pmu)9993 static void free_pmu_context(struct pmu *pmu)
9994 {
9995 	/*
9996 	 * Static contexts such as perf_sw_context have a global lifetime
9997 	 * and may be shared between different PMUs. Avoid freeing them
9998 	 * when a single PMU is going away.
9999 	 */
10000 	if (pmu->task_ctx_nr > perf_invalid_context)
10001 		return;
10002 
10003 	free_percpu(pmu->pmu_cpu_context);
10004 }
10005 
10006 /*
10007  * Let userspace know that this PMU supports address range filtering:
10008  */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)10009 static ssize_t nr_addr_filters_show(struct device *dev,
10010 				    struct device_attribute *attr,
10011 				    char *page)
10012 {
10013 	struct pmu *pmu = dev_get_drvdata(dev);
10014 
10015 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10016 }
10017 DEVICE_ATTR_RO(nr_addr_filters);
10018 
10019 static struct idr pmu_idr;
10020 
10021 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)10022 type_show(struct device *dev, struct device_attribute *attr, char *page)
10023 {
10024 	struct pmu *pmu = dev_get_drvdata(dev);
10025 
10026 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10027 }
10028 static DEVICE_ATTR_RO(type);
10029 
10030 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)10031 perf_event_mux_interval_ms_show(struct device *dev,
10032 				struct device_attribute *attr,
10033 				char *page)
10034 {
10035 	struct pmu *pmu = dev_get_drvdata(dev);
10036 
10037 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10038 }
10039 
10040 static DEFINE_MUTEX(mux_interval_mutex);
10041 
10042 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)10043 perf_event_mux_interval_ms_store(struct device *dev,
10044 				 struct device_attribute *attr,
10045 				 const char *buf, size_t count)
10046 {
10047 	struct pmu *pmu = dev_get_drvdata(dev);
10048 	int timer, cpu, ret;
10049 
10050 	ret = kstrtoint(buf, 0, &timer);
10051 	if (ret)
10052 		return ret;
10053 
10054 	if (timer < 1)
10055 		return -EINVAL;
10056 
10057 	/* same value, noting to do */
10058 	if (timer == pmu->hrtimer_interval_ms)
10059 		return count;
10060 
10061 	mutex_lock(&mux_interval_mutex);
10062 	pmu->hrtimer_interval_ms = timer;
10063 
10064 	/* update all cpuctx for this PMU */
10065 	cpus_read_lock();
10066 	for_each_online_cpu(cpu) {
10067 		struct perf_cpu_context *cpuctx;
10068 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10069 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10070 
10071 		cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpuctx);
10072 	}
10073 	cpus_read_unlock();
10074 	mutex_unlock(&mux_interval_mutex);
10075 
10076 	return count;
10077 }
10078 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10079 
10080 static struct attribute *pmu_dev_attrs[] = {
10081 	&dev_attr_type.attr,
10082 	&dev_attr_perf_event_mux_interval_ms.attr,
10083 	&dev_attr_nr_addr_filters.attr,
10084 	NULL,
10085 };
10086 
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)10087 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
10088 {
10089 	struct device *dev = kobj_to_dev(kobj);
10090 	struct pmu *pmu = dev_get_drvdata(dev);
10091 
10092 	if (n == 2 && !pmu->nr_addr_filters)
10093 		return 0;
10094 
10095 	return a->mode;
10096 }
10097 
10098 static struct attribute_group pmu_dev_attr_group = {
10099 	.is_visible = pmu_dev_is_visible,
10100 	.attrs = pmu_dev_attrs,
10101 };
10102 
10103 static const struct attribute_group *pmu_dev_groups[] = {
10104 	&pmu_dev_attr_group,
10105 	NULL,
10106 };
10107 
10108 static int pmu_bus_running;
10109 static struct bus_type pmu_bus = {
10110 	.name		= "event_source",
10111 	.dev_groups	= pmu_dev_groups,
10112 };
10113 
pmu_dev_release(struct device * dev)10114 static void pmu_dev_release(struct device *dev)
10115 {
10116 	kfree(dev);
10117 }
10118 
pmu_dev_alloc(struct pmu * pmu)10119 static int pmu_dev_alloc(struct pmu *pmu)
10120 {
10121 	int ret = -ENOMEM;
10122 
10123 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10124 	if (!pmu->dev)
10125 		goto out;
10126 
10127 	pmu->dev->groups = pmu->attr_groups;
10128 	device_initialize(pmu->dev);
10129 
10130 	dev_set_drvdata(pmu->dev, pmu);
10131 	pmu->dev->bus = &pmu_bus;
10132 	pmu->dev->release = pmu_dev_release;
10133 
10134 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
10135 	if (ret)
10136 		goto free_dev;
10137 
10138 	ret = device_add(pmu->dev);
10139 	if (ret)
10140 		goto free_dev;
10141 
10142 	if (pmu->attr_update) {
10143 		ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10144 		if (ret)
10145 			goto del_dev;
10146 	}
10147 
10148 out:
10149 	return ret;
10150 
10151 del_dev:
10152 	device_del(pmu->dev);
10153 
10154 free_dev:
10155 	put_device(pmu->dev);
10156 	goto out;
10157 }
10158 
10159 static struct lock_class_key cpuctx_mutex;
10160 static struct lock_class_key cpuctx_lock;
10161 
perf_pmu_register(struct pmu * pmu,const char * name,int type)10162 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10163 {
10164 	int cpu, ret;
10165 
10166 	mutex_lock(&pmus_lock);
10167 	ret = -ENOMEM;
10168 	pmu->pmu_disable_count = alloc_percpu(int);
10169 	if (!pmu->pmu_disable_count)
10170 		goto unlock;
10171 
10172 	pmu->type = -1;
10173 	if (!name)
10174 		goto skip_type;
10175 	pmu->name = name;
10176 
10177 	if (type < 0) {
10178 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
10179 		if (type < 0) {
10180 			ret = type;
10181 			goto free_pdc;
10182 		}
10183 	}
10184 	pmu->type = type;
10185 
10186 	if (pmu_bus_running) {
10187 		ret = pmu_dev_alloc(pmu);
10188 		if (ret)
10189 			goto free_idr;
10190 	}
10191 
10192 skip_type:
10193 	if (pmu->task_ctx_nr == perf_hw_context) {
10194 		static int hw_context_taken = 0;
10195 
10196 		/*
10197 		 * Other than systems with heterogeneous CPUs, it never makes
10198 		 * sense for two PMUs to share perf_hw_context. PMUs which are
10199 		 * uncore must use perf_invalid_context.
10200 		 */
10201 		if (WARN_ON_ONCE(hw_context_taken &&
10202 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10203 			pmu->task_ctx_nr = perf_invalid_context;
10204 
10205 		hw_context_taken = 1;
10206 	}
10207 
10208 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10209 	if (pmu->pmu_cpu_context)
10210 		goto got_cpu_context;
10211 
10212 	ret = -ENOMEM;
10213 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10214 	if (!pmu->pmu_cpu_context)
10215 		goto free_dev;
10216 
10217 	for_each_possible_cpu(cpu) {
10218 		struct perf_cpu_context *cpuctx;
10219 
10220 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10221 		__perf_event_init_context(&cpuctx->ctx);
10222 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10223 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10224 		cpuctx->ctx.pmu = pmu;
10225 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10226 
10227 		__perf_mux_hrtimer_init(cpuctx, cpu);
10228 	}
10229 
10230 got_cpu_context:
10231 	if (!pmu->start_txn) {
10232 		if (pmu->pmu_enable) {
10233 			/*
10234 			 * If we have pmu_enable/pmu_disable calls, install
10235 			 * transaction stubs that use that to try and batch
10236 			 * hardware accesses.
10237 			 */
10238 			pmu->start_txn  = perf_pmu_start_txn;
10239 			pmu->commit_txn = perf_pmu_commit_txn;
10240 			pmu->cancel_txn = perf_pmu_cancel_txn;
10241 		} else {
10242 			pmu->start_txn  = perf_pmu_nop_txn;
10243 			pmu->commit_txn = perf_pmu_nop_int;
10244 			pmu->cancel_txn = perf_pmu_nop_void;
10245 		}
10246 	}
10247 
10248 	if (!pmu->pmu_enable) {
10249 		pmu->pmu_enable  = perf_pmu_nop_void;
10250 		pmu->pmu_disable = perf_pmu_nop_void;
10251 	}
10252 
10253 	if (!pmu->check_period)
10254 		pmu->check_period = perf_event_nop_int;
10255 
10256 	if (!pmu->event_idx)
10257 		pmu->event_idx = perf_event_idx_default;
10258 
10259 	list_add_rcu(&pmu->entry, &pmus);
10260 	atomic_set(&pmu->exclusive_cnt, 0);
10261 	ret = 0;
10262 unlock:
10263 	mutex_unlock(&pmus_lock);
10264 
10265 	return ret;
10266 
10267 free_dev:
10268 	device_del(pmu->dev);
10269 	put_device(pmu->dev);
10270 
10271 free_idr:
10272 	if (pmu->type >= PERF_TYPE_MAX)
10273 		idr_remove(&pmu_idr, pmu->type);
10274 
10275 free_pdc:
10276 	free_percpu(pmu->pmu_disable_count);
10277 	goto unlock;
10278 }
10279 EXPORT_SYMBOL_GPL(perf_pmu_register);
10280 
perf_pmu_unregister(struct pmu * pmu)10281 void perf_pmu_unregister(struct pmu *pmu)
10282 {
10283 	mutex_lock(&pmus_lock);
10284 	list_del_rcu(&pmu->entry);
10285 
10286 	/*
10287 	 * We dereference the pmu list under both SRCU and regular RCU, so
10288 	 * synchronize against both of those.
10289 	 */
10290 	synchronize_srcu(&pmus_srcu);
10291 	synchronize_rcu();
10292 
10293 	free_percpu(pmu->pmu_disable_count);
10294 	if (pmu->type >= PERF_TYPE_MAX)
10295 		idr_remove(&pmu_idr, pmu->type);
10296 	if (pmu_bus_running) {
10297 		if (pmu->nr_addr_filters)
10298 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10299 		device_del(pmu->dev);
10300 		put_device(pmu->dev);
10301 	}
10302 	free_pmu_context(pmu);
10303 	mutex_unlock(&pmus_lock);
10304 }
10305 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10306 
has_extended_regs(struct perf_event * event)10307 static inline bool has_extended_regs(struct perf_event *event)
10308 {
10309 	return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10310 	       (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10311 }
10312 
perf_try_init_event(struct pmu * pmu,struct perf_event * event)10313 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10314 {
10315 	struct perf_event_context *ctx = NULL;
10316 	int ret;
10317 
10318 	if (!try_module_get(pmu->module))
10319 		return -ENODEV;
10320 
10321 	/*
10322 	 * A number of pmu->event_init() methods iterate the sibling_list to,
10323 	 * for example, validate if the group fits on the PMU. Therefore,
10324 	 * if this is a sibling event, acquire the ctx->mutex to protect
10325 	 * the sibling_list.
10326 	 */
10327 	if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10328 		/*
10329 		 * This ctx->mutex can nest when we're called through
10330 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
10331 		 */
10332 		ctx = perf_event_ctx_lock_nested(event->group_leader,
10333 						 SINGLE_DEPTH_NESTING);
10334 		BUG_ON(!ctx);
10335 	}
10336 
10337 	event->pmu = pmu;
10338 	ret = pmu->event_init(event);
10339 
10340 	if (ctx)
10341 		perf_event_ctx_unlock(event->group_leader, ctx);
10342 
10343 	if (!ret) {
10344 		if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10345 		    has_extended_regs(event))
10346 			ret = -EOPNOTSUPP;
10347 
10348 		if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10349 		    event_has_any_exclude_flag(event))
10350 			ret = -EINVAL;
10351 
10352 		if (ret && event->destroy)
10353 			event->destroy(event);
10354 	}
10355 
10356 	if (ret)
10357 		module_put(pmu->module);
10358 
10359 	return ret;
10360 }
10361 
perf_init_event(struct perf_event * event)10362 static struct pmu *perf_init_event(struct perf_event *event)
10363 {
10364 	struct pmu *pmu;
10365 	int idx;
10366 	int ret;
10367 
10368 	idx = srcu_read_lock(&pmus_srcu);
10369 
10370 	/* Try parent's PMU first: */
10371 	if (event->parent && event->parent->pmu) {
10372 		pmu = event->parent->pmu;
10373 		ret = perf_try_init_event(pmu, event);
10374 		if (!ret)
10375 			goto unlock;
10376 	}
10377 
10378 	rcu_read_lock();
10379 	pmu = idr_find(&pmu_idr, event->attr.type);
10380 	rcu_read_unlock();
10381 	if (pmu) {
10382 		ret = perf_try_init_event(pmu, event);
10383 		if (ret)
10384 			pmu = ERR_PTR(ret);
10385 		goto unlock;
10386 	}
10387 
10388 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10389 		ret = perf_try_init_event(pmu, event);
10390 		if (!ret)
10391 			goto unlock;
10392 
10393 		if (ret != -ENOENT) {
10394 			pmu = ERR_PTR(ret);
10395 			goto unlock;
10396 		}
10397 	}
10398 	pmu = ERR_PTR(-ENOENT);
10399 unlock:
10400 	srcu_read_unlock(&pmus_srcu, idx);
10401 
10402 	return pmu;
10403 }
10404 
attach_sb_event(struct perf_event * event)10405 static void attach_sb_event(struct perf_event *event)
10406 {
10407 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10408 
10409 	raw_spin_lock(&pel->lock);
10410 	list_add_rcu(&event->sb_list, &pel->list);
10411 	raw_spin_unlock(&pel->lock);
10412 }
10413 
10414 /*
10415  * We keep a list of all !task (and therefore per-cpu) events
10416  * that need to receive side-band records.
10417  *
10418  * This avoids having to scan all the various PMU per-cpu contexts
10419  * looking for them.
10420  */
account_pmu_sb_event(struct perf_event * event)10421 static void account_pmu_sb_event(struct perf_event *event)
10422 {
10423 	if (is_sb_event(event))
10424 		attach_sb_event(event);
10425 }
10426 
account_event_cpu(struct perf_event * event,int cpu)10427 static void account_event_cpu(struct perf_event *event, int cpu)
10428 {
10429 	if (event->parent)
10430 		return;
10431 
10432 	if (is_cgroup_event(event))
10433 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10434 }
10435 
10436 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)10437 static void account_freq_event_nohz(void)
10438 {
10439 #ifdef CONFIG_NO_HZ_FULL
10440 	/* Lock so we don't race with concurrent unaccount */
10441 	spin_lock(&nr_freq_lock);
10442 	if (atomic_inc_return(&nr_freq_events) == 1)
10443 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10444 	spin_unlock(&nr_freq_lock);
10445 #endif
10446 }
10447 
account_freq_event(void)10448 static void account_freq_event(void)
10449 {
10450 	if (tick_nohz_full_enabled())
10451 		account_freq_event_nohz();
10452 	else
10453 		atomic_inc(&nr_freq_events);
10454 }
10455 
10456 
account_event(struct perf_event * event)10457 static void account_event(struct perf_event *event)
10458 {
10459 	bool inc = false;
10460 
10461 	if (event->parent)
10462 		return;
10463 
10464 	if (event->attach_state & PERF_ATTACH_TASK)
10465 		inc = true;
10466 	if (event->attr.mmap || event->attr.mmap_data)
10467 		atomic_inc(&nr_mmap_events);
10468 	if (event->attr.comm)
10469 		atomic_inc(&nr_comm_events);
10470 	if (event->attr.namespaces)
10471 		atomic_inc(&nr_namespaces_events);
10472 	if (event->attr.task)
10473 		atomic_inc(&nr_task_events);
10474 	if (event->attr.freq)
10475 		account_freq_event();
10476 	if (event->attr.context_switch) {
10477 		atomic_inc(&nr_switch_events);
10478 		inc = true;
10479 	}
10480 	if (has_branch_stack(event))
10481 		inc = true;
10482 	if (is_cgroup_event(event))
10483 		inc = true;
10484 	if (event->attr.ksymbol)
10485 		atomic_inc(&nr_ksymbol_events);
10486 	if (event->attr.bpf_event)
10487 		atomic_inc(&nr_bpf_events);
10488 
10489 	if (inc) {
10490 		/*
10491 		 * We need the mutex here because static_branch_enable()
10492 		 * must complete *before* the perf_sched_count increment
10493 		 * becomes visible.
10494 		 */
10495 		if (atomic_inc_not_zero(&perf_sched_count))
10496 			goto enabled;
10497 
10498 		mutex_lock(&perf_sched_mutex);
10499 		if (!atomic_read(&perf_sched_count)) {
10500 			static_branch_enable(&perf_sched_events);
10501 			/*
10502 			 * Guarantee that all CPUs observe they key change and
10503 			 * call the perf scheduling hooks before proceeding to
10504 			 * install events that need them.
10505 			 */
10506 			synchronize_rcu();
10507 		}
10508 		/*
10509 		 * Now that we have waited for the sync_sched(), allow further
10510 		 * increments to by-pass the mutex.
10511 		 */
10512 		atomic_inc(&perf_sched_count);
10513 		mutex_unlock(&perf_sched_mutex);
10514 	}
10515 enabled:
10516 
10517 	account_event_cpu(event, event->cpu);
10518 
10519 	account_pmu_sb_event(event);
10520 }
10521 
10522 /*
10523  * Allocate and initialize an event structure
10524  */
10525 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)10526 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10527 		 struct task_struct *task,
10528 		 struct perf_event *group_leader,
10529 		 struct perf_event *parent_event,
10530 		 perf_overflow_handler_t overflow_handler,
10531 		 void *context, int cgroup_fd)
10532 {
10533 	struct pmu *pmu;
10534 	struct perf_event *event;
10535 	struct hw_perf_event *hwc;
10536 	long err = -EINVAL;
10537 
10538 	if ((unsigned)cpu >= nr_cpu_ids) {
10539 		if (!task || cpu != -1)
10540 			return ERR_PTR(-EINVAL);
10541 	}
10542 
10543 	event = kzalloc(sizeof(*event), GFP_KERNEL);
10544 	if (!event)
10545 		return ERR_PTR(-ENOMEM);
10546 
10547 	/*
10548 	 * Single events are their own group leaders, with an
10549 	 * empty sibling list:
10550 	 */
10551 	if (!group_leader)
10552 		group_leader = event;
10553 
10554 	mutex_init(&event->child_mutex);
10555 	INIT_LIST_HEAD(&event->child_list);
10556 
10557 	INIT_LIST_HEAD(&event->event_entry);
10558 	INIT_LIST_HEAD(&event->sibling_list);
10559 	INIT_LIST_HEAD(&event->active_list);
10560 	init_event_group(event);
10561 	INIT_LIST_HEAD(&event->rb_entry);
10562 	INIT_LIST_HEAD(&event->active_entry);
10563 	INIT_LIST_HEAD(&event->addr_filters.list);
10564 	INIT_HLIST_NODE(&event->hlist_entry);
10565 
10566 
10567 	init_waitqueue_head(&event->waitq);
10568 	event->pending_disable = -1;
10569 	init_irq_work(&event->pending, perf_pending_event);
10570 
10571 	mutex_init(&event->mmap_mutex);
10572 	raw_spin_lock_init(&event->addr_filters.lock);
10573 
10574 	atomic_long_set(&event->refcount, 1);
10575 	event->cpu		= cpu;
10576 	event->attr		= *attr;
10577 	event->group_leader	= group_leader;
10578 	event->pmu		= NULL;
10579 	event->oncpu		= -1;
10580 
10581 	event->parent		= parent_event;
10582 
10583 	event->ns		= get_pid_ns(task_active_pid_ns(current));
10584 	event->id		= atomic64_inc_return(&perf_event_id);
10585 
10586 	event->state		= PERF_EVENT_STATE_INACTIVE;
10587 
10588 	if (task) {
10589 		event->attach_state = PERF_ATTACH_TASK;
10590 		/*
10591 		 * XXX pmu::event_init needs to know what task to account to
10592 		 * and we cannot use the ctx information because we need the
10593 		 * pmu before we get a ctx.
10594 		 */
10595 		event->hw.target = get_task_struct(task);
10596 	}
10597 
10598 	event->clock = &local_clock;
10599 	if (parent_event)
10600 		event->clock = parent_event->clock;
10601 
10602 	if (!overflow_handler && parent_event) {
10603 		overflow_handler = parent_event->overflow_handler;
10604 		context = parent_event->overflow_handler_context;
10605 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10606 		if (overflow_handler == bpf_overflow_handler) {
10607 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10608 
10609 			if (IS_ERR(prog)) {
10610 				err = PTR_ERR(prog);
10611 				goto err_ns;
10612 			}
10613 			event->prog = prog;
10614 			event->orig_overflow_handler =
10615 				parent_event->orig_overflow_handler;
10616 		}
10617 #endif
10618 	}
10619 
10620 	if (overflow_handler) {
10621 		event->overflow_handler	= overflow_handler;
10622 		event->overflow_handler_context = context;
10623 	} else if (is_write_backward(event)){
10624 		event->overflow_handler = perf_event_output_backward;
10625 		event->overflow_handler_context = NULL;
10626 	} else {
10627 		event->overflow_handler = perf_event_output_forward;
10628 		event->overflow_handler_context = NULL;
10629 	}
10630 
10631 	perf_event__state_init(event);
10632 
10633 	pmu = NULL;
10634 
10635 	hwc = &event->hw;
10636 	hwc->sample_period = attr->sample_period;
10637 	if (attr->freq && attr->sample_freq)
10638 		hwc->sample_period = 1;
10639 	hwc->last_period = hwc->sample_period;
10640 
10641 	local64_set(&hwc->period_left, hwc->sample_period);
10642 
10643 	/*
10644 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
10645 	 * See perf_output_read().
10646 	 */
10647 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10648 		goto err_ns;
10649 
10650 	if (!has_branch_stack(event))
10651 		event->attr.branch_sample_type = 0;
10652 
10653 	if (cgroup_fd != -1) {
10654 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10655 		if (err)
10656 			goto err_ns;
10657 	}
10658 
10659 	pmu = perf_init_event(event);
10660 	if (IS_ERR(pmu)) {
10661 		err = PTR_ERR(pmu);
10662 		goto err_ns;
10663 	}
10664 
10665 	/*
10666 	 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
10667 	 * be different on other CPUs in the uncore mask.
10668 	 */
10669 	if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
10670 		err = -EINVAL;
10671 		goto err_pmu;
10672 	}
10673 
10674 	if (event->attr.aux_output &&
10675 	    !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10676 		err = -EOPNOTSUPP;
10677 		goto err_pmu;
10678 	}
10679 
10680 	err = exclusive_event_init(event);
10681 	if (err)
10682 		goto err_pmu;
10683 
10684 	if (has_addr_filter(event)) {
10685 		event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10686 						    sizeof(struct perf_addr_filter_range),
10687 						    GFP_KERNEL);
10688 		if (!event->addr_filter_ranges) {
10689 			err = -ENOMEM;
10690 			goto err_per_task;
10691 		}
10692 
10693 		/*
10694 		 * Clone the parent's vma offsets: they are valid until exec()
10695 		 * even if the mm is not shared with the parent.
10696 		 */
10697 		if (event->parent) {
10698 			struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10699 
10700 			raw_spin_lock_irq(&ifh->lock);
10701 			memcpy(event->addr_filter_ranges,
10702 			       event->parent->addr_filter_ranges,
10703 			       pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10704 			raw_spin_unlock_irq(&ifh->lock);
10705 		}
10706 
10707 		/* force hw sync on the address filters */
10708 		event->addr_filters_gen = 1;
10709 	}
10710 
10711 	if (!event->parent) {
10712 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10713 			err = get_callchain_buffers(attr->sample_max_stack);
10714 			if (err)
10715 				goto err_addr_filters;
10716 		}
10717 	}
10718 
10719 	err = security_perf_event_alloc(event);
10720 	if (err)
10721 		goto err_callchain_buffer;
10722 
10723 	/* symmetric to unaccount_event() in _free_event() */
10724 	account_event(event);
10725 
10726 	return event;
10727 
10728 err_callchain_buffer:
10729 	if (!event->parent) {
10730 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
10731 			put_callchain_buffers();
10732 	}
10733 err_addr_filters:
10734 	kfree(event->addr_filter_ranges);
10735 
10736 err_per_task:
10737 	exclusive_event_destroy(event);
10738 
10739 err_pmu:
10740 	if (event->destroy)
10741 		event->destroy(event);
10742 	module_put(pmu->module);
10743 err_ns:
10744 	if (is_cgroup_event(event))
10745 		perf_detach_cgroup(event);
10746 	if (event->ns)
10747 		put_pid_ns(event->ns);
10748 	if (event->hw.target)
10749 		put_task_struct(event->hw.target);
10750 	kfree(event);
10751 
10752 	return ERR_PTR(err);
10753 }
10754 
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)10755 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10756 			  struct perf_event_attr *attr)
10757 {
10758 	u32 size;
10759 	int ret;
10760 
10761 	/* Zero the full structure, so that a short copy will be nice. */
10762 	memset(attr, 0, sizeof(*attr));
10763 
10764 	ret = get_user(size, &uattr->size);
10765 	if (ret)
10766 		return ret;
10767 
10768 	/* ABI compatibility quirk: */
10769 	if (!size)
10770 		size = PERF_ATTR_SIZE_VER0;
10771 	if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
10772 		goto err_size;
10773 
10774 	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
10775 	if (ret) {
10776 		if (ret == -E2BIG)
10777 			goto err_size;
10778 		return ret;
10779 	}
10780 
10781 	attr->size = size;
10782 
10783 	if (attr->__reserved_1 || attr->__reserved_2)
10784 		return -EINVAL;
10785 
10786 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10787 		return -EINVAL;
10788 
10789 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10790 		return -EINVAL;
10791 
10792 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10793 		u64 mask = attr->branch_sample_type;
10794 
10795 		/* only using defined bits */
10796 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10797 			return -EINVAL;
10798 
10799 		/* at least one branch bit must be set */
10800 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10801 			return -EINVAL;
10802 
10803 		/* propagate priv level, when not set for branch */
10804 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10805 
10806 			/* exclude_kernel checked on syscall entry */
10807 			if (!attr->exclude_kernel)
10808 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
10809 
10810 			if (!attr->exclude_user)
10811 				mask |= PERF_SAMPLE_BRANCH_USER;
10812 
10813 			if (!attr->exclude_hv)
10814 				mask |= PERF_SAMPLE_BRANCH_HV;
10815 			/*
10816 			 * adjust user setting (for HW filter setup)
10817 			 */
10818 			attr->branch_sample_type = mask;
10819 		}
10820 		/* privileged levels capture (kernel, hv): check permissions */
10821 		if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
10822 			ret = perf_allow_kernel(attr);
10823 			if (ret)
10824 				return ret;
10825 		}
10826 	}
10827 
10828 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10829 		ret = perf_reg_validate(attr->sample_regs_user);
10830 		if (ret)
10831 			return ret;
10832 	}
10833 
10834 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10835 		if (!arch_perf_have_user_stack_dump())
10836 			return -ENOSYS;
10837 
10838 		/*
10839 		 * We have __u32 type for the size, but so far
10840 		 * we can only use __u16 as maximum due to the
10841 		 * __u16 sample size limit.
10842 		 */
10843 		if (attr->sample_stack_user >= USHRT_MAX)
10844 			return -EINVAL;
10845 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10846 			return -EINVAL;
10847 	}
10848 
10849 	if (!attr->sample_max_stack)
10850 		attr->sample_max_stack = sysctl_perf_event_max_stack;
10851 
10852 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10853 		ret = perf_reg_validate(attr->sample_regs_intr);
10854 out:
10855 	return ret;
10856 
10857 err_size:
10858 	put_user(sizeof(*attr), &uattr->size);
10859 	ret = -E2BIG;
10860 	goto out;
10861 }
10862 
mutex_lock_double(struct mutex * a,struct mutex * b)10863 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10864 {
10865 	if (b < a)
10866 		swap(a, b);
10867 
10868 	mutex_lock(a);
10869 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10870 }
10871 
10872 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)10873 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10874 {
10875 	struct ring_buffer *rb = NULL;
10876 	int ret = -EINVAL;
10877 
10878 	if (!output_event) {
10879 		mutex_lock(&event->mmap_mutex);
10880 		goto set;
10881 	}
10882 
10883 	/* don't allow circular references */
10884 	if (event == output_event)
10885 		goto out;
10886 
10887 	/*
10888 	 * Don't allow cross-cpu buffers
10889 	 */
10890 	if (output_event->cpu != event->cpu)
10891 		goto out;
10892 
10893 	/*
10894 	 * If its not a per-cpu rb, it must be the same task.
10895 	 */
10896 	if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
10897 		goto out;
10898 
10899 	/*
10900 	 * Mixing clocks in the same buffer is trouble you don't need.
10901 	 */
10902 	if (output_event->clock != event->clock)
10903 		goto out;
10904 
10905 	/*
10906 	 * Either writing ring buffer from beginning or from end.
10907 	 * Mixing is not allowed.
10908 	 */
10909 	if (is_write_backward(output_event) != is_write_backward(event))
10910 		goto out;
10911 
10912 	/*
10913 	 * If both events generate aux data, they must be on the same PMU
10914 	 */
10915 	if (has_aux(event) && has_aux(output_event) &&
10916 	    event->pmu != output_event->pmu)
10917 		goto out;
10918 
10919 	/*
10920 	 * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
10921 	 * output_event is already on rb->event_list, and the list iteration
10922 	 * restarts after every removal, it is guaranteed this new event is
10923 	 * observed *OR* if output_event is already removed, it's guaranteed we
10924 	 * observe !rb->mmap_count.
10925 	 */
10926 	mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
10927 set:
10928 	/* Can't redirect output if we've got an active mmap() */
10929 	if (atomic_read(&event->mmap_count))
10930 		goto unlock;
10931 
10932 	if (output_event) {
10933 		/* get the rb we want to redirect to */
10934 		rb = ring_buffer_get(output_event);
10935 		if (!rb)
10936 			goto unlock;
10937 
10938 		/* did we race against perf_mmap_close() */
10939 		if (!atomic_read(&rb->mmap_count)) {
10940 			ring_buffer_put(rb);
10941 			goto unlock;
10942 		}
10943 	}
10944 
10945 	ring_buffer_attach(event, rb);
10946 
10947 	ret = 0;
10948 unlock:
10949 	mutex_unlock(&event->mmap_mutex);
10950 	if (output_event)
10951 		mutex_unlock(&output_event->mmap_mutex);
10952 
10953 out:
10954 	return ret;
10955 }
10956 
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)10957 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10958 {
10959 	bool nmi_safe = false;
10960 
10961 	switch (clk_id) {
10962 	case CLOCK_MONOTONIC:
10963 		event->clock = &ktime_get_mono_fast_ns;
10964 		nmi_safe = true;
10965 		break;
10966 
10967 	case CLOCK_MONOTONIC_RAW:
10968 		event->clock = &ktime_get_raw_fast_ns;
10969 		nmi_safe = true;
10970 		break;
10971 
10972 	case CLOCK_REALTIME:
10973 		event->clock = &ktime_get_real_ns;
10974 		break;
10975 
10976 	case CLOCK_BOOTTIME:
10977 		event->clock = &ktime_get_boottime_ns;
10978 		break;
10979 
10980 	case CLOCK_TAI:
10981 		event->clock = &ktime_get_clocktai_ns;
10982 		break;
10983 
10984 	default:
10985 		return -EINVAL;
10986 	}
10987 
10988 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10989 		return -EINVAL;
10990 
10991 	return 0;
10992 }
10993 
10994 /*
10995  * Variation on perf_event_ctx_lock_nested(), except we take two context
10996  * mutexes.
10997  */
10998 static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event * group_leader,struct perf_event_context * ctx)10999 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11000 			     struct perf_event_context *ctx)
11001 {
11002 	struct perf_event_context *gctx;
11003 
11004 again:
11005 	rcu_read_lock();
11006 	gctx = READ_ONCE(group_leader->ctx);
11007 	if (!refcount_inc_not_zero(&gctx->refcount)) {
11008 		rcu_read_unlock();
11009 		goto again;
11010 	}
11011 	rcu_read_unlock();
11012 
11013 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
11014 
11015 	if (group_leader->ctx != gctx) {
11016 		mutex_unlock(&ctx->mutex);
11017 		mutex_unlock(&gctx->mutex);
11018 		put_ctx(gctx);
11019 		goto again;
11020 	}
11021 
11022 	return gctx;
11023 }
11024 
11025 /**
11026  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11027  *
11028  * @attr_uptr:	event_id type attributes for monitoring/sampling
11029  * @pid:		target pid
11030  * @cpu:		target cpu
11031  * @group_fd:		group leader event fd
11032  */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)11033 SYSCALL_DEFINE5(perf_event_open,
11034 		struct perf_event_attr __user *, attr_uptr,
11035 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11036 {
11037 	struct perf_event *group_leader = NULL, *output_event = NULL;
11038 	struct perf_event *event, *sibling;
11039 	struct perf_event_attr attr;
11040 	struct perf_event_context *ctx, *gctx;
11041 	struct file *event_file = NULL;
11042 	struct fd group = {NULL, 0};
11043 	struct task_struct *task = NULL;
11044 	struct pmu *pmu;
11045 	int event_fd;
11046 	int move_group = 0;
11047 	int err;
11048 	int f_flags = O_RDWR;
11049 	int cgroup_fd = -1;
11050 
11051 	/* for future expandability... */
11052 	if (flags & ~PERF_FLAG_ALL)
11053 		return -EINVAL;
11054 
11055 	err = perf_copy_attr(attr_uptr, &attr);
11056 	if (err)
11057 		return err;
11058 
11059 	/* Do we allow access to perf_event_open(2) ? */
11060 	err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11061 	if (err)
11062 		return err;
11063 
11064 	if (!attr.exclude_kernel) {
11065 		err = perf_allow_kernel(&attr);
11066 		if (err)
11067 			return err;
11068 	}
11069 
11070 	if (attr.namespaces) {
11071 		if (!capable(CAP_SYS_ADMIN))
11072 			return -EACCES;
11073 	}
11074 
11075 	if (attr.freq) {
11076 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
11077 			return -EINVAL;
11078 	} else {
11079 		if (attr.sample_period & (1ULL << 63))
11080 			return -EINVAL;
11081 	}
11082 
11083 	/* Only privileged users can get physical addresses */
11084 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11085 		err = perf_allow_kernel(&attr);
11086 		if (err)
11087 			return err;
11088 	}
11089 
11090 	/* REGS_INTR can leak data, lockdown must prevent this */
11091 	if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
11092 		err = security_locked_down(LOCKDOWN_PERF);
11093 		if (err)
11094 			return err;
11095 	}
11096 
11097 	/*
11098 	 * In cgroup mode, the pid argument is used to pass the fd
11099 	 * opened to the cgroup directory in cgroupfs. The cpu argument
11100 	 * designates the cpu on which to monitor threads from that
11101 	 * cgroup.
11102 	 */
11103 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11104 		return -EINVAL;
11105 
11106 	if (flags & PERF_FLAG_FD_CLOEXEC)
11107 		f_flags |= O_CLOEXEC;
11108 
11109 	event_fd = get_unused_fd_flags(f_flags);
11110 	if (event_fd < 0)
11111 		return event_fd;
11112 
11113 	if (group_fd != -1) {
11114 		err = perf_fget_light(group_fd, &group);
11115 		if (err)
11116 			goto err_fd;
11117 		group_leader = group.file->private_data;
11118 		if (flags & PERF_FLAG_FD_OUTPUT)
11119 			output_event = group_leader;
11120 		if (flags & PERF_FLAG_FD_NO_GROUP)
11121 			group_leader = NULL;
11122 	}
11123 
11124 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11125 		task = find_lively_task_by_vpid(pid);
11126 		if (IS_ERR(task)) {
11127 			err = PTR_ERR(task);
11128 			goto err_group_fd;
11129 		}
11130 	}
11131 
11132 	if (task && group_leader &&
11133 	    group_leader->attr.inherit != attr.inherit) {
11134 		err = -EINVAL;
11135 		goto err_task;
11136 	}
11137 
11138 	if (task) {
11139 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
11140 		if (err)
11141 			goto err_task;
11142 
11143 		/*
11144 		 * Reuse ptrace permission checks for now.
11145 		 *
11146 		 * We must hold cred_guard_mutex across this and any potential
11147 		 * perf_install_in_context() call for this new event to
11148 		 * serialize against exec() altering our credentials (and the
11149 		 * perf_event_exit_task() that could imply).
11150 		 */
11151 		err = -EACCES;
11152 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11153 			goto err_cred;
11154 	}
11155 
11156 	if (flags & PERF_FLAG_PID_CGROUP)
11157 		cgroup_fd = pid;
11158 
11159 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11160 				 NULL, NULL, cgroup_fd);
11161 	if (IS_ERR(event)) {
11162 		err = PTR_ERR(event);
11163 		goto err_cred;
11164 	}
11165 
11166 	if (is_sampling_event(event)) {
11167 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11168 			err = -EOPNOTSUPP;
11169 			goto err_alloc;
11170 		}
11171 	}
11172 
11173 	/*
11174 	 * Special case software events and allow them to be part of
11175 	 * any hardware group.
11176 	 */
11177 	pmu = event->pmu;
11178 
11179 	if (attr.use_clockid) {
11180 		err = perf_event_set_clock(event, attr.clockid);
11181 		if (err)
11182 			goto err_alloc;
11183 	}
11184 
11185 	if (pmu->task_ctx_nr == perf_sw_context)
11186 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
11187 
11188 	if (group_leader) {
11189 		if (is_software_event(event) &&
11190 		    !in_software_context(group_leader)) {
11191 			/*
11192 			 * If the event is a sw event, but the group_leader
11193 			 * is on hw context.
11194 			 *
11195 			 * Allow the addition of software events to hw
11196 			 * groups, this is safe because software events
11197 			 * never fail to schedule.
11198 			 */
11199 			pmu = group_leader->ctx->pmu;
11200 		} else if (!is_software_event(event) &&
11201 			   is_software_event(group_leader) &&
11202 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11203 			/*
11204 			 * In case the group is a pure software group, and we
11205 			 * try to add a hardware event, move the whole group to
11206 			 * the hardware context.
11207 			 */
11208 			move_group = 1;
11209 		}
11210 	}
11211 
11212 	/*
11213 	 * Get the target context (task or percpu):
11214 	 */
11215 	ctx = find_get_context(pmu, task, event);
11216 	if (IS_ERR(ctx)) {
11217 		err = PTR_ERR(ctx);
11218 		goto err_alloc;
11219 	}
11220 
11221 	/*
11222 	 * Look up the group leader (we will attach this event to it):
11223 	 */
11224 	if (group_leader) {
11225 		err = -EINVAL;
11226 
11227 		/*
11228 		 * Do not allow a recursive hierarchy (this new sibling
11229 		 * becoming part of another group-sibling):
11230 		 */
11231 		if (group_leader->group_leader != group_leader)
11232 			goto err_context;
11233 
11234 		/* All events in a group should have the same clock */
11235 		if (group_leader->clock != event->clock)
11236 			goto err_context;
11237 
11238 		/*
11239 		 * Make sure we're both events for the same CPU;
11240 		 * grouping events for different CPUs is broken; since
11241 		 * you can never concurrently schedule them anyhow.
11242 		 */
11243 		if (group_leader->cpu != event->cpu)
11244 			goto err_context;
11245 
11246 		/*
11247 		 * Make sure we're both on the same task, or both
11248 		 * per-CPU events.
11249 		 */
11250 		if (group_leader->ctx->task != ctx->task)
11251 			goto err_context;
11252 
11253 		/*
11254 		 * Do not allow to attach to a group in a different task
11255 		 * or CPU context. If we're moving SW events, we'll fix
11256 		 * this up later, so allow that.
11257 		 *
11258 		 * Racy, not holding group_leader->ctx->mutex, see comment with
11259 		 * perf_event_ctx_lock().
11260 		 */
11261 		if (!move_group && group_leader->ctx != ctx)
11262 			goto err_context;
11263 
11264 		/*
11265 		 * Only a group leader can be exclusive or pinned
11266 		 */
11267 		if (attr.exclusive || attr.pinned)
11268 			goto err_context;
11269 	}
11270 
11271 	if (output_event) {
11272 		err = perf_event_set_output(event, output_event);
11273 		if (err)
11274 			goto err_context;
11275 	}
11276 
11277 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11278 					f_flags);
11279 	if (IS_ERR(event_file)) {
11280 		err = PTR_ERR(event_file);
11281 		event_file = NULL;
11282 		goto err_context;
11283 	}
11284 
11285 	if (move_group) {
11286 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11287 
11288 		if (gctx->task == TASK_TOMBSTONE) {
11289 			err = -ESRCH;
11290 			goto err_locked;
11291 		}
11292 
11293 		/*
11294 		 * Check if we raced against another sys_perf_event_open() call
11295 		 * moving the software group underneath us.
11296 		 */
11297 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11298 			/*
11299 			 * If someone moved the group out from under us, check
11300 			 * if this new event wound up on the same ctx, if so
11301 			 * its the regular !move_group case, otherwise fail.
11302 			 */
11303 			if (gctx != ctx) {
11304 				err = -EINVAL;
11305 				goto err_locked;
11306 			} else {
11307 				perf_event_ctx_unlock(group_leader, gctx);
11308 				move_group = 0;
11309 				goto not_move_group;
11310 			}
11311 		}
11312 
11313 		/*
11314 		 * Failure to create exclusive events returns -EBUSY.
11315 		 */
11316 		err = -EBUSY;
11317 		if (!exclusive_event_installable(group_leader, ctx))
11318 			goto err_locked;
11319 
11320 		for_each_sibling_event(sibling, group_leader) {
11321 			if (!exclusive_event_installable(sibling, ctx))
11322 				goto err_locked;
11323 		}
11324 	} else {
11325 		mutex_lock(&ctx->mutex);
11326 
11327 		/*
11328 		 * Now that we hold ctx->lock, (re)validate group_leader->ctx == ctx,
11329 		 * see the group_leader && !move_group test earlier.
11330 		 */
11331 		if (group_leader && group_leader->ctx != ctx) {
11332 			err = -EINVAL;
11333 			goto err_locked;
11334 		}
11335 	}
11336 not_move_group:
11337 
11338 	if (ctx->task == TASK_TOMBSTONE) {
11339 		err = -ESRCH;
11340 		goto err_locked;
11341 	}
11342 
11343 	if (!perf_event_validate_size(event)) {
11344 		err = -E2BIG;
11345 		goto err_locked;
11346 	}
11347 
11348 	if (!task) {
11349 		/*
11350 		 * Check if the @cpu we're creating an event for is online.
11351 		 *
11352 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11353 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11354 		 */
11355 		struct perf_cpu_context *cpuctx =
11356 			container_of(ctx, struct perf_cpu_context, ctx);
11357 
11358 		if (!cpuctx->online) {
11359 			err = -ENODEV;
11360 			goto err_locked;
11361 		}
11362 	}
11363 
11364 	if (event->attr.aux_output && !perf_get_aux_event(event, group_leader)) {
11365 		err = -EINVAL;
11366 		goto err_locked;
11367 	}
11368 
11369 	/*
11370 	 * Must be under the same ctx::mutex as perf_install_in_context(),
11371 	 * because we need to serialize with concurrent event creation.
11372 	 */
11373 	if (!exclusive_event_installable(event, ctx)) {
11374 		err = -EBUSY;
11375 		goto err_locked;
11376 	}
11377 
11378 	WARN_ON_ONCE(ctx->parent_ctx);
11379 
11380 	/*
11381 	 * This is the point on no return; we cannot fail hereafter. This is
11382 	 * where we start modifying current state.
11383 	 */
11384 
11385 	if (move_group) {
11386 		/*
11387 		 * See perf_event_ctx_lock() for comments on the details
11388 		 * of swizzling perf_event::ctx.
11389 		 */
11390 		perf_remove_from_context(group_leader, 0);
11391 		put_ctx(gctx);
11392 
11393 		for_each_sibling_event(sibling, group_leader) {
11394 			perf_remove_from_context(sibling, 0);
11395 			put_ctx(gctx);
11396 		}
11397 
11398 		/*
11399 		 * Wait for everybody to stop referencing the events through
11400 		 * the old lists, before installing it on new lists.
11401 		 */
11402 		synchronize_rcu();
11403 
11404 		/*
11405 		 * Install the group siblings before the group leader.
11406 		 *
11407 		 * Because a group leader will try and install the entire group
11408 		 * (through the sibling list, which is still in-tact), we can
11409 		 * end up with siblings installed in the wrong context.
11410 		 *
11411 		 * By installing siblings first we NO-OP because they're not
11412 		 * reachable through the group lists.
11413 		 */
11414 		for_each_sibling_event(sibling, group_leader) {
11415 			perf_event__state_init(sibling);
11416 			perf_install_in_context(ctx, sibling, sibling->cpu);
11417 			get_ctx(ctx);
11418 		}
11419 
11420 		/*
11421 		 * Removing from the context ends up with disabled
11422 		 * event. What we want here is event in the initial
11423 		 * startup state, ready to be add into new context.
11424 		 */
11425 		perf_event__state_init(group_leader);
11426 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
11427 		get_ctx(ctx);
11428 	}
11429 
11430 	/*
11431 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
11432 	 * that we're serialized against further additions and before
11433 	 * perf_install_in_context() which is the point the event is active and
11434 	 * can use these values.
11435 	 */
11436 	perf_event__header_size(event);
11437 	perf_event__id_header_size(event);
11438 
11439 	event->owner = current;
11440 
11441 	perf_install_in_context(ctx, event, event->cpu);
11442 	perf_unpin_context(ctx);
11443 
11444 	if (move_group)
11445 		perf_event_ctx_unlock(group_leader, gctx);
11446 	mutex_unlock(&ctx->mutex);
11447 
11448 	if (task) {
11449 		mutex_unlock(&task->signal->cred_guard_mutex);
11450 		put_task_struct(task);
11451 	}
11452 
11453 	mutex_lock(&current->perf_event_mutex);
11454 	list_add_tail(&event->owner_entry, &current->perf_event_list);
11455 	mutex_unlock(&current->perf_event_mutex);
11456 
11457 	/*
11458 	 * Drop the reference on the group_event after placing the
11459 	 * new event on the sibling_list. This ensures destruction
11460 	 * of the group leader will find the pointer to itself in
11461 	 * perf_group_detach().
11462 	 */
11463 	fdput(group);
11464 	fd_install(event_fd, event_file);
11465 	return event_fd;
11466 
11467 err_locked:
11468 	if (move_group)
11469 		perf_event_ctx_unlock(group_leader, gctx);
11470 	mutex_unlock(&ctx->mutex);
11471 /* err_file: */
11472 	fput(event_file);
11473 err_context:
11474 	perf_unpin_context(ctx);
11475 	put_ctx(ctx);
11476 err_alloc:
11477 	/*
11478 	 * If event_file is set, the fput() above will have called ->release()
11479 	 * and that will take care of freeing the event.
11480 	 */
11481 	if (!event_file)
11482 		free_event(event);
11483 err_cred:
11484 	if (task)
11485 		mutex_unlock(&task->signal->cred_guard_mutex);
11486 err_task:
11487 	if (task)
11488 		put_task_struct(task);
11489 err_group_fd:
11490 	fdput(group);
11491 err_fd:
11492 	put_unused_fd(event_fd);
11493 	return err;
11494 }
11495 
11496 /**
11497  * perf_event_create_kernel_counter
11498  *
11499  * @attr: attributes of the counter to create
11500  * @cpu: cpu in which the counter is bound
11501  * @task: task to profile (NULL for percpu)
11502  */
11503 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)11504 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11505 				 struct task_struct *task,
11506 				 perf_overflow_handler_t overflow_handler,
11507 				 void *context)
11508 {
11509 	struct perf_event_context *ctx;
11510 	struct perf_event *event;
11511 	int err;
11512 
11513 	/*
11514 	 * Grouping is not supported for kernel events, neither is 'AUX',
11515 	 * make sure the caller's intentions are adjusted.
11516 	 */
11517 	if (attr->aux_output)
11518 		return ERR_PTR(-EINVAL);
11519 
11520 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11521 				 overflow_handler, context, -1);
11522 	if (IS_ERR(event)) {
11523 		err = PTR_ERR(event);
11524 		goto err;
11525 	}
11526 
11527 	/* Mark owner so we could distinguish it from user events. */
11528 	event->owner = TASK_TOMBSTONE;
11529 
11530 	/*
11531 	 * Get the target context (task or percpu):
11532 	 */
11533 	ctx = find_get_context(event->pmu, task, event);
11534 	if (IS_ERR(ctx)) {
11535 		err = PTR_ERR(ctx);
11536 		goto err_free;
11537 	}
11538 
11539 	WARN_ON_ONCE(ctx->parent_ctx);
11540 	mutex_lock(&ctx->mutex);
11541 	if (ctx->task == TASK_TOMBSTONE) {
11542 		err = -ESRCH;
11543 		goto err_unlock;
11544 	}
11545 
11546 	if (!task) {
11547 		/*
11548 		 * Check if the @cpu we're creating an event for is online.
11549 		 *
11550 		 * We use the perf_cpu_context::ctx::mutex to serialize against
11551 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11552 		 */
11553 		struct perf_cpu_context *cpuctx =
11554 			container_of(ctx, struct perf_cpu_context, ctx);
11555 		if (!cpuctx->online) {
11556 			err = -ENODEV;
11557 			goto err_unlock;
11558 		}
11559 	}
11560 
11561 	if (!exclusive_event_installable(event, ctx)) {
11562 		err = -EBUSY;
11563 		goto err_unlock;
11564 	}
11565 
11566 	perf_install_in_context(ctx, event, event->cpu);
11567 	perf_unpin_context(ctx);
11568 	mutex_unlock(&ctx->mutex);
11569 
11570 	return event;
11571 
11572 err_unlock:
11573 	mutex_unlock(&ctx->mutex);
11574 	perf_unpin_context(ctx);
11575 	put_ctx(ctx);
11576 err_free:
11577 	free_event(event);
11578 err:
11579 	return ERR_PTR(err);
11580 }
11581 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11582 
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)11583 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11584 {
11585 	struct perf_event_context *src_ctx;
11586 	struct perf_event_context *dst_ctx;
11587 	struct perf_event *event, *tmp;
11588 	LIST_HEAD(events);
11589 
11590 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11591 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11592 
11593 	/*
11594 	 * See perf_event_ctx_lock() for comments on the details
11595 	 * of swizzling perf_event::ctx.
11596 	 */
11597 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11598 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11599 				 event_entry) {
11600 		perf_remove_from_context(event, 0);
11601 		unaccount_event_cpu(event, src_cpu);
11602 		put_ctx(src_ctx);
11603 		list_add(&event->migrate_entry, &events);
11604 	}
11605 
11606 	/*
11607 	 * Wait for the events to quiesce before re-instating them.
11608 	 */
11609 	synchronize_rcu();
11610 
11611 	/*
11612 	 * Re-instate events in 2 passes.
11613 	 *
11614 	 * Skip over group leaders and only install siblings on this first
11615 	 * pass, siblings will not get enabled without a leader, however a
11616 	 * leader will enable its siblings, even if those are still on the old
11617 	 * context.
11618 	 */
11619 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11620 		if (event->group_leader == event)
11621 			continue;
11622 
11623 		list_del(&event->migrate_entry);
11624 		if (event->state >= PERF_EVENT_STATE_OFF)
11625 			event->state = PERF_EVENT_STATE_INACTIVE;
11626 		account_event_cpu(event, dst_cpu);
11627 		perf_install_in_context(dst_ctx, event, dst_cpu);
11628 		get_ctx(dst_ctx);
11629 	}
11630 
11631 	/*
11632 	 * Once all the siblings are setup properly, install the group leaders
11633 	 * to make it go.
11634 	 */
11635 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11636 		list_del(&event->migrate_entry);
11637 		if (event->state >= PERF_EVENT_STATE_OFF)
11638 			event->state = PERF_EVENT_STATE_INACTIVE;
11639 		account_event_cpu(event, dst_cpu);
11640 		perf_install_in_context(dst_ctx, event, dst_cpu);
11641 		get_ctx(dst_ctx);
11642 	}
11643 	mutex_unlock(&dst_ctx->mutex);
11644 	mutex_unlock(&src_ctx->mutex);
11645 }
11646 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11647 
sync_child_event(struct perf_event * child_event,struct task_struct * child)11648 static void sync_child_event(struct perf_event *child_event,
11649 			       struct task_struct *child)
11650 {
11651 	struct perf_event *parent_event = child_event->parent;
11652 	u64 child_val;
11653 
11654 	if (child_event->attr.inherit_stat)
11655 		perf_event_read_event(child_event, child);
11656 
11657 	child_val = perf_event_count(child_event);
11658 
11659 	/*
11660 	 * Add back the child's count to the parent's count:
11661 	 */
11662 	atomic64_add(child_val, &parent_event->child_count);
11663 	atomic64_add(child_event->total_time_enabled,
11664 		     &parent_event->child_total_time_enabled);
11665 	atomic64_add(child_event->total_time_running,
11666 		     &parent_event->child_total_time_running);
11667 }
11668 
11669 static void
perf_event_exit_event(struct perf_event * child_event,struct perf_event_context * child_ctx,struct task_struct * child)11670 perf_event_exit_event(struct perf_event *child_event,
11671 		      struct perf_event_context *child_ctx,
11672 		      struct task_struct *child)
11673 {
11674 	struct perf_event *parent_event = child_event->parent;
11675 
11676 	/*
11677 	 * Do not destroy the 'original' grouping; because of the context
11678 	 * switch optimization the original events could've ended up in a
11679 	 * random child task.
11680 	 *
11681 	 * If we were to destroy the original group, all group related
11682 	 * operations would cease to function properly after this random
11683 	 * child dies.
11684 	 *
11685 	 * Do destroy all inherited groups, we don't care about those
11686 	 * and being thorough is better.
11687 	 */
11688 	raw_spin_lock_irq(&child_ctx->lock);
11689 	WARN_ON_ONCE(child_ctx->is_active);
11690 
11691 	if (parent_event)
11692 		perf_group_detach(child_event);
11693 	list_del_event(child_event, child_ctx);
11694 	perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11695 	raw_spin_unlock_irq(&child_ctx->lock);
11696 
11697 	/*
11698 	 * Parent events are governed by their filedesc, retain them.
11699 	 */
11700 	if (!parent_event) {
11701 		perf_event_wakeup(child_event);
11702 		return;
11703 	}
11704 	/*
11705 	 * Child events can be cleaned up.
11706 	 */
11707 
11708 	sync_child_event(child_event, child);
11709 
11710 	/*
11711 	 * Remove this event from the parent's list
11712 	 */
11713 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11714 	mutex_lock(&parent_event->child_mutex);
11715 	list_del_init(&child_event->child_list);
11716 	mutex_unlock(&parent_event->child_mutex);
11717 
11718 	/*
11719 	 * Kick perf_poll() for is_event_hup().
11720 	 */
11721 	perf_event_wakeup(parent_event);
11722 	free_event(child_event);
11723 	put_event(parent_event);
11724 }
11725 
perf_event_exit_task_context(struct task_struct * child,int ctxn)11726 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11727 {
11728 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
11729 	struct perf_event *child_event, *next;
11730 
11731 	WARN_ON_ONCE(child != current);
11732 
11733 	child_ctx = perf_pin_task_context(child, ctxn);
11734 	if (!child_ctx)
11735 		return;
11736 
11737 	/*
11738 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
11739 	 * ctx::mutex over the entire thing. This serializes against almost
11740 	 * everything that wants to access the ctx.
11741 	 *
11742 	 * The exception is sys_perf_event_open() /
11743 	 * perf_event_create_kernel_count() which does find_get_context()
11744 	 * without ctx::mutex (it cannot because of the move_group double mutex
11745 	 * lock thing). See the comments in perf_install_in_context().
11746 	 */
11747 	mutex_lock(&child_ctx->mutex);
11748 
11749 	/*
11750 	 * In a single ctx::lock section, de-schedule the events and detach the
11751 	 * context from the task such that we cannot ever get it scheduled back
11752 	 * in.
11753 	 */
11754 	raw_spin_lock_irq(&child_ctx->lock);
11755 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11756 
11757 	/*
11758 	 * Now that the context is inactive, destroy the task <-> ctx relation
11759 	 * and mark the context dead.
11760 	 */
11761 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11762 	put_ctx(child_ctx); /* cannot be last */
11763 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11764 	put_task_struct(current); /* cannot be last */
11765 
11766 	clone_ctx = unclone_ctx(child_ctx);
11767 	raw_spin_unlock_irq(&child_ctx->lock);
11768 
11769 	if (clone_ctx)
11770 		put_ctx(clone_ctx);
11771 
11772 	/*
11773 	 * Report the task dead after unscheduling the events so that we
11774 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
11775 	 * get a few PERF_RECORD_READ events.
11776 	 */
11777 	perf_event_task(child, child_ctx, 0);
11778 
11779 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11780 		perf_event_exit_event(child_event, child_ctx, child);
11781 
11782 	mutex_unlock(&child_ctx->mutex);
11783 
11784 	put_ctx(child_ctx);
11785 }
11786 
11787 /*
11788  * When a child task exits, feed back event values to parent events.
11789  *
11790  * Can be called with cred_guard_mutex held when called from
11791  * install_exec_creds().
11792  */
perf_event_exit_task(struct task_struct * child)11793 void perf_event_exit_task(struct task_struct *child)
11794 {
11795 	struct perf_event *event, *tmp;
11796 	int ctxn;
11797 
11798 	mutex_lock(&child->perf_event_mutex);
11799 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11800 				 owner_entry) {
11801 		list_del_init(&event->owner_entry);
11802 
11803 		/*
11804 		 * Ensure the list deletion is visible before we clear
11805 		 * the owner, closes a race against perf_release() where
11806 		 * we need to serialize on the owner->perf_event_mutex.
11807 		 */
11808 		smp_store_release(&event->owner, NULL);
11809 	}
11810 	mutex_unlock(&child->perf_event_mutex);
11811 
11812 	for_each_task_context_nr(ctxn)
11813 		perf_event_exit_task_context(child, ctxn);
11814 
11815 	/*
11816 	 * The perf_event_exit_task_context calls perf_event_task
11817 	 * with child's task_ctx, which generates EXIT events for
11818 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
11819 	 * At this point we need to send EXIT events to cpu contexts.
11820 	 */
11821 	perf_event_task(child, NULL, 0);
11822 }
11823 
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)11824 static void perf_free_event(struct perf_event *event,
11825 			    struct perf_event_context *ctx)
11826 {
11827 	struct perf_event *parent = event->parent;
11828 
11829 	if (WARN_ON_ONCE(!parent))
11830 		return;
11831 
11832 	mutex_lock(&parent->child_mutex);
11833 	list_del_init(&event->child_list);
11834 	mutex_unlock(&parent->child_mutex);
11835 
11836 	put_event(parent);
11837 
11838 	raw_spin_lock_irq(&ctx->lock);
11839 	perf_group_detach(event);
11840 	list_del_event(event, ctx);
11841 	raw_spin_unlock_irq(&ctx->lock);
11842 	free_event(event);
11843 }
11844 
11845 /*
11846  * Free a context as created by inheritance by perf_event_init_task() below,
11847  * used by fork() in case of fail.
11848  *
11849  * Even though the task has never lived, the context and events have been
11850  * exposed through the child_list, so we must take care tearing it all down.
11851  */
perf_event_free_task(struct task_struct * task)11852 void perf_event_free_task(struct task_struct *task)
11853 {
11854 	struct perf_event_context *ctx;
11855 	struct perf_event *event, *tmp;
11856 	int ctxn;
11857 
11858 	for_each_task_context_nr(ctxn) {
11859 		ctx = task->perf_event_ctxp[ctxn];
11860 		if (!ctx)
11861 			continue;
11862 
11863 		mutex_lock(&ctx->mutex);
11864 		raw_spin_lock_irq(&ctx->lock);
11865 		/*
11866 		 * Destroy the task <-> ctx relation and mark the context dead.
11867 		 *
11868 		 * This is important because even though the task hasn't been
11869 		 * exposed yet the context has been (through child_list).
11870 		 */
11871 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11872 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11873 		put_task_struct(task); /* cannot be last */
11874 		raw_spin_unlock_irq(&ctx->lock);
11875 
11876 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11877 			perf_free_event(event, ctx);
11878 
11879 		mutex_unlock(&ctx->mutex);
11880 
11881 		/*
11882 		 * perf_event_release_kernel() could've stolen some of our
11883 		 * child events and still have them on its free_list. In that
11884 		 * case we must wait for these events to have been freed (in
11885 		 * particular all their references to this task must've been
11886 		 * dropped).
11887 		 *
11888 		 * Without this copy_process() will unconditionally free this
11889 		 * task (irrespective of its reference count) and
11890 		 * _free_event()'s put_task_struct(event->hw.target) will be a
11891 		 * use-after-free.
11892 		 *
11893 		 * Wait for all events to drop their context reference.
11894 		 */
11895 		wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
11896 		put_ctx(ctx); /* must be last */
11897 	}
11898 }
11899 
perf_event_delayed_put(struct task_struct * task)11900 void perf_event_delayed_put(struct task_struct *task)
11901 {
11902 	int ctxn;
11903 
11904 	for_each_task_context_nr(ctxn)
11905 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11906 }
11907 
perf_event_get(unsigned int fd)11908 struct file *perf_event_get(unsigned int fd)
11909 {
11910 	struct file *file = fget(fd);
11911 	if (!file)
11912 		return ERR_PTR(-EBADF);
11913 
11914 	if (file->f_op != &perf_fops) {
11915 		fput(file);
11916 		return ERR_PTR(-EBADF);
11917 	}
11918 
11919 	return file;
11920 }
11921 
perf_get_event(struct file * file)11922 const struct perf_event *perf_get_event(struct file *file)
11923 {
11924 	if (file->f_op != &perf_fops)
11925 		return ERR_PTR(-EINVAL);
11926 
11927 	return file->private_data;
11928 }
11929 
perf_event_attrs(struct perf_event * event)11930 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11931 {
11932 	if (!event)
11933 		return ERR_PTR(-EINVAL);
11934 
11935 	return &event->attr;
11936 }
11937 
11938 /*
11939  * Inherit an event from parent task to child task.
11940  *
11941  * Returns:
11942  *  - valid pointer on success
11943  *  - NULL for orphaned events
11944  *  - IS_ERR() on error
11945  */
11946 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)11947 inherit_event(struct perf_event *parent_event,
11948 	      struct task_struct *parent,
11949 	      struct perf_event_context *parent_ctx,
11950 	      struct task_struct *child,
11951 	      struct perf_event *group_leader,
11952 	      struct perf_event_context *child_ctx)
11953 {
11954 	enum perf_event_state parent_state = parent_event->state;
11955 	struct perf_event *child_event;
11956 	unsigned long flags;
11957 
11958 	/*
11959 	 * Instead of creating recursive hierarchies of events,
11960 	 * we link inherited events back to the original parent,
11961 	 * which has a filp for sure, which we use as the reference
11962 	 * count:
11963 	 */
11964 	if (parent_event->parent)
11965 		parent_event = parent_event->parent;
11966 
11967 	child_event = perf_event_alloc(&parent_event->attr,
11968 					   parent_event->cpu,
11969 					   child,
11970 					   group_leader, parent_event,
11971 					   NULL, NULL, -1);
11972 	if (IS_ERR(child_event))
11973 		return child_event;
11974 
11975 
11976 	if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11977 	    !child_ctx->task_ctx_data) {
11978 		struct pmu *pmu = child_event->pmu;
11979 
11980 		child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11981 						   GFP_KERNEL);
11982 		if (!child_ctx->task_ctx_data) {
11983 			free_event(child_event);
11984 			return ERR_PTR(-ENOMEM);
11985 		}
11986 	}
11987 
11988 	/*
11989 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11990 	 * must be under the same lock in order to serialize against
11991 	 * perf_event_release_kernel(), such that either we must observe
11992 	 * is_orphaned_event() or they will observe us on the child_list.
11993 	 */
11994 	mutex_lock(&parent_event->child_mutex);
11995 	if (is_orphaned_event(parent_event) ||
11996 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
11997 		mutex_unlock(&parent_event->child_mutex);
11998 		/* task_ctx_data is freed with child_ctx */
11999 		free_event(child_event);
12000 		return NULL;
12001 	}
12002 
12003 	get_ctx(child_ctx);
12004 
12005 	/*
12006 	 * Make the child state follow the state of the parent event,
12007 	 * not its attr.disabled bit.  We hold the parent's mutex,
12008 	 * so we won't race with perf_event_{en, dis}able_family.
12009 	 */
12010 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12011 		child_event->state = PERF_EVENT_STATE_INACTIVE;
12012 	else
12013 		child_event->state = PERF_EVENT_STATE_OFF;
12014 
12015 	if (parent_event->attr.freq) {
12016 		u64 sample_period = parent_event->hw.sample_period;
12017 		struct hw_perf_event *hwc = &child_event->hw;
12018 
12019 		hwc->sample_period = sample_period;
12020 		hwc->last_period   = sample_period;
12021 
12022 		local64_set(&hwc->period_left, sample_period);
12023 	}
12024 
12025 	child_event->ctx = child_ctx;
12026 	child_event->overflow_handler = parent_event->overflow_handler;
12027 	child_event->overflow_handler_context
12028 		= parent_event->overflow_handler_context;
12029 
12030 	/*
12031 	 * Precalculate sample_data sizes
12032 	 */
12033 	perf_event__header_size(child_event);
12034 	perf_event__id_header_size(child_event);
12035 
12036 	/*
12037 	 * Link it up in the child's context:
12038 	 */
12039 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
12040 	add_event_to_ctx(child_event, child_ctx);
12041 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12042 
12043 	/*
12044 	 * Link this into the parent event's child list
12045 	 */
12046 	list_add_tail(&child_event->child_list, &parent_event->child_list);
12047 	mutex_unlock(&parent_event->child_mutex);
12048 
12049 	return child_event;
12050 }
12051 
12052 /*
12053  * Inherits an event group.
12054  *
12055  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12056  * This matches with perf_event_release_kernel() removing all child events.
12057  *
12058  * Returns:
12059  *  - 0 on success
12060  *  - <0 on error
12061  */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)12062 static int inherit_group(struct perf_event *parent_event,
12063 	      struct task_struct *parent,
12064 	      struct perf_event_context *parent_ctx,
12065 	      struct task_struct *child,
12066 	      struct perf_event_context *child_ctx)
12067 {
12068 	struct perf_event *leader;
12069 	struct perf_event *sub;
12070 	struct perf_event *child_ctr;
12071 
12072 	leader = inherit_event(parent_event, parent, parent_ctx,
12073 				 child, NULL, child_ctx);
12074 	if (IS_ERR(leader))
12075 		return PTR_ERR(leader);
12076 	/*
12077 	 * @leader can be NULL here because of is_orphaned_event(). In this
12078 	 * case inherit_event() will create individual events, similar to what
12079 	 * perf_group_detach() would do anyway.
12080 	 */
12081 	for_each_sibling_event(sub, parent_event) {
12082 		child_ctr = inherit_event(sub, parent, parent_ctx,
12083 					    child, leader, child_ctx);
12084 		if (IS_ERR(child_ctr))
12085 			return PTR_ERR(child_ctr);
12086 
12087 		if (sub->aux_event == parent_event && child_ctr &&
12088 		    !perf_get_aux_event(child_ctr, leader))
12089 			return -EINVAL;
12090 	}
12091 	leader->group_generation = parent_event->group_generation;
12092 	return 0;
12093 }
12094 
12095 /*
12096  * Creates the child task context and tries to inherit the event-group.
12097  *
12098  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12099  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12100  * consistent with perf_event_release_kernel() removing all child events.
12101  *
12102  * Returns:
12103  *  - 0 on success
12104  *  - <0 on error
12105  */
12106 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,int ctxn,int * inherited_all)12107 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12108 		   struct perf_event_context *parent_ctx,
12109 		   struct task_struct *child, int ctxn,
12110 		   int *inherited_all)
12111 {
12112 	int ret;
12113 	struct perf_event_context *child_ctx;
12114 
12115 	if (!event->attr.inherit) {
12116 		*inherited_all = 0;
12117 		return 0;
12118 	}
12119 
12120 	child_ctx = child->perf_event_ctxp[ctxn];
12121 	if (!child_ctx) {
12122 		/*
12123 		 * This is executed from the parent task context, so
12124 		 * inherit events that have been marked for cloning.
12125 		 * First allocate and initialize a context for the
12126 		 * child.
12127 		 */
12128 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12129 		if (!child_ctx)
12130 			return -ENOMEM;
12131 
12132 		child->perf_event_ctxp[ctxn] = child_ctx;
12133 	}
12134 
12135 	ret = inherit_group(event, parent, parent_ctx,
12136 			    child, child_ctx);
12137 
12138 	if (ret)
12139 		*inherited_all = 0;
12140 
12141 	return ret;
12142 }
12143 
12144 /*
12145  * Initialize the perf_event context in task_struct
12146  */
perf_event_init_context(struct task_struct * child,int ctxn)12147 static int perf_event_init_context(struct task_struct *child, int ctxn)
12148 {
12149 	struct perf_event_context *child_ctx, *parent_ctx;
12150 	struct perf_event_context *cloned_ctx;
12151 	struct perf_event *event;
12152 	struct task_struct *parent = current;
12153 	int inherited_all = 1;
12154 	unsigned long flags;
12155 	int ret = 0;
12156 
12157 	if (likely(!parent->perf_event_ctxp[ctxn]))
12158 		return 0;
12159 
12160 	/*
12161 	 * If the parent's context is a clone, pin it so it won't get
12162 	 * swapped under us.
12163 	 */
12164 	parent_ctx = perf_pin_task_context(parent, ctxn);
12165 	if (!parent_ctx)
12166 		return 0;
12167 
12168 	/*
12169 	 * No need to check if parent_ctx != NULL here; since we saw
12170 	 * it non-NULL earlier, the only reason for it to become NULL
12171 	 * is if we exit, and since we're currently in the middle of
12172 	 * a fork we can't be exiting at the same time.
12173 	 */
12174 
12175 	/*
12176 	 * Lock the parent list. No need to lock the child - not PID
12177 	 * hashed yet and not running, so nobody can access it.
12178 	 */
12179 	mutex_lock(&parent_ctx->mutex);
12180 
12181 	/*
12182 	 * We dont have to disable NMIs - we are only looking at
12183 	 * the list, not manipulating it:
12184 	 */
12185 	perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12186 		ret = inherit_task_group(event, parent, parent_ctx,
12187 					 child, ctxn, &inherited_all);
12188 		if (ret)
12189 			goto out_unlock;
12190 	}
12191 
12192 	/*
12193 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
12194 	 * to allocations, but we need to prevent rotation because
12195 	 * rotate_ctx() will change the list from interrupt context.
12196 	 */
12197 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12198 	parent_ctx->rotate_disable = 1;
12199 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12200 
12201 	perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12202 		ret = inherit_task_group(event, parent, parent_ctx,
12203 					 child, ctxn, &inherited_all);
12204 		if (ret)
12205 			goto out_unlock;
12206 	}
12207 
12208 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12209 	parent_ctx->rotate_disable = 0;
12210 
12211 	child_ctx = child->perf_event_ctxp[ctxn];
12212 
12213 	if (child_ctx && inherited_all) {
12214 		/*
12215 		 * Mark the child context as a clone of the parent
12216 		 * context, or of whatever the parent is a clone of.
12217 		 *
12218 		 * Note that if the parent is a clone, the holding of
12219 		 * parent_ctx->lock avoids it from being uncloned.
12220 		 */
12221 		cloned_ctx = parent_ctx->parent_ctx;
12222 		if (cloned_ctx) {
12223 			child_ctx->parent_ctx = cloned_ctx;
12224 			child_ctx->parent_gen = parent_ctx->parent_gen;
12225 		} else {
12226 			child_ctx->parent_ctx = parent_ctx;
12227 			child_ctx->parent_gen = parent_ctx->generation;
12228 		}
12229 		get_ctx(child_ctx->parent_ctx);
12230 	}
12231 
12232 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12233 out_unlock:
12234 	mutex_unlock(&parent_ctx->mutex);
12235 
12236 	perf_unpin_context(parent_ctx);
12237 	put_ctx(parent_ctx);
12238 
12239 	return ret;
12240 }
12241 
12242 /*
12243  * Initialize the perf_event context in task_struct
12244  */
perf_event_init_task(struct task_struct * child)12245 int perf_event_init_task(struct task_struct *child)
12246 {
12247 	int ctxn, ret;
12248 
12249 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12250 	mutex_init(&child->perf_event_mutex);
12251 	INIT_LIST_HEAD(&child->perf_event_list);
12252 
12253 	for_each_task_context_nr(ctxn) {
12254 		ret = perf_event_init_context(child, ctxn);
12255 		if (ret) {
12256 			perf_event_free_task(child);
12257 			return ret;
12258 		}
12259 	}
12260 
12261 	return 0;
12262 }
12263 
perf_event_init_all_cpus(void)12264 static void __init perf_event_init_all_cpus(void)
12265 {
12266 	struct swevent_htable *swhash;
12267 	int cpu;
12268 
12269 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12270 
12271 	for_each_possible_cpu(cpu) {
12272 		swhash = &per_cpu(swevent_htable, cpu);
12273 		mutex_init(&swhash->hlist_mutex);
12274 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12275 
12276 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12277 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12278 
12279 #ifdef CONFIG_CGROUP_PERF
12280 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12281 #endif
12282 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12283 	}
12284 }
12285 
perf_swevent_init_cpu(unsigned int cpu)12286 static void perf_swevent_init_cpu(unsigned int cpu)
12287 {
12288 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12289 
12290 	mutex_lock(&swhash->hlist_mutex);
12291 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12292 		struct swevent_hlist *hlist;
12293 
12294 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12295 		WARN_ON(!hlist);
12296 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
12297 	}
12298 	mutex_unlock(&swhash->hlist_mutex);
12299 }
12300 
12301 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)12302 static void __perf_event_exit_context(void *__info)
12303 {
12304 	struct perf_event_context *ctx = __info;
12305 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12306 	struct perf_event *event;
12307 
12308 	raw_spin_lock(&ctx->lock);
12309 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12310 	list_for_each_entry(event, &ctx->event_list, event_entry)
12311 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12312 	raw_spin_unlock(&ctx->lock);
12313 }
12314 
perf_event_exit_cpu_context(int cpu)12315 static void perf_event_exit_cpu_context(int cpu)
12316 {
12317 	struct perf_cpu_context *cpuctx;
12318 	struct perf_event_context *ctx;
12319 	struct pmu *pmu;
12320 
12321 	mutex_lock(&pmus_lock);
12322 	list_for_each_entry(pmu, &pmus, entry) {
12323 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12324 		ctx = &cpuctx->ctx;
12325 
12326 		mutex_lock(&ctx->mutex);
12327 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12328 		cpuctx->online = 0;
12329 		mutex_unlock(&ctx->mutex);
12330 	}
12331 	cpumask_clear_cpu(cpu, perf_online_mask);
12332 	mutex_unlock(&pmus_lock);
12333 }
12334 #else
12335 
perf_event_exit_cpu_context(int cpu)12336 static void perf_event_exit_cpu_context(int cpu) { }
12337 
12338 #endif
12339 
perf_event_init_cpu(unsigned int cpu)12340 int perf_event_init_cpu(unsigned int cpu)
12341 {
12342 	struct perf_cpu_context *cpuctx;
12343 	struct perf_event_context *ctx;
12344 	struct pmu *pmu;
12345 
12346 	perf_swevent_init_cpu(cpu);
12347 
12348 	mutex_lock(&pmus_lock);
12349 	cpumask_set_cpu(cpu, perf_online_mask);
12350 	list_for_each_entry(pmu, &pmus, entry) {
12351 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12352 		ctx = &cpuctx->ctx;
12353 
12354 		mutex_lock(&ctx->mutex);
12355 		cpuctx->online = 1;
12356 		mutex_unlock(&ctx->mutex);
12357 	}
12358 	mutex_unlock(&pmus_lock);
12359 
12360 	return 0;
12361 }
12362 
perf_event_exit_cpu(unsigned int cpu)12363 int perf_event_exit_cpu(unsigned int cpu)
12364 {
12365 	perf_event_exit_cpu_context(cpu);
12366 	return 0;
12367 }
12368 
12369 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)12370 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12371 {
12372 	int cpu;
12373 
12374 	for_each_online_cpu(cpu)
12375 		perf_event_exit_cpu(cpu);
12376 
12377 	return NOTIFY_OK;
12378 }
12379 
12380 /*
12381  * Run the perf reboot notifier at the very last possible moment so that
12382  * the generic watchdog code runs as long as possible.
12383  */
12384 static struct notifier_block perf_reboot_notifier = {
12385 	.notifier_call = perf_reboot,
12386 	.priority = INT_MIN,
12387 };
12388 
perf_event_init(void)12389 void __init perf_event_init(void)
12390 {
12391 	int ret;
12392 
12393 	idr_init(&pmu_idr);
12394 
12395 	perf_event_init_all_cpus();
12396 	init_srcu_struct(&pmus_srcu);
12397 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12398 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
12399 	perf_pmu_register(&perf_task_clock, NULL, -1);
12400 	perf_tp_register();
12401 	perf_event_init_cpu(smp_processor_id());
12402 	register_reboot_notifier(&perf_reboot_notifier);
12403 
12404 	ret = init_hw_breakpoint();
12405 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12406 
12407 	/*
12408 	 * Build time assertion that we keep the data_head at the intended
12409 	 * location.  IOW, validation we got the __reserved[] size right.
12410 	 */
12411 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12412 		     != 1024);
12413 }
12414 
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)12415 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12416 			      char *page)
12417 {
12418 	struct perf_pmu_events_attr *pmu_attr =
12419 		container_of(attr, struct perf_pmu_events_attr, attr);
12420 
12421 	if (pmu_attr->event_str)
12422 		return sprintf(page, "%s\n", pmu_attr->event_str);
12423 
12424 	return 0;
12425 }
12426 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12427 
perf_event_sysfs_init(void)12428 static int __init perf_event_sysfs_init(void)
12429 {
12430 	struct pmu *pmu;
12431 	int ret;
12432 
12433 	mutex_lock(&pmus_lock);
12434 
12435 	ret = bus_register(&pmu_bus);
12436 	if (ret)
12437 		goto unlock;
12438 
12439 	list_for_each_entry(pmu, &pmus, entry) {
12440 		if (!pmu->name || pmu->type < 0)
12441 			continue;
12442 
12443 		ret = pmu_dev_alloc(pmu);
12444 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12445 	}
12446 	pmu_bus_running = 1;
12447 	ret = 0;
12448 
12449 unlock:
12450 	mutex_unlock(&pmus_lock);
12451 
12452 	return ret;
12453 }
12454 device_initcall(perf_event_sysfs_init);
12455 
12456 #ifdef CONFIG_CGROUP_PERF
12457 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)12458 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12459 {
12460 	struct perf_cgroup *jc;
12461 
12462 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12463 	if (!jc)
12464 		return ERR_PTR(-ENOMEM);
12465 
12466 	jc->info = alloc_percpu(struct perf_cgroup_info);
12467 	if (!jc->info) {
12468 		kfree(jc);
12469 		return ERR_PTR(-ENOMEM);
12470 	}
12471 
12472 	return &jc->css;
12473 }
12474 
perf_cgroup_css_free(struct cgroup_subsys_state * css)12475 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12476 {
12477 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12478 
12479 	free_percpu(jc->info);
12480 	kfree(jc);
12481 }
12482 
__perf_cgroup_move(void * info)12483 static int __perf_cgroup_move(void *info)
12484 {
12485 	struct task_struct *task = info;
12486 	rcu_read_lock();
12487 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12488 	rcu_read_unlock();
12489 	return 0;
12490 }
12491 
perf_cgroup_attach(struct cgroup_taskset * tset)12492 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12493 {
12494 	struct task_struct *task;
12495 	struct cgroup_subsys_state *css;
12496 
12497 	cgroup_taskset_for_each(task, css, tset)
12498 		task_function_call(task, __perf_cgroup_move, task);
12499 }
12500 
12501 struct cgroup_subsys perf_event_cgrp_subsys = {
12502 	.css_alloc	= perf_cgroup_css_alloc,
12503 	.css_free	= perf_cgroup_css_free,
12504 	.attach		= perf_cgroup_attach,
12505 	/*
12506 	 * Implicitly enable on dfl hierarchy so that perf events can
12507 	 * always be filtered by cgroup2 path as long as perf_event
12508 	 * controller is not mounted on a legacy hierarchy.
12509 	 */
12510 	.implicit_on_dfl = true,
12511 	.threaded	= true,
12512 };
12513 #endif /* CONFIG_CGROUP_PERF */
12514