• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 
23 #include "disasm.h"
24 
25 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
26 #define BPF_PROG_TYPE(_id, _name) \
27 	[_id] = & _name ## _verifier_ops,
28 #define BPF_MAP_TYPE(_id, _ops)
29 #include <linux/bpf_types.h>
30 #undef BPF_PROG_TYPE
31 #undef BPF_MAP_TYPE
32 };
33 
34 /* bpf_check() is a static code analyzer that walks eBPF program
35  * instruction by instruction and updates register/stack state.
36  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
37  *
38  * The first pass is depth-first-search to check that the program is a DAG.
39  * It rejects the following programs:
40  * - larger than BPF_MAXINSNS insns
41  * - if loop is present (detected via back-edge)
42  * - unreachable insns exist (shouldn't be a forest. program = one function)
43  * - out of bounds or malformed jumps
44  * The second pass is all possible path descent from the 1st insn.
45  * Since it's analyzing all pathes through the program, the length of the
46  * analysis is limited to 64k insn, which may be hit even if total number of
47  * insn is less then 4K, but there are too many branches that change stack/regs.
48  * Number of 'branches to be analyzed' is limited to 1k
49  *
50  * On entry to each instruction, each register has a type, and the instruction
51  * changes the types of the registers depending on instruction semantics.
52  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
53  * copied to R1.
54  *
55  * All registers are 64-bit.
56  * R0 - return register
57  * R1-R5 argument passing registers
58  * R6-R9 callee saved registers
59  * R10 - frame pointer read-only
60  *
61  * At the start of BPF program the register R1 contains a pointer to bpf_context
62  * and has type PTR_TO_CTX.
63  *
64  * Verifier tracks arithmetic operations on pointers in case:
65  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
66  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
67  * 1st insn copies R10 (which has FRAME_PTR) type into R1
68  * and 2nd arithmetic instruction is pattern matched to recognize
69  * that it wants to construct a pointer to some element within stack.
70  * So after 2nd insn, the register R1 has type PTR_TO_STACK
71  * (and -20 constant is saved for further stack bounds checking).
72  * Meaning that this reg is a pointer to stack plus known immediate constant.
73  *
74  * Most of the time the registers have SCALAR_VALUE type, which
75  * means the register has some value, but it's not a valid pointer.
76  * (like pointer plus pointer becomes SCALAR_VALUE type)
77  *
78  * When verifier sees load or store instructions the type of base register
79  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
80  * four pointer types recognized by check_mem_access() function.
81  *
82  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
83  * and the range of [ptr, ptr + map's value_size) is accessible.
84  *
85  * registers used to pass values to function calls are checked against
86  * function argument constraints.
87  *
88  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
89  * It means that the register type passed to this function must be
90  * PTR_TO_STACK and it will be used inside the function as
91  * 'pointer to map element key'
92  *
93  * For example the argument constraints for bpf_map_lookup_elem():
94  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
95  *   .arg1_type = ARG_CONST_MAP_PTR,
96  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
97  *
98  * ret_type says that this function returns 'pointer to map elem value or null'
99  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
100  * 2nd argument should be a pointer to stack, which will be used inside
101  * the helper function as a pointer to map element key.
102  *
103  * On the kernel side the helper function looks like:
104  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
105  * {
106  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
107  *    void *key = (void *) (unsigned long) r2;
108  *    void *value;
109  *
110  *    here kernel can access 'key' and 'map' pointers safely, knowing that
111  *    [key, key + map->key_size) bytes are valid and were initialized on
112  *    the stack of eBPF program.
113  * }
114  *
115  * Corresponding eBPF program may look like:
116  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
117  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
118  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
119  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
120  * here verifier looks at prototype of map_lookup_elem() and sees:
121  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
122  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
123  *
124  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
125  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
126  * and were initialized prior to this call.
127  * If it's ok, then verifier allows this BPF_CALL insn and looks at
128  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
129  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
130  * returns ether pointer to map value or NULL.
131  *
132  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
133  * insn, the register holding that pointer in the true branch changes state to
134  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
135  * branch. See check_cond_jmp_op().
136  *
137  * After the call R0 is set to return type of the function and registers R1-R5
138  * are set to NOT_INIT to indicate that they are no longer readable.
139  *
140  * The following reference types represent a potential reference to a kernel
141  * resource which, after first being allocated, must be checked and freed by
142  * the BPF program:
143  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
144  *
145  * When the verifier sees a helper call return a reference type, it allocates a
146  * pointer id for the reference and stores it in the current function state.
147  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
148  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
149  * passes through a NULL-check conditional. For the branch wherein the state is
150  * changed to CONST_IMM, the verifier releases the reference.
151  *
152  * For each helper function that allocates a reference, such as
153  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
154  * bpf_sk_release(). When a reference type passes into the release function,
155  * the verifier also releases the reference. If any unchecked or unreleased
156  * reference remains at the end of the program, the verifier rejects it.
157  */
158 
159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
160 struct bpf_verifier_stack_elem {
161 	/* verifer state is 'st'
162 	 * before processing instruction 'insn_idx'
163 	 * and after processing instruction 'prev_insn_idx'
164 	 */
165 	struct bpf_verifier_state st;
166 	int insn_idx;
167 	int prev_insn_idx;
168 	struct bpf_verifier_stack_elem *next;
169 };
170 
171 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
172 #define BPF_COMPLEXITY_LIMIT_STATES	64
173 
174 #define BPF_MAP_PTR_UNPRIV	1UL
175 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
176 					  POISON_POINTER_DELTA))
177 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
178 
bpf_map_ptr_poisoned(const struct bpf_insn_aux_data * aux)179 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
180 {
181 	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
182 }
183 
bpf_map_ptr_unpriv(const struct bpf_insn_aux_data * aux)184 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
185 {
186 	return aux->map_state & BPF_MAP_PTR_UNPRIV;
187 }
188 
bpf_map_ptr_store(struct bpf_insn_aux_data * aux,const struct bpf_map * map,bool unpriv)189 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
190 			      const struct bpf_map *map, bool unpriv)
191 {
192 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
193 	unpriv |= bpf_map_ptr_unpriv(aux);
194 	aux->map_state = (unsigned long)map |
195 			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
196 }
197 
198 struct bpf_call_arg_meta {
199 	struct bpf_map *map_ptr;
200 	bool raw_mode;
201 	bool pkt_access;
202 	int regno;
203 	int access_size;
204 	u64 msize_max_value;
205 	int ref_obj_id;
206 	int func_id;
207 };
208 
209 static DEFINE_MUTEX(bpf_verifier_lock);
210 
211 static const struct bpf_line_info *
find_linfo(const struct bpf_verifier_env * env,u32 insn_off)212 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
213 {
214 	const struct bpf_line_info *linfo;
215 	const struct bpf_prog *prog;
216 	u32 i, nr_linfo;
217 
218 	prog = env->prog;
219 	nr_linfo = prog->aux->nr_linfo;
220 
221 	if (!nr_linfo || insn_off >= prog->len)
222 		return NULL;
223 
224 	linfo = prog->aux->linfo;
225 	for (i = 1; i < nr_linfo; i++)
226 		if (insn_off < linfo[i].insn_off)
227 			break;
228 
229 	return &linfo[i - 1];
230 }
231 
bpf_verifier_vlog(struct bpf_verifier_log * log,const char * fmt,va_list args)232 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
233 		       va_list args)
234 {
235 	unsigned int n;
236 
237 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
238 
239 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
240 		  "verifier log line truncated - local buffer too short\n");
241 
242 	n = min(log->len_total - log->len_used - 1, n);
243 	log->kbuf[n] = '\0';
244 
245 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
246 		log->len_used += n;
247 	else
248 		log->ubuf = NULL;
249 }
250 
251 /* log_level controls verbosity level of eBPF verifier.
252  * bpf_verifier_log_write() is used to dump the verification trace to the log,
253  * so the user can figure out what's wrong with the program
254  */
bpf_verifier_log_write(struct bpf_verifier_env * env,const char * fmt,...)255 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
256 					   const char *fmt, ...)
257 {
258 	va_list args;
259 
260 	if (!bpf_verifier_log_needed(&env->log))
261 		return;
262 
263 	va_start(args, fmt);
264 	bpf_verifier_vlog(&env->log, fmt, args);
265 	va_end(args);
266 }
267 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
268 
verbose(void * private_data,const char * fmt,...)269 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
270 {
271 	struct bpf_verifier_env *env = private_data;
272 	va_list args;
273 
274 	if (!bpf_verifier_log_needed(&env->log))
275 		return;
276 
277 	va_start(args, fmt);
278 	bpf_verifier_vlog(&env->log, fmt, args);
279 	va_end(args);
280 }
281 
ltrim(const char * s)282 static const char *ltrim(const char *s)
283 {
284 	while (isspace(*s))
285 		s++;
286 
287 	return s;
288 }
289 
verbose_linfo(struct bpf_verifier_env * env,u32 insn_off,const char * prefix_fmt,...)290 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
291 					 u32 insn_off,
292 					 const char *prefix_fmt, ...)
293 {
294 	const struct bpf_line_info *linfo;
295 
296 	if (!bpf_verifier_log_needed(&env->log))
297 		return;
298 
299 	linfo = find_linfo(env, insn_off);
300 	if (!linfo || linfo == env->prev_linfo)
301 		return;
302 
303 	if (prefix_fmt) {
304 		va_list args;
305 
306 		va_start(args, prefix_fmt);
307 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
308 		va_end(args);
309 	}
310 
311 	verbose(env, "%s\n",
312 		ltrim(btf_name_by_offset(env->prog->aux->btf,
313 					 linfo->line_off)));
314 
315 	env->prev_linfo = linfo;
316 }
317 
type_is_pkt_pointer(enum bpf_reg_type type)318 static bool type_is_pkt_pointer(enum bpf_reg_type type)
319 {
320 	return type == PTR_TO_PACKET ||
321 	       type == PTR_TO_PACKET_META;
322 }
323 
type_is_sk_pointer(enum bpf_reg_type type)324 static bool type_is_sk_pointer(enum bpf_reg_type type)
325 {
326 	return type == PTR_TO_SOCKET ||
327 		type == PTR_TO_SOCK_COMMON ||
328 		type == PTR_TO_TCP_SOCK ||
329 		type == PTR_TO_XDP_SOCK;
330 }
331 
reg_type_may_be_null(enum bpf_reg_type type)332 static bool reg_type_may_be_null(enum bpf_reg_type type)
333 {
334 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
335 	       type == PTR_TO_SOCKET_OR_NULL ||
336 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
337 	       type == PTR_TO_TCP_SOCK_OR_NULL;
338 }
339 
reg_may_point_to_spin_lock(const struct bpf_reg_state * reg)340 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
341 {
342 	return reg->type == PTR_TO_MAP_VALUE &&
343 		map_value_has_spin_lock(reg->map_ptr);
344 }
345 
reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)346 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
347 {
348 	return type == PTR_TO_SOCKET ||
349 		type == PTR_TO_SOCKET_OR_NULL ||
350 		type == PTR_TO_TCP_SOCK ||
351 		type == PTR_TO_TCP_SOCK_OR_NULL;
352 }
353 
arg_type_may_be_refcounted(enum bpf_arg_type type)354 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
355 {
356 	return type == ARG_PTR_TO_SOCK_COMMON;
357 }
358 
359 /* Determine whether the function releases some resources allocated by another
360  * function call. The first reference type argument will be assumed to be
361  * released by release_reference().
362  */
is_release_function(enum bpf_func_id func_id)363 static bool is_release_function(enum bpf_func_id func_id)
364 {
365 	return func_id == BPF_FUNC_sk_release;
366 }
367 
is_acquire_function(enum bpf_func_id func_id)368 static bool is_acquire_function(enum bpf_func_id func_id)
369 {
370 	return func_id == BPF_FUNC_sk_lookup_tcp ||
371 		func_id == BPF_FUNC_sk_lookup_udp ||
372 		func_id == BPF_FUNC_skc_lookup_tcp;
373 }
374 
is_ptr_cast_function(enum bpf_func_id func_id)375 static bool is_ptr_cast_function(enum bpf_func_id func_id)
376 {
377 	return func_id == BPF_FUNC_tcp_sock ||
378 		func_id == BPF_FUNC_sk_fullsock;
379 }
380 
381 /* string representation of 'enum bpf_reg_type' */
382 static const char * const reg_type_str[] = {
383 	[NOT_INIT]		= "?",
384 	[SCALAR_VALUE]		= "inv",
385 	[PTR_TO_CTX]		= "ctx",
386 	[CONST_PTR_TO_MAP]	= "map_ptr",
387 	[PTR_TO_MAP_VALUE]	= "map_value",
388 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
389 	[PTR_TO_STACK]		= "fp",
390 	[PTR_TO_PACKET]		= "pkt",
391 	[PTR_TO_PACKET_META]	= "pkt_meta",
392 	[PTR_TO_PACKET_END]	= "pkt_end",
393 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
394 	[PTR_TO_SOCKET]		= "sock",
395 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
396 	[PTR_TO_SOCK_COMMON]	= "sock_common",
397 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
398 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
399 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
400 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
401 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
402 };
403 
404 static char slot_type_char[] = {
405 	[STACK_INVALID]	= '?',
406 	[STACK_SPILL]	= 'r',
407 	[STACK_MISC]	= 'm',
408 	[STACK_ZERO]	= '0',
409 };
410 
print_liveness(struct bpf_verifier_env * env,enum bpf_reg_liveness live)411 static void print_liveness(struct bpf_verifier_env *env,
412 			   enum bpf_reg_liveness live)
413 {
414 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
415 	    verbose(env, "_");
416 	if (live & REG_LIVE_READ)
417 		verbose(env, "r");
418 	if (live & REG_LIVE_WRITTEN)
419 		verbose(env, "w");
420 	if (live & REG_LIVE_DONE)
421 		verbose(env, "D");
422 }
423 
func(struct bpf_verifier_env * env,const struct bpf_reg_state * reg)424 static struct bpf_func_state *func(struct bpf_verifier_env *env,
425 				   const struct bpf_reg_state *reg)
426 {
427 	struct bpf_verifier_state *cur = env->cur_state;
428 
429 	return cur->frame[reg->frameno];
430 }
431 
print_verifier_state(struct bpf_verifier_env * env,const struct bpf_func_state * state)432 static void print_verifier_state(struct bpf_verifier_env *env,
433 				 const struct bpf_func_state *state)
434 {
435 	const struct bpf_reg_state *reg;
436 	enum bpf_reg_type t;
437 	int i;
438 
439 	if (state->frameno)
440 		verbose(env, " frame%d:", state->frameno);
441 	for (i = 0; i < MAX_BPF_REG; i++) {
442 		reg = &state->regs[i];
443 		t = reg->type;
444 		if (t == NOT_INIT)
445 			continue;
446 		verbose(env, " R%d", i);
447 		print_liveness(env, reg->live);
448 		verbose(env, "=%s", reg_type_str[t]);
449 		if (t == SCALAR_VALUE && reg->precise)
450 			verbose(env, "P");
451 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
452 		    tnum_is_const(reg->var_off)) {
453 			/* reg->off should be 0 for SCALAR_VALUE */
454 			verbose(env, "%lld", reg->var_off.value + reg->off);
455 		} else {
456 			verbose(env, "(id=%d", reg->id);
457 			if (reg_type_may_be_refcounted_or_null(t))
458 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
459 			if (t != SCALAR_VALUE)
460 				verbose(env, ",off=%d", reg->off);
461 			if (type_is_pkt_pointer(t))
462 				verbose(env, ",r=%d", reg->range);
463 			else if (t == CONST_PTR_TO_MAP ||
464 				 t == PTR_TO_MAP_VALUE ||
465 				 t == PTR_TO_MAP_VALUE_OR_NULL)
466 				verbose(env, ",ks=%d,vs=%d",
467 					reg->map_ptr->key_size,
468 					reg->map_ptr->value_size);
469 			if (tnum_is_const(reg->var_off)) {
470 				/* Typically an immediate SCALAR_VALUE, but
471 				 * could be a pointer whose offset is too big
472 				 * for reg->off
473 				 */
474 				verbose(env, ",imm=%llx", reg->var_off.value);
475 			} else {
476 				if (reg->smin_value != reg->umin_value &&
477 				    reg->smin_value != S64_MIN)
478 					verbose(env, ",smin_value=%lld",
479 						(long long)reg->smin_value);
480 				if (reg->smax_value != reg->umax_value &&
481 				    reg->smax_value != S64_MAX)
482 					verbose(env, ",smax_value=%lld",
483 						(long long)reg->smax_value);
484 				if (reg->umin_value != 0)
485 					verbose(env, ",umin_value=%llu",
486 						(unsigned long long)reg->umin_value);
487 				if (reg->umax_value != U64_MAX)
488 					verbose(env, ",umax_value=%llu",
489 						(unsigned long long)reg->umax_value);
490 				if (!tnum_is_unknown(reg->var_off)) {
491 					char tn_buf[48];
492 
493 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
494 					verbose(env, ",var_off=%s", tn_buf);
495 				}
496 			}
497 			verbose(env, ")");
498 		}
499 	}
500 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
501 		char types_buf[BPF_REG_SIZE + 1];
502 		bool valid = false;
503 		int j;
504 
505 		for (j = 0; j < BPF_REG_SIZE; j++) {
506 			if (state->stack[i].slot_type[j] != STACK_INVALID)
507 				valid = true;
508 			types_buf[j] = slot_type_char[
509 					state->stack[i].slot_type[j]];
510 		}
511 		types_buf[BPF_REG_SIZE] = 0;
512 		if (!valid)
513 			continue;
514 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
515 		print_liveness(env, state->stack[i].spilled_ptr.live);
516 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
517 			reg = &state->stack[i].spilled_ptr;
518 			t = reg->type;
519 			verbose(env, "=%s", reg_type_str[t]);
520 			if (t == SCALAR_VALUE && reg->precise)
521 				verbose(env, "P");
522 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
523 				verbose(env, "%lld", reg->var_off.value + reg->off);
524 		} else {
525 			verbose(env, "=%s", types_buf);
526 		}
527 	}
528 	if (state->acquired_refs && state->refs[0].id) {
529 		verbose(env, " refs=%d", state->refs[0].id);
530 		for (i = 1; i < state->acquired_refs; i++)
531 			if (state->refs[i].id)
532 				verbose(env, ",%d", state->refs[i].id);
533 	}
534 	verbose(env, "\n");
535 }
536 
537 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
538 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
539 			       const struct bpf_func_state *src)	\
540 {									\
541 	if (!src->FIELD)						\
542 		return 0;						\
543 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
544 		/* internal bug, make state invalid to reject the program */ \
545 		memset(dst, 0, sizeof(*dst));				\
546 		return -EFAULT;						\
547 	}								\
548 	memcpy(dst->FIELD, src->FIELD,					\
549 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
550 	return 0;							\
551 }
552 /* copy_reference_state() */
553 COPY_STATE_FN(reference, acquired_refs, refs, 1)
554 /* copy_stack_state() */
COPY_STATE_FN(stack,allocated_stack,stack,BPF_REG_SIZE)555 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
556 #undef COPY_STATE_FN
557 
558 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
559 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
560 				  bool copy_old)			\
561 {									\
562 	u32 old_size = state->COUNT;					\
563 	struct bpf_##NAME##_state *new_##FIELD;				\
564 	int slot = size / SIZE;						\
565 									\
566 	if (size <= old_size || !size) {				\
567 		if (copy_old)						\
568 			return 0;					\
569 		state->COUNT = slot * SIZE;				\
570 		if (!size && old_size) {				\
571 			kfree(state->FIELD);				\
572 			state->FIELD = NULL;				\
573 		}							\
574 		return 0;						\
575 	}								\
576 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
577 				    GFP_KERNEL);			\
578 	if (!new_##FIELD)						\
579 		return -ENOMEM;						\
580 	if (copy_old) {							\
581 		if (state->FIELD)					\
582 			memcpy(new_##FIELD, state->FIELD,		\
583 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
584 		memset(new_##FIELD + old_size / SIZE, 0,		\
585 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
586 	}								\
587 	state->COUNT = slot * SIZE;					\
588 	kfree(state->FIELD);						\
589 	state->FIELD = new_##FIELD;					\
590 	return 0;							\
591 }
592 /* realloc_reference_state() */
593 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
594 /* realloc_stack_state() */
595 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
596 #undef REALLOC_STATE_FN
597 
598 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
599  * make it consume minimal amount of memory. check_stack_write() access from
600  * the program calls into realloc_func_state() to grow the stack size.
601  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
602  * which realloc_stack_state() copies over. It points to previous
603  * bpf_verifier_state which is never reallocated.
604  */
605 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
606 			      int refs_size, bool copy_old)
607 {
608 	int err = realloc_reference_state(state, refs_size, copy_old);
609 	if (err)
610 		return err;
611 	return realloc_stack_state(state, stack_size, copy_old);
612 }
613 
614 /* Acquire a pointer id from the env and update the state->refs to include
615  * this new pointer reference.
616  * On success, returns a valid pointer id to associate with the register
617  * On failure, returns a negative errno.
618  */
acquire_reference_state(struct bpf_verifier_env * env,int insn_idx)619 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
620 {
621 	struct bpf_func_state *state = cur_func(env);
622 	int new_ofs = state->acquired_refs;
623 	int id, err;
624 
625 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
626 	if (err)
627 		return err;
628 	id = ++env->id_gen;
629 	state->refs[new_ofs].id = id;
630 	state->refs[new_ofs].insn_idx = insn_idx;
631 
632 	return id;
633 }
634 
635 /* release function corresponding to acquire_reference_state(). Idempotent. */
release_reference_state(struct bpf_func_state * state,int ptr_id)636 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
637 {
638 	int i, last_idx;
639 
640 	last_idx = state->acquired_refs - 1;
641 	for (i = 0; i < state->acquired_refs; i++) {
642 		if (state->refs[i].id == ptr_id) {
643 			if (last_idx && i != last_idx)
644 				memcpy(&state->refs[i], &state->refs[last_idx],
645 				       sizeof(*state->refs));
646 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
647 			state->acquired_refs--;
648 			return 0;
649 		}
650 	}
651 	return -EINVAL;
652 }
653 
transfer_reference_state(struct bpf_func_state * dst,struct bpf_func_state * src)654 static int transfer_reference_state(struct bpf_func_state *dst,
655 				    struct bpf_func_state *src)
656 {
657 	int err = realloc_reference_state(dst, src->acquired_refs, false);
658 	if (err)
659 		return err;
660 	err = copy_reference_state(dst, src);
661 	if (err)
662 		return err;
663 	return 0;
664 }
665 
free_func_state(struct bpf_func_state * state)666 static void free_func_state(struct bpf_func_state *state)
667 {
668 	if (!state)
669 		return;
670 	kfree(state->refs);
671 	kfree(state->stack);
672 	kfree(state);
673 }
674 
clear_jmp_history(struct bpf_verifier_state * state)675 static void clear_jmp_history(struct bpf_verifier_state *state)
676 {
677 	kfree(state->jmp_history);
678 	state->jmp_history = NULL;
679 	state->jmp_history_cnt = 0;
680 }
681 
free_verifier_state(struct bpf_verifier_state * state,bool free_self)682 static void free_verifier_state(struct bpf_verifier_state *state,
683 				bool free_self)
684 {
685 	int i;
686 
687 	for (i = 0; i <= state->curframe; i++) {
688 		free_func_state(state->frame[i]);
689 		state->frame[i] = NULL;
690 	}
691 	clear_jmp_history(state);
692 	if (free_self)
693 		kfree(state);
694 }
695 
696 /* copy verifier state from src to dst growing dst stack space
697  * when necessary to accommodate larger src stack
698  */
copy_func_state(struct bpf_func_state * dst,const struct bpf_func_state * src)699 static int copy_func_state(struct bpf_func_state *dst,
700 			   const struct bpf_func_state *src)
701 {
702 	int err;
703 
704 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
705 				 false);
706 	if (err)
707 		return err;
708 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
709 	err = copy_reference_state(dst, src);
710 	if (err)
711 		return err;
712 	return copy_stack_state(dst, src);
713 }
714 
copy_verifier_state(struct bpf_verifier_state * dst_state,const struct bpf_verifier_state * src)715 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
716 			       const struct bpf_verifier_state *src)
717 {
718 	struct bpf_func_state *dst;
719 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
720 	int i, err;
721 
722 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
723 		kfree(dst_state->jmp_history);
724 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
725 		if (!dst_state->jmp_history)
726 			return -ENOMEM;
727 	}
728 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
729 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
730 
731 	/* if dst has more stack frames then src frame, free them */
732 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
733 		free_func_state(dst_state->frame[i]);
734 		dst_state->frame[i] = NULL;
735 	}
736 	dst_state->speculative = src->speculative;
737 	dst_state->curframe = src->curframe;
738 	dst_state->active_spin_lock = src->active_spin_lock;
739 	dst_state->branches = src->branches;
740 	dst_state->parent = src->parent;
741 	dst_state->first_insn_idx = src->first_insn_idx;
742 	dst_state->last_insn_idx = src->last_insn_idx;
743 	for (i = 0; i <= src->curframe; i++) {
744 		dst = dst_state->frame[i];
745 		if (!dst) {
746 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
747 			if (!dst)
748 				return -ENOMEM;
749 			dst_state->frame[i] = dst;
750 		}
751 		err = copy_func_state(dst, src->frame[i]);
752 		if (err)
753 			return err;
754 	}
755 	return 0;
756 }
757 
update_branch_counts(struct bpf_verifier_env * env,struct bpf_verifier_state * st)758 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
759 {
760 	while (st) {
761 		u32 br = --st->branches;
762 
763 		/* WARN_ON(br > 1) technically makes sense here,
764 		 * but see comment in push_stack(), hence:
765 		 */
766 		WARN_ONCE((int)br < 0,
767 			  "BUG update_branch_counts:branches_to_explore=%d\n",
768 			  br);
769 		if (br)
770 			break;
771 		st = st->parent;
772 	}
773 }
774 
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx,int * insn_idx)775 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
776 		     int *insn_idx)
777 {
778 	struct bpf_verifier_state *cur = env->cur_state;
779 	struct bpf_verifier_stack_elem *elem, *head = env->head;
780 	int err;
781 
782 	if (env->head == NULL)
783 		return -ENOENT;
784 
785 	if (cur) {
786 		err = copy_verifier_state(cur, &head->st);
787 		if (err)
788 			return err;
789 	}
790 	if (insn_idx)
791 		*insn_idx = head->insn_idx;
792 	if (prev_insn_idx)
793 		*prev_insn_idx = head->prev_insn_idx;
794 	elem = head->next;
795 	free_verifier_state(&head->st, false);
796 	kfree(head);
797 	env->head = elem;
798 	env->stack_size--;
799 	return 0;
800 }
801 
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx,bool speculative)802 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
803 					     int insn_idx, int prev_insn_idx,
804 					     bool speculative)
805 {
806 	struct bpf_verifier_state *cur = env->cur_state;
807 	struct bpf_verifier_stack_elem *elem;
808 	int err;
809 
810 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
811 	if (!elem)
812 		goto err;
813 
814 	elem->insn_idx = insn_idx;
815 	elem->prev_insn_idx = prev_insn_idx;
816 	elem->next = env->head;
817 	env->head = elem;
818 	env->stack_size++;
819 	err = copy_verifier_state(&elem->st, cur);
820 	if (err)
821 		goto err;
822 	elem->st.speculative |= speculative;
823 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
824 		verbose(env, "The sequence of %d jumps is too complex.\n",
825 			env->stack_size);
826 		goto err;
827 	}
828 	if (elem->st.parent) {
829 		++elem->st.parent->branches;
830 		/* WARN_ON(branches > 2) technically makes sense here,
831 		 * but
832 		 * 1. speculative states will bump 'branches' for non-branch
833 		 * instructions
834 		 * 2. is_state_visited() heuristics may decide not to create
835 		 * a new state for a sequence of branches and all such current
836 		 * and cloned states will be pointing to a single parent state
837 		 * which might have large 'branches' count.
838 		 */
839 	}
840 	return &elem->st;
841 err:
842 	free_verifier_state(env->cur_state, true);
843 	env->cur_state = NULL;
844 	/* pop all elements and return */
845 	while (!pop_stack(env, NULL, NULL));
846 	return NULL;
847 }
848 
849 #define CALLER_SAVED_REGS 6
850 static const int caller_saved[CALLER_SAVED_REGS] = {
851 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
852 };
853 
854 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
855 				struct bpf_reg_state *reg);
856 
857 /* Mark the unknown part of a register (variable offset or scalar value) as
858  * known to have the value @imm.
859  */
__mark_reg_known(struct bpf_reg_state * reg,u64 imm)860 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
861 {
862 	/* Clear id, off, and union(map_ptr, range) */
863 	memset(((u8 *)reg) + sizeof(reg->type), 0,
864 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
865 	reg->var_off = tnum_const(imm);
866 	reg->smin_value = (s64)imm;
867 	reg->smax_value = (s64)imm;
868 	reg->umin_value = imm;
869 	reg->umax_value = imm;
870 }
871 
872 /* Mark the 'variable offset' part of a register as zero.  This should be
873  * used only on registers holding a pointer type.
874  */
__mark_reg_known_zero(struct bpf_reg_state * reg)875 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
876 {
877 	__mark_reg_known(reg, 0);
878 }
879 
__mark_reg_const_zero(struct bpf_reg_state * reg)880 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
881 {
882 	__mark_reg_known(reg, 0);
883 	reg->type = SCALAR_VALUE;
884 }
885 
mark_reg_known_zero(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)886 static void mark_reg_known_zero(struct bpf_verifier_env *env,
887 				struct bpf_reg_state *regs, u32 regno)
888 {
889 	if (WARN_ON(regno >= MAX_BPF_REG)) {
890 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
891 		/* Something bad happened, let's kill all regs */
892 		for (regno = 0; regno < MAX_BPF_REG; regno++)
893 			__mark_reg_not_init(env, regs + regno);
894 		return;
895 	}
896 	__mark_reg_known_zero(regs + regno);
897 }
898 
reg_is_pkt_pointer(const struct bpf_reg_state * reg)899 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
900 {
901 	return type_is_pkt_pointer(reg->type);
902 }
903 
reg_is_pkt_pointer_any(const struct bpf_reg_state * reg)904 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
905 {
906 	return reg_is_pkt_pointer(reg) ||
907 	       reg->type == PTR_TO_PACKET_END;
908 }
909 
910 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
reg_is_init_pkt_pointer(const struct bpf_reg_state * reg,enum bpf_reg_type which)911 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
912 				    enum bpf_reg_type which)
913 {
914 	/* The register can already have a range from prior markings.
915 	 * This is fine as long as it hasn't been advanced from its
916 	 * origin.
917 	 */
918 	return reg->type == which &&
919 	       reg->id == 0 &&
920 	       reg->off == 0 &&
921 	       tnum_equals_const(reg->var_off, 0);
922 }
923 
924 /* Attempts to improve min/max values based on var_off information */
__update_reg_bounds(struct bpf_reg_state * reg)925 static void __update_reg_bounds(struct bpf_reg_state *reg)
926 {
927 	/* min signed is max(sign bit) | min(other bits) */
928 	reg->smin_value = max_t(s64, reg->smin_value,
929 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
930 	/* max signed is min(sign bit) | max(other bits) */
931 	reg->smax_value = min_t(s64, reg->smax_value,
932 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
933 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
934 	reg->umax_value = min(reg->umax_value,
935 			      reg->var_off.value | reg->var_off.mask);
936 }
937 
938 /* Uses signed min/max values to inform unsigned, and vice-versa */
__reg_deduce_bounds(struct bpf_reg_state * reg)939 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
940 {
941 	/* Learn sign from signed bounds.
942 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
943 	 * are the same, so combine.  This works even in the negative case, e.g.
944 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
945 	 */
946 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
947 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
948 							  reg->umin_value);
949 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
950 							  reg->umax_value);
951 		return;
952 	}
953 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
954 	 * boundary, so we must be careful.
955 	 */
956 	if ((s64)reg->umax_value >= 0) {
957 		/* Positive.  We can't learn anything from the smin, but smax
958 		 * is positive, hence safe.
959 		 */
960 		reg->smin_value = reg->umin_value;
961 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
962 							  reg->umax_value);
963 	} else if ((s64)reg->umin_value < 0) {
964 		/* Negative.  We can't learn anything from the smax, but smin
965 		 * is negative, hence safe.
966 		 */
967 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
968 							  reg->umin_value);
969 		reg->smax_value = reg->umax_value;
970 	}
971 }
972 
973 /* Attempts to improve var_off based on unsigned min/max information */
__reg_bound_offset(struct bpf_reg_state * reg)974 static void __reg_bound_offset(struct bpf_reg_state *reg)
975 {
976 	reg->var_off = tnum_intersect(reg->var_off,
977 				      tnum_range(reg->umin_value,
978 						 reg->umax_value));
979 }
980 
981 /* Reset the min/max bounds of a register */
__mark_reg_unbounded(struct bpf_reg_state * reg)982 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
983 {
984 	reg->smin_value = S64_MIN;
985 	reg->smax_value = S64_MAX;
986 	reg->umin_value = 0;
987 	reg->umax_value = U64_MAX;
988 }
989 
990 /* Mark a register as having a completely unknown (scalar) value. */
__mark_reg_unknown(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)991 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
992 			       struct bpf_reg_state *reg)
993 {
994 	/*
995 	 * Clear type, id, off, and union(map_ptr, range) and
996 	 * padding between 'type' and union
997 	 */
998 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
999 	reg->type = SCALAR_VALUE;
1000 	reg->var_off = tnum_unknown;
1001 	reg->frameno = 0;
1002 	reg->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ?
1003 		       true : false;
1004 	__mark_reg_unbounded(reg);
1005 }
1006 
mark_reg_unknown(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1007 static void mark_reg_unknown(struct bpf_verifier_env *env,
1008 			     struct bpf_reg_state *regs, u32 regno)
1009 {
1010 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1011 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1012 		/* Something bad happened, let's kill all regs except FP */
1013 		for (regno = 0; regno < BPF_REG_FP; regno++)
1014 			__mark_reg_not_init(env, regs + regno);
1015 		return;
1016 	}
1017 	__mark_reg_unknown(env, regs + regno);
1018 }
1019 
__mark_reg_not_init(const struct bpf_verifier_env * env,struct bpf_reg_state * reg)1020 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1021 				struct bpf_reg_state *reg)
1022 {
1023 	__mark_reg_unknown(env, reg);
1024 	reg->type = NOT_INIT;
1025 }
1026 
mark_reg_not_init(struct bpf_verifier_env * env,struct bpf_reg_state * regs,u32 regno)1027 static void mark_reg_not_init(struct bpf_verifier_env *env,
1028 			      struct bpf_reg_state *regs, u32 regno)
1029 {
1030 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1031 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1032 		/* Something bad happened, let's kill all regs except FP */
1033 		for (regno = 0; regno < BPF_REG_FP; regno++)
1034 			__mark_reg_not_init(env, regs + regno);
1035 		return;
1036 	}
1037 	__mark_reg_not_init(env, regs + regno);
1038 }
1039 
1040 #define DEF_NOT_SUBREG	(0)
init_reg_state(struct bpf_verifier_env * env,struct bpf_func_state * state)1041 static void init_reg_state(struct bpf_verifier_env *env,
1042 			   struct bpf_func_state *state)
1043 {
1044 	struct bpf_reg_state *regs = state->regs;
1045 	int i;
1046 
1047 	for (i = 0; i < MAX_BPF_REG; i++) {
1048 		mark_reg_not_init(env, regs, i);
1049 		regs[i].live = REG_LIVE_NONE;
1050 		regs[i].parent = NULL;
1051 		regs[i].subreg_def = DEF_NOT_SUBREG;
1052 	}
1053 
1054 	/* frame pointer */
1055 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1056 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1057 	regs[BPF_REG_FP].frameno = state->frameno;
1058 
1059 	/* 1st arg to a function */
1060 	regs[BPF_REG_1].type = PTR_TO_CTX;
1061 	mark_reg_known_zero(env, regs, BPF_REG_1);
1062 }
1063 
1064 #define BPF_MAIN_FUNC (-1)
init_func_state(struct bpf_verifier_env * env,struct bpf_func_state * state,int callsite,int frameno,int subprogno)1065 static void init_func_state(struct bpf_verifier_env *env,
1066 			    struct bpf_func_state *state,
1067 			    int callsite, int frameno, int subprogno)
1068 {
1069 	state->callsite = callsite;
1070 	state->frameno = frameno;
1071 	state->subprogno = subprogno;
1072 	init_reg_state(env, state);
1073 }
1074 
1075 enum reg_arg_type {
1076 	SRC_OP,		/* register is used as source operand */
1077 	DST_OP,		/* register is used as destination operand */
1078 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1079 };
1080 
cmp_subprogs(const void * a,const void * b)1081 static int cmp_subprogs(const void *a, const void *b)
1082 {
1083 	return ((struct bpf_subprog_info *)a)->start -
1084 	       ((struct bpf_subprog_info *)b)->start;
1085 }
1086 
find_subprog(struct bpf_verifier_env * env,int off)1087 static int find_subprog(struct bpf_verifier_env *env, int off)
1088 {
1089 	struct bpf_subprog_info *p;
1090 
1091 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1092 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1093 	if (!p)
1094 		return -ENOENT;
1095 	return p - env->subprog_info;
1096 
1097 }
1098 
add_subprog(struct bpf_verifier_env * env,int off)1099 static int add_subprog(struct bpf_verifier_env *env, int off)
1100 {
1101 	int insn_cnt = env->prog->len;
1102 	int ret;
1103 
1104 	if (off >= insn_cnt || off < 0) {
1105 		verbose(env, "call to invalid destination\n");
1106 		return -EINVAL;
1107 	}
1108 	ret = find_subprog(env, off);
1109 	if (ret >= 0)
1110 		return 0;
1111 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1112 		verbose(env, "too many subprograms\n");
1113 		return -E2BIG;
1114 	}
1115 	env->subprog_info[env->subprog_cnt++].start = off;
1116 	sort(env->subprog_info, env->subprog_cnt,
1117 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1118 	return 0;
1119 }
1120 
check_subprogs(struct bpf_verifier_env * env)1121 static int check_subprogs(struct bpf_verifier_env *env)
1122 {
1123 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1124 	struct bpf_subprog_info *subprog = env->subprog_info;
1125 	struct bpf_insn *insn = env->prog->insnsi;
1126 	int insn_cnt = env->prog->len;
1127 
1128 	/* Add entry function. */
1129 	ret = add_subprog(env, 0);
1130 	if (ret < 0)
1131 		return ret;
1132 
1133 	/* determine subprog starts. The end is one before the next starts */
1134 	for (i = 0; i < insn_cnt; i++) {
1135 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1136 			continue;
1137 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1138 			continue;
1139 		if (!env->allow_ptr_leaks) {
1140 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1141 			return -EPERM;
1142 		}
1143 		ret = add_subprog(env, i + insn[i].imm + 1);
1144 		if (ret < 0)
1145 			return ret;
1146 	}
1147 
1148 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1149 	 * logic. 'subprog_cnt' should not be increased.
1150 	 */
1151 	subprog[env->subprog_cnt].start = insn_cnt;
1152 
1153 	if (env->log.level & BPF_LOG_LEVEL2)
1154 		for (i = 0; i < env->subprog_cnt; i++)
1155 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1156 
1157 	/* now check that all jumps are within the same subprog */
1158 	subprog_start = subprog[cur_subprog].start;
1159 	subprog_end = subprog[cur_subprog + 1].start;
1160 	for (i = 0; i < insn_cnt; i++) {
1161 		u8 code = insn[i].code;
1162 
1163 		if (code == (BPF_JMP | BPF_CALL) &&
1164 		    insn[i].imm == BPF_FUNC_tail_call &&
1165 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1166 			subprog[cur_subprog].has_tail_call = true;
1167 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1168 			goto next;
1169 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1170 			goto next;
1171 		off = i + insn[i].off + 1;
1172 		if (off < subprog_start || off >= subprog_end) {
1173 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1174 			return -EINVAL;
1175 		}
1176 next:
1177 		if (i == subprog_end - 1) {
1178 			/* to avoid fall-through from one subprog into another
1179 			 * the last insn of the subprog should be either exit
1180 			 * or unconditional jump back
1181 			 */
1182 			if (code != (BPF_JMP | BPF_EXIT) &&
1183 			    code != (BPF_JMP | BPF_JA)) {
1184 				verbose(env, "last insn is not an exit or jmp\n");
1185 				return -EINVAL;
1186 			}
1187 			subprog_start = subprog_end;
1188 			cur_subprog++;
1189 			if (cur_subprog < env->subprog_cnt)
1190 				subprog_end = subprog[cur_subprog + 1].start;
1191 		}
1192 	}
1193 	return 0;
1194 }
1195 
1196 /* Parentage chain of this register (or stack slot) should take care of all
1197  * issues like callee-saved registers, stack slot allocation time, etc.
1198  */
mark_reg_read(struct bpf_verifier_env * env,const struct bpf_reg_state * state,struct bpf_reg_state * parent,u8 flag)1199 static int mark_reg_read(struct bpf_verifier_env *env,
1200 			 const struct bpf_reg_state *state,
1201 			 struct bpf_reg_state *parent, u8 flag)
1202 {
1203 	bool writes = parent == state->parent; /* Observe write marks */
1204 	int cnt = 0;
1205 
1206 	while (parent) {
1207 		/* if read wasn't screened by an earlier write ... */
1208 		if (writes && state->live & REG_LIVE_WRITTEN)
1209 			break;
1210 		if (parent->live & REG_LIVE_DONE) {
1211 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1212 				reg_type_str[parent->type],
1213 				parent->var_off.value, parent->off);
1214 			return -EFAULT;
1215 		}
1216 		/* The first condition is more likely to be true than the
1217 		 * second, checked it first.
1218 		 */
1219 		if ((parent->live & REG_LIVE_READ) == flag ||
1220 		    parent->live & REG_LIVE_READ64)
1221 			/* The parentage chain never changes and
1222 			 * this parent was already marked as LIVE_READ.
1223 			 * There is no need to keep walking the chain again and
1224 			 * keep re-marking all parents as LIVE_READ.
1225 			 * This case happens when the same register is read
1226 			 * multiple times without writes into it in-between.
1227 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1228 			 * then no need to set the weak REG_LIVE_READ32.
1229 			 */
1230 			break;
1231 		/* ... then we depend on parent's value */
1232 		parent->live |= flag;
1233 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1234 		if (flag == REG_LIVE_READ64)
1235 			parent->live &= ~REG_LIVE_READ32;
1236 		state = parent;
1237 		parent = state->parent;
1238 		writes = true;
1239 		cnt++;
1240 	}
1241 
1242 	if (env->longest_mark_read_walk < cnt)
1243 		env->longest_mark_read_walk = cnt;
1244 	return 0;
1245 }
1246 
1247 /* This function is supposed to be used by the following 32-bit optimization
1248  * code only. It returns TRUE if the source or destination register operates
1249  * on 64-bit, otherwise return FALSE.
1250  */
is_reg64(struct bpf_verifier_env * env,struct bpf_insn * insn,u32 regno,struct bpf_reg_state * reg,enum reg_arg_type t)1251 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1252 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1253 {
1254 	u8 code, class, op;
1255 
1256 	code = insn->code;
1257 	class = BPF_CLASS(code);
1258 	op = BPF_OP(code);
1259 	if (class == BPF_JMP) {
1260 		/* BPF_EXIT for "main" will reach here. Return TRUE
1261 		 * conservatively.
1262 		 */
1263 		if (op == BPF_EXIT)
1264 			return true;
1265 		if (op == BPF_CALL) {
1266 			/* BPF to BPF call will reach here because of marking
1267 			 * caller saved clobber with DST_OP_NO_MARK for which we
1268 			 * don't care the register def because they are anyway
1269 			 * marked as NOT_INIT already.
1270 			 */
1271 			if (insn->src_reg == BPF_PSEUDO_CALL)
1272 				return false;
1273 			/* Helper call will reach here because of arg type
1274 			 * check, conservatively return TRUE.
1275 			 */
1276 			if (t == SRC_OP)
1277 				return true;
1278 
1279 			return false;
1280 		}
1281 	}
1282 
1283 	if (class == BPF_ALU64 || class == BPF_JMP ||
1284 	    /* BPF_END always use BPF_ALU class. */
1285 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1286 		return true;
1287 
1288 	if (class == BPF_ALU || class == BPF_JMP32)
1289 		return false;
1290 
1291 	if (class == BPF_LDX) {
1292 		if (t != SRC_OP)
1293 			return BPF_SIZE(code) == BPF_DW;
1294 		/* LDX source must be ptr. */
1295 		return true;
1296 	}
1297 
1298 	if (class == BPF_STX) {
1299 		if (reg->type != SCALAR_VALUE)
1300 			return true;
1301 		return BPF_SIZE(code) == BPF_DW;
1302 	}
1303 
1304 	if (class == BPF_LD) {
1305 		u8 mode = BPF_MODE(code);
1306 
1307 		/* LD_IMM64 */
1308 		if (mode == BPF_IMM)
1309 			return true;
1310 
1311 		/* Both LD_IND and LD_ABS return 32-bit data. */
1312 		if (t != SRC_OP)
1313 			return  false;
1314 
1315 		/* Implicit ctx ptr. */
1316 		if (regno == BPF_REG_6)
1317 			return true;
1318 
1319 		/* Explicit source could be any width. */
1320 		return true;
1321 	}
1322 
1323 	if (class == BPF_ST)
1324 		/* The only source register for BPF_ST is a ptr. */
1325 		return true;
1326 
1327 	/* Conservatively return true at default. */
1328 	return true;
1329 }
1330 
1331 /* Return TRUE if INSN doesn't have explicit value define. */
insn_no_def(struct bpf_insn * insn)1332 static bool insn_no_def(struct bpf_insn *insn)
1333 {
1334 	u8 class = BPF_CLASS(insn->code);
1335 
1336 	return (class == BPF_JMP || class == BPF_JMP32 ||
1337 		class == BPF_STX || class == BPF_ST);
1338 }
1339 
1340 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
insn_has_def32(struct bpf_verifier_env * env,struct bpf_insn * insn)1341 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1342 {
1343 	if (insn_no_def(insn))
1344 		return false;
1345 
1346 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1347 }
1348 
mark_insn_zext(struct bpf_verifier_env * env,struct bpf_reg_state * reg)1349 static void mark_insn_zext(struct bpf_verifier_env *env,
1350 			   struct bpf_reg_state *reg)
1351 {
1352 	s32 def_idx = reg->subreg_def;
1353 
1354 	if (def_idx == DEF_NOT_SUBREG)
1355 		return;
1356 
1357 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1358 	/* The dst will be zero extended, so won't be sub-register anymore. */
1359 	reg->subreg_def = DEF_NOT_SUBREG;
1360 }
1361 
check_reg_arg(struct bpf_verifier_env * env,u32 regno,enum reg_arg_type t)1362 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1363 			 enum reg_arg_type t)
1364 {
1365 	struct bpf_verifier_state *vstate = env->cur_state;
1366 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1367 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1368 	struct bpf_reg_state *reg, *regs = state->regs;
1369 	bool rw64;
1370 
1371 	if (regno >= MAX_BPF_REG) {
1372 		verbose(env, "R%d is invalid\n", regno);
1373 		return -EINVAL;
1374 	}
1375 
1376 	reg = &regs[regno];
1377 	rw64 = is_reg64(env, insn, regno, reg, t);
1378 	if (t == SRC_OP) {
1379 		/* check whether register used as source operand can be read */
1380 		if (reg->type == NOT_INIT) {
1381 			verbose(env, "R%d !read_ok\n", regno);
1382 			return -EACCES;
1383 		}
1384 		/* We don't need to worry about FP liveness because it's read-only */
1385 		if (regno == BPF_REG_FP)
1386 			return 0;
1387 
1388 		if (rw64)
1389 			mark_insn_zext(env, reg);
1390 
1391 		return mark_reg_read(env, reg, reg->parent,
1392 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1393 	} else {
1394 		/* check whether register used as dest operand can be written to */
1395 		if (regno == BPF_REG_FP) {
1396 			verbose(env, "frame pointer is read only\n");
1397 			return -EACCES;
1398 		}
1399 		reg->live |= REG_LIVE_WRITTEN;
1400 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1401 		if (t == DST_OP)
1402 			mark_reg_unknown(env, regs, regno);
1403 	}
1404 	return 0;
1405 }
1406 
1407 /* for any branch, call, exit record the history of jmps in the given state */
push_jmp_history(struct bpf_verifier_env * env,struct bpf_verifier_state * cur)1408 static int push_jmp_history(struct bpf_verifier_env *env,
1409 			    struct bpf_verifier_state *cur)
1410 {
1411 	u32 cnt = cur->jmp_history_cnt;
1412 	struct bpf_idx_pair *p;
1413 
1414 	cnt++;
1415 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1416 	if (!p)
1417 		return -ENOMEM;
1418 	p[cnt - 1].idx = env->insn_idx;
1419 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1420 	cur->jmp_history = p;
1421 	cur->jmp_history_cnt = cnt;
1422 	return 0;
1423 }
1424 
1425 /* Backtrack one insn at a time. If idx is not at the top of recorded
1426  * history then previous instruction came from straight line execution.
1427  */
get_prev_insn_idx(struct bpf_verifier_state * st,int i,u32 * history)1428 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1429 			     u32 *history)
1430 {
1431 	u32 cnt = *history;
1432 
1433 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1434 		i = st->jmp_history[cnt - 1].prev_idx;
1435 		(*history)--;
1436 	} else {
1437 		i--;
1438 	}
1439 	return i;
1440 }
1441 
1442 /* For given verifier state backtrack_insn() is called from the last insn to
1443  * the first insn. Its purpose is to compute a bitmask of registers and
1444  * stack slots that needs precision in the parent verifier state.
1445  */
backtrack_insn(struct bpf_verifier_env * env,int idx,u32 * reg_mask,u64 * stack_mask)1446 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1447 			  u32 *reg_mask, u64 *stack_mask)
1448 {
1449 	const struct bpf_insn_cbs cbs = {
1450 		.cb_print	= verbose,
1451 		.private_data	= env,
1452 	};
1453 	struct bpf_insn *insn = env->prog->insnsi + idx;
1454 	u8 class = BPF_CLASS(insn->code);
1455 	u8 opcode = BPF_OP(insn->code);
1456 	u8 mode = BPF_MODE(insn->code);
1457 	u32 dreg = 1u << insn->dst_reg;
1458 	u32 sreg = 1u << insn->src_reg;
1459 	u32 spi;
1460 
1461 	if (insn->code == 0)
1462 		return 0;
1463 	if (env->log.level & BPF_LOG_LEVEL) {
1464 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1465 		verbose(env, "%d: ", idx);
1466 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1467 	}
1468 
1469 	if (class == BPF_ALU || class == BPF_ALU64) {
1470 		if (!(*reg_mask & dreg))
1471 			return 0;
1472 		if (opcode == BPF_END || opcode == BPF_NEG) {
1473 			/* sreg is reserved and unused
1474 			 * dreg still need precision before this insn
1475 			 */
1476 			return 0;
1477 		} else if (opcode == BPF_MOV) {
1478 			if (BPF_SRC(insn->code) == BPF_X) {
1479 				/* dreg = sreg
1480 				 * dreg needs precision after this insn
1481 				 * sreg needs precision before this insn
1482 				 */
1483 				*reg_mask &= ~dreg;
1484 				*reg_mask |= sreg;
1485 			} else {
1486 				/* dreg = K
1487 				 * dreg needs precision after this insn.
1488 				 * Corresponding register is already marked
1489 				 * as precise=true in this verifier state.
1490 				 * No further markings in parent are necessary
1491 				 */
1492 				*reg_mask &= ~dreg;
1493 			}
1494 		} else {
1495 			if (BPF_SRC(insn->code) == BPF_X) {
1496 				/* dreg += sreg
1497 				 * both dreg and sreg need precision
1498 				 * before this insn
1499 				 */
1500 				*reg_mask |= sreg;
1501 			} /* else dreg += K
1502 			   * dreg still needs precision before this insn
1503 			   */
1504 		}
1505 	} else if (class == BPF_LDX) {
1506 		if (!(*reg_mask & dreg))
1507 			return 0;
1508 		*reg_mask &= ~dreg;
1509 
1510 		/* scalars can only be spilled into stack w/o losing precision.
1511 		 * Load from any other memory can be zero extended.
1512 		 * The desire to keep that precision is already indicated
1513 		 * by 'precise' mark in corresponding register of this state.
1514 		 * No further tracking necessary.
1515 		 */
1516 		if (insn->src_reg != BPF_REG_FP)
1517 			return 0;
1518 		if (BPF_SIZE(insn->code) != BPF_DW)
1519 			return 0;
1520 
1521 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1522 		 * that [fp - off] slot contains scalar that needs to be
1523 		 * tracked with precision
1524 		 */
1525 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1526 		if (spi >= 64) {
1527 			verbose(env, "BUG spi %d\n", spi);
1528 			WARN_ONCE(1, "verifier backtracking bug");
1529 			return -EFAULT;
1530 		}
1531 		*stack_mask |= 1ull << spi;
1532 	} else if (class == BPF_STX || class == BPF_ST) {
1533 		if (*reg_mask & dreg)
1534 			/* stx & st shouldn't be using _scalar_ dst_reg
1535 			 * to access memory. It means backtracking
1536 			 * encountered a case of pointer subtraction.
1537 			 */
1538 			return -ENOTSUPP;
1539 		/* scalars can only be spilled into stack */
1540 		if (insn->dst_reg != BPF_REG_FP)
1541 			return 0;
1542 		if (BPF_SIZE(insn->code) != BPF_DW)
1543 			return 0;
1544 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1545 		if (spi >= 64) {
1546 			verbose(env, "BUG spi %d\n", spi);
1547 			WARN_ONCE(1, "verifier backtracking bug");
1548 			return -EFAULT;
1549 		}
1550 		if (!(*stack_mask & (1ull << spi)))
1551 			return 0;
1552 		*stack_mask &= ~(1ull << spi);
1553 		if (class == BPF_STX)
1554 			*reg_mask |= sreg;
1555 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1556 		if (opcode == BPF_CALL) {
1557 			if (insn->src_reg == BPF_PSEUDO_CALL)
1558 				return -ENOTSUPP;
1559 			/* regular helper call sets R0 */
1560 			*reg_mask &= ~1;
1561 			if (*reg_mask & 0x3f) {
1562 				/* if backtracing was looking for registers R1-R5
1563 				 * they should have been found already.
1564 				 */
1565 				verbose(env, "BUG regs %x\n", *reg_mask);
1566 				WARN_ONCE(1, "verifier backtracking bug");
1567 				return -EFAULT;
1568 			}
1569 		} else if (opcode == BPF_EXIT) {
1570 			return -ENOTSUPP;
1571 		} else if (BPF_SRC(insn->code) == BPF_X) {
1572 			if (!(*reg_mask & (dreg | sreg)))
1573 				return 0;
1574 			/* dreg <cond> sreg
1575 			 * Both dreg and sreg need precision before
1576 			 * this insn. If only sreg was marked precise
1577 			 * before it would be equally necessary to
1578 			 * propagate it to dreg.
1579 			 */
1580 			*reg_mask |= (sreg | dreg);
1581 			 /* else dreg <cond> K
1582 			  * Only dreg still needs precision before
1583 			  * this insn, so for the K-based conditional
1584 			  * there is nothing new to be marked.
1585 			  */
1586 		}
1587 	} else if (class == BPF_LD) {
1588 		if (!(*reg_mask & dreg))
1589 			return 0;
1590 		*reg_mask &= ~dreg;
1591 		/* It's ld_imm64 or ld_abs or ld_ind.
1592 		 * For ld_imm64 no further tracking of precision
1593 		 * into parent is necessary
1594 		 */
1595 		if (mode == BPF_IND || mode == BPF_ABS)
1596 			/* to be analyzed */
1597 			return -ENOTSUPP;
1598 	}
1599 	return 0;
1600 }
1601 
1602 /* the scalar precision tracking algorithm:
1603  * . at the start all registers have precise=false.
1604  * . scalar ranges are tracked as normal through alu and jmp insns.
1605  * . once precise value of the scalar register is used in:
1606  *   .  ptr + scalar alu
1607  *   . if (scalar cond K|scalar)
1608  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1609  *   backtrack through the verifier states and mark all registers and
1610  *   stack slots with spilled constants that these scalar regisers
1611  *   should be precise.
1612  * . during state pruning two registers (or spilled stack slots)
1613  *   are equivalent if both are not precise.
1614  *
1615  * Note the verifier cannot simply walk register parentage chain,
1616  * since many different registers and stack slots could have been
1617  * used to compute single precise scalar.
1618  *
1619  * The approach of starting with precise=true for all registers and then
1620  * backtrack to mark a register as not precise when the verifier detects
1621  * that program doesn't care about specific value (e.g., when helper
1622  * takes register as ARG_ANYTHING parameter) is not safe.
1623  *
1624  * It's ok to walk single parentage chain of the verifier states.
1625  * It's possible that this backtracking will go all the way till 1st insn.
1626  * All other branches will be explored for needing precision later.
1627  *
1628  * The backtracking needs to deal with cases like:
1629  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1630  * r9 -= r8
1631  * r5 = r9
1632  * if r5 > 0x79f goto pc+7
1633  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1634  * r5 += 1
1635  * ...
1636  * call bpf_perf_event_output#25
1637  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1638  *
1639  * and this case:
1640  * r6 = 1
1641  * call foo // uses callee's r6 inside to compute r0
1642  * r0 += r6
1643  * if r0 == 0 goto
1644  *
1645  * to track above reg_mask/stack_mask needs to be independent for each frame.
1646  *
1647  * Also if parent's curframe > frame where backtracking started,
1648  * the verifier need to mark registers in both frames, otherwise callees
1649  * may incorrectly prune callers. This is similar to
1650  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1651  *
1652  * For now backtracking falls back into conservative marking.
1653  */
mark_all_scalars_precise(struct bpf_verifier_env * env,struct bpf_verifier_state * st)1654 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1655 				     struct bpf_verifier_state *st)
1656 {
1657 	struct bpf_func_state *func;
1658 	struct bpf_reg_state *reg;
1659 	int i, j;
1660 
1661 	/* big hammer: mark all scalars precise in this path.
1662 	 * pop_stack may still get !precise scalars.
1663 	 */
1664 	for (; st; st = st->parent)
1665 		for (i = 0; i <= st->curframe; i++) {
1666 			func = st->frame[i];
1667 			for (j = 0; j < BPF_REG_FP; j++) {
1668 				reg = &func->regs[j];
1669 				if (reg->type != SCALAR_VALUE)
1670 					continue;
1671 				reg->precise = true;
1672 			}
1673 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1674 				if (func->stack[j].slot_type[0] != STACK_SPILL)
1675 					continue;
1676 				reg = &func->stack[j].spilled_ptr;
1677 				if (reg->type != SCALAR_VALUE)
1678 					continue;
1679 				reg->precise = true;
1680 			}
1681 		}
1682 }
1683 
__mark_chain_precision(struct bpf_verifier_env * env,int regno,int spi)1684 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1685 				  int spi)
1686 {
1687 	struct bpf_verifier_state *st = env->cur_state;
1688 	int first_idx = st->first_insn_idx;
1689 	int last_idx = env->insn_idx;
1690 	struct bpf_func_state *func;
1691 	struct bpf_reg_state *reg;
1692 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1693 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
1694 	bool skip_first = true;
1695 	bool new_marks = false;
1696 	int i, err;
1697 
1698 	if (!env->allow_ptr_leaks)
1699 		/* backtracking is root only for now */
1700 		return 0;
1701 
1702 	func = st->frame[st->curframe];
1703 	if (regno >= 0) {
1704 		reg = &func->regs[regno];
1705 		if (reg->type != SCALAR_VALUE) {
1706 			WARN_ONCE(1, "backtracing misuse");
1707 			return -EFAULT;
1708 		}
1709 		if (!reg->precise)
1710 			new_marks = true;
1711 		else
1712 			reg_mask = 0;
1713 		reg->precise = true;
1714 	}
1715 
1716 	while (spi >= 0) {
1717 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
1718 			stack_mask = 0;
1719 			break;
1720 		}
1721 		reg = &func->stack[spi].spilled_ptr;
1722 		if (reg->type != SCALAR_VALUE) {
1723 			stack_mask = 0;
1724 			break;
1725 		}
1726 		if (!reg->precise)
1727 			new_marks = true;
1728 		else
1729 			stack_mask = 0;
1730 		reg->precise = true;
1731 		break;
1732 	}
1733 
1734 	if (!new_marks)
1735 		return 0;
1736 	if (!reg_mask && !stack_mask)
1737 		return 0;
1738 	for (;;) {
1739 		DECLARE_BITMAP(mask, 64);
1740 		u32 history = st->jmp_history_cnt;
1741 
1742 		if (env->log.level & BPF_LOG_LEVEL)
1743 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
1744 		for (i = last_idx;;) {
1745 			if (skip_first) {
1746 				err = 0;
1747 				skip_first = false;
1748 			} else {
1749 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
1750 			}
1751 			if (err == -ENOTSUPP) {
1752 				mark_all_scalars_precise(env, st);
1753 				return 0;
1754 			} else if (err) {
1755 				return err;
1756 			}
1757 			if (!reg_mask && !stack_mask)
1758 				/* Found assignment(s) into tracked register in this state.
1759 				 * Since this state is already marked, just return.
1760 				 * Nothing to be tracked further in the parent state.
1761 				 */
1762 				return 0;
1763 			if (i == first_idx)
1764 				break;
1765 			i = get_prev_insn_idx(st, i, &history);
1766 			if (i >= env->prog->len) {
1767 				/* This can happen if backtracking reached insn 0
1768 				 * and there are still reg_mask or stack_mask
1769 				 * to backtrack.
1770 				 * It means the backtracking missed the spot where
1771 				 * particular register was initialized with a constant.
1772 				 */
1773 				verbose(env, "BUG backtracking idx %d\n", i);
1774 				WARN_ONCE(1, "verifier backtracking bug");
1775 				return -EFAULT;
1776 			}
1777 		}
1778 		st = st->parent;
1779 		if (!st)
1780 			break;
1781 
1782 		new_marks = false;
1783 		func = st->frame[st->curframe];
1784 		bitmap_from_u64(mask, reg_mask);
1785 		for_each_set_bit(i, mask, 32) {
1786 			reg = &func->regs[i];
1787 			if (reg->type != SCALAR_VALUE) {
1788 				reg_mask &= ~(1u << i);
1789 				continue;
1790 			}
1791 			if (!reg->precise)
1792 				new_marks = true;
1793 			reg->precise = true;
1794 		}
1795 
1796 		bitmap_from_u64(mask, stack_mask);
1797 		for_each_set_bit(i, mask, 64) {
1798 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
1799 				/* the sequence of instructions:
1800 				 * 2: (bf) r3 = r10
1801 				 * 3: (7b) *(u64 *)(r3 -8) = r0
1802 				 * 4: (79) r4 = *(u64 *)(r10 -8)
1803 				 * doesn't contain jmps. It's backtracked
1804 				 * as a single block.
1805 				 * During backtracking insn 3 is not recognized as
1806 				 * stack access, so at the end of backtracking
1807 				 * stack slot fp-8 is still marked in stack_mask.
1808 				 * However the parent state may not have accessed
1809 				 * fp-8 and it's "unallocated" stack space.
1810 				 * In such case fallback to conservative.
1811 				 */
1812 				mark_all_scalars_precise(env, st);
1813 				return 0;
1814 			}
1815 
1816 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
1817 				stack_mask &= ~(1ull << i);
1818 				continue;
1819 			}
1820 			reg = &func->stack[i].spilled_ptr;
1821 			if (reg->type != SCALAR_VALUE) {
1822 				stack_mask &= ~(1ull << i);
1823 				continue;
1824 			}
1825 			if (!reg->precise)
1826 				new_marks = true;
1827 			reg->precise = true;
1828 		}
1829 		if (env->log.level & BPF_LOG_LEVEL) {
1830 			print_verifier_state(env, func);
1831 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
1832 				new_marks ? "didn't have" : "already had",
1833 				reg_mask, stack_mask);
1834 		}
1835 
1836 		if (!reg_mask && !stack_mask)
1837 			break;
1838 		if (!new_marks)
1839 			break;
1840 
1841 		last_idx = st->last_insn_idx;
1842 		first_idx = st->first_insn_idx;
1843 	}
1844 	return 0;
1845 }
1846 
mark_chain_precision(struct bpf_verifier_env * env,int regno)1847 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
1848 {
1849 	return __mark_chain_precision(env, regno, -1);
1850 }
1851 
mark_chain_precision_stack(struct bpf_verifier_env * env,int spi)1852 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
1853 {
1854 	return __mark_chain_precision(env, -1, spi);
1855 }
1856 
is_spillable_regtype(enum bpf_reg_type type)1857 static bool is_spillable_regtype(enum bpf_reg_type type)
1858 {
1859 	switch (type) {
1860 	case PTR_TO_MAP_VALUE:
1861 	case PTR_TO_MAP_VALUE_OR_NULL:
1862 	case PTR_TO_STACK:
1863 	case PTR_TO_CTX:
1864 	case PTR_TO_PACKET:
1865 	case PTR_TO_PACKET_META:
1866 	case PTR_TO_PACKET_END:
1867 	case PTR_TO_FLOW_KEYS:
1868 	case CONST_PTR_TO_MAP:
1869 	case PTR_TO_SOCKET:
1870 	case PTR_TO_SOCKET_OR_NULL:
1871 	case PTR_TO_SOCK_COMMON:
1872 	case PTR_TO_SOCK_COMMON_OR_NULL:
1873 	case PTR_TO_TCP_SOCK:
1874 	case PTR_TO_TCP_SOCK_OR_NULL:
1875 	case PTR_TO_XDP_SOCK:
1876 		return true;
1877 	default:
1878 		return false;
1879 	}
1880 }
1881 
1882 /* Does this register contain a constant zero? */
register_is_null(struct bpf_reg_state * reg)1883 static bool register_is_null(struct bpf_reg_state *reg)
1884 {
1885 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1886 }
1887 
register_is_const(struct bpf_reg_state * reg)1888 static bool register_is_const(struct bpf_reg_state *reg)
1889 {
1890 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
1891 }
1892 
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)1893 static bool __is_pointer_value(bool allow_ptr_leaks,
1894 			       const struct bpf_reg_state *reg)
1895 {
1896 	if (allow_ptr_leaks)
1897 		return false;
1898 
1899 	return reg->type != SCALAR_VALUE;
1900 }
1901 
save_register_state(struct bpf_func_state * state,int spi,struct bpf_reg_state * reg)1902 static void save_register_state(struct bpf_func_state *state,
1903 				int spi, struct bpf_reg_state *reg)
1904 {
1905 	int i;
1906 
1907 	state->stack[spi].spilled_ptr = *reg;
1908 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1909 
1910 	for (i = 0; i < BPF_REG_SIZE; i++)
1911 		state->stack[spi].slot_type[i] = STACK_SPILL;
1912 }
1913 
1914 /* check_stack_read/write functions track spill/fill of registers,
1915  * stack boundary and alignment are checked in check_mem_access()
1916  */
check_stack_write(struct bpf_verifier_env * env,struct bpf_func_state * state,int off,int size,int value_regno,int insn_idx)1917 static int check_stack_write(struct bpf_verifier_env *env,
1918 			     struct bpf_func_state *state, /* func where register points to */
1919 			     int off, int size, int value_regno, int insn_idx)
1920 {
1921 	struct bpf_func_state *cur; /* state of the current function */
1922 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1923 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
1924 	struct bpf_reg_state *reg = NULL;
1925 
1926 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1927 				 state->acquired_refs, true);
1928 	if (err)
1929 		return err;
1930 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1931 	 * so it's aligned access and [off, off + size) are within stack limits
1932 	 */
1933 	if (!env->allow_ptr_leaks &&
1934 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1935 	    size != BPF_REG_SIZE) {
1936 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1937 		return -EACCES;
1938 	}
1939 
1940 	cur = env->cur_state->frame[env->cur_state->curframe];
1941 	if (value_regno >= 0)
1942 		reg = &cur->regs[value_regno];
1943 	if (!env->allow_ptr_leaks) {
1944 		bool sanitize = reg && is_spillable_regtype(reg->type);
1945 
1946 		for (i = 0; i < size; i++) {
1947 			u8 type = state->stack[spi].slot_type[i];
1948 
1949 			if (type != STACK_MISC && type != STACK_ZERO) {
1950 				sanitize = true;
1951 				break;
1952 			}
1953 		}
1954 
1955 		if (sanitize)
1956 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
1957 	}
1958 
1959 	if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
1960 	    !register_is_null(reg) && env->allow_ptr_leaks) {
1961 		if (dst_reg != BPF_REG_FP) {
1962 			/* The backtracking logic can only recognize explicit
1963 			 * stack slot address like [fp - 8]. Other spill of
1964 			 * scalar via different register has to be conervative.
1965 			 * Backtrack from here and mark all registers as precise
1966 			 * that contributed into 'reg' being a constant.
1967 			 */
1968 			err = mark_chain_precision(env, value_regno);
1969 			if (err)
1970 				return err;
1971 		}
1972 		save_register_state(state, spi, reg);
1973 	} else if (reg && is_spillable_regtype(reg->type)) {
1974 		/* register containing pointer is being spilled into stack */
1975 		if (size != BPF_REG_SIZE) {
1976 			verbose_linfo(env, insn_idx, "; ");
1977 			verbose(env, "invalid size of register spill\n");
1978 			return -EACCES;
1979 		}
1980 		if (state != cur && reg->type == PTR_TO_STACK) {
1981 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1982 			return -EINVAL;
1983 		}
1984 		save_register_state(state, spi, reg);
1985 	} else {
1986 		u8 type = STACK_MISC;
1987 
1988 		/* regular write of data into stack destroys any spilled ptr */
1989 		state->stack[spi].spilled_ptr.type = NOT_INIT;
1990 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1991 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
1992 			for (i = 0; i < BPF_REG_SIZE; i++)
1993 				state->stack[spi].slot_type[i] = STACK_MISC;
1994 
1995 		/* only mark the slot as written if all 8 bytes were written
1996 		 * otherwise read propagation may incorrectly stop too soon
1997 		 * when stack slots are partially written.
1998 		 * This heuristic means that read propagation will be
1999 		 * conservative, since it will add reg_live_read marks
2000 		 * to stack slots all the way to first state when programs
2001 		 * writes+reads less than 8 bytes
2002 		 */
2003 		if (size == BPF_REG_SIZE)
2004 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2005 
2006 		/* when we zero initialize stack slots mark them as such */
2007 		if (reg && register_is_null(reg)) {
2008 			/* backtracking doesn't work for STACK_ZERO yet. */
2009 			err = mark_chain_precision(env, value_regno);
2010 			if (err)
2011 				return err;
2012 			type = STACK_ZERO;
2013 		}
2014 
2015 		/* Mark slots affected by this stack write. */
2016 		for (i = 0; i < size; i++)
2017 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2018 				type;
2019 	}
2020 	return 0;
2021 }
2022 
check_stack_read(struct bpf_verifier_env * env,struct bpf_func_state * reg_state,int off,int size,int value_regno)2023 static int check_stack_read(struct bpf_verifier_env *env,
2024 			    struct bpf_func_state *reg_state /* func where register points to */,
2025 			    int off, int size, int value_regno)
2026 {
2027 	struct bpf_verifier_state *vstate = env->cur_state;
2028 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2029 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2030 	struct bpf_reg_state *reg;
2031 	u8 *stype;
2032 
2033 	if (reg_state->allocated_stack <= slot) {
2034 		verbose(env, "invalid read from stack off %d+0 size %d\n",
2035 			off, size);
2036 		return -EACCES;
2037 	}
2038 	stype = reg_state->stack[spi].slot_type;
2039 	reg = &reg_state->stack[spi].spilled_ptr;
2040 
2041 	if (stype[0] == STACK_SPILL) {
2042 		if (size != BPF_REG_SIZE) {
2043 			if (reg->type != SCALAR_VALUE) {
2044 				verbose_linfo(env, env->insn_idx, "; ");
2045 				verbose(env, "invalid size of register fill\n");
2046 				return -EACCES;
2047 			}
2048 			if (value_regno >= 0) {
2049 				mark_reg_unknown(env, state->regs, value_regno);
2050 				state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2051 			}
2052 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2053 			return 0;
2054 		}
2055 		for (i = 1; i < BPF_REG_SIZE; i++) {
2056 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2057 				verbose(env, "corrupted spill memory\n");
2058 				return -EACCES;
2059 			}
2060 		}
2061 
2062 		if (value_regno >= 0) {
2063 			/* restore register state from stack */
2064 			state->regs[value_regno] = *reg;
2065 			/* mark reg as written since spilled pointer state likely
2066 			 * has its liveness marks cleared by is_state_visited()
2067 			 * which resets stack/reg liveness for state transitions
2068 			 */
2069 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2070 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2071 			/* If value_regno==-1, the caller is asking us whether
2072 			 * it is acceptable to use this value as a SCALAR_VALUE
2073 			 * (e.g. for XADD).
2074 			 * We must not allow unprivileged callers to do that
2075 			 * with spilled pointers.
2076 			 */
2077 			verbose(env, "leaking pointer from stack off %d\n",
2078 				off);
2079 			return -EACCES;
2080 		}
2081 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2082 	} else {
2083 		int zeros = 0;
2084 
2085 		for (i = 0; i < size; i++) {
2086 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2087 				continue;
2088 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2089 				zeros++;
2090 				continue;
2091 			}
2092 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2093 				off, i, size);
2094 			return -EACCES;
2095 		}
2096 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2097 		if (value_regno >= 0) {
2098 			if (zeros == size) {
2099 				/* any size read into register is zero extended,
2100 				 * so the whole register == const_zero
2101 				 */
2102 				__mark_reg_const_zero(&state->regs[value_regno]);
2103 				/* backtracking doesn't support STACK_ZERO yet,
2104 				 * so mark it precise here, so that later
2105 				 * backtracking can stop here.
2106 				 * Backtracking may not need this if this register
2107 				 * doesn't participate in pointer adjustment.
2108 				 * Forward propagation of precise flag is not
2109 				 * necessary either. This mark is only to stop
2110 				 * backtracking. Any register that contributed
2111 				 * to const 0 was marked precise before spill.
2112 				 */
2113 				state->regs[value_regno].precise = true;
2114 			} else {
2115 				/* have read misc data from the stack */
2116 				mark_reg_unknown(env, state->regs, value_regno);
2117 			}
2118 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2119 		}
2120 	}
2121 	return 0;
2122 }
2123 
check_stack_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size)2124 static int check_stack_access(struct bpf_verifier_env *env,
2125 			      const struct bpf_reg_state *reg,
2126 			      int off, int size)
2127 {
2128 	/* Stack accesses must be at a fixed offset, so that we
2129 	 * can determine what type of data were returned. See
2130 	 * check_stack_read().
2131 	 */
2132 	if (!tnum_is_const(reg->var_off)) {
2133 		char tn_buf[48];
2134 
2135 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2136 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2137 			tn_buf, off, size);
2138 		return -EACCES;
2139 	}
2140 
2141 	if (off >= 0 || off < -MAX_BPF_STACK) {
2142 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
2143 		return -EACCES;
2144 	}
2145 
2146 	return 0;
2147 }
2148 
check_map_access_type(struct bpf_verifier_env * env,u32 regno,int off,int size,enum bpf_access_type type)2149 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2150 				 int off, int size, enum bpf_access_type type)
2151 {
2152 	struct bpf_reg_state *regs = cur_regs(env);
2153 	struct bpf_map *map = regs[regno].map_ptr;
2154 	u32 cap = bpf_map_flags_to_cap(map);
2155 
2156 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2157 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2158 			map->value_size, off, size);
2159 		return -EACCES;
2160 	}
2161 
2162 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2163 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2164 			map->value_size, off, size);
2165 		return -EACCES;
2166 	}
2167 
2168 	return 0;
2169 }
2170 
2171 /* check read/write into map element returned by bpf_map_lookup_elem() */
__check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)2172 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
2173 			      int size, bool zero_size_allowed)
2174 {
2175 	struct bpf_reg_state *regs = cur_regs(env);
2176 	struct bpf_map *map = regs[regno].map_ptr;
2177 
2178 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2179 	    off + size > map->value_size) {
2180 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2181 			map->value_size, off, size);
2182 		return -EACCES;
2183 	}
2184 	return 0;
2185 }
2186 
2187 /* check read/write into a map element with possible variable offset */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)2188 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2189 			    int off, int size, bool zero_size_allowed)
2190 {
2191 	struct bpf_verifier_state *vstate = env->cur_state;
2192 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2193 	struct bpf_reg_state *reg = &state->regs[regno];
2194 	int err;
2195 
2196 	/* We may have adjusted the register to this map value, so we
2197 	 * need to try adding each of min_value and max_value to off
2198 	 * to make sure our theoretical access will be safe.
2199 	 */
2200 	if (env->log.level & BPF_LOG_LEVEL)
2201 		print_verifier_state(env, state);
2202 
2203 	/* The minimum value is only important with signed
2204 	 * comparisons where we can't assume the floor of a
2205 	 * value is 0.  If we are using signed variables for our
2206 	 * index'es we need to make sure that whatever we use
2207 	 * will have a set floor within our range.
2208 	 */
2209 	if (reg->smin_value < 0 &&
2210 	    (reg->smin_value == S64_MIN ||
2211 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2212 	      reg->smin_value + off < 0)) {
2213 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2214 			regno);
2215 		return -EACCES;
2216 	}
2217 	err = __check_map_access(env, regno, reg->smin_value + off, size,
2218 				 zero_size_allowed);
2219 	if (err) {
2220 		verbose(env, "R%d min value is outside of the array range\n",
2221 			regno);
2222 		return err;
2223 	}
2224 
2225 	/* If we haven't set a max value then we need to bail since we can't be
2226 	 * sure we won't do bad things.
2227 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2228 	 */
2229 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2230 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
2231 			regno);
2232 		return -EACCES;
2233 	}
2234 	err = __check_map_access(env, regno, reg->umax_value + off, size,
2235 				 zero_size_allowed);
2236 	if (err)
2237 		verbose(env, "R%d max value is outside of the array range\n",
2238 			regno);
2239 
2240 	if (map_value_has_spin_lock(reg->map_ptr)) {
2241 		u32 lock = reg->map_ptr->spin_lock_off;
2242 
2243 		/* if any part of struct bpf_spin_lock can be touched by
2244 		 * load/store reject this program.
2245 		 * To check that [x1, x2) overlaps with [y1, y2)
2246 		 * it is sufficient to check x1 < y2 && y1 < x2.
2247 		 */
2248 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2249 		     lock < reg->umax_value + off + size) {
2250 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2251 			return -EACCES;
2252 		}
2253 	}
2254 	return err;
2255 }
2256 
2257 #define MAX_PACKET_OFF 0xffff
2258 
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta,enum bpf_access_type t)2259 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2260 				       const struct bpf_call_arg_meta *meta,
2261 				       enum bpf_access_type t)
2262 {
2263 	switch (env->prog->type) {
2264 	/* Program types only with direct read access go here! */
2265 	case BPF_PROG_TYPE_LWT_IN:
2266 	case BPF_PROG_TYPE_LWT_OUT:
2267 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2268 	case BPF_PROG_TYPE_SK_REUSEPORT:
2269 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
2270 	case BPF_PROG_TYPE_CGROUP_SKB:
2271 		if (t == BPF_WRITE)
2272 			return false;
2273 		/* fallthrough */
2274 
2275 	/* Program types with direct read + write access go here! */
2276 	case BPF_PROG_TYPE_SCHED_CLS:
2277 	case BPF_PROG_TYPE_SCHED_ACT:
2278 	case BPF_PROG_TYPE_XDP:
2279 	case BPF_PROG_TYPE_LWT_XMIT:
2280 	case BPF_PROG_TYPE_SK_SKB:
2281 	case BPF_PROG_TYPE_SK_MSG:
2282 		if (meta)
2283 			return meta->pkt_access;
2284 
2285 		env->seen_direct_write = true;
2286 		return true;
2287 
2288 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2289 		if (t == BPF_WRITE)
2290 			env->seen_direct_write = true;
2291 
2292 		return true;
2293 
2294 	default:
2295 		return false;
2296 	}
2297 }
2298 
__check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)2299 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
2300 				 int off, int size, bool zero_size_allowed)
2301 {
2302 	struct bpf_reg_state *regs = cur_regs(env);
2303 	struct bpf_reg_state *reg = &regs[regno];
2304 
2305 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2306 	    (u64)off + size > reg->range) {
2307 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2308 			off, size, regno, reg->id, reg->off, reg->range);
2309 		return -EACCES;
2310 	}
2311 	return 0;
2312 }
2313 
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size,bool zero_size_allowed)2314 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2315 			       int size, bool zero_size_allowed)
2316 {
2317 	struct bpf_reg_state *regs = cur_regs(env);
2318 	struct bpf_reg_state *reg = &regs[regno];
2319 	int err;
2320 
2321 	/* We may have added a variable offset to the packet pointer; but any
2322 	 * reg->range we have comes after that.  We are only checking the fixed
2323 	 * offset.
2324 	 */
2325 
2326 	/* We don't allow negative numbers, because we aren't tracking enough
2327 	 * detail to prove they're safe.
2328 	 */
2329 	if (reg->smin_value < 0) {
2330 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2331 			regno);
2332 		return -EACCES;
2333 	}
2334 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
2335 	if (err) {
2336 		verbose(env, "R%d offset is outside of the packet\n", regno);
2337 		return err;
2338 	}
2339 
2340 	/* __check_packet_access has made sure "off + size - 1" is within u16.
2341 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2342 	 * otherwise find_good_pkt_pointers would have refused to set range info
2343 	 * that __check_packet_access would have rejected this pkt access.
2344 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2345 	 */
2346 	env->prog->aux->max_pkt_offset =
2347 		max_t(u32, env->prog->aux->max_pkt_offset,
2348 		      off + reg->umax_value + size - 1);
2349 
2350 	return err;
2351 }
2352 
2353 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
check_ctx_access(struct bpf_verifier_env * env,int insn_idx,int off,int size,enum bpf_access_type t,enum bpf_reg_type * reg_type)2354 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2355 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
2356 {
2357 	struct bpf_insn_access_aux info = {
2358 		.reg_type = *reg_type,
2359 	};
2360 
2361 	if (env->ops->is_valid_access &&
2362 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2363 		/* A non zero info.ctx_field_size indicates that this field is a
2364 		 * candidate for later verifier transformation to load the whole
2365 		 * field and then apply a mask when accessed with a narrower
2366 		 * access than actual ctx access size. A zero info.ctx_field_size
2367 		 * will only allow for whole field access and rejects any other
2368 		 * type of narrower access.
2369 		 */
2370 		*reg_type = info.reg_type;
2371 
2372 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2373 		/* remember the offset of last byte accessed in ctx */
2374 		if (env->prog->aux->max_ctx_offset < off + size)
2375 			env->prog->aux->max_ctx_offset = off + size;
2376 		return 0;
2377 	}
2378 
2379 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2380 	return -EACCES;
2381 }
2382 
check_flow_keys_access(struct bpf_verifier_env * env,int off,int size)2383 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2384 				  int size)
2385 {
2386 	if (size < 0 || off < 0 ||
2387 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
2388 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
2389 			off, size);
2390 		return -EACCES;
2391 	}
2392 	return 0;
2393 }
2394 
check_sock_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int size,enum bpf_access_type t)2395 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2396 			     u32 regno, int off, int size,
2397 			     enum bpf_access_type t)
2398 {
2399 	struct bpf_reg_state *regs = cur_regs(env);
2400 	struct bpf_reg_state *reg = &regs[regno];
2401 	struct bpf_insn_access_aux info = {};
2402 	bool valid;
2403 
2404 	if (reg->smin_value < 0) {
2405 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2406 			regno);
2407 		return -EACCES;
2408 	}
2409 
2410 	switch (reg->type) {
2411 	case PTR_TO_SOCK_COMMON:
2412 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2413 		break;
2414 	case PTR_TO_SOCKET:
2415 		valid = bpf_sock_is_valid_access(off, size, t, &info);
2416 		break;
2417 	case PTR_TO_TCP_SOCK:
2418 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2419 		break;
2420 	case PTR_TO_XDP_SOCK:
2421 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2422 		break;
2423 	default:
2424 		valid = false;
2425 	}
2426 
2427 
2428 	if (valid) {
2429 		env->insn_aux_data[insn_idx].ctx_field_size =
2430 			info.ctx_field_size;
2431 		return 0;
2432 	}
2433 
2434 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
2435 		regno, reg_type_str[reg->type], off, size);
2436 
2437 	return -EACCES;
2438 }
2439 
reg_state(struct bpf_verifier_env * env,int regno)2440 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2441 {
2442 	return cur_regs(env) + regno;
2443 }
2444 
is_pointer_value(struct bpf_verifier_env * env,int regno)2445 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2446 {
2447 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2448 }
2449 
is_ctx_reg(struct bpf_verifier_env * env,int regno)2450 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2451 {
2452 	const struct bpf_reg_state *reg = reg_state(env, regno);
2453 
2454 	return reg->type == PTR_TO_CTX;
2455 }
2456 
is_sk_reg(struct bpf_verifier_env * env,int regno)2457 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2458 {
2459 	const struct bpf_reg_state *reg = reg_state(env, regno);
2460 
2461 	return type_is_sk_pointer(reg->type);
2462 }
2463 
is_pkt_reg(struct bpf_verifier_env * env,int regno)2464 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2465 {
2466 	const struct bpf_reg_state *reg = reg_state(env, regno);
2467 
2468 	return type_is_pkt_pointer(reg->type);
2469 }
2470 
is_flow_key_reg(struct bpf_verifier_env * env,int regno)2471 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2472 {
2473 	const struct bpf_reg_state *reg = reg_state(env, regno);
2474 
2475 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2476 	return reg->type == PTR_TO_FLOW_KEYS;
2477 }
2478 
check_pkt_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict)2479 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2480 				   const struct bpf_reg_state *reg,
2481 				   int off, int size, bool strict)
2482 {
2483 	struct tnum reg_off;
2484 	int ip_align;
2485 
2486 	/* Byte size accesses are always allowed. */
2487 	if (!strict || size == 1)
2488 		return 0;
2489 
2490 	/* For platforms that do not have a Kconfig enabling
2491 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2492 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
2493 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2494 	 * to this code only in strict mode where we want to emulate
2495 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
2496 	 * unconditional IP align value of '2'.
2497 	 */
2498 	ip_align = 2;
2499 
2500 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2501 	if (!tnum_is_aligned(reg_off, size)) {
2502 		char tn_buf[48];
2503 
2504 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2505 		verbose(env,
2506 			"misaligned packet access off %d+%s+%d+%d size %d\n",
2507 			ip_align, tn_buf, reg->off, off, size);
2508 		return -EACCES;
2509 	}
2510 
2511 	return 0;
2512 }
2513 
check_generic_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,const char * pointer_desc,int off,int size,bool strict)2514 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2515 				       const struct bpf_reg_state *reg,
2516 				       const char *pointer_desc,
2517 				       int off, int size, bool strict)
2518 {
2519 	struct tnum reg_off;
2520 
2521 	/* Byte size accesses are always allowed. */
2522 	if (!strict || size == 1)
2523 		return 0;
2524 
2525 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2526 	if (!tnum_is_aligned(reg_off, size)) {
2527 		char tn_buf[48];
2528 
2529 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2530 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2531 			pointer_desc, tn_buf, reg->off, off, size);
2532 		return -EACCES;
2533 	}
2534 
2535 	return 0;
2536 }
2537 
check_ptr_alignment(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int off,int size,bool strict_alignment_once)2538 static int check_ptr_alignment(struct bpf_verifier_env *env,
2539 			       const struct bpf_reg_state *reg, int off,
2540 			       int size, bool strict_alignment_once)
2541 {
2542 	bool strict = env->strict_alignment || strict_alignment_once;
2543 	const char *pointer_desc = "";
2544 
2545 	switch (reg->type) {
2546 	case PTR_TO_PACKET:
2547 	case PTR_TO_PACKET_META:
2548 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
2549 		 * right in front, treat it the very same way.
2550 		 */
2551 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
2552 	case PTR_TO_FLOW_KEYS:
2553 		pointer_desc = "flow keys ";
2554 		break;
2555 	case PTR_TO_MAP_VALUE:
2556 		pointer_desc = "value ";
2557 		break;
2558 	case PTR_TO_CTX:
2559 		pointer_desc = "context ";
2560 		break;
2561 	case PTR_TO_STACK:
2562 		pointer_desc = "stack ";
2563 		/* The stack spill tracking logic in check_stack_write()
2564 		 * and check_stack_read() relies on stack accesses being
2565 		 * aligned.
2566 		 */
2567 		strict = true;
2568 		break;
2569 	case PTR_TO_SOCKET:
2570 		pointer_desc = "sock ";
2571 		break;
2572 	case PTR_TO_SOCK_COMMON:
2573 		pointer_desc = "sock_common ";
2574 		break;
2575 	case PTR_TO_TCP_SOCK:
2576 		pointer_desc = "tcp_sock ";
2577 		break;
2578 	case PTR_TO_XDP_SOCK:
2579 		pointer_desc = "xdp_sock ";
2580 		break;
2581 	default:
2582 		break;
2583 	}
2584 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2585 					   strict);
2586 }
2587 
update_stack_depth(struct bpf_verifier_env * env,const struct bpf_func_state * func,int off)2588 static int update_stack_depth(struct bpf_verifier_env *env,
2589 			      const struct bpf_func_state *func,
2590 			      int off)
2591 {
2592 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
2593 
2594 	if (stack >= -off)
2595 		return 0;
2596 
2597 	/* update known max for given subprogram */
2598 	env->subprog_info[func->subprogno].stack_depth = -off;
2599 	return 0;
2600 }
2601 
2602 /* starting from main bpf function walk all instructions of the function
2603  * and recursively walk all callees that given function can call.
2604  * Ignore jump and exit insns.
2605  * Since recursion is prevented by check_cfg() this algorithm
2606  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2607  */
check_max_stack_depth(struct bpf_verifier_env * env)2608 static int check_max_stack_depth(struct bpf_verifier_env *env)
2609 {
2610 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2611 	struct bpf_subprog_info *subprog = env->subprog_info;
2612 	struct bpf_insn *insn = env->prog->insnsi;
2613 	int ret_insn[MAX_CALL_FRAMES];
2614 	int ret_prog[MAX_CALL_FRAMES];
2615 
2616 process_func:
2617 	/* protect against potential stack overflow that might happen when
2618 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
2619 	 * depth for such case down to 256 so that the worst case scenario
2620 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
2621 	 * 8k).
2622 	 *
2623 	 * To get the idea what might happen, see an example:
2624 	 * func1 -> sub rsp, 128
2625 	 *  subfunc1 -> sub rsp, 256
2626 	 *  tailcall1 -> add rsp, 256
2627 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
2628 	 *   subfunc2 -> sub rsp, 64
2629 	 *   subfunc22 -> sub rsp, 128
2630 	 *   tailcall2 -> add rsp, 128
2631 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
2632 	 *
2633 	 * tailcall will unwind the current stack frame but it will not get rid
2634 	 * of caller's stack as shown on the example above.
2635 	 */
2636 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
2637 		verbose(env,
2638 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
2639 			depth);
2640 		return -EACCES;
2641 	}
2642 	/* round up to 32-bytes, since this is granularity
2643 	 * of interpreter stack size
2644 	 */
2645 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2646 	if (depth > MAX_BPF_STACK) {
2647 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
2648 			frame + 1, depth);
2649 		return -EACCES;
2650 	}
2651 continue_func:
2652 	subprog_end = subprog[idx + 1].start;
2653 	for (; i < subprog_end; i++) {
2654 		if (insn[i].code != (BPF_JMP | BPF_CALL))
2655 			continue;
2656 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
2657 			continue;
2658 		/* remember insn and function to return to */
2659 		ret_insn[frame] = i + 1;
2660 		ret_prog[frame] = idx;
2661 
2662 		/* find the callee */
2663 		i = i + insn[i].imm + 1;
2664 		idx = find_subprog(env, i);
2665 		if (idx < 0) {
2666 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2667 				  i);
2668 			return -EFAULT;
2669 		}
2670 		frame++;
2671 		if (frame >= MAX_CALL_FRAMES) {
2672 			verbose(env, "the call stack of %d frames is too deep !\n",
2673 				frame);
2674 			return -E2BIG;
2675 		}
2676 		goto process_func;
2677 	}
2678 	/* end of for() loop means the last insn of the 'subprog'
2679 	 * was reached. Doesn't matter whether it was JA or EXIT
2680 	 */
2681 	if (frame == 0)
2682 		return 0;
2683 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2684 	frame--;
2685 	i = ret_insn[frame];
2686 	idx = ret_prog[frame];
2687 	goto continue_func;
2688 }
2689 
2690 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
get_callee_stack_depth(struct bpf_verifier_env * env,const struct bpf_insn * insn,int idx)2691 static int get_callee_stack_depth(struct bpf_verifier_env *env,
2692 				  const struct bpf_insn *insn, int idx)
2693 {
2694 	int start = idx + insn->imm + 1, subprog;
2695 
2696 	subprog = find_subprog(env, start);
2697 	if (subprog < 0) {
2698 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2699 			  start);
2700 		return -EFAULT;
2701 	}
2702 	return env->subprog_info[subprog].stack_depth;
2703 }
2704 #endif
2705 
check_ctx_reg(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno)2706 static int check_ctx_reg(struct bpf_verifier_env *env,
2707 			 const struct bpf_reg_state *reg, int regno)
2708 {
2709 	/* Access to ctx or passing it to a helper is only allowed in
2710 	 * its original, unmodified form.
2711 	 */
2712 
2713 	if (reg->off) {
2714 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2715 			regno, reg->off);
2716 		return -EACCES;
2717 	}
2718 
2719 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2720 		char tn_buf[48];
2721 
2722 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2723 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2724 		return -EACCES;
2725 	}
2726 
2727 	return 0;
2728 }
2729 
check_tp_buffer_access(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,int regno,int off,int size)2730 static int check_tp_buffer_access(struct bpf_verifier_env *env,
2731 				  const struct bpf_reg_state *reg,
2732 				  int regno, int off, int size)
2733 {
2734 	if (off < 0) {
2735 		verbose(env,
2736 			"R%d invalid tracepoint buffer access: off=%d, size=%d",
2737 			regno, off, size);
2738 		return -EACCES;
2739 	}
2740 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2741 		char tn_buf[48];
2742 
2743 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2744 		verbose(env,
2745 			"R%d invalid variable buffer offset: off=%d, var_off=%s",
2746 			regno, off, tn_buf);
2747 		return -EACCES;
2748 	}
2749 	if (off + size > env->prog->aux->max_tp_access)
2750 		env->prog->aux->max_tp_access = off + size;
2751 
2752 	return 0;
2753 }
2754 
2755 
2756 /* truncate register to smaller size (in bytes)
2757  * must be called with size < BPF_REG_SIZE
2758  */
coerce_reg_to_size(struct bpf_reg_state * reg,int size)2759 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2760 {
2761 	u64 mask;
2762 
2763 	/* clear high bits in bit representation */
2764 	reg->var_off = tnum_cast(reg->var_off, size);
2765 
2766 	/* fix arithmetic bounds */
2767 	mask = ((u64)1 << (size * 8)) - 1;
2768 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2769 		reg->umin_value &= mask;
2770 		reg->umax_value &= mask;
2771 	} else {
2772 		reg->umin_value = 0;
2773 		reg->umax_value = mask;
2774 	}
2775 	reg->smin_value = reg->umin_value;
2776 	reg->smax_value = reg->umax_value;
2777 }
2778 
bpf_map_is_rdonly(const struct bpf_map * map)2779 static bool bpf_map_is_rdonly(const struct bpf_map *map)
2780 {
2781 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
2782 }
2783 
bpf_map_direct_read(struct bpf_map * map,int off,int size,u64 * val)2784 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
2785 {
2786 	void *ptr;
2787 	u64 addr;
2788 	int err;
2789 
2790 	err = map->ops->map_direct_value_addr(map, &addr, off);
2791 	if (err)
2792 		return err;
2793 	ptr = (void *)(long)addr + off;
2794 
2795 	switch (size) {
2796 	case sizeof(u8):
2797 		*val = (u64)*(u8 *)ptr;
2798 		break;
2799 	case sizeof(u16):
2800 		*val = (u64)*(u16 *)ptr;
2801 		break;
2802 	case sizeof(u32):
2803 		*val = (u64)*(u32 *)ptr;
2804 		break;
2805 	case sizeof(u64):
2806 		*val = *(u64 *)ptr;
2807 		break;
2808 	default:
2809 		return -EINVAL;
2810 	}
2811 	return 0;
2812 }
2813 
2814 /* check whether memory at (regno + off) is accessible for t = (read | write)
2815  * if t==write, value_regno is a register which value is stored into memory
2816  * if t==read, value_regno is a register which will receive the value from memory
2817  * if t==write && value_regno==-1, some unknown value is stored into memory
2818  * if t==read && value_regno==-1, don't care what we read from memory
2819  */
check_mem_access(struct bpf_verifier_env * env,int insn_idx,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno,bool strict_alignment_once)2820 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2821 			    int off, int bpf_size, enum bpf_access_type t,
2822 			    int value_regno, bool strict_alignment_once)
2823 {
2824 	struct bpf_reg_state *regs = cur_regs(env);
2825 	struct bpf_reg_state *reg = regs + regno;
2826 	struct bpf_func_state *state;
2827 	int size, err = 0;
2828 
2829 	size = bpf_size_to_bytes(bpf_size);
2830 	if (size < 0)
2831 		return size;
2832 
2833 	/* alignment checks will add in reg->off themselves */
2834 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2835 	if (err)
2836 		return err;
2837 
2838 	/* for access checks, reg->off is just part of off */
2839 	off += reg->off;
2840 
2841 	if (reg->type == PTR_TO_MAP_VALUE) {
2842 		if (t == BPF_WRITE && value_regno >= 0 &&
2843 		    is_pointer_value(env, value_regno)) {
2844 			verbose(env, "R%d leaks addr into map\n", value_regno);
2845 			return -EACCES;
2846 		}
2847 		err = check_map_access_type(env, regno, off, size, t);
2848 		if (err)
2849 			return err;
2850 		err = check_map_access(env, regno, off, size, false);
2851 		if (!err && t == BPF_READ && value_regno >= 0) {
2852 			struct bpf_map *map = reg->map_ptr;
2853 
2854 			/* if map is read-only, track its contents as scalars */
2855 			if (tnum_is_const(reg->var_off) &&
2856 			    bpf_map_is_rdonly(map) &&
2857 			    map->ops->map_direct_value_addr) {
2858 				int map_off = off + reg->var_off.value;
2859 				u64 val = 0;
2860 
2861 				err = bpf_map_direct_read(map, map_off, size,
2862 							  &val);
2863 				if (err)
2864 					return err;
2865 
2866 				regs[value_regno].type = SCALAR_VALUE;
2867 				__mark_reg_known(&regs[value_regno], val);
2868 			} else {
2869 				mark_reg_unknown(env, regs, value_regno);
2870 			}
2871 		}
2872 	} else if (reg->type == PTR_TO_CTX) {
2873 		enum bpf_reg_type reg_type = SCALAR_VALUE;
2874 
2875 		if (t == BPF_WRITE && value_regno >= 0 &&
2876 		    is_pointer_value(env, value_regno)) {
2877 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
2878 			return -EACCES;
2879 		}
2880 
2881 		err = check_ctx_reg(env, reg, regno);
2882 		if (err < 0)
2883 			return err;
2884 
2885 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
2886 		if (!err && t == BPF_READ && value_regno >= 0) {
2887 			/* ctx access returns either a scalar, or a
2888 			 * PTR_TO_PACKET[_META,_END]. In the latter
2889 			 * case, we know the offset is zero.
2890 			 */
2891 			if (reg_type == SCALAR_VALUE) {
2892 				mark_reg_unknown(env, regs, value_regno);
2893 			} else {
2894 				mark_reg_known_zero(env, regs,
2895 						    value_regno);
2896 				if (reg_type_may_be_null(reg_type))
2897 					regs[value_regno].id = ++env->id_gen;
2898 				/* A load of ctx field could have different
2899 				 * actual load size with the one encoded in the
2900 				 * insn. When the dst is PTR, it is for sure not
2901 				 * a sub-register.
2902 				 */
2903 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
2904 			}
2905 			regs[value_regno].type = reg_type;
2906 		}
2907 
2908 	} else if (reg->type == PTR_TO_STACK) {
2909 		off += reg->var_off.value;
2910 		err = check_stack_access(env, reg, off, size);
2911 		if (err)
2912 			return err;
2913 
2914 		state = func(env, reg);
2915 		err = update_stack_depth(env, state, off);
2916 		if (err)
2917 			return err;
2918 
2919 		if (t == BPF_WRITE)
2920 			err = check_stack_write(env, state, off, size,
2921 						value_regno, insn_idx);
2922 		else
2923 			err = check_stack_read(env, state, off, size,
2924 					       value_regno);
2925 	} else if (reg_is_pkt_pointer(reg)) {
2926 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
2927 			verbose(env, "cannot write into packet\n");
2928 			return -EACCES;
2929 		}
2930 		if (t == BPF_WRITE && value_regno >= 0 &&
2931 		    is_pointer_value(env, value_regno)) {
2932 			verbose(env, "R%d leaks addr into packet\n",
2933 				value_regno);
2934 			return -EACCES;
2935 		}
2936 		err = check_packet_access(env, regno, off, size, false);
2937 		if (!err && t == BPF_READ && value_regno >= 0)
2938 			mark_reg_unknown(env, regs, value_regno);
2939 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
2940 		if (t == BPF_WRITE && value_regno >= 0 &&
2941 		    is_pointer_value(env, value_regno)) {
2942 			verbose(env, "R%d leaks addr into flow keys\n",
2943 				value_regno);
2944 			return -EACCES;
2945 		}
2946 
2947 		err = check_flow_keys_access(env, off, size);
2948 		if (!err && t == BPF_READ && value_regno >= 0)
2949 			mark_reg_unknown(env, regs, value_regno);
2950 	} else if (type_is_sk_pointer(reg->type)) {
2951 		if (t == BPF_WRITE) {
2952 			verbose(env, "R%d cannot write into %s\n",
2953 				regno, reg_type_str[reg->type]);
2954 			return -EACCES;
2955 		}
2956 		err = check_sock_access(env, insn_idx, regno, off, size, t);
2957 		if (!err && value_regno >= 0)
2958 			mark_reg_unknown(env, regs, value_regno);
2959 	} else if (reg->type == PTR_TO_TP_BUFFER) {
2960 		err = check_tp_buffer_access(env, reg, regno, off, size);
2961 		if (!err && t == BPF_READ && value_regno >= 0)
2962 			mark_reg_unknown(env, regs, value_regno);
2963 	} else {
2964 		verbose(env, "R%d invalid mem access '%s'\n", regno,
2965 			reg_type_str[reg->type]);
2966 		return -EACCES;
2967 	}
2968 
2969 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
2970 	    regs[value_regno].type == SCALAR_VALUE) {
2971 		/* b/h/w load zero-extends, mark upper bits as known 0 */
2972 		coerce_reg_to_size(&regs[value_regno], size);
2973 	}
2974 	return err;
2975 }
2976 
check_xadd(struct bpf_verifier_env * env,int insn_idx,struct bpf_insn * insn)2977 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
2978 {
2979 	int err;
2980 
2981 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2982 	    insn->imm != 0) {
2983 		verbose(env, "BPF_XADD uses reserved fields\n");
2984 		return -EINVAL;
2985 	}
2986 
2987 	/* check src1 operand */
2988 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
2989 	if (err)
2990 		return err;
2991 
2992 	/* check src2 operand */
2993 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2994 	if (err)
2995 		return err;
2996 
2997 	if (is_pointer_value(env, insn->src_reg)) {
2998 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
2999 		return -EACCES;
3000 	}
3001 
3002 	if (is_ctx_reg(env, insn->dst_reg) ||
3003 	    is_pkt_reg(env, insn->dst_reg) ||
3004 	    is_flow_key_reg(env, insn->dst_reg) ||
3005 	    is_sk_reg(env, insn->dst_reg)) {
3006 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
3007 			insn->dst_reg,
3008 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
3009 		return -EACCES;
3010 	}
3011 
3012 	/* check whether atomic_add can read the memory */
3013 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3014 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
3015 	if (err)
3016 		return err;
3017 
3018 	/* check whether atomic_add can write into the same memory */
3019 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3020 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3021 }
3022 
__check_stack_boundary(struct bpf_verifier_env * env,u32 regno,int off,int access_size,bool zero_size_allowed)3023 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3024 				  int off, int access_size,
3025 				  bool zero_size_allowed)
3026 {
3027 	struct bpf_reg_state *reg = reg_state(env, regno);
3028 
3029 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3030 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3031 		if (tnum_is_const(reg->var_off)) {
3032 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3033 				regno, off, access_size);
3034 		} else {
3035 			char tn_buf[48];
3036 
3037 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3038 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3039 				regno, tn_buf, access_size);
3040 		}
3041 		return -EACCES;
3042 	}
3043 	return 0;
3044 }
3045 
3046 /* when register 'regno' is passed into function that will read 'access_size'
3047  * bytes from that pointer, make sure that it's within stack boundary
3048  * and all elements of stack are initialized.
3049  * Unlike most pointer bounds-checking functions, this one doesn't take an
3050  * 'off' argument, so it has to add in reg->off itself.
3051  */
check_stack_boundary(struct bpf_verifier_env * env,int regno,int access_size,bool zero_size_allowed,struct bpf_call_arg_meta * meta)3052 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
3053 				int access_size, bool zero_size_allowed,
3054 				struct bpf_call_arg_meta *meta)
3055 {
3056 	struct bpf_reg_state *reg = reg_state(env, regno);
3057 	struct bpf_func_state *state = func(env, reg);
3058 	int err, min_off, max_off, i, j, slot, spi;
3059 
3060 	if (reg->type != PTR_TO_STACK) {
3061 		/* Allow zero-byte read from NULL, regardless of pointer type */
3062 		if (zero_size_allowed && access_size == 0 &&
3063 		    register_is_null(reg))
3064 			return 0;
3065 
3066 		verbose(env, "R%d type=%s expected=%s\n", regno,
3067 			reg_type_str[reg->type],
3068 			reg_type_str[PTR_TO_STACK]);
3069 		return -EACCES;
3070 	}
3071 
3072 	if (tnum_is_const(reg->var_off)) {
3073 		min_off = max_off = reg->var_off.value + reg->off;
3074 		err = __check_stack_boundary(env, regno, min_off, access_size,
3075 					     zero_size_allowed);
3076 		if (err)
3077 			return err;
3078 	} else {
3079 		/* Variable offset is prohibited for unprivileged mode for
3080 		 * simplicity since it requires corresponding support in
3081 		 * Spectre masking for stack ALU.
3082 		 * See also retrieve_ptr_limit().
3083 		 */
3084 		if (!env->allow_ptr_leaks) {
3085 			char tn_buf[48];
3086 
3087 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3088 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3089 				regno, tn_buf);
3090 			return -EACCES;
3091 		}
3092 		/* Only initialized buffer on stack is allowed to be accessed
3093 		 * with variable offset. With uninitialized buffer it's hard to
3094 		 * guarantee that whole memory is marked as initialized on
3095 		 * helper return since specific bounds are unknown what may
3096 		 * cause uninitialized stack leaking.
3097 		 */
3098 		if (meta && meta->raw_mode)
3099 			meta = NULL;
3100 
3101 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3102 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
3103 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
3104 				regno);
3105 			return -EACCES;
3106 		}
3107 		min_off = reg->smin_value + reg->off;
3108 		max_off = reg->smax_value + reg->off;
3109 		err = __check_stack_boundary(env, regno, min_off, access_size,
3110 					     zero_size_allowed);
3111 		if (err) {
3112 			verbose(env, "R%d min value is outside of stack bound\n",
3113 				regno);
3114 			return err;
3115 		}
3116 		err = __check_stack_boundary(env, regno, max_off, access_size,
3117 					     zero_size_allowed);
3118 		if (err) {
3119 			verbose(env, "R%d max value is outside of stack bound\n",
3120 				regno);
3121 			return err;
3122 		}
3123 	}
3124 
3125 	if (meta && meta->raw_mode) {
3126 		meta->access_size = access_size;
3127 		meta->regno = regno;
3128 		return 0;
3129 	}
3130 
3131 	for (i = min_off; i < max_off + access_size; i++) {
3132 		u8 *stype;
3133 
3134 		slot = -i - 1;
3135 		spi = slot / BPF_REG_SIZE;
3136 		if (state->allocated_stack <= slot)
3137 			goto err;
3138 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3139 		if (*stype == STACK_MISC)
3140 			goto mark;
3141 		if (*stype == STACK_ZERO) {
3142 			/* helper can write anything into the stack */
3143 			*stype = STACK_MISC;
3144 			goto mark;
3145 		}
3146 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3147 		    state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3148 			__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
3149 			for (j = 0; j < BPF_REG_SIZE; j++)
3150 				state->stack[spi].slot_type[j] = STACK_MISC;
3151 			goto mark;
3152 		}
3153 
3154 err:
3155 		if (tnum_is_const(reg->var_off)) {
3156 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3157 				min_off, i - min_off, access_size);
3158 		} else {
3159 			char tn_buf[48];
3160 
3161 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3162 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3163 				tn_buf, i - min_off, access_size);
3164 		}
3165 		return -EACCES;
3166 mark:
3167 		/* reading any byte out of 8-byte 'spill_slot' will cause
3168 		 * the whole slot to be marked as 'read'
3169 		 */
3170 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
3171 			      state->stack[spi].spilled_ptr.parent,
3172 			      REG_LIVE_READ64);
3173 	}
3174 	return update_stack_depth(env, state, min_off);
3175 }
3176 
check_helper_mem_access(struct bpf_verifier_env * env,int regno,int access_size,bool zero_size_allowed,struct bpf_call_arg_meta * meta)3177 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3178 				   int access_size, bool zero_size_allowed,
3179 				   struct bpf_call_arg_meta *meta)
3180 {
3181 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3182 
3183 	switch (reg->type) {
3184 	case PTR_TO_PACKET:
3185 	case PTR_TO_PACKET_META:
3186 		return check_packet_access(env, regno, reg->off, access_size,
3187 					   zero_size_allowed);
3188 	case PTR_TO_MAP_VALUE:
3189 		if (check_map_access_type(env, regno, reg->off, access_size,
3190 					  meta && meta->raw_mode ? BPF_WRITE :
3191 					  BPF_READ))
3192 			return -EACCES;
3193 		return check_map_access(env, regno, reg->off, access_size,
3194 					zero_size_allowed);
3195 	default: /* scalar_value|ptr_to_stack or invalid ptr */
3196 		return check_stack_boundary(env, regno, access_size,
3197 					    zero_size_allowed, meta);
3198 	}
3199 }
3200 
3201 /* Implementation details:
3202  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3203  * Two bpf_map_lookups (even with the same key) will have different reg->id.
3204  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3205  * value_or_null->value transition, since the verifier only cares about
3206  * the range of access to valid map value pointer and doesn't care about actual
3207  * address of the map element.
3208  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3209  * reg->id > 0 after value_or_null->value transition. By doing so
3210  * two bpf_map_lookups will be considered two different pointers that
3211  * point to different bpf_spin_locks.
3212  * The verifier allows taking only one bpf_spin_lock at a time to avoid
3213  * dead-locks.
3214  * Since only one bpf_spin_lock is allowed the checks are simpler than
3215  * reg_is_refcounted() logic. The verifier needs to remember only
3216  * one spin_lock instead of array of acquired_refs.
3217  * cur_state->active_spin_lock remembers which map value element got locked
3218  * and clears it after bpf_spin_unlock.
3219  */
process_spin_lock(struct bpf_verifier_env * env,int regno,bool is_lock)3220 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3221 			     bool is_lock)
3222 {
3223 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3224 	struct bpf_verifier_state *cur = env->cur_state;
3225 	bool is_const = tnum_is_const(reg->var_off);
3226 	struct bpf_map *map = reg->map_ptr;
3227 	u64 val = reg->var_off.value;
3228 
3229 	if (reg->type != PTR_TO_MAP_VALUE) {
3230 		verbose(env, "R%d is not a pointer to map_value\n", regno);
3231 		return -EINVAL;
3232 	}
3233 	if (!is_const) {
3234 		verbose(env,
3235 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3236 			regno);
3237 		return -EINVAL;
3238 	}
3239 	if (!map->btf) {
3240 		verbose(env,
3241 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
3242 			map->name);
3243 		return -EINVAL;
3244 	}
3245 	if (!map_value_has_spin_lock(map)) {
3246 		if (map->spin_lock_off == -E2BIG)
3247 			verbose(env,
3248 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
3249 				map->name);
3250 		else if (map->spin_lock_off == -ENOENT)
3251 			verbose(env,
3252 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
3253 				map->name);
3254 		else
3255 			verbose(env,
3256 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3257 				map->name);
3258 		return -EINVAL;
3259 	}
3260 	if (map->spin_lock_off != val + reg->off) {
3261 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3262 			val + reg->off);
3263 		return -EINVAL;
3264 	}
3265 	if (is_lock) {
3266 		if (cur->active_spin_lock) {
3267 			verbose(env,
3268 				"Locking two bpf_spin_locks are not allowed\n");
3269 			return -EINVAL;
3270 		}
3271 		cur->active_spin_lock = reg->id;
3272 	} else {
3273 		if (!cur->active_spin_lock) {
3274 			verbose(env, "bpf_spin_unlock without taking a lock\n");
3275 			return -EINVAL;
3276 		}
3277 		if (cur->active_spin_lock != reg->id) {
3278 			verbose(env, "bpf_spin_unlock of different lock\n");
3279 			return -EINVAL;
3280 		}
3281 		cur->active_spin_lock = 0;
3282 	}
3283 	return 0;
3284 }
3285 
arg_type_is_mem_ptr(enum bpf_arg_type type)3286 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3287 {
3288 	return type == ARG_PTR_TO_MEM ||
3289 	       type == ARG_PTR_TO_MEM_OR_NULL ||
3290 	       type == ARG_PTR_TO_UNINIT_MEM;
3291 }
3292 
arg_type_is_mem_size(enum bpf_arg_type type)3293 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3294 {
3295 	return type == ARG_CONST_SIZE ||
3296 	       type == ARG_CONST_SIZE_OR_ZERO;
3297 }
3298 
arg_type_is_int_ptr(enum bpf_arg_type type)3299 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3300 {
3301 	return type == ARG_PTR_TO_INT ||
3302 	       type == ARG_PTR_TO_LONG;
3303 }
3304 
int_ptr_type_to_size(enum bpf_arg_type type)3305 static int int_ptr_type_to_size(enum bpf_arg_type type)
3306 {
3307 	if (type == ARG_PTR_TO_INT)
3308 		return sizeof(u32);
3309 	else if (type == ARG_PTR_TO_LONG)
3310 		return sizeof(u64);
3311 
3312 	return -EINVAL;
3313 }
3314 
check_func_arg(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,struct bpf_call_arg_meta * meta)3315 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
3316 			  enum bpf_arg_type arg_type,
3317 			  struct bpf_call_arg_meta *meta)
3318 {
3319 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3320 	enum bpf_reg_type expected_type, type = reg->type;
3321 	int err = 0;
3322 
3323 	if (arg_type == ARG_DONTCARE)
3324 		return 0;
3325 
3326 	err = check_reg_arg(env, regno, SRC_OP);
3327 	if (err)
3328 		return err;
3329 
3330 	if (arg_type == ARG_ANYTHING) {
3331 		if (is_pointer_value(env, regno)) {
3332 			verbose(env, "R%d leaks addr into helper function\n",
3333 				regno);
3334 			return -EACCES;
3335 		}
3336 		return 0;
3337 	}
3338 
3339 	if (type_is_pkt_pointer(type) &&
3340 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
3341 		verbose(env, "helper access to the packet is not allowed\n");
3342 		return -EACCES;
3343 	}
3344 
3345 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
3346 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
3347 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3348 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
3349 		expected_type = PTR_TO_STACK;
3350 		if (register_is_null(reg) &&
3351 		    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3352 			/* final test in check_stack_boundary() */;
3353 		else if (!type_is_pkt_pointer(type) &&
3354 			 type != PTR_TO_MAP_VALUE &&
3355 			 type != expected_type)
3356 			goto err_type;
3357 	} else if (arg_type == ARG_CONST_SIZE ||
3358 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
3359 		expected_type = SCALAR_VALUE;
3360 		if (type != expected_type)
3361 			goto err_type;
3362 	} else if (arg_type == ARG_CONST_MAP_PTR) {
3363 		expected_type = CONST_PTR_TO_MAP;
3364 		if (type != expected_type)
3365 			goto err_type;
3366 	} else if (arg_type == ARG_PTR_TO_CTX) {
3367 		expected_type = PTR_TO_CTX;
3368 		if (type != expected_type)
3369 			goto err_type;
3370 		err = check_ctx_reg(env, reg, regno);
3371 		if (err < 0)
3372 			return err;
3373 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3374 		expected_type = PTR_TO_SOCK_COMMON;
3375 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3376 		if (!type_is_sk_pointer(type))
3377 			goto err_type;
3378 		if (reg->ref_obj_id) {
3379 			if (meta->ref_obj_id) {
3380 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3381 					regno, reg->ref_obj_id,
3382 					meta->ref_obj_id);
3383 				return -EFAULT;
3384 			}
3385 			meta->ref_obj_id = reg->ref_obj_id;
3386 		}
3387 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
3388 		expected_type = PTR_TO_SOCKET;
3389 		if (type != expected_type)
3390 			goto err_type;
3391 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3392 		if (meta->func_id == BPF_FUNC_spin_lock) {
3393 			if (process_spin_lock(env, regno, true))
3394 				return -EACCES;
3395 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
3396 			if (process_spin_lock(env, regno, false))
3397 				return -EACCES;
3398 		} else {
3399 			verbose(env, "verifier internal error\n");
3400 			return -EFAULT;
3401 		}
3402 	} else if (arg_type_is_mem_ptr(arg_type)) {
3403 		expected_type = PTR_TO_STACK;
3404 		/* One exception here. In case function allows for NULL to be
3405 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
3406 		 * happens during stack boundary checking.
3407 		 */
3408 		if (register_is_null(reg) &&
3409 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
3410 			/* final test in check_stack_boundary() */;
3411 		else if (!type_is_pkt_pointer(type) &&
3412 			 type != PTR_TO_MAP_VALUE &&
3413 			 type != expected_type)
3414 			goto err_type;
3415 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
3416 	} else if (arg_type_is_int_ptr(arg_type)) {
3417 		expected_type = PTR_TO_STACK;
3418 		if (!type_is_pkt_pointer(type) &&
3419 		    type != PTR_TO_MAP_VALUE &&
3420 		    type != expected_type)
3421 			goto err_type;
3422 	} else {
3423 		verbose(env, "unsupported arg_type %d\n", arg_type);
3424 		return -EFAULT;
3425 	}
3426 
3427 	if (arg_type == ARG_CONST_MAP_PTR) {
3428 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3429 		meta->map_ptr = reg->map_ptr;
3430 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3431 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
3432 		 * check that [key, key + map->key_size) are within
3433 		 * stack limits and initialized
3434 		 */
3435 		if (!meta->map_ptr) {
3436 			/* in function declaration map_ptr must come before
3437 			 * map_key, so that it's verified and known before
3438 			 * we have to check map_key here. Otherwise it means
3439 			 * that kernel subsystem misconfigured verifier
3440 			 */
3441 			verbose(env, "invalid map_ptr to access map->key\n");
3442 			return -EACCES;
3443 		}
3444 		err = check_helper_mem_access(env, regno,
3445 					      meta->map_ptr->key_size, false,
3446 					      NULL);
3447 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
3448 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3449 		    !register_is_null(reg)) ||
3450 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
3451 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
3452 		 * check [value, value + map->value_size) validity
3453 		 */
3454 		if (!meta->map_ptr) {
3455 			/* kernel subsystem misconfigured verifier */
3456 			verbose(env, "invalid map_ptr to access map->value\n");
3457 			return -EACCES;
3458 		}
3459 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
3460 		err = check_helper_mem_access(env, regno,
3461 					      meta->map_ptr->value_size, false,
3462 					      meta);
3463 	} else if (arg_type_is_mem_size(arg_type)) {
3464 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
3465 
3466 		/* remember the mem_size which may be used later
3467 		 * to refine return values.
3468 		 */
3469 		meta->msize_max_value = reg->umax_value;
3470 
3471 		/* The register is SCALAR_VALUE; the access check
3472 		 * happens using its boundaries.
3473 		 */
3474 		if (!tnum_is_const(reg->var_off))
3475 			/* For unprivileged variable accesses, disable raw
3476 			 * mode so that the program is required to
3477 			 * initialize all the memory that the helper could
3478 			 * just partially fill up.
3479 			 */
3480 			meta = NULL;
3481 
3482 		if (reg->smin_value < 0) {
3483 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
3484 				regno);
3485 			return -EACCES;
3486 		}
3487 
3488 		if (reg->umin_value == 0) {
3489 			err = check_helper_mem_access(env, regno - 1, 0,
3490 						      zero_size_allowed,
3491 						      meta);
3492 			if (err)
3493 				return err;
3494 		}
3495 
3496 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
3497 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
3498 				regno);
3499 			return -EACCES;
3500 		}
3501 		err = check_helper_mem_access(env, regno - 1,
3502 					      reg->umax_value,
3503 					      zero_size_allowed, meta);
3504 		if (!err)
3505 			err = mark_chain_precision(env, regno);
3506 	} else if (arg_type_is_int_ptr(arg_type)) {
3507 		int size = int_ptr_type_to_size(arg_type);
3508 
3509 		err = check_helper_mem_access(env, regno, size, false, meta);
3510 		if (err)
3511 			return err;
3512 		err = check_ptr_alignment(env, reg, 0, size, true);
3513 	}
3514 
3515 	return err;
3516 err_type:
3517 	verbose(env, "R%d type=%s expected=%s\n", regno,
3518 		reg_type_str[type], reg_type_str[expected_type]);
3519 	return -EACCES;
3520 }
3521 
check_map_func_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,int func_id)3522 static int check_map_func_compatibility(struct bpf_verifier_env *env,
3523 					struct bpf_map *map, int func_id)
3524 {
3525 	if (!map)
3526 		return 0;
3527 
3528 	/* We need a two way check, first is from map perspective ... */
3529 	switch (map->map_type) {
3530 	case BPF_MAP_TYPE_PROG_ARRAY:
3531 		if (func_id != BPF_FUNC_tail_call)
3532 			goto error;
3533 		break;
3534 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3535 		if (func_id != BPF_FUNC_perf_event_read &&
3536 		    func_id != BPF_FUNC_perf_event_output &&
3537 		    func_id != BPF_FUNC_perf_event_read_value)
3538 			goto error;
3539 		break;
3540 	case BPF_MAP_TYPE_STACK_TRACE:
3541 		if (func_id != BPF_FUNC_get_stackid)
3542 			goto error;
3543 		break;
3544 	case BPF_MAP_TYPE_CGROUP_ARRAY:
3545 		if (func_id != BPF_FUNC_skb_under_cgroup &&
3546 		    func_id != BPF_FUNC_current_task_under_cgroup)
3547 			goto error;
3548 		break;
3549 	case BPF_MAP_TYPE_CGROUP_STORAGE:
3550 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
3551 		if (func_id != BPF_FUNC_get_local_storage)
3552 			goto error;
3553 		break;
3554 	case BPF_MAP_TYPE_DEVMAP:
3555 	case BPF_MAP_TYPE_DEVMAP_HASH:
3556 		if (func_id != BPF_FUNC_redirect_map &&
3557 		    func_id != BPF_FUNC_map_lookup_elem)
3558 			goto error;
3559 		break;
3560 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
3561 	 * appear.
3562 	 */
3563 	case BPF_MAP_TYPE_CPUMAP:
3564 		if (func_id != BPF_FUNC_redirect_map)
3565 			goto error;
3566 		break;
3567 	case BPF_MAP_TYPE_XSKMAP:
3568 		if (func_id != BPF_FUNC_redirect_map &&
3569 		    func_id != BPF_FUNC_map_lookup_elem)
3570 			goto error;
3571 		break;
3572 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
3573 	case BPF_MAP_TYPE_HASH_OF_MAPS:
3574 		if (func_id != BPF_FUNC_map_lookup_elem)
3575 			goto error;
3576 		break;
3577 	case BPF_MAP_TYPE_SOCKMAP:
3578 		if (func_id != BPF_FUNC_sk_redirect_map &&
3579 		    func_id != BPF_FUNC_sock_map_update &&
3580 		    func_id != BPF_FUNC_map_delete_elem &&
3581 		    func_id != BPF_FUNC_msg_redirect_map)
3582 			goto error;
3583 		break;
3584 	case BPF_MAP_TYPE_SOCKHASH:
3585 		if (func_id != BPF_FUNC_sk_redirect_hash &&
3586 		    func_id != BPF_FUNC_sock_hash_update &&
3587 		    func_id != BPF_FUNC_map_delete_elem &&
3588 		    func_id != BPF_FUNC_msg_redirect_hash)
3589 			goto error;
3590 		break;
3591 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3592 		if (func_id != BPF_FUNC_sk_select_reuseport)
3593 			goto error;
3594 		break;
3595 	case BPF_MAP_TYPE_QUEUE:
3596 	case BPF_MAP_TYPE_STACK:
3597 		if (func_id != BPF_FUNC_map_peek_elem &&
3598 		    func_id != BPF_FUNC_map_pop_elem &&
3599 		    func_id != BPF_FUNC_map_push_elem)
3600 			goto error;
3601 		break;
3602 	case BPF_MAP_TYPE_SK_STORAGE:
3603 		if (func_id != BPF_FUNC_sk_storage_get &&
3604 		    func_id != BPF_FUNC_sk_storage_delete)
3605 			goto error;
3606 		break;
3607 	default:
3608 		break;
3609 	}
3610 
3611 	/* ... and second from the function itself. */
3612 	switch (func_id) {
3613 	case BPF_FUNC_tail_call:
3614 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
3615 			goto error;
3616 		if (env->subprog_cnt > 1) {
3617 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3618 			return -EINVAL;
3619 		}
3620 		break;
3621 	case BPF_FUNC_perf_event_read:
3622 	case BPF_FUNC_perf_event_output:
3623 	case BPF_FUNC_perf_event_read_value:
3624 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
3625 			goto error;
3626 		break;
3627 	case BPF_FUNC_get_stackid:
3628 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
3629 			goto error;
3630 		break;
3631 	case BPF_FUNC_current_task_under_cgroup:
3632 	case BPF_FUNC_skb_under_cgroup:
3633 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
3634 			goto error;
3635 		break;
3636 	case BPF_FUNC_redirect_map:
3637 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
3638 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
3639 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
3640 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
3641 			goto error;
3642 		break;
3643 	case BPF_FUNC_sk_redirect_map:
3644 	case BPF_FUNC_msg_redirect_map:
3645 	case BPF_FUNC_sock_map_update:
3646 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
3647 			goto error;
3648 		break;
3649 	case BPF_FUNC_sk_redirect_hash:
3650 	case BPF_FUNC_msg_redirect_hash:
3651 	case BPF_FUNC_sock_hash_update:
3652 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
3653 			goto error;
3654 		break;
3655 	case BPF_FUNC_get_local_storage:
3656 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
3657 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
3658 			goto error;
3659 		break;
3660 	case BPF_FUNC_sk_select_reuseport:
3661 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
3662 			goto error;
3663 		break;
3664 	case BPF_FUNC_map_peek_elem:
3665 	case BPF_FUNC_map_pop_elem:
3666 	case BPF_FUNC_map_push_elem:
3667 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
3668 		    map->map_type != BPF_MAP_TYPE_STACK)
3669 			goto error;
3670 		break;
3671 	case BPF_FUNC_sk_storage_get:
3672 	case BPF_FUNC_sk_storage_delete:
3673 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
3674 			goto error;
3675 		break;
3676 	default:
3677 		break;
3678 	}
3679 
3680 	return 0;
3681 error:
3682 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
3683 		map->map_type, func_id_name(func_id), func_id);
3684 	return -EINVAL;
3685 }
3686 
check_raw_mode_ok(const struct bpf_func_proto * fn)3687 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
3688 {
3689 	int count = 0;
3690 
3691 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
3692 		count++;
3693 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
3694 		count++;
3695 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
3696 		count++;
3697 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
3698 		count++;
3699 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
3700 		count++;
3701 
3702 	/* We only support one arg being in raw mode at the moment,
3703 	 * which is sufficient for the helper functions we have
3704 	 * right now.
3705 	 */
3706 	return count <= 1;
3707 }
3708 
check_args_pair_invalid(enum bpf_arg_type arg_curr,enum bpf_arg_type arg_next)3709 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
3710 				    enum bpf_arg_type arg_next)
3711 {
3712 	return (arg_type_is_mem_ptr(arg_curr) &&
3713 	        !arg_type_is_mem_size(arg_next)) ||
3714 	       (!arg_type_is_mem_ptr(arg_curr) &&
3715 		arg_type_is_mem_size(arg_next));
3716 }
3717 
check_arg_pair_ok(const struct bpf_func_proto * fn)3718 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
3719 {
3720 	/* bpf_xxx(..., buf, len) call will access 'len'
3721 	 * bytes from memory 'buf'. Both arg types need
3722 	 * to be paired, so make sure there's no buggy
3723 	 * helper function specification.
3724 	 */
3725 	if (arg_type_is_mem_size(fn->arg1_type) ||
3726 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
3727 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
3728 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
3729 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
3730 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
3731 		return false;
3732 
3733 	return true;
3734 }
3735 
check_refcount_ok(const struct bpf_func_proto * fn,int func_id)3736 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
3737 {
3738 	int count = 0;
3739 
3740 	if (arg_type_may_be_refcounted(fn->arg1_type))
3741 		count++;
3742 	if (arg_type_may_be_refcounted(fn->arg2_type))
3743 		count++;
3744 	if (arg_type_may_be_refcounted(fn->arg3_type))
3745 		count++;
3746 	if (arg_type_may_be_refcounted(fn->arg4_type))
3747 		count++;
3748 	if (arg_type_may_be_refcounted(fn->arg5_type))
3749 		count++;
3750 
3751 	/* A reference acquiring function cannot acquire
3752 	 * another refcounted ptr.
3753 	 */
3754 	if (is_acquire_function(func_id) && count)
3755 		return false;
3756 
3757 	/* We only support one arg being unreferenced at the moment,
3758 	 * which is sufficient for the helper functions we have right now.
3759 	 */
3760 	return count <= 1;
3761 }
3762 
check_func_proto(const struct bpf_func_proto * fn,int func_id)3763 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
3764 {
3765 	return check_raw_mode_ok(fn) &&
3766 	       check_arg_pair_ok(fn) &&
3767 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
3768 }
3769 
3770 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
3771  * are now invalid, so turn them into unknown SCALAR_VALUE.
3772  */
__clear_all_pkt_pointers(struct bpf_verifier_env * env,struct bpf_func_state * state)3773 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
3774 				     struct bpf_func_state *state)
3775 {
3776 	struct bpf_reg_state *regs = state->regs, *reg;
3777 	int i;
3778 
3779 	for (i = 0; i < MAX_BPF_REG; i++)
3780 		if (reg_is_pkt_pointer_any(&regs[i]))
3781 			mark_reg_unknown(env, regs, i);
3782 
3783 	bpf_for_each_spilled_reg(i, state, reg) {
3784 		if (!reg)
3785 			continue;
3786 		if (reg_is_pkt_pointer_any(reg))
3787 			__mark_reg_unknown(env, reg);
3788 	}
3789 }
3790 
clear_all_pkt_pointers(struct bpf_verifier_env * env)3791 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
3792 {
3793 	struct bpf_verifier_state *vstate = env->cur_state;
3794 	int i;
3795 
3796 	for (i = 0; i <= vstate->curframe; i++)
3797 		__clear_all_pkt_pointers(env, vstate->frame[i]);
3798 }
3799 
release_reg_references(struct bpf_verifier_env * env,struct bpf_func_state * state,int ref_obj_id)3800 static void release_reg_references(struct bpf_verifier_env *env,
3801 				   struct bpf_func_state *state,
3802 				   int ref_obj_id)
3803 {
3804 	struct bpf_reg_state *regs = state->regs, *reg;
3805 	int i;
3806 
3807 	for (i = 0; i < MAX_BPF_REG; i++)
3808 		if (regs[i].ref_obj_id == ref_obj_id)
3809 			mark_reg_unknown(env, regs, i);
3810 
3811 	bpf_for_each_spilled_reg(i, state, reg) {
3812 		if (!reg)
3813 			continue;
3814 		if (reg->ref_obj_id == ref_obj_id)
3815 			__mark_reg_unknown(env, reg);
3816 	}
3817 }
3818 
3819 /* The pointer with the specified id has released its reference to kernel
3820  * resources. Identify all copies of the same pointer and clear the reference.
3821  */
release_reference(struct bpf_verifier_env * env,int ref_obj_id)3822 static int release_reference(struct bpf_verifier_env *env,
3823 			     int ref_obj_id)
3824 {
3825 	struct bpf_verifier_state *vstate = env->cur_state;
3826 	int err;
3827 	int i;
3828 
3829 	err = release_reference_state(cur_func(env), ref_obj_id);
3830 	if (err)
3831 		return err;
3832 
3833 	for (i = 0; i <= vstate->curframe; i++)
3834 		release_reg_references(env, vstate->frame[i], ref_obj_id);
3835 
3836 	return 0;
3837 }
3838 
check_func_call(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)3839 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3840 			   int *insn_idx)
3841 {
3842 	struct bpf_verifier_state *state = env->cur_state;
3843 	struct bpf_func_state *caller, *callee;
3844 	int i, err, subprog, target_insn;
3845 
3846 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
3847 		verbose(env, "the call stack of %d frames is too deep\n",
3848 			state->curframe + 2);
3849 		return -E2BIG;
3850 	}
3851 
3852 	target_insn = *insn_idx + insn->imm;
3853 	subprog = find_subprog(env, target_insn + 1);
3854 	if (subprog < 0) {
3855 		verbose(env, "verifier bug. No program starts at insn %d\n",
3856 			target_insn + 1);
3857 		return -EFAULT;
3858 	}
3859 
3860 	caller = state->frame[state->curframe];
3861 	if (state->frame[state->curframe + 1]) {
3862 		verbose(env, "verifier bug. Frame %d already allocated\n",
3863 			state->curframe + 1);
3864 		return -EFAULT;
3865 	}
3866 
3867 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3868 	if (!callee)
3869 		return -ENOMEM;
3870 	state->frame[state->curframe + 1] = callee;
3871 
3872 	/* callee cannot access r0, r6 - r9 for reading and has to write
3873 	 * into its own stack before reading from it.
3874 	 * callee can read/write into caller's stack
3875 	 */
3876 	init_func_state(env, callee,
3877 			/* remember the callsite, it will be used by bpf_exit */
3878 			*insn_idx /* callsite */,
3879 			state->curframe + 1 /* frameno within this callchain */,
3880 			subprog /* subprog number within this prog */);
3881 
3882 	/* Transfer references to the callee */
3883 	err = transfer_reference_state(callee, caller);
3884 	if (err)
3885 		return err;
3886 
3887 	/* copy r1 - r5 args that callee can access.  The copy includes parent
3888 	 * pointers, which connects us up to the liveness chain
3889 	 */
3890 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3891 		callee->regs[i] = caller->regs[i];
3892 
3893 	/* after the call registers r0 - r5 were scratched */
3894 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3895 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
3896 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3897 	}
3898 
3899 	/* only increment it after check_reg_arg() finished */
3900 	state->curframe++;
3901 
3902 	/* and go analyze first insn of the callee */
3903 	*insn_idx = target_insn;
3904 
3905 	if (env->log.level & BPF_LOG_LEVEL) {
3906 		verbose(env, "caller:\n");
3907 		print_verifier_state(env, caller);
3908 		verbose(env, "callee:\n");
3909 		print_verifier_state(env, callee);
3910 	}
3911 	return 0;
3912 }
3913 
prepare_func_exit(struct bpf_verifier_env * env,int * insn_idx)3914 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
3915 {
3916 	struct bpf_verifier_state *state = env->cur_state;
3917 	struct bpf_func_state *caller, *callee;
3918 	struct bpf_reg_state *r0;
3919 	int err;
3920 
3921 	callee = state->frame[state->curframe];
3922 	r0 = &callee->regs[BPF_REG_0];
3923 	if (r0->type == PTR_TO_STACK) {
3924 		/* technically it's ok to return caller's stack pointer
3925 		 * (or caller's caller's pointer) back to the caller,
3926 		 * since these pointers are valid. Only current stack
3927 		 * pointer will be invalid as soon as function exits,
3928 		 * but let's be conservative
3929 		 */
3930 		verbose(env, "cannot return stack pointer to the caller\n");
3931 		return -EINVAL;
3932 	}
3933 
3934 	state->curframe--;
3935 	caller = state->frame[state->curframe];
3936 	/* return to the caller whatever r0 had in the callee */
3937 	caller->regs[BPF_REG_0] = *r0;
3938 
3939 	/* Transfer references to the caller */
3940 	err = transfer_reference_state(caller, callee);
3941 	if (err)
3942 		return err;
3943 
3944 	*insn_idx = callee->callsite + 1;
3945 	if (env->log.level & BPF_LOG_LEVEL) {
3946 		verbose(env, "returning from callee:\n");
3947 		print_verifier_state(env, callee);
3948 		verbose(env, "to caller at %d:\n", *insn_idx);
3949 		print_verifier_state(env, caller);
3950 	}
3951 	/* clear everything in the callee */
3952 	free_func_state(callee);
3953 	state->frame[state->curframe + 1] = NULL;
3954 	return 0;
3955 }
3956 
do_refine_retval_range(struct bpf_verifier_env * env,struct bpf_reg_state * regs,int ret_type,int func_id,struct bpf_call_arg_meta * meta)3957 static int do_refine_retval_range(struct bpf_verifier_env *env,
3958 				  struct bpf_reg_state *regs, int ret_type,
3959 				  int func_id, struct bpf_call_arg_meta *meta)
3960 {
3961 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
3962 	struct bpf_reg_state tmp_reg = *ret_reg;
3963 	bool ret;
3964 
3965 	if (ret_type != RET_INTEGER ||
3966 	    (func_id != BPF_FUNC_get_stack &&
3967 	     func_id != BPF_FUNC_probe_read_str))
3968 		return 0;
3969 
3970 	/* Error case where ret is in interval [S32MIN, -1]. */
3971 	ret_reg->smin_value = S32_MIN;
3972 	ret_reg->smax_value = -1;
3973 
3974 	__reg_deduce_bounds(ret_reg);
3975 	__reg_bound_offset(ret_reg);
3976 	__update_reg_bounds(ret_reg);
3977 
3978 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, false);
3979 	if (!ret)
3980 		return -EFAULT;
3981 
3982 	*ret_reg = tmp_reg;
3983 
3984 	/* Success case where ret is in range [0, msize_max_value]. */
3985 	ret_reg->smin_value = 0;
3986 	ret_reg->smax_value = meta->msize_max_value;
3987 	ret_reg->umin_value = ret_reg->smin_value;
3988 	ret_reg->umax_value = ret_reg->smax_value;
3989 
3990 	__reg_deduce_bounds(ret_reg);
3991 	__reg_bound_offset(ret_reg);
3992 	__update_reg_bounds(ret_reg);
3993 
3994 	return 0;
3995 }
3996 
3997 static int
record_func_map(struct bpf_verifier_env * env,struct bpf_call_arg_meta * meta,int func_id,int insn_idx)3998 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3999 		int func_id, int insn_idx)
4000 {
4001 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4002 	struct bpf_map *map = meta->map_ptr;
4003 
4004 	if (func_id != BPF_FUNC_tail_call &&
4005 	    func_id != BPF_FUNC_map_lookup_elem &&
4006 	    func_id != BPF_FUNC_map_update_elem &&
4007 	    func_id != BPF_FUNC_map_delete_elem &&
4008 	    func_id != BPF_FUNC_map_push_elem &&
4009 	    func_id != BPF_FUNC_map_pop_elem &&
4010 	    func_id != BPF_FUNC_map_peek_elem)
4011 		return 0;
4012 
4013 	if (map == NULL) {
4014 		verbose(env, "kernel subsystem misconfigured verifier\n");
4015 		return -EINVAL;
4016 	}
4017 
4018 	/* In case of read-only, some additional restrictions
4019 	 * need to be applied in order to prevent altering the
4020 	 * state of the map from program side.
4021 	 */
4022 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4023 	    (func_id == BPF_FUNC_map_delete_elem ||
4024 	     func_id == BPF_FUNC_map_update_elem ||
4025 	     func_id == BPF_FUNC_map_push_elem ||
4026 	     func_id == BPF_FUNC_map_pop_elem)) {
4027 		verbose(env, "write into map forbidden\n");
4028 		return -EACCES;
4029 	}
4030 
4031 	if (!BPF_MAP_PTR(aux->map_state))
4032 		bpf_map_ptr_store(aux, meta->map_ptr,
4033 				  meta->map_ptr->unpriv_array);
4034 	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
4035 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4036 				  meta->map_ptr->unpriv_array);
4037 	return 0;
4038 }
4039 
check_reference_leak(struct bpf_verifier_env * env)4040 static int check_reference_leak(struct bpf_verifier_env *env)
4041 {
4042 	struct bpf_func_state *state = cur_func(env);
4043 	int i;
4044 
4045 	for (i = 0; i < state->acquired_refs; i++) {
4046 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4047 			state->refs[i].id, state->refs[i].insn_idx);
4048 	}
4049 	return state->acquired_refs ? -EINVAL : 0;
4050 }
4051 
check_helper_call(struct bpf_verifier_env * env,int func_id,int insn_idx)4052 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
4053 {
4054 	const struct bpf_func_proto *fn = NULL;
4055 	struct bpf_reg_state *regs;
4056 	struct bpf_call_arg_meta meta;
4057 	bool changes_data;
4058 	int i, err;
4059 
4060 	/* find function prototype */
4061 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
4062 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4063 			func_id);
4064 		return -EINVAL;
4065 	}
4066 
4067 	if (env->ops->get_func_proto)
4068 		fn = env->ops->get_func_proto(func_id, env->prog);
4069 	if (!fn) {
4070 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4071 			func_id);
4072 		return -EINVAL;
4073 	}
4074 
4075 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
4076 	if (!env->prog->gpl_compatible && fn->gpl_only) {
4077 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
4078 		return -EINVAL;
4079 	}
4080 
4081 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
4082 	changes_data = bpf_helper_changes_pkt_data(fn->func);
4083 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4084 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4085 			func_id_name(func_id), func_id);
4086 		return -EINVAL;
4087 	}
4088 
4089 	memset(&meta, 0, sizeof(meta));
4090 	meta.pkt_access = fn->pkt_access;
4091 
4092 	err = check_func_proto(fn, func_id);
4093 	if (err) {
4094 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
4095 			func_id_name(func_id), func_id);
4096 		return err;
4097 	}
4098 
4099 	meta.func_id = func_id;
4100 	/* check args */
4101 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
4102 	if (err)
4103 		return err;
4104 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
4105 	if (err)
4106 		return err;
4107 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
4108 	if (err)
4109 		return err;
4110 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
4111 	if (err)
4112 		return err;
4113 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
4114 	if (err)
4115 		return err;
4116 
4117 	err = record_func_map(env, &meta, func_id, insn_idx);
4118 	if (err)
4119 		return err;
4120 
4121 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
4122 	 * is inferred from register state.
4123 	 */
4124 	for (i = 0; i < meta.access_size; i++) {
4125 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4126 				       BPF_WRITE, -1, false);
4127 		if (err)
4128 			return err;
4129 	}
4130 
4131 	if (func_id == BPF_FUNC_tail_call) {
4132 		err = check_reference_leak(env);
4133 		if (err) {
4134 			verbose(env, "tail_call would lead to reference leak\n");
4135 			return err;
4136 		}
4137 	} else if (is_release_function(func_id)) {
4138 		err = release_reference(env, meta.ref_obj_id);
4139 		if (err) {
4140 			verbose(env, "func %s#%d reference has not been acquired before\n",
4141 				func_id_name(func_id), func_id);
4142 			return err;
4143 		}
4144 	}
4145 
4146 	regs = cur_regs(env);
4147 
4148 	/* check that flags argument in get_local_storage(map, flags) is 0,
4149 	 * this is required because get_local_storage() can't return an error.
4150 	 */
4151 	if (func_id == BPF_FUNC_get_local_storage &&
4152 	    !register_is_null(&regs[BPF_REG_2])) {
4153 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4154 		return -EINVAL;
4155 	}
4156 
4157 	/* reset caller saved regs */
4158 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4159 		mark_reg_not_init(env, regs, caller_saved[i]);
4160 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4161 	}
4162 
4163 	/* helper call returns 64-bit value. */
4164 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4165 
4166 	/* update return register (already marked as written above) */
4167 	if (fn->ret_type == RET_INTEGER) {
4168 		/* sets type to SCALAR_VALUE */
4169 		mark_reg_unknown(env, regs, BPF_REG_0);
4170 	} else if (fn->ret_type == RET_VOID) {
4171 		regs[BPF_REG_0].type = NOT_INIT;
4172 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4173 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4174 		/* There is no offset yet applied, variable or fixed */
4175 		mark_reg_known_zero(env, regs, BPF_REG_0);
4176 		/* remember map_ptr, so that check_map_access()
4177 		 * can check 'value_size' boundary of memory access
4178 		 * to map element returned from bpf_map_lookup_elem()
4179 		 */
4180 		if (meta.map_ptr == NULL) {
4181 			verbose(env,
4182 				"kernel subsystem misconfigured verifier\n");
4183 			return -EINVAL;
4184 		}
4185 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
4186 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4187 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
4188 			if (map_value_has_spin_lock(meta.map_ptr))
4189 				regs[BPF_REG_0].id = ++env->id_gen;
4190 		} else {
4191 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4192 			regs[BPF_REG_0].id = ++env->id_gen;
4193 		}
4194 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4195 		mark_reg_known_zero(env, regs, BPF_REG_0);
4196 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
4197 		regs[BPF_REG_0].id = ++env->id_gen;
4198 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4199 		mark_reg_known_zero(env, regs, BPF_REG_0);
4200 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4201 		regs[BPF_REG_0].id = ++env->id_gen;
4202 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4203 		mark_reg_known_zero(env, regs, BPF_REG_0);
4204 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4205 		regs[BPF_REG_0].id = ++env->id_gen;
4206 	} else {
4207 		verbose(env, "unknown return type %d of func %s#%d\n",
4208 			fn->ret_type, func_id_name(func_id), func_id);
4209 		return -EINVAL;
4210 	}
4211 
4212 	if (is_ptr_cast_function(func_id)) {
4213 		/* For release_reference() */
4214 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
4215 	} else if (is_acquire_function(func_id)) {
4216 		int id = acquire_reference_state(env, insn_idx);
4217 
4218 		if (id < 0)
4219 			return id;
4220 		/* For mark_ptr_or_null_reg() */
4221 		regs[BPF_REG_0].id = id;
4222 		/* For release_reference() */
4223 		regs[BPF_REG_0].ref_obj_id = id;
4224 	}
4225 
4226 	err = do_refine_retval_range(env, regs, fn->ret_type, func_id, &meta);
4227 	if (err)
4228 		return err;
4229 
4230 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
4231 	if (err)
4232 		return err;
4233 
4234 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4235 		const char *err_str;
4236 
4237 #ifdef CONFIG_PERF_EVENTS
4238 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
4239 		err_str = "cannot get callchain buffer for func %s#%d\n";
4240 #else
4241 		err = -ENOTSUPP;
4242 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4243 #endif
4244 		if (err) {
4245 			verbose(env, err_str, func_id_name(func_id), func_id);
4246 			return err;
4247 		}
4248 
4249 		env->prog->has_callchain_buf = true;
4250 	}
4251 
4252 	if (changes_data)
4253 		clear_all_pkt_pointers(env);
4254 	return 0;
4255 }
4256 
signed_add_overflows(s64 a,s64 b)4257 static bool signed_add_overflows(s64 a, s64 b)
4258 {
4259 	/* Do the add in u64, where overflow is well-defined */
4260 	s64 res = (s64)((u64)a + (u64)b);
4261 
4262 	if (b < 0)
4263 		return res > a;
4264 	return res < a;
4265 }
4266 
signed_sub_overflows(s64 a,s64 b)4267 static bool signed_sub_overflows(s64 a, s64 b)
4268 {
4269 	/* Do the sub in u64, where overflow is well-defined */
4270 	s64 res = (s64)((u64)a - (u64)b);
4271 
4272 	if (b < 0)
4273 		return res < a;
4274 	return res > a;
4275 }
4276 
check_reg_sane_offset(struct bpf_verifier_env * env,const struct bpf_reg_state * reg,enum bpf_reg_type type)4277 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4278 				  const struct bpf_reg_state *reg,
4279 				  enum bpf_reg_type type)
4280 {
4281 	bool known = tnum_is_const(reg->var_off);
4282 	s64 val = reg->var_off.value;
4283 	s64 smin = reg->smin_value;
4284 
4285 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4286 		verbose(env, "math between %s pointer and %lld is not allowed\n",
4287 			reg_type_str[type], val);
4288 		return false;
4289 	}
4290 
4291 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4292 		verbose(env, "%s pointer offset %d is not allowed\n",
4293 			reg_type_str[type], reg->off);
4294 		return false;
4295 	}
4296 
4297 	if (smin == S64_MIN) {
4298 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4299 			reg_type_str[type]);
4300 		return false;
4301 	}
4302 
4303 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4304 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
4305 			smin, reg_type_str[type]);
4306 		return false;
4307 	}
4308 
4309 	return true;
4310 }
4311 
cur_aux(struct bpf_verifier_env * env)4312 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4313 {
4314 	return &env->insn_aux_data[env->insn_idx];
4315 }
4316 
4317 enum {
4318 	REASON_BOUNDS	= -1,
4319 	REASON_TYPE	= -2,
4320 	REASON_PATHS	= -3,
4321 	REASON_LIMIT	= -4,
4322 	REASON_STACK	= -5,
4323 };
4324 
retrieve_ptr_limit(const struct bpf_reg_state * ptr_reg,u32 * alu_limit,bool mask_to_left)4325 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4326 			      u32 *alu_limit, bool mask_to_left)
4327 {
4328 	u32 max = 0, ptr_limit = 0;
4329 
4330 	switch (ptr_reg->type) {
4331 	case PTR_TO_STACK:
4332 		/* Offset 0 is out-of-bounds, but acceptable start for the
4333 		 * left direction, see BPF_REG_FP. Also, unknown scalar
4334 		 * offset where we would need to deal with min/max bounds is
4335 		 * currently prohibited for unprivileged.
4336 		 */
4337 		max = MAX_BPF_STACK + mask_to_left;
4338 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
4339 		break;
4340 	case PTR_TO_MAP_VALUE:
4341 		max = ptr_reg->map_ptr->value_size;
4342 		ptr_limit = (mask_to_left ?
4343 			     ptr_reg->smin_value :
4344 			     ptr_reg->umax_value) + ptr_reg->off;
4345 		break;
4346 	default:
4347 		return REASON_TYPE;
4348 	}
4349 
4350 	if (ptr_limit >= max)
4351 		return REASON_LIMIT;
4352 	*alu_limit = ptr_limit;
4353 	return 0;
4354 }
4355 
can_skip_alu_sanitation(const struct bpf_verifier_env * env,const struct bpf_insn * insn)4356 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4357 				    const struct bpf_insn *insn)
4358 {
4359 	return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
4360 }
4361 
update_alu_sanitation_state(struct bpf_insn_aux_data * aux,u32 alu_state,u32 alu_limit)4362 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4363 				       u32 alu_state, u32 alu_limit)
4364 {
4365 	/* If we arrived here from different branches with different
4366 	 * state or limits to sanitize, then this won't work.
4367 	 */
4368 	if (aux->alu_state &&
4369 	    (aux->alu_state != alu_state ||
4370 	     aux->alu_limit != alu_limit))
4371 		return REASON_PATHS;
4372 
4373 	/* Corresponding fixup done in fixup_bpf_calls(). */
4374 	aux->alu_state = alu_state;
4375 	aux->alu_limit = alu_limit;
4376 	return 0;
4377 }
4378 
sanitize_val_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)4379 static int sanitize_val_alu(struct bpf_verifier_env *env,
4380 			    struct bpf_insn *insn)
4381 {
4382 	struct bpf_insn_aux_data *aux = cur_aux(env);
4383 
4384 	if (can_skip_alu_sanitation(env, insn))
4385 		return 0;
4386 
4387 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4388 }
4389 
sanitize_needed(u8 opcode)4390 static bool sanitize_needed(u8 opcode)
4391 {
4392 	return opcode == BPF_ADD || opcode == BPF_SUB;
4393 }
4394 
4395 struct bpf_sanitize_info {
4396 	struct bpf_insn_aux_data aux;
4397 	bool mask_to_left;
4398 };
4399 
4400 static struct bpf_verifier_state *
sanitize_speculative_path(struct bpf_verifier_env * env,const struct bpf_insn * insn,u32 next_idx,u32 curr_idx)4401 sanitize_speculative_path(struct bpf_verifier_env *env,
4402 			  const struct bpf_insn *insn,
4403 			  u32 next_idx, u32 curr_idx)
4404 {
4405 	struct bpf_verifier_state *branch;
4406 	struct bpf_reg_state *regs;
4407 
4408 	branch = push_stack(env, next_idx, curr_idx, true);
4409 	if (branch && insn) {
4410 		regs = branch->frame[branch->curframe]->regs;
4411 		if (BPF_SRC(insn->code) == BPF_K) {
4412 			mark_reg_unknown(env, regs, insn->dst_reg);
4413 		} else if (BPF_SRC(insn->code) == BPF_X) {
4414 			mark_reg_unknown(env, regs, insn->dst_reg);
4415 			mark_reg_unknown(env, regs, insn->src_reg);
4416 		}
4417 	}
4418 	return branch;
4419 }
4420 
sanitize_ptr_alu(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg,struct bpf_reg_state * dst_reg,struct bpf_sanitize_info * info,const bool commit_window)4421 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4422 			    struct bpf_insn *insn,
4423 			    const struct bpf_reg_state *ptr_reg,
4424 			    const struct bpf_reg_state *off_reg,
4425 			    struct bpf_reg_state *dst_reg,
4426 			    struct bpf_sanitize_info *info,
4427 			    const bool commit_window)
4428 {
4429 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
4430 	struct bpf_verifier_state *vstate = env->cur_state;
4431 	bool off_is_imm = tnum_is_const(off_reg->var_off);
4432 	bool off_is_neg = off_reg->smin_value < 0;
4433 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
4434 	u8 opcode = BPF_OP(insn->code);
4435 	u32 alu_state, alu_limit;
4436 	struct bpf_reg_state tmp;
4437 	bool ret;
4438 	int err;
4439 
4440 	if (can_skip_alu_sanitation(env, insn))
4441 		return 0;
4442 
4443 	/* We already marked aux for masking from non-speculative
4444 	 * paths, thus we got here in the first place. We only care
4445 	 * to explore bad access from here.
4446 	 */
4447 	if (vstate->speculative)
4448 		goto do_sim;
4449 
4450 	if (!commit_window) {
4451 		if (!tnum_is_const(off_reg->var_off) &&
4452 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
4453 			return REASON_BOUNDS;
4454 
4455 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
4456 				     (opcode == BPF_SUB && !off_is_neg);
4457 	}
4458 
4459 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
4460 	if (err < 0)
4461 		return err;
4462 
4463 	if (commit_window) {
4464 		/* In commit phase we narrow the masking window based on
4465 		 * the observed pointer move after the simulated operation.
4466 		 */
4467 		alu_state = info->aux.alu_state;
4468 		alu_limit = abs(info->aux.alu_limit - alu_limit);
4469 	} else {
4470 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4471 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
4472 		alu_state |= ptr_is_dst_reg ?
4473 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4474 
4475 		/* Limit pruning on unknown scalars to enable deep search for
4476 		 * potential masking differences from other program paths.
4477 		 */
4478 		if (!off_is_imm)
4479 			env->explore_alu_limits = true;
4480 	}
4481 
4482 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
4483 	if (err < 0)
4484 		return err;
4485 do_sim:
4486 	/* If we're in commit phase, we're done here given we already
4487 	 * pushed the truncated dst_reg into the speculative verification
4488 	 * stack.
4489 	 *
4490 	 * Also, when register is a known constant, we rewrite register-based
4491 	 * operation to immediate-based, and thus do not need masking (and as
4492 	 * a consequence, do not need to simulate the zero-truncation either).
4493 	 */
4494 	if (commit_window || off_is_imm)
4495 		return 0;
4496 
4497 	/* Simulate and find potential out-of-bounds access under
4498 	 * speculative execution from truncation as a result of
4499 	 * masking when off was not within expected range. If off
4500 	 * sits in dst, then we temporarily need to move ptr there
4501 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4502 	 * for cases where we use K-based arithmetic in one direction
4503 	 * and truncated reg-based in the other in order to explore
4504 	 * bad access.
4505 	 */
4506 	if (!ptr_is_dst_reg) {
4507 		tmp = *dst_reg;
4508 		*dst_reg = *ptr_reg;
4509 	}
4510 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
4511 					env->insn_idx);
4512 	if (!ptr_is_dst_reg && ret)
4513 		*dst_reg = tmp;
4514 	return !ret ? REASON_STACK : 0;
4515 }
4516 
sanitize_mark_insn_seen(struct bpf_verifier_env * env)4517 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
4518 {
4519 	struct bpf_verifier_state *vstate = env->cur_state;
4520 
4521 	/* If we simulate paths under speculation, we don't update the
4522 	 * insn as 'seen' such that when we verify unreachable paths in
4523 	 * the non-speculative domain, sanitize_dead_code() can still
4524 	 * rewrite/sanitize them.
4525 	 */
4526 	if (!vstate->speculative)
4527 		env->insn_aux_data[env->insn_idx].seen = true;
4528 }
4529 
sanitize_err(struct bpf_verifier_env * env,const struct bpf_insn * insn,int reason,const struct bpf_reg_state * off_reg,const struct bpf_reg_state * dst_reg)4530 static int sanitize_err(struct bpf_verifier_env *env,
4531 			const struct bpf_insn *insn, int reason,
4532 			const struct bpf_reg_state *off_reg,
4533 			const struct bpf_reg_state *dst_reg)
4534 {
4535 	static const char *err = "pointer arithmetic with it prohibited for !root";
4536 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
4537 	u32 dst = insn->dst_reg, src = insn->src_reg;
4538 
4539 	switch (reason) {
4540 	case REASON_BOUNDS:
4541 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
4542 			off_reg == dst_reg ? dst : src, err);
4543 		break;
4544 	case REASON_TYPE:
4545 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
4546 			off_reg == dst_reg ? src : dst, err);
4547 		break;
4548 	case REASON_PATHS:
4549 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
4550 			dst, op, err);
4551 		break;
4552 	case REASON_LIMIT:
4553 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
4554 			dst, op, err);
4555 		break;
4556 	case REASON_STACK:
4557 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
4558 			dst, err);
4559 		break;
4560 	default:
4561 		verbose(env, "verifier internal error: unknown reason (%d)\n",
4562 			reason);
4563 		break;
4564 	}
4565 
4566 	return -EACCES;
4567 }
4568 
sanitize_check_bounds(struct bpf_verifier_env * env,const struct bpf_insn * insn,const struct bpf_reg_state * dst_reg)4569 static int sanitize_check_bounds(struct bpf_verifier_env *env,
4570 				 const struct bpf_insn *insn,
4571 				 const struct bpf_reg_state *dst_reg)
4572 {
4573 	u32 dst = insn->dst_reg;
4574 
4575 	/* For unprivileged we require that resulting offset must be in bounds
4576 	 * in order to be able to sanitize access later on.
4577 	 */
4578 	if (env->allow_ptr_leaks)
4579 		return 0;
4580 
4581 	switch (dst_reg->type) {
4582 	case PTR_TO_STACK:
4583 		if (check_stack_access(env, dst_reg, dst_reg->off +
4584 				       dst_reg->var_off.value, 1)) {
4585 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
4586 				"prohibited for !root\n", dst);
4587 			return -EACCES;
4588 		}
4589 		break;
4590 	case PTR_TO_MAP_VALUE:
4591 		if (check_map_access(env, dst, dst_reg->off, 1, false)) {
4592 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
4593 				"prohibited for !root\n", dst);
4594 			return -EACCES;
4595 		}
4596 		break;
4597 	default:
4598 		break;
4599 	}
4600 
4601 	return 0;
4602 }
4603 
4604 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
4605  * Caller should also handle BPF_MOV case separately.
4606  * If we return -EACCES, caller may want to try again treating pointer as a
4607  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
4608  */
adjust_ptr_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,const struct bpf_reg_state * ptr_reg,const struct bpf_reg_state * off_reg)4609 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4610 				   struct bpf_insn *insn,
4611 				   const struct bpf_reg_state *ptr_reg,
4612 				   const struct bpf_reg_state *off_reg)
4613 {
4614 	struct bpf_verifier_state *vstate = env->cur_state;
4615 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4616 	struct bpf_reg_state *regs = state->regs, *dst_reg;
4617 	bool known = tnum_is_const(off_reg->var_off);
4618 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4619 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4620 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4621 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
4622 	struct bpf_sanitize_info info = {};
4623 	u8 opcode = BPF_OP(insn->code);
4624 	u32 dst = insn->dst_reg;
4625 	int ret;
4626 
4627 	dst_reg = &regs[dst];
4628 
4629 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4630 	    smin_val > smax_val || umin_val > umax_val) {
4631 		/* Taint dst register if offset had invalid bounds derived from
4632 		 * e.g. dead branches.
4633 		 */
4634 		__mark_reg_unknown(env, dst_reg);
4635 		return 0;
4636 	}
4637 
4638 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
4639 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
4640 		verbose(env,
4641 			"R%d 32-bit pointer arithmetic prohibited\n",
4642 			dst);
4643 		return -EACCES;
4644 	}
4645 
4646 	switch (ptr_reg->type) {
4647 	case PTR_TO_MAP_VALUE_OR_NULL:
4648 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4649 			dst, reg_type_str[ptr_reg->type]);
4650 		return -EACCES;
4651 	case CONST_PTR_TO_MAP:
4652 		/* smin_val represents the known value */
4653 		if (known && smin_val == 0 && opcode == BPF_ADD)
4654 			break;
4655 		/* fall-through */
4656 	case PTR_TO_PACKET_END:
4657 	case PTR_TO_SOCKET:
4658 	case PTR_TO_SOCKET_OR_NULL:
4659 	case PTR_TO_SOCK_COMMON:
4660 	case PTR_TO_SOCK_COMMON_OR_NULL:
4661 	case PTR_TO_TCP_SOCK:
4662 	case PTR_TO_TCP_SOCK_OR_NULL:
4663 	case PTR_TO_XDP_SOCK:
4664 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4665 			dst, reg_type_str[ptr_reg->type]);
4666 		return -EACCES;
4667 	default:
4668 		break;
4669 	}
4670 
4671 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4672 	 * The id may be overwritten later if we create a new variable offset.
4673 	 */
4674 	dst_reg->type = ptr_reg->type;
4675 	dst_reg->id = ptr_reg->id;
4676 
4677 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4678 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4679 		return -EINVAL;
4680 
4681 	if (sanitize_needed(opcode)) {
4682 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
4683 				       &info, false);
4684 		if (ret < 0)
4685 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
4686 	}
4687 
4688 	switch (opcode) {
4689 	case BPF_ADD:
4690 		/* We can take a fixed offset as long as it doesn't overflow
4691 		 * the s32 'off' field
4692 		 */
4693 		if (known && (ptr_reg->off + smin_val ==
4694 			      (s64)(s32)(ptr_reg->off + smin_val))) {
4695 			/* pointer += K.  Accumulate it into fixed offset */
4696 			dst_reg->smin_value = smin_ptr;
4697 			dst_reg->smax_value = smax_ptr;
4698 			dst_reg->umin_value = umin_ptr;
4699 			dst_reg->umax_value = umax_ptr;
4700 			dst_reg->var_off = ptr_reg->var_off;
4701 			dst_reg->off = ptr_reg->off + smin_val;
4702 			dst_reg->raw = ptr_reg->raw;
4703 			break;
4704 		}
4705 		/* A new variable offset is created.  Note that off_reg->off
4706 		 * == 0, since it's a scalar.
4707 		 * dst_reg gets the pointer type and since some positive
4708 		 * integer value was added to the pointer, give it a new 'id'
4709 		 * if it's a PTR_TO_PACKET.
4710 		 * this creates a new 'base' pointer, off_reg (variable) gets
4711 		 * added into the variable offset, and we copy the fixed offset
4712 		 * from ptr_reg.
4713 		 */
4714 		if (signed_add_overflows(smin_ptr, smin_val) ||
4715 		    signed_add_overflows(smax_ptr, smax_val)) {
4716 			dst_reg->smin_value = S64_MIN;
4717 			dst_reg->smax_value = S64_MAX;
4718 		} else {
4719 			dst_reg->smin_value = smin_ptr + smin_val;
4720 			dst_reg->smax_value = smax_ptr + smax_val;
4721 		}
4722 		if (umin_ptr + umin_val < umin_ptr ||
4723 		    umax_ptr + umax_val < umax_ptr) {
4724 			dst_reg->umin_value = 0;
4725 			dst_reg->umax_value = U64_MAX;
4726 		} else {
4727 			dst_reg->umin_value = umin_ptr + umin_val;
4728 			dst_reg->umax_value = umax_ptr + umax_val;
4729 		}
4730 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
4731 		dst_reg->off = ptr_reg->off;
4732 		dst_reg->raw = ptr_reg->raw;
4733 		if (reg_is_pkt_pointer(ptr_reg)) {
4734 			dst_reg->id = ++env->id_gen;
4735 			/* something was added to pkt_ptr, set range to zero */
4736 			dst_reg->raw = 0;
4737 		}
4738 		break;
4739 	case BPF_SUB:
4740 		if (dst_reg == off_reg) {
4741 			/* scalar -= pointer.  Creates an unknown scalar */
4742 			verbose(env, "R%d tried to subtract pointer from scalar\n",
4743 				dst);
4744 			return -EACCES;
4745 		}
4746 		/* We don't allow subtraction from FP, because (according to
4747 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
4748 		 * be able to deal with it.
4749 		 */
4750 		if (ptr_reg->type == PTR_TO_STACK) {
4751 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
4752 				dst);
4753 			return -EACCES;
4754 		}
4755 		if (known && (ptr_reg->off - smin_val ==
4756 			      (s64)(s32)(ptr_reg->off - smin_val))) {
4757 			/* pointer -= K.  Subtract it from fixed offset */
4758 			dst_reg->smin_value = smin_ptr;
4759 			dst_reg->smax_value = smax_ptr;
4760 			dst_reg->umin_value = umin_ptr;
4761 			dst_reg->umax_value = umax_ptr;
4762 			dst_reg->var_off = ptr_reg->var_off;
4763 			dst_reg->id = ptr_reg->id;
4764 			dst_reg->off = ptr_reg->off - smin_val;
4765 			dst_reg->raw = ptr_reg->raw;
4766 			break;
4767 		}
4768 		/* A new variable offset is created.  If the subtrahend is known
4769 		 * nonnegative, then any reg->range we had before is still good.
4770 		 */
4771 		if (signed_sub_overflows(smin_ptr, smax_val) ||
4772 		    signed_sub_overflows(smax_ptr, smin_val)) {
4773 			/* Overflow possible, we know nothing */
4774 			dst_reg->smin_value = S64_MIN;
4775 			dst_reg->smax_value = S64_MAX;
4776 		} else {
4777 			dst_reg->smin_value = smin_ptr - smax_val;
4778 			dst_reg->smax_value = smax_ptr - smin_val;
4779 		}
4780 		if (umin_ptr < umax_val) {
4781 			/* Overflow possible, we know nothing */
4782 			dst_reg->umin_value = 0;
4783 			dst_reg->umax_value = U64_MAX;
4784 		} else {
4785 			/* Cannot overflow (as long as bounds are consistent) */
4786 			dst_reg->umin_value = umin_ptr - umax_val;
4787 			dst_reg->umax_value = umax_ptr - umin_val;
4788 		}
4789 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
4790 		dst_reg->off = ptr_reg->off;
4791 		dst_reg->raw = ptr_reg->raw;
4792 		if (reg_is_pkt_pointer(ptr_reg)) {
4793 			dst_reg->id = ++env->id_gen;
4794 			/* something was added to pkt_ptr, set range to zero */
4795 			if (smin_val < 0)
4796 				dst_reg->raw = 0;
4797 		}
4798 		break;
4799 	case BPF_AND:
4800 	case BPF_OR:
4801 	case BPF_XOR:
4802 		/* bitwise ops on pointers are troublesome, prohibit. */
4803 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
4804 			dst, bpf_alu_string[opcode >> 4]);
4805 		return -EACCES;
4806 	default:
4807 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
4808 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
4809 			dst, bpf_alu_string[opcode >> 4]);
4810 		return -EACCES;
4811 	}
4812 
4813 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
4814 		return -EINVAL;
4815 
4816 	__update_reg_bounds(dst_reg);
4817 	__reg_deduce_bounds(dst_reg);
4818 	__reg_bound_offset(dst_reg);
4819 
4820 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
4821 		return -EACCES;
4822 	if (sanitize_needed(opcode)) {
4823 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
4824 				       &info, true);
4825 		if (ret < 0)
4826 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
4827 	}
4828 
4829 	return 0;
4830 }
4831 
4832 /* WARNING: This function does calculations on 64-bit values, but the actual
4833  * execution may occur on 32-bit values. Therefore, things like bitshifts
4834  * need extra checks in the 32-bit case.
4835  */
adjust_scalar_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state src_reg)4836 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
4837 				      struct bpf_insn *insn,
4838 				      struct bpf_reg_state *dst_reg,
4839 				      struct bpf_reg_state src_reg)
4840 {
4841 	struct bpf_reg_state *regs = cur_regs(env);
4842 	u8 opcode = BPF_OP(insn->code);
4843 	bool src_known, dst_known;
4844 	s64 smin_val, smax_val;
4845 	u64 umin_val, umax_val;
4846 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
4847 	int ret;
4848 
4849 	if (insn_bitness == 32) {
4850 		/* Relevant for 32-bit RSH: Information can propagate towards
4851 		 * LSB, so it isn't sufficient to only truncate the output to
4852 		 * 32 bits.
4853 		 */
4854 		coerce_reg_to_size(dst_reg, 4);
4855 		coerce_reg_to_size(&src_reg, 4);
4856 	}
4857 
4858 	smin_val = src_reg.smin_value;
4859 	smax_val = src_reg.smax_value;
4860 	umin_val = src_reg.umin_value;
4861 	umax_val = src_reg.umax_value;
4862 	src_known = tnum_is_const(src_reg.var_off);
4863 	dst_known = tnum_is_const(dst_reg->var_off);
4864 
4865 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
4866 	    smin_val > smax_val || umin_val > umax_val) {
4867 		/* Taint dst register if offset had invalid bounds derived from
4868 		 * e.g. dead branches.
4869 		 */
4870 		__mark_reg_unknown(env, dst_reg);
4871 		return 0;
4872 	}
4873 
4874 	if (!src_known &&
4875 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
4876 		__mark_reg_unknown(env, dst_reg);
4877 		return 0;
4878 	}
4879 
4880 	if (sanitize_needed(opcode)) {
4881 		ret = sanitize_val_alu(env, insn);
4882 		if (ret < 0)
4883 			return sanitize_err(env, insn, ret, NULL, NULL);
4884 	}
4885 
4886 	switch (opcode) {
4887 	case BPF_ADD:
4888 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
4889 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
4890 			dst_reg->smin_value = S64_MIN;
4891 			dst_reg->smax_value = S64_MAX;
4892 		} else {
4893 			dst_reg->smin_value += smin_val;
4894 			dst_reg->smax_value += smax_val;
4895 		}
4896 		if (dst_reg->umin_value + umin_val < umin_val ||
4897 		    dst_reg->umax_value + umax_val < umax_val) {
4898 			dst_reg->umin_value = 0;
4899 			dst_reg->umax_value = U64_MAX;
4900 		} else {
4901 			dst_reg->umin_value += umin_val;
4902 			dst_reg->umax_value += umax_val;
4903 		}
4904 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
4905 		break;
4906 	case BPF_SUB:
4907 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
4908 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
4909 			/* Overflow possible, we know nothing */
4910 			dst_reg->smin_value = S64_MIN;
4911 			dst_reg->smax_value = S64_MAX;
4912 		} else {
4913 			dst_reg->smin_value -= smax_val;
4914 			dst_reg->smax_value -= smin_val;
4915 		}
4916 		if (dst_reg->umin_value < umax_val) {
4917 			/* Overflow possible, we know nothing */
4918 			dst_reg->umin_value = 0;
4919 			dst_reg->umax_value = U64_MAX;
4920 		} else {
4921 			/* Cannot overflow (as long as bounds are consistent) */
4922 			dst_reg->umin_value -= umax_val;
4923 			dst_reg->umax_value -= umin_val;
4924 		}
4925 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
4926 		break;
4927 	case BPF_MUL:
4928 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
4929 		if (smin_val < 0 || dst_reg->smin_value < 0) {
4930 			/* Ain't nobody got time to multiply that sign */
4931 			__mark_reg_unbounded(dst_reg);
4932 			__update_reg_bounds(dst_reg);
4933 			break;
4934 		}
4935 		/* Both values are positive, so we can work with unsigned and
4936 		 * copy the result to signed (unless it exceeds S64_MAX).
4937 		 */
4938 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
4939 			/* Potential overflow, we know nothing */
4940 			__mark_reg_unbounded(dst_reg);
4941 			/* (except what we can learn from the var_off) */
4942 			__update_reg_bounds(dst_reg);
4943 			break;
4944 		}
4945 		dst_reg->umin_value *= umin_val;
4946 		dst_reg->umax_value *= umax_val;
4947 		if (dst_reg->umax_value > S64_MAX) {
4948 			/* Overflow possible, we know nothing */
4949 			dst_reg->smin_value = S64_MIN;
4950 			dst_reg->smax_value = S64_MAX;
4951 		} else {
4952 			dst_reg->smin_value = dst_reg->umin_value;
4953 			dst_reg->smax_value = dst_reg->umax_value;
4954 		}
4955 		break;
4956 	case BPF_AND:
4957 		if (src_known && dst_known) {
4958 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
4959 						  src_reg.var_off.value);
4960 			break;
4961 		}
4962 		/* We get our minimum from the var_off, since that's inherently
4963 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
4964 		 */
4965 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
4966 		dst_reg->umin_value = dst_reg->var_off.value;
4967 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
4968 		if (dst_reg->smin_value < 0 || smin_val < 0) {
4969 			/* Lose signed bounds when ANDing negative numbers,
4970 			 * ain't nobody got time for that.
4971 			 */
4972 			dst_reg->smin_value = S64_MIN;
4973 			dst_reg->smax_value = S64_MAX;
4974 		} else {
4975 			/* ANDing two positives gives a positive, so safe to
4976 			 * cast result into s64.
4977 			 */
4978 			dst_reg->smin_value = dst_reg->umin_value;
4979 			dst_reg->smax_value = dst_reg->umax_value;
4980 		}
4981 		/* We may learn something more from the var_off */
4982 		__update_reg_bounds(dst_reg);
4983 		break;
4984 	case BPF_OR:
4985 		if (src_known && dst_known) {
4986 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
4987 						  src_reg.var_off.value);
4988 			break;
4989 		}
4990 		/* We get our maximum from the var_off, and our minimum is the
4991 		 * maximum of the operands' minima
4992 		 */
4993 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
4994 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4995 		dst_reg->umax_value = dst_reg->var_off.value |
4996 				      dst_reg->var_off.mask;
4997 		if (dst_reg->smin_value < 0 || smin_val < 0) {
4998 			/* Lose signed bounds when ORing negative numbers,
4999 			 * ain't nobody got time for that.
5000 			 */
5001 			dst_reg->smin_value = S64_MIN;
5002 			dst_reg->smax_value = S64_MAX;
5003 		} else {
5004 			/* ORing two positives gives a positive, so safe to
5005 			 * cast result into s64.
5006 			 */
5007 			dst_reg->smin_value = dst_reg->umin_value;
5008 			dst_reg->smax_value = dst_reg->umax_value;
5009 		}
5010 		/* We may learn something more from the var_off */
5011 		__update_reg_bounds(dst_reg);
5012 		break;
5013 	case BPF_LSH:
5014 		if (umax_val >= insn_bitness) {
5015 			/* Shifts greater than 31 or 63 are undefined.
5016 			 * This includes shifts by a negative number.
5017 			 */
5018 			mark_reg_unknown(env, regs, insn->dst_reg);
5019 			break;
5020 		}
5021 		/* We lose all sign bit information (except what we can pick
5022 		 * up from var_off)
5023 		 */
5024 		dst_reg->smin_value = S64_MIN;
5025 		dst_reg->smax_value = S64_MAX;
5026 		/* If we might shift our top bit out, then we know nothing */
5027 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
5028 			dst_reg->umin_value = 0;
5029 			dst_reg->umax_value = U64_MAX;
5030 		} else {
5031 			dst_reg->umin_value <<= umin_val;
5032 			dst_reg->umax_value <<= umax_val;
5033 		}
5034 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
5035 		/* We may learn something more from the var_off */
5036 		__update_reg_bounds(dst_reg);
5037 		break;
5038 	case BPF_RSH:
5039 		if (umax_val >= insn_bitness) {
5040 			/* Shifts greater than 31 or 63 are undefined.
5041 			 * This includes shifts by a negative number.
5042 			 */
5043 			mark_reg_unknown(env, regs, insn->dst_reg);
5044 			break;
5045 		}
5046 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
5047 		 * be negative, then either:
5048 		 * 1) src_reg might be zero, so the sign bit of the result is
5049 		 *    unknown, so we lose our signed bounds
5050 		 * 2) it's known negative, thus the unsigned bounds capture the
5051 		 *    signed bounds
5052 		 * 3) the signed bounds cross zero, so they tell us nothing
5053 		 *    about the result
5054 		 * If the value in dst_reg is known nonnegative, then again the
5055 		 * unsigned bounts capture the signed bounds.
5056 		 * Thus, in all cases it suffices to blow away our signed bounds
5057 		 * and rely on inferring new ones from the unsigned bounds and
5058 		 * var_off of the result.
5059 		 */
5060 		dst_reg->smin_value = S64_MIN;
5061 		dst_reg->smax_value = S64_MAX;
5062 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
5063 		dst_reg->umin_value >>= umax_val;
5064 		dst_reg->umax_value >>= umin_val;
5065 		/* We may learn something more from the var_off */
5066 		__update_reg_bounds(dst_reg);
5067 		break;
5068 	case BPF_ARSH:
5069 		if (umax_val >= insn_bitness) {
5070 			/* Shifts greater than 31 or 63 are undefined.
5071 			 * This includes shifts by a negative number.
5072 			 */
5073 			mark_reg_unknown(env, regs, insn->dst_reg);
5074 			break;
5075 		}
5076 
5077 		/* Upon reaching here, src_known is true and
5078 		 * umax_val is equal to umin_val.
5079 		 */
5080 		if (insn_bitness == 32) {
5081 			dst_reg->smin_value = (u32)(((s32)dst_reg->smin_value) >> umin_val);
5082 			dst_reg->smax_value = (u32)(((s32)dst_reg->smax_value) >> umin_val);
5083 		} else {
5084 			dst_reg->smin_value >>= umin_val;
5085 			dst_reg->smax_value >>= umin_val;
5086 		}
5087 
5088 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val,
5089 						insn_bitness);
5090 
5091 		/* blow away the dst_reg umin_value/umax_value and rely on
5092 		 * dst_reg var_off to refine the result.
5093 		 */
5094 		dst_reg->umin_value = 0;
5095 		dst_reg->umax_value = U64_MAX;
5096 		__update_reg_bounds(dst_reg);
5097 		break;
5098 	default:
5099 		mark_reg_unknown(env, regs, insn->dst_reg);
5100 		break;
5101 	}
5102 
5103 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
5104 		/* 32-bit ALU ops are (32,32)->32 */
5105 		coerce_reg_to_size(dst_reg, 4);
5106 	}
5107 
5108 	__update_reg_bounds(dst_reg);
5109 	__reg_deduce_bounds(dst_reg);
5110 	__reg_bound_offset(dst_reg);
5111 	return 0;
5112 }
5113 
5114 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
5115  * and var_off.
5116  */
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)5117 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
5118 				   struct bpf_insn *insn)
5119 {
5120 	struct bpf_verifier_state *vstate = env->cur_state;
5121 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5122 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
5123 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
5124 	u8 opcode = BPF_OP(insn->code);
5125 	int err;
5126 
5127 	dst_reg = &regs[insn->dst_reg];
5128 	src_reg = NULL;
5129 	if (dst_reg->type != SCALAR_VALUE)
5130 		ptr_reg = dst_reg;
5131 	if (BPF_SRC(insn->code) == BPF_X) {
5132 		src_reg = &regs[insn->src_reg];
5133 		if (src_reg->type != SCALAR_VALUE) {
5134 			if (dst_reg->type != SCALAR_VALUE) {
5135 				/* Combining two pointers by any ALU op yields
5136 				 * an arbitrary scalar. Disallow all math except
5137 				 * pointer subtraction
5138 				 */
5139 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5140 					mark_reg_unknown(env, regs, insn->dst_reg);
5141 					return 0;
5142 				}
5143 				verbose(env, "R%d pointer %s pointer prohibited\n",
5144 					insn->dst_reg,
5145 					bpf_alu_string[opcode >> 4]);
5146 				return -EACCES;
5147 			} else {
5148 				/* scalar += pointer
5149 				 * This is legal, but we have to reverse our
5150 				 * src/dest handling in computing the range
5151 				 */
5152 				err = mark_chain_precision(env, insn->dst_reg);
5153 				if (err)
5154 					return err;
5155 				return adjust_ptr_min_max_vals(env, insn,
5156 							       src_reg, dst_reg);
5157 			}
5158 		} else if (ptr_reg) {
5159 			/* pointer += scalar */
5160 			err = mark_chain_precision(env, insn->src_reg);
5161 			if (err)
5162 				return err;
5163 			return adjust_ptr_min_max_vals(env, insn,
5164 						       dst_reg, src_reg);
5165 		} else if (dst_reg->precise) {
5166 			/* if dst_reg is precise, src_reg should be precise as well */
5167 			err = mark_chain_precision(env, insn->src_reg);
5168 			if (err)
5169 				return err;
5170 		}
5171 	} else {
5172 		/* Pretend the src is a reg with a known value, since we only
5173 		 * need to be able to read from this state.
5174 		 */
5175 		off_reg.type = SCALAR_VALUE;
5176 		__mark_reg_known(&off_reg, insn->imm);
5177 		src_reg = &off_reg;
5178 		if (ptr_reg) /* pointer += K */
5179 			return adjust_ptr_min_max_vals(env, insn,
5180 						       ptr_reg, src_reg);
5181 	}
5182 
5183 	/* Got here implies adding two SCALAR_VALUEs */
5184 	if (WARN_ON_ONCE(ptr_reg)) {
5185 		print_verifier_state(env, state);
5186 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
5187 		return -EINVAL;
5188 	}
5189 	if (WARN_ON(!src_reg)) {
5190 		print_verifier_state(env, state);
5191 		verbose(env, "verifier internal error: no src_reg\n");
5192 		return -EINVAL;
5193 	}
5194 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
5195 }
5196 
5197 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)5198 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
5199 {
5200 	struct bpf_reg_state *regs = cur_regs(env);
5201 	u8 opcode = BPF_OP(insn->code);
5202 	int err;
5203 
5204 	if (opcode == BPF_END || opcode == BPF_NEG) {
5205 		if (opcode == BPF_NEG) {
5206 			if (BPF_SRC(insn->code) != 0 ||
5207 			    insn->src_reg != BPF_REG_0 ||
5208 			    insn->off != 0 || insn->imm != 0) {
5209 				verbose(env, "BPF_NEG uses reserved fields\n");
5210 				return -EINVAL;
5211 			}
5212 		} else {
5213 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
5214 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
5215 			    BPF_CLASS(insn->code) == BPF_ALU64) {
5216 				verbose(env, "BPF_END uses reserved fields\n");
5217 				return -EINVAL;
5218 			}
5219 		}
5220 
5221 		/* check src operand */
5222 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5223 		if (err)
5224 			return err;
5225 
5226 		if (is_pointer_value(env, insn->dst_reg)) {
5227 			verbose(env, "R%d pointer arithmetic prohibited\n",
5228 				insn->dst_reg);
5229 			return -EACCES;
5230 		}
5231 
5232 		/* check dest operand */
5233 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
5234 		if (err)
5235 			return err;
5236 
5237 	} else if (opcode == BPF_MOV) {
5238 
5239 		if (BPF_SRC(insn->code) == BPF_X) {
5240 			if (insn->imm != 0 || insn->off != 0) {
5241 				verbose(env, "BPF_MOV uses reserved fields\n");
5242 				return -EINVAL;
5243 			}
5244 
5245 			/* check src operand */
5246 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5247 			if (err)
5248 				return err;
5249 		} else {
5250 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5251 				verbose(env, "BPF_MOV uses reserved fields\n");
5252 				return -EINVAL;
5253 			}
5254 		}
5255 
5256 		/* check dest operand, mark as required later */
5257 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5258 		if (err)
5259 			return err;
5260 
5261 		if (BPF_SRC(insn->code) == BPF_X) {
5262 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
5263 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
5264 
5265 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
5266 				/* case: R1 = R2
5267 				 * copy register state to dest reg
5268 				 */
5269 				*dst_reg = *src_reg;
5270 				dst_reg->live |= REG_LIVE_WRITTEN;
5271 				dst_reg->subreg_def = DEF_NOT_SUBREG;
5272 			} else {
5273 				/* R1 = (u32) R2 */
5274 				if (is_pointer_value(env, insn->src_reg)) {
5275 					verbose(env,
5276 						"R%d partial copy of pointer\n",
5277 						insn->src_reg);
5278 					return -EACCES;
5279 				} else if (src_reg->type == SCALAR_VALUE) {
5280 					*dst_reg = *src_reg;
5281 					dst_reg->live |= REG_LIVE_WRITTEN;
5282 					dst_reg->subreg_def = env->insn_idx + 1;
5283 				} else {
5284 					mark_reg_unknown(env, regs,
5285 							 insn->dst_reg);
5286 				}
5287 				coerce_reg_to_size(dst_reg, 4);
5288 			}
5289 		} else {
5290 			/* case: R = imm
5291 			 * remember the value we stored into this reg
5292 			 */
5293 			/* clear any state __mark_reg_known doesn't set */
5294 			mark_reg_unknown(env, regs, insn->dst_reg);
5295 			regs[insn->dst_reg].type = SCALAR_VALUE;
5296 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
5297 				__mark_reg_known(regs + insn->dst_reg,
5298 						 insn->imm);
5299 			} else {
5300 				__mark_reg_known(regs + insn->dst_reg,
5301 						 (u32)insn->imm);
5302 			}
5303 		}
5304 
5305 	} else if (opcode > BPF_END) {
5306 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
5307 		return -EINVAL;
5308 
5309 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
5310 
5311 		if (BPF_SRC(insn->code) == BPF_X) {
5312 			if (insn->imm != 0 || insn->off != 0) {
5313 				verbose(env, "BPF_ALU uses reserved fields\n");
5314 				return -EINVAL;
5315 			}
5316 			/* check src1 operand */
5317 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5318 			if (err)
5319 				return err;
5320 		} else {
5321 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5322 				verbose(env, "BPF_ALU uses reserved fields\n");
5323 				return -EINVAL;
5324 			}
5325 		}
5326 
5327 		/* check src2 operand */
5328 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5329 		if (err)
5330 			return err;
5331 
5332 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
5333 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
5334 			verbose(env, "div by zero\n");
5335 			return -EINVAL;
5336 		}
5337 
5338 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
5339 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
5340 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
5341 
5342 			if (insn->imm < 0 || insn->imm >= size) {
5343 				verbose(env, "invalid shift %d\n", insn->imm);
5344 				return -EINVAL;
5345 			}
5346 		}
5347 
5348 		/* check dest operand */
5349 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5350 		if (err)
5351 			return err;
5352 
5353 		return adjust_reg_min_max_vals(env, insn);
5354 	}
5355 
5356 	return 0;
5357 }
5358 
__find_good_pkt_pointers(struct bpf_func_state * state,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,u16 new_range)5359 static void __find_good_pkt_pointers(struct bpf_func_state *state,
5360 				     struct bpf_reg_state *dst_reg,
5361 				     enum bpf_reg_type type, u16 new_range)
5362 {
5363 	struct bpf_reg_state *reg;
5364 	int i;
5365 
5366 	for (i = 0; i < MAX_BPF_REG; i++) {
5367 		reg = &state->regs[i];
5368 		if (reg->type == type && reg->id == dst_reg->id)
5369 			/* keep the maximum range already checked */
5370 			reg->range = max(reg->range, new_range);
5371 	}
5372 
5373 	bpf_for_each_spilled_reg(i, state, reg) {
5374 		if (!reg)
5375 			continue;
5376 		if (reg->type == type && reg->id == dst_reg->id)
5377 			reg->range = max(reg->range, new_range);
5378 	}
5379 }
5380 
find_good_pkt_pointers(struct bpf_verifier_state * vstate,struct bpf_reg_state * dst_reg,enum bpf_reg_type type,bool range_right_open)5381 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
5382 				   struct bpf_reg_state *dst_reg,
5383 				   enum bpf_reg_type type,
5384 				   bool range_right_open)
5385 {
5386 	u16 new_range;
5387 	int i;
5388 
5389 	if (dst_reg->off < 0 ||
5390 	    (dst_reg->off == 0 && range_right_open))
5391 		/* This doesn't give us any range */
5392 		return;
5393 
5394 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
5395 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
5396 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
5397 		 * than pkt_end, but that's because it's also less than pkt.
5398 		 */
5399 		return;
5400 
5401 	new_range = dst_reg->off;
5402 	if (range_right_open)
5403 		new_range++;
5404 
5405 	/* Examples for register markings:
5406 	 *
5407 	 * pkt_data in dst register:
5408 	 *
5409 	 *   r2 = r3;
5410 	 *   r2 += 8;
5411 	 *   if (r2 > pkt_end) goto <handle exception>
5412 	 *   <access okay>
5413 	 *
5414 	 *   r2 = r3;
5415 	 *   r2 += 8;
5416 	 *   if (r2 < pkt_end) goto <access okay>
5417 	 *   <handle exception>
5418 	 *
5419 	 *   Where:
5420 	 *     r2 == dst_reg, pkt_end == src_reg
5421 	 *     r2=pkt(id=n,off=8,r=0)
5422 	 *     r3=pkt(id=n,off=0,r=0)
5423 	 *
5424 	 * pkt_data in src register:
5425 	 *
5426 	 *   r2 = r3;
5427 	 *   r2 += 8;
5428 	 *   if (pkt_end >= r2) goto <access okay>
5429 	 *   <handle exception>
5430 	 *
5431 	 *   r2 = r3;
5432 	 *   r2 += 8;
5433 	 *   if (pkt_end <= r2) goto <handle exception>
5434 	 *   <access okay>
5435 	 *
5436 	 *   Where:
5437 	 *     pkt_end == dst_reg, r2 == src_reg
5438 	 *     r2=pkt(id=n,off=8,r=0)
5439 	 *     r3=pkt(id=n,off=0,r=0)
5440 	 *
5441 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
5442 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
5443 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
5444 	 * the check.
5445 	 */
5446 
5447 	/* If our ids match, then we must have the same max_value.  And we
5448 	 * don't care about the other reg's fixed offset, since if it's too big
5449 	 * the range won't allow anything.
5450 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
5451 	 */
5452 	for (i = 0; i <= vstate->curframe; i++)
5453 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
5454 					 new_range);
5455 }
5456 
5457 /* compute branch direction of the expression "if (reg opcode val) goto target;"
5458  * and return:
5459  *  1 - branch will be taken and "goto target" will be executed
5460  *  0 - branch will not be taken and fall-through to next insn
5461  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
5462  */
is_branch_taken(struct bpf_reg_state * reg,u64 val,u8 opcode,bool is_jmp32)5463 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
5464 			   bool is_jmp32)
5465 {
5466 	struct bpf_reg_state reg_lo;
5467 	s64 sval;
5468 
5469 	if (__is_pointer_value(false, reg))
5470 		return -1;
5471 
5472 	if (is_jmp32) {
5473 		reg_lo = *reg;
5474 		reg = &reg_lo;
5475 		/* For JMP32, only low 32 bits are compared, coerce_reg_to_size
5476 		 * could truncate high bits and update umin/umax according to
5477 		 * information of low bits.
5478 		 */
5479 		coerce_reg_to_size(reg, 4);
5480 		/* smin/smax need special handling. For example, after coerce,
5481 		 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
5482 		 * used as operand to JMP32. It is a negative number from s32's
5483 		 * point of view, while it is a positive number when seen as
5484 		 * s64. The smin/smax are kept as s64, therefore, when used with
5485 		 * JMP32, they need to be transformed into s32, then sign
5486 		 * extended back to s64.
5487 		 *
5488 		 * Also, smin/smax were copied from umin/umax. If umin/umax has
5489 		 * different sign bit, then min/max relationship doesn't
5490 		 * maintain after casting into s32, for this case, set smin/smax
5491 		 * to safest range.
5492 		 */
5493 		if ((reg->umax_value ^ reg->umin_value) &
5494 		    (1ULL << 31)) {
5495 			reg->smin_value = S32_MIN;
5496 			reg->smax_value = S32_MAX;
5497 		}
5498 		reg->smin_value = (s64)(s32)reg->smin_value;
5499 		reg->smax_value = (s64)(s32)reg->smax_value;
5500 
5501 		val = (u32)val;
5502 		sval = (s64)(s32)val;
5503 	} else {
5504 		sval = (s64)val;
5505 	}
5506 
5507 	switch (opcode) {
5508 	case BPF_JEQ:
5509 		if (tnum_is_const(reg->var_off))
5510 			return !!tnum_equals_const(reg->var_off, val);
5511 		break;
5512 	case BPF_JNE:
5513 		if (tnum_is_const(reg->var_off))
5514 			return !tnum_equals_const(reg->var_off, val);
5515 		break;
5516 	case BPF_JSET:
5517 		if ((~reg->var_off.mask & reg->var_off.value) & val)
5518 			return 1;
5519 		if (!((reg->var_off.mask | reg->var_off.value) & val))
5520 			return 0;
5521 		break;
5522 	case BPF_JGT:
5523 		if (reg->umin_value > val)
5524 			return 1;
5525 		else if (reg->umax_value <= val)
5526 			return 0;
5527 		break;
5528 	case BPF_JSGT:
5529 		if (reg->smin_value > sval)
5530 			return 1;
5531 		else if (reg->smax_value < sval)
5532 			return 0;
5533 		break;
5534 	case BPF_JLT:
5535 		if (reg->umax_value < val)
5536 			return 1;
5537 		else if (reg->umin_value >= val)
5538 			return 0;
5539 		break;
5540 	case BPF_JSLT:
5541 		if (reg->smax_value < sval)
5542 			return 1;
5543 		else if (reg->smin_value >= sval)
5544 			return 0;
5545 		break;
5546 	case BPF_JGE:
5547 		if (reg->umin_value >= val)
5548 			return 1;
5549 		else if (reg->umax_value < val)
5550 			return 0;
5551 		break;
5552 	case BPF_JSGE:
5553 		if (reg->smin_value >= sval)
5554 			return 1;
5555 		else if (reg->smax_value < sval)
5556 			return 0;
5557 		break;
5558 	case BPF_JLE:
5559 		if (reg->umax_value <= val)
5560 			return 1;
5561 		else if (reg->umin_value > val)
5562 			return 0;
5563 		break;
5564 	case BPF_JSLE:
5565 		if (reg->smax_value <= sval)
5566 			return 1;
5567 		else if (reg->smin_value > sval)
5568 			return 0;
5569 		break;
5570 	}
5571 
5572 	return -1;
5573 }
5574 
5575 /* Generate min value of the high 32-bit from TNUM info. */
gen_hi_min(struct tnum var)5576 static u64 gen_hi_min(struct tnum var)
5577 {
5578 	return var.value & ~0xffffffffULL;
5579 }
5580 
5581 /* Generate max value of the high 32-bit from TNUM info. */
gen_hi_max(struct tnum var)5582 static u64 gen_hi_max(struct tnum var)
5583 {
5584 	return (var.value | var.mask) & ~0xffffffffULL;
5585 }
5586 
5587 /* Return true if VAL is compared with a s64 sign extended from s32, and they
5588  * are with the same signedness.
5589  */
cmp_val_with_extended_s64(s64 sval,struct bpf_reg_state * reg)5590 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
5591 {
5592 	return ((s32)sval >= 0 &&
5593 		reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
5594 	       ((s32)sval < 0 &&
5595 		reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
5596 }
5597 
5598 /* Constrain the possible values of @reg with unsigned upper bound @bound.
5599  * If @is_exclusive, @bound is an exclusive limit, otherwise it is inclusive.
5600  * If @is_jmp32, @bound is a 32-bit value that only constrains the low 32 bits
5601  * of @reg.
5602  */
set_upper_bound(struct bpf_reg_state * reg,u64 bound,bool is_jmp32,bool is_exclusive)5603 static void set_upper_bound(struct bpf_reg_state *reg, u64 bound, bool is_jmp32,
5604 			    bool is_exclusive)
5605 {
5606 	if (is_exclusive) {
5607 		/* There are no values for `reg` that make `reg<0` true. */
5608 		if (bound == 0)
5609 			return;
5610 		bound--;
5611 	}
5612 	if (is_jmp32) {
5613 		/* Constrain the register's value in the tnum representation.
5614 		 * For 64-bit comparisons this happens later in
5615 		 * __reg_bound_offset(), but for 32-bit comparisons, we can be
5616 		 * more precise than what can be derived from the updated
5617 		 * numeric bounds.
5618 		 */
5619 		struct tnum t = tnum_range(0, bound);
5620 
5621 		t.mask |= ~0xffffffffULL; /* upper half is unknown */
5622 		reg->var_off = tnum_intersect(reg->var_off, t);
5623 
5624 		/* Compute the 64-bit bound from the 32-bit bound. */
5625 		bound += gen_hi_max(reg->var_off);
5626 	}
5627 	reg->umax_value = min(reg->umax_value, bound);
5628 }
5629 
5630 /* Constrain the possible values of @reg with unsigned lower bound @bound.
5631  * If @is_exclusive, @bound is an exclusive limit, otherwise it is inclusive.
5632  * If @is_jmp32, @bound is a 32-bit value that only constrains the low 32 bits
5633  * of @reg.
5634  */
set_lower_bound(struct bpf_reg_state * reg,u64 bound,bool is_jmp32,bool is_exclusive)5635 static void set_lower_bound(struct bpf_reg_state *reg, u64 bound, bool is_jmp32,
5636 			    bool is_exclusive)
5637 {
5638 	if (is_exclusive) {
5639 		/* There are no values for `reg` that make `reg>MAX` true. */
5640 		if (bound == (is_jmp32 ? U32_MAX : U64_MAX))
5641 			return;
5642 		bound++;
5643 	}
5644 	if (is_jmp32) {
5645 		/* Constrain the register's value in the tnum representation.
5646 		 * For 64-bit comparisons this happens later in
5647 		 * __reg_bound_offset(), but for 32-bit comparisons, we can be
5648 		 * more precise than what can be derived from the updated
5649 		 * numeric bounds.
5650 		 */
5651 		struct tnum t = tnum_range(bound, U32_MAX);
5652 
5653 		t.mask |= ~0xffffffffULL; /* upper half is unknown */
5654 		reg->var_off = tnum_intersect(reg->var_off, t);
5655 
5656 		/* Compute the 64-bit bound from the 32-bit bound. */
5657 		bound += gen_hi_min(reg->var_off);
5658 	}
5659 	reg->umin_value = max(reg->umin_value, bound);
5660 }
5661 
5662 /* Adjusts the register min/max values in the case that the dst_reg is the
5663  * variable register that we are working on, and src_reg is a constant or we're
5664  * simply doing a BPF_K check.
5665  * In JEQ/JNE cases we also adjust the var_off values.
5666  */
reg_set_min_max(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u8 opcode,bool is_jmp32)5667 static void reg_set_min_max(struct bpf_reg_state *true_reg,
5668 			    struct bpf_reg_state *false_reg, u64 val,
5669 			    u8 opcode, bool is_jmp32)
5670 {
5671 	s64 sval;
5672 
5673 	/* If the dst_reg is a pointer, we can't learn anything about its
5674 	 * variable offset from the compare (unless src_reg were a pointer into
5675 	 * the same object, but we don't bother with that.
5676 	 * Since false_reg and true_reg have the same type by construction, we
5677 	 * only need to check one of them for pointerness.
5678 	 */
5679 	if (__is_pointer_value(false, false_reg))
5680 		return;
5681 
5682 	val = is_jmp32 ? (u32)val : val;
5683 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
5684 
5685 	switch (opcode) {
5686 	case BPF_JEQ:
5687 	case BPF_JNE:
5688 	{
5689 		struct bpf_reg_state *reg =
5690 			opcode == BPF_JEQ ? true_reg : false_reg;
5691 
5692 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
5693 		 * if it is true we know the value for sure. Likewise for
5694 		 * BPF_JNE.
5695 		 */
5696 		if (is_jmp32) {
5697 			u64 old_v = reg->var_off.value;
5698 			u64 hi_mask = ~0xffffffffULL;
5699 
5700 			reg->var_off.value = (old_v & hi_mask) | val;
5701 			reg->var_off.mask &= hi_mask;
5702 		} else {
5703 			__mark_reg_known(reg, val);
5704 		}
5705 		break;
5706 	}
5707 	case BPF_JSET:
5708 		false_reg->var_off = tnum_and(false_reg->var_off,
5709 					      tnum_const(~val));
5710 		if (is_power_of_2(val))
5711 			true_reg->var_off = tnum_or(true_reg->var_off,
5712 						    tnum_const(val));
5713 		break;
5714 	case BPF_JGE:
5715 	case BPF_JGT:
5716 	{
5717 		set_upper_bound(false_reg, val, is_jmp32, opcode == BPF_JGE);
5718 		set_lower_bound(true_reg, val, is_jmp32, opcode == BPF_JGT);
5719 		break;
5720 	}
5721 	case BPF_JSGE:
5722 	case BPF_JSGT:
5723 	{
5724 		s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
5725 		s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
5726 
5727 		/* If the full s64 was not sign-extended from s32 then don't
5728 		 * deduct further info.
5729 		 */
5730 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5731 			break;
5732 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
5733 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
5734 		break;
5735 	}
5736 	case BPF_JLE:
5737 	case BPF_JLT:
5738 	{
5739 		set_lower_bound(false_reg, val, is_jmp32, opcode == BPF_JLE);
5740 		set_upper_bound(true_reg, val, is_jmp32, opcode == BPF_JLT);
5741 		break;
5742 	}
5743 	case BPF_JSLE:
5744 	case BPF_JSLT:
5745 	{
5746 		s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
5747 		s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
5748 
5749 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5750 			break;
5751 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
5752 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
5753 		break;
5754 	}
5755 	default:
5756 		break;
5757 	}
5758 
5759 	__reg_deduce_bounds(false_reg);
5760 	__reg_deduce_bounds(true_reg);
5761 	/* We might have learned some bits from the bounds. */
5762 	__reg_bound_offset(false_reg);
5763 	__reg_bound_offset(true_reg);
5764 	/* Intersecting with the old var_off might have improved our bounds
5765 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5766 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
5767 	 */
5768 	__update_reg_bounds(false_reg);
5769 	__update_reg_bounds(true_reg);
5770 }
5771 
5772 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
5773  * the variable reg.
5774  */
reg_set_min_max_inv(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u8 opcode,bool is_jmp32)5775 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
5776 				struct bpf_reg_state *false_reg, u64 val,
5777 				u8 opcode, bool is_jmp32)
5778 {
5779 	s64 sval;
5780 
5781 	if (__is_pointer_value(false, false_reg))
5782 		return;
5783 
5784 	val = is_jmp32 ? (u32)val : val;
5785 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
5786 
5787 	switch (opcode) {
5788 	case BPF_JEQ:
5789 	case BPF_JNE:
5790 	{
5791 		struct bpf_reg_state *reg =
5792 			opcode == BPF_JEQ ? true_reg : false_reg;
5793 
5794 		if (is_jmp32) {
5795 			u64 old_v = reg->var_off.value;
5796 			u64 hi_mask = ~0xffffffffULL;
5797 
5798 			reg->var_off.value = (old_v & hi_mask) | val;
5799 			reg->var_off.mask &= hi_mask;
5800 		} else {
5801 			__mark_reg_known(reg, val);
5802 		}
5803 		break;
5804 	}
5805 	case BPF_JSET:
5806 		false_reg->var_off = tnum_and(false_reg->var_off,
5807 					      tnum_const(~val));
5808 		if (is_power_of_2(val))
5809 			true_reg->var_off = tnum_or(true_reg->var_off,
5810 						    tnum_const(val));
5811 		break;
5812 	case BPF_JGE:
5813 	case BPF_JGT:
5814 	{
5815 		set_lower_bound(false_reg, val, is_jmp32, opcode == BPF_JGE);
5816 		set_upper_bound(true_reg, val, is_jmp32, opcode == BPF_JGT);
5817 		break;
5818 	}
5819 	case BPF_JSGE:
5820 	case BPF_JSGT:
5821 	{
5822 		s64 false_smin = opcode == BPF_JSGT ? sval    : sval + 1;
5823 		s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
5824 
5825 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5826 			break;
5827 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
5828 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
5829 		break;
5830 	}
5831 	case BPF_JLE:
5832 	case BPF_JLT:
5833 	{
5834 		set_upper_bound(false_reg, val, is_jmp32, opcode == BPF_JLE);
5835 		set_lower_bound(true_reg, val, is_jmp32, opcode == BPF_JLT);
5836 		break;
5837 	}
5838 	case BPF_JSLE:
5839 	case BPF_JSLT:
5840 	{
5841 		s64 false_smax = opcode == BPF_JSLT ? sval    : sval - 1;
5842 		s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
5843 
5844 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5845 			break;
5846 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
5847 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
5848 		break;
5849 	}
5850 	default:
5851 		break;
5852 	}
5853 
5854 	__reg_deduce_bounds(false_reg);
5855 	__reg_deduce_bounds(true_reg);
5856 	/* We might have learned some bits from the bounds. */
5857 	__reg_bound_offset(false_reg);
5858 	__reg_bound_offset(true_reg);
5859 	/* Intersecting with the old var_off might have improved our bounds
5860 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5861 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
5862 	 */
5863 	__update_reg_bounds(false_reg);
5864 	__update_reg_bounds(true_reg);
5865 }
5866 
5867 /* Regs are known to be equal, so intersect their min/max/var_off */
__reg_combine_min_max(struct bpf_reg_state * src_reg,struct bpf_reg_state * dst_reg)5868 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
5869 				  struct bpf_reg_state *dst_reg)
5870 {
5871 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
5872 							dst_reg->umin_value);
5873 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
5874 							dst_reg->umax_value);
5875 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
5876 							dst_reg->smin_value);
5877 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
5878 							dst_reg->smax_value);
5879 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
5880 							     dst_reg->var_off);
5881 	/* We might have learned new bounds from the var_off. */
5882 	__update_reg_bounds(src_reg);
5883 	__update_reg_bounds(dst_reg);
5884 	/* We might have learned something about the sign bit. */
5885 	__reg_deduce_bounds(src_reg);
5886 	__reg_deduce_bounds(dst_reg);
5887 	/* We might have learned some bits from the bounds. */
5888 	__reg_bound_offset(src_reg);
5889 	__reg_bound_offset(dst_reg);
5890 	/* Intersecting with the old var_off might have improved our bounds
5891 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5892 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
5893 	 */
5894 	__update_reg_bounds(src_reg);
5895 	__update_reg_bounds(dst_reg);
5896 }
5897 
reg_combine_min_max(struct bpf_reg_state * true_src,struct bpf_reg_state * true_dst,struct bpf_reg_state * false_src,struct bpf_reg_state * false_dst,u8 opcode)5898 static void reg_combine_min_max(struct bpf_reg_state *true_src,
5899 				struct bpf_reg_state *true_dst,
5900 				struct bpf_reg_state *false_src,
5901 				struct bpf_reg_state *false_dst,
5902 				u8 opcode)
5903 {
5904 	switch (opcode) {
5905 	case BPF_JEQ:
5906 		__reg_combine_min_max(true_src, true_dst);
5907 		break;
5908 	case BPF_JNE:
5909 		__reg_combine_min_max(false_src, false_dst);
5910 		break;
5911 	}
5912 }
5913 
mark_ptr_or_null_reg(struct bpf_func_state * state,struct bpf_reg_state * reg,u32 id,bool is_null)5914 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
5915 				 struct bpf_reg_state *reg, u32 id,
5916 				 bool is_null)
5917 {
5918 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
5919 		/* Old offset (both fixed and variable parts) should
5920 		 * have been known-zero, because we don't allow pointer
5921 		 * arithmetic on pointers that might be NULL.
5922 		 */
5923 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
5924 				 !tnum_equals_const(reg->var_off, 0) ||
5925 				 reg->off)) {
5926 			__mark_reg_known_zero(reg);
5927 			reg->off = 0;
5928 		}
5929 		if (is_null) {
5930 			reg->type = SCALAR_VALUE;
5931 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
5932 			if (reg->map_ptr->inner_map_meta) {
5933 				reg->type = CONST_PTR_TO_MAP;
5934 				reg->map_ptr = reg->map_ptr->inner_map_meta;
5935 			} else if (reg->map_ptr->map_type ==
5936 				   BPF_MAP_TYPE_XSKMAP) {
5937 				reg->type = PTR_TO_XDP_SOCK;
5938 			} else {
5939 				reg->type = PTR_TO_MAP_VALUE;
5940 			}
5941 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
5942 			reg->type = PTR_TO_SOCKET;
5943 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
5944 			reg->type = PTR_TO_SOCK_COMMON;
5945 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
5946 			reg->type = PTR_TO_TCP_SOCK;
5947 		}
5948 		if (is_null) {
5949 			/* We don't need id and ref_obj_id from this point
5950 			 * onwards anymore, thus we should better reset it,
5951 			 * so that state pruning has chances to take effect.
5952 			 */
5953 			reg->id = 0;
5954 			reg->ref_obj_id = 0;
5955 		} else if (!reg_may_point_to_spin_lock(reg)) {
5956 			/* For not-NULL ptr, reg->ref_obj_id will be reset
5957 			 * in release_reg_references().
5958 			 *
5959 			 * reg->id is still used by spin_lock ptr. Other
5960 			 * than spin_lock ptr type, reg->id can be reset.
5961 			 */
5962 			reg->id = 0;
5963 		}
5964 	}
5965 }
5966 
__mark_ptr_or_null_regs(struct bpf_func_state * state,u32 id,bool is_null)5967 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
5968 				    bool is_null)
5969 {
5970 	struct bpf_reg_state *reg;
5971 	int i;
5972 
5973 	for (i = 0; i < MAX_BPF_REG; i++)
5974 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
5975 
5976 	bpf_for_each_spilled_reg(i, state, reg) {
5977 		if (!reg)
5978 			continue;
5979 		mark_ptr_or_null_reg(state, reg, id, is_null);
5980 	}
5981 }
5982 
5983 /* The logic is similar to find_good_pkt_pointers(), both could eventually
5984  * be folded together at some point.
5985  */
mark_ptr_or_null_regs(struct bpf_verifier_state * vstate,u32 regno,bool is_null)5986 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
5987 				  bool is_null)
5988 {
5989 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5990 	struct bpf_reg_state *regs = state->regs;
5991 	u32 ref_obj_id = regs[regno].ref_obj_id;
5992 	u32 id = regs[regno].id;
5993 	int i;
5994 
5995 	if (ref_obj_id && ref_obj_id == id && is_null)
5996 		/* regs[regno] is in the " == NULL" branch.
5997 		 * No one could have freed the reference state before
5998 		 * doing the NULL check.
5999 		 */
6000 		WARN_ON_ONCE(release_reference_state(state, id));
6001 
6002 	for (i = 0; i <= vstate->curframe; i++)
6003 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
6004 }
6005 
try_match_pkt_pointers(const struct bpf_insn * insn,struct bpf_reg_state * dst_reg,struct bpf_reg_state * src_reg,struct bpf_verifier_state * this_branch,struct bpf_verifier_state * other_branch)6006 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
6007 				   struct bpf_reg_state *dst_reg,
6008 				   struct bpf_reg_state *src_reg,
6009 				   struct bpf_verifier_state *this_branch,
6010 				   struct bpf_verifier_state *other_branch)
6011 {
6012 	if (BPF_SRC(insn->code) != BPF_X)
6013 		return false;
6014 
6015 	/* Pointers are always 64-bit. */
6016 	if (BPF_CLASS(insn->code) == BPF_JMP32)
6017 		return false;
6018 
6019 	switch (BPF_OP(insn->code)) {
6020 	case BPF_JGT:
6021 		if ((dst_reg->type == PTR_TO_PACKET &&
6022 		     src_reg->type == PTR_TO_PACKET_END) ||
6023 		    (dst_reg->type == PTR_TO_PACKET_META &&
6024 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6025 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
6026 			find_good_pkt_pointers(this_branch, dst_reg,
6027 					       dst_reg->type, false);
6028 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6029 			    src_reg->type == PTR_TO_PACKET) ||
6030 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6031 			    src_reg->type == PTR_TO_PACKET_META)) {
6032 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
6033 			find_good_pkt_pointers(other_branch, src_reg,
6034 					       src_reg->type, true);
6035 		} else {
6036 			return false;
6037 		}
6038 		break;
6039 	case BPF_JLT:
6040 		if ((dst_reg->type == PTR_TO_PACKET &&
6041 		     src_reg->type == PTR_TO_PACKET_END) ||
6042 		    (dst_reg->type == PTR_TO_PACKET_META &&
6043 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6044 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
6045 			find_good_pkt_pointers(other_branch, dst_reg,
6046 					       dst_reg->type, true);
6047 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6048 			    src_reg->type == PTR_TO_PACKET) ||
6049 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6050 			    src_reg->type == PTR_TO_PACKET_META)) {
6051 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
6052 			find_good_pkt_pointers(this_branch, src_reg,
6053 					       src_reg->type, false);
6054 		} else {
6055 			return false;
6056 		}
6057 		break;
6058 	case BPF_JGE:
6059 		if ((dst_reg->type == PTR_TO_PACKET &&
6060 		     src_reg->type == PTR_TO_PACKET_END) ||
6061 		    (dst_reg->type == PTR_TO_PACKET_META &&
6062 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6063 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
6064 			find_good_pkt_pointers(this_branch, dst_reg,
6065 					       dst_reg->type, true);
6066 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6067 			    src_reg->type == PTR_TO_PACKET) ||
6068 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6069 			    src_reg->type == PTR_TO_PACKET_META)) {
6070 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
6071 			find_good_pkt_pointers(other_branch, src_reg,
6072 					       src_reg->type, false);
6073 		} else {
6074 			return false;
6075 		}
6076 		break;
6077 	case BPF_JLE:
6078 		if ((dst_reg->type == PTR_TO_PACKET &&
6079 		     src_reg->type == PTR_TO_PACKET_END) ||
6080 		    (dst_reg->type == PTR_TO_PACKET_META &&
6081 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6082 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
6083 			find_good_pkt_pointers(other_branch, dst_reg,
6084 					       dst_reg->type, false);
6085 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6086 			    src_reg->type == PTR_TO_PACKET) ||
6087 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6088 			    src_reg->type == PTR_TO_PACKET_META)) {
6089 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
6090 			find_good_pkt_pointers(this_branch, src_reg,
6091 					       src_reg->type, true);
6092 		} else {
6093 			return false;
6094 		}
6095 		break;
6096 	default:
6097 		return false;
6098 	}
6099 
6100 	return true;
6101 }
6102 
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)6103 static int check_cond_jmp_op(struct bpf_verifier_env *env,
6104 			     struct bpf_insn *insn, int *insn_idx)
6105 {
6106 	struct bpf_verifier_state *this_branch = env->cur_state;
6107 	struct bpf_verifier_state *other_branch;
6108 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
6109 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
6110 	u8 opcode = BPF_OP(insn->code);
6111 	bool is_jmp32;
6112 	int pred = -1;
6113 	int err;
6114 
6115 	/* Only conditional jumps are expected to reach here. */
6116 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
6117 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
6118 		return -EINVAL;
6119 	}
6120 
6121 	if (BPF_SRC(insn->code) == BPF_X) {
6122 		if (insn->imm != 0) {
6123 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6124 			return -EINVAL;
6125 		}
6126 
6127 		/* check src1 operand */
6128 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
6129 		if (err)
6130 			return err;
6131 
6132 		if (is_pointer_value(env, insn->src_reg)) {
6133 			verbose(env, "R%d pointer comparison prohibited\n",
6134 				insn->src_reg);
6135 			return -EACCES;
6136 		}
6137 		src_reg = &regs[insn->src_reg];
6138 	} else {
6139 		if (insn->src_reg != BPF_REG_0) {
6140 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6141 			return -EINVAL;
6142 		}
6143 	}
6144 
6145 	/* check src2 operand */
6146 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6147 	if (err)
6148 		return err;
6149 
6150 	dst_reg = &regs[insn->dst_reg];
6151 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
6152 
6153 	if (BPF_SRC(insn->code) == BPF_K)
6154 		pred = is_branch_taken(dst_reg, insn->imm,
6155 				       opcode, is_jmp32);
6156 	else if (src_reg->type == SCALAR_VALUE &&
6157 		 tnum_is_const(src_reg->var_off))
6158 		pred = is_branch_taken(dst_reg, src_reg->var_off.value,
6159 				       opcode, is_jmp32);
6160 	if (pred >= 0) {
6161 		err = mark_chain_precision(env, insn->dst_reg);
6162 		if (BPF_SRC(insn->code) == BPF_X && !err)
6163 			err = mark_chain_precision(env, insn->src_reg);
6164 		if (err)
6165 			return err;
6166 	}
6167 
6168 	if (pred == 1) {
6169 		/* Only follow the goto, ignore fall-through. If needed, push
6170 		 * the fall-through branch for simulation under speculative
6171 		 * execution.
6172 		 */
6173 		if (!env->allow_ptr_leaks &&
6174 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
6175 					       *insn_idx))
6176 			return -EFAULT;
6177 		*insn_idx += insn->off;
6178 		return 0;
6179 	} else if (pred == 0) {
6180 		/* Only follow the fall-through branch, since that's where the
6181 		 * program will go. If needed, push the goto branch for
6182 		 * simulation under speculative execution.
6183 		 */
6184 		if (!env->allow_ptr_leaks &&
6185 		    !sanitize_speculative_path(env, insn,
6186 					       *insn_idx + insn->off + 1,
6187 					       *insn_idx))
6188 			return -EFAULT;
6189 		return 0;
6190 	}
6191 
6192 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
6193 				  false);
6194 	if (!other_branch)
6195 		return -EFAULT;
6196 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
6197 
6198 	/* detect if we are comparing against a constant value so we can adjust
6199 	 * our min/max values for our dst register.
6200 	 * this is only legit if both are scalars (or pointers to the same
6201 	 * object, I suppose, but we don't support that right now), because
6202 	 * otherwise the different base pointers mean the offsets aren't
6203 	 * comparable.
6204 	 */
6205 	if (BPF_SRC(insn->code) == BPF_X) {
6206 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
6207 		struct bpf_reg_state lo_reg0 = *dst_reg;
6208 		struct bpf_reg_state lo_reg1 = *src_reg;
6209 		struct bpf_reg_state *src_lo, *dst_lo;
6210 
6211 		dst_lo = &lo_reg0;
6212 		src_lo = &lo_reg1;
6213 		coerce_reg_to_size(dst_lo, 4);
6214 		coerce_reg_to_size(src_lo, 4);
6215 
6216 		if (dst_reg->type == SCALAR_VALUE &&
6217 		    src_reg->type == SCALAR_VALUE) {
6218 			if (tnum_is_const(src_reg->var_off) ||
6219 			    (is_jmp32 && tnum_is_const(src_lo->var_off)))
6220 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
6221 						dst_reg,
6222 						is_jmp32
6223 						? src_lo->var_off.value
6224 						: src_reg->var_off.value,
6225 						opcode, is_jmp32);
6226 			else if (tnum_is_const(dst_reg->var_off) ||
6227 				 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
6228 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
6229 						    src_reg,
6230 						    is_jmp32
6231 						    ? dst_lo->var_off.value
6232 						    : dst_reg->var_off.value,
6233 						    opcode, is_jmp32);
6234 			else if (!is_jmp32 &&
6235 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
6236 				/* Comparing for equality, we can combine knowledge */
6237 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
6238 						    &other_branch_regs[insn->dst_reg],
6239 						    src_reg, dst_reg, opcode);
6240 		}
6241 	} else if (dst_reg->type == SCALAR_VALUE) {
6242 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
6243 					dst_reg, insn->imm, opcode, is_jmp32);
6244 	}
6245 
6246 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
6247 	 * NOTE: these optimizations below are related with pointer comparison
6248 	 *       which will never be JMP32.
6249 	 */
6250 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
6251 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
6252 	    reg_type_may_be_null(dst_reg->type)) {
6253 		/* Mark all identical registers in each branch as either
6254 		 * safe or unknown depending R == 0 or R != 0 conditional.
6255 		 */
6256 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
6257 				      opcode == BPF_JNE);
6258 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
6259 				      opcode == BPF_JEQ);
6260 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
6261 					   this_branch, other_branch) &&
6262 		   is_pointer_value(env, insn->dst_reg)) {
6263 		verbose(env, "R%d pointer comparison prohibited\n",
6264 			insn->dst_reg);
6265 		return -EACCES;
6266 	}
6267 	if (env->log.level & BPF_LOG_LEVEL)
6268 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
6269 	return 0;
6270 }
6271 
6272 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)6273 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
6274 {
6275 	struct bpf_insn_aux_data *aux = cur_aux(env);
6276 	struct bpf_reg_state *regs = cur_regs(env);
6277 	struct bpf_map *map;
6278 	int err;
6279 
6280 	if (BPF_SIZE(insn->code) != BPF_DW) {
6281 		verbose(env, "invalid BPF_LD_IMM insn\n");
6282 		return -EINVAL;
6283 	}
6284 	if (insn->off != 0) {
6285 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
6286 		return -EINVAL;
6287 	}
6288 
6289 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
6290 	if (err)
6291 		return err;
6292 
6293 	if (insn->src_reg == 0) {
6294 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
6295 
6296 		regs[insn->dst_reg].type = SCALAR_VALUE;
6297 		__mark_reg_known(&regs[insn->dst_reg], imm);
6298 		return 0;
6299 	}
6300 
6301 	map = env->used_maps[aux->map_index];
6302 	mark_reg_known_zero(env, regs, insn->dst_reg);
6303 	regs[insn->dst_reg].map_ptr = map;
6304 
6305 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
6306 		regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
6307 		regs[insn->dst_reg].off = aux->map_off;
6308 		if (map_value_has_spin_lock(map))
6309 			regs[insn->dst_reg].id = ++env->id_gen;
6310 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
6311 		regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
6312 	} else {
6313 		verbose(env, "bpf verifier is misconfigured\n");
6314 		return -EINVAL;
6315 	}
6316 
6317 	return 0;
6318 }
6319 
may_access_skb(enum bpf_prog_type type)6320 static bool may_access_skb(enum bpf_prog_type type)
6321 {
6322 	switch (type) {
6323 	case BPF_PROG_TYPE_SOCKET_FILTER:
6324 	case BPF_PROG_TYPE_SCHED_CLS:
6325 	case BPF_PROG_TYPE_SCHED_ACT:
6326 		return true;
6327 	default:
6328 		return false;
6329 	}
6330 }
6331 
6332 /* verify safety of LD_ABS|LD_IND instructions:
6333  * - they can only appear in the programs where ctx == skb
6334  * - since they are wrappers of function calls, they scratch R1-R5 registers,
6335  *   preserve R6-R9, and store return value into R0
6336  *
6337  * Implicit input:
6338  *   ctx == skb == R6 == CTX
6339  *
6340  * Explicit input:
6341  *   SRC == any register
6342  *   IMM == 32-bit immediate
6343  *
6344  * Output:
6345  *   R0 - 8/16/32-bit skb data converted to cpu endianness
6346  */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)6347 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
6348 {
6349 	struct bpf_reg_state *regs = cur_regs(env);
6350 	static const int ctx_reg = BPF_REG_6;
6351 	u8 mode = BPF_MODE(insn->code);
6352 	int i, err;
6353 
6354 	if (!may_access_skb(env->prog->type)) {
6355 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
6356 		return -EINVAL;
6357 	}
6358 
6359 	if (!env->ops->gen_ld_abs) {
6360 		verbose(env, "bpf verifier is misconfigured\n");
6361 		return -EINVAL;
6362 	}
6363 
6364 	if (env->subprog_cnt > 1) {
6365 		/* when program has LD_ABS insn JITs and interpreter assume
6366 		 * that r1 == ctx == skb which is not the case for callees
6367 		 * that can have arbitrary arguments. It's problematic
6368 		 * for main prog as well since JITs would need to analyze
6369 		 * all functions in order to make proper register save/restore
6370 		 * decisions in the main prog. Hence disallow LD_ABS with calls
6371 		 */
6372 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
6373 		return -EINVAL;
6374 	}
6375 
6376 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
6377 	    BPF_SIZE(insn->code) == BPF_DW ||
6378 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
6379 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
6380 		return -EINVAL;
6381 	}
6382 
6383 	/* check whether implicit source operand (register R6) is readable */
6384 	err = check_reg_arg(env, ctx_reg, SRC_OP);
6385 	if (err)
6386 		return err;
6387 
6388 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
6389 	 * gen_ld_abs() may terminate the program at runtime, leading to
6390 	 * reference leak.
6391 	 */
6392 	err = check_reference_leak(env);
6393 	if (err) {
6394 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
6395 		return err;
6396 	}
6397 
6398 	if (env->cur_state->active_spin_lock) {
6399 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
6400 		return -EINVAL;
6401 	}
6402 
6403 	if (regs[ctx_reg].type != PTR_TO_CTX) {
6404 		verbose(env,
6405 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
6406 		return -EINVAL;
6407 	}
6408 
6409 	if (mode == BPF_IND) {
6410 		/* check explicit source operand */
6411 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
6412 		if (err)
6413 			return err;
6414 	}
6415 
6416 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
6417 	if (err < 0)
6418 		return err;
6419 
6420 	/* reset caller saved regs to unreadable */
6421 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6422 		mark_reg_not_init(env, regs, caller_saved[i]);
6423 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6424 	}
6425 
6426 	/* mark destination R0 register as readable, since it contains
6427 	 * the value fetched from the packet.
6428 	 * Already marked as written above.
6429 	 */
6430 	mark_reg_unknown(env, regs, BPF_REG_0);
6431 	/* ld_abs load up to 32-bit skb data. */
6432 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
6433 	return 0;
6434 }
6435 
check_return_code(struct bpf_verifier_env * env)6436 static int check_return_code(struct bpf_verifier_env *env)
6437 {
6438 	struct tnum enforce_attach_type_range = tnum_unknown;
6439 	struct bpf_reg_state *reg;
6440 	struct tnum range = tnum_range(0, 1);
6441 
6442 	switch (env->prog->type) {
6443 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
6444 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
6445 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
6446 			range = tnum_range(1, 1);
6447 		break;
6448 	case BPF_PROG_TYPE_CGROUP_SKB:
6449 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
6450 			range = tnum_range(0, 3);
6451 			enforce_attach_type_range = tnum_range(2, 3);
6452 		}
6453 		break;
6454 	case BPF_PROG_TYPE_CGROUP_SOCK:
6455 	case BPF_PROG_TYPE_SOCK_OPS:
6456 	case BPF_PROG_TYPE_CGROUP_DEVICE:
6457 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
6458 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
6459 		break;
6460 	default:
6461 		return 0;
6462 	}
6463 
6464 	reg = cur_regs(env) + BPF_REG_0;
6465 	if (reg->type != SCALAR_VALUE) {
6466 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
6467 			reg_type_str[reg->type]);
6468 		return -EINVAL;
6469 	}
6470 
6471 	if (!tnum_in(range, reg->var_off)) {
6472 		char tn_buf[48];
6473 
6474 		verbose(env, "At program exit the register R0 ");
6475 		if (!tnum_is_unknown(reg->var_off)) {
6476 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6477 			verbose(env, "has value %s", tn_buf);
6478 		} else {
6479 			verbose(env, "has unknown scalar value");
6480 		}
6481 		tnum_strn(tn_buf, sizeof(tn_buf), range);
6482 		verbose(env, " should have been in %s\n", tn_buf);
6483 		return -EINVAL;
6484 	}
6485 
6486 	if (!tnum_is_unknown(enforce_attach_type_range) &&
6487 	    tnum_in(enforce_attach_type_range, reg->var_off))
6488 		env->prog->enforce_expected_attach_type = 1;
6489 	return 0;
6490 }
6491 
6492 /* non-recursive DFS pseudo code
6493  * 1  procedure DFS-iterative(G,v):
6494  * 2      label v as discovered
6495  * 3      let S be a stack
6496  * 4      S.push(v)
6497  * 5      while S is not empty
6498  * 6            t <- S.pop()
6499  * 7            if t is what we're looking for:
6500  * 8                return t
6501  * 9            for all edges e in G.adjacentEdges(t) do
6502  * 10               if edge e is already labelled
6503  * 11                   continue with the next edge
6504  * 12               w <- G.adjacentVertex(t,e)
6505  * 13               if vertex w is not discovered and not explored
6506  * 14                   label e as tree-edge
6507  * 15                   label w as discovered
6508  * 16                   S.push(w)
6509  * 17                   continue at 5
6510  * 18               else if vertex w is discovered
6511  * 19                   label e as back-edge
6512  * 20               else
6513  * 21                   // vertex w is explored
6514  * 22                   label e as forward- or cross-edge
6515  * 23           label t as explored
6516  * 24           S.pop()
6517  *
6518  * convention:
6519  * 0x10 - discovered
6520  * 0x11 - discovered and fall-through edge labelled
6521  * 0x12 - discovered and fall-through and branch edges labelled
6522  * 0x20 - explored
6523  */
6524 
6525 enum {
6526 	DISCOVERED = 0x10,
6527 	EXPLORED = 0x20,
6528 	FALLTHROUGH = 1,
6529 	BRANCH = 2,
6530 };
6531 
state_htab_size(struct bpf_verifier_env * env)6532 static u32 state_htab_size(struct bpf_verifier_env *env)
6533 {
6534 	return env->prog->len;
6535 }
6536 
explored_state(struct bpf_verifier_env * env,int idx)6537 static struct bpf_verifier_state_list **explored_state(
6538 					struct bpf_verifier_env *env,
6539 					int idx)
6540 {
6541 	struct bpf_verifier_state *cur = env->cur_state;
6542 	struct bpf_func_state *state = cur->frame[cur->curframe];
6543 
6544 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
6545 }
6546 
init_explored_state(struct bpf_verifier_env * env,int idx)6547 static void init_explored_state(struct bpf_verifier_env *env, int idx)
6548 {
6549 	env->insn_aux_data[idx].prune_point = true;
6550 }
6551 
6552 /* t, w, e - match pseudo-code above:
6553  * t - index of current instruction
6554  * w - next instruction
6555  * e - edge
6556  */
push_insn(int t,int w,int e,struct bpf_verifier_env * env,bool loop_ok)6557 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
6558 		     bool loop_ok)
6559 {
6560 	int *insn_stack = env->cfg.insn_stack;
6561 	int *insn_state = env->cfg.insn_state;
6562 
6563 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
6564 		return 0;
6565 
6566 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
6567 		return 0;
6568 
6569 	if (w < 0 || w >= env->prog->len) {
6570 		verbose_linfo(env, t, "%d: ", t);
6571 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
6572 		return -EINVAL;
6573 	}
6574 
6575 	if (e == BRANCH)
6576 		/* mark branch target for state pruning */
6577 		init_explored_state(env, w);
6578 
6579 	if (insn_state[w] == 0) {
6580 		/* tree-edge */
6581 		insn_state[t] = DISCOVERED | e;
6582 		insn_state[w] = DISCOVERED;
6583 		if (env->cfg.cur_stack >= env->prog->len)
6584 			return -E2BIG;
6585 		insn_stack[env->cfg.cur_stack++] = w;
6586 		return 1;
6587 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
6588 		if (loop_ok && env->allow_ptr_leaks)
6589 			return 0;
6590 		verbose_linfo(env, t, "%d: ", t);
6591 		verbose_linfo(env, w, "%d: ", w);
6592 		verbose(env, "back-edge from insn %d to %d\n", t, w);
6593 		return -EINVAL;
6594 	} else if (insn_state[w] == EXPLORED) {
6595 		/* forward- or cross-edge */
6596 		insn_state[t] = DISCOVERED | e;
6597 	} else {
6598 		verbose(env, "insn state internal bug\n");
6599 		return -EFAULT;
6600 	}
6601 	return 0;
6602 }
6603 
6604 /* non-recursive depth-first-search to detect loops in BPF program
6605  * loop == back-edge in directed graph
6606  */
check_cfg(struct bpf_verifier_env * env)6607 static int check_cfg(struct bpf_verifier_env *env)
6608 {
6609 	struct bpf_insn *insns = env->prog->insnsi;
6610 	int insn_cnt = env->prog->len;
6611 	int *insn_stack, *insn_state;
6612 	int ret = 0;
6613 	int i, t;
6614 
6615 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
6616 	if (!insn_state)
6617 		return -ENOMEM;
6618 
6619 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
6620 	if (!insn_stack) {
6621 		kvfree(insn_state);
6622 		return -ENOMEM;
6623 	}
6624 
6625 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
6626 	insn_stack[0] = 0; /* 0 is the first instruction */
6627 	env->cfg.cur_stack = 1;
6628 
6629 peek_stack:
6630 	if (env->cfg.cur_stack == 0)
6631 		goto check_state;
6632 	t = insn_stack[env->cfg.cur_stack - 1];
6633 
6634 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
6635 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
6636 		u8 opcode = BPF_OP(insns[t].code);
6637 
6638 		if (opcode == BPF_EXIT) {
6639 			goto mark_explored;
6640 		} else if (opcode == BPF_CALL) {
6641 			ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
6642 			if (ret == 1)
6643 				goto peek_stack;
6644 			else if (ret < 0)
6645 				goto err_free;
6646 			if (t + 1 < insn_cnt)
6647 				init_explored_state(env, t + 1);
6648 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
6649 				init_explored_state(env, t);
6650 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
6651 						env, false);
6652 				if (ret == 1)
6653 					goto peek_stack;
6654 				else if (ret < 0)
6655 					goto err_free;
6656 			}
6657 		} else if (opcode == BPF_JA) {
6658 			if (BPF_SRC(insns[t].code) != BPF_K) {
6659 				ret = -EINVAL;
6660 				goto err_free;
6661 			}
6662 			/* unconditional jump with single edge */
6663 			ret = push_insn(t, t + insns[t].off + 1,
6664 					FALLTHROUGH, env, true);
6665 			if (ret == 1)
6666 				goto peek_stack;
6667 			else if (ret < 0)
6668 				goto err_free;
6669 			/* unconditional jmp is not a good pruning point,
6670 			 * but it's marked, since backtracking needs
6671 			 * to record jmp history in is_state_visited().
6672 			 */
6673 			init_explored_state(env, t + insns[t].off + 1);
6674 			/* tell verifier to check for equivalent states
6675 			 * after every call and jump
6676 			 */
6677 			if (t + 1 < insn_cnt)
6678 				init_explored_state(env, t + 1);
6679 		} else {
6680 			/* conditional jump with two edges */
6681 			init_explored_state(env, t);
6682 			ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
6683 			if (ret == 1)
6684 				goto peek_stack;
6685 			else if (ret < 0)
6686 				goto err_free;
6687 
6688 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
6689 			if (ret == 1)
6690 				goto peek_stack;
6691 			else if (ret < 0)
6692 				goto err_free;
6693 		}
6694 	} else {
6695 		/* all other non-branch instructions with single
6696 		 * fall-through edge
6697 		 */
6698 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
6699 		if (ret == 1)
6700 			goto peek_stack;
6701 		else if (ret < 0)
6702 			goto err_free;
6703 	}
6704 
6705 mark_explored:
6706 	insn_state[t] = EXPLORED;
6707 	if (env->cfg.cur_stack-- <= 0) {
6708 		verbose(env, "pop stack internal bug\n");
6709 		ret = -EFAULT;
6710 		goto err_free;
6711 	}
6712 	goto peek_stack;
6713 
6714 check_state:
6715 	for (i = 0; i < insn_cnt; i++) {
6716 		if (insn_state[i] != EXPLORED) {
6717 			verbose(env, "unreachable insn %d\n", i);
6718 			ret = -EINVAL;
6719 			goto err_free;
6720 		}
6721 	}
6722 	ret = 0; /* cfg looks good */
6723 
6724 err_free:
6725 	kvfree(insn_state);
6726 	kvfree(insn_stack);
6727 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
6728 	return ret;
6729 }
6730 
6731 /* The minimum supported BTF func info size */
6732 #define MIN_BPF_FUNCINFO_SIZE	8
6733 #define MAX_FUNCINFO_REC_SIZE	252
6734 
check_btf_func(struct bpf_verifier_env * env,const union bpf_attr * attr,union bpf_attr __user * uattr)6735 static int check_btf_func(struct bpf_verifier_env *env,
6736 			  const union bpf_attr *attr,
6737 			  union bpf_attr __user *uattr)
6738 {
6739 	u32 i, nfuncs, urec_size, min_size;
6740 	u32 krec_size = sizeof(struct bpf_func_info);
6741 	struct bpf_func_info *krecord;
6742 	const struct btf_type *type;
6743 	struct bpf_prog *prog;
6744 	const struct btf *btf;
6745 	void __user *urecord;
6746 	u32 prev_offset = 0;
6747 	int ret = 0;
6748 
6749 	nfuncs = attr->func_info_cnt;
6750 	if (!nfuncs)
6751 		return 0;
6752 
6753 	if (nfuncs != env->subprog_cnt) {
6754 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
6755 		return -EINVAL;
6756 	}
6757 
6758 	urec_size = attr->func_info_rec_size;
6759 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
6760 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
6761 	    urec_size % sizeof(u32)) {
6762 		verbose(env, "invalid func info rec size %u\n", urec_size);
6763 		return -EINVAL;
6764 	}
6765 
6766 	prog = env->prog;
6767 	btf = prog->aux->btf;
6768 
6769 	urecord = u64_to_user_ptr(attr->func_info);
6770 	min_size = min_t(u32, krec_size, urec_size);
6771 
6772 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
6773 	if (!krecord)
6774 		return -ENOMEM;
6775 
6776 	for (i = 0; i < nfuncs; i++) {
6777 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
6778 		if (ret) {
6779 			if (ret == -E2BIG) {
6780 				verbose(env, "nonzero tailing record in func info");
6781 				/* set the size kernel expects so loader can zero
6782 				 * out the rest of the record.
6783 				 */
6784 				if (put_user(min_size, &uattr->func_info_rec_size))
6785 					ret = -EFAULT;
6786 			}
6787 			goto err_free;
6788 		}
6789 
6790 		if (copy_from_user(&krecord[i], urecord, min_size)) {
6791 			ret = -EFAULT;
6792 			goto err_free;
6793 		}
6794 
6795 		/* check insn_off */
6796 		if (i == 0) {
6797 			if (krecord[i].insn_off) {
6798 				verbose(env,
6799 					"nonzero insn_off %u for the first func info record",
6800 					krecord[i].insn_off);
6801 				ret = -EINVAL;
6802 				goto err_free;
6803 			}
6804 		} else if (krecord[i].insn_off <= prev_offset) {
6805 			verbose(env,
6806 				"same or smaller insn offset (%u) than previous func info record (%u)",
6807 				krecord[i].insn_off, prev_offset);
6808 			ret = -EINVAL;
6809 			goto err_free;
6810 		}
6811 
6812 		if (env->subprog_info[i].start != krecord[i].insn_off) {
6813 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
6814 			ret = -EINVAL;
6815 			goto err_free;
6816 		}
6817 
6818 		/* check type_id */
6819 		type = btf_type_by_id(btf, krecord[i].type_id);
6820 		if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
6821 			verbose(env, "invalid type id %d in func info",
6822 				krecord[i].type_id);
6823 			ret = -EINVAL;
6824 			goto err_free;
6825 		}
6826 
6827 		prev_offset = krecord[i].insn_off;
6828 		urecord += urec_size;
6829 	}
6830 
6831 	prog->aux->func_info = krecord;
6832 	prog->aux->func_info_cnt = nfuncs;
6833 	return 0;
6834 
6835 err_free:
6836 	kvfree(krecord);
6837 	return ret;
6838 }
6839 
adjust_btf_func(struct bpf_verifier_env * env)6840 static void adjust_btf_func(struct bpf_verifier_env *env)
6841 {
6842 	int i;
6843 
6844 	if (!env->prog->aux->func_info)
6845 		return;
6846 
6847 	for (i = 0; i < env->subprog_cnt; i++)
6848 		env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
6849 }
6850 
6851 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
6852 		sizeof(((struct bpf_line_info *)(0))->line_col))
6853 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
6854 
check_btf_line(struct bpf_verifier_env * env,const union bpf_attr * attr,union bpf_attr __user * uattr)6855 static int check_btf_line(struct bpf_verifier_env *env,
6856 			  const union bpf_attr *attr,
6857 			  union bpf_attr __user *uattr)
6858 {
6859 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
6860 	struct bpf_subprog_info *sub;
6861 	struct bpf_line_info *linfo;
6862 	struct bpf_prog *prog;
6863 	const struct btf *btf;
6864 	void __user *ulinfo;
6865 	int err;
6866 
6867 	nr_linfo = attr->line_info_cnt;
6868 	if (!nr_linfo)
6869 		return 0;
6870 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
6871 		return -EINVAL;
6872 
6873 	rec_size = attr->line_info_rec_size;
6874 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
6875 	    rec_size > MAX_LINEINFO_REC_SIZE ||
6876 	    rec_size & (sizeof(u32) - 1))
6877 		return -EINVAL;
6878 
6879 	/* Need to zero it in case the userspace may
6880 	 * pass in a smaller bpf_line_info object.
6881 	 */
6882 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
6883 			 GFP_KERNEL | __GFP_NOWARN);
6884 	if (!linfo)
6885 		return -ENOMEM;
6886 
6887 	prog = env->prog;
6888 	btf = prog->aux->btf;
6889 
6890 	s = 0;
6891 	sub = env->subprog_info;
6892 	ulinfo = u64_to_user_ptr(attr->line_info);
6893 	expected_size = sizeof(struct bpf_line_info);
6894 	ncopy = min_t(u32, expected_size, rec_size);
6895 	for (i = 0; i < nr_linfo; i++) {
6896 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
6897 		if (err) {
6898 			if (err == -E2BIG) {
6899 				verbose(env, "nonzero tailing record in line_info");
6900 				if (put_user(expected_size,
6901 					     &uattr->line_info_rec_size))
6902 					err = -EFAULT;
6903 			}
6904 			goto err_free;
6905 		}
6906 
6907 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
6908 			err = -EFAULT;
6909 			goto err_free;
6910 		}
6911 
6912 		/*
6913 		 * Check insn_off to ensure
6914 		 * 1) strictly increasing AND
6915 		 * 2) bounded by prog->len
6916 		 *
6917 		 * The linfo[0].insn_off == 0 check logically falls into
6918 		 * the later "missing bpf_line_info for func..." case
6919 		 * because the first linfo[0].insn_off must be the
6920 		 * first sub also and the first sub must have
6921 		 * subprog_info[0].start == 0.
6922 		 */
6923 		if ((i && linfo[i].insn_off <= prev_offset) ||
6924 		    linfo[i].insn_off >= prog->len) {
6925 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
6926 				i, linfo[i].insn_off, prev_offset,
6927 				prog->len);
6928 			err = -EINVAL;
6929 			goto err_free;
6930 		}
6931 
6932 		if (!prog->insnsi[linfo[i].insn_off].code) {
6933 			verbose(env,
6934 				"Invalid insn code at line_info[%u].insn_off\n",
6935 				i);
6936 			err = -EINVAL;
6937 			goto err_free;
6938 		}
6939 
6940 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
6941 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
6942 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
6943 			err = -EINVAL;
6944 			goto err_free;
6945 		}
6946 
6947 		if (s != env->subprog_cnt) {
6948 			if (linfo[i].insn_off == sub[s].start) {
6949 				sub[s].linfo_idx = i;
6950 				s++;
6951 			} else if (sub[s].start < linfo[i].insn_off) {
6952 				verbose(env, "missing bpf_line_info for func#%u\n", s);
6953 				err = -EINVAL;
6954 				goto err_free;
6955 			}
6956 		}
6957 
6958 		prev_offset = linfo[i].insn_off;
6959 		ulinfo += rec_size;
6960 	}
6961 
6962 	if (s != env->subprog_cnt) {
6963 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
6964 			env->subprog_cnt - s, s);
6965 		err = -EINVAL;
6966 		goto err_free;
6967 	}
6968 
6969 	prog->aux->linfo = linfo;
6970 	prog->aux->nr_linfo = nr_linfo;
6971 
6972 	return 0;
6973 
6974 err_free:
6975 	kvfree(linfo);
6976 	return err;
6977 }
6978 
check_btf_info(struct bpf_verifier_env * env,const union bpf_attr * attr,union bpf_attr __user * uattr)6979 static int check_btf_info(struct bpf_verifier_env *env,
6980 			  const union bpf_attr *attr,
6981 			  union bpf_attr __user *uattr)
6982 {
6983 	struct btf *btf;
6984 	int err;
6985 
6986 	if (!attr->func_info_cnt && !attr->line_info_cnt)
6987 		return 0;
6988 
6989 	btf = btf_get_by_fd(attr->prog_btf_fd);
6990 	if (IS_ERR(btf))
6991 		return PTR_ERR(btf);
6992 	env->prog->aux->btf = btf;
6993 
6994 	err = check_btf_func(env, attr, uattr);
6995 	if (err)
6996 		return err;
6997 
6998 	err = check_btf_line(env, attr, uattr);
6999 	if (err)
7000 		return err;
7001 
7002 	return 0;
7003 }
7004 
7005 /* check %cur's range satisfies %old's */
range_within(struct bpf_reg_state * old,struct bpf_reg_state * cur)7006 static bool range_within(struct bpf_reg_state *old,
7007 			 struct bpf_reg_state *cur)
7008 {
7009 	return old->umin_value <= cur->umin_value &&
7010 	       old->umax_value >= cur->umax_value &&
7011 	       old->smin_value <= cur->smin_value &&
7012 	       old->smax_value >= cur->smax_value;
7013 }
7014 
7015 /* If in the old state two registers had the same id, then they need to have
7016  * the same id in the new state as well.  But that id could be different from
7017  * the old state, so we need to track the mapping from old to new ids.
7018  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
7019  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
7020  * regs with a different old id could still have new id 9, we don't care about
7021  * that.
7022  * So we look through our idmap to see if this old id has been seen before.  If
7023  * so, we require the new id to match; otherwise, we add the id pair to the map.
7024  */
check_ids(u32 old_id,u32 cur_id,struct bpf_id_pair * idmap)7025 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
7026 {
7027 	unsigned int i;
7028 
7029 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
7030 		if (!idmap[i].old) {
7031 			/* Reached an empty slot; haven't seen this id before */
7032 			idmap[i].old = old_id;
7033 			idmap[i].cur = cur_id;
7034 			return true;
7035 		}
7036 		if (idmap[i].old == old_id)
7037 			return idmap[i].cur == cur_id;
7038 	}
7039 	/* We ran out of idmap slots, which should be impossible */
7040 	WARN_ON_ONCE(1);
7041 	return false;
7042 }
7043 
clean_func_state(struct bpf_verifier_env * env,struct bpf_func_state * st)7044 static void clean_func_state(struct bpf_verifier_env *env,
7045 			     struct bpf_func_state *st)
7046 {
7047 	enum bpf_reg_liveness live;
7048 	int i, j;
7049 
7050 	for (i = 0; i < BPF_REG_FP; i++) {
7051 		live = st->regs[i].live;
7052 		/* liveness must not touch this register anymore */
7053 		st->regs[i].live |= REG_LIVE_DONE;
7054 		if (!(live & REG_LIVE_READ))
7055 			/* since the register is unused, clear its state
7056 			 * to make further comparison simpler
7057 			 */
7058 			__mark_reg_not_init(env, &st->regs[i]);
7059 	}
7060 
7061 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
7062 		live = st->stack[i].spilled_ptr.live;
7063 		/* liveness must not touch this stack slot anymore */
7064 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
7065 		if (!(live & REG_LIVE_READ)) {
7066 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
7067 			for (j = 0; j < BPF_REG_SIZE; j++)
7068 				st->stack[i].slot_type[j] = STACK_INVALID;
7069 		}
7070 	}
7071 }
7072 
clean_verifier_state(struct bpf_verifier_env * env,struct bpf_verifier_state * st)7073 static void clean_verifier_state(struct bpf_verifier_env *env,
7074 				 struct bpf_verifier_state *st)
7075 {
7076 	int i;
7077 
7078 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
7079 		/* all regs in this state in all frames were already marked */
7080 		return;
7081 
7082 	for (i = 0; i <= st->curframe; i++)
7083 		clean_func_state(env, st->frame[i]);
7084 }
7085 
7086 /* the parentage chains form a tree.
7087  * the verifier states are added to state lists at given insn and
7088  * pushed into state stack for future exploration.
7089  * when the verifier reaches bpf_exit insn some of the verifer states
7090  * stored in the state lists have their final liveness state already,
7091  * but a lot of states will get revised from liveness point of view when
7092  * the verifier explores other branches.
7093  * Example:
7094  * 1: r0 = 1
7095  * 2: if r1 == 100 goto pc+1
7096  * 3: r0 = 2
7097  * 4: exit
7098  * when the verifier reaches exit insn the register r0 in the state list of
7099  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
7100  * of insn 2 and goes exploring further. At the insn 4 it will walk the
7101  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
7102  *
7103  * Since the verifier pushes the branch states as it sees them while exploring
7104  * the program the condition of walking the branch instruction for the second
7105  * time means that all states below this branch were already explored and
7106  * their final liveness markes are already propagated.
7107  * Hence when the verifier completes the search of state list in is_state_visited()
7108  * we can call this clean_live_states() function to mark all liveness states
7109  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
7110  * will not be used.
7111  * This function also clears the registers and stack for states that !READ
7112  * to simplify state merging.
7113  *
7114  * Important note here that walking the same branch instruction in the callee
7115  * doesn't meant that the states are DONE. The verifier has to compare
7116  * the callsites
7117  */
clean_live_states(struct bpf_verifier_env * env,int insn,struct bpf_verifier_state * cur)7118 static void clean_live_states(struct bpf_verifier_env *env, int insn,
7119 			      struct bpf_verifier_state *cur)
7120 {
7121 	struct bpf_verifier_state_list *sl;
7122 	int i;
7123 
7124 	sl = *explored_state(env, insn);
7125 	while (sl) {
7126 		if (sl->state.branches)
7127 			goto next;
7128 		if (sl->state.insn_idx != insn ||
7129 		    sl->state.curframe != cur->curframe)
7130 			goto next;
7131 		for (i = 0; i <= cur->curframe; i++)
7132 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
7133 				goto next;
7134 		clean_verifier_state(env, &sl->state);
7135 next:
7136 		sl = sl->next;
7137 	}
7138 }
7139 
7140 /* Returns true if (rold safe implies rcur safe) */
regsafe(struct bpf_verifier_env * env,struct bpf_reg_state * rold,struct bpf_reg_state * rcur,struct bpf_id_pair * idmap)7141 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
7142 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
7143 {
7144 	bool equal;
7145 
7146 	if (!(rold->live & REG_LIVE_READ))
7147 		/* explored state didn't use this */
7148 		return true;
7149 
7150 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
7151 
7152 	if (rold->type == PTR_TO_STACK)
7153 		/* two stack pointers are equal only if they're pointing to
7154 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
7155 		 */
7156 		return equal && rold->frameno == rcur->frameno;
7157 
7158 	if (equal)
7159 		return true;
7160 
7161 	if (rold->type == NOT_INIT)
7162 		/* explored state can't have used this */
7163 		return true;
7164 	if (rcur->type == NOT_INIT)
7165 		return false;
7166 	switch (rold->type) {
7167 	case SCALAR_VALUE:
7168 		if (env->explore_alu_limits)
7169 			return false;
7170 		if (rcur->type == SCALAR_VALUE) {
7171 			if (!rold->precise && !rcur->precise)
7172 				return true;
7173 			/* new val must satisfy old val knowledge */
7174 			return range_within(rold, rcur) &&
7175 			       tnum_in(rold->var_off, rcur->var_off);
7176 		} else {
7177 			/* We're trying to use a pointer in place of a scalar.
7178 			 * Even if the scalar was unbounded, this could lead to
7179 			 * pointer leaks because scalars are allowed to leak
7180 			 * while pointers are not. We could make this safe in
7181 			 * special cases if root is calling us, but it's
7182 			 * probably not worth the hassle.
7183 			 */
7184 			return false;
7185 		}
7186 	case PTR_TO_MAP_VALUE:
7187 		/* If the new min/max/var_off satisfy the old ones and
7188 		 * everything else matches, we are OK.
7189 		 * 'id' is not compared, since it's only used for maps with
7190 		 * bpf_spin_lock inside map element and in such cases if
7191 		 * the rest of the prog is valid for one map element then
7192 		 * it's valid for all map elements regardless of the key
7193 		 * used in bpf_map_lookup()
7194 		 */
7195 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
7196 		       range_within(rold, rcur) &&
7197 		       tnum_in(rold->var_off, rcur->var_off);
7198 	case PTR_TO_MAP_VALUE_OR_NULL:
7199 		/* a PTR_TO_MAP_VALUE could be safe to use as a
7200 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
7201 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
7202 		 * checked, doing so could have affected others with the same
7203 		 * id, and we can't check for that because we lost the id when
7204 		 * we converted to a PTR_TO_MAP_VALUE.
7205 		 */
7206 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
7207 			return false;
7208 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
7209 			return false;
7210 		/* Check our ids match any regs they're supposed to */
7211 		return check_ids(rold->id, rcur->id, idmap);
7212 	case PTR_TO_PACKET_META:
7213 	case PTR_TO_PACKET:
7214 		if (rcur->type != rold->type)
7215 			return false;
7216 		/* We must have at least as much range as the old ptr
7217 		 * did, so that any accesses which were safe before are
7218 		 * still safe.  This is true even if old range < old off,
7219 		 * since someone could have accessed through (ptr - k), or
7220 		 * even done ptr -= k in a register, to get a safe access.
7221 		 */
7222 		if (rold->range > rcur->range)
7223 			return false;
7224 		/* If the offsets don't match, we can't trust our alignment;
7225 		 * nor can we be sure that we won't fall out of range.
7226 		 */
7227 		if (rold->off != rcur->off)
7228 			return false;
7229 		/* id relations must be preserved */
7230 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
7231 			return false;
7232 		/* new val must satisfy old val knowledge */
7233 		return range_within(rold, rcur) &&
7234 		       tnum_in(rold->var_off, rcur->var_off);
7235 	case PTR_TO_CTX:
7236 	case CONST_PTR_TO_MAP:
7237 	case PTR_TO_PACKET_END:
7238 	case PTR_TO_FLOW_KEYS:
7239 	case PTR_TO_SOCKET:
7240 	case PTR_TO_SOCKET_OR_NULL:
7241 	case PTR_TO_SOCK_COMMON:
7242 	case PTR_TO_SOCK_COMMON_OR_NULL:
7243 	case PTR_TO_TCP_SOCK:
7244 	case PTR_TO_TCP_SOCK_OR_NULL:
7245 	case PTR_TO_XDP_SOCK:
7246 		/* Only valid matches are exact, which memcmp() above
7247 		 * would have accepted
7248 		 */
7249 	default:
7250 		/* Don't know what's going on, just say it's not safe */
7251 		return false;
7252 	}
7253 
7254 	/* Shouldn't get here; if we do, say it's not safe */
7255 	WARN_ON_ONCE(1);
7256 	return false;
7257 }
7258 
stacksafe(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur,struct bpf_id_pair * idmap)7259 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
7260 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
7261 {
7262 	int i, spi;
7263 
7264 	/* walk slots of the explored stack and ignore any additional
7265 	 * slots in the current stack, since explored(safe) state
7266 	 * didn't use them
7267 	 */
7268 	for (i = 0; i < old->allocated_stack; i++) {
7269 		spi = i / BPF_REG_SIZE;
7270 
7271 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
7272 			i += BPF_REG_SIZE - 1;
7273 			/* explored state didn't use this */
7274 			continue;
7275 		}
7276 
7277 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
7278 			continue;
7279 
7280 		/* explored stack has more populated slots than current stack
7281 		 * and these slots were used
7282 		 */
7283 		if (i >= cur->allocated_stack)
7284 			return false;
7285 
7286 		/* if old state was safe with misc data in the stack
7287 		 * it will be safe with zero-initialized stack.
7288 		 * The opposite is not true
7289 		 */
7290 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
7291 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
7292 			continue;
7293 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
7294 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
7295 			/* Ex: old explored (safe) state has STACK_SPILL in
7296 			 * this stack slot, but current has has STACK_MISC ->
7297 			 * this verifier states are not equivalent,
7298 			 * return false to continue verification of this path
7299 			 */
7300 			return false;
7301 		if (i % BPF_REG_SIZE)
7302 			continue;
7303 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
7304 			continue;
7305 		if (!regsafe(env, &old->stack[spi].spilled_ptr,
7306 			     &cur->stack[spi].spilled_ptr, idmap))
7307 			/* when explored and current stack slot are both storing
7308 			 * spilled registers, check that stored pointers types
7309 			 * are the same as well.
7310 			 * Ex: explored safe path could have stored
7311 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
7312 			 * but current path has stored:
7313 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
7314 			 * such verifier states are not equivalent.
7315 			 * return false to continue verification of this path
7316 			 */
7317 			return false;
7318 	}
7319 	return true;
7320 }
7321 
refsafe(struct bpf_func_state * old,struct bpf_func_state * cur)7322 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
7323 {
7324 	if (old->acquired_refs != cur->acquired_refs)
7325 		return false;
7326 	return !memcmp(old->refs, cur->refs,
7327 		       sizeof(*old->refs) * old->acquired_refs);
7328 }
7329 
7330 /* compare two verifier states
7331  *
7332  * all states stored in state_list are known to be valid, since
7333  * verifier reached 'bpf_exit' instruction through them
7334  *
7335  * this function is called when verifier exploring different branches of
7336  * execution popped from the state stack. If it sees an old state that has
7337  * more strict register state and more strict stack state then this execution
7338  * branch doesn't need to be explored further, since verifier already
7339  * concluded that more strict state leads to valid finish.
7340  *
7341  * Therefore two states are equivalent if register state is more conservative
7342  * and explored stack state is more conservative than the current one.
7343  * Example:
7344  *       explored                   current
7345  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
7346  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
7347  *
7348  * In other words if current stack state (one being explored) has more
7349  * valid slots than old one that already passed validation, it means
7350  * the verifier can stop exploring and conclude that current state is valid too
7351  *
7352  * Similarly with registers. If explored state has register type as invalid
7353  * whereas register type in current state is meaningful, it means that
7354  * the current state will reach 'bpf_exit' instruction safely
7355  */
func_states_equal(struct bpf_verifier_env * env,struct bpf_func_state * old,struct bpf_func_state * cur)7356 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
7357 			      struct bpf_func_state *cur)
7358 {
7359 	int i;
7360 
7361 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
7362 	for (i = 0; i < MAX_BPF_REG; i++)
7363 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
7364 			     env->idmap_scratch))
7365 			return false;
7366 
7367 	if (!stacksafe(env, old, cur, env->idmap_scratch))
7368 		return false;
7369 
7370 	if (!refsafe(old, cur))
7371 		return false;
7372 
7373 	return true;
7374 }
7375 
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)7376 static bool states_equal(struct bpf_verifier_env *env,
7377 			 struct bpf_verifier_state *old,
7378 			 struct bpf_verifier_state *cur)
7379 {
7380 	int i;
7381 
7382 	if (old->curframe != cur->curframe)
7383 		return false;
7384 
7385 	/* Verification state from speculative execution simulation
7386 	 * must never prune a non-speculative execution one.
7387 	 */
7388 	if (old->speculative && !cur->speculative)
7389 		return false;
7390 
7391 	if (old->active_spin_lock != cur->active_spin_lock)
7392 		return false;
7393 
7394 	/* for states to be equal callsites have to be the same
7395 	 * and all frame states need to be equivalent
7396 	 */
7397 	for (i = 0; i <= old->curframe; i++) {
7398 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
7399 			return false;
7400 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
7401 			return false;
7402 	}
7403 	return true;
7404 }
7405 
7406 /* Return 0 if no propagation happened. Return negative error code if error
7407  * happened. Otherwise, return the propagated bit.
7408  */
propagate_liveness_reg(struct bpf_verifier_env * env,struct bpf_reg_state * reg,struct bpf_reg_state * parent_reg)7409 static int propagate_liveness_reg(struct bpf_verifier_env *env,
7410 				  struct bpf_reg_state *reg,
7411 				  struct bpf_reg_state *parent_reg)
7412 {
7413 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
7414 	u8 flag = reg->live & REG_LIVE_READ;
7415 	int err;
7416 
7417 	/* When comes here, read flags of PARENT_REG or REG could be any of
7418 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
7419 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
7420 	 */
7421 	if (parent_flag == REG_LIVE_READ64 ||
7422 	    /* Or if there is no read flag from REG. */
7423 	    !flag ||
7424 	    /* Or if the read flag from REG is the same as PARENT_REG. */
7425 	    parent_flag == flag)
7426 		return 0;
7427 
7428 	err = mark_reg_read(env, reg, parent_reg, flag);
7429 	if (err)
7430 		return err;
7431 
7432 	return flag;
7433 }
7434 
7435 /* A write screens off any subsequent reads; but write marks come from the
7436  * straight-line code between a state and its parent.  When we arrive at an
7437  * equivalent state (jump target or such) we didn't arrive by the straight-line
7438  * code, so read marks in the state must propagate to the parent regardless
7439  * of the state's write marks. That's what 'parent == state->parent' comparison
7440  * in mark_reg_read() is for.
7441  */
propagate_liveness(struct bpf_verifier_env * env,const struct bpf_verifier_state * vstate,struct bpf_verifier_state * vparent)7442 static int propagate_liveness(struct bpf_verifier_env *env,
7443 			      const struct bpf_verifier_state *vstate,
7444 			      struct bpf_verifier_state *vparent)
7445 {
7446 	struct bpf_reg_state *state_reg, *parent_reg;
7447 	struct bpf_func_state *state, *parent;
7448 	int i, frame, err = 0;
7449 
7450 	if (vparent->curframe != vstate->curframe) {
7451 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
7452 		     vparent->curframe, vstate->curframe);
7453 		return -EFAULT;
7454 	}
7455 	/* Propagate read liveness of registers... */
7456 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
7457 	for (frame = 0; frame <= vstate->curframe; frame++) {
7458 		parent = vparent->frame[frame];
7459 		state = vstate->frame[frame];
7460 		parent_reg = parent->regs;
7461 		state_reg = state->regs;
7462 		/* We don't need to worry about FP liveness, it's read-only */
7463 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
7464 			err = propagate_liveness_reg(env, &state_reg[i],
7465 						     &parent_reg[i]);
7466 			if (err < 0)
7467 				return err;
7468 			if (err == REG_LIVE_READ64)
7469 				mark_insn_zext(env, &parent_reg[i]);
7470 		}
7471 
7472 		/* Propagate stack slots. */
7473 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
7474 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
7475 			parent_reg = &parent->stack[i].spilled_ptr;
7476 			state_reg = &state->stack[i].spilled_ptr;
7477 			err = propagate_liveness_reg(env, state_reg,
7478 						     parent_reg);
7479 			if (err < 0)
7480 				return err;
7481 		}
7482 	}
7483 	return 0;
7484 }
7485 
7486 /* find precise scalars in the previous equivalent state and
7487  * propagate them into the current state
7488  */
propagate_precision(struct bpf_verifier_env * env,const struct bpf_verifier_state * old)7489 static int propagate_precision(struct bpf_verifier_env *env,
7490 			       const struct bpf_verifier_state *old)
7491 {
7492 	struct bpf_reg_state *state_reg;
7493 	struct bpf_func_state *state;
7494 	int i, err = 0;
7495 
7496 	state = old->frame[old->curframe];
7497 	state_reg = state->regs;
7498 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
7499 		if (state_reg->type != SCALAR_VALUE ||
7500 		    !state_reg->precise)
7501 			continue;
7502 		if (env->log.level & BPF_LOG_LEVEL2)
7503 			verbose(env, "propagating r%d\n", i);
7504 		err = mark_chain_precision(env, i);
7505 		if (err < 0)
7506 			return err;
7507 	}
7508 
7509 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
7510 		if (state->stack[i].slot_type[0] != STACK_SPILL)
7511 			continue;
7512 		state_reg = &state->stack[i].spilled_ptr;
7513 		if (state_reg->type != SCALAR_VALUE ||
7514 		    !state_reg->precise)
7515 			continue;
7516 		if (env->log.level & BPF_LOG_LEVEL2)
7517 			verbose(env, "propagating fp%d\n",
7518 				(-i - 1) * BPF_REG_SIZE);
7519 		err = mark_chain_precision_stack(env, i);
7520 		if (err < 0)
7521 			return err;
7522 	}
7523 	return 0;
7524 }
7525 
states_maybe_looping(struct bpf_verifier_state * old,struct bpf_verifier_state * cur)7526 static bool states_maybe_looping(struct bpf_verifier_state *old,
7527 				 struct bpf_verifier_state *cur)
7528 {
7529 	struct bpf_func_state *fold, *fcur;
7530 	int i, fr = cur->curframe;
7531 
7532 	if (old->curframe != fr)
7533 		return false;
7534 
7535 	fold = old->frame[fr];
7536 	fcur = cur->frame[fr];
7537 	for (i = 0; i < MAX_BPF_REG; i++)
7538 		if (memcmp(&fold->regs[i], &fcur->regs[i],
7539 			   offsetof(struct bpf_reg_state, parent)))
7540 			return false;
7541 	return true;
7542 }
7543 
7544 
is_state_visited(struct bpf_verifier_env * env,int insn_idx)7545 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
7546 {
7547 	struct bpf_verifier_state_list *new_sl;
7548 	struct bpf_verifier_state_list *sl, **pprev;
7549 	struct bpf_verifier_state *cur = env->cur_state, *new;
7550 	int i, j, err, states_cnt = 0;
7551 	bool add_new_state = env->test_state_freq ? true : false;
7552 
7553 	cur->last_insn_idx = env->prev_insn_idx;
7554 	if (!env->insn_aux_data[insn_idx].prune_point)
7555 		/* this 'insn_idx' instruction wasn't marked, so we will not
7556 		 * be doing state search here
7557 		 */
7558 		return 0;
7559 
7560 	/* bpf progs typically have pruning point every 4 instructions
7561 	 * http://vger.kernel.org/bpfconf2019.html#session-1
7562 	 * Do not add new state for future pruning if the verifier hasn't seen
7563 	 * at least 2 jumps and at least 8 instructions.
7564 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
7565 	 * In tests that amounts to up to 50% reduction into total verifier
7566 	 * memory consumption and 20% verifier time speedup.
7567 	 */
7568 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
7569 	    env->insn_processed - env->prev_insn_processed >= 8)
7570 		add_new_state = true;
7571 
7572 	pprev = explored_state(env, insn_idx);
7573 	sl = *pprev;
7574 
7575 	clean_live_states(env, insn_idx, cur);
7576 
7577 	while (sl) {
7578 		states_cnt++;
7579 		if (sl->state.insn_idx != insn_idx)
7580 			goto next;
7581 		if (sl->state.branches) {
7582 			if (states_maybe_looping(&sl->state, cur) &&
7583 			    states_equal(env, &sl->state, cur)) {
7584 				verbose_linfo(env, insn_idx, "; ");
7585 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
7586 				return -EINVAL;
7587 			}
7588 			/* if the verifier is processing a loop, avoid adding new state
7589 			 * too often, since different loop iterations have distinct
7590 			 * states and may not help future pruning.
7591 			 * This threshold shouldn't be too low to make sure that
7592 			 * a loop with large bound will be rejected quickly.
7593 			 * The most abusive loop will be:
7594 			 * r1 += 1
7595 			 * if r1 < 1000000 goto pc-2
7596 			 * 1M insn_procssed limit / 100 == 10k peak states.
7597 			 * This threshold shouldn't be too high either, since states
7598 			 * at the end of the loop are likely to be useful in pruning.
7599 			 */
7600 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
7601 			    env->insn_processed - env->prev_insn_processed < 100)
7602 				add_new_state = false;
7603 			goto miss;
7604 		}
7605 		if (states_equal(env, &sl->state, cur)) {
7606 			sl->hit_cnt++;
7607 			/* reached equivalent register/stack state,
7608 			 * prune the search.
7609 			 * Registers read by the continuation are read by us.
7610 			 * If we have any write marks in env->cur_state, they
7611 			 * will prevent corresponding reads in the continuation
7612 			 * from reaching our parent (an explored_state).  Our
7613 			 * own state will get the read marks recorded, but
7614 			 * they'll be immediately forgotten as we're pruning
7615 			 * this state and will pop a new one.
7616 			 */
7617 			err = propagate_liveness(env, &sl->state, cur);
7618 
7619 			/* if previous state reached the exit with precision and
7620 			 * current state is equivalent to it (except precsion marks)
7621 			 * the precision needs to be propagated back in
7622 			 * the current state.
7623 			 */
7624 			err = err ? : push_jmp_history(env, cur);
7625 			err = err ? : propagate_precision(env, &sl->state);
7626 			if (err)
7627 				return err;
7628 			return 1;
7629 		}
7630 miss:
7631 		/* when new state is not going to be added do not increase miss count.
7632 		 * Otherwise several loop iterations will remove the state
7633 		 * recorded earlier. The goal of these heuristics is to have
7634 		 * states from some iterations of the loop (some in the beginning
7635 		 * and some at the end) to help pruning.
7636 		 */
7637 		if (add_new_state)
7638 			sl->miss_cnt++;
7639 		/* heuristic to determine whether this state is beneficial
7640 		 * to keep checking from state equivalence point of view.
7641 		 * Higher numbers increase max_states_per_insn and verification time,
7642 		 * but do not meaningfully decrease insn_processed.
7643 		 */
7644 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
7645 			/* the state is unlikely to be useful. Remove it to
7646 			 * speed up verification
7647 			 */
7648 			*pprev = sl->next;
7649 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
7650 				u32 br = sl->state.branches;
7651 
7652 				WARN_ONCE(br,
7653 					  "BUG live_done but branches_to_explore %d\n",
7654 					  br);
7655 				free_verifier_state(&sl->state, false);
7656 				kfree(sl);
7657 				env->peak_states--;
7658 			} else {
7659 				/* cannot free this state, since parentage chain may
7660 				 * walk it later. Add it for free_list instead to
7661 				 * be freed at the end of verification
7662 				 */
7663 				sl->next = env->free_list;
7664 				env->free_list = sl;
7665 			}
7666 			sl = *pprev;
7667 			continue;
7668 		}
7669 next:
7670 		pprev = &sl->next;
7671 		sl = *pprev;
7672 	}
7673 
7674 	if (env->max_states_per_insn < states_cnt)
7675 		env->max_states_per_insn = states_cnt;
7676 
7677 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
7678 		return push_jmp_history(env, cur);
7679 
7680 	if (!add_new_state)
7681 		return push_jmp_history(env, cur);
7682 
7683 	/* There were no equivalent states, remember the current one.
7684 	 * Technically the current state is not proven to be safe yet,
7685 	 * but it will either reach outer most bpf_exit (which means it's safe)
7686 	 * or it will be rejected. When there are no loops the verifier won't be
7687 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
7688 	 * again on the way to bpf_exit.
7689 	 * When looping the sl->state.branches will be > 0 and this state
7690 	 * will not be considered for equivalence until branches == 0.
7691 	 */
7692 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
7693 	if (!new_sl)
7694 		return -ENOMEM;
7695 	env->total_states++;
7696 	env->peak_states++;
7697 	env->prev_jmps_processed = env->jmps_processed;
7698 	env->prev_insn_processed = env->insn_processed;
7699 
7700 	/* add new state to the head of linked list */
7701 	new = &new_sl->state;
7702 	err = copy_verifier_state(new, cur);
7703 	if (err) {
7704 		free_verifier_state(new, false);
7705 		kfree(new_sl);
7706 		return err;
7707 	}
7708 	new->insn_idx = insn_idx;
7709 	WARN_ONCE(new->branches != 1,
7710 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
7711 
7712 	cur->parent = new;
7713 	cur->first_insn_idx = insn_idx;
7714 	clear_jmp_history(cur);
7715 	new_sl->next = *explored_state(env, insn_idx);
7716 	*explored_state(env, insn_idx) = new_sl;
7717 	/* connect new state to parentage chain. Current frame needs all
7718 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
7719 	 * to the stack implicitly by JITs) so in callers' frames connect just
7720 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
7721 	 * the state of the call instruction (with WRITTEN set), and r0 comes
7722 	 * from callee with its full parentage chain, anyway.
7723 	 */
7724 	/* clear write marks in current state: the writes we did are not writes
7725 	 * our child did, so they don't screen off its reads from us.
7726 	 * (There are no read marks in current state, because reads always mark
7727 	 * their parent and current state never has children yet.  Only
7728 	 * explored_states can get read marks.)
7729 	 */
7730 	for (j = 0; j <= cur->curframe; j++) {
7731 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
7732 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
7733 		for (i = 0; i < BPF_REG_FP; i++)
7734 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
7735 	}
7736 
7737 	/* all stack frames are accessible from callee, clear them all */
7738 	for (j = 0; j <= cur->curframe; j++) {
7739 		struct bpf_func_state *frame = cur->frame[j];
7740 		struct bpf_func_state *newframe = new->frame[j];
7741 
7742 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
7743 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
7744 			frame->stack[i].spilled_ptr.parent =
7745 						&newframe->stack[i].spilled_ptr;
7746 		}
7747 	}
7748 	return 0;
7749 }
7750 
7751 /* Return true if it's OK to have the same insn return a different type. */
reg_type_mismatch_ok(enum bpf_reg_type type)7752 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
7753 {
7754 	switch (type) {
7755 	case PTR_TO_CTX:
7756 	case PTR_TO_SOCKET:
7757 	case PTR_TO_SOCKET_OR_NULL:
7758 	case PTR_TO_SOCK_COMMON:
7759 	case PTR_TO_SOCK_COMMON_OR_NULL:
7760 	case PTR_TO_TCP_SOCK:
7761 	case PTR_TO_TCP_SOCK_OR_NULL:
7762 	case PTR_TO_XDP_SOCK:
7763 		return false;
7764 	default:
7765 		return true;
7766 	}
7767 }
7768 
7769 /* If an instruction was previously used with particular pointer types, then we
7770  * need to be careful to avoid cases such as the below, where it may be ok
7771  * for one branch accessing the pointer, but not ok for the other branch:
7772  *
7773  * R1 = sock_ptr
7774  * goto X;
7775  * ...
7776  * R1 = some_other_valid_ptr;
7777  * goto X;
7778  * ...
7779  * R2 = *(u32 *)(R1 + 0);
7780  */
reg_type_mismatch(enum bpf_reg_type src,enum bpf_reg_type prev)7781 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
7782 {
7783 	return src != prev && (!reg_type_mismatch_ok(src) ||
7784 			       !reg_type_mismatch_ok(prev));
7785 }
7786 
do_check(struct bpf_verifier_env * env)7787 static int do_check(struct bpf_verifier_env *env)
7788 {
7789 	struct bpf_verifier_state *state;
7790 	struct bpf_insn *insns = env->prog->insnsi;
7791 	struct bpf_reg_state *regs;
7792 	int insn_cnt = env->prog->len;
7793 	bool do_print_state = false;
7794 	int prev_insn_idx = -1;
7795 
7796 	env->prev_linfo = NULL;
7797 
7798 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
7799 	if (!state)
7800 		return -ENOMEM;
7801 	state->curframe = 0;
7802 	state->speculative = false;
7803 	state->branches = 1;
7804 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
7805 	if (!state->frame[0]) {
7806 		kfree(state);
7807 		return -ENOMEM;
7808 	}
7809 	env->cur_state = state;
7810 	init_func_state(env, state->frame[0],
7811 			BPF_MAIN_FUNC /* callsite */,
7812 			0 /* frameno */,
7813 			0 /* subprogno, zero == main subprog */);
7814 
7815 	for (;;) {
7816 		struct bpf_insn *insn;
7817 		u8 class;
7818 		int err;
7819 
7820 		env->prev_insn_idx = prev_insn_idx;
7821 		if (env->insn_idx >= insn_cnt) {
7822 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
7823 				env->insn_idx, insn_cnt);
7824 			return -EFAULT;
7825 		}
7826 
7827 		insn = &insns[env->insn_idx];
7828 		class = BPF_CLASS(insn->code);
7829 
7830 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
7831 			verbose(env,
7832 				"BPF program is too large. Processed %d insn\n",
7833 				env->insn_processed);
7834 			return -E2BIG;
7835 		}
7836 
7837 		err = is_state_visited(env, env->insn_idx);
7838 		if (err < 0)
7839 			return err;
7840 		if (err == 1) {
7841 			/* found equivalent state, can prune the search */
7842 			if (env->log.level & BPF_LOG_LEVEL) {
7843 				if (do_print_state)
7844 					verbose(env, "\nfrom %d to %d%s: safe\n",
7845 						env->prev_insn_idx, env->insn_idx,
7846 						env->cur_state->speculative ?
7847 						" (speculative execution)" : "");
7848 				else
7849 					verbose(env, "%d: safe\n", env->insn_idx);
7850 			}
7851 			goto process_bpf_exit;
7852 		}
7853 
7854 		if (signal_pending(current))
7855 			return -EAGAIN;
7856 
7857 		if (need_resched())
7858 			cond_resched();
7859 
7860 		if (env->log.level & BPF_LOG_LEVEL2 ||
7861 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
7862 			if (env->log.level & BPF_LOG_LEVEL2)
7863 				verbose(env, "%d:", env->insn_idx);
7864 			else
7865 				verbose(env, "\nfrom %d to %d%s:",
7866 					env->prev_insn_idx, env->insn_idx,
7867 					env->cur_state->speculative ?
7868 					" (speculative execution)" : "");
7869 			print_verifier_state(env, state->frame[state->curframe]);
7870 			do_print_state = false;
7871 		}
7872 
7873 		if (env->log.level & BPF_LOG_LEVEL) {
7874 			const struct bpf_insn_cbs cbs = {
7875 				.cb_print	= verbose,
7876 				.private_data	= env,
7877 			};
7878 
7879 			verbose_linfo(env, env->insn_idx, "; ");
7880 			verbose(env, "%d: ", env->insn_idx);
7881 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
7882 		}
7883 
7884 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
7885 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
7886 							   env->prev_insn_idx);
7887 			if (err)
7888 				return err;
7889 		}
7890 
7891 		regs = cur_regs(env);
7892 		sanitize_mark_insn_seen(env);
7893 		prev_insn_idx = env->insn_idx;
7894 
7895 		if (class == BPF_ALU || class == BPF_ALU64) {
7896 			err = check_alu_op(env, insn);
7897 			if (err)
7898 				return err;
7899 
7900 		} else if (class == BPF_LDX) {
7901 			enum bpf_reg_type *prev_src_type, src_reg_type;
7902 
7903 			/* check for reserved fields is already done */
7904 
7905 			/* check src operand */
7906 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7907 			if (err)
7908 				return err;
7909 
7910 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7911 			if (err)
7912 				return err;
7913 
7914 			src_reg_type = regs[insn->src_reg].type;
7915 
7916 			/* check that memory (src_reg + off) is readable,
7917 			 * the state of dst_reg will be updated by this func
7918 			 */
7919 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
7920 					       insn->off, BPF_SIZE(insn->code),
7921 					       BPF_READ, insn->dst_reg, false);
7922 			if (err)
7923 				return err;
7924 
7925 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
7926 
7927 			if (*prev_src_type == NOT_INIT) {
7928 				/* saw a valid insn
7929 				 * dst_reg = *(u32 *)(src_reg + off)
7930 				 * save type to validate intersecting paths
7931 				 */
7932 				*prev_src_type = src_reg_type;
7933 
7934 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
7935 				/* ABuser program is trying to use the same insn
7936 				 * dst_reg = *(u32*) (src_reg + off)
7937 				 * with different pointer types:
7938 				 * src_reg == ctx in one branch and
7939 				 * src_reg == stack|map in some other branch.
7940 				 * Reject it.
7941 				 */
7942 				verbose(env, "same insn cannot be used with different pointers\n");
7943 				return -EINVAL;
7944 			}
7945 
7946 		} else if (class == BPF_STX) {
7947 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
7948 
7949 			if (BPF_MODE(insn->code) == BPF_XADD) {
7950 				err = check_xadd(env, env->insn_idx, insn);
7951 				if (err)
7952 					return err;
7953 				env->insn_idx++;
7954 				continue;
7955 			}
7956 
7957 			/* check src1 operand */
7958 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7959 			if (err)
7960 				return err;
7961 			/* check src2 operand */
7962 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7963 			if (err)
7964 				return err;
7965 
7966 			dst_reg_type = regs[insn->dst_reg].type;
7967 
7968 			/* check that memory (dst_reg + off) is writeable */
7969 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7970 					       insn->off, BPF_SIZE(insn->code),
7971 					       BPF_WRITE, insn->src_reg, false);
7972 			if (err)
7973 				return err;
7974 
7975 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
7976 
7977 			if (*prev_dst_type == NOT_INIT) {
7978 				*prev_dst_type = dst_reg_type;
7979 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
7980 				verbose(env, "same insn cannot be used with different pointers\n");
7981 				return -EINVAL;
7982 			}
7983 
7984 		} else if (class == BPF_ST) {
7985 			if (BPF_MODE(insn->code) != BPF_MEM ||
7986 			    insn->src_reg != BPF_REG_0) {
7987 				verbose(env, "BPF_ST uses reserved fields\n");
7988 				return -EINVAL;
7989 			}
7990 			/* check src operand */
7991 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7992 			if (err)
7993 				return err;
7994 
7995 			if (is_ctx_reg(env, insn->dst_reg)) {
7996 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
7997 					insn->dst_reg,
7998 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
7999 				return -EACCES;
8000 			}
8001 
8002 			/* check that memory (dst_reg + off) is writeable */
8003 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
8004 					       insn->off, BPF_SIZE(insn->code),
8005 					       BPF_WRITE, -1, false);
8006 			if (err)
8007 				return err;
8008 
8009 		} else if (class == BPF_JMP || class == BPF_JMP32) {
8010 			u8 opcode = BPF_OP(insn->code);
8011 
8012 			env->jmps_processed++;
8013 			if (opcode == BPF_CALL) {
8014 				if (BPF_SRC(insn->code) != BPF_K ||
8015 				    insn->off != 0 ||
8016 				    (insn->src_reg != BPF_REG_0 &&
8017 				     insn->src_reg != BPF_PSEUDO_CALL) ||
8018 				    insn->dst_reg != BPF_REG_0 ||
8019 				    class == BPF_JMP32) {
8020 					verbose(env, "BPF_CALL uses reserved fields\n");
8021 					return -EINVAL;
8022 				}
8023 
8024 				if (env->cur_state->active_spin_lock &&
8025 				    (insn->src_reg == BPF_PSEUDO_CALL ||
8026 				     insn->imm != BPF_FUNC_spin_unlock)) {
8027 					verbose(env, "function calls are not allowed while holding a lock\n");
8028 					return -EINVAL;
8029 				}
8030 				if (insn->src_reg == BPF_PSEUDO_CALL)
8031 					err = check_func_call(env, insn, &env->insn_idx);
8032 				else
8033 					err = check_helper_call(env, insn->imm, env->insn_idx);
8034 				if (err)
8035 					return err;
8036 
8037 			} else if (opcode == BPF_JA) {
8038 				if (BPF_SRC(insn->code) != BPF_K ||
8039 				    insn->imm != 0 ||
8040 				    insn->src_reg != BPF_REG_0 ||
8041 				    insn->dst_reg != BPF_REG_0 ||
8042 				    class == BPF_JMP32) {
8043 					verbose(env, "BPF_JA uses reserved fields\n");
8044 					return -EINVAL;
8045 				}
8046 
8047 				env->insn_idx += insn->off + 1;
8048 				continue;
8049 
8050 			} else if (opcode == BPF_EXIT) {
8051 				if (BPF_SRC(insn->code) != BPF_K ||
8052 				    insn->imm != 0 ||
8053 				    insn->src_reg != BPF_REG_0 ||
8054 				    insn->dst_reg != BPF_REG_0 ||
8055 				    class == BPF_JMP32) {
8056 					verbose(env, "BPF_EXIT uses reserved fields\n");
8057 					return -EINVAL;
8058 				}
8059 
8060 				if (env->cur_state->active_spin_lock) {
8061 					verbose(env, "bpf_spin_unlock is missing\n");
8062 					return -EINVAL;
8063 				}
8064 
8065 				if (state->curframe) {
8066 					/* exit from nested function */
8067 					err = prepare_func_exit(env, &env->insn_idx);
8068 					if (err)
8069 						return err;
8070 					do_print_state = true;
8071 					continue;
8072 				}
8073 
8074 				err = check_reference_leak(env);
8075 				if (err)
8076 					return err;
8077 
8078 				/* eBPF calling convetion is such that R0 is used
8079 				 * to return the value from eBPF program.
8080 				 * Make sure that it's readable at this time
8081 				 * of bpf_exit, which means that program wrote
8082 				 * something into it earlier
8083 				 */
8084 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
8085 				if (err)
8086 					return err;
8087 
8088 				if (is_pointer_value(env, BPF_REG_0)) {
8089 					verbose(env, "R0 leaks addr as return value\n");
8090 					return -EACCES;
8091 				}
8092 
8093 				err = check_return_code(env);
8094 				if (err)
8095 					return err;
8096 process_bpf_exit:
8097 				update_branch_counts(env, env->cur_state);
8098 				err = pop_stack(env, &prev_insn_idx,
8099 						&env->insn_idx);
8100 				if (err < 0) {
8101 					if (err != -ENOENT)
8102 						return err;
8103 					break;
8104 				} else {
8105 					do_print_state = true;
8106 					continue;
8107 				}
8108 			} else {
8109 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
8110 				if (err)
8111 					return err;
8112 			}
8113 		} else if (class == BPF_LD) {
8114 			u8 mode = BPF_MODE(insn->code);
8115 
8116 			if (mode == BPF_ABS || mode == BPF_IND) {
8117 				err = check_ld_abs(env, insn);
8118 				if (err)
8119 					return err;
8120 
8121 			} else if (mode == BPF_IMM) {
8122 				err = check_ld_imm(env, insn);
8123 				if (err)
8124 					return err;
8125 
8126 				env->insn_idx++;
8127 				sanitize_mark_insn_seen(env);
8128 			} else {
8129 				verbose(env, "invalid BPF_LD mode\n");
8130 				return -EINVAL;
8131 			}
8132 		} else {
8133 			verbose(env, "unknown insn class %d\n", class);
8134 			return -EINVAL;
8135 		}
8136 
8137 		env->insn_idx++;
8138 	}
8139 
8140 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
8141 	return 0;
8142 }
8143 
check_map_prealloc(struct bpf_map * map)8144 static int check_map_prealloc(struct bpf_map *map)
8145 {
8146 	return (map->map_type != BPF_MAP_TYPE_HASH &&
8147 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8148 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
8149 		!(map->map_flags & BPF_F_NO_PREALLOC);
8150 }
8151 
is_tracing_prog_type(enum bpf_prog_type type)8152 static bool is_tracing_prog_type(enum bpf_prog_type type)
8153 {
8154 	switch (type) {
8155 	case BPF_PROG_TYPE_KPROBE:
8156 	case BPF_PROG_TYPE_TRACEPOINT:
8157 	case BPF_PROG_TYPE_PERF_EVENT:
8158 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
8159 		return true;
8160 	default:
8161 		return false;
8162 	}
8163 }
8164 
check_map_prog_compatibility(struct bpf_verifier_env * env,struct bpf_map * map,struct bpf_prog * prog)8165 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
8166 					struct bpf_map *map,
8167 					struct bpf_prog *prog)
8168 
8169 {
8170 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
8171 	 * preallocated hash maps, since doing memory allocation
8172 	 * in overflow_handler can crash depending on where nmi got
8173 	 * triggered.
8174 	 */
8175 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
8176 		if (!check_map_prealloc(map)) {
8177 			verbose(env, "perf_event programs can only use preallocated hash map\n");
8178 			return -EINVAL;
8179 		}
8180 		if (map->inner_map_meta &&
8181 		    !check_map_prealloc(map->inner_map_meta)) {
8182 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
8183 			return -EINVAL;
8184 		}
8185 	}
8186 
8187 	if ((is_tracing_prog_type(prog->type) ||
8188 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
8189 	    map_value_has_spin_lock(map)) {
8190 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
8191 		return -EINVAL;
8192 	}
8193 
8194 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
8195 	    !bpf_offload_prog_map_match(prog, map)) {
8196 		verbose(env, "offload device mismatch between prog and map\n");
8197 		return -EINVAL;
8198 	}
8199 
8200 	return 0;
8201 }
8202 
bpf_map_is_cgroup_storage(struct bpf_map * map)8203 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
8204 {
8205 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
8206 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
8207 }
8208 
8209 /* look for pseudo eBPF instructions that access map FDs and
8210  * replace them with actual map pointers
8211  */
replace_map_fd_with_map_ptr(struct bpf_verifier_env * env)8212 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
8213 {
8214 	struct bpf_insn *insn = env->prog->insnsi;
8215 	int insn_cnt = env->prog->len;
8216 	int i, j, err;
8217 
8218 	err = bpf_prog_calc_tag(env->prog);
8219 	if (err)
8220 		return err;
8221 
8222 	for (i = 0; i < insn_cnt; i++, insn++) {
8223 		if (BPF_CLASS(insn->code) == BPF_LDX &&
8224 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
8225 			verbose(env, "BPF_LDX uses reserved fields\n");
8226 			return -EINVAL;
8227 		}
8228 
8229 		if (BPF_CLASS(insn->code) == BPF_STX &&
8230 		    ((BPF_MODE(insn->code) != BPF_MEM &&
8231 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
8232 			verbose(env, "BPF_STX uses reserved fields\n");
8233 			return -EINVAL;
8234 		}
8235 
8236 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
8237 			struct bpf_insn_aux_data *aux;
8238 			struct bpf_map *map;
8239 			struct fd f;
8240 			u64 addr;
8241 
8242 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
8243 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
8244 			    insn[1].off != 0) {
8245 				verbose(env, "invalid bpf_ld_imm64 insn\n");
8246 				return -EINVAL;
8247 			}
8248 
8249 			if (insn[0].src_reg == 0)
8250 				/* valid generic load 64-bit imm */
8251 				goto next_insn;
8252 
8253 			/* In final convert_pseudo_ld_imm64() step, this is
8254 			 * converted into regular 64-bit imm load insn.
8255 			 */
8256 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
8257 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
8258 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
8259 			     insn[1].imm != 0)) {
8260 				verbose(env,
8261 					"unrecognized bpf_ld_imm64 insn\n");
8262 				return -EINVAL;
8263 			}
8264 
8265 			f = fdget(insn[0].imm);
8266 			map = __bpf_map_get(f);
8267 			if (IS_ERR(map)) {
8268 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
8269 					insn[0].imm);
8270 				return PTR_ERR(map);
8271 			}
8272 
8273 			err = check_map_prog_compatibility(env, map, env->prog);
8274 			if (err) {
8275 				fdput(f);
8276 				return err;
8277 			}
8278 
8279 			aux = &env->insn_aux_data[i];
8280 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8281 				addr = (unsigned long)map;
8282 			} else {
8283 				u32 off = insn[1].imm;
8284 
8285 				if (off >= BPF_MAX_VAR_OFF) {
8286 					verbose(env, "direct value offset of %u is not allowed\n", off);
8287 					fdput(f);
8288 					return -EINVAL;
8289 				}
8290 
8291 				if (!map->ops->map_direct_value_addr) {
8292 					verbose(env, "no direct value access support for this map type\n");
8293 					fdput(f);
8294 					return -EINVAL;
8295 				}
8296 
8297 				err = map->ops->map_direct_value_addr(map, &addr, off);
8298 				if (err) {
8299 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
8300 						map->value_size, off);
8301 					fdput(f);
8302 					return err;
8303 				}
8304 
8305 				aux->map_off = off;
8306 				addr += off;
8307 			}
8308 
8309 			insn[0].imm = (u32)addr;
8310 			insn[1].imm = addr >> 32;
8311 
8312 			/* check whether we recorded this map already */
8313 			for (j = 0; j < env->used_map_cnt; j++) {
8314 				if (env->used_maps[j] == map) {
8315 					aux->map_index = j;
8316 					fdput(f);
8317 					goto next_insn;
8318 				}
8319 			}
8320 
8321 			if (env->used_map_cnt >= MAX_USED_MAPS) {
8322 				fdput(f);
8323 				return -E2BIG;
8324 			}
8325 
8326 			/* hold the map. If the program is rejected by verifier,
8327 			 * the map will be released by release_maps() or it
8328 			 * will be used by the valid program until it's unloaded
8329 			 * and all maps are released in free_used_maps()
8330 			 */
8331 			map = bpf_map_inc(map, false);
8332 			if (IS_ERR(map)) {
8333 				fdput(f);
8334 				return PTR_ERR(map);
8335 			}
8336 
8337 			aux->map_index = env->used_map_cnt;
8338 			env->used_maps[env->used_map_cnt++] = map;
8339 
8340 			if (bpf_map_is_cgroup_storage(map) &&
8341 			    bpf_cgroup_storage_assign(env->prog, map)) {
8342 				verbose(env, "only one cgroup storage of each type is allowed\n");
8343 				fdput(f);
8344 				return -EBUSY;
8345 			}
8346 
8347 			fdput(f);
8348 next_insn:
8349 			insn++;
8350 			i++;
8351 			continue;
8352 		}
8353 
8354 		/* Basic sanity check before we invest more work here. */
8355 		if (!bpf_opcode_in_insntable(insn->code)) {
8356 			verbose(env, "unknown opcode %02x\n", insn->code);
8357 			return -EINVAL;
8358 		}
8359 	}
8360 
8361 	/* now all pseudo BPF_LD_IMM64 instructions load valid
8362 	 * 'struct bpf_map *' into a register instead of user map_fd.
8363 	 * These pointers will be used later by verifier to validate map access.
8364 	 */
8365 	return 0;
8366 }
8367 
8368 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)8369 static void release_maps(struct bpf_verifier_env *env)
8370 {
8371 	enum bpf_cgroup_storage_type stype;
8372 	int i;
8373 
8374 	for_each_cgroup_storage_type(stype) {
8375 		if (!env->prog->aux->cgroup_storage[stype])
8376 			continue;
8377 		bpf_cgroup_storage_release(env->prog,
8378 			env->prog->aux->cgroup_storage[stype]);
8379 	}
8380 
8381 	for (i = 0; i < env->used_map_cnt; i++)
8382 		bpf_map_put(env->used_maps[i]);
8383 }
8384 
8385 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)8386 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
8387 {
8388 	struct bpf_insn *insn = env->prog->insnsi;
8389 	int insn_cnt = env->prog->len;
8390 	int i;
8391 
8392 	for (i = 0; i < insn_cnt; i++, insn++)
8393 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
8394 			insn->src_reg = 0;
8395 }
8396 
8397 /* single env->prog->insni[off] instruction was replaced with the range
8398  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
8399  * [0, off) and [off, end) to new locations, so the patched range stays zero
8400  */
adjust_insn_aux_data(struct bpf_verifier_env * env,struct bpf_insn_aux_data * new_data,struct bpf_prog * new_prog,u32 off,u32 cnt)8401 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
8402 				 struct bpf_insn_aux_data *new_data,
8403 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
8404 {
8405 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
8406 	struct bpf_insn *insn = new_prog->insnsi;
8407 	bool old_seen = old_data[off].seen;
8408 	u32 prog_len;
8409 	int i;
8410 
8411 	/* aux info at OFF always needs adjustment, no matter fast path
8412 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
8413 	 * original insn at old prog.
8414 	 */
8415 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
8416 
8417 	if (cnt == 1)
8418 		return;
8419 	prog_len = new_prog->len;
8420 
8421 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
8422 	memcpy(new_data + off + cnt - 1, old_data + off,
8423 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
8424 	for (i = off; i < off + cnt - 1; i++) {
8425 		/* Expand insni[off]'s seen count to the patched range. */
8426 		new_data[i].seen = old_seen;
8427 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
8428 	}
8429 	env->insn_aux_data = new_data;
8430 	vfree(old_data);
8431 }
8432 
adjust_subprog_starts(struct bpf_verifier_env * env,u32 off,u32 len)8433 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
8434 {
8435 	int i;
8436 
8437 	if (len == 1)
8438 		return;
8439 	/* NOTE: fake 'exit' subprog should be updated as well. */
8440 	for (i = 0; i <= env->subprog_cnt; i++) {
8441 		if (env->subprog_info[i].start <= off)
8442 			continue;
8443 		env->subprog_info[i].start += len - 1;
8444 	}
8445 }
8446 
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)8447 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
8448 					    const struct bpf_insn *patch, u32 len)
8449 {
8450 	struct bpf_prog *new_prog;
8451 	struct bpf_insn_aux_data *new_data = NULL;
8452 
8453 	if (len > 1) {
8454 		new_data = vzalloc(array_size(env->prog->len + len - 1,
8455 					      sizeof(struct bpf_insn_aux_data)));
8456 		if (!new_data)
8457 			return NULL;
8458 	}
8459 
8460 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
8461 	if (IS_ERR(new_prog)) {
8462 		if (PTR_ERR(new_prog) == -ERANGE)
8463 			verbose(env,
8464 				"insn %d cannot be patched due to 16-bit range\n",
8465 				env->insn_aux_data[off].orig_idx);
8466 		vfree(new_data);
8467 		return NULL;
8468 	}
8469 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
8470 	adjust_subprog_starts(env, off, len);
8471 	return new_prog;
8472 }
8473 
adjust_subprog_starts_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)8474 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
8475 					      u32 off, u32 cnt)
8476 {
8477 	int i, j;
8478 
8479 	/* find first prog starting at or after off (first to remove) */
8480 	for (i = 0; i < env->subprog_cnt; i++)
8481 		if (env->subprog_info[i].start >= off)
8482 			break;
8483 	/* find first prog starting at or after off + cnt (first to stay) */
8484 	for (j = i; j < env->subprog_cnt; j++)
8485 		if (env->subprog_info[j].start >= off + cnt)
8486 			break;
8487 	/* if j doesn't start exactly at off + cnt, we are just removing
8488 	 * the front of previous prog
8489 	 */
8490 	if (env->subprog_info[j].start != off + cnt)
8491 		j--;
8492 
8493 	if (j > i) {
8494 		struct bpf_prog_aux *aux = env->prog->aux;
8495 		int move;
8496 
8497 		/* move fake 'exit' subprog as well */
8498 		move = env->subprog_cnt + 1 - j;
8499 
8500 		memmove(env->subprog_info + i,
8501 			env->subprog_info + j,
8502 			sizeof(*env->subprog_info) * move);
8503 		env->subprog_cnt -= j - i;
8504 
8505 		/* remove func_info */
8506 		if (aux->func_info) {
8507 			move = aux->func_info_cnt - j;
8508 
8509 			memmove(aux->func_info + i,
8510 				aux->func_info + j,
8511 				sizeof(*aux->func_info) * move);
8512 			aux->func_info_cnt -= j - i;
8513 			/* func_info->insn_off is set after all code rewrites,
8514 			 * in adjust_btf_func() - no need to adjust
8515 			 */
8516 		}
8517 	} else {
8518 		/* convert i from "first prog to remove" to "first to adjust" */
8519 		if (env->subprog_info[i].start == off)
8520 			i++;
8521 	}
8522 
8523 	/* update fake 'exit' subprog as well */
8524 	for (; i <= env->subprog_cnt; i++)
8525 		env->subprog_info[i].start -= cnt;
8526 
8527 	return 0;
8528 }
8529 
bpf_adj_linfo_after_remove(struct bpf_verifier_env * env,u32 off,u32 cnt)8530 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
8531 				      u32 cnt)
8532 {
8533 	struct bpf_prog *prog = env->prog;
8534 	u32 i, l_off, l_cnt, nr_linfo;
8535 	struct bpf_line_info *linfo;
8536 
8537 	nr_linfo = prog->aux->nr_linfo;
8538 	if (!nr_linfo)
8539 		return 0;
8540 
8541 	linfo = prog->aux->linfo;
8542 
8543 	/* find first line info to remove, count lines to be removed */
8544 	for (i = 0; i < nr_linfo; i++)
8545 		if (linfo[i].insn_off >= off)
8546 			break;
8547 
8548 	l_off = i;
8549 	l_cnt = 0;
8550 	for (; i < nr_linfo; i++)
8551 		if (linfo[i].insn_off < off + cnt)
8552 			l_cnt++;
8553 		else
8554 			break;
8555 
8556 	/* First live insn doesn't match first live linfo, it needs to "inherit"
8557 	 * last removed linfo.  prog is already modified, so prog->len == off
8558 	 * means no live instructions after (tail of the program was removed).
8559 	 */
8560 	if (prog->len != off && l_cnt &&
8561 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
8562 		l_cnt--;
8563 		linfo[--i].insn_off = off + cnt;
8564 	}
8565 
8566 	/* remove the line info which refer to the removed instructions */
8567 	if (l_cnt) {
8568 		memmove(linfo + l_off, linfo + i,
8569 			sizeof(*linfo) * (nr_linfo - i));
8570 
8571 		prog->aux->nr_linfo -= l_cnt;
8572 		nr_linfo = prog->aux->nr_linfo;
8573 	}
8574 
8575 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
8576 	for (i = l_off; i < nr_linfo; i++)
8577 		linfo[i].insn_off -= cnt;
8578 
8579 	/* fix up all subprogs (incl. 'exit') which start >= off */
8580 	for (i = 0; i <= env->subprog_cnt; i++)
8581 		if (env->subprog_info[i].linfo_idx > l_off) {
8582 			/* program may have started in the removed region but
8583 			 * may not be fully removed
8584 			 */
8585 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
8586 				env->subprog_info[i].linfo_idx -= l_cnt;
8587 			else
8588 				env->subprog_info[i].linfo_idx = l_off;
8589 		}
8590 
8591 	return 0;
8592 }
8593 
verifier_remove_insns(struct bpf_verifier_env * env,u32 off,u32 cnt)8594 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
8595 {
8596 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8597 	unsigned int orig_prog_len = env->prog->len;
8598 	int err;
8599 
8600 	if (bpf_prog_is_dev_bound(env->prog->aux))
8601 		bpf_prog_offload_remove_insns(env, off, cnt);
8602 
8603 	err = bpf_remove_insns(env->prog, off, cnt);
8604 	if (err)
8605 		return err;
8606 
8607 	err = adjust_subprog_starts_after_remove(env, off, cnt);
8608 	if (err)
8609 		return err;
8610 
8611 	err = bpf_adj_linfo_after_remove(env, off, cnt);
8612 	if (err)
8613 		return err;
8614 
8615 	memmove(aux_data + off,	aux_data + off + cnt,
8616 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
8617 
8618 	return 0;
8619 }
8620 
8621 /* The verifier does more data flow analysis than llvm and will not
8622  * explore branches that are dead at run time. Malicious programs can
8623  * have dead code too. Therefore replace all dead at-run-time code
8624  * with 'ja -1'.
8625  *
8626  * Just nops are not optimal, e.g. if they would sit at the end of the
8627  * program and through another bug we would manage to jump there, then
8628  * we'd execute beyond program memory otherwise. Returning exception
8629  * code also wouldn't work since we can have subprogs where the dead
8630  * code could be located.
8631  */
sanitize_dead_code(struct bpf_verifier_env * env)8632 static void sanitize_dead_code(struct bpf_verifier_env *env)
8633 {
8634 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8635 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
8636 	struct bpf_insn *insn = env->prog->insnsi;
8637 	const int insn_cnt = env->prog->len;
8638 	int i;
8639 
8640 	for (i = 0; i < insn_cnt; i++) {
8641 		if (aux_data[i].seen)
8642 			continue;
8643 		memcpy(insn + i, &trap, sizeof(trap));
8644 		aux_data[i].zext_dst = false;
8645 	}
8646 }
8647 
insn_is_cond_jump(u8 code)8648 static bool insn_is_cond_jump(u8 code)
8649 {
8650 	u8 op;
8651 
8652 	if (BPF_CLASS(code) == BPF_JMP32)
8653 		return true;
8654 
8655 	if (BPF_CLASS(code) != BPF_JMP)
8656 		return false;
8657 
8658 	op = BPF_OP(code);
8659 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
8660 }
8661 
opt_hard_wire_dead_code_branches(struct bpf_verifier_env * env)8662 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
8663 {
8664 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8665 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8666 	struct bpf_insn *insn = env->prog->insnsi;
8667 	const int insn_cnt = env->prog->len;
8668 	int i;
8669 
8670 	for (i = 0; i < insn_cnt; i++, insn++) {
8671 		if (!insn_is_cond_jump(insn->code))
8672 			continue;
8673 
8674 		if (!aux_data[i + 1].seen)
8675 			ja.off = insn->off;
8676 		else if (!aux_data[i + 1 + insn->off].seen)
8677 			ja.off = 0;
8678 		else
8679 			continue;
8680 
8681 		if (bpf_prog_is_dev_bound(env->prog->aux))
8682 			bpf_prog_offload_replace_insn(env, i, &ja);
8683 
8684 		memcpy(insn, &ja, sizeof(ja));
8685 	}
8686 }
8687 
opt_remove_dead_code(struct bpf_verifier_env * env)8688 static int opt_remove_dead_code(struct bpf_verifier_env *env)
8689 {
8690 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8691 	int insn_cnt = env->prog->len;
8692 	int i, err;
8693 
8694 	for (i = 0; i < insn_cnt; i++) {
8695 		int j;
8696 
8697 		j = 0;
8698 		while (i + j < insn_cnt && !aux_data[i + j].seen)
8699 			j++;
8700 		if (!j)
8701 			continue;
8702 
8703 		err = verifier_remove_insns(env, i, j);
8704 		if (err)
8705 			return err;
8706 		insn_cnt = env->prog->len;
8707 	}
8708 
8709 	return 0;
8710 }
8711 
opt_remove_nops(struct bpf_verifier_env * env)8712 static int opt_remove_nops(struct bpf_verifier_env *env)
8713 {
8714 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8715 	struct bpf_insn *insn = env->prog->insnsi;
8716 	int insn_cnt = env->prog->len;
8717 	int i, err;
8718 
8719 	for (i = 0; i < insn_cnt; i++) {
8720 		if (memcmp(&insn[i], &ja, sizeof(ja)))
8721 			continue;
8722 
8723 		err = verifier_remove_insns(env, i, 1);
8724 		if (err)
8725 			return err;
8726 		insn_cnt--;
8727 		i--;
8728 	}
8729 
8730 	return 0;
8731 }
8732 
opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env * env,const union bpf_attr * attr)8733 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
8734 					 const union bpf_attr *attr)
8735 {
8736 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
8737 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
8738 	int i, patch_len, delta = 0, len = env->prog->len;
8739 	struct bpf_insn *insns = env->prog->insnsi;
8740 	struct bpf_prog *new_prog;
8741 	bool rnd_hi32;
8742 
8743 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
8744 	zext_patch[1] = BPF_ZEXT_REG(0);
8745 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
8746 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
8747 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
8748 	for (i = 0; i < len; i++) {
8749 		int adj_idx = i + delta;
8750 		struct bpf_insn insn;
8751 
8752 		insn = insns[adj_idx];
8753 		if (!aux[adj_idx].zext_dst) {
8754 			u8 code, class;
8755 			u32 imm_rnd;
8756 
8757 			if (!rnd_hi32)
8758 				continue;
8759 
8760 			code = insn.code;
8761 			class = BPF_CLASS(code);
8762 			if (insn_no_def(&insn))
8763 				continue;
8764 
8765 			/* NOTE: arg "reg" (the fourth one) is only used for
8766 			 *       BPF_STX which has been ruled out in above
8767 			 *       check, it is safe to pass NULL here.
8768 			 */
8769 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
8770 				if (class == BPF_LD &&
8771 				    BPF_MODE(code) == BPF_IMM)
8772 					i++;
8773 				continue;
8774 			}
8775 
8776 			/* ctx load could be transformed into wider load. */
8777 			if (class == BPF_LDX &&
8778 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
8779 				continue;
8780 
8781 			imm_rnd = get_random_int();
8782 			rnd_hi32_patch[0] = insn;
8783 			rnd_hi32_patch[1].imm = imm_rnd;
8784 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
8785 			patch = rnd_hi32_patch;
8786 			patch_len = 4;
8787 			goto apply_patch_buffer;
8788 		}
8789 
8790 		if (!bpf_jit_needs_zext())
8791 			continue;
8792 
8793 		zext_patch[0] = insn;
8794 		zext_patch[1].dst_reg = insn.dst_reg;
8795 		zext_patch[1].src_reg = insn.dst_reg;
8796 		patch = zext_patch;
8797 		patch_len = 2;
8798 apply_patch_buffer:
8799 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
8800 		if (!new_prog)
8801 			return -ENOMEM;
8802 		env->prog = new_prog;
8803 		insns = new_prog->insnsi;
8804 		aux = env->insn_aux_data;
8805 		delta += patch_len - 1;
8806 	}
8807 
8808 	return 0;
8809 }
8810 
8811 /* convert load instructions that access fields of a context type into a
8812  * sequence of instructions that access fields of the underlying structure:
8813  *     struct __sk_buff    -> struct sk_buff
8814  *     struct bpf_sock_ops -> struct sock
8815  */
convert_ctx_accesses(struct bpf_verifier_env * env)8816 static int convert_ctx_accesses(struct bpf_verifier_env *env)
8817 {
8818 	const struct bpf_verifier_ops *ops = env->ops;
8819 	int i, cnt, size, ctx_field_size, delta = 0;
8820 	const int insn_cnt = env->prog->len;
8821 	struct bpf_insn insn_buf[16], *insn;
8822 	u32 target_size, size_default, off;
8823 	struct bpf_prog *new_prog;
8824 	enum bpf_access_type type;
8825 	bool is_narrower_load;
8826 
8827 	if (ops->gen_prologue || env->seen_direct_write) {
8828 		if (!ops->gen_prologue) {
8829 			verbose(env, "bpf verifier is misconfigured\n");
8830 			return -EINVAL;
8831 		}
8832 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
8833 					env->prog);
8834 		if (cnt >= ARRAY_SIZE(insn_buf)) {
8835 			verbose(env, "bpf verifier is misconfigured\n");
8836 			return -EINVAL;
8837 		} else if (cnt) {
8838 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
8839 			if (!new_prog)
8840 				return -ENOMEM;
8841 
8842 			env->prog = new_prog;
8843 			delta += cnt - 1;
8844 		}
8845 	}
8846 
8847 	if (bpf_prog_is_dev_bound(env->prog->aux))
8848 		return 0;
8849 
8850 	insn = env->prog->insnsi + delta;
8851 
8852 	for (i = 0; i < insn_cnt; i++, insn++) {
8853 		bpf_convert_ctx_access_t convert_ctx_access;
8854 		bool ctx_access;
8855 
8856 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
8857 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
8858 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
8859 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
8860 			type = BPF_READ;
8861 			ctx_access = true;
8862 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
8863 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
8864 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
8865 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
8866 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
8867 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
8868 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
8869 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
8870 			type = BPF_WRITE;
8871 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
8872 		} else {
8873 			continue;
8874 		}
8875 
8876 		if (type == BPF_WRITE &&
8877 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
8878 			struct bpf_insn patch[] = {
8879 				*insn,
8880 				BPF_ST_NOSPEC(),
8881 			};
8882 
8883 			cnt = ARRAY_SIZE(patch);
8884 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
8885 			if (!new_prog)
8886 				return -ENOMEM;
8887 
8888 			delta    += cnt - 1;
8889 			env->prog = new_prog;
8890 			insn      = new_prog->insnsi + i + delta;
8891 			continue;
8892 		}
8893 
8894 		if (!ctx_access)
8895 			continue;
8896 
8897 		switch (env->insn_aux_data[i + delta].ptr_type) {
8898 		case PTR_TO_CTX:
8899 			if (!ops->convert_ctx_access)
8900 				continue;
8901 			convert_ctx_access = ops->convert_ctx_access;
8902 			break;
8903 		case PTR_TO_SOCKET:
8904 		case PTR_TO_SOCK_COMMON:
8905 			convert_ctx_access = bpf_sock_convert_ctx_access;
8906 			break;
8907 		case PTR_TO_TCP_SOCK:
8908 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
8909 			break;
8910 		case PTR_TO_XDP_SOCK:
8911 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
8912 			break;
8913 		default:
8914 			continue;
8915 		}
8916 
8917 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
8918 		size = BPF_LDST_BYTES(insn);
8919 
8920 		/* If the read access is a narrower load of the field,
8921 		 * convert to a 4/8-byte load, to minimum program type specific
8922 		 * convert_ctx_access changes. If conversion is successful,
8923 		 * we will apply proper mask to the result.
8924 		 */
8925 		is_narrower_load = size < ctx_field_size;
8926 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
8927 		off = insn->off;
8928 		if (is_narrower_load) {
8929 			u8 size_code;
8930 
8931 			if (type == BPF_WRITE) {
8932 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
8933 				return -EINVAL;
8934 			}
8935 
8936 			size_code = BPF_H;
8937 			if (ctx_field_size == 4)
8938 				size_code = BPF_W;
8939 			else if (ctx_field_size == 8)
8940 				size_code = BPF_DW;
8941 
8942 			insn->off = off & ~(size_default - 1);
8943 			insn->code = BPF_LDX | BPF_MEM | size_code;
8944 		}
8945 
8946 		target_size = 0;
8947 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
8948 					 &target_size);
8949 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
8950 		    (ctx_field_size && !target_size)) {
8951 			verbose(env, "bpf verifier is misconfigured\n");
8952 			return -EINVAL;
8953 		}
8954 
8955 		if (is_narrower_load && size < target_size) {
8956 			u8 shift = bpf_ctx_narrow_access_offset(
8957 				off, size, size_default) * 8;
8958 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
8959 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
8960 				return -EINVAL;
8961 			}
8962 			if (ctx_field_size <= 4) {
8963 				if (shift)
8964 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
8965 									insn->dst_reg,
8966 									shift);
8967 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
8968 								(1 << size * 8) - 1);
8969 			} else {
8970 				if (shift)
8971 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
8972 									insn->dst_reg,
8973 									shift);
8974 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
8975 								(1ULL << size * 8) - 1);
8976 			}
8977 		}
8978 
8979 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8980 		if (!new_prog)
8981 			return -ENOMEM;
8982 
8983 		delta += cnt - 1;
8984 
8985 		/* keep walking new program and skip insns we just inserted */
8986 		env->prog = new_prog;
8987 		insn      = new_prog->insnsi + i + delta;
8988 	}
8989 
8990 	return 0;
8991 }
8992 
jit_subprogs(struct bpf_verifier_env * env)8993 static int jit_subprogs(struct bpf_verifier_env *env)
8994 {
8995 	struct bpf_prog *prog = env->prog, **func, *tmp;
8996 	int i, j, subprog_start, subprog_end = 0, len, subprog;
8997 	struct bpf_insn *insn;
8998 	void *old_bpf_func;
8999 	int err;
9000 
9001 	if (env->subprog_cnt <= 1)
9002 		return 0;
9003 
9004 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9005 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9006 		    insn->src_reg != BPF_PSEUDO_CALL)
9007 			continue;
9008 		/* Upon error here we cannot fall back to interpreter but
9009 		 * need a hard reject of the program. Thus -EFAULT is
9010 		 * propagated in any case.
9011 		 */
9012 		subprog = find_subprog(env, i + insn->imm + 1);
9013 		if (subprog < 0) {
9014 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
9015 				  i + insn->imm + 1);
9016 			return -EFAULT;
9017 		}
9018 		/* temporarily remember subprog id inside insn instead of
9019 		 * aux_data, since next loop will split up all insns into funcs
9020 		 */
9021 		insn->off = subprog;
9022 		/* remember original imm in case JIT fails and fallback
9023 		 * to interpreter will be needed
9024 		 */
9025 		env->insn_aux_data[i].call_imm = insn->imm;
9026 		/* point imm to __bpf_call_base+1 from JITs point of view */
9027 		insn->imm = 1;
9028 	}
9029 
9030 	err = bpf_prog_alloc_jited_linfo(prog);
9031 	if (err)
9032 		goto out_undo_insn;
9033 
9034 	err = -ENOMEM;
9035 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
9036 	if (!func)
9037 		goto out_undo_insn;
9038 
9039 	for (i = 0; i < env->subprog_cnt; i++) {
9040 		subprog_start = subprog_end;
9041 		subprog_end = env->subprog_info[i + 1].start;
9042 
9043 		len = subprog_end - subprog_start;
9044 		/* BPF_PROG_RUN doesn't call subprogs directly,
9045 		 * hence main prog stats include the runtime of subprogs.
9046 		 * subprogs don't have IDs and not reachable via prog_get_next_id
9047 		 * func[i]->aux->stats will never be accessed and stays NULL
9048 		 */
9049 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
9050 		if (!func[i])
9051 			goto out_free;
9052 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
9053 		       len * sizeof(struct bpf_insn));
9054 		func[i]->type = prog->type;
9055 		func[i]->len = len;
9056 		if (bpf_prog_calc_tag(func[i]))
9057 			goto out_free;
9058 		func[i]->is_func = 1;
9059 		func[i]->aux->func_idx = i;
9060 		/* the btf and func_info will be freed only at prog->aux */
9061 		func[i]->aux->btf = prog->aux->btf;
9062 		func[i]->aux->func_info = prog->aux->func_info;
9063 
9064 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
9065 		 * Long term would need debug info to populate names
9066 		 */
9067 		func[i]->aux->name[0] = 'F';
9068 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
9069 		func[i]->jit_requested = 1;
9070 		func[i]->aux->linfo = prog->aux->linfo;
9071 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
9072 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
9073 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
9074 		func[i] = bpf_int_jit_compile(func[i]);
9075 		if (!func[i]->jited) {
9076 			err = -ENOTSUPP;
9077 			goto out_free;
9078 		}
9079 		cond_resched();
9080 	}
9081 	/* at this point all bpf functions were successfully JITed
9082 	 * now populate all bpf_calls with correct addresses and
9083 	 * run last pass of JIT
9084 	 */
9085 	for (i = 0; i < env->subprog_cnt; i++) {
9086 		insn = func[i]->insnsi;
9087 		for (j = 0; j < func[i]->len; j++, insn++) {
9088 			if (insn->code != (BPF_JMP | BPF_CALL) ||
9089 			    insn->src_reg != BPF_PSEUDO_CALL)
9090 				continue;
9091 			subprog = insn->off;
9092 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
9093 				    __bpf_call_base;
9094 		}
9095 
9096 		/* we use the aux data to keep a list of the start addresses
9097 		 * of the JITed images for each function in the program
9098 		 *
9099 		 * for some architectures, such as powerpc64, the imm field
9100 		 * might not be large enough to hold the offset of the start
9101 		 * address of the callee's JITed image from __bpf_call_base
9102 		 *
9103 		 * in such cases, we can lookup the start address of a callee
9104 		 * by using its subprog id, available from the off field of
9105 		 * the call instruction, as an index for this list
9106 		 */
9107 		func[i]->aux->func = func;
9108 		func[i]->aux->func_cnt = env->subprog_cnt;
9109 	}
9110 	for (i = 0; i < env->subprog_cnt; i++) {
9111 		old_bpf_func = func[i]->bpf_func;
9112 		tmp = bpf_int_jit_compile(func[i]);
9113 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
9114 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
9115 			err = -ENOTSUPP;
9116 			goto out_free;
9117 		}
9118 		cond_resched();
9119 	}
9120 
9121 	/* finally lock prog and jit images for all functions and
9122 	 * populate kallsysm
9123 	 */
9124 	for (i = 0; i < env->subprog_cnt; i++) {
9125 		bpf_prog_lock_ro(func[i]);
9126 		bpf_prog_kallsyms_add(func[i]);
9127 	}
9128 
9129 	/* Last step: make now unused interpreter insns from main
9130 	 * prog consistent for later dump requests, so they can
9131 	 * later look the same as if they were interpreted only.
9132 	 */
9133 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9134 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9135 		    insn->src_reg != BPF_PSEUDO_CALL)
9136 			continue;
9137 		insn->off = env->insn_aux_data[i].call_imm;
9138 		subprog = find_subprog(env, i + insn->off + 1);
9139 		insn->imm = subprog;
9140 	}
9141 
9142 	prog->jited = 1;
9143 	prog->bpf_func = func[0]->bpf_func;
9144 	prog->aux->func = func;
9145 	prog->aux->func_cnt = env->subprog_cnt;
9146 	bpf_prog_free_unused_jited_linfo(prog);
9147 	return 0;
9148 out_free:
9149 	for (i = 0; i < env->subprog_cnt; i++)
9150 		if (func[i])
9151 			bpf_jit_free(func[i]);
9152 	kfree(func);
9153 out_undo_insn:
9154 	/* cleanup main prog to be interpreted */
9155 	prog->jit_requested = 0;
9156 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9157 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9158 		    insn->src_reg != BPF_PSEUDO_CALL)
9159 			continue;
9160 		insn->off = 0;
9161 		insn->imm = env->insn_aux_data[i].call_imm;
9162 	}
9163 	bpf_prog_free_jited_linfo(prog);
9164 	return err;
9165 }
9166 
fixup_call_args(struct bpf_verifier_env * env)9167 static int fixup_call_args(struct bpf_verifier_env *env)
9168 {
9169 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
9170 	struct bpf_prog *prog = env->prog;
9171 	struct bpf_insn *insn = prog->insnsi;
9172 	int i, depth;
9173 #endif
9174 	int err = 0;
9175 
9176 	if (env->prog->jit_requested &&
9177 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
9178 		err = jit_subprogs(env);
9179 		if (err == 0)
9180 			return 0;
9181 		if (err == -EFAULT)
9182 			return err;
9183 	}
9184 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
9185 	for (i = 0; i < prog->len; i++, insn++) {
9186 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9187 		    insn->src_reg != BPF_PSEUDO_CALL)
9188 			continue;
9189 		depth = get_callee_stack_depth(env, insn, i);
9190 		if (depth < 0)
9191 			return depth;
9192 		bpf_patch_call_args(insn, depth);
9193 	}
9194 	err = 0;
9195 #endif
9196 	return err;
9197 }
9198 
9199 /* fixup insn->imm field of bpf_call instructions
9200  * and inline eligible helpers as explicit sequence of BPF instructions
9201  *
9202  * this function is called after eBPF program passed verification
9203  */
fixup_bpf_calls(struct bpf_verifier_env * env)9204 static int fixup_bpf_calls(struct bpf_verifier_env *env)
9205 {
9206 	struct bpf_prog *prog = env->prog;
9207 	struct bpf_insn *insn = prog->insnsi;
9208 	const struct bpf_func_proto *fn;
9209 	const int insn_cnt = prog->len;
9210 	const struct bpf_map_ops *ops;
9211 	struct bpf_insn_aux_data *aux;
9212 	struct bpf_insn insn_buf[16];
9213 	struct bpf_prog *new_prog;
9214 	struct bpf_map *map_ptr;
9215 	int i, cnt, delta = 0;
9216 
9217 	for (i = 0; i < insn_cnt; i++, insn++) {
9218 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
9219 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9220 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
9221 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
9222 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
9223 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
9224 			struct bpf_insn *patchlet;
9225 			struct bpf_insn chk_and_div[] = {
9226 				/* [R,W]x div 0 -> 0 */
9227 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
9228 					     BPF_JNE | BPF_K, insn->src_reg,
9229 					     0, 2, 0),
9230 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
9231 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
9232 				*insn,
9233 			};
9234 			struct bpf_insn chk_and_mod[] = {
9235 				/* [R,W]x mod 0 -> [R,W]x */
9236 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
9237 					     BPF_JEQ | BPF_K, insn->src_reg,
9238 					     0, 1 + (is64 ? 0 : 1), 0),
9239 				*insn,
9240 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
9241 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
9242 			};
9243 
9244 			patchlet = isdiv ? chk_and_div : chk_and_mod;
9245 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
9246 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
9247 
9248 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
9249 			if (!new_prog)
9250 				return -ENOMEM;
9251 
9252 			delta    += cnt - 1;
9253 			env->prog = prog = new_prog;
9254 			insn      = new_prog->insnsi + i + delta;
9255 			continue;
9256 		}
9257 
9258 		if (BPF_CLASS(insn->code) == BPF_LD &&
9259 		    (BPF_MODE(insn->code) == BPF_ABS ||
9260 		     BPF_MODE(insn->code) == BPF_IND)) {
9261 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
9262 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9263 				verbose(env, "bpf verifier is misconfigured\n");
9264 				return -EINVAL;
9265 			}
9266 
9267 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9268 			if (!new_prog)
9269 				return -ENOMEM;
9270 
9271 			delta    += cnt - 1;
9272 			env->prog = prog = new_prog;
9273 			insn      = new_prog->insnsi + i + delta;
9274 			continue;
9275 		}
9276 
9277 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
9278 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
9279 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
9280 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
9281 			struct bpf_insn insn_buf[16];
9282 			struct bpf_insn *patch = &insn_buf[0];
9283 			bool issrc, isneg, isimm;
9284 			u32 off_reg;
9285 
9286 			aux = &env->insn_aux_data[i + delta];
9287 			if (!aux->alu_state ||
9288 			    aux->alu_state == BPF_ALU_NON_POINTER)
9289 				continue;
9290 
9291 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
9292 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
9293 				BPF_ALU_SANITIZE_SRC;
9294 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
9295 
9296 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
9297 			if (isimm) {
9298 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
9299 			} else {
9300 				if (isneg)
9301 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9302 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
9303 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
9304 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
9305 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
9306 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
9307 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
9308 			}
9309 			if (!issrc)
9310 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
9311 			insn->src_reg = BPF_REG_AX;
9312 			if (isneg)
9313 				insn->code = insn->code == code_add ?
9314 					     code_sub : code_add;
9315 			*patch++ = *insn;
9316 			if (issrc && isneg && !isimm)
9317 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9318 			cnt = patch - insn_buf;
9319 
9320 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9321 			if (!new_prog)
9322 				return -ENOMEM;
9323 
9324 			delta    += cnt - 1;
9325 			env->prog = prog = new_prog;
9326 			insn      = new_prog->insnsi + i + delta;
9327 			continue;
9328 		}
9329 
9330 		if (insn->code != (BPF_JMP | BPF_CALL))
9331 			continue;
9332 		if (insn->src_reg == BPF_PSEUDO_CALL)
9333 			continue;
9334 
9335 		if (insn->imm == BPF_FUNC_get_route_realm)
9336 			prog->dst_needed = 1;
9337 		if (insn->imm == BPF_FUNC_get_prandom_u32)
9338 			bpf_user_rnd_init_once();
9339 		if (insn->imm == BPF_FUNC_override_return)
9340 			prog->kprobe_override = 1;
9341 		if (insn->imm == BPF_FUNC_tail_call) {
9342 			/* If we tail call into other programs, we
9343 			 * cannot make any assumptions since they can
9344 			 * be replaced dynamically during runtime in
9345 			 * the program array.
9346 			 */
9347 			prog->cb_access = 1;
9348 			env->prog->aux->stack_depth = MAX_BPF_STACK;
9349 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
9350 
9351 			/* mark bpf_tail_call as different opcode to avoid
9352 			 * conditional branch in the interpeter for every normal
9353 			 * call and to prevent accidental JITing by JIT compiler
9354 			 * that doesn't support bpf_tail_call yet
9355 			 */
9356 			insn->imm = 0;
9357 			insn->code = BPF_JMP | BPF_TAIL_CALL;
9358 
9359 			aux = &env->insn_aux_data[i + delta];
9360 			if (!bpf_map_ptr_unpriv(aux))
9361 				continue;
9362 
9363 			/* instead of changing every JIT dealing with tail_call
9364 			 * emit two extra insns:
9365 			 * if (index >= max_entries) goto out;
9366 			 * index &= array->index_mask;
9367 			 * to avoid out-of-bounds cpu speculation
9368 			 */
9369 			if (bpf_map_ptr_poisoned(aux)) {
9370 				verbose(env, "tail_call abusing map_ptr\n");
9371 				return -EINVAL;
9372 			}
9373 
9374 			map_ptr = BPF_MAP_PTR(aux->map_state);
9375 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
9376 						  map_ptr->max_entries, 2);
9377 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
9378 						    container_of(map_ptr,
9379 								 struct bpf_array,
9380 								 map)->index_mask);
9381 			insn_buf[2] = *insn;
9382 			cnt = 3;
9383 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9384 			if (!new_prog)
9385 				return -ENOMEM;
9386 
9387 			delta    += cnt - 1;
9388 			env->prog = prog = new_prog;
9389 			insn      = new_prog->insnsi + i + delta;
9390 			continue;
9391 		}
9392 
9393 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
9394 		 * and other inlining handlers are currently limited to 64 bit
9395 		 * only.
9396 		 */
9397 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
9398 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
9399 		     insn->imm == BPF_FUNC_map_update_elem ||
9400 		     insn->imm == BPF_FUNC_map_delete_elem ||
9401 		     insn->imm == BPF_FUNC_map_push_elem   ||
9402 		     insn->imm == BPF_FUNC_map_pop_elem    ||
9403 		     insn->imm == BPF_FUNC_map_peek_elem)) {
9404 			aux = &env->insn_aux_data[i + delta];
9405 			if (bpf_map_ptr_poisoned(aux))
9406 				goto patch_call_imm;
9407 
9408 			map_ptr = BPF_MAP_PTR(aux->map_state);
9409 			ops = map_ptr->ops;
9410 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
9411 			    ops->map_gen_lookup) {
9412 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
9413 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9414 					verbose(env, "bpf verifier is misconfigured\n");
9415 					return -EINVAL;
9416 				}
9417 
9418 				new_prog = bpf_patch_insn_data(env, i + delta,
9419 							       insn_buf, cnt);
9420 				if (!new_prog)
9421 					return -ENOMEM;
9422 
9423 				delta    += cnt - 1;
9424 				env->prog = prog = new_prog;
9425 				insn      = new_prog->insnsi + i + delta;
9426 				continue;
9427 			}
9428 
9429 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
9430 				     (void *(*)(struct bpf_map *map, void *key))NULL));
9431 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
9432 				     (int (*)(struct bpf_map *map, void *key))NULL));
9433 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
9434 				     (int (*)(struct bpf_map *map, void *key, void *value,
9435 					      u64 flags))NULL));
9436 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
9437 				     (int (*)(struct bpf_map *map, void *value,
9438 					      u64 flags))NULL));
9439 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
9440 				     (int (*)(struct bpf_map *map, void *value))NULL));
9441 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
9442 				     (int (*)(struct bpf_map *map, void *value))NULL));
9443 
9444 			switch (insn->imm) {
9445 			case BPF_FUNC_map_lookup_elem:
9446 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
9447 					    __bpf_call_base;
9448 				continue;
9449 			case BPF_FUNC_map_update_elem:
9450 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
9451 					    __bpf_call_base;
9452 				continue;
9453 			case BPF_FUNC_map_delete_elem:
9454 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
9455 					    __bpf_call_base;
9456 				continue;
9457 			case BPF_FUNC_map_push_elem:
9458 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
9459 					    __bpf_call_base;
9460 				continue;
9461 			case BPF_FUNC_map_pop_elem:
9462 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
9463 					    __bpf_call_base;
9464 				continue;
9465 			case BPF_FUNC_map_peek_elem:
9466 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
9467 					    __bpf_call_base;
9468 				continue;
9469 			}
9470 
9471 			goto patch_call_imm;
9472 		}
9473 
9474 patch_call_imm:
9475 		fn = env->ops->get_func_proto(insn->imm, env->prog);
9476 		/* all functions that have prototype and verifier allowed
9477 		 * programs to call them, must be real in-kernel functions
9478 		 */
9479 		if (!fn->func) {
9480 			verbose(env,
9481 				"kernel subsystem misconfigured func %s#%d\n",
9482 				func_id_name(insn->imm), insn->imm);
9483 			return -EFAULT;
9484 		}
9485 		insn->imm = fn->func - __bpf_call_base;
9486 	}
9487 
9488 	return 0;
9489 }
9490 
free_states(struct bpf_verifier_env * env)9491 static void free_states(struct bpf_verifier_env *env)
9492 {
9493 	struct bpf_verifier_state_list *sl, *sln;
9494 	int i;
9495 
9496 	sl = env->free_list;
9497 	while (sl) {
9498 		sln = sl->next;
9499 		free_verifier_state(&sl->state, false);
9500 		kfree(sl);
9501 		sl = sln;
9502 	}
9503 
9504 	if (!env->explored_states)
9505 		return;
9506 
9507 	for (i = 0; i < state_htab_size(env); i++) {
9508 		sl = env->explored_states[i];
9509 
9510 		while (sl) {
9511 			sln = sl->next;
9512 			free_verifier_state(&sl->state, false);
9513 			kfree(sl);
9514 			sl = sln;
9515 		}
9516 	}
9517 
9518 	kvfree(env->explored_states);
9519 }
9520 
print_verification_stats(struct bpf_verifier_env * env)9521 static void print_verification_stats(struct bpf_verifier_env *env)
9522 {
9523 	int i;
9524 
9525 	if (env->log.level & BPF_LOG_STATS) {
9526 		verbose(env, "verification time %lld usec\n",
9527 			div_u64(env->verification_time, 1000));
9528 		verbose(env, "stack depth ");
9529 		for (i = 0; i < env->subprog_cnt; i++) {
9530 			u32 depth = env->subprog_info[i].stack_depth;
9531 
9532 			verbose(env, "%d", depth);
9533 			if (i + 1 < env->subprog_cnt)
9534 				verbose(env, "+");
9535 		}
9536 		verbose(env, "\n");
9537 	}
9538 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
9539 		"total_states %d peak_states %d mark_read %d\n",
9540 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
9541 		env->max_states_per_insn, env->total_states,
9542 		env->peak_states, env->longest_mark_read_walk);
9543 }
9544 
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr,union bpf_attr __user * uattr)9545 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
9546 	      union bpf_attr __user *uattr)
9547 {
9548 	u64 start_time = ktime_get_ns();
9549 	struct bpf_verifier_env *env;
9550 	struct bpf_verifier_log *log;
9551 	int i, len, ret = -EINVAL;
9552 	bool is_priv;
9553 
9554 	/* no program is valid */
9555 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
9556 		return -EINVAL;
9557 
9558 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
9559 	 * allocate/free it every time bpf_check() is called
9560 	 */
9561 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
9562 	if (!env)
9563 		return -ENOMEM;
9564 	log = &env->log;
9565 
9566 	len = (*prog)->len;
9567 	env->insn_aux_data =
9568 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
9569 	ret = -ENOMEM;
9570 	if (!env->insn_aux_data)
9571 		goto err_free_env;
9572 	for (i = 0; i < len; i++)
9573 		env->insn_aux_data[i].orig_idx = i;
9574 	env->prog = *prog;
9575 	env->ops = bpf_verifier_ops[env->prog->type];
9576 	is_priv = capable(CAP_SYS_ADMIN);
9577 
9578 	/* grab the mutex to protect few globals used by verifier */
9579 	if (!is_priv)
9580 		mutex_lock(&bpf_verifier_lock);
9581 
9582 	if (attr->log_level || attr->log_buf || attr->log_size) {
9583 		/* user requested verbose verifier output
9584 		 * and supplied buffer to store the verification trace
9585 		 */
9586 		log->level = attr->log_level;
9587 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
9588 		log->len_total = attr->log_size;
9589 
9590 		ret = -EINVAL;
9591 		/* log attributes have to be sane */
9592 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
9593 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
9594 			goto err_unlock;
9595 	}
9596 
9597 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
9598 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
9599 		env->strict_alignment = true;
9600 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
9601 		env->strict_alignment = false;
9602 
9603 	env->allow_ptr_leaks = is_priv;
9604 
9605 	if (is_priv)
9606 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
9607 
9608 	ret = replace_map_fd_with_map_ptr(env);
9609 	if (ret < 0)
9610 		goto skip_full_check;
9611 
9612 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
9613 		ret = bpf_prog_offload_verifier_prep(env->prog);
9614 		if (ret)
9615 			goto skip_full_check;
9616 	}
9617 
9618 	env->explored_states = kvcalloc(state_htab_size(env),
9619 				       sizeof(struct bpf_verifier_state_list *),
9620 				       GFP_USER);
9621 	ret = -ENOMEM;
9622 	if (!env->explored_states)
9623 		goto skip_full_check;
9624 
9625 	ret = check_subprogs(env);
9626 	if (ret < 0)
9627 		goto skip_full_check;
9628 
9629 	ret = check_btf_info(env, attr, uattr);
9630 	if (ret < 0)
9631 		goto skip_full_check;
9632 
9633 	ret = check_cfg(env);
9634 	if (ret < 0)
9635 		goto skip_full_check;
9636 
9637 	ret = do_check(env);
9638 	if (env->cur_state) {
9639 		free_verifier_state(env->cur_state, true);
9640 		env->cur_state = NULL;
9641 	}
9642 
9643 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
9644 		ret = bpf_prog_offload_finalize(env);
9645 
9646 skip_full_check:
9647 	while (!pop_stack(env, NULL, NULL));
9648 	free_states(env);
9649 
9650 	if (ret == 0)
9651 		ret = check_max_stack_depth(env);
9652 
9653 	/* instruction rewrites happen after this point */
9654 	if (is_priv) {
9655 		if (ret == 0)
9656 			opt_hard_wire_dead_code_branches(env);
9657 		if (ret == 0)
9658 			ret = opt_remove_dead_code(env);
9659 		if (ret == 0)
9660 			ret = opt_remove_nops(env);
9661 	} else {
9662 		if (ret == 0)
9663 			sanitize_dead_code(env);
9664 	}
9665 
9666 	if (ret == 0)
9667 		/* program is valid, convert *(u32*)(ctx + off) accesses */
9668 		ret = convert_ctx_accesses(env);
9669 
9670 	if (ret == 0)
9671 		ret = fixup_bpf_calls(env);
9672 
9673 	/* do 32-bit optimization after insn patching has done so those patched
9674 	 * insns could be handled correctly.
9675 	 */
9676 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
9677 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
9678 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
9679 								     : false;
9680 	}
9681 
9682 	if (ret == 0)
9683 		ret = fixup_call_args(env);
9684 
9685 	env->verification_time = ktime_get_ns() - start_time;
9686 	print_verification_stats(env);
9687 
9688 	if (log->level && bpf_verifier_log_full(log))
9689 		ret = -ENOSPC;
9690 	if (log->level && !log->ubuf) {
9691 		ret = -EFAULT;
9692 		goto err_release_maps;
9693 	}
9694 
9695 	if (ret == 0 && env->used_map_cnt) {
9696 		/* if program passed verifier, update used_maps in bpf_prog_info */
9697 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
9698 							  sizeof(env->used_maps[0]),
9699 							  GFP_KERNEL);
9700 
9701 		if (!env->prog->aux->used_maps) {
9702 			ret = -ENOMEM;
9703 			goto err_release_maps;
9704 		}
9705 
9706 		memcpy(env->prog->aux->used_maps, env->used_maps,
9707 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
9708 		env->prog->aux->used_map_cnt = env->used_map_cnt;
9709 
9710 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
9711 		 * bpf_ld_imm64 instructions
9712 		 */
9713 		convert_pseudo_ld_imm64(env);
9714 	}
9715 
9716 	if (ret == 0)
9717 		adjust_btf_func(env);
9718 
9719 err_release_maps:
9720 	if (!env->prog->aux->used_maps)
9721 		/* if we didn't copy map pointers into bpf_prog_info, release
9722 		 * them now. Otherwise free_used_maps() will release them.
9723 		 */
9724 		release_maps(env);
9725 	*prog = env->prog;
9726 err_unlock:
9727 	if (!is_priv)
9728 		mutex_unlock(&bpf_verifier_lock);
9729 	vfree(env->insn_aux_data);
9730 err_free_env:
9731 	kfree(env);
9732 	return ret;
9733 }
9734