1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Support PCI/PCIe on PowerNV platforms
4 *
5 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
6 */
7
8 #undef DEBUG
9
10 #include <linux/kernel.h>
11 #include <linux/pci.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/string.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/msi.h>
20 #include <linux/iommu.h>
21 #include <linux/rculist.h>
22 #include <linux/sizes.h>
23
24 #include <asm/sections.h>
25 #include <asm/io.h>
26 #include <asm/prom.h>
27 #include <asm/pci-bridge.h>
28 #include <asm/machdep.h>
29 #include <asm/msi_bitmap.h>
30 #include <asm/ppc-pci.h>
31 #include <asm/opal.h>
32 #include <asm/iommu.h>
33 #include <asm/tce.h>
34 #include <asm/xics.h>
35 #include <asm/debugfs.h>
36 #include <asm/firmware.h>
37 #include <asm/pnv-pci.h>
38 #include <asm/mmzone.h>
39
40 #include <misc/cxl-base.h>
41
42 #include "powernv.h"
43 #include "pci.h"
44 #include "../../../../drivers/pci/pci.h"
45
46 #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */
47 #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */
48 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
49
50 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
51 "NPU_OCAPI" };
52
53 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
54
pe_level_printk(const struct pnv_ioda_pe * pe,const char * level,const char * fmt,...)55 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
56 const char *fmt, ...)
57 {
58 struct va_format vaf;
59 va_list args;
60 char pfix[32];
61
62 va_start(args, fmt);
63
64 vaf.fmt = fmt;
65 vaf.va = &args;
66
67 if (pe->flags & PNV_IODA_PE_DEV)
68 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
69 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
70 sprintf(pfix, "%04x:%02x ",
71 pci_domain_nr(pe->pbus), pe->pbus->number);
72 #ifdef CONFIG_PCI_IOV
73 else if (pe->flags & PNV_IODA_PE_VF)
74 sprintf(pfix, "%04x:%02x:%2x.%d",
75 pci_domain_nr(pe->parent_dev->bus),
76 (pe->rid & 0xff00) >> 8,
77 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
78 #endif /* CONFIG_PCI_IOV*/
79
80 printk("%spci %s: [PE# %.2x] %pV",
81 level, pfix, pe->pe_number, &vaf);
82
83 va_end(args);
84 }
85
86 static bool pnv_iommu_bypass_disabled __read_mostly;
87 static bool pci_reset_phbs __read_mostly;
88
iommu_setup(char * str)89 static int __init iommu_setup(char *str)
90 {
91 if (!str)
92 return -EINVAL;
93
94 while (*str) {
95 if (!strncmp(str, "nobypass", 8)) {
96 pnv_iommu_bypass_disabled = true;
97 pr_info("PowerNV: IOMMU bypass window disabled.\n");
98 break;
99 }
100 str += strcspn(str, ",");
101 if (*str == ',')
102 str++;
103 }
104
105 return 0;
106 }
107 early_param("iommu", iommu_setup);
108
pci_reset_phbs_setup(char * str)109 static int __init pci_reset_phbs_setup(char *str)
110 {
111 pci_reset_phbs = true;
112 return 0;
113 }
114
115 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
116
pnv_pci_is_m64(struct pnv_phb * phb,struct resource * r)117 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
118 {
119 /*
120 * WARNING: We cannot rely on the resource flags. The Linux PCI
121 * allocation code sometimes decides to put a 64-bit prefetchable
122 * BAR in the 32-bit window, so we have to compare the addresses.
123 *
124 * For simplicity we only test resource start.
125 */
126 return (r->start >= phb->ioda.m64_base &&
127 r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
128 }
129
pnv_pci_is_m64_flags(unsigned long resource_flags)130 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
131 {
132 unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
133
134 return (resource_flags & flags) == flags;
135 }
136
pnv_ioda_init_pe(struct pnv_phb * phb,int pe_no)137 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
138 {
139 s64 rc;
140
141 phb->ioda.pe_array[pe_no].phb = phb;
142 phb->ioda.pe_array[pe_no].pe_number = pe_no;
143
144 /*
145 * Clear the PE frozen state as it might be put into frozen state
146 * in the last PCI remove path. It's not harmful to do so when the
147 * PE is already in unfrozen state.
148 */
149 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
150 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
151 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
152 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
153 __func__, rc, phb->hose->global_number, pe_no);
154
155 return &phb->ioda.pe_array[pe_no];
156 }
157
pnv_ioda_reserve_pe(struct pnv_phb * phb,int pe_no)158 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
159 {
160 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
161 pr_warn("%s: Invalid PE %x on PHB#%x\n",
162 __func__, pe_no, phb->hose->global_number);
163 return;
164 }
165
166 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
167 pr_debug("%s: PE %x was reserved on PHB#%x\n",
168 __func__, pe_no, phb->hose->global_number);
169
170 pnv_ioda_init_pe(phb, pe_no);
171 }
172
pnv_ioda_alloc_pe(struct pnv_phb * phb)173 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
174 {
175 long pe;
176
177 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
178 if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
179 return pnv_ioda_init_pe(phb, pe);
180 }
181
182 return NULL;
183 }
184
pnv_ioda_free_pe(struct pnv_ioda_pe * pe)185 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
186 {
187 struct pnv_phb *phb = pe->phb;
188 unsigned int pe_num = pe->pe_number;
189
190 WARN_ON(pe->pdev);
191 WARN_ON(pe->npucomp); /* NPUs are not supposed to be freed */
192 kfree(pe->npucomp);
193 memset(pe, 0, sizeof(struct pnv_ioda_pe));
194 clear_bit(pe_num, phb->ioda.pe_alloc);
195 }
196
197 /* The default M64 BAR is shared by all PEs */
pnv_ioda2_init_m64(struct pnv_phb * phb)198 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
199 {
200 const char *desc;
201 struct resource *r;
202 s64 rc;
203
204 /* Configure the default M64 BAR */
205 rc = opal_pci_set_phb_mem_window(phb->opal_id,
206 OPAL_M64_WINDOW_TYPE,
207 phb->ioda.m64_bar_idx,
208 phb->ioda.m64_base,
209 0, /* unused */
210 phb->ioda.m64_size);
211 if (rc != OPAL_SUCCESS) {
212 desc = "configuring";
213 goto fail;
214 }
215
216 /* Enable the default M64 BAR */
217 rc = opal_pci_phb_mmio_enable(phb->opal_id,
218 OPAL_M64_WINDOW_TYPE,
219 phb->ioda.m64_bar_idx,
220 OPAL_ENABLE_M64_SPLIT);
221 if (rc != OPAL_SUCCESS) {
222 desc = "enabling";
223 goto fail;
224 }
225
226 /*
227 * Exclude the segments for reserved and root bus PE, which
228 * are first or last two PEs.
229 */
230 r = &phb->hose->mem_resources[1];
231 if (phb->ioda.reserved_pe_idx == 0)
232 r->start += (2 * phb->ioda.m64_segsize);
233 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
234 r->end -= (2 * phb->ioda.m64_segsize);
235 else
236 pr_warn(" Cannot strip M64 segment for reserved PE#%x\n",
237 phb->ioda.reserved_pe_idx);
238
239 return 0;
240
241 fail:
242 pr_warn(" Failure %lld %s M64 BAR#%d\n",
243 rc, desc, phb->ioda.m64_bar_idx);
244 opal_pci_phb_mmio_enable(phb->opal_id,
245 OPAL_M64_WINDOW_TYPE,
246 phb->ioda.m64_bar_idx,
247 OPAL_DISABLE_M64);
248 return -EIO;
249 }
250
pnv_ioda_reserve_dev_m64_pe(struct pci_dev * pdev,unsigned long * pe_bitmap)251 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
252 unsigned long *pe_bitmap)
253 {
254 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
255 struct pnv_phb *phb = hose->private_data;
256 struct resource *r;
257 resource_size_t base, sgsz, start, end;
258 int segno, i;
259
260 base = phb->ioda.m64_base;
261 sgsz = phb->ioda.m64_segsize;
262 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
263 r = &pdev->resource[i];
264 if (!r->parent || !pnv_pci_is_m64(phb, r))
265 continue;
266
267 start = _ALIGN_DOWN(r->start - base, sgsz);
268 end = _ALIGN_UP(r->end - base, sgsz);
269 for (segno = start / sgsz; segno < end / sgsz; segno++) {
270 if (pe_bitmap)
271 set_bit(segno, pe_bitmap);
272 else
273 pnv_ioda_reserve_pe(phb, segno);
274 }
275 }
276 }
277
pnv_ioda1_init_m64(struct pnv_phb * phb)278 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
279 {
280 struct resource *r;
281 int index;
282
283 /*
284 * There are 16 M64 BARs, each of which has 8 segments. So
285 * there are as many M64 segments as the maximum number of
286 * PEs, which is 128.
287 */
288 for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
289 unsigned long base, segsz = phb->ioda.m64_segsize;
290 int64_t rc;
291
292 base = phb->ioda.m64_base +
293 index * PNV_IODA1_M64_SEGS * segsz;
294 rc = opal_pci_set_phb_mem_window(phb->opal_id,
295 OPAL_M64_WINDOW_TYPE, index, base, 0,
296 PNV_IODA1_M64_SEGS * segsz);
297 if (rc != OPAL_SUCCESS) {
298 pr_warn(" Error %lld setting M64 PHB#%x-BAR#%d\n",
299 rc, phb->hose->global_number, index);
300 goto fail;
301 }
302
303 rc = opal_pci_phb_mmio_enable(phb->opal_id,
304 OPAL_M64_WINDOW_TYPE, index,
305 OPAL_ENABLE_M64_SPLIT);
306 if (rc != OPAL_SUCCESS) {
307 pr_warn(" Error %lld enabling M64 PHB#%x-BAR#%d\n",
308 rc, phb->hose->global_number, index);
309 goto fail;
310 }
311 }
312
313 /*
314 * Exclude the segments for reserved and root bus PE, which
315 * are first or last two PEs.
316 */
317 r = &phb->hose->mem_resources[1];
318 if (phb->ioda.reserved_pe_idx == 0)
319 r->start += (2 * phb->ioda.m64_segsize);
320 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
321 r->end -= (2 * phb->ioda.m64_segsize);
322 else
323 WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
324 phb->ioda.reserved_pe_idx, phb->hose->global_number);
325
326 return 0;
327
328 fail:
329 for ( ; index >= 0; index--)
330 opal_pci_phb_mmio_enable(phb->opal_id,
331 OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
332
333 return -EIO;
334 }
335
pnv_ioda_reserve_m64_pe(struct pci_bus * bus,unsigned long * pe_bitmap,bool all)336 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
337 unsigned long *pe_bitmap,
338 bool all)
339 {
340 struct pci_dev *pdev;
341
342 list_for_each_entry(pdev, &bus->devices, bus_list) {
343 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
344
345 if (all && pdev->subordinate)
346 pnv_ioda_reserve_m64_pe(pdev->subordinate,
347 pe_bitmap, all);
348 }
349 }
350
pnv_ioda_pick_m64_pe(struct pci_bus * bus,bool all)351 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
352 {
353 struct pci_controller *hose = pci_bus_to_host(bus);
354 struct pnv_phb *phb = hose->private_data;
355 struct pnv_ioda_pe *master_pe, *pe;
356 unsigned long size, *pe_alloc;
357 int i;
358
359 /* Root bus shouldn't use M64 */
360 if (pci_is_root_bus(bus))
361 return NULL;
362
363 /* Allocate bitmap */
364 size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
365 pe_alloc = kzalloc(size, GFP_KERNEL);
366 if (!pe_alloc) {
367 pr_warn("%s: Out of memory !\n",
368 __func__);
369 return NULL;
370 }
371
372 /* Figure out reserved PE numbers by the PE */
373 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
374
375 /*
376 * the current bus might not own M64 window and that's all
377 * contributed by its child buses. For the case, we needn't
378 * pick M64 dependent PE#.
379 */
380 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
381 kfree(pe_alloc);
382 return NULL;
383 }
384
385 /*
386 * Figure out the master PE and put all slave PEs to master
387 * PE's list to form compound PE.
388 */
389 master_pe = NULL;
390 i = -1;
391 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
392 phb->ioda.total_pe_num) {
393 pe = &phb->ioda.pe_array[i];
394
395 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
396 if (!master_pe) {
397 pe->flags |= PNV_IODA_PE_MASTER;
398 INIT_LIST_HEAD(&pe->slaves);
399 master_pe = pe;
400 } else {
401 pe->flags |= PNV_IODA_PE_SLAVE;
402 pe->master = master_pe;
403 list_add_tail(&pe->list, &master_pe->slaves);
404 }
405
406 /*
407 * P7IOC supports M64DT, which helps mapping M64 segment
408 * to one particular PE#. However, PHB3 has fixed mapping
409 * between M64 segment and PE#. In order to have same logic
410 * for P7IOC and PHB3, we enforce fixed mapping between M64
411 * segment and PE# on P7IOC.
412 */
413 if (phb->type == PNV_PHB_IODA1) {
414 int64_t rc;
415
416 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
417 pe->pe_number, OPAL_M64_WINDOW_TYPE,
418 pe->pe_number / PNV_IODA1_M64_SEGS,
419 pe->pe_number % PNV_IODA1_M64_SEGS);
420 if (rc != OPAL_SUCCESS)
421 pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
422 __func__, rc, phb->hose->global_number,
423 pe->pe_number);
424 }
425 }
426
427 kfree(pe_alloc);
428 return master_pe;
429 }
430
pnv_ioda_parse_m64_window(struct pnv_phb * phb)431 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
432 {
433 struct pci_controller *hose = phb->hose;
434 struct device_node *dn = hose->dn;
435 struct resource *res;
436 u32 m64_range[2], i;
437 const __be32 *r;
438 u64 pci_addr;
439
440 if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
441 pr_info(" Not support M64 window\n");
442 return;
443 }
444
445 if (!firmware_has_feature(FW_FEATURE_OPAL)) {
446 pr_info(" Firmware too old to support M64 window\n");
447 return;
448 }
449
450 r = of_get_property(dn, "ibm,opal-m64-window", NULL);
451 if (!r) {
452 pr_info(" No <ibm,opal-m64-window> on %pOF\n",
453 dn);
454 return;
455 }
456
457 /*
458 * Find the available M64 BAR range and pickup the last one for
459 * covering the whole 64-bits space. We support only one range.
460 */
461 if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
462 m64_range, 2)) {
463 /* In absence of the property, assume 0..15 */
464 m64_range[0] = 0;
465 m64_range[1] = 16;
466 }
467 /* We only support 64 bits in our allocator */
468 if (m64_range[1] > 63) {
469 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
470 __func__, m64_range[1], phb->hose->global_number);
471 m64_range[1] = 63;
472 }
473 /* Empty range, no m64 */
474 if (m64_range[1] <= m64_range[0]) {
475 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
476 __func__, phb->hose->global_number);
477 return;
478 }
479
480 /* Configure M64 informations */
481 res = &hose->mem_resources[1];
482 res->name = dn->full_name;
483 res->start = of_translate_address(dn, r + 2);
484 res->end = res->start + of_read_number(r + 4, 2) - 1;
485 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
486 pci_addr = of_read_number(r, 2);
487 hose->mem_offset[1] = res->start - pci_addr;
488
489 phb->ioda.m64_size = resource_size(res);
490 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
491 phb->ioda.m64_base = pci_addr;
492
493 /* This lines up nicely with the display from processing OF ranges */
494 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
495 res->start, res->end, pci_addr, m64_range[0],
496 m64_range[0] + m64_range[1] - 1);
497
498 /* Mark all M64 used up by default */
499 phb->ioda.m64_bar_alloc = (unsigned long)-1;
500
501 /* Use last M64 BAR to cover M64 window */
502 m64_range[1]--;
503 phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
504
505 pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
506
507 /* Mark remaining ones free */
508 for (i = m64_range[0]; i < m64_range[1]; i++)
509 clear_bit(i, &phb->ioda.m64_bar_alloc);
510
511 /*
512 * Setup init functions for M64 based on IODA version, IODA3 uses
513 * the IODA2 code.
514 */
515 if (phb->type == PNV_PHB_IODA1)
516 phb->init_m64 = pnv_ioda1_init_m64;
517 else
518 phb->init_m64 = pnv_ioda2_init_m64;
519 }
520
pnv_ioda_freeze_pe(struct pnv_phb * phb,int pe_no)521 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
522 {
523 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
524 struct pnv_ioda_pe *slave;
525 s64 rc;
526
527 /* Fetch master PE */
528 if (pe->flags & PNV_IODA_PE_SLAVE) {
529 pe = pe->master;
530 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
531 return;
532
533 pe_no = pe->pe_number;
534 }
535
536 /* Freeze master PE */
537 rc = opal_pci_eeh_freeze_set(phb->opal_id,
538 pe_no,
539 OPAL_EEH_ACTION_SET_FREEZE_ALL);
540 if (rc != OPAL_SUCCESS) {
541 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
542 __func__, rc, phb->hose->global_number, pe_no);
543 return;
544 }
545
546 /* Freeze slave PEs */
547 if (!(pe->flags & PNV_IODA_PE_MASTER))
548 return;
549
550 list_for_each_entry(slave, &pe->slaves, list) {
551 rc = opal_pci_eeh_freeze_set(phb->opal_id,
552 slave->pe_number,
553 OPAL_EEH_ACTION_SET_FREEZE_ALL);
554 if (rc != OPAL_SUCCESS)
555 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
556 __func__, rc, phb->hose->global_number,
557 slave->pe_number);
558 }
559 }
560
pnv_ioda_unfreeze_pe(struct pnv_phb * phb,int pe_no,int opt)561 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
562 {
563 struct pnv_ioda_pe *pe, *slave;
564 s64 rc;
565
566 /* Find master PE */
567 pe = &phb->ioda.pe_array[pe_no];
568 if (pe->flags & PNV_IODA_PE_SLAVE) {
569 pe = pe->master;
570 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
571 pe_no = pe->pe_number;
572 }
573
574 /* Clear frozen state for master PE */
575 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
576 if (rc != OPAL_SUCCESS) {
577 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
578 __func__, rc, opt, phb->hose->global_number, pe_no);
579 return -EIO;
580 }
581
582 if (!(pe->flags & PNV_IODA_PE_MASTER))
583 return 0;
584
585 /* Clear frozen state for slave PEs */
586 list_for_each_entry(slave, &pe->slaves, list) {
587 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
588 slave->pe_number,
589 opt);
590 if (rc != OPAL_SUCCESS) {
591 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
592 __func__, rc, opt, phb->hose->global_number,
593 slave->pe_number);
594 return -EIO;
595 }
596 }
597
598 return 0;
599 }
600
pnv_ioda_get_pe_state(struct pnv_phb * phb,int pe_no)601 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
602 {
603 struct pnv_ioda_pe *slave, *pe;
604 u8 fstate = 0, state;
605 __be16 pcierr = 0;
606 s64 rc;
607
608 /* Sanity check on PE number */
609 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
610 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
611
612 /*
613 * Fetch the master PE and the PE instance might be
614 * not initialized yet.
615 */
616 pe = &phb->ioda.pe_array[pe_no];
617 if (pe->flags & PNV_IODA_PE_SLAVE) {
618 pe = pe->master;
619 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
620 pe_no = pe->pe_number;
621 }
622
623 /* Check the master PE */
624 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
625 &state, &pcierr, NULL);
626 if (rc != OPAL_SUCCESS) {
627 pr_warn("%s: Failure %lld getting "
628 "PHB#%x-PE#%x state\n",
629 __func__, rc,
630 phb->hose->global_number, pe_no);
631 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
632 }
633
634 /* Check the slave PE */
635 if (!(pe->flags & PNV_IODA_PE_MASTER))
636 return state;
637
638 list_for_each_entry(slave, &pe->slaves, list) {
639 rc = opal_pci_eeh_freeze_status(phb->opal_id,
640 slave->pe_number,
641 &fstate,
642 &pcierr,
643 NULL);
644 if (rc != OPAL_SUCCESS) {
645 pr_warn("%s: Failure %lld getting "
646 "PHB#%x-PE#%x state\n",
647 __func__, rc,
648 phb->hose->global_number, slave->pe_number);
649 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
650 }
651
652 /*
653 * Override the result based on the ascending
654 * priority.
655 */
656 if (fstate > state)
657 state = fstate;
658 }
659
660 return state;
661 }
662
pnv_ioda_get_pe(struct pci_dev * dev)663 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
664 {
665 struct pci_controller *hose = pci_bus_to_host(dev->bus);
666 struct pnv_phb *phb = hose->private_data;
667 struct pci_dn *pdn = pci_get_pdn(dev);
668
669 if (!pdn)
670 return NULL;
671 if (pdn->pe_number == IODA_INVALID_PE)
672 return NULL;
673 return &phb->ioda.pe_array[pdn->pe_number];
674 }
675
pnv_ioda_set_one_peltv(struct pnv_phb * phb,struct pnv_ioda_pe * parent,struct pnv_ioda_pe * child,bool is_add)676 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
677 struct pnv_ioda_pe *parent,
678 struct pnv_ioda_pe *child,
679 bool is_add)
680 {
681 const char *desc = is_add ? "adding" : "removing";
682 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
683 OPAL_REMOVE_PE_FROM_DOMAIN;
684 struct pnv_ioda_pe *slave;
685 long rc;
686
687 /* Parent PE affects child PE */
688 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
689 child->pe_number, op);
690 if (rc != OPAL_SUCCESS) {
691 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
692 rc, desc);
693 return -ENXIO;
694 }
695
696 if (!(child->flags & PNV_IODA_PE_MASTER))
697 return 0;
698
699 /* Compound case: parent PE affects slave PEs */
700 list_for_each_entry(slave, &child->slaves, list) {
701 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
702 slave->pe_number, op);
703 if (rc != OPAL_SUCCESS) {
704 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
705 rc, desc);
706 return -ENXIO;
707 }
708 }
709
710 return 0;
711 }
712
pnv_ioda_set_peltv(struct pnv_phb * phb,struct pnv_ioda_pe * pe,bool is_add)713 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
714 struct pnv_ioda_pe *pe,
715 bool is_add)
716 {
717 struct pnv_ioda_pe *slave;
718 struct pci_dev *pdev = NULL;
719 int ret;
720
721 /*
722 * Clear PE frozen state. If it's master PE, we need
723 * clear slave PE frozen state as well.
724 */
725 if (is_add) {
726 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
727 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
728 if (pe->flags & PNV_IODA_PE_MASTER) {
729 list_for_each_entry(slave, &pe->slaves, list)
730 opal_pci_eeh_freeze_clear(phb->opal_id,
731 slave->pe_number,
732 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
733 }
734 }
735
736 /*
737 * Associate PE in PELT. We need add the PE into the
738 * corresponding PELT-V as well. Otherwise, the error
739 * originated from the PE might contribute to other
740 * PEs.
741 */
742 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
743 if (ret)
744 return ret;
745
746 /* For compound PEs, any one affects all of them */
747 if (pe->flags & PNV_IODA_PE_MASTER) {
748 list_for_each_entry(slave, &pe->slaves, list) {
749 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
750 if (ret)
751 return ret;
752 }
753 }
754
755 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
756 pdev = pe->pbus->self;
757 else if (pe->flags & PNV_IODA_PE_DEV)
758 pdev = pe->pdev->bus->self;
759 #ifdef CONFIG_PCI_IOV
760 else if (pe->flags & PNV_IODA_PE_VF)
761 pdev = pe->parent_dev;
762 #endif /* CONFIG_PCI_IOV */
763 while (pdev) {
764 struct pci_dn *pdn = pci_get_pdn(pdev);
765 struct pnv_ioda_pe *parent;
766
767 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
768 parent = &phb->ioda.pe_array[pdn->pe_number];
769 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
770 if (ret)
771 return ret;
772 }
773
774 pdev = pdev->bus->self;
775 }
776
777 return 0;
778 }
779
pnv_ioda_deconfigure_pe(struct pnv_phb * phb,struct pnv_ioda_pe * pe)780 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
781 {
782 struct pci_dev *parent;
783 uint8_t bcomp, dcomp, fcomp;
784 int64_t rc;
785 long rid_end, rid;
786
787 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
788 if (pe->pbus) {
789 int count;
790
791 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
792 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
793 parent = pe->pbus->self;
794 if (pe->flags & PNV_IODA_PE_BUS_ALL)
795 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
796 else
797 count = 1;
798
799 switch(count) {
800 case 1: bcomp = OpalPciBusAll; break;
801 case 2: bcomp = OpalPciBus7Bits; break;
802 case 4: bcomp = OpalPciBus6Bits; break;
803 case 8: bcomp = OpalPciBus5Bits; break;
804 case 16: bcomp = OpalPciBus4Bits; break;
805 case 32: bcomp = OpalPciBus3Bits; break;
806 default:
807 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
808 count);
809 /* Do an exact match only */
810 bcomp = OpalPciBusAll;
811 }
812 rid_end = pe->rid + (count << 8);
813 } else {
814 #ifdef CONFIG_PCI_IOV
815 if (pe->flags & PNV_IODA_PE_VF)
816 parent = pe->parent_dev;
817 else
818 #endif
819 parent = pe->pdev->bus->self;
820 bcomp = OpalPciBusAll;
821 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
822 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
823 rid_end = pe->rid + 1;
824 }
825
826 /* Clear the reverse map */
827 for (rid = pe->rid; rid < rid_end; rid++)
828 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
829
830 /* Release from all parents PELT-V */
831 while (parent) {
832 struct pci_dn *pdn = pci_get_pdn(parent);
833 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
834 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
835 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
836 /* XXX What to do in case of error ? */
837 }
838 parent = parent->bus->self;
839 }
840
841 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
842 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
843
844 /* Disassociate PE in PELT */
845 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
846 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
847 if (rc)
848 pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
849 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
850 bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
851 if (rc)
852 pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
853
854 pe->pbus = NULL;
855 pe->pdev = NULL;
856 #ifdef CONFIG_PCI_IOV
857 pe->parent_dev = NULL;
858 #endif
859
860 return 0;
861 }
862
pnv_ioda_configure_pe(struct pnv_phb * phb,struct pnv_ioda_pe * pe)863 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
864 {
865 struct pci_dev *parent;
866 uint8_t bcomp, dcomp, fcomp;
867 long rc, rid_end, rid;
868
869 /* Bus validation ? */
870 if (pe->pbus) {
871 int count;
872
873 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
874 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
875 parent = pe->pbus->self;
876 if (pe->flags & PNV_IODA_PE_BUS_ALL)
877 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
878 else
879 count = 1;
880
881 switch(count) {
882 case 1: bcomp = OpalPciBusAll; break;
883 case 2: bcomp = OpalPciBus7Bits; break;
884 case 4: bcomp = OpalPciBus6Bits; break;
885 case 8: bcomp = OpalPciBus5Bits; break;
886 case 16: bcomp = OpalPciBus4Bits; break;
887 case 32: bcomp = OpalPciBus3Bits; break;
888 default:
889 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
890 count);
891 /* Do an exact match only */
892 bcomp = OpalPciBusAll;
893 }
894 rid_end = pe->rid + (count << 8);
895 } else {
896 #ifdef CONFIG_PCI_IOV
897 if (pe->flags & PNV_IODA_PE_VF)
898 parent = pe->parent_dev;
899 else
900 #endif /* CONFIG_PCI_IOV */
901 parent = pe->pdev->bus->self;
902 bcomp = OpalPciBusAll;
903 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
904 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
905 rid_end = pe->rid + 1;
906 }
907
908 /*
909 * Associate PE in PELT. We need add the PE into the
910 * corresponding PELT-V as well. Otherwise, the error
911 * originated from the PE might contribute to other
912 * PEs.
913 */
914 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
915 bcomp, dcomp, fcomp, OPAL_MAP_PE);
916 if (rc) {
917 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
918 return -ENXIO;
919 }
920
921 /*
922 * Configure PELTV. NPUs don't have a PELTV table so skip
923 * configuration on them.
924 */
925 if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
926 pnv_ioda_set_peltv(phb, pe, true);
927
928 /* Setup reverse map */
929 for (rid = pe->rid; rid < rid_end; rid++)
930 phb->ioda.pe_rmap[rid] = pe->pe_number;
931
932 /* Setup one MVTs on IODA1 */
933 if (phb->type != PNV_PHB_IODA1) {
934 pe->mve_number = 0;
935 goto out;
936 }
937
938 pe->mve_number = pe->pe_number;
939 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
940 if (rc != OPAL_SUCCESS) {
941 pe_err(pe, "OPAL error %ld setting up MVE %x\n",
942 rc, pe->mve_number);
943 pe->mve_number = -1;
944 } else {
945 rc = opal_pci_set_mve_enable(phb->opal_id,
946 pe->mve_number, OPAL_ENABLE_MVE);
947 if (rc) {
948 pe_err(pe, "OPAL error %ld enabling MVE %x\n",
949 rc, pe->mve_number);
950 pe->mve_number = -1;
951 }
952 }
953
954 out:
955 return 0;
956 }
957
958 #ifdef CONFIG_PCI_IOV
pnv_pci_vf_resource_shift(struct pci_dev * dev,int offset)959 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
960 {
961 struct pci_dn *pdn = pci_get_pdn(dev);
962 int i;
963 struct resource *res, res2;
964 resource_size_t size;
965 u16 num_vfs;
966
967 if (!dev->is_physfn)
968 return -EINVAL;
969
970 /*
971 * "offset" is in VFs. The M64 windows are sized so that when they
972 * are segmented, each segment is the same size as the IOV BAR.
973 * Each segment is in a separate PE, and the high order bits of the
974 * address are the PE number. Therefore, each VF's BAR is in a
975 * separate PE, and changing the IOV BAR start address changes the
976 * range of PEs the VFs are in.
977 */
978 num_vfs = pdn->num_vfs;
979 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
980 res = &dev->resource[i + PCI_IOV_RESOURCES];
981 if (!res->flags || !res->parent)
982 continue;
983
984 /*
985 * The actual IOV BAR range is determined by the start address
986 * and the actual size for num_vfs VFs BAR. This check is to
987 * make sure that after shifting, the range will not overlap
988 * with another device.
989 */
990 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
991 res2.flags = res->flags;
992 res2.start = res->start + (size * offset);
993 res2.end = res2.start + (size * num_vfs) - 1;
994
995 if (res2.end > res->end) {
996 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
997 i, &res2, res, num_vfs, offset);
998 return -EBUSY;
999 }
1000 }
1001
1002 /*
1003 * Since M64 BAR shares segments among all possible 256 PEs,
1004 * we have to shift the beginning of PF IOV BAR to make it start from
1005 * the segment which belongs to the PE number assigned to the first VF.
1006 * This creates a "hole" in the /proc/iomem which could be used for
1007 * allocating other resources so we reserve this area below and
1008 * release when IOV is released.
1009 */
1010 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1011 res = &dev->resource[i + PCI_IOV_RESOURCES];
1012 if (!res->flags || !res->parent)
1013 continue;
1014
1015 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1016 res2 = *res;
1017 res->start += size * offset;
1018
1019 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1020 i, &res2, res, (offset > 0) ? "En" : "Dis",
1021 num_vfs, offset);
1022
1023 if (offset < 0) {
1024 devm_release_resource(&dev->dev, &pdn->holes[i]);
1025 memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
1026 }
1027
1028 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1029
1030 if (offset > 0) {
1031 pdn->holes[i].start = res2.start;
1032 pdn->holes[i].end = res2.start + size * offset - 1;
1033 pdn->holes[i].flags = IORESOURCE_BUS;
1034 pdn->holes[i].name = "pnv_iov_reserved";
1035 devm_request_resource(&dev->dev, res->parent,
1036 &pdn->holes[i]);
1037 }
1038 }
1039 return 0;
1040 }
1041 #endif /* CONFIG_PCI_IOV */
1042
pnv_ioda_setup_dev_PE(struct pci_dev * dev)1043 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1044 {
1045 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1046 struct pnv_phb *phb = hose->private_data;
1047 struct pci_dn *pdn = pci_get_pdn(dev);
1048 struct pnv_ioda_pe *pe;
1049
1050 if (!pdn) {
1051 pr_err("%s: Device tree node not associated properly\n",
1052 pci_name(dev));
1053 return NULL;
1054 }
1055 if (pdn->pe_number != IODA_INVALID_PE)
1056 return NULL;
1057
1058 pe = pnv_ioda_alloc_pe(phb);
1059 if (!pe) {
1060 pr_warn("%s: Not enough PE# available, disabling device\n",
1061 pci_name(dev));
1062 return NULL;
1063 }
1064
1065 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1066 * pointer in the PE data structure, both should be destroyed at the
1067 * same time. However, this needs to be looked at more closely again
1068 * once we actually start removing things (Hotplug, SR-IOV, ...)
1069 *
1070 * At some point we want to remove the PDN completely anyways
1071 */
1072 pci_dev_get(dev);
1073 pdn->pe_number = pe->pe_number;
1074 pe->flags = PNV_IODA_PE_DEV;
1075 pe->pdev = dev;
1076 pe->pbus = NULL;
1077 pe->mve_number = -1;
1078 pe->rid = dev->bus->number << 8 | pdn->devfn;
1079
1080 pe_info(pe, "Associated device to PE\n");
1081
1082 if (pnv_ioda_configure_pe(phb, pe)) {
1083 /* XXX What do we do here ? */
1084 pnv_ioda_free_pe(pe);
1085 pdn->pe_number = IODA_INVALID_PE;
1086 pe->pdev = NULL;
1087 pci_dev_put(dev);
1088 return NULL;
1089 }
1090
1091 /* Put PE to the list */
1092 list_add_tail(&pe->list, &phb->ioda.pe_list);
1093
1094 return pe;
1095 }
1096
pnv_ioda_setup_same_PE(struct pci_bus * bus,struct pnv_ioda_pe * pe)1097 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1098 {
1099 struct pci_dev *dev;
1100
1101 list_for_each_entry(dev, &bus->devices, bus_list) {
1102 struct pci_dn *pdn = pci_get_pdn(dev);
1103
1104 if (pdn == NULL) {
1105 pr_warn("%s: No device node associated with device !\n",
1106 pci_name(dev));
1107 continue;
1108 }
1109
1110 /*
1111 * In partial hotplug case, the PCI device might be still
1112 * associated with the PE and needn't attach it to the PE
1113 * again.
1114 */
1115 if (pdn->pe_number != IODA_INVALID_PE)
1116 continue;
1117
1118 pe->device_count++;
1119 pdn->pe_number = pe->pe_number;
1120 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1121 pnv_ioda_setup_same_PE(dev->subordinate, pe);
1122 }
1123 }
1124
1125 /*
1126 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1127 * single PCI bus. Another one that contains the primary PCI bus and its
1128 * subordinate PCI devices and buses. The second type of PE is normally
1129 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1130 */
pnv_ioda_setup_bus_PE(struct pci_bus * bus,bool all)1131 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1132 {
1133 struct pci_controller *hose = pci_bus_to_host(bus);
1134 struct pnv_phb *phb = hose->private_data;
1135 struct pnv_ioda_pe *pe = NULL;
1136 unsigned int pe_num;
1137
1138 /*
1139 * In partial hotplug case, the PE instance might be still alive.
1140 * We should reuse it instead of allocating a new one.
1141 */
1142 pe_num = phb->ioda.pe_rmap[bus->number << 8];
1143 if (pe_num != IODA_INVALID_PE) {
1144 pe = &phb->ioda.pe_array[pe_num];
1145 pnv_ioda_setup_same_PE(bus, pe);
1146 return NULL;
1147 }
1148
1149 /* PE number for root bus should have been reserved */
1150 if (pci_is_root_bus(bus) &&
1151 phb->ioda.root_pe_idx != IODA_INVALID_PE)
1152 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1153
1154 /* Check if PE is determined by M64 */
1155 if (!pe)
1156 pe = pnv_ioda_pick_m64_pe(bus, all);
1157
1158 /* The PE number isn't pinned by M64 */
1159 if (!pe)
1160 pe = pnv_ioda_alloc_pe(phb);
1161
1162 if (!pe) {
1163 pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1164 __func__, pci_domain_nr(bus), bus->number);
1165 return NULL;
1166 }
1167
1168 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1169 pe->pbus = bus;
1170 pe->pdev = NULL;
1171 pe->mve_number = -1;
1172 pe->rid = bus->busn_res.start << 8;
1173
1174 if (all)
1175 pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
1176 &bus->busn_res.start, &bus->busn_res.end,
1177 pe->pe_number);
1178 else
1179 pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
1180 &bus->busn_res.start, pe->pe_number);
1181
1182 if (pnv_ioda_configure_pe(phb, pe)) {
1183 /* XXX What do we do here ? */
1184 pnv_ioda_free_pe(pe);
1185 pe->pbus = NULL;
1186 return NULL;
1187 }
1188
1189 /* Associate it with all child devices */
1190 pnv_ioda_setup_same_PE(bus, pe);
1191
1192 /* Put PE to the list */
1193 list_add_tail(&pe->list, &phb->ioda.pe_list);
1194
1195 return pe;
1196 }
1197
pnv_ioda_setup_npu_PE(struct pci_dev * npu_pdev)1198 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1199 {
1200 int pe_num, found_pe = false, rc;
1201 long rid;
1202 struct pnv_ioda_pe *pe;
1203 struct pci_dev *gpu_pdev;
1204 struct pci_dn *npu_pdn;
1205 struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1206 struct pnv_phb *phb = hose->private_data;
1207
1208 /*
1209 * Due to a hardware errata PE#0 on the NPU is reserved for
1210 * error handling. This means we only have three PEs remaining
1211 * which need to be assigned to four links, implying some
1212 * links must share PEs.
1213 *
1214 * To achieve this we assign PEs such that NPUs linking the
1215 * same GPU get assigned the same PE.
1216 */
1217 gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1218 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1219 pe = &phb->ioda.pe_array[pe_num];
1220 if (!pe->pdev)
1221 continue;
1222
1223 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1224 /*
1225 * This device has the same peer GPU so should
1226 * be assigned the same PE as the existing
1227 * peer NPU.
1228 */
1229 dev_info(&npu_pdev->dev,
1230 "Associating to existing PE %x\n", pe_num);
1231 pci_dev_get(npu_pdev);
1232 npu_pdn = pci_get_pdn(npu_pdev);
1233 rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1234 npu_pdn->pe_number = pe_num;
1235 phb->ioda.pe_rmap[rid] = pe->pe_number;
1236
1237 /* Map the PE to this link */
1238 rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1239 OpalPciBusAll,
1240 OPAL_COMPARE_RID_DEVICE_NUMBER,
1241 OPAL_COMPARE_RID_FUNCTION_NUMBER,
1242 OPAL_MAP_PE);
1243 WARN_ON(rc != OPAL_SUCCESS);
1244 found_pe = true;
1245 break;
1246 }
1247 }
1248
1249 if (!found_pe)
1250 /*
1251 * Could not find an existing PE so allocate a new
1252 * one.
1253 */
1254 return pnv_ioda_setup_dev_PE(npu_pdev);
1255 else
1256 return pe;
1257 }
1258
pnv_ioda_setup_npu_PEs(struct pci_bus * bus)1259 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1260 {
1261 struct pci_dev *pdev;
1262
1263 list_for_each_entry(pdev, &bus->devices, bus_list)
1264 pnv_ioda_setup_npu_PE(pdev);
1265 }
1266
pnv_pci_ioda_setup_PEs(void)1267 static void pnv_pci_ioda_setup_PEs(void)
1268 {
1269 struct pci_controller *hose;
1270 struct pnv_phb *phb;
1271 struct pci_bus *bus;
1272 struct pci_dev *pdev;
1273 struct pnv_ioda_pe *pe;
1274
1275 list_for_each_entry(hose, &hose_list, list_node) {
1276 phb = hose->private_data;
1277 if (phb->type == PNV_PHB_NPU_NVLINK) {
1278 /* PE#0 is needed for error reporting */
1279 pnv_ioda_reserve_pe(phb, 0);
1280 pnv_ioda_setup_npu_PEs(hose->bus);
1281 if (phb->model == PNV_PHB_MODEL_NPU2)
1282 WARN_ON_ONCE(pnv_npu2_init(hose));
1283 }
1284 if (phb->type == PNV_PHB_NPU_OCAPI) {
1285 bus = hose->bus;
1286 list_for_each_entry(pdev, &bus->devices, bus_list)
1287 pnv_ioda_setup_dev_PE(pdev);
1288 }
1289 }
1290 list_for_each_entry(hose, &hose_list, list_node) {
1291 phb = hose->private_data;
1292 if (phb->type != PNV_PHB_IODA2)
1293 continue;
1294
1295 list_for_each_entry(pe, &phb->ioda.pe_list, list)
1296 pnv_npu2_map_lpar(pe, MSR_DR | MSR_PR | MSR_HV);
1297 }
1298 }
1299
1300 #ifdef CONFIG_PCI_IOV
pnv_pci_vf_release_m64(struct pci_dev * pdev,u16 num_vfs)1301 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1302 {
1303 struct pci_bus *bus;
1304 struct pci_controller *hose;
1305 struct pnv_phb *phb;
1306 struct pci_dn *pdn;
1307 int i, j;
1308 int m64_bars;
1309
1310 bus = pdev->bus;
1311 hose = pci_bus_to_host(bus);
1312 phb = hose->private_data;
1313 pdn = pci_get_pdn(pdev);
1314
1315 if (pdn->m64_single_mode)
1316 m64_bars = num_vfs;
1317 else
1318 m64_bars = 1;
1319
1320 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1321 for (j = 0; j < m64_bars; j++) {
1322 if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1323 continue;
1324 opal_pci_phb_mmio_enable(phb->opal_id,
1325 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1326 clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1327 pdn->m64_map[j][i] = IODA_INVALID_M64;
1328 }
1329
1330 kfree(pdn->m64_map);
1331 return 0;
1332 }
1333
pnv_pci_vf_assign_m64(struct pci_dev * pdev,u16 num_vfs)1334 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1335 {
1336 struct pci_bus *bus;
1337 struct pci_controller *hose;
1338 struct pnv_phb *phb;
1339 struct pci_dn *pdn;
1340 unsigned int win;
1341 struct resource *res;
1342 int i, j;
1343 int64_t rc;
1344 int total_vfs;
1345 resource_size_t size, start;
1346 int pe_num;
1347 int m64_bars;
1348
1349 bus = pdev->bus;
1350 hose = pci_bus_to_host(bus);
1351 phb = hose->private_data;
1352 pdn = pci_get_pdn(pdev);
1353 total_vfs = pci_sriov_get_totalvfs(pdev);
1354
1355 if (pdn->m64_single_mode)
1356 m64_bars = num_vfs;
1357 else
1358 m64_bars = 1;
1359
1360 pdn->m64_map = kmalloc_array(m64_bars,
1361 sizeof(*pdn->m64_map),
1362 GFP_KERNEL);
1363 if (!pdn->m64_map)
1364 return -ENOMEM;
1365 /* Initialize the m64_map to IODA_INVALID_M64 */
1366 for (i = 0; i < m64_bars ; i++)
1367 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1368 pdn->m64_map[i][j] = IODA_INVALID_M64;
1369
1370
1371 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1372 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1373 if (!res->flags || !res->parent)
1374 continue;
1375
1376 for (j = 0; j < m64_bars; j++) {
1377 do {
1378 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1379 phb->ioda.m64_bar_idx + 1, 0);
1380
1381 if (win >= phb->ioda.m64_bar_idx + 1)
1382 goto m64_failed;
1383 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1384
1385 pdn->m64_map[j][i] = win;
1386
1387 if (pdn->m64_single_mode) {
1388 size = pci_iov_resource_size(pdev,
1389 PCI_IOV_RESOURCES + i);
1390 start = res->start + size * j;
1391 } else {
1392 size = resource_size(res);
1393 start = res->start;
1394 }
1395
1396 /* Map the M64 here */
1397 if (pdn->m64_single_mode) {
1398 pe_num = pdn->pe_num_map[j];
1399 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1400 pe_num, OPAL_M64_WINDOW_TYPE,
1401 pdn->m64_map[j][i], 0);
1402 }
1403
1404 rc = opal_pci_set_phb_mem_window(phb->opal_id,
1405 OPAL_M64_WINDOW_TYPE,
1406 pdn->m64_map[j][i],
1407 start,
1408 0, /* unused */
1409 size);
1410
1411
1412 if (rc != OPAL_SUCCESS) {
1413 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1414 win, rc);
1415 goto m64_failed;
1416 }
1417
1418 if (pdn->m64_single_mode)
1419 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1420 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1421 else
1422 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1423 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1424
1425 if (rc != OPAL_SUCCESS) {
1426 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1427 win, rc);
1428 goto m64_failed;
1429 }
1430 }
1431 }
1432 return 0;
1433
1434 m64_failed:
1435 pnv_pci_vf_release_m64(pdev, num_vfs);
1436 return -EBUSY;
1437 }
1438
1439 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1440 int num);
1441
pnv_pci_ioda2_release_dma_pe(struct pci_dev * dev,struct pnv_ioda_pe * pe)1442 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1443 {
1444 struct iommu_table *tbl;
1445 int64_t rc;
1446
1447 tbl = pe->table_group.tables[0];
1448 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1449 if (rc)
1450 pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
1451
1452 pnv_pci_ioda2_set_bypass(pe, false);
1453 if (pe->table_group.group) {
1454 iommu_group_put(pe->table_group.group);
1455 BUG_ON(pe->table_group.group);
1456 }
1457 iommu_tce_table_put(tbl);
1458 }
1459
pnv_ioda_release_vf_PE(struct pci_dev * pdev)1460 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1461 {
1462 struct pci_bus *bus;
1463 struct pci_controller *hose;
1464 struct pnv_phb *phb;
1465 struct pnv_ioda_pe *pe, *pe_n;
1466 struct pci_dn *pdn;
1467
1468 bus = pdev->bus;
1469 hose = pci_bus_to_host(bus);
1470 phb = hose->private_data;
1471 pdn = pci_get_pdn(pdev);
1472
1473 if (!pdev->is_physfn)
1474 return;
1475
1476 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1477 if (pe->parent_dev != pdev)
1478 continue;
1479
1480 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1481
1482 /* Remove from list */
1483 mutex_lock(&phb->ioda.pe_list_mutex);
1484 list_del(&pe->list);
1485 mutex_unlock(&phb->ioda.pe_list_mutex);
1486
1487 pnv_ioda_deconfigure_pe(phb, pe);
1488
1489 pnv_ioda_free_pe(pe);
1490 }
1491 }
1492
pnv_pci_sriov_disable(struct pci_dev * pdev)1493 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1494 {
1495 struct pci_bus *bus;
1496 struct pci_controller *hose;
1497 struct pnv_phb *phb;
1498 struct pnv_ioda_pe *pe;
1499 struct pci_dn *pdn;
1500 u16 num_vfs, i;
1501
1502 bus = pdev->bus;
1503 hose = pci_bus_to_host(bus);
1504 phb = hose->private_data;
1505 pdn = pci_get_pdn(pdev);
1506 num_vfs = pdn->num_vfs;
1507
1508 /* Release VF PEs */
1509 pnv_ioda_release_vf_PE(pdev);
1510
1511 if (phb->type == PNV_PHB_IODA2) {
1512 if (!pdn->m64_single_mode)
1513 pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1514
1515 /* Release M64 windows */
1516 pnv_pci_vf_release_m64(pdev, num_vfs);
1517
1518 /* Release PE numbers */
1519 if (pdn->m64_single_mode) {
1520 for (i = 0; i < num_vfs; i++) {
1521 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1522 continue;
1523
1524 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1525 pnv_ioda_free_pe(pe);
1526 }
1527 } else
1528 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1529 /* Releasing pe_num_map */
1530 kfree(pdn->pe_num_map);
1531 }
1532 }
1533
1534 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1535 struct pnv_ioda_pe *pe);
1536 #ifdef CONFIG_IOMMU_API
1537 static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe,
1538 struct iommu_table_group *table_group, struct pci_bus *bus);
1539
1540 #endif
pnv_ioda_setup_vf_PE(struct pci_dev * pdev,u16 num_vfs)1541 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1542 {
1543 struct pci_bus *bus;
1544 struct pci_controller *hose;
1545 struct pnv_phb *phb;
1546 struct pnv_ioda_pe *pe;
1547 int pe_num;
1548 u16 vf_index;
1549 struct pci_dn *pdn;
1550
1551 bus = pdev->bus;
1552 hose = pci_bus_to_host(bus);
1553 phb = hose->private_data;
1554 pdn = pci_get_pdn(pdev);
1555
1556 if (!pdev->is_physfn)
1557 return;
1558
1559 /* Reserve PE for each VF */
1560 for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1561 int vf_devfn = pci_iov_virtfn_devfn(pdev, vf_index);
1562 int vf_bus = pci_iov_virtfn_bus(pdev, vf_index);
1563 struct pci_dn *vf_pdn;
1564
1565 if (pdn->m64_single_mode)
1566 pe_num = pdn->pe_num_map[vf_index];
1567 else
1568 pe_num = *pdn->pe_num_map + vf_index;
1569
1570 pe = &phb->ioda.pe_array[pe_num];
1571 pe->pe_number = pe_num;
1572 pe->phb = phb;
1573 pe->flags = PNV_IODA_PE_VF;
1574 pe->pbus = NULL;
1575 pe->parent_dev = pdev;
1576 pe->mve_number = -1;
1577 pe->rid = (vf_bus << 8) | vf_devfn;
1578
1579 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1580 hose->global_number, pdev->bus->number,
1581 PCI_SLOT(vf_devfn), PCI_FUNC(vf_devfn), pe_num);
1582
1583 if (pnv_ioda_configure_pe(phb, pe)) {
1584 /* XXX What do we do here ? */
1585 pnv_ioda_free_pe(pe);
1586 pe->pdev = NULL;
1587 continue;
1588 }
1589
1590 /* Put PE to the list */
1591 mutex_lock(&phb->ioda.pe_list_mutex);
1592 list_add_tail(&pe->list, &phb->ioda.pe_list);
1593 mutex_unlock(&phb->ioda.pe_list_mutex);
1594
1595 /* associate this pe to it's pdn */
1596 list_for_each_entry(vf_pdn, &pdn->parent->child_list, list) {
1597 if (vf_pdn->busno == vf_bus &&
1598 vf_pdn->devfn == vf_devfn) {
1599 vf_pdn->pe_number = pe_num;
1600 break;
1601 }
1602 }
1603
1604 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1605 #ifdef CONFIG_IOMMU_API
1606 iommu_register_group(&pe->table_group,
1607 pe->phb->hose->global_number, pe->pe_number);
1608 pnv_ioda_setup_bus_iommu_group(pe, &pe->table_group, NULL);
1609 #endif
1610 }
1611 }
1612
pnv_pci_sriov_enable(struct pci_dev * pdev,u16 num_vfs)1613 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1614 {
1615 struct pci_bus *bus;
1616 struct pci_controller *hose;
1617 struct pnv_phb *phb;
1618 struct pnv_ioda_pe *pe;
1619 struct pci_dn *pdn;
1620 int ret;
1621 u16 i;
1622
1623 bus = pdev->bus;
1624 hose = pci_bus_to_host(bus);
1625 phb = hose->private_data;
1626 pdn = pci_get_pdn(pdev);
1627
1628 if (phb->type == PNV_PHB_IODA2) {
1629 if (!pdn->vfs_expanded) {
1630 dev_info(&pdev->dev, "don't support this SRIOV device"
1631 " with non 64bit-prefetchable IOV BAR\n");
1632 return -ENOSPC;
1633 }
1634
1635 /*
1636 * When M64 BARs functions in Single PE mode, the number of VFs
1637 * could be enabled must be less than the number of M64 BARs.
1638 */
1639 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1640 dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1641 return -EBUSY;
1642 }
1643
1644 /* Allocating pe_num_map */
1645 if (pdn->m64_single_mode)
1646 pdn->pe_num_map = kmalloc_array(num_vfs,
1647 sizeof(*pdn->pe_num_map),
1648 GFP_KERNEL);
1649 else
1650 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1651
1652 if (!pdn->pe_num_map)
1653 return -ENOMEM;
1654
1655 if (pdn->m64_single_mode)
1656 for (i = 0; i < num_vfs; i++)
1657 pdn->pe_num_map[i] = IODA_INVALID_PE;
1658
1659 /* Calculate available PE for required VFs */
1660 if (pdn->m64_single_mode) {
1661 for (i = 0; i < num_vfs; i++) {
1662 pe = pnv_ioda_alloc_pe(phb);
1663 if (!pe) {
1664 ret = -EBUSY;
1665 goto m64_failed;
1666 }
1667
1668 pdn->pe_num_map[i] = pe->pe_number;
1669 }
1670 } else {
1671 mutex_lock(&phb->ioda.pe_alloc_mutex);
1672 *pdn->pe_num_map = bitmap_find_next_zero_area(
1673 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1674 0, num_vfs, 0);
1675 if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1676 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1677 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1678 kfree(pdn->pe_num_map);
1679 return -EBUSY;
1680 }
1681 bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1682 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1683 }
1684 pdn->num_vfs = num_vfs;
1685
1686 /* Assign M64 window accordingly */
1687 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1688 if (ret) {
1689 dev_info(&pdev->dev, "Not enough M64 window resources\n");
1690 goto m64_failed;
1691 }
1692
1693 /*
1694 * When using one M64 BAR to map one IOV BAR, we need to shift
1695 * the IOV BAR according to the PE# allocated to the VFs.
1696 * Otherwise, the PE# for the VF will conflict with others.
1697 */
1698 if (!pdn->m64_single_mode) {
1699 ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1700 if (ret)
1701 goto m64_failed;
1702 }
1703 }
1704
1705 /* Setup VF PEs */
1706 pnv_ioda_setup_vf_PE(pdev, num_vfs);
1707
1708 return 0;
1709
1710 m64_failed:
1711 if (pdn->m64_single_mode) {
1712 for (i = 0; i < num_vfs; i++) {
1713 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1714 continue;
1715
1716 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1717 pnv_ioda_free_pe(pe);
1718 }
1719 } else
1720 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1721
1722 /* Releasing pe_num_map */
1723 kfree(pdn->pe_num_map);
1724
1725 return ret;
1726 }
1727
pnv_pcibios_sriov_disable(struct pci_dev * pdev)1728 int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
1729 {
1730 pnv_pci_sriov_disable(pdev);
1731
1732 /* Release PCI data */
1733 remove_dev_pci_data(pdev);
1734 return 0;
1735 }
1736
pnv_pcibios_sriov_enable(struct pci_dev * pdev,u16 num_vfs)1737 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1738 {
1739 /* Allocate PCI data */
1740 add_dev_pci_data(pdev);
1741
1742 return pnv_pci_sriov_enable(pdev, num_vfs);
1743 }
1744 #endif /* CONFIG_PCI_IOV */
1745
pnv_pci_ioda_dma_dev_setup(struct pnv_phb * phb,struct pci_dev * pdev)1746 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1747 {
1748 struct pci_dn *pdn = pci_get_pdn(pdev);
1749 struct pnv_ioda_pe *pe;
1750
1751 /*
1752 * The function can be called while the PE#
1753 * hasn't been assigned. Do nothing for the
1754 * case.
1755 */
1756 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1757 return;
1758
1759 pe = &phb->ioda.pe_array[pdn->pe_number];
1760 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1761 pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
1762 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1763 /*
1764 * Note: iommu_add_device() will fail here as
1765 * for physical PE: the device is already added by now;
1766 * for virtual PE: sysfs entries are not ready yet and
1767 * tce_iommu_bus_notifier will add the device to a group later.
1768 */
1769 }
1770
1771 /*
1772 * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1773 *
1774 * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1775 * Devices can only access more than that if bit 59 of the PCI address is set
1776 * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1777 * Many PCI devices are not capable of addressing that many bits, and as a
1778 * result are limited to the 4GB of virtual memory made available to 32-bit
1779 * devices in TVE#0.
1780 *
1781 * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1782 * devices by configuring the virtual memory past the first 4GB inaccessible
1783 * by 64-bit DMAs. This should only be used by devices that want more than
1784 * 4GB, and only on PEs that have no 32-bit devices.
1785 *
1786 * Currently this will only work on PHB3 (POWER8).
1787 */
pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe * pe)1788 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1789 {
1790 u64 window_size, table_size, tce_count, addr;
1791 struct page *table_pages;
1792 u64 tce_order = 28; /* 256MB TCEs */
1793 __be64 *tces;
1794 s64 rc;
1795
1796 /*
1797 * Window size needs to be a power of two, but needs to account for
1798 * shifting memory by the 4GB offset required to skip 32bit space.
1799 */
1800 window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1801 tce_count = window_size >> tce_order;
1802 table_size = tce_count << 3;
1803
1804 if (table_size < PAGE_SIZE)
1805 table_size = PAGE_SIZE;
1806
1807 table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1808 get_order(table_size));
1809 if (!table_pages)
1810 goto err;
1811
1812 tces = page_address(table_pages);
1813 if (!tces)
1814 goto err;
1815
1816 memset(tces, 0, table_size);
1817
1818 for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1819 tces[(addr + (1ULL << 32)) >> tce_order] =
1820 cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1821 }
1822
1823 rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1824 pe->pe_number,
1825 /* reconfigure window 0 */
1826 (pe->pe_number << 1) + 0,
1827 1,
1828 __pa(tces),
1829 table_size,
1830 1 << tce_order);
1831 if (rc == OPAL_SUCCESS) {
1832 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1833 return 0;
1834 }
1835 err:
1836 pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1837 return -EIO;
1838 }
1839
pnv_pci_ioda_iommu_bypass_supported(struct pci_dev * pdev,u64 dma_mask)1840 static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
1841 u64 dma_mask)
1842 {
1843 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1844 struct pnv_phb *phb = hose->private_data;
1845 struct pci_dn *pdn = pci_get_pdn(pdev);
1846 struct pnv_ioda_pe *pe;
1847
1848 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1849 return false;
1850
1851 pe = &phb->ioda.pe_array[pdn->pe_number];
1852 if (pe->tce_bypass_enabled) {
1853 u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1854 if (dma_mask >= top)
1855 return true;
1856 }
1857
1858 /*
1859 * If the device can't set the TCE bypass bit but still wants
1860 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1861 * bypass the 32-bit region and be usable for 64-bit DMAs.
1862 * The device needs to be able to address all of this space.
1863 */
1864 if (dma_mask >> 32 &&
1865 dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1866 /* pe->pdev should be set if it's a single device, pe->pbus if not */
1867 (pe->device_count == 1 || !pe->pbus) &&
1868 phb->model == PNV_PHB_MODEL_PHB3) {
1869 /* Configure the bypass mode */
1870 s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1871 if (rc)
1872 return false;
1873 /* 4GB offset bypasses 32-bit space */
1874 pdev->dev.archdata.dma_offset = (1ULL << 32);
1875 return true;
1876 }
1877
1878 return false;
1879 }
1880
pnv_ioda_setup_bus_dma(struct pnv_ioda_pe * pe,struct pci_bus * bus)1881 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
1882 {
1883 struct pci_dev *dev;
1884
1885 list_for_each_entry(dev, &bus->devices, bus_list) {
1886 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1887 dev->dev.archdata.dma_offset = pe->tce_bypass_base;
1888
1889 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1890 pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1891 }
1892 }
1893
pnv_ioda_get_inval_reg(struct pnv_phb * phb,bool real_mode)1894 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1895 bool real_mode)
1896 {
1897 return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1898 (phb->regs + 0x210);
1899 }
1900
pnv_pci_p7ioc_tce_invalidate(struct iommu_table * tbl,unsigned long index,unsigned long npages,bool rm)1901 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1902 unsigned long index, unsigned long npages, bool rm)
1903 {
1904 struct iommu_table_group_link *tgl = list_first_entry_or_null(
1905 &tbl->it_group_list, struct iommu_table_group_link,
1906 next);
1907 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1908 struct pnv_ioda_pe, table_group);
1909 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1910 unsigned long start, end, inc;
1911
1912 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1913 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1914 npages - 1);
1915
1916 /* p7ioc-style invalidation, 2 TCEs per write */
1917 start |= (1ull << 63);
1918 end |= (1ull << 63);
1919 inc = 16;
1920 end |= inc - 1; /* round up end to be different than start */
1921
1922 mb(); /* Ensure above stores are visible */
1923 while (start <= end) {
1924 if (rm)
1925 __raw_rm_writeq_be(start, invalidate);
1926 else
1927 __raw_writeq_be(start, invalidate);
1928
1929 start += inc;
1930 }
1931
1932 /*
1933 * The iommu layer will do another mb() for us on build()
1934 * and we don't care on free()
1935 */
1936 }
1937
pnv_ioda1_tce_build(struct iommu_table * tbl,long index,long npages,unsigned long uaddr,enum dma_data_direction direction,unsigned long attrs)1938 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1939 long npages, unsigned long uaddr,
1940 enum dma_data_direction direction,
1941 unsigned long attrs)
1942 {
1943 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1944 attrs);
1945
1946 if (!ret)
1947 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1948
1949 return ret;
1950 }
1951
1952 #ifdef CONFIG_IOMMU_API
1953 /* Common for IODA1 and IODA2 */
pnv_ioda_tce_xchg_no_kill(struct iommu_table * tbl,long index,unsigned long * hpa,enum dma_data_direction * direction,bool realmode)1954 static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index,
1955 unsigned long *hpa, enum dma_data_direction *direction,
1956 bool realmode)
1957 {
1958 return pnv_tce_xchg(tbl, index, hpa, direction, !realmode);
1959 }
1960 #endif
1961
pnv_ioda1_tce_free(struct iommu_table * tbl,long index,long npages)1962 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1963 long npages)
1964 {
1965 pnv_tce_free(tbl, index, npages);
1966
1967 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1968 }
1969
1970 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1971 .set = pnv_ioda1_tce_build,
1972 #ifdef CONFIG_IOMMU_API
1973 .xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1974 .tce_kill = pnv_pci_p7ioc_tce_invalidate,
1975 .useraddrptr = pnv_tce_useraddrptr,
1976 #endif
1977 .clear = pnv_ioda1_tce_free,
1978 .get = pnv_tce_get,
1979 };
1980
1981 #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0)
1982 #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1)
1983 #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2)
1984
pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb * phb,bool rm)1985 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1986 {
1987 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1988 const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1989
1990 mb(); /* Ensure previous TCE table stores are visible */
1991 if (rm)
1992 __raw_rm_writeq_be(val, invalidate);
1993 else
1994 __raw_writeq_be(val, invalidate);
1995 }
1996
pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe * pe)1997 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1998 {
1999 /* 01xb - invalidate TCEs that match the specified PE# */
2000 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2001 unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2002
2003 mb(); /* Ensure above stores are visible */
2004 __raw_writeq_be(val, invalidate);
2005 }
2006
pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe * pe,bool rm,unsigned shift,unsigned long index,unsigned long npages)2007 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2008 unsigned shift, unsigned long index,
2009 unsigned long npages)
2010 {
2011 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2012 unsigned long start, end, inc;
2013
2014 /* We'll invalidate DMA address in PE scope */
2015 start = PHB3_TCE_KILL_INVAL_ONE;
2016 start |= (pe->pe_number & 0xFF);
2017 end = start;
2018
2019 /* Figure out the start, end and step */
2020 start |= (index << shift);
2021 end |= ((index + npages - 1) << shift);
2022 inc = (0x1ull << shift);
2023 mb();
2024
2025 while (start <= end) {
2026 if (rm)
2027 __raw_rm_writeq_be(start, invalidate);
2028 else
2029 __raw_writeq_be(start, invalidate);
2030 start += inc;
2031 }
2032 }
2033
pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe * pe)2034 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2035 {
2036 struct pnv_phb *phb = pe->phb;
2037
2038 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2039 pnv_pci_phb3_tce_invalidate_pe(pe);
2040 else
2041 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2042 pe->pe_number, 0, 0, 0);
2043 }
2044
pnv_pci_ioda2_tce_invalidate(struct iommu_table * tbl,unsigned long index,unsigned long npages,bool rm)2045 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2046 unsigned long index, unsigned long npages, bool rm)
2047 {
2048 struct iommu_table_group_link *tgl;
2049
2050 list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2051 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2052 struct pnv_ioda_pe, table_group);
2053 struct pnv_phb *phb = pe->phb;
2054 unsigned int shift = tbl->it_page_shift;
2055
2056 /*
2057 * NVLink1 can use the TCE kill register directly as
2058 * it's the same as PHB3. NVLink2 is different and
2059 * should go via the OPAL call.
2060 */
2061 if (phb->model == PNV_PHB_MODEL_NPU) {
2062 /*
2063 * The NVLink hardware does not support TCE kill
2064 * per TCE entry so we have to invalidate
2065 * the entire cache for it.
2066 */
2067 pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2068 continue;
2069 }
2070 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2071 pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2072 index, npages);
2073 else
2074 opal_pci_tce_kill(phb->opal_id,
2075 OPAL_PCI_TCE_KILL_PAGES,
2076 pe->pe_number, 1u << shift,
2077 index << shift, npages);
2078 }
2079 }
2080
pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb * phb,bool rm)2081 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2082 {
2083 if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2084 pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2085 else
2086 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2087 }
2088
pnv_ioda2_tce_build(struct iommu_table * tbl,long index,long npages,unsigned long uaddr,enum dma_data_direction direction,unsigned long attrs)2089 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2090 long npages, unsigned long uaddr,
2091 enum dma_data_direction direction,
2092 unsigned long attrs)
2093 {
2094 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2095 attrs);
2096
2097 if (!ret)
2098 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2099
2100 return ret;
2101 }
2102
pnv_ioda2_tce_free(struct iommu_table * tbl,long index,long npages)2103 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2104 long npages)
2105 {
2106 pnv_tce_free(tbl, index, npages);
2107
2108 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2109 }
2110
2111 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2112 .set = pnv_ioda2_tce_build,
2113 #ifdef CONFIG_IOMMU_API
2114 .xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
2115 .tce_kill = pnv_pci_ioda2_tce_invalidate,
2116 .useraddrptr = pnv_tce_useraddrptr,
2117 #endif
2118 .clear = pnv_ioda2_tce_free,
2119 .get = pnv_tce_get,
2120 .free = pnv_pci_ioda2_table_free_pages,
2121 };
2122
pnv_pci_ioda_dev_dma_weight(struct pci_dev * dev,void * data)2123 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2124 {
2125 unsigned int *weight = (unsigned int *)data;
2126
2127 /* This is quite simplistic. The "base" weight of a device
2128 * is 10. 0 means no DMA is to be accounted for it.
2129 */
2130 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2131 return 0;
2132
2133 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2134 dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2135 dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2136 *weight += 3;
2137 else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2138 *weight += 15;
2139 else
2140 *weight += 10;
2141
2142 return 0;
2143 }
2144
pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe * pe)2145 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2146 {
2147 unsigned int weight = 0;
2148
2149 /* SRIOV VF has same DMA32 weight as its PF */
2150 #ifdef CONFIG_PCI_IOV
2151 if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2152 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2153 return weight;
2154 }
2155 #endif
2156
2157 if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2158 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2159 } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2160 struct pci_dev *pdev;
2161
2162 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2163 pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2164 } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2165 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2166 }
2167
2168 return weight;
2169 }
2170
pnv_pci_ioda1_setup_dma_pe(struct pnv_phb * phb,struct pnv_ioda_pe * pe)2171 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2172 struct pnv_ioda_pe *pe)
2173 {
2174
2175 struct page *tce_mem = NULL;
2176 struct iommu_table *tbl;
2177 unsigned int weight, total_weight = 0;
2178 unsigned int tce32_segsz, base, segs, avail, i;
2179 int64_t rc;
2180 void *addr;
2181
2182 /* XXX FIXME: Handle 64-bit only DMA devices */
2183 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2184 /* XXX FIXME: Allocate multi-level tables on PHB3 */
2185 weight = pnv_pci_ioda_pe_dma_weight(pe);
2186 if (!weight)
2187 return;
2188
2189 pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2190 &total_weight);
2191 segs = (weight * phb->ioda.dma32_count) / total_weight;
2192 if (!segs)
2193 segs = 1;
2194
2195 /*
2196 * Allocate contiguous DMA32 segments. We begin with the expected
2197 * number of segments. With one more attempt, the number of DMA32
2198 * segments to be allocated is decreased by one until one segment
2199 * is allocated successfully.
2200 */
2201 do {
2202 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2203 for (avail = 0, i = base; i < base + segs; i++) {
2204 if (phb->ioda.dma32_segmap[i] ==
2205 IODA_INVALID_PE)
2206 avail++;
2207 }
2208
2209 if (avail == segs)
2210 goto found;
2211 }
2212 } while (--segs);
2213
2214 if (!segs) {
2215 pe_warn(pe, "No available DMA32 segments\n");
2216 return;
2217 }
2218
2219 found:
2220 tbl = pnv_pci_table_alloc(phb->hose->node);
2221 if (WARN_ON(!tbl))
2222 return;
2223
2224 iommu_register_group(&pe->table_group, phb->hose->global_number,
2225 pe->pe_number);
2226 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2227
2228 /* Grab a 32-bit TCE table */
2229 pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2230 weight, total_weight, base, segs);
2231 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2232 base * PNV_IODA1_DMA32_SEGSIZE,
2233 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2234
2235 /* XXX Currently, we allocate one big contiguous table for the
2236 * TCEs. We only really need one chunk per 256M of TCE space
2237 * (ie per segment) but that's an optimization for later, it
2238 * requires some added smarts with our get/put_tce implementation
2239 *
2240 * Each TCE page is 4KB in size and each TCE entry occupies 8
2241 * bytes
2242 */
2243 tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2244 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2245 get_order(tce32_segsz * segs));
2246 if (!tce_mem) {
2247 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2248 goto fail;
2249 }
2250 addr = page_address(tce_mem);
2251 memset(addr, 0, tce32_segsz * segs);
2252
2253 /* Configure HW */
2254 for (i = 0; i < segs; i++) {
2255 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2256 pe->pe_number,
2257 base + i, 1,
2258 __pa(addr) + tce32_segsz * i,
2259 tce32_segsz, IOMMU_PAGE_SIZE_4K);
2260 if (rc) {
2261 pe_err(pe, " Failed to configure 32-bit TCE table, err %lld\n",
2262 rc);
2263 goto fail;
2264 }
2265 }
2266
2267 /* Setup DMA32 segment mapping */
2268 for (i = base; i < base + segs; i++)
2269 phb->ioda.dma32_segmap[i] = pe->pe_number;
2270
2271 /* Setup linux iommu table */
2272 pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2273 base * PNV_IODA1_DMA32_SEGSIZE,
2274 IOMMU_PAGE_SHIFT_4K);
2275
2276 tbl->it_ops = &pnv_ioda1_iommu_ops;
2277 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2278 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2279 iommu_init_table(tbl, phb->hose->node, 0, 0);
2280
2281 if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2282 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2283
2284 return;
2285 fail:
2286 /* XXX Failure: Try to fallback to 64-bit only ? */
2287 if (tce_mem)
2288 __free_pages(tce_mem, get_order(tce32_segsz * segs));
2289 if (tbl) {
2290 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2291 iommu_tce_table_put(tbl);
2292 }
2293 }
2294
pnv_pci_ioda2_set_window(struct iommu_table_group * table_group,int num,struct iommu_table * tbl)2295 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2296 int num, struct iommu_table *tbl)
2297 {
2298 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2299 table_group);
2300 struct pnv_phb *phb = pe->phb;
2301 int64_t rc;
2302 const unsigned long size = tbl->it_indirect_levels ?
2303 tbl->it_level_size : tbl->it_size;
2304 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2305 const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2306
2307 pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
2308 num, start_addr, start_addr + win_size - 1,
2309 IOMMU_PAGE_SIZE(tbl));
2310
2311 /*
2312 * Map TCE table through TVT. The TVE index is the PE number
2313 * shifted by 1 bit for 32-bits DMA space.
2314 */
2315 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2316 pe->pe_number,
2317 (pe->pe_number << 1) + num,
2318 tbl->it_indirect_levels + 1,
2319 __pa(tbl->it_base),
2320 size << 3,
2321 IOMMU_PAGE_SIZE(tbl));
2322 if (rc) {
2323 pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
2324 return rc;
2325 }
2326
2327 pnv_pci_link_table_and_group(phb->hose->node, num,
2328 tbl, &pe->table_group);
2329 pnv_pci_ioda2_tce_invalidate_pe(pe);
2330
2331 return 0;
2332 }
2333
pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe * pe,bool enable)2334 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2335 {
2336 uint16_t window_id = (pe->pe_number << 1 ) + 1;
2337 int64_t rc;
2338
2339 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2340 if (enable) {
2341 phys_addr_t top = memblock_end_of_DRAM();
2342
2343 top = roundup_pow_of_two(top);
2344 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2345 pe->pe_number,
2346 window_id,
2347 pe->tce_bypass_base,
2348 top);
2349 } else {
2350 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2351 pe->pe_number,
2352 window_id,
2353 pe->tce_bypass_base,
2354 0);
2355 }
2356 if (rc)
2357 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2358 else
2359 pe->tce_bypass_enabled = enable;
2360 }
2361
pnv_pci_ioda2_create_table(struct iommu_table_group * table_group,int num,__u32 page_shift,__u64 window_size,__u32 levels,bool alloc_userspace_copy,struct iommu_table ** ptbl)2362 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2363 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2364 bool alloc_userspace_copy, struct iommu_table **ptbl)
2365 {
2366 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2367 table_group);
2368 int nid = pe->phb->hose->node;
2369 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2370 long ret;
2371 struct iommu_table *tbl;
2372
2373 tbl = pnv_pci_table_alloc(nid);
2374 if (!tbl)
2375 return -ENOMEM;
2376
2377 tbl->it_ops = &pnv_ioda2_iommu_ops;
2378
2379 ret = pnv_pci_ioda2_table_alloc_pages(nid,
2380 bus_offset, page_shift, window_size,
2381 levels, alloc_userspace_copy, tbl);
2382 if (ret) {
2383 iommu_tce_table_put(tbl);
2384 return ret;
2385 }
2386
2387 *ptbl = tbl;
2388
2389 return 0;
2390 }
2391
pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe * pe)2392 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2393 {
2394 struct iommu_table *tbl = NULL;
2395 long rc;
2396 unsigned long res_start, res_end;
2397
2398 /*
2399 * crashkernel= specifies the kdump kernel's maximum memory at
2400 * some offset and there is no guaranteed the result is a power
2401 * of 2, which will cause errors later.
2402 */
2403 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2404
2405 /*
2406 * In memory constrained environments, e.g. kdump kernel, the
2407 * DMA window can be larger than available memory, which will
2408 * cause errors later.
2409 */
2410 const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_ORDER - 1);
2411
2412 /*
2413 * We create the default window as big as we can. The constraint is
2414 * the max order of allocation possible. The TCE table is likely to
2415 * end up being multilevel and with on-demand allocation in place,
2416 * the initial use is not going to be huge as the default window aims
2417 * to support crippled devices (i.e. not fully 64bit DMAble) only.
2418 */
2419 /* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */
2420 const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory);
2421 /* Each TCE level cannot exceed maxblock so go multilevel if needed */
2422 unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT);
2423 unsigned long tcelevel_order = ilog2(maxblock >> 3);
2424 unsigned int levels = tces_order / tcelevel_order;
2425
2426 if (tces_order % tcelevel_order)
2427 levels += 1;
2428 /*
2429 * We try to stick to default levels (which is >1 at the moment) in
2430 * order to save memory by relying on on-demain TCE level allocation.
2431 */
2432 levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS);
2433
2434 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT,
2435 window_size, levels, false, &tbl);
2436 if (rc) {
2437 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2438 rc);
2439 return rc;
2440 }
2441
2442 /* We use top part of 32bit space for MMIO so exclude it from DMA */
2443 res_start = 0;
2444 res_end = 0;
2445 if (window_size > pe->phb->ioda.m32_pci_base) {
2446 res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift;
2447 res_end = min(window_size, SZ_4G) >> tbl->it_page_shift;
2448 }
2449 iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end);
2450
2451 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2452 if (rc) {
2453 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2454 rc);
2455 iommu_tce_table_put(tbl);
2456 return rc;
2457 }
2458
2459 if (!pnv_iommu_bypass_disabled)
2460 pnv_pci_ioda2_set_bypass(pe, true);
2461
2462 /*
2463 * Set table base for the case of IOMMU DMA use. Usually this is done
2464 * from dma_dev_setup() which is not called when a device is returned
2465 * from VFIO so do it here.
2466 */
2467 if (pe->pdev)
2468 set_iommu_table_base(&pe->pdev->dev, tbl);
2469
2470 return 0;
2471 }
2472
2473 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
pnv_pci_ioda2_unset_window(struct iommu_table_group * table_group,int num)2474 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2475 int num)
2476 {
2477 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2478 table_group);
2479 struct pnv_phb *phb = pe->phb;
2480 long ret;
2481
2482 pe_info(pe, "Removing DMA window #%d\n", num);
2483
2484 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2485 (pe->pe_number << 1) + num,
2486 0/* levels */, 0/* table address */,
2487 0/* table size */, 0/* page size */);
2488 if (ret)
2489 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2490 else
2491 pnv_pci_ioda2_tce_invalidate_pe(pe);
2492
2493 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2494
2495 return ret;
2496 }
2497 #endif
2498
2499 #ifdef CONFIG_IOMMU_API
pnv_pci_ioda2_get_table_size(__u32 page_shift,__u64 window_size,__u32 levels)2500 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2501 __u64 window_size, __u32 levels)
2502 {
2503 unsigned long bytes = 0;
2504 const unsigned window_shift = ilog2(window_size);
2505 unsigned entries_shift = window_shift - page_shift;
2506 unsigned table_shift = entries_shift + 3;
2507 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2508 unsigned long direct_table_size;
2509
2510 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2511 !is_power_of_2(window_size))
2512 return 0;
2513
2514 /* Calculate a direct table size from window_size and levels */
2515 entries_shift = (entries_shift + levels - 1) / levels;
2516 table_shift = entries_shift + 3;
2517 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2518 direct_table_size = 1UL << table_shift;
2519
2520 for ( ; levels; --levels) {
2521 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2522
2523 tce_table_size /= direct_table_size;
2524 tce_table_size <<= 3;
2525 tce_table_size = max_t(unsigned long,
2526 tce_table_size, direct_table_size);
2527 }
2528
2529 return bytes + bytes; /* one for HW table, one for userspace copy */
2530 }
2531
pnv_pci_ioda2_create_table_userspace(struct iommu_table_group * table_group,int num,__u32 page_shift,__u64 window_size,__u32 levels,struct iommu_table ** ptbl)2532 static long pnv_pci_ioda2_create_table_userspace(
2533 struct iommu_table_group *table_group,
2534 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2535 struct iommu_table **ptbl)
2536 {
2537 long ret = pnv_pci_ioda2_create_table(table_group,
2538 num, page_shift, window_size, levels, true, ptbl);
2539
2540 if (!ret)
2541 (*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
2542 page_shift, window_size, levels);
2543 return ret;
2544 }
2545
pnv_ioda2_take_ownership(struct iommu_table_group * table_group)2546 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2547 {
2548 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2549 table_group);
2550 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2551 struct iommu_table *tbl = pe->table_group.tables[0];
2552
2553 pnv_pci_ioda2_set_bypass(pe, false);
2554 pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2555 if (pe->pbus)
2556 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2557 else if (pe->pdev)
2558 set_iommu_table_base(&pe->pdev->dev, NULL);
2559 iommu_tce_table_put(tbl);
2560 }
2561
pnv_ioda2_release_ownership(struct iommu_table_group * table_group)2562 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2563 {
2564 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2565 table_group);
2566
2567 pnv_pci_ioda2_setup_default_config(pe);
2568 if (pe->pbus)
2569 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2570 }
2571
2572 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2573 .get_table_size = pnv_pci_ioda2_get_table_size,
2574 .create_table = pnv_pci_ioda2_create_table_userspace,
2575 .set_window = pnv_pci_ioda2_set_window,
2576 .unset_window = pnv_pci_ioda2_unset_window,
2577 .take_ownership = pnv_ioda2_take_ownership,
2578 .release_ownership = pnv_ioda2_release_ownership,
2579 };
2580
pnv_ioda_setup_bus_iommu_group_add_devices(struct pnv_ioda_pe * pe,struct iommu_table_group * table_group,struct pci_bus * bus)2581 static void pnv_ioda_setup_bus_iommu_group_add_devices(struct pnv_ioda_pe *pe,
2582 struct iommu_table_group *table_group,
2583 struct pci_bus *bus)
2584 {
2585 struct pci_dev *dev;
2586
2587 list_for_each_entry(dev, &bus->devices, bus_list) {
2588 iommu_add_device(table_group, &dev->dev);
2589
2590 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
2591 pnv_ioda_setup_bus_iommu_group_add_devices(pe,
2592 table_group, dev->subordinate);
2593 }
2594 }
2595
pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe * pe,struct iommu_table_group * table_group,struct pci_bus * bus)2596 static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe,
2597 struct iommu_table_group *table_group, struct pci_bus *bus)
2598 {
2599
2600 if (pe->flags & PNV_IODA_PE_DEV)
2601 iommu_add_device(table_group, &pe->pdev->dev);
2602
2603 if ((pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) || bus)
2604 pnv_ioda_setup_bus_iommu_group_add_devices(pe, table_group,
2605 bus);
2606 }
2607
2608 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb);
2609
pnv_pci_ioda_setup_iommu_api(void)2610 static void pnv_pci_ioda_setup_iommu_api(void)
2611 {
2612 struct pci_controller *hose;
2613 struct pnv_phb *phb;
2614 struct pnv_ioda_pe *pe;
2615
2616 /*
2617 * There are 4 types of PEs:
2618 * - PNV_IODA_PE_BUS: a downstream port with an adapter,
2619 * created from pnv_pci_setup_bridge();
2620 * - PNV_IODA_PE_BUS_ALL: a PCI-PCIX bridge with devices behind it,
2621 * created from pnv_pci_setup_bridge();
2622 * - PNV_IODA_PE_VF: a SRIOV virtual function,
2623 * created from pnv_pcibios_sriov_enable();
2624 * - PNV_IODA_PE_DEV: an NPU or OCAPI device,
2625 * created from pnv_pci_ioda_fixup().
2626 *
2627 * Normally a PE is represented by an IOMMU group, however for
2628 * devices with side channels the groups need to be more strict.
2629 */
2630 list_for_each_entry(hose, &hose_list, list_node) {
2631 phb = hose->private_data;
2632
2633 if (phb->type == PNV_PHB_NPU_NVLINK ||
2634 phb->type == PNV_PHB_NPU_OCAPI)
2635 continue;
2636
2637 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2638 struct iommu_table_group *table_group;
2639
2640 table_group = pnv_try_setup_npu_table_group(pe);
2641 if (!table_group) {
2642 if (!pnv_pci_ioda_pe_dma_weight(pe))
2643 continue;
2644
2645 table_group = &pe->table_group;
2646 iommu_register_group(&pe->table_group,
2647 pe->phb->hose->global_number,
2648 pe->pe_number);
2649 }
2650 pnv_ioda_setup_bus_iommu_group(pe, table_group,
2651 pe->pbus);
2652 }
2653 }
2654
2655 /*
2656 * Now we have all PHBs discovered, time to add NPU devices to
2657 * the corresponding IOMMU groups.
2658 */
2659 list_for_each_entry(hose, &hose_list, list_node) {
2660 unsigned long pgsizes;
2661
2662 phb = hose->private_data;
2663
2664 if (phb->type != PNV_PHB_NPU_NVLINK)
2665 continue;
2666
2667 pgsizes = pnv_ioda_parse_tce_sizes(phb);
2668 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2669 /*
2670 * IODA2 bridges get this set up from
2671 * pci_controller_ops::setup_bridge but NPU bridges
2672 * do not have this hook defined so we do it here.
2673 */
2674 pe->table_group.pgsizes = pgsizes;
2675 pnv_npu_compound_attach(pe);
2676 }
2677 }
2678 }
2679 #else /* !CONFIG_IOMMU_API */
pnv_pci_ioda_setup_iommu_api(void)2680 static void pnv_pci_ioda_setup_iommu_api(void) { };
2681 #endif
2682
pnv_ioda_parse_tce_sizes(struct pnv_phb * phb)2683 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb)
2684 {
2685 struct pci_controller *hose = phb->hose;
2686 struct device_node *dn = hose->dn;
2687 unsigned long mask = 0;
2688 int i, rc, count;
2689 u32 val;
2690
2691 count = of_property_count_u32_elems(dn, "ibm,supported-tce-sizes");
2692 if (count <= 0) {
2693 mask = SZ_4K | SZ_64K;
2694 /* Add 16M for POWER8 by default */
2695 if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2696 !cpu_has_feature(CPU_FTR_ARCH_300))
2697 mask |= SZ_16M | SZ_256M;
2698 return mask;
2699 }
2700
2701 for (i = 0; i < count; i++) {
2702 rc = of_property_read_u32_index(dn, "ibm,supported-tce-sizes",
2703 i, &val);
2704 if (rc == 0)
2705 mask |= 1ULL << val;
2706 }
2707
2708 return mask;
2709 }
2710
pnv_pci_ioda2_setup_dma_pe(struct pnv_phb * phb,struct pnv_ioda_pe * pe)2711 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2712 struct pnv_ioda_pe *pe)
2713 {
2714 int64_t rc;
2715
2716 if (!pnv_pci_ioda_pe_dma_weight(pe))
2717 return;
2718
2719 /* TVE #1 is selected by PCI address bit 59 */
2720 pe->tce_bypass_base = 1ull << 59;
2721
2722 /* The PE will reserve all possible 32-bits space */
2723 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2724 phb->ioda.m32_pci_base);
2725
2726 /* Setup linux iommu table */
2727 pe->table_group.tce32_start = 0;
2728 pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2729 pe->table_group.max_dynamic_windows_supported =
2730 IOMMU_TABLE_GROUP_MAX_TABLES;
2731 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2732 pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
2733 #ifdef CONFIG_IOMMU_API
2734 pe->table_group.ops = &pnv_pci_ioda2_ops;
2735 #endif
2736
2737 rc = pnv_pci_ioda2_setup_default_config(pe);
2738 if (rc)
2739 return;
2740
2741 if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2742 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2743 }
2744
pnv_opal_pci_msi_eoi(struct irq_chip * chip,unsigned int hw_irq)2745 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2746 {
2747 struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2748 ioda.irq_chip);
2749
2750 return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2751 }
2752
pnv_ioda2_msi_eoi(struct irq_data * d)2753 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2754 {
2755 int64_t rc;
2756 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2757 struct irq_chip *chip = irq_data_get_irq_chip(d);
2758
2759 rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2760 WARN_ON_ONCE(rc);
2761
2762 icp_native_eoi(d);
2763 }
2764
2765
pnv_set_msi_irq_chip(struct pnv_phb * phb,unsigned int virq)2766 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2767 {
2768 struct irq_data *idata;
2769 struct irq_chip *ichip;
2770
2771 /* The MSI EOI OPAL call is only needed on PHB3 */
2772 if (phb->model != PNV_PHB_MODEL_PHB3)
2773 return;
2774
2775 if (!phb->ioda.irq_chip_init) {
2776 /*
2777 * First time we setup an MSI IRQ, we need to setup the
2778 * corresponding IRQ chip to route correctly.
2779 */
2780 idata = irq_get_irq_data(virq);
2781 ichip = irq_data_get_irq_chip(idata);
2782 phb->ioda.irq_chip_init = 1;
2783 phb->ioda.irq_chip = *ichip;
2784 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2785 }
2786 irq_set_chip(virq, &phb->ioda.irq_chip);
2787 }
2788
2789 /*
2790 * Returns true iff chip is something that we could call
2791 * pnv_opal_pci_msi_eoi for.
2792 */
is_pnv_opal_msi(struct irq_chip * chip)2793 bool is_pnv_opal_msi(struct irq_chip *chip)
2794 {
2795 return chip->irq_eoi == pnv_ioda2_msi_eoi;
2796 }
2797 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2798
pnv_pci_ioda_msi_setup(struct pnv_phb * phb,struct pci_dev * dev,unsigned int hwirq,unsigned int virq,unsigned int is_64,struct msi_msg * msg)2799 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2800 unsigned int hwirq, unsigned int virq,
2801 unsigned int is_64, struct msi_msg *msg)
2802 {
2803 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2804 unsigned int xive_num = hwirq - phb->msi_base;
2805 __be32 data;
2806 int rc;
2807
2808 /* No PE assigned ? bail out ... no MSI for you ! */
2809 if (pe == NULL)
2810 return -ENXIO;
2811
2812 /* Check if we have an MVE */
2813 if (pe->mve_number < 0)
2814 return -ENXIO;
2815
2816 /* Force 32-bit MSI on some broken devices */
2817 if (dev->no_64bit_msi)
2818 is_64 = 0;
2819
2820 /* Assign XIVE to PE */
2821 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2822 if (rc) {
2823 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2824 pci_name(dev), rc, xive_num);
2825 return -EIO;
2826 }
2827
2828 if (is_64) {
2829 __be64 addr64;
2830
2831 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2832 &addr64, &data);
2833 if (rc) {
2834 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2835 pci_name(dev), rc);
2836 return -EIO;
2837 }
2838 msg->address_hi = be64_to_cpu(addr64) >> 32;
2839 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2840 } else {
2841 __be32 addr32;
2842
2843 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2844 &addr32, &data);
2845 if (rc) {
2846 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2847 pci_name(dev), rc);
2848 return -EIO;
2849 }
2850 msg->address_hi = 0;
2851 msg->address_lo = be32_to_cpu(addr32);
2852 }
2853 msg->data = be32_to_cpu(data);
2854
2855 pnv_set_msi_irq_chip(phb, virq);
2856
2857 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2858 " address=%x_%08x data=%x PE# %x\n",
2859 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2860 msg->address_hi, msg->address_lo, data, pe->pe_number);
2861
2862 return 0;
2863 }
2864
pnv_pci_init_ioda_msis(struct pnv_phb * phb)2865 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2866 {
2867 unsigned int count;
2868 const __be32 *prop = of_get_property(phb->hose->dn,
2869 "ibm,opal-msi-ranges", NULL);
2870 if (!prop) {
2871 /* BML Fallback */
2872 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2873 }
2874 if (!prop)
2875 return;
2876
2877 phb->msi_base = be32_to_cpup(prop);
2878 count = be32_to_cpup(prop + 1);
2879 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2880 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2881 phb->hose->global_number);
2882 return;
2883 }
2884
2885 phb->msi_setup = pnv_pci_ioda_msi_setup;
2886 phb->msi32_support = 1;
2887 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2888 count, phb->msi_base);
2889 }
2890
2891 #ifdef CONFIG_PCI_IOV
pnv_pci_ioda_fixup_iov_resources(struct pci_dev * pdev)2892 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2893 {
2894 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2895 struct pnv_phb *phb = hose->private_data;
2896 const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2897 struct resource *res;
2898 int i;
2899 resource_size_t size, total_vf_bar_sz;
2900 struct pci_dn *pdn;
2901 int mul, total_vfs;
2902
2903 pdn = pci_get_pdn(pdev);
2904 pdn->vfs_expanded = 0;
2905 pdn->m64_single_mode = false;
2906
2907 total_vfs = pci_sriov_get_totalvfs(pdev);
2908 mul = phb->ioda.total_pe_num;
2909 total_vf_bar_sz = 0;
2910
2911 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2912 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2913 if (!res->flags || res->parent)
2914 continue;
2915 if (!pnv_pci_is_m64_flags(res->flags)) {
2916 dev_warn(&pdev->dev, "Don't support SR-IOV with"
2917 " non M64 VF BAR%d: %pR. \n",
2918 i, res);
2919 goto truncate_iov;
2920 }
2921
2922 total_vf_bar_sz += pci_iov_resource_size(pdev,
2923 i + PCI_IOV_RESOURCES);
2924
2925 /*
2926 * If bigger than quarter of M64 segment size, just round up
2927 * power of two.
2928 *
2929 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2930 * with other devices, IOV BAR size is expanded to be
2931 * (total_pe * VF_BAR_size). When VF_BAR_size is half of M64
2932 * segment size , the expanded size would equal to half of the
2933 * whole M64 space size, which will exhaust the M64 Space and
2934 * limit the system flexibility. This is a design decision to
2935 * set the boundary to quarter of the M64 segment size.
2936 */
2937 if (total_vf_bar_sz > gate) {
2938 mul = roundup_pow_of_two(total_vfs);
2939 dev_info(&pdev->dev,
2940 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2941 total_vf_bar_sz, gate, mul);
2942 pdn->m64_single_mode = true;
2943 break;
2944 }
2945 }
2946
2947 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2948 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2949 if (!res->flags || res->parent)
2950 continue;
2951
2952 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2953 /*
2954 * On PHB3, the minimum size alignment of M64 BAR in single
2955 * mode is 32MB.
2956 */
2957 if (pdn->m64_single_mode && (size < SZ_32M))
2958 goto truncate_iov;
2959 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2960 res->end = res->start + size * mul - 1;
2961 dev_dbg(&pdev->dev, " %pR\n", res);
2962 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2963 i, res, mul);
2964 }
2965 pdn->vfs_expanded = mul;
2966
2967 return;
2968
2969 truncate_iov:
2970 /* To save MMIO space, IOV BAR is truncated. */
2971 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2972 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2973 res->flags = 0;
2974 res->end = res->start - 1;
2975 }
2976 }
2977
pnv_pci_ioda_fixup_iov(struct pci_dev * pdev)2978 static void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev)
2979 {
2980 if (WARN_ON(pci_dev_is_added(pdev)))
2981 return;
2982
2983 if (pdev->is_virtfn) {
2984 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(pdev);
2985
2986 /*
2987 * VF PEs are single-device PEs so their pdev pointer needs to
2988 * be set. The pdev doesn't exist when the PE is allocated (in
2989 * (pcibios_sriov_enable()) so we fix it up here.
2990 */
2991 pe->pdev = pdev;
2992 WARN_ON(!(pe->flags & PNV_IODA_PE_VF));
2993 } else if (pdev->is_physfn) {
2994 /*
2995 * For PFs adjust their allocated IOV resources to match what
2996 * the PHB can support using it's M64 BAR table.
2997 */
2998 pnv_pci_ioda_fixup_iov_resources(pdev);
2999 }
3000 }
3001 #endif /* CONFIG_PCI_IOV */
3002
pnv_ioda_setup_pe_res(struct pnv_ioda_pe * pe,struct resource * res)3003 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3004 struct resource *res)
3005 {
3006 struct pnv_phb *phb = pe->phb;
3007 struct pci_bus_region region;
3008 int index;
3009 int64_t rc;
3010
3011 if (!res || !res->flags || res->start > res->end ||
3012 res->flags & IORESOURCE_UNSET)
3013 return;
3014
3015 if (res->flags & IORESOURCE_IO) {
3016 region.start = res->start - phb->ioda.io_pci_base;
3017 region.end = res->end - phb->ioda.io_pci_base;
3018 index = region.start / phb->ioda.io_segsize;
3019
3020 while (index < phb->ioda.total_pe_num &&
3021 region.start <= region.end) {
3022 phb->ioda.io_segmap[index] = pe->pe_number;
3023 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3024 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3025 if (rc != OPAL_SUCCESS) {
3026 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3027 __func__, rc, index, pe->pe_number);
3028 break;
3029 }
3030
3031 region.start += phb->ioda.io_segsize;
3032 index++;
3033 }
3034 } else if ((res->flags & IORESOURCE_MEM) &&
3035 !pnv_pci_is_m64(phb, res)) {
3036 region.start = res->start -
3037 phb->hose->mem_offset[0] -
3038 phb->ioda.m32_pci_base;
3039 region.end = res->end -
3040 phb->hose->mem_offset[0] -
3041 phb->ioda.m32_pci_base;
3042 index = region.start / phb->ioda.m32_segsize;
3043
3044 while (index < phb->ioda.total_pe_num &&
3045 region.start <= region.end) {
3046 phb->ioda.m32_segmap[index] = pe->pe_number;
3047 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3048 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3049 if (rc != OPAL_SUCCESS) {
3050 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3051 __func__, rc, index, pe->pe_number);
3052 break;
3053 }
3054
3055 region.start += phb->ioda.m32_segsize;
3056 index++;
3057 }
3058 }
3059 }
3060
3061 /*
3062 * This function is supposed to be called on basis of PE from top
3063 * to bottom style. So the the I/O or MMIO segment assigned to
3064 * parent PE could be overridden by its child PEs if necessary.
3065 */
pnv_ioda_setup_pe_seg(struct pnv_ioda_pe * pe)3066 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3067 {
3068 struct pci_dev *pdev;
3069 int i;
3070
3071 /*
3072 * NOTE: We only care PCI bus based PE for now. For PCI
3073 * device based PE, for example SRIOV sensitive VF should
3074 * be figured out later.
3075 */
3076 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3077
3078 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3079 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3080 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3081
3082 /*
3083 * If the PE contains all subordinate PCI buses, the
3084 * windows of the child bridges should be mapped to
3085 * the PE as well.
3086 */
3087 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3088 continue;
3089 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3090 pnv_ioda_setup_pe_res(pe,
3091 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3092 }
3093 }
3094
3095 #ifdef CONFIG_DEBUG_FS
pnv_pci_diag_data_set(void * data,u64 val)3096 static int pnv_pci_diag_data_set(void *data, u64 val)
3097 {
3098 struct pci_controller *hose;
3099 struct pnv_phb *phb;
3100 s64 ret;
3101
3102 if (val != 1ULL)
3103 return -EINVAL;
3104
3105 hose = (struct pci_controller *)data;
3106 if (!hose || !hose->private_data)
3107 return -ENODEV;
3108
3109 phb = hose->private_data;
3110
3111 /* Retrieve the diag data from firmware */
3112 ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3113 phb->diag_data_size);
3114 if (ret != OPAL_SUCCESS)
3115 return -EIO;
3116
3117 /* Print the diag data to the kernel log */
3118 pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3119 return 0;
3120 }
3121
3122 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3123 pnv_pci_diag_data_set, "%llu\n");
3124
3125 #endif /* CONFIG_DEBUG_FS */
3126
pnv_pci_ioda_create_dbgfs(void)3127 static void pnv_pci_ioda_create_dbgfs(void)
3128 {
3129 #ifdef CONFIG_DEBUG_FS
3130 struct pci_controller *hose, *tmp;
3131 struct pnv_phb *phb;
3132 char name[16];
3133
3134 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3135 phb = hose->private_data;
3136
3137 /* Notify initialization of PHB done */
3138 phb->initialized = 1;
3139
3140 sprintf(name, "PCI%04x", hose->global_number);
3141 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3142 if (!phb->dbgfs) {
3143 pr_warn("%s: Error on creating debugfs on PHB#%x\n",
3144 __func__, hose->global_number);
3145 continue;
3146 }
3147
3148 debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3149 &pnv_pci_diag_data_fops);
3150 }
3151 #endif /* CONFIG_DEBUG_FS */
3152 }
3153
pnv_pci_enable_bridge(struct pci_bus * bus)3154 static void pnv_pci_enable_bridge(struct pci_bus *bus)
3155 {
3156 struct pci_dev *dev = bus->self;
3157 struct pci_bus *child;
3158
3159 /* Empty bus ? bail */
3160 if (list_empty(&bus->devices))
3161 return;
3162
3163 /*
3164 * If there's a bridge associated with that bus enable it. This works
3165 * around races in the generic code if the enabling is done during
3166 * parallel probing. This can be removed once those races have been
3167 * fixed.
3168 */
3169 if (dev) {
3170 int rc = pci_enable_device(dev);
3171 if (rc)
3172 pci_err(dev, "Error enabling bridge (%d)\n", rc);
3173 pci_set_master(dev);
3174 }
3175
3176 /* Perform the same to child busses */
3177 list_for_each_entry(child, &bus->children, node)
3178 pnv_pci_enable_bridge(child);
3179 }
3180
pnv_pci_enable_bridges(void)3181 static void pnv_pci_enable_bridges(void)
3182 {
3183 struct pci_controller *hose;
3184
3185 list_for_each_entry(hose, &hose_list, list_node)
3186 pnv_pci_enable_bridge(hose->bus);
3187 }
3188
pnv_pci_ioda_fixup(void)3189 static void pnv_pci_ioda_fixup(void)
3190 {
3191 pnv_pci_ioda_setup_PEs();
3192 pnv_pci_ioda_setup_iommu_api();
3193 pnv_pci_ioda_create_dbgfs();
3194
3195 pnv_pci_enable_bridges();
3196
3197 #ifdef CONFIG_EEH
3198 pnv_eeh_post_init();
3199 #endif
3200 }
3201
3202 /*
3203 * Returns the alignment for I/O or memory windows for P2P
3204 * bridges. That actually depends on how PEs are segmented.
3205 * For now, we return I/O or M32 segment size for PE sensitive
3206 * P2P bridges. Otherwise, the default values (4KiB for I/O,
3207 * 1MiB for memory) will be returned.
3208 *
3209 * The current PCI bus might be put into one PE, which was
3210 * create against the parent PCI bridge. For that case, we
3211 * needn't enlarge the alignment so that we can save some
3212 * resources.
3213 */
pnv_pci_window_alignment(struct pci_bus * bus,unsigned long type)3214 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3215 unsigned long type)
3216 {
3217 struct pci_dev *bridge;
3218 struct pci_controller *hose = pci_bus_to_host(bus);
3219 struct pnv_phb *phb = hose->private_data;
3220 int num_pci_bridges = 0;
3221
3222 bridge = bus->self;
3223 while (bridge) {
3224 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3225 num_pci_bridges++;
3226 if (num_pci_bridges >= 2)
3227 return 1;
3228 }
3229
3230 bridge = bridge->bus->self;
3231 }
3232
3233 /*
3234 * We fall back to M32 if M64 isn't supported. We enforce the M64
3235 * alignment for any 64-bit resource, PCIe doesn't care and
3236 * bridges only do 64-bit prefetchable anyway.
3237 */
3238 if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3239 return phb->ioda.m64_segsize;
3240 if (type & IORESOURCE_MEM)
3241 return phb->ioda.m32_segsize;
3242
3243 return phb->ioda.io_segsize;
3244 }
3245
3246 /*
3247 * We are updating root port or the upstream port of the
3248 * bridge behind the root port with PHB's windows in order
3249 * to accommodate the changes on required resources during
3250 * PCI (slot) hotplug, which is connected to either root
3251 * port or the downstream ports of PCIe switch behind the
3252 * root port.
3253 */
pnv_pci_fixup_bridge_resources(struct pci_bus * bus,unsigned long type)3254 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3255 unsigned long type)
3256 {
3257 struct pci_controller *hose = pci_bus_to_host(bus);
3258 struct pnv_phb *phb = hose->private_data;
3259 struct pci_dev *bridge = bus->self;
3260 struct resource *r, *w;
3261 bool msi_region = false;
3262 int i;
3263
3264 /* Check if we need apply fixup to the bridge's windows */
3265 if (!pci_is_root_bus(bridge->bus) &&
3266 !pci_is_root_bus(bridge->bus->self->bus))
3267 return;
3268
3269 /* Fixup the resources */
3270 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3271 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3272 if (!r->flags || !r->parent)
3273 continue;
3274
3275 w = NULL;
3276 if (r->flags & type & IORESOURCE_IO)
3277 w = &hose->io_resource;
3278 else if (pnv_pci_is_m64(phb, r) &&
3279 (type & IORESOURCE_PREFETCH) &&
3280 phb->ioda.m64_segsize)
3281 w = &hose->mem_resources[1];
3282 else if (r->flags & type & IORESOURCE_MEM) {
3283 w = &hose->mem_resources[0];
3284 msi_region = true;
3285 }
3286
3287 r->start = w->start;
3288 r->end = w->end;
3289
3290 /* The 64KB 32-bits MSI region shouldn't be included in
3291 * the 32-bits bridge window. Otherwise, we can see strange
3292 * issues. One of them is EEH error observed on Garrison.
3293 *
3294 * Exclude top 1MB region which is the minimal alignment of
3295 * 32-bits bridge window.
3296 */
3297 if (msi_region) {
3298 r->end += 0x10000;
3299 r->end -= 0x100000;
3300 }
3301 }
3302 }
3303
pnv_pci_setup_bridge(struct pci_bus * bus,unsigned long type)3304 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3305 {
3306 struct pci_controller *hose = pci_bus_to_host(bus);
3307 struct pnv_phb *phb = hose->private_data;
3308 struct pci_dev *bridge = bus->self;
3309 struct pnv_ioda_pe *pe;
3310 bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3311
3312 /* Extend bridge's windows if necessary */
3313 pnv_pci_fixup_bridge_resources(bus, type);
3314
3315 /* The PE for root bus should be realized before any one else */
3316 if (!phb->ioda.root_pe_populated) {
3317 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3318 if (pe) {
3319 phb->ioda.root_pe_idx = pe->pe_number;
3320 phb->ioda.root_pe_populated = true;
3321 }
3322 }
3323
3324 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3325 if (list_empty(&bus->devices))
3326 return;
3327
3328 /* Reserve PEs according to used M64 resources */
3329 pnv_ioda_reserve_m64_pe(bus, NULL, all);
3330
3331 /*
3332 * Assign PE. We might run here because of partial hotplug.
3333 * For the case, we just pick up the existing PE and should
3334 * not allocate resources again.
3335 */
3336 pe = pnv_ioda_setup_bus_PE(bus, all);
3337 if (!pe)
3338 return;
3339
3340 pnv_ioda_setup_pe_seg(pe);
3341 switch (phb->type) {
3342 case PNV_PHB_IODA1:
3343 pnv_pci_ioda1_setup_dma_pe(phb, pe);
3344 break;
3345 case PNV_PHB_IODA2:
3346 pnv_pci_ioda2_setup_dma_pe(phb, pe);
3347 break;
3348 default:
3349 pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3350 __func__, phb->hose->global_number, phb->type);
3351 }
3352 }
3353
pnv_pci_default_alignment(void)3354 static resource_size_t pnv_pci_default_alignment(void)
3355 {
3356 return PAGE_SIZE;
3357 }
3358
3359 #ifdef CONFIG_PCI_IOV
pnv_pci_iov_resource_alignment(struct pci_dev * pdev,int resno)3360 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3361 int resno)
3362 {
3363 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3364 struct pnv_phb *phb = hose->private_data;
3365 struct pci_dn *pdn = pci_get_pdn(pdev);
3366 resource_size_t align;
3367
3368 /*
3369 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3370 * SR-IOV. While from hardware perspective, the range mapped by M64
3371 * BAR should be size aligned.
3372 *
3373 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3374 * powernv-specific hardware restriction is gone. But if just use the
3375 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3376 * in one segment of M64 #15, which introduces the PE conflict between
3377 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3378 * m64_segsize.
3379 *
3380 * This function returns the total IOV BAR size if M64 BAR is in
3381 * Shared PE mode or just VF BAR size if not.
3382 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3383 * M64 segment size if IOV BAR size is less.
3384 */
3385 align = pci_iov_resource_size(pdev, resno);
3386 if (!pdn->vfs_expanded)
3387 return align;
3388 if (pdn->m64_single_mode)
3389 return max(align, (resource_size_t)phb->ioda.m64_segsize);
3390
3391 return pdn->vfs_expanded * align;
3392 }
3393 #endif /* CONFIG_PCI_IOV */
3394
3395 /* Prevent enabling devices for which we couldn't properly
3396 * assign a PE
3397 */
pnv_pci_enable_device_hook(struct pci_dev * dev)3398 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3399 {
3400 struct pci_controller *hose = pci_bus_to_host(dev->bus);
3401 struct pnv_phb *phb = hose->private_data;
3402 struct pci_dn *pdn;
3403
3404 /* The function is probably called while the PEs have
3405 * not be created yet. For example, resource reassignment
3406 * during PCI probe period. We just skip the check if
3407 * PEs isn't ready.
3408 */
3409 if (!phb->initialized)
3410 return true;
3411
3412 pdn = pci_get_pdn(dev);
3413 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3414 return false;
3415
3416 return true;
3417 }
3418
pnv_pci_ioda1_unset_window(struct iommu_table_group * table_group,int num)3419 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3420 int num)
3421 {
3422 struct pnv_ioda_pe *pe = container_of(table_group,
3423 struct pnv_ioda_pe, table_group);
3424 struct pnv_phb *phb = pe->phb;
3425 unsigned int idx;
3426 long rc;
3427
3428 pe_info(pe, "Removing DMA window #%d\n", num);
3429 for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3430 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3431 continue;
3432
3433 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3434 idx, 0, 0ul, 0ul, 0ul);
3435 if (rc != OPAL_SUCCESS) {
3436 pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3437 rc, idx);
3438 return rc;
3439 }
3440
3441 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3442 }
3443
3444 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3445 return OPAL_SUCCESS;
3446 }
3447
pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe * pe)3448 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3449 {
3450 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3451 struct iommu_table *tbl = pe->table_group.tables[0];
3452 int64_t rc;
3453
3454 if (!weight)
3455 return;
3456
3457 rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3458 if (rc != OPAL_SUCCESS)
3459 return;
3460
3461 pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3462 if (pe->table_group.group) {
3463 iommu_group_put(pe->table_group.group);
3464 WARN_ON(pe->table_group.group);
3465 }
3466
3467 free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3468 iommu_tce_table_put(tbl);
3469 }
3470
pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe * pe)3471 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3472 {
3473 struct iommu_table *tbl = pe->table_group.tables[0];
3474 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3475 #ifdef CONFIG_IOMMU_API
3476 int64_t rc;
3477 #endif
3478
3479 if (!weight)
3480 return;
3481
3482 #ifdef CONFIG_IOMMU_API
3483 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3484 if (rc)
3485 pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
3486 #endif
3487
3488 pnv_pci_ioda2_set_bypass(pe, false);
3489 if (pe->table_group.group) {
3490 iommu_group_put(pe->table_group.group);
3491 WARN_ON(pe->table_group.group);
3492 }
3493
3494 iommu_tce_table_put(tbl);
3495 }
3496
pnv_ioda_free_pe_seg(struct pnv_ioda_pe * pe,unsigned short win,unsigned int * map)3497 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3498 unsigned short win,
3499 unsigned int *map)
3500 {
3501 struct pnv_phb *phb = pe->phb;
3502 int idx;
3503 int64_t rc;
3504
3505 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3506 if (map[idx] != pe->pe_number)
3507 continue;
3508
3509 if (win == OPAL_M64_WINDOW_TYPE)
3510 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3511 phb->ioda.reserved_pe_idx, win,
3512 idx / PNV_IODA1_M64_SEGS,
3513 idx % PNV_IODA1_M64_SEGS);
3514 else
3515 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3516 phb->ioda.reserved_pe_idx, win, 0, idx);
3517
3518 if (rc != OPAL_SUCCESS)
3519 pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
3520 rc, win, idx);
3521
3522 map[idx] = IODA_INVALID_PE;
3523 }
3524 }
3525
pnv_ioda_release_pe_seg(struct pnv_ioda_pe * pe)3526 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3527 {
3528 struct pnv_phb *phb = pe->phb;
3529
3530 if (phb->type == PNV_PHB_IODA1) {
3531 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3532 phb->ioda.io_segmap);
3533 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3534 phb->ioda.m32_segmap);
3535 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3536 phb->ioda.m64_segmap);
3537 } else if (phb->type == PNV_PHB_IODA2) {
3538 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3539 phb->ioda.m32_segmap);
3540 }
3541 }
3542
pnv_ioda_release_pe(struct pnv_ioda_pe * pe)3543 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3544 {
3545 struct pnv_phb *phb = pe->phb;
3546 struct pnv_ioda_pe *slave, *tmp;
3547
3548 list_del(&pe->list);
3549 switch (phb->type) {
3550 case PNV_PHB_IODA1:
3551 pnv_pci_ioda1_release_pe_dma(pe);
3552 break;
3553 case PNV_PHB_IODA2:
3554 pnv_pci_ioda2_release_pe_dma(pe);
3555 break;
3556 default:
3557 WARN_ON(1);
3558 }
3559
3560 pnv_ioda_release_pe_seg(pe);
3561 pnv_ioda_deconfigure_pe(pe->phb, pe);
3562
3563 /* Release slave PEs in the compound PE */
3564 if (pe->flags & PNV_IODA_PE_MASTER) {
3565 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3566 list_del(&slave->list);
3567 pnv_ioda_free_pe(slave);
3568 }
3569 }
3570
3571 /*
3572 * The PE for root bus can be removed because of hotplug in EEH
3573 * recovery for fenced PHB error. We need to mark the PE dead so
3574 * that it can be populated again in PCI hot add path. The PE
3575 * shouldn't be destroyed as it's the global reserved resource.
3576 */
3577 if (phb->ioda.root_pe_populated &&
3578 phb->ioda.root_pe_idx == pe->pe_number)
3579 phb->ioda.root_pe_populated = false;
3580 else
3581 pnv_ioda_free_pe(pe);
3582 }
3583
pnv_pci_release_device(struct pci_dev * pdev)3584 static void pnv_pci_release_device(struct pci_dev *pdev)
3585 {
3586 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3587 struct pnv_phb *phb = hose->private_data;
3588 struct pci_dn *pdn = pci_get_pdn(pdev);
3589 struct pnv_ioda_pe *pe;
3590
3591 if (pdev->is_virtfn)
3592 return;
3593
3594 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3595 return;
3596
3597 /*
3598 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3599 * isn't removed and added afterwards in this scenario. We should
3600 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3601 * device count is decreased on removing devices while failing to
3602 * be increased on adding devices. It leads to unbalanced PE's device
3603 * count and eventually make normal PCI hotplug path broken.
3604 */
3605 pe = &phb->ioda.pe_array[pdn->pe_number];
3606 pdn->pe_number = IODA_INVALID_PE;
3607
3608 WARN_ON(--pe->device_count < 0);
3609 if (pe->device_count == 0)
3610 pnv_ioda_release_pe(pe);
3611 }
3612
pnv_npu_disable_device(struct pci_dev * pdev)3613 static void pnv_npu_disable_device(struct pci_dev *pdev)
3614 {
3615 struct eeh_dev *edev = pci_dev_to_eeh_dev(pdev);
3616 struct eeh_pe *eehpe = edev ? edev->pe : NULL;
3617
3618 if (eehpe && eeh_ops && eeh_ops->reset)
3619 eeh_ops->reset(eehpe, EEH_RESET_HOT);
3620 }
3621
pnv_pci_ioda_shutdown(struct pci_controller * hose)3622 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3623 {
3624 struct pnv_phb *phb = hose->private_data;
3625
3626 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3627 OPAL_ASSERT_RESET);
3628 }
3629
3630 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3631 .dma_dev_setup = pnv_pci_dma_dev_setup,
3632 .dma_bus_setup = pnv_pci_dma_bus_setup,
3633 .iommu_bypass_supported = pnv_pci_ioda_iommu_bypass_supported,
3634 .setup_msi_irqs = pnv_setup_msi_irqs,
3635 .teardown_msi_irqs = pnv_teardown_msi_irqs,
3636 .enable_device_hook = pnv_pci_enable_device_hook,
3637 .release_device = pnv_pci_release_device,
3638 .window_alignment = pnv_pci_window_alignment,
3639 .setup_bridge = pnv_pci_setup_bridge,
3640 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3641 .shutdown = pnv_pci_ioda_shutdown,
3642 };
3643
3644 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3645 .dma_dev_setup = pnv_pci_dma_dev_setup,
3646 .setup_msi_irqs = pnv_setup_msi_irqs,
3647 .teardown_msi_irqs = pnv_teardown_msi_irqs,
3648 .enable_device_hook = pnv_pci_enable_device_hook,
3649 .window_alignment = pnv_pci_window_alignment,
3650 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3651 .shutdown = pnv_pci_ioda_shutdown,
3652 .disable_device = pnv_npu_disable_device,
3653 };
3654
3655 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
3656 .enable_device_hook = pnv_pci_enable_device_hook,
3657 .window_alignment = pnv_pci_window_alignment,
3658 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3659 .shutdown = pnv_pci_ioda_shutdown,
3660 };
3661
pnv_pci_init_ioda_phb(struct device_node * np,u64 hub_id,int ioda_type)3662 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3663 u64 hub_id, int ioda_type)
3664 {
3665 struct pci_controller *hose;
3666 struct pnv_phb *phb;
3667 unsigned long size, m64map_off, m32map_off, pemap_off;
3668 unsigned long iomap_off = 0, dma32map_off = 0;
3669 struct resource r;
3670 const __be64 *prop64;
3671 const __be32 *prop32;
3672 int len;
3673 unsigned int segno;
3674 u64 phb_id;
3675 void *aux;
3676 long rc;
3677
3678 if (!of_device_is_available(np))
3679 return;
3680
3681 pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np);
3682
3683 prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3684 if (!prop64) {
3685 pr_err(" Missing \"ibm,opal-phbid\" property !\n");
3686 return;
3687 }
3688 phb_id = be64_to_cpup(prop64);
3689 pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
3690
3691 phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES);
3692 if (!phb)
3693 panic("%s: Failed to allocate %zu bytes\n", __func__,
3694 sizeof(*phb));
3695
3696 /* Allocate PCI controller */
3697 phb->hose = hose = pcibios_alloc_controller(np);
3698 if (!phb->hose) {
3699 pr_err(" Can't allocate PCI controller for %pOF\n",
3700 np);
3701 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3702 return;
3703 }
3704
3705 spin_lock_init(&phb->lock);
3706 prop32 = of_get_property(np, "bus-range", &len);
3707 if (prop32 && len == 8) {
3708 hose->first_busno = be32_to_cpu(prop32[0]);
3709 hose->last_busno = be32_to_cpu(prop32[1]);
3710 } else {
3711 pr_warn(" Broken <bus-range> on %pOF\n", np);
3712 hose->first_busno = 0;
3713 hose->last_busno = 0xff;
3714 }
3715 hose->private_data = phb;
3716 phb->hub_id = hub_id;
3717 phb->opal_id = phb_id;
3718 phb->type = ioda_type;
3719 mutex_init(&phb->ioda.pe_alloc_mutex);
3720
3721 /* Detect specific models for error handling */
3722 if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3723 phb->model = PNV_PHB_MODEL_P7IOC;
3724 else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3725 phb->model = PNV_PHB_MODEL_PHB3;
3726 else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3727 phb->model = PNV_PHB_MODEL_NPU;
3728 else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3729 phb->model = PNV_PHB_MODEL_NPU2;
3730 else
3731 phb->model = PNV_PHB_MODEL_UNKNOWN;
3732
3733 /* Initialize diagnostic data buffer */
3734 prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3735 if (prop32)
3736 phb->diag_data_size = be32_to_cpup(prop32);
3737 else
3738 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3739
3740 phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES);
3741 if (!phb->diag_data)
3742 panic("%s: Failed to allocate %u bytes\n", __func__,
3743 phb->diag_data_size);
3744
3745 /* Parse 32-bit and IO ranges (if any) */
3746 pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3747
3748 /* Get registers */
3749 if (!of_address_to_resource(np, 0, &r)) {
3750 phb->regs_phys = r.start;
3751 phb->regs = ioremap(r.start, resource_size(&r));
3752 if (phb->regs == NULL)
3753 pr_err(" Failed to map registers !\n");
3754 }
3755
3756 /* Initialize more IODA stuff */
3757 phb->ioda.total_pe_num = 1;
3758 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3759 if (prop32)
3760 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3761 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3762 if (prop32)
3763 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3764
3765 /* Invalidate RID to PE# mapping */
3766 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3767 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3768
3769 /* Parse 64-bit MMIO range */
3770 pnv_ioda_parse_m64_window(phb);
3771
3772 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3773 /* FW Has already off top 64k of M32 space (MSI space) */
3774 phb->ioda.m32_size += 0x10000;
3775
3776 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3777 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3778 phb->ioda.io_size = hose->pci_io_size;
3779 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3780 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3781
3782 /* Calculate how many 32-bit TCE segments we have */
3783 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3784 PNV_IODA1_DMA32_SEGSIZE;
3785
3786 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3787 size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3788 sizeof(unsigned long));
3789 m64map_off = size;
3790 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3791 m32map_off = size;
3792 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3793 if (phb->type == PNV_PHB_IODA1) {
3794 iomap_off = size;
3795 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3796 dma32map_off = size;
3797 size += phb->ioda.dma32_count *
3798 sizeof(phb->ioda.dma32_segmap[0]);
3799 }
3800 pemap_off = size;
3801 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3802 aux = memblock_alloc(size, SMP_CACHE_BYTES);
3803 if (!aux)
3804 panic("%s: Failed to allocate %lu bytes\n", __func__, size);
3805 phb->ioda.pe_alloc = aux;
3806 phb->ioda.m64_segmap = aux + m64map_off;
3807 phb->ioda.m32_segmap = aux + m32map_off;
3808 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3809 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3810 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3811 }
3812 if (phb->type == PNV_PHB_IODA1) {
3813 phb->ioda.io_segmap = aux + iomap_off;
3814 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3815 phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3816
3817 phb->ioda.dma32_segmap = aux + dma32map_off;
3818 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3819 phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3820 }
3821 phb->ioda.pe_array = aux + pemap_off;
3822
3823 /*
3824 * Choose PE number for root bus, which shouldn't have
3825 * M64 resources consumed by its child devices. To pick
3826 * the PE number adjacent to the reserved one if possible.
3827 */
3828 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3829 if (phb->ioda.reserved_pe_idx == 0) {
3830 phb->ioda.root_pe_idx = 1;
3831 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3832 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3833 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3834 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3835 } else {
3836 phb->ioda.root_pe_idx = IODA_INVALID_PE;
3837 }
3838
3839 INIT_LIST_HEAD(&phb->ioda.pe_list);
3840 mutex_init(&phb->ioda.pe_list_mutex);
3841
3842 /* Calculate how many 32-bit TCE segments we have */
3843 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3844 PNV_IODA1_DMA32_SEGSIZE;
3845
3846 #if 0 /* We should really do that ... */
3847 rc = opal_pci_set_phb_mem_window(opal->phb_id,
3848 window_type,
3849 window_num,
3850 starting_real_address,
3851 starting_pci_address,
3852 segment_size);
3853 #endif
3854
3855 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3856 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3857 phb->ioda.m32_size, phb->ioda.m32_segsize);
3858 if (phb->ioda.m64_size)
3859 pr_info(" M64: 0x%lx [segment=0x%lx]\n",
3860 phb->ioda.m64_size, phb->ioda.m64_segsize);
3861 if (phb->ioda.io_size)
3862 pr_info(" IO: 0x%x [segment=0x%x]\n",
3863 phb->ioda.io_size, phb->ioda.io_segsize);
3864
3865
3866 phb->hose->ops = &pnv_pci_ops;
3867 phb->get_pe_state = pnv_ioda_get_pe_state;
3868 phb->freeze_pe = pnv_ioda_freeze_pe;
3869 phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3870
3871 /* Setup MSI support */
3872 pnv_pci_init_ioda_msis(phb);
3873
3874 /*
3875 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3876 * to let the PCI core do resource assignment. It's supposed
3877 * that the PCI core will do correct I/O and MMIO alignment
3878 * for the P2P bridge bars so that each PCI bus (excluding
3879 * the child P2P bridges) can form individual PE.
3880 */
3881 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3882
3883 switch (phb->type) {
3884 case PNV_PHB_NPU_NVLINK:
3885 hose->controller_ops = pnv_npu_ioda_controller_ops;
3886 break;
3887 case PNV_PHB_NPU_OCAPI:
3888 hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3889 break;
3890 default:
3891 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3892 hose->controller_ops = pnv_pci_ioda_controller_ops;
3893 }
3894
3895 ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3896
3897 #ifdef CONFIG_PCI_IOV
3898 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov;
3899 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3900 ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3901 ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3902 #endif
3903
3904 pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3905
3906 /* Reset IODA tables to a clean state */
3907 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3908 if (rc)
3909 pr_warn(" OPAL Error %ld performing IODA table reset !\n", rc);
3910
3911 /*
3912 * If we're running in kdump kernel, the previous kernel never
3913 * shutdown PCI devices correctly. We already got IODA table
3914 * cleaned out. So we have to issue PHB reset to stop all PCI
3915 * transactions from previous kernel. The ppc_pci_reset_phbs
3916 * kernel parameter will force this reset too. Additionally,
3917 * if the IODA reset above failed then use a bigger hammer.
3918 * This can happen if we get a PHB fatal error in very early
3919 * boot.
3920 */
3921 if (is_kdump_kernel() || pci_reset_phbs || rc) {
3922 pr_info(" Issue PHB reset ...\n");
3923 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3924 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3925 }
3926
3927 /* Remove M64 resource if we can't configure it successfully */
3928 if (!phb->init_m64 || phb->init_m64(phb))
3929 hose->mem_resources[1].flags = 0;
3930 }
3931
pnv_pci_init_ioda2_phb(struct device_node * np)3932 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3933 {
3934 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3935 }
3936
pnv_pci_init_npu_phb(struct device_node * np)3937 void __init pnv_pci_init_npu_phb(struct device_node *np)
3938 {
3939 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
3940 }
3941
pnv_pci_init_npu2_opencapi_phb(struct device_node * np)3942 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
3943 {
3944 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
3945 }
3946
pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev * dev)3947 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
3948 {
3949 struct pci_controller *hose = pci_bus_to_host(dev->bus);
3950 struct pnv_phb *phb = hose->private_data;
3951
3952 if (!machine_is(powernv))
3953 return;
3954
3955 if (phb->type == PNV_PHB_NPU_OCAPI)
3956 dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
3957 }
3958 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
3959
pnv_pci_init_ioda_hub(struct device_node * np)3960 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3961 {
3962 struct device_node *phbn;
3963 const __be64 *prop64;
3964 u64 hub_id;
3965
3966 pr_info("Probing IODA IO-Hub %pOF\n", np);
3967
3968 prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3969 if (!prop64) {
3970 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3971 return;
3972 }
3973 hub_id = be64_to_cpup(prop64);
3974 pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3975
3976 /* Count child PHBs */
3977 for_each_child_of_node(np, phbn) {
3978 /* Look for IODA1 PHBs */
3979 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3980 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3981 }
3982 }
3983