• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
21 #include <linux/fs.h>
22 
fuse_pages_alloc(unsigned int npages,gfp_t flags,struct fuse_page_desc ** desc)23 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags,
24 				      struct fuse_page_desc **desc)
25 {
26 	struct page **pages;
27 
28 	pages = kzalloc(npages * (sizeof(struct page *) +
29 				  sizeof(struct fuse_page_desc)), flags);
30 	*desc = (void *) (pages + npages);
31 
32 	return pages;
33 }
34 
fuse_send_open(struct fuse_conn * fc,u64 nodeid,struct file * file,int opcode,struct fuse_open_out * outargp)35 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
36 			  int opcode, struct fuse_open_out *outargp)
37 {
38 	struct fuse_open_in inarg;
39 	FUSE_ARGS(args);
40 
41 	memset(&inarg, 0, sizeof(inarg));
42 	inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
43 	if (!fc->atomic_o_trunc)
44 		inarg.flags &= ~O_TRUNC;
45 	args.opcode = opcode;
46 	args.nodeid = nodeid;
47 	args.in_numargs = 1;
48 	args.in_args[0].size = sizeof(inarg);
49 	args.in_args[0].value = &inarg;
50 	args.out_numargs = 1;
51 	args.out_args[0].size = sizeof(*outargp);
52 	args.out_args[0].value = outargp;
53 
54 	return fuse_simple_request(fc, &args);
55 }
56 
57 struct fuse_release_args {
58 	struct fuse_args args;
59 	struct fuse_release_in inarg;
60 	struct inode *inode;
61 };
62 
fuse_file_alloc(struct fuse_conn * fc)63 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
64 {
65 	struct fuse_file *ff;
66 
67 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
68 	if (unlikely(!ff))
69 		return NULL;
70 
71 	ff->fc = fc;
72 	ff->release_args = kzalloc(sizeof(*ff->release_args),
73 				   GFP_KERNEL_ACCOUNT);
74 	if (!ff->release_args) {
75 		kfree(ff);
76 		return NULL;
77 	}
78 
79 	INIT_LIST_HEAD(&ff->write_entry);
80 	mutex_init(&ff->readdir.lock);
81 	refcount_set(&ff->count, 1);
82 	RB_CLEAR_NODE(&ff->polled_node);
83 	init_waitqueue_head(&ff->poll_wait);
84 
85 	ff->kh = atomic64_inc_return(&fc->khctr);
86 
87 	return ff;
88 }
89 
fuse_file_free(struct fuse_file * ff)90 void fuse_file_free(struct fuse_file *ff)
91 {
92 	kfree(ff->release_args);
93 	mutex_destroy(&ff->readdir.lock);
94 	kfree(ff);
95 }
96 
fuse_file_get(struct fuse_file * ff)97 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
98 {
99 	refcount_inc(&ff->count);
100 	return ff;
101 }
102 
fuse_release_end(struct fuse_conn * fc,struct fuse_args * args,int error)103 static void fuse_release_end(struct fuse_conn *fc, struct fuse_args *args,
104 			     int error)
105 {
106 	struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
107 
108 	iput(ra->inode);
109 	kfree(ra);
110 }
111 
fuse_file_put(struct fuse_file * ff,bool sync,bool isdir)112 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
113 {
114 	if (refcount_dec_and_test(&ff->count)) {
115 		struct fuse_args *args = &ff->release_args->args;
116 
117 		if (isdir ? ff->fc->no_opendir : ff->fc->no_open) {
118 			/* Do nothing when client does not implement 'open' */
119 			fuse_release_end(ff->fc, args, 0);
120 		} else if (sync) {
121 			fuse_simple_request(ff->fc, args);
122 			fuse_release_end(ff->fc, args, 0);
123 		} else {
124 			args->end = fuse_release_end;
125 			if (fuse_simple_background(ff->fc, args,
126 						   GFP_KERNEL | __GFP_NOFAIL))
127 				fuse_release_end(ff->fc, args, -ENOTCONN);
128 		}
129 		kfree(ff);
130 	}
131 }
132 
fuse_do_open(struct fuse_conn * fc,u64 nodeid,struct file * file,bool isdir)133 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
134 		 bool isdir)
135 {
136 	struct fuse_file *ff;
137 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
138 
139 	ff = fuse_file_alloc(fc);
140 	if (!ff)
141 		return -ENOMEM;
142 
143 	ff->fh = 0;
144 	/* Default for no-open */
145 	ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
146 	if (isdir ? !fc->no_opendir : !fc->no_open) {
147 		struct fuse_open_out outarg;
148 		int err;
149 
150 		err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
151 		if (!err) {
152 			ff->fh = outarg.fh;
153 			ff->open_flags = outarg.open_flags;
154 
155 		} else if (err != -ENOSYS) {
156 			fuse_file_free(ff);
157 			return err;
158 		} else {
159 			if (isdir)
160 				fc->no_opendir = 1;
161 			else
162 				fc->no_open = 1;
163 		}
164 	}
165 
166 	if (isdir)
167 		ff->open_flags &= ~FOPEN_DIRECT_IO;
168 
169 	ff->nodeid = nodeid;
170 	file->private_data = ff;
171 
172 	return 0;
173 }
174 EXPORT_SYMBOL_GPL(fuse_do_open);
175 
fuse_link_write_file(struct file * file)176 static void fuse_link_write_file(struct file *file)
177 {
178 	struct inode *inode = file_inode(file);
179 	struct fuse_inode *fi = get_fuse_inode(inode);
180 	struct fuse_file *ff = file->private_data;
181 	/*
182 	 * file may be written through mmap, so chain it onto the
183 	 * inodes's write_file list
184 	 */
185 	spin_lock(&fi->lock);
186 	if (list_empty(&ff->write_entry))
187 		list_add(&ff->write_entry, &fi->write_files);
188 	spin_unlock(&fi->lock);
189 }
190 
fuse_finish_open(struct inode * inode,struct file * file)191 void fuse_finish_open(struct inode *inode, struct file *file)
192 {
193 	struct fuse_file *ff = file->private_data;
194 	struct fuse_conn *fc = get_fuse_conn(inode);
195 
196 	if (ff->open_flags & FOPEN_STREAM)
197 		stream_open(inode, file);
198 	else if (ff->open_flags & FOPEN_NONSEEKABLE)
199 		nonseekable_open(inode, file);
200 
201 	if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
202 		struct fuse_inode *fi = get_fuse_inode(inode);
203 
204 		spin_lock(&fi->lock);
205 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
206 		i_size_write(inode, 0);
207 		spin_unlock(&fi->lock);
208 		truncate_pagecache(inode, 0);
209 		fuse_invalidate_attr(inode);
210 		if (fc->writeback_cache)
211 			file_update_time(file);
212 	} else if (!(ff->open_flags & FOPEN_KEEP_CACHE)) {
213 		invalidate_inode_pages2(inode->i_mapping);
214 	}
215 
216 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
217 		fuse_link_write_file(file);
218 }
219 
fuse_open_common(struct inode * inode,struct file * file,bool isdir)220 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
221 {
222 	struct fuse_conn *fc = get_fuse_conn(inode);
223 	int err;
224 	bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
225 			  fc->atomic_o_trunc &&
226 			  fc->writeback_cache;
227 
228 	if (fuse_is_bad(inode))
229 		return -EIO;
230 
231 	err = generic_file_open(inode, file);
232 	if (err)
233 		return err;
234 
235 	if (is_wb_truncate) {
236 		inode_lock(inode);
237 		fuse_set_nowrite(inode);
238 	}
239 
240 	err = fuse_do_open(fc, get_node_id(inode), file, isdir);
241 
242 	if (!err)
243 		fuse_finish_open(inode, file);
244 
245 	if (is_wb_truncate) {
246 		fuse_release_nowrite(inode);
247 		inode_unlock(inode);
248 	}
249 
250 	return err;
251 }
252 
fuse_prepare_release(struct fuse_inode * fi,struct fuse_file * ff,int flags,int opcode)253 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
254 				 int flags, int opcode)
255 {
256 	struct fuse_conn *fc = ff->fc;
257 	struct fuse_release_args *ra = ff->release_args;
258 
259 	/* Inode is NULL on error path of fuse_create_open() */
260 	if (likely(fi)) {
261 		spin_lock(&fi->lock);
262 		list_del(&ff->write_entry);
263 		spin_unlock(&fi->lock);
264 	}
265 	spin_lock(&fc->lock);
266 	if (!RB_EMPTY_NODE(&ff->polled_node))
267 		rb_erase(&ff->polled_node, &fc->polled_files);
268 	spin_unlock(&fc->lock);
269 
270 	wake_up_interruptible_all(&ff->poll_wait);
271 
272 	ra->inarg.fh = ff->fh;
273 	ra->inarg.flags = flags;
274 	ra->args.in_numargs = 1;
275 	ra->args.in_args[0].size = sizeof(struct fuse_release_in);
276 	ra->args.in_args[0].value = &ra->inarg;
277 	ra->args.opcode = opcode;
278 	ra->args.nodeid = ff->nodeid;
279 	ra->args.force = true;
280 	ra->args.nocreds = true;
281 }
282 
fuse_release_common(struct file * file,bool isdir)283 void fuse_release_common(struct file *file, bool isdir)
284 {
285 	struct fuse_inode *fi = get_fuse_inode(file_inode(file));
286 	struct fuse_file *ff = file->private_data;
287 	struct fuse_release_args *ra = ff->release_args;
288 	int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
289 
290 	fuse_prepare_release(fi, ff, file->f_flags, opcode);
291 
292 	if (ff->flock) {
293 		ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
294 		ra->inarg.lock_owner = fuse_lock_owner_id(ff->fc,
295 							  (fl_owner_t) file);
296 	}
297 	/* Hold inode until release is finished */
298 	ra->inode = igrab(file_inode(file));
299 
300 	/*
301 	 * Normally this will send the RELEASE request, however if
302 	 * some asynchronous READ or WRITE requests are outstanding,
303 	 * the sending will be delayed.
304 	 *
305 	 * Make the release synchronous if this is a fuseblk mount,
306 	 * synchronous RELEASE is allowed (and desirable) in this case
307 	 * because the server can be trusted not to screw up.
308 	 */
309 	fuse_file_put(ff, ff->fc->destroy, isdir);
310 }
311 
fuse_open(struct inode * inode,struct file * file)312 static int fuse_open(struct inode *inode, struct file *file)
313 {
314 	return fuse_open_common(inode, file, false);
315 }
316 
fuse_release(struct inode * inode,struct file * file)317 static int fuse_release(struct inode *inode, struct file *file)
318 {
319 	struct fuse_conn *fc = get_fuse_conn(inode);
320 
321 	/* see fuse_vma_close() for !writeback_cache case */
322 	if (fc->writeback_cache)
323 		write_inode_now(inode, 1);
324 
325 	fuse_release_common(file, false);
326 
327 	/* return value is ignored by VFS */
328 	return 0;
329 }
330 
fuse_sync_release(struct fuse_inode * fi,struct fuse_file * ff,int flags)331 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
332 {
333 	WARN_ON(refcount_read(&ff->count) > 1);
334 	fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
335 	/*
336 	 * iput(NULL) is a no-op and since the refcount is 1 and everything's
337 	 * synchronous, we are fine with not doing igrab() here"
338 	 */
339 	fuse_file_put(ff, true, false);
340 }
341 EXPORT_SYMBOL_GPL(fuse_sync_release);
342 
343 /*
344  * Scramble the ID space with XTEA, so that the value of the files_struct
345  * pointer is not exposed to userspace.
346  */
fuse_lock_owner_id(struct fuse_conn * fc,fl_owner_t id)347 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
348 {
349 	u32 *k = fc->scramble_key;
350 	u64 v = (unsigned long) id;
351 	u32 v0 = v;
352 	u32 v1 = v >> 32;
353 	u32 sum = 0;
354 	int i;
355 
356 	for (i = 0; i < 32; i++) {
357 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
358 		sum += 0x9E3779B9;
359 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
360 	}
361 
362 	return (u64) v0 + ((u64) v1 << 32);
363 }
364 
365 struct fuse_writepage_args {
366 	struct fuse_io_args ia;
367 	struct list_head writepages_entry;
368 	struct list_head queue_entry;
369 	struct fuse_writepage_args *next;
370 	struct inode *inode;
371 };
372 
fuse_find_writeback(struct fuse_inode * fi,pgoff_t idx_from,pgoff_t idx_to)373 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
374 					    pgoff_t idx_from, pgoff_t idx_to)
375 {
376 	struct fuse_writepage_args *wpa;
377 
378 	list_for_each_entry(wpa, &fi->writepages, writepages_entry) {
379 		pgoff_t curr_index;
380 
381 		WARN_ON(get_fuse_inode(wpa->inode) != fi);
382 		curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
383 		if (idx_from < curr_index + wpa->ia.ap.num_pages &&
384 		    curr_index <= idx_to) {
385 			return wpa;
386 		}
387 	}
388 	return NULL;
389 }
390 
391 /*
392  * Check if any page in a range is under writeback
393  *
394  * This is currently done by walking the list of writepage requests
395  * for the inode, which can be pretty inefficient.
396  */
fuse_range_is_writeback(struct inode * inode,pgoff_t idx_from,pgoff_t idx_to)397 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
398 				   pgoff_t idx_to)
399 {
400 	struct fuse_inode *fi = get_fuse_inode(inode);
401 	bool found;
402 
403 	spin_lock(&fi->lock);
404 	found = fuse_find_writeback(fi, idx_from, idx_to);
405 	spin_unlock(&fi->lock);
406 
407 	return found;
408 }
409 
fuse_page_is_writeback(struct inode * inode,pgoff_t index)410 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
411 {
412 	return fuse_range_is_writeback(inode, index, index);
413 }
414 
415 /*
416  * Wait for page writeback to be completed.
417  *
418  * Since fuse doesn't rely on the VM writeback tracking, this has to
419  * use some other means.
420  */
fuse_wait_on_page_writeback(struct inode * inode,pgoff_t index)421 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
422 {
423 	struct fuse_inode *fi = get_fuse_inode(inode);
424 
425 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
426 }
427 
428 /*
429  * Wait for all pending writepages on the inode to finish.
430  *
431  * This is currently done by blocking further writes with FUSE_NOWRITE
432  * and waiting for all sent writes to complete.
433  *
434  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
435  * could conflict with truncation.
436  */
fuse_sync_writes(struct inode * inode)437 static void fuse_sync_writes(struct inode *inode)
438 {
439 	fuse_set_nowrite(inode);
440 	fuse_release_nowrite(inode);
441 }
442 
fuse_flush(struct file * file,fl_owner_t id)443 static int fuse_flush(struct file *file, fl_owner_t id)
444 {
445 	struct inode *inode = file_inode(file);
446 	struct fuse_conn *fc = get_fuse_conn(inode);
447 	struct fuse_file *ff = file->private_data;
448 	struct fuse_flush_in inarg;
449 	FUSE_ARGS(args);
450 	int err;
451 
452 	if (fuse_is_bad(inode))
453 		return -EIO;
454 
455 	if (fc->no_flush)
456 		return 0;
457 
458 	err = write_inode_now(inode, 1);
459 	if (err)
460 		return err;
461 
462 	inode_lock(inode);
463 	fuse_sync_writes(inode);
464 	inode_unlock(inode);
465 
466 	err = filemap_check_errors(file->f_mapping);
467 	if (err)
468 		return err;
469 
470 	memset(&inarg, 0, sizeof(inarg));
471 	inarg.fh = ff->fh;
472 	inarg.lock_owner = fuse_lock_owner_id(fc, id);
473 	args.opcode = FUSE_FLUSH;
474 	args.nodeid = get_node_id(inode);
475 	args.in_numargs = 1;
476 	args.in_args[0].size = sizeof(inarg);
477 	args.in_args[0].value = &inarg;
478 	args.force = true;
479 
480 	err = fuse_simple_request(fc, &args);
481 	if (err == -ENOSYS) {
482 		fc->no_flush = 1;
483 		err = 0;
484 	}
485 	return err;
486 }
487 
fuse_fsync_common(struct file * file,loff_t start,loff_t end,int datasync,int opcode)488 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
489 		      int datasync, int opcode)
490 {
491 	struct inode *inode = file->f_mapping->host;
492 	struct fuse_conn *fc = get_fuse_conn(inode);
493 	struct fuse_file *ff = file->private_data;
494 	FUSE_ARGS(args);
495 	struct fuse_fsync_in inarg;
496 
497 	memset(&inarg, 0, sizeof(inarg));
498 	inarg.fh = ff->fh;
499 	inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
500 	args.opcode = opcode;
501 	args.nodeid = get_node_id(inode);
502 	args.in_numargs = 1;
503 	args.in_args[0].size = sizeof(inarg);
504 	args.in_args[0].value = &inarg;
505 	return fuse_simple_request(fc, &args);
506 }
507 
fuse_fsync(struct file * file,loff_t start,loff_t end,int datasync)508 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
509 		      int datasync)
510 {
511 	struct inode *inode = file->f_mapping->host;
512 	struct fuse_conn *fc = get_fuse_conn(inode);
513 	int err;
514 
515 	if (fuse_is_bad(inode))
516 		return -EIO;
517 
518 	inode_lock(inode);
519 
520 	/*
521 	 * Start writeback against all dirty pages of the inode, then
522 	 * wait for all outstanding writes, before sending the FSYNC
523 	 * request.
524 	 */
525 	err = file_write_and_wait_range(file, start, end);
526 	if (err)
527 		goto out;
528 
529 	fuse_sync_writes(inode);
530 
531 	/*
532 	 * Due to implementation of fuse writeback
533 	 * file_write_and_wait_range() does not catch errors.
534 	 * We have to do this directly after fuse_sync_writes()
535 	 */
536 	err = file_check_and_advance_wb_err(file);
537 	if (err)
538 		goto out;
539 
540 	err = sync_inode_metadata(inode, 1);
541 	if (err)
542 		goto out;
543 
544 	if (fc->no_fsync)
545 		goto out;
546 
547 	err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
548 	if (err == -ENOSYS) {
549 		fc->no_fsync = 1;
550 		err = 0;
551 	}
552 out:
553 	inode_unlock(inode);
554 
555 	return err;
556 }
557 
fuse_read_args_fill(struct fuse_io_args * ia,struct file * file,loff_t pos,size_t count,int opcode)558 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
559 			 size_t count, int opcode)
560 {
561 	struct fuse_file *ff = file->private_data;
562 	struct fuse_args *args = &ia->ap.args;
563 
564 	ia->read.in.fh = ff->fh;
565 	ia->read.in.offset = pos;
566 	ia->read.in.size = count;
567 	ia->read.in.flags = file->f_flags;
568 	args->opcode = opcode;
569 	args->nodeid = ff->nodeid;
570 	args->in_numargs = 1;
571 	args->in_args[0].size = sizeof(ia->read.in);
572 	args->in_args[0].value = &ia->read.in;
573 	args->out_argvar = true;
574 	args->out_numargs = 1;
575 	args->out_args[0].size = count;
576 }
577 
fuse_release_user_pages(struct fuse_args_pages * ap,bool should_dirty)578 static void fuse_release_user_pages(struct fuse_args_pages *ap,
579 				    bool should_dirty)
580 {
581 	unsigned int i;
582 
583 	for (i = 0; i < ap->num_pages; i++) {
584 		if (should_dirty)
585 			set_page_dirty_lock(ap->pages[i]);
586 		put_page(ap->pages[i]);
587 	}
588 }
589 
fuse_io_release(struct kref * kref)590 static void fuse_io_release(struct kref *kref)
591 {
592 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
593 }
594 
fuse_get_res_by_io(struct fuse_io_priv * io)595 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
596 {
597 	if (io->err)
598 		return io->err;
599 
600 	if (io->bytes >= 0 && io->write)
601 		return -EIO;
602 
603 	return io->bytes < 0 ? io->size : io->bytes;
604 }
605 
606 /**
607  * In case of short read, the caller sets 'pos' to the position of
608  * actual end of fuse request in IO request. Otherwise, if bytes_requested
609  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
610  *
611  * An example:
612  * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
613  * both submitted asynchronously. The first of them was ACKed by userspace as
614  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
615  * second request was ACKed as short, e.g. only 1K was read, resulting in
616  * pos == 33K.
617  *
618  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
619  * will be equal to the length of the longest contiguous fragment of
620  * transferred data starting from the beginning of IO request.
621  */
fuse_aio_complete(struct fuse_io_priv * io,int err,ssize_t pos)622 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
623 {
624 	int left;
625 
626 	spin_lock(&io->lock);
627 	if (err)
628 		io->err = io->err ? : err;
629 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
630 		io->bytes = pos;
631 
632 	left = --io->reqs;
633 	if (!left && io->blocking)
634 		complete(io->done);
635 	spin_unlock(&io->lock);
636 
637 	if (!left && !io->blocking) {
638 		ssize_t res = fuse_get_res_by_io(io);
639 
640 		if (res >= 0) {
641 			struct inode *inode = file_inode(io->iocb->ki_filp);
642 			struct fuse_conn *fc = get_fuse_conn(inode);
643 			struct fuse_inode *fi = get_fuse_inode(inode);
644 
645 			spin_lock(&fi->lock);
646 			fi->attr_version = atomic64_inc_return(&fc->attr_version);
647 			spin_unlock(&fi->lock);
648 		}
649 
650 		io->iocb->ki_complete(io->iocb, res, 0);
651 	}
652 
653 	kref_put(&io->refcnt, fuse_io_release);
654 }
655 
fuse_io_alloc(struct fuse_io_priv * io,unsigned int npages)656 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
657 					  unsigned int npages)
658 {
659 	struct fuse_io_args *ia;
660 
661 	ia = kzalloc(sizeof(*ia), GFP_KERNEL);
662 	if (ia) {
663 		ia->io = io;
664 		ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
665 						&ia->ap.descs);
666 		if (!ia->ap.pages) {
667 			kfree(ia);
668 			ia = NULL;
669 		}
670 	}
671 	return ia;
672 }
673 
fuse_io_free(struct fuse_io_args * ia)674 static void fuse_io_free(struct fuse_io_args *ia)
675 {
676 	kfree(ia->ap.pages);
677 	kfree(ia);
678 }
679 
fuse_aio_complete_req(struct fuse_conn * fc,struct fuse_args * args,int err)680 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_args *args,
681 				  int err)
682 {
683 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
684 	struct fuse_io_priv *io = ia->io;
685 	ssize_t pos = -1;
686 
687 	fuse_release_user_pages(&ia->ap, io->should_dirty);
688 
689 	if (err) {
690 		/* Nothing */
691 	} else if (io->write) {
692 		if (ia->write.out.size > ia->write.in.size) {
693 			err = -EIO;
694 		} else if (ia->write.in.size != ia->write.out.size) {
695 			pos = ia->write.in.offset - io->offset +
696 				ia->write.out.size;
697 		}
698 	} else {
699 		u32 outsize = args->out_args[0].size;
700 
701 		if (ia->read.in.size != outsize)
702 			pos = ia->read.in.offset - io->offset + outsize;
703 	}
704 
705 	fuse_aio_complete(io, err, pos);
706 	fuse_io_free(ia);
707 }
708 
fuse_async_req_send(struct fuse_conn * fc,struct fuse_io_args * ia,size_t num_bytes)709 static ssize_t fuse_async_req_send(struct fuse_conn *fc,
710 				   struct fuse_io_args *ia, size_t num_bytes)
711 {
712 	ssize_t err;
713 	struct fuse_io_priv *io = ia->io;
714 
715 	spin_lock(&io->lock);
716 	kref_get(&io->refcnt);
717 	io->size += num_bytes;
718 	io->reqs++;
719 	spin_unlock(&io->lock);
720 
721 	ia->ap.args.end = fuse_aio_complete_req;
722 	ia->ap.args.may_block = io->should_dirty;
723 	err = fuse_simple_background(fc, &ia->ap.args, GFP_KERNEL);
724 	if (err)
725 		fuse_aio_complete_req(fc, &ia->ap.args, err);
726 
727 	return num_bytes;
728 }
729 
fuse_send_read(struct fuse_io_args * ia,loff_t pos,size_t count,fl_owner_t owner)730 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
731 			      fl_owner_t owner)
732 {
733 	struct file *file = ia->io->iocb->ki_filp;
734 	struct fuse_file *ff = file->private_data;
735 	struct fuse_conn *fc = ff->fc;
736 
737 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
738 	if (owner != NULL) {
739 		ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
740 		ia->read.in.lock_owner = fuse_lock_owner_id(fc, owner);
741 	}
742 
743 	if (ia->io->async)
744 		return fuse_async_req_send(fc, ia, count);
745 
746 	return fuse_simple_request(fc, &ia->ap.args);
747 }
748 
fuse_read_update_size(struct inode * inode,loff_t size,u64 attr_ver)749 static void fuse_read_update_size(struct inode *inode, loff_t size,
750 				  u64 attr_ver)
751 {
752 	struct fuse_conn *fc = get_fuse_conn(inode);
753 	struct fuse_inode *fi = get_fuse_inode(inode);
754 
755 	spin_lock(&fi->lock);
756 	if (attr_ver == fi->attr_version && size < inode->i_size &&
757 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
758 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
759 		i_size_write(inode, size);
760 	}
761 	spin_unlock(&fi->lock);
762 }
763 
fuse_short_read(struct inode * inode,u64 attr_ver,size_t num_read,struct fuse_args_pages * ap)764 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
765 			    struct fuse_args_pages *ap)
766 {
767 	struct fuse_conn *fc = get_fuse_conn(inode);
768 
769 	if (fc->writeback_cache) {
770 		/*
771 		 * A hole in a file. Some data after the hole are in page cache,
772 		 * but have not reached the client fs yet. So, the hole is not
773 		 * present there.
774 		 */
775 		int i;
776 		int start_idx = num_read >> PAGE_SHIFT;
777 		size_t off = num_read & (PAGE_SIZE - 1);
778 
779 		for (i = start_idx; i < ap->num_pages; i++) {
780 			zero_user_segment(ap->pages[i], off, PAGE_SIZE);
781 			off = 0;
782 		}
783 	} else {
784 		loff_t pos = page_offset(ap->pages[0]) + num_read;
785 		fuse_read_update_size(inode, pos, attr_ver);
786 	}
787 }
788 
fuse_do_readpage(struct file * file,struct page * page)789 static int fuse_do_readpage(struct file *file, struct page *page)
790 {
791 	struct inode *inode = page->mapping->host;
792 	struct fuse_conn *fc = get_fuse_conn(inode);
793 	loff_t pos = page_offset(page);
794 	struct fuse_page_desc desc = { .length = PAGE_SIZE };
795 	struct fuse_io_args ia = {
796 		.ap.args.page_zeroing = true,
797 		.ap.args.out_pages = true,
798 		.ap.num_pages = 1,
799 		.ap.pages = &page,
800 		.ap.descs = &desc,
801 	};
802 	ssize_t res;
803 	u64 attr_ver;
804 
805 	/*
806 	 * Page writeback can extend beyond the lifetime of the
807 	 * page-cache page, so make sure we read a properly synced
808 	 * page.
809 	 */
810 	fuse_wait_on_page_writeback(inode, page->index);
811 
812 	attr_ver = fuse_get_attr_version(fc);
813 
814 	/* Don't overflow end offset */
815 	if (pos + (desc.length - 1) == LLONG_MAX)
816 		desc.length--;
817 
818 	fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
819 	res = fuse_simple_request(fc, &ia.ap.args);
820 	if (res < 0)
821 		return res;
822 	/*
823 	 * Short read means EOF.  If file size is larger, truncate it
824 	 */
825 	if (res < desc.length)
826 		fuse_short_read(inode, attr_ver, res, &ia.ap);
827 
828 	SetPageUptodate(page);
829 
830 	return 0;
831 }
832 
fuse_readpage(struct file * file,struct page * page)833 static int fuse_readpage(struct file *file, struct page *page)
834 {
835 	struct inode *inode = page->mapping->host;
836 	int err;
837 
838 	err = -EIO;
839 	if (fuse_is_bad(inode))
840 		goto out;
841 
842 	err = fuse_do_readpage(file, page);
843 	fuse_invalidate_atime(inode);
844  out:
845 	unlock_page(page);
846 	return err;
847 }
848 
fuse_readpages_end(struct fuse_conn * fc,struct fuse_args * args,int err)849 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_args *args,
850 			       int err)
851 {
852 	int i;
853 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
854 	struct fuse_args_pages *ap = &ia->ap;
855 	size_t count = ia->read.in.size;
856 	size_t num_read = args->out_args[0].size;
857 	struct address_space *mapping = NULL;
858 
859 	for (i = 0; mapping == NULL && i < ap->num_pages; i++)
860 		mapping = ap->pages[i]->mapping;
861 
862 	if (mapping) {
863 		struct inode *inode = mapping->host;
864 
865 		/*
866 		 * Short read means EOF. If file size is larger, truncate it
867 		 */
868 		if (!err && num_read < count)
869 			fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
870 
871 		fuse_invalidate_atime(inode);
872 	}
873 
874 	for (i = 0; i < ap->num_pages; i++) {
875 		struct page *page = ap->pages[i];
876 
877 		if (!err)
878 			SetPageUptodate(page);
879 		else
880 			SetPageError(page);
881 		unlock_page(page);
882 		put_page(page);
883 	}
884 	if (ia->ff)
885 		fuse_file_put(ia->ff, false, false);
886 
887 	fuse_io_free(ia);
888 }
889 
fuse_send_readpages(struct fuse_io_args * ia,struct file * file)890 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
891 {
892 	struct fuse_file *ff = file->private_data;
893 	struct fuse_conn *fc = ff->fc;
894 	struct fuse_args_pages *ap = &ia->ap;
895 	loff_t pos = page_offset(ap->pages[0]);
896 	size_t count = ap->num_pages << PAGE_SHIFT;
897 	ssize_t res;
898 	int err;
899 
900 	ap->args.out_pages = true;
901 	ap->args.page_zeroing = true;
902 	ap->args.page_replace = true;
903 
904 	/* Don't overflow end offset */
905 	if (pos + (count - 1) == LLONG_MAX) {
906 		count--;
907 		ap->descs[ap->num_pages - 1].length--;
908 	}
909 	WARN_ON((loff_t) (pos + count) < 0);
910 
911 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
912 	ia->read.attr_ver = fuse_get_attr_version(fc);
913 	if (fc->async_read) {
914 		ia->ff = fuse_file_get(ff);
915 		ap->args.end = fuse_readpages_end;
916 		err = fuse_simple_background(fc, &ap->args, GFP_KERNEL);
917 		if (!err)
918 			return;
919 	} else {
920 		res = fuse_simple_request(fc, &ap->args);
921 		err = res < 0 ? res : 0;
922 	}
923 	fuse_readpages_end(fc, &ap->args, err);
924 }
925 
926 struct fuse_fill_data {
927 	struct fuse_io_args *ia;
928 	struct file *file;
929 	struct inode *inode;
930 	unsigned int nr_pages;
931 	unsigned int max_pages;
932 };
933 
fuse_readpages_fill(void * _data,struct page * page)934 static int fuse_readpages_fill(void *_data, struct page *page)
935 {
936 	struct fuse_fill_data *data = _data;
937 	struct fuse_io_args *ia = data->ia;
938 	struct fuse_args_pages *ap = &ia->ap;
939 	struct inode *inode = data->inode;
940 	struct fuse_conn *fc = get_fuse_conn(inode);
941 
942 	fuse_wait_on_page_writeback(inode, page->index);
943 
944 	if (ap->num_pages &&
945 	    (ap->num_pages == fc->max_pages ||
946 	     (ap->num_pages + 1) * PAGE_SIZE > fc->max_read ||
947 	     ap->pages[ap->num_pages - 1]->index + 1 != page->index)) {
948 		data->max_pages = min_t(unsigned int, data->nr_pages,
949 					fc->max_pages);
950 		fuse_send_readpages(ia, data->file);
951 		data->ia = ia = fuse_io_alloc(NULL, data->max_pages);
952 		if (!ia) {
953 			unlock_page(page);
954 			return -ENOMEM;
955 		}
956 		ap = &ia->ap;
957 	}
958 
959 	if (WARN_ON(ap->num_pages >= data->max_pages)) {
960 		unlock_page(page);
961 		fuse_io_free(ia);
962 		return -EIO;
963 	}
964 
965 	get_page(page);
966 	ap->pages[ap->num_pages] = page;
967 	ap->descs[ap->num_pages].length = PAGE_SIZE;
968 	ap->num_pages++;
969 	data->nr_pages--;
970 	return 0;
971 }
972 
fuse_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)973 static int fuse_readpages(struct file *file, struct address_space *mapping,
974 			  struct list_head *pages, unsigned nr_pages)
975 {
976 	struct inode *inode = mapping->host;
977 	struct fuse_conn *fc = get_fuse_conn(inode);
978 	struct fuse_fill_data data;
979 	int err;
980 
981 	err = -EIO;
982 	if (fuse_is_bad(inode))
983 		goto out;
984 
985 	data.file = file;
986 	data.inode = inode;
987 	data.nr_pages = nr_pages;
988 	data.max_pages = min_t(unsigned int, nr_pages, fc->max_pages);
989 ;
990 	data.ia = fuse_io_alloc(NULL, data.max_pages);
991 	err = -ENOMEM;
992 	if (!data.ia)
993 		goto out;
994 
995 	err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
996 	if (!err) {
997 		if (data.ia->ap.num_pages)
998 			fuse_send_readpages(data.ia, file);
999 		else
1000 			fuse_io_free(data.ia);
1001 	}
1002 out:
1003 	return err;
1004 }
1005 
fuse_cache_read_iter(struct kiocb * iocb,struct iov_iter * to)1006 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
1007 {
1008 	struct inode *inode = iocb->ki_filp->f_mapping->host;
1009 	struct fuse_conn *fc = get_fuse_conn(inode);
1010 
1011 	/*
1012 	 * In auto invalidate mode, always update attributes on read.
1013 	 * Otherwise, only update if we attempt to read past EOF (to ensure
1014 	 * i_size is up to date).
1015 	 */
1016 	if (fc->auto_inval_data ||
1017 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
1018 		int err;
1019 		err = fuse_update_attributes(inode, iocb->ki_filp);
1020 		if (err)
1021 			return err;
1022 	}
1023 
1024 	return generic_file_read_iter(iocb, to);
1025 }
1026 
fuse_write_args_fill(struct fuse_io_args * ia,struct fuse_file * ff,loff_t pos,size_t count)1027 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1028 				 loff_t pos, size_t count)
1029 {
1030 	struct fuse_args *args = &ia->ap.args;
1031 
1032 	ia->write.in.fh = ff->fh;
1033 	ia->write.in.offset = pos;
1034 	ia->write.in.size = count;
1035 	args->opcode = FUSE_WRITE;
1036 	args->nodeid = ff->nodeid;
1037 	args->in_numargs = 2;
1038 	if (ff->fc->minor < 9)
1039 		args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1040 	else
1041 		args->in_args[0].size = sizeof(ia->write.in);
1042 	args->in_args[0].value = &ia->write.in;
1043 	args->in_args[1].size = count;
1044 	args->out_numargs = 1;
1045 	args->out_args[0].size = sizeof(ia->write.out);
1046 	args->out_args[0].value = &ia->write.out;
1047 }
1048 
fuse_write_flags(struct kiocb * iocb)1049 static unsigned int fuse_write_flags(struct kiocb *iocb)
1050 {
1051 	unsigned int flags = iocb->ki_filp->f_flags;
1052 
1053 	if (iocb->ki_flags & IOCB_DSYNC)
1054 		flags |= O_DSYNC;
1055 	if (iocb->ki_flags & IOCB_SYNC)
1056 		flags |= O_SYNC;
1057 
1058 	return flags;
1059 }
1060 
fuse_send_write(struct fuse_io_args * ia,loff_t pos,size_t count,fl_owner_t owner)1061 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1062 			       size_t count, fl_owner_t owner)
1063 {
1064 	struct kiocb *iocb = ia->io->iocb;
1065 	struct file *file = iocb->ki_filp;
1066 	struct fuse_file *ff = file->private_data;
1067 	struct fuse_conn *fc = ff->fc;
1068 	struct fuse_write_in *inarg = &ia->write.in;
1069 	ssize_t err;
1070 
1071 	fuse_write_args_fill(ia, ff, pos, count);
1072 	inarg->flags = fuse_write_flags(iocb);
1073 	if (owner != NULL) {
1074 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1075 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
1076 	}
1077 
1078 	if (ia->io->async)
1079 		return fuse_async_req_send(fc, ia, count);
1080 
1081 	err = fuse_simple_request(fc, &ia->ap.args);
1082 	if (!err && ia->write.out.size > count)
1083 		err = -EIO;
1084 
1085 	return err ?: ia->write.out.size;
1086 }
1087 
fuse_write_update_size(struct inode * inode,loff_t pos)1088 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1089 {
1090 	struct fuse_conn *fc = get_fuse_conn(inode);
1091 	struct fuse_inode *fi = get_fuse_inode(inode);
1092 	bool ret = false;
1093 
1094 	spin_lock(&fi->lock);
1095 	fi->attr_version = atomic64_inc_return(&fc->attr_version);
1096 	if (pos > inode->i_size) {
1097 		i_size_write(inode, pos);
1098 		ret = true;
1099 	}
1100 	spin_unlock(&fi->lock);
1101 
1102 	return ret;
1103 }
1104 
fuse_send_write_pages(struct fuse_io_args * ia,struct kiocb * iocb,struct inode * inode,loff_t pos,size_t count)1105 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1106 				     struct kiocb *iocb, struct inode *inode,
1107 				     loff_t pos, size_t count)
1108 {
1109 	struct fuse_args_pages *ap = &ia->ap;
1110 	struct file *file = iocb->ki_filp;
1111 	struct fuse_file *ff = file->private_data;
1112 	struct fuse_conn *fc = ff->fc;
1113 	unsigned int offset, i;
1114 	bool short_write;
1115 	int err;
1116 
1117 	for (i = 0; i < ap->num_pages; i++)
1118 		fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1119 
1120 	fuse_write_args_fill(ia, ff, pos, count);
1121 	ia->write.in.flags = fuse_write_flags(iocb);
1122 
1123 	err = fuse_simple_request(fc, &ap->args);
1124 	if (!err && ia->write.out.size > count)
1125 		err = -EIO;
1126 
1127 	short_write = ia->write.out.size < count;
1128 	offset = ap->descs[0].offset;
1129 	count = ia->write.out.size;
1130 	for (i = 0; i < ap->num_pages; i++) {
1131 		struct page *page = ap->pages[i];
1132 
1133 		if (err) {
1134 			ClearPageUptodate(page);
1135 		} else {
1136 			if (count >= PAGE_SIZE - offset)
1137 				count -= PAGE_SIZE - offset;
1138 			else {
1139 				if (short_write)
1140 					ClearPageUptodate(page);
1141 				count = 0;
1142 			}
1143 			offset = 0;
1144 		}
1145 		if (ia->write.page_locked && (i == ap->num_pages - 1))
1146 			unlock_page(page);
1147 		put_page(page);
1148 	}
1149 
1150 	return err;
1151 }
1152 
fuse_fill_write_pages(struct fuse_io_args * ia,struct address_space * mapping,struct iov_iter * ii,loff_t pos,unsigned int max_pages)1153 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia,
1154 				     struct address_space *mapping,
1155 				     struct iov_iter *ii, loff_t pos,
1156 				     unsigned int max_pages)
1157 {
1158 	struct fuse_args_pages *ap = &ia->ap;
1159 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1160 	unsigned offset = pos & (PAGE_SIZE - 1);
1161 	size_t count = 0;
1162 	int err;
1163 
1164 	ap->args.in_pages = true;
1165 	ap->descs[0].offset = offset;
1166 
1167 	do {
1168 		size_t tmp;
1169 		struct page *page;
1170 		pgoff_t index = pos >> PAGE_SHIFT;
1171 		size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1172 				     iov_iter_count(ii));
1173 
1174 		bytes = min_t(size_t, bytes, fc->max_write - count);
1175 
1176  again:
1177 		err = -EFAULT;
1178 		if (iov_iter_fault_in_readable(ii, bytes))
1179 			break;
1180 
1181 		err = -ENOMEM;
1182 		page = grab_cache_page_write_begin(mapping, index, 0);
1183 		if (!page)
1184 			break;
1185 
1186 		if (mapping_writably_mapped(mapping))
1187 			flush_dcache_page(page);
1188 
1189 		tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1190 		flush_dcache_page(page);
1191 
1192 		iov_iter_advance(ii, tmp);
1193 		if (!tmp) {
1194 			unlock_page(page);
1195 			put_page(page);
1196 			bytes = min(bytes, iov_iter_single_seg_count(ii));
1197 			goto again;
1198 		}
1199 
1200 		err = 0;
1201 		ap->pages[ap->num_pages] = page;
1202 		ap->descs[ap->num_pages].length = tmp;
1203 		ap->num_pages++;
1204 
1205 		count += tmp;
1206 		pos += tmp;
1207 		offset += tmp;
1208 		if (offset == PAGE_SIZE)
1209 			offset = 0;
1210 
1211 		/* If we copied full page, mark it uptodate */
1212 		if (tmp == PAGE_SIZE)
1213 			SetPageUptodate(page);
1214 
1215 		if (PageUptodate(page)) {
1216 			unlock_page(page);
1217 		} else {
1218 			ia->write.page_locked = true;
1219 			break;
1220 		}
1221 		if (!fc->big_writes)
1222 			break;
1223 	} while (iov_iter_count(ii) && count < fc->max_write &&
1224 		 ap->num_pages < max_pages && offset == 0);
1225 
1226 	return count > 0 ? count : err;
1227 }
1228 
fuse_wr_pages(loff_t pos,size_t len,unsigned int max_pages)1229 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1230 				     unsigned int max_pages)
1231 {
1232 	return min_t(unsigned int,
1233 		     ((pos + len - 1) >> PAGE_SHIFT) -
1234 		     (pos >> PAGE_SHIFT) + 1,
1235 		     max_pages);
1236 }
1237 
fuse_perform_write(struct kiocb * iocb,struct address_space * mapping,struct iov_iter * ii,loff_t pos)1238 static ssize_t fuse_perform_write(struct kiocb *iocb,
1239 				  struct address_space *mapping,
1240 				  struct iov_iter *ii, loff_t pos)
1241 {
1242 	struct inode *inode = mapping->host;
1243 	struct fuse_conn *fc = get_fuse_conn(inode);
1244 	struct fuse_inode *fi = get_fuse_inode(inode);
1245 	int err = 0;
1246 	ssize_t res = 0;
1247 
1248 	if (inode->i_size < pos + iov_iter_count(ii))
1249 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1250 
1251 	do {
1252 		ssize_t count;
1253 		struct fuse_io_args ia = {};
1254 		struct fuse_args_pages *ap = &ia.ap;
1255 		unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1256 						      fc->max_pages);
1257 
1258 		ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1259 		if (!ap->pages) {
1260 			err = -ENOMEM;
1261 			break;
1262 		}
1263 
1264 		count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages);
1265 		if (count <= 0) {
1266 			err = count;
1267 		} else {
1268 			err = fuse_send_write_pages(&ia, iocb, inode,
1269 						    pos, count);
1270 			if (!err) {
1271 				size_t num_written = ia.write.out.size;
1272 
1273 				res += num_written;
1274 				pos += num_written;
1275 
1276 				/* break out of the loop on short write */
1277 				if (num_written != count)
1278 					err = -EIO;
1279 			}
1280 		}
1281 		kfree(ap->pages);
1282 	} while (!err && iov_iter_count(ii));
1283 
1284 	if (res > 0)
1285 		fuse_write_update_size(inode, pos);
1286 
1287 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1288 	fuse_invalidate_attr(inode);
1289 
1290 	return res > 0 ? res : err;
1291 }
1292 
fuse_cache_write_iter(struct kiocb * iocb,struct iov_iter * from)1293 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1294 {
1295 	struct file *file = iocb->ki_filp;
1296 	struct address_space *mapping = file->f_mapping;
1297 	ssize_t written = 0;
1298 	ssize_t written_buffered = 0;
1299 	struct inode *inode = mapping->host;
1300 	ssize_t err;
1301 	loff_t endbyte = 0;
1302 
1303 	if (get_fuse_conn(inode)->writeback_cache) {
1304 		/* Update size (EOF optimization) and mode (SUID clearing) */
1305 		err = fuse_update_attributes(mapping->host, file);
1306 		if (err)
1307 			return err;
1308 
1309 		return generic_file_write_iter(iocb, from);
1310 	}
1311 
1312 	inode_lock(inode);
1313 
1314 	/* We can write back this queue in page reclaim */
1315 	current->backing_dev_info = inode_to_bdi(inode);
1316 
1317 	err = generic_write_checks(iocb, from);
1318 	if (err <= 0)
1319 		goto out;
1320 
1321 	err = file_remove_privs(file);
1322 	if (err)
1323 		goto out;
1324 
1325 	err = file_update_time(file);
1326 	if (err)
1327 		goto out;
1328 
1329 	if (iocb->ki_flags & IOCB_DIRECT) {
1330 		loff_t pos = iocb->ki_pos;
1331 		written = generic_file_direct_write(iocb, from);
1332 		if (written < 0 || !iov_iter_count(from))
1333 			goto out;
1334 
1335 		pos += written;
1336 
1337 		written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1338 		if (written_buffered < 0) {
1339 			err = written_buffered;
1340 			goto out;
1341 		}
1342 		endbyte = pos + written_buffered - 1;
1343 
1344 		err = filemap_write_and_wait_range(file->f_mapping, pos,
1345 						   endbyte);
1346 		if (err)
1347 			goto out;
1348 
1349 		invalidate_mapping_pages(file->f_mapping,
1350 					 pos >> PAGE_SHIFT,
1351 					 endbyte >> PAGE_SHIFT);
1352 
1353 		written += written_buffered;
1354 		iocb->ki_pos = pos + written_buffered;
1355 	} else {
1356 		written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1357 		if (written >= 0)
1358 			iocb->ki_pos += written;
1359 	}
1360 out:
1361 	current->backing_dev_info = NULL;
1362 	inode_unlock(inode);
1363 	if (written > 0)
1364 		written = generic_write_sync(iocb, written);
1365 
1366 	return written ? written : err;
1367 }
1368 
fuse_page_descs_length_init(struct fuse_page_desc * descs,unsigned int index,unsigned int nr_pages)1369 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs,
1370 					       unsigned int index,
1371 					       unsigned int nr_pages)
1372 {
1373 	int i;
1374 
1375 	for (i = index; i < index + nr_pages; i++)
1376 		descs[i].length = PAGE_SIZE - descs[i].offset;
1377 }
1378 
fuse_get_user_addr(const struct iov_iter * ii)1379 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1380 {
1381 	return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1382 }
1383 
fuse_get_frag_size(const struct iov_iter * ii,size_t max_size)1384 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1385 					size_t max_size)
1386 {
1387 	return min(iov_iter_single_seg_count(ii), max_size);
1388 }
1389 
fuse_get_user_pages(struct fuse_args_pages * ap,struct iov_iter * ii,size_t * nbytesp,int write,unsigned int max_pages)1390 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1391 			       size_t *nbytesp, int write,
1392 			       unsigned int max_pages)
1393 {
1394 	size_t nbytes = 0;  /* # bytes already packed in req */
1395 	ssize_t ret = 0;
1396 
1397 	/* Special case for kernel I/O: can copy directly into the buffer */
1398 	if (iov_iter_is_kvec(ii)) {
1399 		unsigned long user_addr = fuse_get_user_addr(ii);
1400 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1401 
1402 		if (write)
1403 			ap->args.in_args[1].value = (void *) user_addr;
1404 		else
1405 			ap->args.out_args[0].value = (void *) user_addr;
1406 
1407 		iov_iter_advance(ii, frag_size);
1408 		*nbytesp = frag_size;
1409 		return 0;
1410 	}
1411 
1412 	while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1413 		unsigned npages;
1414 		size_t start;
1415 		ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1416 					*nbytesp - nbytes,
1417 					max_pages - ap->num_pages,
1418 					&start);
1419 		if (ret < 0)
1420 			break;
1421 
1422 		iov_iter_advance(ii, ret);
1423 		nbytes += ret;
1424 
1425 		ret += start;
1426 		npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1427 
1428 		ap->descs[ap->num_pages].offset = start;
1429 		fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1430 
1431 		ap->num_pages += npages;
1432 		ap->descs[ap->num_pages - 1].length -=
1433 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1434 	}
1435 
1436 	ap->args.user_pages = true;
1437 	if (write)
1438 		ap->args.in_pages = 1;
1439 	else
1440 		ap->args.out_pages = 1;
1441 
1442 	*nbytesp = nbytes;
1443 
1444 	return ret < 0 ? ret : 0;
1445 }
1446 
fuse_direct_io(struct fuse_io_priv * io,struct iov_iter * iter,loff_t * ppos,int flags)1447 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1448 		       loff_t *ppos, int flags)
1449 {
1450 	int write = flags & FUSE_DIO_WRITE;
1451 	int cuse = flags & FUSE_DIO_CUSE;
1452 	struct file *file = io->iocb->ki_filp;
1453 	struct inode *inode = file->f_mapping->host;
1454 	struct fuse_file *ff = file->private_data;
1455 	struct fuse_conn *fc = ff->fc;
1456 	size_t nmax = write ? fc->max_write : fc->max_read;
1457 	loff_t pos = *ppos;
1458 	size_t count = iov_iter_count(iter);
1459 	pgoff_t idx_from = pos >> PAGE_SHIFT;
1460 	pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1461 	ssize_t res = 0;
1462 	int err = 0;
1463 	struct fuse_io_args *ia;
1464 	unsigned int max_pages;
1465 
1466 	max_pages = iov_iter_npages(iter, fc->max_pages);
1467 	ia = fuse_io_alloc(io, max_pages);
1468 	if (!ia)
1469 		return -ENOMEM;
1470 
1471 	ia->io = io;
1472 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1473 		if (!write)
1474 			inode_lock(inode);
1475 		fuse_sync_writes(inode);
1476 		if (!write)
1477 			inode_unlock(inode);
1478 	}
1479 
1480 	io->should_dirty = !write && iter_is_iovec(iter);
1481 	while (count) {
1482 		ssize_t nres;
1483 		fl_owner_t owner = current->files;
1484 		size_t nbytes = min(count, nmax);
1485 
1486 		err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1487 					  max_pages);
1488 		if (err && !nbytes)
1489 			break;
1490 
1491 		if (write) {
1492 			if (!capable(CAP_FSETID))
1493 				ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV;
1494 
1495 			nres = fuse_send_write(ia, pos, nbytes, owner);
1496 		} else {
1497 			nres = fuse_send_read(ia, pos, nbytes, owner);
1498 		}
1499 
1500 		if (!io->async || nres < 0) {
1501 			fuse_release_user_pages(&ia->ap, io->should_dirty);
1502 			fuse_io_free(ia);
1503 		}
1504 		ia = NULL;
1505 		if (nres < 0) {
1506 			iov_iter_revert(iter, nbytes);
1507 			err = nres;
1508 			break;
1509 		}
1510 		WARN_ON(nres > nbytes);
1511 
1512 		count -= nres;
1513 		res += nres;
1514 		pos += nres;
1515 		if (nres != nbytes) {
1516 			iov_iter_revert(iter, nbytes - nres);
1517 			break;
1518 		}
1519 		if (count) {
1520 			max_pages = iov_iter_npages(iter, fc->max_pages);
1521 			ia = fuse_io_alloc(io, max_pages);
1522 			if (!ia)
1523 				break;
1524 		}
1525 	}
1526 	if (ia)
1527 		fuse_io_free(ia);
1528 	if (res > 0)
1529 		*ppos = pos;
1530 
1531 	return res > 0 ? res : err;
1532 }
1533 EXPORT_SYMBOL_GPL(fuse_direct_io);
1534 
__fuse_direct_read(struct fuse_io_priv * io,struct iov_iter * iter,loff_t * ppos)1535 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1536 				  struct iov_iter *iter,
1537 				  loff_t *ppos)
1538 {
1539 	ssize_t res;
1540 	struct inode *inode = file_inode(io->iocb->ki_filp);
1541 
1542 	res = fuse_direct_io(io, iter, ppos, 0);
1543 
1544 	fuse_invalidate_atime(inode);
1545 
1546 	return res;
1547 }
1548 
1549 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1550 
fuse_direct_read_iter(struct kiocb * iocb,struct iov_iter * to)1551 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1552 {
1553 	ssize_t res;
1554 
1555 	if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1556 		res = fuse_direct_IO(iocb, to);
1557 	} else {
1558 		struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1559 
1560 		res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1561 	}
1562 
1563 	return res;
1564 }
1565 
fuse_direct_write_iter(struct kiocb * iocb,struct iov_iter * from)1566 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1567 {
1568 	struct inode *inode = file_inode(iocb->ki_filp);
1569 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1570 	ssize_t res;
1571 
1572 	/* Don't allow parallel writes to the same file */
1573 	inode_lock(inode);
1574 	res = generic_write_checks(iocb, from);
1575 	if (res > 0) {
1576 		if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1577 			res = fuse_direct_IO(iocb, from);
1578 		} else {
1579 			res = fuse_direct_io(&io, from, &iocb->ki_pos,
1580 					     FUSE_DIO_WRITE);
1581 		}
1582 	}
1583 	fuse_invalidate_attr(inode);
1584 	if (res > 0)
1585 		fuse_write_update_size(inode, iocb->ki_pos);
1586 	inode_unlock(inode);
1587 
1588 	return res;
1589 }
1590 
fuse_file_read_iter(struct kiocb * iocb,struct iov_iter * to)1591 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1592 {
1593 	struct file *file = iocb->ki_filp;
1594 	struct fuse_file *ff = file->private_data;
1595 
1596 	if (fuse_is_bad(file_inode(file)))
1597 		return -EIO;
1598 
1599 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1600 		return fuse_cache_read_iter(iocb, to);
1601 	else
1602 		return fuse_direct_read_iter(iocb, to);
1603 }
1604 
fuse_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1605 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1606 {
1607 	struct file *file = iocb->ki_filp;
1608 	struct fuse_file *ff = file->private_data;
1609 
1610 	if (fuse_is_bad(file_inode(file)))
1611 		return -EIO;
1612 
1613 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1614 		return fuse_cache_write_iter(iocb, from);
1615 	else
1616 		return fuse_direct_write_iter(iocb, from);
1617 }
1618 
fuse_writepage_free(struct fuse_writepage_args * wpa)1619 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1620 {
1621 	struct fuse_args_pages *ap = &wpa->ia.ap;
1622 	int i;
1623 
1624 	for (i = 0; i < ap->num_pages; i++)
1625 		__free_page(ap->pages[i]);
1626 
1627 	if (wpa->ia.ff)
1628 		fuse_file_put(wpa->ia.ff, false, false);
1629 
1630 	kfree(ap->pages);
1631 	kfree(wpa);
1632 }
1633 
fuse_writepage_finish(struct fuse_conn * fc,struct fuse_writepage_args * wpa)1634 static void fuse_writepage_finish(struct fuse_conn *fc,
1635 				  struct fuse_writepage_args *wpa)
1636 {
1637 	struct fuse_args_pages *ap = &wpa->ia.ap;
1638 	struct inode *inode = wpa->inode;
1639 	struct fuse_inode *fi = get_fuse_inode(inode);
1640 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1641 	int i;
1642 
1643 	list_del(&wpa->writepages_entry);
1644 	for (i = 0; i < ap->num_pages; i++) {
1645 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1646 		dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1647 		wb_writeout_inc(&bdi->wb);
1648 	}
1649 	wake_up(&fi->page_waitq);
1650 }
1651 
1652 /* Called under fi->lock, may release and reacquire it */
fuse_send_writepage(struct fuse_conn * fc,struct fuse_writepage_args * wpa,loff_t size)1653 static void fuse_send_writepage(struct fuse_conn *fc,
1654 				struct fuse_writepage_args *wpa, loff_t size)
1655 __releases(fi->lock)
1656 __acquires(fi->lock)
1657 {
1658 	struct fuse_writepage_args *aux, *next;
1659 	struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1660 	struct fuse_write_in *inarg = &wpa->ia.write.in;
1661 	struct fuse_args *args = &wpa->ia.ap.args;
1662 	__u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1663 	int err;
1664 
1665 	fi->writectr++;
1666 	if (inarg->offset + data_size <= size) {
1667 		inarg->size = data_size;
1668 	} else if (inarg->offset < size) {
1669 		inarg->size = size - inarg->offset;
1670 	} else {
1671 		/* Got truncated off completely */
1672 		goto out_free;
1673 	}
1674 
1675 	args->in_args[1].size = inarg->size;
1676 	args->force = true;
1677 	args->nocreds = true;
1678 
1679 	err = fuse_simple_background(fc, args, GFP_ATOMIC);
1680 	if (err == -ENOMEM) {
1681 		spin_unlock(&fi->lock);
1682 		err = fuse_simple_background(fc, args, GFP_NOFS | __GFP_NOFAIL);
1683 		spin_lock(&fi->lock);
1684 	}
1685 
1686 	/* Fails on broken connection only */
1687 	if (unlikely(err))
1688 		goto out_free;
1689 
1690 	return;
1691 
1692  out_free:
1693 	fi->writectr--;
1694 	fuse_writepage_finish(fc, wpa);
1695 	spin_unlock(&fi->lock);
1696 
1697 	/* After fuse_writepage_finish() aux request list is private */
1698 	for (aux = wpa->next; aux; aux = next) {
1699 		next = aux->next;
1700 		aux->next = NULL;
1701 		fuse_writepage_free(aux);
1702 	}
1703 
1704 	fuse_writepage_free(wpa);
1705 	spin_lock(&fi->lock);
1706 }
1707 
1708 /*
1709  * If fi->writectr is positive (no truncate or fsync going on) send
1710  * all queued writepage requests.
1711  *
1712  * Called with fi->lock
1713  */
fuse_flush_writepages(struct inode * inode)1714 void fuse_flush_writepages(struct inode *inode)
1715 __releases(fi->lock)
1716 __acquires(fi->lock)
1717 {
1718 	struct fuse_conn *fc = get_fuse_conn(inode);
1719 	struct fuse_inode *fi = get_fuse_inode(inode);
1720 	loff_t crop = i_size_read(inode);
1721 	struct fuse_writepage_args *wpa;
1722 
1723 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1724 		wpa = list_entry(fi->queued_writes.next,
1725 				 struct fuse_writepage_args, queue_entry);
1726 		list_del_init(&wpa->queue_entry);
1727 		fuse_send_writepage(fc, wpa, crop);
1728 	}
1729 }
1730 
fuse_writepage_end(struct fuse_conn * fc,struct fuse_args * args,int error)1731 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_args *args,
1732 			       int error)
1733 {
1734 	struct fuse_writepage_args *wpa =
1735 		container_of(args, typeof(*wpa), ia.ap.args);
1736 	struct inode *inode = wpa->inode;
1737 	struct fuse_inode *fi = get_fuse_inode(inode);
1738 
1739 	mapping_set_error(inode->i_mapping, error);
1740 	spin_lock(&fi->lock);
1741 	while (wpa->next) {
1742 		struct fuse_conn *fc = get_fuse_conn(inode);
1743 		struct fuse_write_in *inarg = &wpa->ia.write.in;
1744 		struct fuse_writepage_args *next = wpa->next;
1745 
1746 		wpa->next = next->next;
1747 		next->next = NULL;
1748 		next->ia.ff = fuse_file_get(wpa->ia.ff);
1749 		list_add(&next->writepages_entry, &fi->writepages);
1750 
1751 		/*
1752 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1753 		 * based on primary request size.
1754 		 *
1755 		 * 1st case (trivial): there are no concurrent activities using
1756 		 * fuse_set/release_nowrite.  Then we're on safe side because
1757 		 * fuse_flush_writepages() would call fuse_send_writepage()
1758 		 * anyway.
1759 		 *
1760 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1761 		 * now for completion of all in-flight requests.  This happens
1762 		 * rarely and no more than once per page, so this should be
1763 		 * okay.
1764 		 *
1765 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1766 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1767 		 * that fuse_set_nowrite returned implies that all in-flight
1768 		 * requests were completed along with all of their secondary
1769 		 * requests.  Further primary requests are blocked by negative
1770 		 * writectr.  Hence there cannot be any in-flight requests and
1771 		 * no invocations of fuse_writepage_end() while we're in
1772 		 * fuse_set_nowrite..fuse_release_nowrite section.
1773 		 */
1774 		fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1775 	}
1776 	fi->writectr--;
1777 	fuse_writepage_finish(fc, wpa);
1778 	spin_unlock(&fi->lock);
1779 	fuse_writepage_free(wpa);
1780 }
1781 
__fuse_write_file_get(struct fuse_conn * fc,struct fuse_inode * fi)1782 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1783 					       struct fuse_inode *fi)
1784 {
1785 	struct fuse_file *ff = NULL;
1786 
1787 	spin_lock(&fi->lock);
1788 	if (!list_empty(&fi->write_files)) {
1789 		ff = list_entry(fi->write_files.next, struct fuse_file,
1790 				write_entry);
1791 		fuse_file_get(ff);
1792 	}
1793 	spin_unlock(&fi->lock);
1794 
1795 	return ff;
1796 }
1797 
fuse_write_file_get(struct fuse_conn * fc,struct fuse_inode * fi)1798 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1799 					     struct fuse_inode *fi)
1800 {
1801 	struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1802 	WARN_ON(!ff);
1803 	return ff;
1804 }
1805 
fuse_write_inode(struct inode * inode,struct writeback_control * wbc)1806 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1807 {
1808 	struct fuse_conn *fc = get_fuse_conn(inode);
1809 	struct fuse_inode *fi = get_fuse_inode(inode);
1810 	struct fuse_file *ff;
1811 	int err;
1812 
1813 	ff = __fuse_write_file_get(fc, fi);
1814 	err = fuse_flush_times(inode, ff);
1815 	if (ff)
1816 		fuse_file_put(ff, false, false);
1817 
1818 	return err;
1819 }
1820 
fuse_writepage_args_alloc(void)1821 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1822 {
1823 	struct fuse_writepage_args *wpa;
1824 	struct fuse_args_pages *ap;
1825 
1826 	wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1827 	if (wpa) {
1828 		ap = &wpa->ia.ap;
1829 		ap->num_pages = 0;
1830 		ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1831 		if (!ap->pages) {
1832 			kfree(wpa);
1833 			wpa = NULL;
1834 		}
1835 	}
1836 	return wpa;
1837 
1838 }
1839 
fuse_writepage_locked(struct page * page)1840 static int fuse_writepage_locked(struct page *page)
1841 {
1842 	struct address_space *mapping = page->mapping;
1843 	struct inode *inode = mapping->host;
1844 	struct fuse_conn *fc = get_fuse_conn(inode);
1845 	struct fuse_inode *fi = get_fuse_inode(inode);
1846 	struct fuse_writepage_args *wpa;
1847 	struct fuse_args_pages *ap;
1848 	struct page *tmp_page;
1849 	int error = -ENOMEM;
1850 
1851 	set_page_writeback(page);
1852 
1853 	wpa = fuse_writepage_args_alloc();
1854 	if (!wpa)
1855 		goto err;
1856 	ap = &wpa->ia.ap;
1857 
1858 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1859 	if (!tmp_page)
1860 		goto err_free;
1861 
1862 	error = -EIO;
1863 	wpa->ia.ff = fuse_write_file_get(fc, fi);
1864 	if (!wpa->ia.ff)
1865 		goto err_nofile;
1866 
1867 	fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1868 
1869 	copy_highpage(tmp_page, page);
1870 	wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1871 	wpa->next = NULL;
1872 	ap->args.in_pages = true;
1873 	ap->num_pages = 1;
1874 	ap->pages[0] = tmp_page;
1875 	ap->descs[0].offset = 0;
1876 	ap->descs[0].length = PAGE_SIZE;
1877 	ap->args.end = fuse_writepage_end;
1878 	wpa->inode = inode;
1879 
1880 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1881 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1882 
1883 	spin_lock(&fi->lock);
1884 	list_add(&wpa->writepages_entry, &fi->writepages);
1885 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1886 	fuse_flush_writepages(inode);
1887 	spin_unlock(&fi->lock);
1888 
1889 	end_page_writeback(page);
1890 
1891 	return 0;
1892 
1893 err_nofile:
1894 	__free_page(tmp_page);
1895 err_free:
1896 	kfree(wpa);
1897 err:
1898 	mapping_set_error(page->mapping, error);
1899 	end_page_writeback(page);
1900 	return error;
1901 }
1902 
fuse_writepage(struct page * page,struct writeback_control * wbc)1903 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1904 {
1905 	int err;
1906 
1907 	if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1908 		/*
1909 		 * ->writepages() should be called for sync() and friends.  We
1910 		 * should only get here on direct reclaim and then we are
1911 		 * allowed to skip a page which is already in flight
1912 		 */
1913 		WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1914 
1915 		redirty_page_for_writepage(wbc, page);
1916 		unlock_page(page);
1917 		return 0;
1918 	}
1919 
1920 	err = fuse_writepage_locked(page);
1921 	unlock_page(page);
1922 
1923 	return err;
1924 }
1925 
1926 struct fuse_fill_wb_data {
1927 	struct fuse_writepage_args *wpa;
1928 	struct fuse_file *ff;
1929 	struct inode *inode;
1930 	struct page **orig_pages;
1931 	unsigned int max_pages;
1932 };
1933 
fuse_pages_realloc(struct fuse_fill_wb_data * data)1934 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
1935 {
1936 	struct fuse_args_pages *ap = &data->wpa->ia.ap;
1937 	struct fuse_conn *fc = get_fuse_conn(data->inode);
1938 	struct page **pages;
1939 	struct fuse_page_desc *descs;
1940 	unsigned int npages = min_t(unsigned int,
1941 				    max_t(unsigned int, data->max_pages * 2,
1942 					  FUSE_DEFAULT_MAX_PAGES_PER_REQ),
1943 				    fc->max_pages);
1944 	WARN_ON(npages <= data->max_pages);
1945 
1946 	pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
1947 	if (!pages)
1948 		return false;
1949 
1950 	memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
1951 	memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
1952 	kfree(ap->pages);
1953 	ap->pages = pages;
1954 	ap->descs = descs;
1955 	data->max_pages = npages;
1956 
1957 	return true;
1958 }
1959 
fuse_writepages_send(struct fuse_fill_wb_data * data)1960 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1961 {
1962 	struct fuse_writepage_args *wpa = data->wpa;
1963 	struct inode *inode = data->inode;
1964 	struct fuse_inode *fi = get_fuse_inode(inode);
1965 	int num_pages = wpa->ia.ap.num_pages;
1966 	int i;
1967 
1968 	wpa->ia.ff = fuse_file_get(data->ff);
1969 	spin_lock(&fi->lock);
1970 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1971 	fuse_flush_writepages(inode);
1972 	spin_unlock(&fi->lock);
1973 
1974 	for (i = 0; i < num_pages; i++)
1975 		end_page_writeback(data->orig_pages[i]);
1976 }
1977 
1978 /*
1979  * First recheck under fi->lock if the offending offset is still under
1980  * writeback.  If yes, then iterate auxiliary write requests, to see if there's
1981  * one already added for a page at this offset.  If there's none, then insert
1982  * this new request onto the auxiliary list, otherwise reuse the existing one by
1983  * copying the new page contents over to the old temporary page.
1984  */
fuse_writepage_in_flight(struct fuse_writepage_args * new_wpa,struct page * page)1985 static bool fuse_writepage_in_flight(struct fuse_writepage_args *new_wpa,
1986 				     struct page *page)
1987 {
1988 	struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
1989 	struct fuse_writepage_args *tmp;
1990 	struct fuse_writepage_args *old_wpa;
1991 	struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
1992 
1993 	WARN_ON(new_ap->num_pages != 0);
1994 
1995 	spin_lock(&fi->lock);
1996 	list_del(&new_wpa->writepages_entry);
1997 	old_wpa = fuse_find_writeback(fi, page->index, page->index);
1998 	if (!old_wpa) {
1999 		list_add(&new_wpa->writepages_entry, &fi->writepages);
2000 		spin_unlock(&fi->lock);
2001 		return false;
2002 	}
2003 
2004 	new_ap->num_pages = 1;
2005 	for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
2006 		pgoff_t curr_index;
2007 
2008 		WARN_ON(tmp->inode != new_wpa->inode);
2009 		curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
2010 		if (curr_index == page->index) {
2011 			WARN_ON(tmp->ia.ap.num_pages != 1);
2012 			swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
2013 			break;
2014 		}
2015 	}
2016 
2017 	if (!tmp) {
2018 		new_wpa->next = old_wpa->next;
2019 		old_wpa->next = new_wpa;
2020 	}
2021 
2022 	spin_unlock(&fi->lock);
2023 
2024 	if (tmp) {
2025 		struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
2026 
2027 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
2028 		dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
2029 		wb_writeout_inc(&bdi->wb);
2030 		fuse_writepage_free(new_wpa);
2031 	}
2032 
2033 	return true;
2034 }
2035 
fuse_writepages_fill(struct page * page,struct writeback_control * wbc,void * _data)2036 static int fuse_writepages_fill(struct page *page,
2037 		struct writeback_control *wbc, void *_data)
2038 {
2039 	struct fuse_fill_wb_data *data = _data;
2040 	struct fuse_writepage_args *wpa = data->wpa;
2041 	struct fuse_args_pages *ap = &wpa->ia.ap;
2042 	struct inode *inode = data->inode;
2043 	struct fuse_inode *fi = get_fuse_inode(inode);
2044 	struct fuse_conn *fc = get_fuse_conn(inode);
2045 	struct page *tmp_page;
2046 	bool is_writeback;
2047 	int err;
2048 
2049 	if (!data->ff) {
2050 		err = -EIO;
2051 		data->ff = fuse_write_file_get(fc, fi);
2052 		if (!data->ff)
2053 			goto out_unlock;
2054 	}
2055 
2056 	/*
2057 	 * Being under writeback is unlikely but possible.  For example direct
2058 	 * read to an mmaped fuse file will set the page dirty twice; once when
2059 	 * the pages are faulted with get_user_pages(), and then after the read
2060 	 * completed.
2061 	 */
2062 	is_writeback = fuse_page_is_writeback(inode, page->index);
2063 
2064 	if (wpa && ap->num_pages &&
2065 	    (is_writeback || ap->num_pages == fc->max_pages ||
2066 	     (ap->num_pages + 1) * PAGE_SIZE > fc->max_write ||
2067 	     data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)) {
2068 		fuse_writepages_send(data);
2069 		data->wpa = NULL;
2070 	} else if (wpa && ap->num_pages == data->max_pages) {
2071 		if (!fuse_pages_realloc(data)) {
2072 			fuse_writepages_send(data);
2073 			data->wpa = NULL;
2074 		}
2075 	}
2076 
2077 	err = -ENOMEM;
2078 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2079 	if (!tmp_page)
2080 		goto out_unlock;
2081 
2082 	/*
2083 	 * The page must not be redirtied until the writeout is completed
2084 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
2085 	 * there could be more than one temporary page instance for each real
2086 	 * page.
2087 	 *
2088 	 * This is ensured by holding the page lock in page_mkwrite() while
2089 	 * checking fuse_page_is_writeback().  We already hold the page lock
2090 	 * since clear_page_dirty_for_io() and keep it held until we add the
2091 	 * request to the fi->writepages list and increment ap->num_pages.
2092 	 * After this fuse_page_is_writeback() will indicate that the page is
2093 	 * under writeback, so we can release the page lock.
2094 	 */
2095 	if (data->wpa == NULL) {
2096 		err = -ENOMEM;
2097 		wpa = fuse_writepage_args_alloc();
2098 		if (!wpa) {
2099 			__free_page(tmp_page);
2100 			goto out_unlock;
2101 		}
2102 		data->max_pages = 1;
2103 
2104 		ap = &wpa->ia.ap;
2105 		fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2106 		wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2107 		wpa->next = NULL;
2108 		ap->args.in_pages = true;
2109 		ap->args.end = fuse_writepage_end;
2110 		ap->num_pages = 0;
2111 		wpa->inode = inode;
2112 
2113 		spin_lock(&fi->lock);
2114 		list_add(&wpa->writepages_entry, &fi->writepages);
2115 		spin_unlock(&fi->lock);
2116 
2117 		data->wpa = wpa;
2118 	}
2119 	set_page_writeback(page);
2120 
2121 	copy_highpage(tmp_page, page);
2122 	ap->pages[ap->num_pages] = tmp_page;
2123 	ap->descs[ap->num_pages].offset = 0;
2124 	ap->descs[ap->num_pages].length = PAGE_SIZE;
2125 
2126 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2127 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2128 
2129 	err = 0;
2130 	if (is_writeback && fuse_writepage_in_flight(wpa, page)) {
2131 		end_page_writeback(page);
2132 		data->wpa = NULL;
2133 		goto out_unlock;
2134 	}
2135 	data->orig_pages[ap->num_pages] = page;
2136 
2137 	/*
2138 	 * Protected by fi->lock against concurrent access by
2139 	 * fuse_page_is_writeback().
2140 	 */
2141 	spin_lock(&fi->lock);
2142 	ap->num_pages++;
2143 	spin_unlock(&fi->lock);
2144 
2145 out_unlock:
2146 	unlock_page(page);
2147 
2148 	return err;
2149 }
2150 
fuse_writepages(struct address_space * mapping,struct writeback_control * wbc)2151 static int fuse_writepages(struct address_space *mapping,
2152 			   struct writeback_control *wbc)
2153 {
2154 	struct inode *inode = mapping->host;
2155 	struct fuse_conn *fc = get_fuse_conn(inode);
2156 	struct fuse_fill_wb_data data;
2157 	int err;
2158 
2159 	err = -EIO;
2160 	if (fuse_is_bad(inode))
2161 		goto out;
2162 
2163 	data.inode = inode;
2164 	data.wpa = NULL;
2165 	data.ff = NULL;
2166 
2167 	err = -ENOMEM;
2168 	data.orig_pages = kcalloc(fc->max_pages,
2169 				  sizeof(struct page *),
2170 				  GFP_NOFS);
2171 	if (!data.orig_pages)
2172 		goto out;
2173 
2174 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2175 	if (data.wpa) {
2176 		WARN_ON(!data.wpa->ia.ap.num_pages);
2177 		fuse_writepages_send(&data);
2178 	}
2179 	if (data.ff)
2180 		fuse_file_put(data.ff, false, false);
2181 
2182 	kfree(data.orig_pages);
2183 out:
2184 	return err;
2185 }
2186 
2187 /*
2188  * It's worthy to make sure that space is reserved on disk for the write,
2189  * but how to implement it without killing performance need more thinking.
2190  */
fuse_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)2191 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2192 		loff_t pos, unsigned len, unsigned flags,
2193 		struct page **pagep, void **fsdata)
2194 {
2195 	pgoff_t index = pos >> PAGE_SHIFT;
2196 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2197 	struct page *page;
2198 	loff_t fsize;
2199 	int err = -ENOMEM;
2200 
2201 	WARN_ON(!fc->writeback_cache);
2202 
2203 	page = grab_cache_page_write_begin(mapping, index, flags);
2204 	if (!page)
2205 		goto error;
2206 
2207 	fuse_wait_on_page_writeback(mapping->host, page->index);
2208 
2209 	if (PageUptodate(page) || len == PAGE_SIZE)
2210 		goto success;
2211 	/*
2212 	 * Check if the start this page comes after the end of file, in which
2213 	 * case the readpage can be optimized away.
2214 	 */
2215 	fsize = i_size_read(mapping->host);
2216 	if (fsize <= (pos & PAGE_MASK)) {
2217 		size_t off = pos & ~PAGE_MASK;
2218 		if (off)
2219 			zero_user_segment(page, 0, off);
2220 		goto success;
2221 	}
2222 	err = fuse_do_readpage(file, page);
2223 	if (err)
2224 		goto cleanup;
2225 success:
2226 	*pagep = page;
2227 	return 0;
2228 
2229 cleanup:
2230 	unlock_page(page);
2231 	put_page(page);
2232 error:
2233 	return err;
2234 }
2235 
fuse_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2236 static int fuse_write_end(struct file *file, struct address_space *mapping,
2237 		loff_t pos, unsigned len, unsigned copied,
2238 		struct page *page, void *fsdata)
2239 {
2240 	struct inode *inode = page->mapping->host;
2241 
2242 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2243 	if (!copied)
2244 		goto unlock;
2245 
2246 	if (!PageUptodate(page)) {
2247 		/* Zero any unwritten bytes at the end of the page */
2248 		size_t endoff = (pos + copied) & ~PAGE_MASK;
2249 		if (endoff)
2250 			zero_user_segment(page, endoff, PAGE_SIZE);
2251 		SetPageUptodate(page);
2252 	}
2253 
2254 	fuse_write_update_size(inode, pos + copied);
2255 	set_page_dirty(page);
2256 
2257 unlock:
2258 	unlock_page(page);
2259 	put_page(page);
2260 
2261 	return copied;
2262 }
2263 
fuse_launder_page(struct page * page)2264 static int fuse_launder_page(struct page *page)
2265 {
2266 	int err = 0;
2267 	if (clear_page_dirty_for_io(page)) {
2268 		struct inode *inode = page->mapping->host;
2269 		err = fuse_writepage_locked(page);
2270 		if (!err)
2271 			fuse_wait_on_page_writeback(inode, page->index);
2272 	}
2273 	return err;
2274 }
2275 
2276 /*
2277  * Write back dirty pages now, because there may not be any suitable
2278  * open files later
2279  */
fuse_vma_close(struct vm_area_struct * vma)2280 static void fuse_vma_close(struct vm_area_struct *vma)
2281 {
2282 	filemap_write_and_wait(vma->vm_file->f_mapping);
2283 }
2284 
2285 /*
2286  * Wait for writeback against this page to complete before allowing it
2287  * to be marked dirty again, and hence written back again, possibly
2288  * before the previous writepage completed.
2289  *
2290  * Block here, instead of in ->writepage(), so that the userspace fs
2291  * can only block processes actually operating on the filesystem.
2292  *
2293  * Otherwise unprivileged userspace fs would be able to block
2294  * unrelated:
2295  *
2296  * - page migration
2297  * - sync(2)
2298  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2299  */
fuse_page_mkwrite(struct vm_fault * vmf)2300 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2301 {
2302 	struct page *page = vmf->page;
2303 	struct inode *inode = file_inode(vmf->vma->vm_file);
2304 
2305 	file_update_time(vmf->vma->vm_file);
2306 	lock_page(page);
2307 	if (page->mapping != inode->i_mapping) {
2308 		unlock_page(page);
2309 		return VM_FAULT_NOPAGE;
2310 	}
2311 
2312 	fuse_wait_on_page_writeback(inode, page->index);
2313 	return VM_FAULT_LOCKED;
2314 }
2315 
2316 static const struct vm_operations_struct fuse_file_vm_ops = {
2317 	.close		= fuse_vma_close,
2318 	.fault		= filemap_fault,
2319 	.map_pages	= filemap_map_pages,
2320 	.page_mkwrite	= fuse_page_mkwrite,
2321 };
2322 
fuse_file_mmap(struct file * file,struct vm_area_struct * vma)2323 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2324 {
2325 	struct fuse_file *ff = file->private_data;
2326 
2327 	if (ff->open_flags & FOPEN_DIRECT_IO) {
2328 		/* Can't provide the coherency needed for MAP_SHARED */
2329 		if (vma->vm_flags & VM_MAYSHARE)
2330 			return -ENODEV;
2331 
2332 		invalidate_inode_pages2(file->f_mapping);
2333 
2334 		return generic_file_mmap(file, vma);
2335 	}
2336 
2337 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2338 		fuse_link_write_file(file);
2339 
2340 	file_accessed(file);
2341 	vma->vm_ops = &fuse_file_vm_ops;
2342 	return 0;
2343 }
2344 
convert_fuse_file_lock(struct fuse_conn * fc,const struct fuse_file_lock * ffl,struct file_lock * fl)2345 static int convert_fuse_file_lock(struct fuse_conn *fc,
2346 				  const struct fuse_file_lock *ffl,
2347 				  struct file_lock *fl)
2348 {
2349 	switch (ffl->type) {
2350 	case F_UNLCK:
2351 		break;
2352 
2353 	case F_RDLCK:
2354 	case F_WRLCK:
2355 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2356 		    ffl->end < ffl->start)
2357 			return -EIO;
2358 
2359 		fl->fl_start = ffl->start;
2360 		fl->fl_end = ffl->end;
2361 
2362 		/*
2363 		 * Convert pid into init's pid namespace.  The locks API will
2364 		 * translate it into the caller's pid namespace.
2365 		 */
2366 		rcu_read_lock();
2367 		fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2368 		rcu_read_unlock();
2369 		break;
2370 
2371 	default:
2372 		return -EIO;
2373 	}
2374 	fl->fl_type = ffl->type;
2375 	return 0;
2376 }
2377 
fuse_lk_fill(struct fuse_args * args,struct file * file,const struct file_lock * fl,int opcode,pid_t pid,int flock,struct fuse_lk_in * inarg)2378 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2379 			 const struct file_lock *fl, int opcode, pid_t pid,
2380 			 int flock, struct fuse_lk_in *inarg)
2381 {
2382 	struct inode *inode = file_inode(file);
2383 	struct fuse_conn *fc = get_fuse_conn(inode);
2384 	struct fuse_file *ff = file->private_data;
2385 
2386 	memset(inarg, 0, sizeof(*inarg));
2387 	inarg->fh = ff->fh;
2388 	inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2389 	inarg->lk.start = fl->fl_start;
2390 	inarg->lk.end = fl->fl_end;
2391 	inarg->lk.type = fl->fl_type;
2392 	inarg->lk.pid = pid;
2393 	if (flock)
2394 		inarg->lk_flags |= FUSE_LK_FLOCK;
2395 	args->opcode = opcode;
2396 	args->nodeid = get_node_id(inode);
2397 	args->in_numargs = 1;
2398 	args->in_args[0].size = sizeof(*inarg);
2399 	args->in_args[0].value = inarg;
2400 }
2401 
fuse_getlk(struct file * file,struct file_lock * fl)2402 static int fuse_getlk(struct file *file, struct file_lock *fl)
2403 {
2404 	struct inode *inode = file_inode(file);
2405 	struct fuse_conn *fc = get_fuse_conn(inode);
2406 	FUSE_ARGS(args);
2407 	struct fuse_lk_in inarg;
2408 	struct fuse_lk_out outarg;
2409 	int err;
2410 
2411 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2412 	args.out_numargs = 1;
2413 	args.out_args[0].size = sizeof(outarg);
2414 	args.out_args[0].value = &outarg;
2415 	err = fuse_simple_request(fc, &args);
2416 	if (!err)
2417 		err = convert_fuse_file_lock(fc, &outarg.lk, fl);
2418 
2419 	return err;
2420 }
2421 
fuse_setlk(struct file * file,struct file_lock * fl,int flock)2422 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2423 {
2424 	struct inode *inode = file_inode(file);
2425 	struct fuse_conn *fc = get_fuse_conn(inode);
2426 	FUSE_ARGS(args);
2427 	struct fuse_lk_in inarg;
2428 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2429 	struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2430 	pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns);
2431 	int err;
2432 
2433 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2434 		/* NLM needs asynchronous locks, which we don't support yet */
2435 		return -ENOLCK;
2436 	}
2437 
2438 	/* Unlock on close is handled by the flush method */
2439 	if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2440 		return 0;
2441 
2442 	fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2443 	err = fuse_simple_request(fc, &args);
2444 
2445 	/* locking is restartable */
2446 	if (err == -EINTR)
2447 		err = -ERESTARTSYS;
2448 
2449 	return err;
2450 }
2451 
fuse_file_lock(struct file * file,int cmd,struct file_lock * fl)2452 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2453 {
2454 	struct inode *inode = file_inode(file);
2455 	struct fuse_conn *fc = get_fuse_conn(inode);
2456 	int err;
2457 
2458 	if (cmd == F_CANCELLK) {
2459 		err = 0;
2460 	} else if (cmd == F_GETLK) {
2461 		if (fc->no_lock) {
2462 			posix_test_lock(file, fl);
2463 			err = 0;
2464 		} else
2465 			err = fuse_getlk(file, fl);
2466 	} else {
2467 		if (fc->no_lock)
2468 			err = posix_lock_file(file, fl, NULL);
2469 		else
2470 			err = fuse_setlk(file, fl, 0);
2471 	}
2472 	return err;
2473 }
2474 
fuse_file_flock(struct file * file,int cmd,struct file_lock * fl)2475 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2476 {
2477 	struct inode *inode = file_inode(file);
2478 	struct fuse_conn *fc = get_fuse_conn(inode);
2479 	int err;
2480 
2481 	if (fc->no_flock) {
2482 		err = locks_lock_file_wait(file, fl);
2483 	} else {
2484 		struct fuse_file *ff = file->private_data;
2485 
2486 		/* emulate flock with POSIX locks */
2487 		ff->flock = true;
2488 		err = fuse_setlk(file, fl, 1);
2489 	}
2490 
2491 	return err;
2492 }
2493 
fuse_bmap(struct address_space * mapping,sector_t block)2494 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2495 {
2496 	struct inode *inode = mapping->host;
2497 	struct fuse_conn *fc = get_fuse_conn(inode);
2498 	FUSE_ARGS(args);
2499 	struct fuse_bmap_in inarg;
2500 	struct fuse_bmap_out outarg;
2501 	int err;
2502 
2503 	if (!inode->i_sb->s_bdev || fc->no_bmap)
2504 		return 0;
2505 
2506 	memset(&inarg, 0, sizeof(inarg));
2507 	inarg.block = block;
2508 	inarg.blocksize = inode->i_sb->s_blocksize;
2509 	args.opcode = FUSE_BMAP;
2510 	args.nodeid = get_node_id(inode);
2511 	args.in_numargs = 1;
2512 	args.in_args[0].size = sizeof(inarg);
2513 	args.in_args[0].value = &inarg;
2514 	args.out_numargs = 1;
2515 	args.out_args[0].size = sizeof(outarg);
2516 	args.out_args[0].value = &outarg;
2517 	err = fuse_simple_request(fc, &args);
2518 	if (err == -ENOSYS)
2519 		fc->no_bmap = 1;
2520 
2521 	return err ? 0 : outarg.block;
2522 }
2523 
fuse_lseek(struct file * file,loff_t offset,int whence)2524 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2525 {
2526 	struct inode *inode = file->f_mapping->host;
2527 	struct fuse_conn *fc = get_fuse_conn(inode);
2528 	struct fuse_file *ff = file->private_data;
2529 	FUSE_ARGS(args);
2530 	struct fuse_lseek_in inarg = {
2531 		.fh = ff->fh,
2532 		.offset = offset,
2533 		.whence = whence
2534 	};
2535 	struct fuse_lseek_out outarg;
2536 	int err;
2537 
2538 	if (fc->no_lseek)
2539 		goto fallback;
2540 
2541 	args.opcode = FUSE_LSEEK;
2542 	args.nodeid = ff->nodeid;
2543 	args.in_numargs = 1;
2544 	args.in_args[0].size = sizeof(inarg);
2545 	args.in_args[0].value = &inarg;
2546 	args.out_numargs = 1;
2547 	args.out_args[0].size = sizeof(outarg);
2548 	args.out_args[0].value = &outarg;
2549 	err = fuse_simple_request(fc, &args);
2550 	if (err) {
2551 		if (err == -ENOSYS) {
2552 			fc->no_lseek = 1;
2553 			goto fallback;
2554 		}
2555 		return err;
2556 	}
2557 
2558 	return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2559 
2560 fallback:
2561 	err = fuse_update_attributes(inode, file);
2562 	if (!err)
2563 		return generic_file_llseek(file, offset, whence);
2564 	else
2565 		return err;
2566 }
2567 
fuse_file_llseek(struct file * file,loff_t offset,int whence)2568 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2569 {
2570 	loff_t retval;
2571 	struct inode *inode = file_inode(file);
2572 
2573 	switch (whence) {
2574 	case SEEK_SET:
2575 	case SEEK_CUR:
2576 		 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2577 		retval = generic_file_llseek(file, offset, whence);
2578 		break;
2579 	case SEEK_END:
2580 		inode_lock(inode);
2581 		retval = fuse_update_attributes(inode, file);
2582 		if (!retval)
2583 			retval = generic_file_llseek(file, offset, whence);
2584 		inode_unlock(inode);
2585 		break;
2586 	case SEEK_HOLE:
2587 	case SEEK_DATA:
2588 		inode_lock(inode);
2589 		retval = fuse_lseek(file, offset, whence);
2590 		inode_unlock(inode);
2591 		break;
2592 	default:
2593 		retval = -EINVAL;
2594 	}
2595 
2596 	return retval;
2597 }
2598 
2599 /*
2600  * CUSE servers compiled on 32bit broke on 64bit kernels because the
2601  * ABI was defined to be 'struct iovec' which is different on 32bit
2602  * and 64bit.  Fortunately we can determine which structure the server
2603  * used from the size of the reply.
2604  */
fuse_copy_ioctl_iovec_old(struct iovec * dst,void * src,size_t transferred,unsigned count,bool is_compat)2605 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2606 				     size_t transferred, unsigned count,
2607 				     bool is_compat)
2608 {
2609 #ifdef CONFIG_COMPAT
2610 	if (count * sizeof(struct compat_iovec) == transferred) {
2611 		struct compat_iovec *ciov = src;
2612 		unsigned i;
2613 
2614 		/*
2615 		 * With this interface a 32bit server cannot support
2616 		 * non-compat (i.e. ones coming from 64bit apps) ioctl
2617 		 * requests
2618 		 */
2619 		if (!is_compat)
2620 			return -EINVAL;
2621 
2622 		for (i = 0; i < count; i++) {
2623 			dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2624 			dst[i].iov_len = ciov[i].iov_len;
2625 		}
2626 		return 0;
2627 	}
2628 #endif
2629 
2630 	if (count * sizeof(struct iovec) != transferred)
2631 		return -EIO;
2632 
2633 	memcpy(dst, src, transferred);
2634 	return 0;
2635 }
2636 
2637 /* Make sure iov_length() won't overflow */
fuse_verify_ioctl_iov(struct fuse_conn * fc,struct iovec * iov,size_t count)2638 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2639 				 size_t count)
2640 {
2641 	size_t n;
2642 	u32 max = fc->max_pages << PAGE_SHIFT;
2643 
2644 	for (n = 0; n < count; n++, iov++) {
2645 		if (iov->iov_len > (size_t) max)
2646 			return -ENOMEM;
2647 		max -= iov->iov_len;
2648 	}
2649 	return 0;
2650 }
2651 
fuse_copy_ioctl_iovec(struct fuse_conn * fc,struct iovec * dst,void * src,size_t transferred,unsigned count,bool is_compat)2652 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2653 				 void *src, size_t transferred, unsigned count,
2654 				 bool is_compat)
2655 {
2656 	unsigned i;
2657 	struct fuse_ioctl_iovec *fiov = src;
2658 
2659 	if (fc->minor < 16) {
2660 		return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2661 						 count, is_compat);
2662 	}
2663 
2664 	if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2665 		return -EIO;
2666 
2667 	for (i = 0; i < count; i++) {
2668 		/* Did the server supply an inappropriate value? */
2669 		if (fiov[i].base != (unsigned long) fiov[i].base ||
2670 		    fiov[i].len != (unsigned long) fiov[i].len)
2671 			return -EIO;
2672 
2673 		dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2674 		dst[i].iov_len = (size_t) fiov[i].len;
2675 
2676 #ifdef CONFIG_COMPAT
2677 		if (is_compat &&
2678 		    (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2679 		     (compat_size_t) dst[i].iov_len != fiov[i].len))
2680 			return -EIO;
2681 #endif
2682 	}
2683 
2684 	return 0;
2685 }
2686 
2687 
2688 /*
2689  * For ioctls, there is no generic way to determine how much memory
2690  * needs to be read and/or written.  Furthermore, ioctls are allowed
2691  * to dereference the passed pointer, so the parameter requires deep
2692  * copying but FUSE has no idea whatsoever about what to copy in or
2693  * out.
2694  *
2695  * This is solved by allowing FUSE server to retry ioctl with
2696  * necessary in/out iovecs.  Let's assume the ioctl implementation
2697  * needs to read in the following structure.
2698  *
2699  * struct a {
2700  *	char	*buf;
2701  *	size_t	buflen;
2702  * }
2703  *
2704  * On the first callout to FUSE server, inarg->in_size and
2705  * inarg->out_size will be NULL; then, the server completes the ioctl
2706  * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2707  * the actual iov array to
2708  *
2709  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a) } }
2710  *
2711  * which tells FUSE to copy in the requested area and retry the ioctl.
2712  * On the second round, the server has access to the structure and
2713  * from that it can tell what to look for next, so on the invocation,
2714  * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2715  *
2716  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a)	},
2717  *   { .iov_base = a.buf,	.iov_len = a.buflen		} }
2718  *
2719  * FUSE will copy both struct a and the pointed buffer from the
2720  * process doing the ioctl and retry ioctl with both struct a and the
2721  * buffer.
2722  *
2723  * This time, FUSE server has everything it needs and completes ioctl
2724  * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2725  *
2726  * Copying data out works the same way.
2727  *
2728  * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2729  * automatically initializes in and out iovs by decoding @cmd with
2730  * _IOC_* macros and the server is not allowed to request RETRY.  This
2731  * limits ioctl data transfers to well-formed ioctls and is the forced
2732  * behavior for all FUSE servers.
2733  */
fuse_do_ioctl(struct file * file,unsigned int cmd,unsigned long arg,unsigned int flags)2734 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2735 		   unsigned int flags)
2736 {
2737 	struct fuse_file *ff = file->private_data;
2738 	struct fuse_conn *fc = ff->fc;
2739 	struct fuse_ioctl_in inarg = {
2740 		.fh = ff->fh,
2741 		.cmd = cmd,
2742 		.arg = arg,
2743 		.flags = flags
2744 	};
2745 	struct fuse_ioctl_out outarg;
2746 	struct iovec *iov_page = NULL;
2747 	struct iovec *in_iov = NULL, *out_iov = NULL;
2748 	unsigned int in_iovs = 0, out_iovs = 0, max_pages;
2749 	size_t in_size, out_size, c;
2750 	ssize_t transferred;
2751 	int err, i;
2752 	struct iov_iter ii;
2753 	struct fuse_args_pages ap = {};
2754 
2755 #if BITS_PER_LONG == 32
2756 	inarg.flags |= FUSE_IOCTL_32BIT;
2757 #else
2758 	if (flags & FUSE_IOCTL_COMPAT) {
2759 		inarg.flags |= FUSE_IOCTL_32BIT;
2760 #ifdef CONFIG_X86_X32
2761 		if (in_x32_syscall())
2762 			inarg.flags |= FUSE_IOCTL_COMPAT_X32;
2763 #endif
2764 	}
2765 #endif
2766 
2767 	/* assume all the iovs returned by client always fits in a page */
2768 	BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2769 
2770 	err = -ENOMEM;
2771 	ap.pages = fuse_pages_alloc(fc->max_pages, GFP_KERNEL, &ap.descs);
2772 	iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2773 	if (!ap.pages || !iov_page)
2774 		goto out;
2775 
2776 	fuse_page_descs_length_init(ap.descs, 0, fc->max_pages);
2777 
2778 	/*
2779 	 * If restricted, initialize IO parameters as encoded in @cmd.
2780 	 * RETRY from server is not allowed.
2781 	 */
2782 	if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2783 		struct iovec *iov = iov_page;
2784 
2785 		iov->iov_base = (void __user *)arg;
2786 
2787 		switch (cmd) {
2788 		case FS_IOC_GETFLAGS:
2789 		case FS_IOC_SETFLAGS:
2790 			iov->iov_len = sizeof(int);
2791 			break;
2792 		default:
2793 			iov->iov_len = _IOC_SIZE(cmd);
2794 			break;
2795 		}
2796 
2797 		if (_IOC_DIR(cmd) & _IOC_WRITE) {
2798 			in_iov = iov;
2799 			in_iovs = 1;
2800 		}
2801 
2802 		if (_IOC_DIR(cmd) & _IOC_READ) {
2803 			out_iov = iov;
2804 			out_iovs = 1;
2805 		}
2806 	}
2807 
2808  retry:
2809 	inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2810 	inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2811 
2812 	/*
2813 	 * Out data can be used either for actual out data or iovs,
2814 	 * make sure there always is at least one page.
2815 	 */
2816 	out_size = max_t(size_t, out_size, PAGE_SIZE);
2817 	max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2818 
2819 	/* make sure there are enough buffer pages and init request with them */
2820 	err = -ENOMEM;
2821 	if (max_pages > fc->max_pages)
2822 		goto out;
2823 	while (ap.num_pages < max_pages) {
2824 		ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2825 		if (!ap.pages[ap.num_pages])
2826 			goto out;
2827 		ap.num_pages++;
2828 	}
2829 
2830 
2831 	/* okay, let's send it to the client */
2832 	ap.args.opcode = FUSE_IOCTL;
2833 	ap.args.nodeid = ff->nodeid;
2834 	ap.args.in_numargs = 1;
2835 	ap.args.in_args[0].size = sizeof(inarg);
2836 	ap.args.in_args[0].value = &inarg;
2837 	if (in_size) {
2838 		ap.args.in_numargs++;
2839 		ap.args.in_args[1].size = in_size;
2840 		ap.args.in_pages = true;
2841 
2842 		err = -EFAULT;
2843 		iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2844 		for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2845 			c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2846 			if (c != PAGE_SIZE && iov_iter_count(&ii))
2847 				goto out;
2848 		}
2849 	}
2850 
2851 	ap.args.out_numargs = 2;
2852 	ap.args.out_args[0].size = sizeof(outarg);
2853 	ap.args.out_args[0].value = &outarg;
2854 	ap.args.out_args[1].size = out_size;
2855 	ap.args.out_pages = true;
2856 	ap.args.out_argvar = true;
2857 
2858 	transferred = fuse_simple_request(fc, &ap.args);
2859 	err = transferred;
2860 	if (transferred < 0)
2861 		goto out;
2862 
2863 	/* did it ask for retry? */
2864 	if (outarg.flags & FUSE_IOCTL_RETRY) {
2865 		void *vaddr;
2866 
2867 		/* no retry if in restricted mode */
2868 		err = -EIO;
2869 		if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2870 			goto out;
2871 
2872 		in_iovs = outarg.in_iovs;
2873 		out_iovs = outarg.out_iovs;
2874 
2875 		/*
2876 		 * Make sure things are in boundary, separate checks
2877 		 * are to protect against overflow.
2878 		 */
2879 		err = -ENOMEM;
2880 		if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2881 		    out_iovs > FUSE_IOCTL_MAX_IOV ||
2882 		    in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2883 			goto out;
2884 
2885 		vaddr = kmap_atomic(ap.pages[0]);
2886 		err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2887 					    transferred, in_iovs + out_iovs,
2888 					    (flags & FUSE_IOCTL_COMPAT) != 0);
2889 		kunmap_atomic(vaddr);
2890 		if (err)
2891 			goto out;
2892 
2893 		in_iov = iov_page;
2894 		out_iov = in_iov + in_iovs;
2895 
2896 		err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs);
2897 		if (err)
2898 			goto out;
2899 
2900 		err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs);
2901 		if (err)
2902 			goto out;
2903 
2904 		goto retry;
2905 	}
2906 
2907 	err = -EIO;
2908 	if (transferred > inarg.out_size)
2909 		goto out;
2910 
2911 	err = -EFAULT;
2912 	iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2913 	for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2914 		c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2915 		if (c != PAGE_SIZE && iov_iter_count(&ii))
2916 			goto out;
2917 	}
2918 	err = 0;
2919  out:
2920 	free_page((unsigned long) iov_page);
2921 	while (ap.num_pages)
2922 		__free_page(ap.pages[--ap.num_pages]);
2923 	kfree(ap.pages);
2924 
2925 	return err ? err : outarg.result;
2926 }
2927 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2928 
fuse_ioctl_common(struct file * file,unsigned int cmd,unsigned long arg,unsigned int flags)2929 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2930 		       unsigned long arg, unsigned int flags)
2931 {
2932 	struct inode *inode = file_inode(file);
2933 	struct fuse_conn *fc = get_fuse_conn(inode);
2934 
2935 	if (!fuse_allow_current_process(fc))
2936 		return -EACCES;
2937 
2938 	if (fuse_is_bad(inode))
2939 		return -EIO;
2940 
2941 	return fuse_do_ioctl(file, cmd, arg, flags);
2942 }
2943 
fuse_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2944 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2945 			    unsigned long arg)
2946 {
2947 	return fuse_ioctl_common(file, cmd, arg, 0);
2948 }
2949 
fuse_file_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2950 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2951 				   unsigned long arg)
2952 {
2953 	return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2954 }
2955 
2956 /*
2957  * All files which have been polled are linked to RB tree
2958  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2959  * find the matching one.
2960  */
fuse_find_polled_node(struct fuse_conn * fc,u64 kh,struct rb_node ** parent_out)2961 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2962 					      struct rb_node **parent_out)
2963 {
2964 	struct rb_node **link = &fc->polled_files.rb_node;
2965 	struct rb_node *last = NULL;
2966 
2967 	while (*link) {
2968 		struct fuse_file *ff;
2969 
2970 		last = *link;
2971 		ff = rb_entry(last, struct fuse_file, polled_node);
2972 
2973 		if (kh < ff->kh)
2974 			link = &last->rb_left;
2975 		else if (kh > ff->kh)
2976 			link = &last->rb_right;
2977 		else
2978 			return link;
2979 	}
2980 
2981 	if (parent_out)
2982 		*parent_out = last;
2983 	return link;
2984 }
2985 
2986 /*
2987  * The file is about to be polled.  Make sure it's on the polled_files
2988  * RB tree.  Note that files once added to the polled_files tree are
2989  * not removed before the file is released.  This is because a file
2990  * polled once is likely to be polled again.
2991  */
fuse_register_polled_file(struct fuse_conn * fc,struct fuse_file * ff)2992 static void fuse_register_polled_file(struct fuse_conn *fc,
2993 				      struct fuse_file *ff)
2994 {
2995 	spin_lock(&fc->lock);
2996 	if (RB_EMPTY_NODE(&ff->polled_node)) {
2997 		struct rb_node **link, *parent;
2998 
2999 		link = fuse_find_polled_node(fc, ff->kh, &parent);
3000 		BUG_ON(*link);
3001 		rb_link_node(&ff->polled_node, parent, link);
3002 		rb_insert_color(&ff->polled_node, &fc->polled_files);
3003 	}
3004 	spin_unlock(&fc->lock);
3005 }
3006 
fuse_file_poll(struct file * file,poll_table * wait)3007 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
3008 {
3009 	struct fuse_file *ff = file->private_data;
3010 	struct fuse_conn *fc = ff->fc;
3011 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
3012 	struct fuse_poll_out outarg;
3013 	FUSE_ARGS(args);
3014 	int err;
3015 
3016 	if (fc->no_poll)
3017 		return DEFAULT_POLLMASK;
3018 
3019 	poll_wait(file, &ff->poll_wait, wait);
3020 	inarg.events = mangle_poll(poll_requested_events(wait));
3021 
3022 	/*
3023 	 * Ask for notification iff there's someone waiting for it.
3024 	 * The client may ignore the flag and always notify.
3025 	 */
3026 	if (waitqueue_active(&ff->poll_wait)) {
3027 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
3028 		fuse_register_polled_file(fc, ff);
3029 	}
3030 
3031 	args.opcode = FUSE_POLL;
3032 	args.nodeid = ff->nodeid;
3033 	args.in_numargs = 1;
3034 	args.in_args[0].size = sizeof(inarg);
3035 	args.in_args[0].value = &inarg;
3036 	args.out_numargs = 1;
3037 	args.out_args[0].size = sizeof(outarg);
3038 	args.out_args[0].value = &outarg;
3039 	err = fuse_simple_request(fc, &args);
3040 
3041 	if (!err)
3042 		return demangle_poll(outarg.revents);
3043 	if (err == -ENOSYS) {
3044 		fc->no_poll = 1;
3045 		return DEFAULT_POLLMASK;
3046 	}
3047 	return EPOLLERR;
3048 }
3049 EXPORT_SYMBOL_GPL(fuse_file_poll);
3050 
3051 /*
3052  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
3053  * wakes up the poll waiters.
3054  */
fuse_notify_poll_wakeup(struct fuse_conn * fc,struct fuse_notify_poll_wakeup_out * outarg)3055 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3056 			    struct fuse_notify_poll_wakeup_out *outarg)
3057 {
3058 	u64 kh = outarg->kh;
3059 	struct rb_node **link;
3060 
3061 	spin_lock(&fc->lock);
3062 
3063 	link = fuse_find_polled_node(fc, kh, NULL);
3064 	if (*link) {
3065 		struct fuse_file *ff;
3066 
3067 		ff = rb_entry(*link, struct fuse_file, polled_node);
3068 		wake_up_interruptible_sync(&ff->poll_wait);
3069 	}
3070 
3071 	spin_unlock(&fc->lock);
3072 	return 0;
3073 }
3074 
fuse_do_truncate(struct file * file)3075 static void fuse_do_truncate(struct file *file)
3076 {
3077 	struct inode *inode = file->f_mapping->host;
3078 	struct iattr attr;
3079 
3080 	attr.ia_valid = ATTR_SIZE;
3081 	attr.ia_size = i_size_read(inode);
3082 
3083 	attr.ia_file = file;
3084 	attr.ia_valid |= ATTR_FILE;
3085 
3086 	fuse_do_setattr(file_dentry(file), &attr, file);
3087 }
3088 
fuse_round_up(struct fuse_conn * fc,loff_t off)3089 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3090 {
3091 	return round_up(off, fc->max_pages << PAGE_SHIFT);
3092 }
3093 
3094 static ssize_t
fuse_direct_IO(struct kiocb * iocb,struct iov_iter * iter)3095 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3096 {
3097 	DECLARE_COMPLETION_ONSTACK(wait);
3098 	ssize_t ret = 0;
3099 	struct file *file = iocb->ki_filp;
3100 	struct fuse_file *ff = file->private_data;
3101 	loff_t pos = 0;
3102 	struct inode *inode;
3103 	loff_t i_size;
3104 	size_t count = iov_iter_count(iter), shortened = 0;
3105 	loff_t offset = iocb->ki_pos;
3106 	struct fuse_io_priv *io;
3107 
3108 	pos = offset;
3109 	inode = file->f_mapping->host;
3110 	i_size = i_size_read(inode);
3111 
3112 	if ((iov_iter_rw(iter) == READ) && (offset >= i_size))
3113 		return 0;
3114 
3115 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3116 	if (!io)
3117 		return -ENOMEM;
3118 	spin_lock_init(&io->lock);
3119 	kref_init(&io->refcnt);
3120 	io->reqs = 1;
3121 	io->bytes = -1;
3122 	io->size = 0;
3123 	io->offset = offset;
3124 	io->write = (iov_iter_rw(iter) == WRITE);
3125 	io->err = 0;
3126 	/*
3127 	 * By default, we want to optimize all I/Os with async request
3128 	 * submission to the client filesystem if supported.
3129 	 */
3130 	io->async = ff->fc->async_dio;
3131 	io->iocb = iocb;
3132 	io->blocking = is_sync_kiocb(iocb);
3133 
3134 	/* optimization for short read */
3135 	if (io->async && !io->write && offset + count > i_size) {
3136 		iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset));
3137 		shortened = count - iov_iter_count(iter);
3138 		count -= shortened;
3139 	}
3140 
3141 	/*
3142 	 * We cannot asynchronously extend the size of a file.
3143 	 * In such case the aio will behave exactly like sync io.
3144 	 */
3145 	if ((offset + count > i_size) && io->write)
3146 		io->blocking = true;
3147 
3148 	if (io->async && io->blocking) {
3149 		/*
3150 		 * Additional reference to keep io around after
3151 		 * calling fuse_aio_complete()
3152 		 */
3153 		kref_get(&io->refcnt);
3154 		io->done = &wait;
3155 	}
3156 
3157 	if (iov_iter_rw(iter) == WRITE) {
3158 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3159 		fuse_invalidate_attr(inode);
3160 	} else {
3161 		ret = __fuse_direct_read(io, iter, &pos);
3162 	}
3163 	iov_iter_reexpand(iter, iov_iter_count(iter) + shortened);
3164 
3165 	if (io->async) {
3166 		bool blocking = io->blocking;
3167 
3168 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3169 
3170 		/* we have a non-extending, async request, so return */
3171 		if (!blocking)
3172 			return -EIOCBQUEUED;
3173 
3174 		wait_for_completion(&wait);
3175 		ret = fuse_get_res_by_io(io);
3176 	}
3177 
3178 	kref_put(&io->refcnt, fuse_io_release);
3179 
3180 	if (iov_iter_rw(iter) == WRITE) {
3181 		if (ret > 0)
3182 			fuse_write_update_size(inode, pos);
3183 		else if (ret < 0 && offset + count > i_size)
3184 			fuse_do_truncate(file);
3185 	}
3186 
3187 	return ret;
3188 }
3189 
fuse_writeback_range(struct inode * inode,loff_t start,loff_t end)3190 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3191 {
3192 	int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX);
3193 
3194 	if (!err)
3195 		fuse_sync_writes(inode);
3196 
3197 	return err;
3198 }
3199 
fuse_file_fallocate(struct file * file,int mode,loff_t offset,loff_t length)3200 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3201 				loff_t length)
3202 {
3203 	struct fuse_file *ff = file->private_data;
3204 	struct inode *inode = file_inode(file);
3205 	struct fuse_inode *fi = get_fuse_inode(inode);
3206 	struct fuse_conn *fc = ff->fc;
3207 	FUSE_ARGS(args);
3208 	struct fuse_fallocate_in inarg = {
3209 		.fh = ff->fh,
3210 		.offset = offset,
3211 		.length = length,
3212 		.mode = mode
3213 	};
3214 	int err;
3215 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3216 		return -EOPNOTSUPP;
3217 
3218 	if (fc->no_fallocate)
3219 		return -EOPNOTSUPP;
3220 
3221 	inode_lock(inode);
3222 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3223 		loff_t endbyte = offset + length - 1;
3224 
3225 		err = fuse_writeback_range(inode, offset, endbyte);
3226 		if (err)
3227 			goto out;
3228 	}
3229 
3230 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3231 	    offset + length > i_size_read(inode)) {
3232 		err = inode_newsize_ok(inode, offset + length);
3233 		if (err)
3234 			goto out;
3235 	}
3236 
3237 	err = file_modified(file);
3238 	if (err)
3239 		goto out;
3240 
3241 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3242 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3243 
3244 	args.opcode = FUSE_FALLOCATE;
3245 	args.nodeid = ff->nodeid;
3246 	args.in_numargs = 1;
3247 	args.in_args[0].size = sizeof(inarg);
3248 	args.in_args[0].value = &inarg;
3249 	err = fuse_simple_request(fc, &args);
3250 	if (err == -ENOSYS) {
3251 		fc->no_fallocate = 1;
3252 		err = -EOPNOTSUPP;
3253 	}
3254 	if (err)
3255 		goto out;
3256 
3257 	/* we could have extended the file */
3258 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3259 		bool changed = fuse_write_update_size(inode, offset + length);
3260 
3261 		if (changed && fc->writeback_cache)
3262 			file_update_time(file);
3263 	}
3264 
3265 	if (mode & FALLOC_FL_PUNCH_HOLE)
3266 		truncate_pagecache_range(inode, offset, offset + length - 1);
3267 
3268 	fuse_invalidate_attr(inode);
3269 
3270 out:
3271 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3272 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3273 
3274 	inode_unlock(inode);
3275 
3276 	return err;
3277 }
3278 
__fuse_copy_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len,unsigned int flags)3279 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3280 				      struct file *file_out, loff_t pos_out,
3281 				      size_t len, unsigned int flags)
3282 {
3283 	struct fuse_file *ff_in = file_in->private_data;
3284 	struct fuse_file *ff_out = file_out->private_data;
3285 	struct inode *inode_in = file_inode(file_in);
3286 	struct inode *inode_out = file_inode(file_out);
3287 	struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3288 	struct fuse_conn *fc = ff_in->fc;
3289 	FUSE_ARGS(args);
3290 	struct fuse_copy_file_range_in inarg = {
3291 		.fh_in = ff_in->fh,
3292 		.off_in = pos_in,
3293 		.nodeid_out = ff_out->nodeid,
3294 		.fh_out = ff_out->fh,
3295 		.off_out = pos_out,
3296 		.len = len,
3297 		.flags = flags
3298 	};
3299 	struct fuse_write_out outarg;
3300 	ssize_t err;
3301 	/* mark unstable when write-back is not used, and file_out gets
3302 	 * extended */
3303 	bool is_unstable = (!fc->writeback_cache) &&
3304 			   ((pos_out + len) > inode_out->i_size);
3305 
3306 	if (fc->no_copy_file_range)
3307 		return -EOPNOTSUPP;
3308 
3309 	if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3310 		return -EXDEV;
3311 
3312 	inode_lock(inode_in);
3313 	err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1);
3314 	inode_unlock(inode_in);
3315 	if (err)
3316 		return err;
3317 
3318 	inode_lock(inode_out);
3319 
3320 	err = file_modified(file_out);
3321 	if (err)
3322 		goto out;
3323 
3324 	/*
3325 	 * Write out dirty pages in the destination file before sending the COPY
3326 	 * request to userspace.  After the request is completed, truncate off
3327 	 * pages (including partial ones) from the cache that have been copied,
3328 	 * since these contain stale data at that point.
3329 	 *
3330 	 * This should be mostly correct, but if the COPY writes to partial
3331 	 * pages (at the start or end) and the parts not covered by the COPY are
3332 	 * written through a memory map after calling fuse_writeback_range(),
3333 	 * then these partial page modifications will be lost on truncation.
3334 	 *
3335 	 * It is unlikely that someone would rely on such mixed style
3336 	 * modifications.  Yet this does give less guarantees than if the
3337 	 * copying was performed with write(2).
3338 	 *
3339 	 * To fix this a i_mmap_sem style lock could be used to prevent new
3340 	 * faults while the copy is ongoing.
3341 	 */
3342 	err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1);
3343 	if (err)
3344 		goto out;
3345 
3346 	if (is_unstable)
3347 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3348 
3349 	args.opcode = FUSE_COPY_FILE_RANGE;
3350 	args.nodeid = ff_in->nodeid;
3351 	args.in_numargs = 1;
3352 	args.in_args[0].size = sizeof(inarg);
3353 	args.in_args[0].value = &inarg;
3354 	args.out_numargs = 1;
3355 	args.out_args[0].size = sizeof(outarg);
3356 	args.out_args[0].value = &outarg;
3357 	err = fuse_simple_request(fc, &args);
3358 	if (err == -ENOSYS) {
3359 		fc->no_copy_file_range = 1;
3360 		err = -EOPNOTSUPP;
3361 	}
3362 	if (err)
3363 		goto out;
3364 
3365 	truncate_inode_pages_range(inode_out->i_mapping,
3366 				   ALIGN_DOWN(pos_out, PAGE_SIZE),
3367 				   ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1);
3368 
3369 	if (fc->writeback_cache) {
3370 		fuse_write_update_size(inode_out, pos_out + outarg.size);
3371 		file_update_time(file_out);
3372 	}
3373 
3374 	fuse_invalidate_attr(inode_out);
3375 
3376 	err = outarg.size;
3377 out:
3378 	if (is_unstable)
3379 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3380 
3381 	inode_unlock(inode_out);
3382 	file_accessed(file_in);
3383 
3384 	return err;
3385 }
3386 
fuse_copy_file_range(struct file * src_file,loff_t src_off,struct file * dst_file,loff_t dst_off,size_t len,unsigned int flags)3387 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3388 				    struct file *dst_file, loff_t dst_off,
3389 				    size_t len, unsigned int flags)
3390 {
3391 	ssize_t ret;
3392 
3393 	ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3394 				     len, flags);
3395 
3396 	if (ret == -EOPNOTSUPP || ret == -EXDEV)
3397 		ret = generic_copy_file_range(src_file, src_off, dst_file,
3398 					      dst_off, len, flags);
3399 	return ret;
3400 }
3401 
3402 static const struct file_operations fuse_file_operations = {
3403 	.llseek		= fuse_file_llseek,
3404 	.read_iter	= fuse_file_read_iter,
3405 	.write_iter	= fuse_file_write_iter,
3406 	.mmap		= fuse_file_mmap,
3407 	.open		= fuse_open,
3408 	.flush		= fuse_flush,
3409 	.release	= fuse_release,
3410 	.fsync		= fuse_fsync,
3411 	.lock		= fuse_file_lock,
3412 	.flock		= fuse_file_flock,
3413 	.splice_read	= generic_file_splice_read,
3414 	.splice_write	= iter_file_splice_write,
3415 	.unlocked_ioctl	= fuse_file_ioctl,
3416 	.compat_ioctl	= fuse_file_compat_ioctl,
3417 	.poll		= fuse_file_poll,
3418 	.fallocate	= fuse_file_fallocate,
3419 	.copy_file_range = fuse_copy_file_range,
3420 };
3421 
3422 static const struct address_space_operations fuse_file_aops  = {
3423 	.readpage	= fuse_readpage,
3424 	.writepage	= fuse_writepage,
3425 	.writepages	= fuse_writepages,
3426 	.launder_page	= fuse_launder_page,
3427 	.readpages	= fuse_readpages,
3428 	.set_page_dirty	= __set_page_dirty_nobuffers,
3429 	.bmap		= fuse_bmap,
3430 	.direct_IO	= fuse_direct_IO,
3431 	.write_begin	= fuse_write_begin,
3432 	.write_end	= fuse_write_end,
3433 };
3434 
fuse_init_file_inode(struct inode * inode)3435 void fuse_init_file_inode(struct inode *inode)
3436 {
3437 	struct fuse_inode *fi = get_fuse_inode(inode);
3438 
3439 	inode->i_fop = &fuse_file_operations;
3440 	inode->i_data.a_ops = &fuse_file_aops;
3441 
3442 	INIT_LIST_HEAD(&fi->write_files);
3443 	INIT_LIST_HEAD(&fi->queued_writes);
3444 	fi->writectr = 0;
3445 	init_waitqueue_head(&fi->page_waitq);
3446 	INIT_LIST_HEAD(&fi->writepages);
3447 }
3448