1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 *
5 * This file contains the interface functions for the various time related
6 * system calls: time, stime, gettimeofday, settimeofday, adjtime
7 *
8 * Modification history:
9 *
10 * 1993-09-02 Philip Gladstone
11 * Created file with time related functions from sched/core.c and adjtimex()
12 * 1993-10-08 Torsten Duwe
13 * adjtime interface update and CMOS clock write code
14 * 1995-08-13 Torsten Duwe
15 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
16 * 1999-01-16 Ulrich Windl
17 * Introduced error checking for many cases in adjtimex().
18 * Updated NTP code according to technical memorandum Jan '96
19 * "A Kernel Model for Precision Timekeeping" by Dave Mills
20 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
21 * (Even though the technical memorandum forbids it)
22 * 2004-07-14 Christoph Lameter
23 * Added getnstimeofday to allow the posix timer functions to return
24 * with nanosecond accuracy
25 */
26
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/timex.h>
30 #include <linux/capability.h>
31 #include <linux/timekeeper_internal.h>
32 #include <linux/errno.h>
33 #include <linux/syscalls.h>
34 #include <linux/security.h>
35 #include <linux/fs.h>
36 #include <linux/math64.h>
37 #include <linux/ptrace.h>
38
39 #include <linux/uaccess.h>
40 #include <linux/compat.h>
41 #include <asm/unistd.h>
42
43 #include <generated/timeconst.h>
44 #include "timekeeping.h"
45
46 /*
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
49 */
50 struct timezone sys_tz;
51
52 EXPORT_SYMBOL(sys_tz);
53
54 #ifdef __ARCH_WANT_SYS_TIME
55
56 /*
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
61 */
SYSCALL_DEFINE1(time,time_t __user *,tloc)62 SYSCALL_DEFINE1(time, time_t __user *, tloc)
63 {
64 time_t i = (time_t)ktime_get_real_seconds();
65
66 if (tloc) {
67 if (put_user(i,tloc))
68 return -EFAULT;
69 }
70 force_successful_syscall_return();
71 return i;
72 }
73
74 /*
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
79 */
80
SYSCALL_DEFINE1(stime,time_t __user *,tptr)81 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
82 {
83 struct timespec64 tv;
84 int err;
85
86 if (get_user(tv.tv_sec, tptr))
87 return -EFAULT;
88
89 tv.tv_nsec = 0;
90
91 err = security_settime64(&tv, NULL);
92 if (err)
93 return err;
94
95 do_settimeofday64(&tv);
96 return 0;
97 }
98
99 #endif /* __ARCH_WANT_SYS_TIME */
100
101 #ifdef CONFIG_COMPAT_32BIT_TIME
102 #ifdef __ARCH_WANT_SYS_TIME32
103
104 /* old_time32_t is a 32 bit "long" and needs to get converted. */
SYSCALL_DEFINE1(time32,old_time32_t __user *,tloc)105 SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
106 {
107 old_time32_t i;
108
109 i = (old_time32_t)ktime_get_real_seconds();
110
111 if (tloc) {
112 if (put_user(i,tloc))
113 return -EFAULT;
114 }
115 force_successful_syscall_return();
116 return i;
117 }
118
SYSCALL_DEFINE1(stime32,old_time32_t __user *,tptr)119 SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
120 {
121 struct timespec64 tv;
122 int err;
123
124 if (get_user(tv.tv_sec, tptr))
125 return -EFAULT;
126
127 tv.tv_nsec = 0;
128
129 err = security_settime64(&tv, NULL);
130 if (err)
131 return err;
132
133 do_settimeofday64(&tv);
134 return 0;
135 }
136
137 #endif /* __ARCH_WANT_SYS_TIME32 */
138 #endif
139
SYSCALL_DEFINE2(gettimeofday,struct timeval __user *,tv,struct timezone __user *,tz)140 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
141 struct timezone __user *, tz)
142 {
143 if (likely(tv != NULL)) {
144 struct timespec64 ts;
145
146 ktime_get_real_ts64(&ts);
147 if (put_user(ts.tv_sec, &tv->tv_sec) ||
148 put_user(ts.tv_nsec / 1000, &tv->tv_usec))
149 return -EFAULT;
150 }
151 if (unlikely(tz != NULL)) {
152 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
153 return -EFAULT;
154 }
155 return 0;
156 }
157
158 /*
159 * In case for some reason the CMOS clock has not already been running
160 * in UTC, but in some local time: The first time we set the timezone,
161 * we will warp the clock so that it is ticking UTC time instead of
162 * local time. Presumably, if someone is setting the timezone then we
163 * are running in an environment where the programs understand about
164 * timezones. This should be done at boot time in the /etc/rc script,
165 * as soon as possible, so that the clock can be set right. Otherwise,
166 * various programs will get confused when the clock gets warped.
167 */
168
do_sys_settimeofday64(const struct timespec64 * tv,const struct timezone * tz)169 int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
170 {
171 static int firsttime = 1;
172 int error = 0;
173
174 if (tv && !timespec64_valid_settod(tv))
175 return -EINVAL;
176
177 error = security_settime64(tv, tz);
178 if (error)
179 return error;
180
181 if (tz) {
182 /* Verify we're witin the +-15 hrs range */
183 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
184 return -EINVAL;
185
186 sys_tz = *tz;
187 update_vsyscall_tz();
188 if (firsttime) {
189 firsttime = 0;
190 if (!tv)
191 timekeeping_warp_clock();
192 }
193 }
194 if (tv)
195 return do_settimeofday64(tv);
196 return 0;
197 }
198
SYSCALL_DEFINE2(settimeofday,struct timeval __user *,tv,struct timezone __user *,tz)199 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
200 struct timezone __user *, tz)
201 {
202 struct timespec64 new_ts;
203 struct timeval user_tv;
204 struct timezone new_tz;
205
206 if (tv) {
207 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
208 return -EFAULT;
209
210 if (!timeval_valid(&user_tv))
211 return -EINVAL;
212
213 new_ts.tv_sec = user_tv.tv_sec;
214 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
215 }
216 if (tz) {
217 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
218 return -EFAULT;
219 }
220
221 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
222 }
223
224 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(gettimeofday,struct old_timeval32 __user *,tv,struct timezone __user *,tz)225 COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
226 struct timezone __user *, tz)
227 {
228 if (tv) {
229 struct timespec64 ts;
230
231 ktime_get_real_ts64(&ts);
232 if (put_user(ts.tv_sec, &tv->tv_sec) ||
233 put_user(ts.tv_nsec / 1000, &tv->tv_usec))
234 return -EFAULT;
235 }
236 if (tz) {
237 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
238 return -EFAULT;
239 }
240
241 return 0;
242 }
243
COMPAT_SYSCALL_DEFINE2(settimeofday,struct old_timeval32 __user *,tv,struct timezone __user *,tz)244 COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
245 struct timezone __user *, tz)
246 {
247 struct timespec64 new_ts;
248 struct timeval user_tv;
249 struct timezone new_tz;
250
251 if (tv) {
252 if (compat_get_timeval(&user_tv, tv))
253 return -EFAULT;
254
255 if (!timeval_valid(&user_tv))
256 return -EINVAL;
257
258 new_ts.tv_sec = user_tv.tv_sec;
259 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
260 }
261 if (tz) {
262 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
263 return -EFAULT;
264 }
265
266 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
267 }
268 #endif
269
270 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
SYSCALL_DEFINE1(adjtimex,struct __kernel_timex __user *,txc_p)271 SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
272 {
273 struct __kernel_timex txc; /* Local copy of parameter */
274 int ret;
275
276 /* Copy the user data space into the kernel copy
277 * structure. But bear in mind that the structures
278 * may change
279 */
280 if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
281 return -EFAULT;
282 ret = do_adjtimex(&txc);
283 return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
284 }
285 #endif
286
287 #ifdef CONFIG_COMPAT_32BIT_TIME
get_old_timex32(struct __kernel_timex * txc,const struct old_timex32 __user * utp)288 int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
289 {
290 struct old_timex32 tx32;
291
292 memset(txc, 0, sizeof(struct __kernel_timex));
293 if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
294 return -EFAULT;
295
296 txc->modes = tx32.modes;
297 txc->offset = tx32.offset;
298 txc->freq = tx32.freq;
299 txc->maxerror = tx32.maxerror;
300 txc->esterror = tx32.esterror;
301 txc->status = tx32.status;
302 txc->constant = tx32.constant;
303 txc->precision = tx32.precision;
304 txc->tolerance = tx32.tolerance;
305 txc->time.tv_sec = tx32.time.tv_sec;
306 txc->time.tv_usec = tx32.time.tv_usec;
307 txc->tick = tx32.tick;
308 txc->ppsfreq = tx32.ppsfreq;
309 txc->jitter = tx32.jitter;
310 txc->shift = tx32.shift;
311 txc->stabil = tx32.stabil;
312 txc->jitcnt = tx32.jitcnt;
313 txc->calcnt = tx32.calcnt;
314 txc->errcnt = tx32.errcnt;
315 txc->stbcnt = tx32.stbcnt;
316
317 return 0;
318 }
319
put_old_timex32(struct old_timex32 __user * utp,const struct __kernel_timex * txc)320 int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
321 {
322 struct old_timex32 tx32;
323
324 memset(&tx32, 0, sizeof(struct old_timex32));
325 tx32.modes = txc->modes;
326 tx32.offset = txc->offset;
327 tx32.freq = txc->freq;
328 tx32.maxerror = txc->maxerror;
329 tx32.esterror = txc->esterror;
330 tx32.status = txc->status;
331 tx32.constant = txc->constant;
332 tx32.precision = txc->precision;
333 tx32.tolerance = txc->tolerance;
334 tx32.time.tv_sec = txc->time.tv_sec;
335 tx32.time.tv_usec = txc->time.tv_usec;
336 tx32.tick = txc->tick;
337 tx32.ppsfreq = txc->ppsfreq;
338 tx32.jitter = txc->jitter;
339 tx32.shift = txc->shift;
340 tx32.stabil = txc->stabil;
341 tx32.jitcnt = txc->jitcnt;
342 tx32.calcnt = txc->calcnt;
343 tx32.errcnt = txc->errcnt;
344 tx32.stbcnt = txc->stbcnt;
345 tx32.tai = txc->tai;
346 if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
347 return -EFAULT;
348 return 0;
349 }
350
SYSCALL_DEFINE1(adjtimex_time32,struct old_timex32 __user *,utp)351 SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
352 {
353 struct __kernel_timex txc;
354 int err, ret;
355
356 err = get_old_timex32(&txc, utp);
357 if (err)
358 return err;
359
360 ret = do_adjtimex(&txc);
361
362 err = put_old_timex32(utp, &txc);
363 if (err)
364 return err;
365
366 return ret;
367 }
368 #endif
369
370 /*
371 * Convert jiffies to milliseconds and back.
372 *
373 * Avoid unnecessary multiplications/divisions in the
374 * two most common HZ cases:
375 */
jiffies_to_msecs(const unsigned long j)376 unsigned int jiffies_to_msecs(const unsigned long j)
377 {
378 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
379 return (MSEC_PER_SEC / HZ) * j;
380 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
381 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
382 #else
383 # if BITS_PER_LONG == 32
384 return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
385 HZ_TO_MSEC_SHR32;
386 # else
387 return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
388 # endif
389 #endif
390 }
391 EXPORT_SYMBOL(jiffies_to_msecs);
392
jiffies_to_usecs(const unsigned long j)393 unsigned int jiffies_to_usecs(const unsigned long j)
394 {
395 /*
396 * Hz usually doesn't go much further MSEC_PER_SEC.
397 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
398 */
399 BUILD_BUG_ON(HZ > USEC_PER_SEC);
400
401 #if !(USEC_PER_SEC % HZ)
402 return (USEC_PER_SEC / HZ) * j;
403 #else
404 # if BITS_PER_LONG == 32
405 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
406 # else
407 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
408 # endif
409 #endif
410 }
411 EXPORT_SYMBOL(jiffies_to_usecs);
412
413 /*
414 * mktime64 - Converts date to seconds.
415 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
416 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
417 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
418 *
419 * [For the Julian calendar (which was used in Russia before 1917,
420 * Britain & colonies before 1752, anywhere else before 1582,
421 * and is still in use by some communities) leave out the
422 * -year/100+year/400 terms, and add 10.]
423 *
424 * This algorithm was first published by Gauss (I think).
425 *
426 * A leap second can be indicated by calling this function with sec as
427 * 60 (allowable under ISO 8601). The leap second is treated the same
428 * as the following second since they don't exist in UNIX time.
429 *
430 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
431 * tomorrow - (allowable under ISO 8601) is supported.
432 */
mktime64(const unsigned int year0,const unsigned int mon0,const unsigned int day,const unsigned int hour,const unsigned int min,const unsigned int sec)433 time64_t mktime64(const unsigned int year0, const unsigned int mon0,
434 const unsigned int day, const unsigned int hour,
435 const unsigned int min, const unsigned int sec)
436 {
437 unsigned int mon = mon0, year = year0;
438
439 /* 1..12 -> 11,12,1..10 */
440 if (0 >= (int) (mon -= 2)) {
441 mon += 12; /* Puts Feb last since it has leap day */
442 year -= 1;
443 }
444
445 return ((((time64_t)
446 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
447 year*365 - 719499
448 )*24 + hour /* now have hours - midnight tomorrow handled here */
449 )*60 + min /* now have minutes */
450 )*60 + sec; /* finally seconds */
451 }
452 EXPORT_SYMBOL(mktime64);
453
454 /**
455 * ns_to_timespec - Convert nanoseconds to timespec
456 * @nsec: the nanoseconds value to be converted
457 *
458 * Returns the timespec representation of the nsec parameter.
459 */
ns_to_timespec(const s64 nsec)460 struct timespec ns_to_timespec(const s64 nsec)
461 {
462 struct timespec ts;
463 s32 rem;
464
465 if (!nsec)
466 return (struct timespec) {0, 0};
467
468 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
469 if (unlikely(rem < 0)) {
470 ts.tv_sec--;
471 rem += NSEC_PER_SEC;
472 }
473 ts.tv_nsec = rem;
474
475 return ts;
476 }
477 EXPORT_SYMBOL(ns_to_timespec);
478
479 /**
480 * ns_to_timeval - Convert nanoseconds to timeval
481 * @nsec: the nanoseconds value to be converted
482 *
483 * Returns the timeval representation of the nsec parameter.
484 */
ns_to_timeval(const s64 nsec)485 struct timeval ns_to_timeval(const s64 nsec)
486 {
487 struct timespec ts = ns_to_timespec(nsec);
488 struct timeval tv;
489
490 tv.tv_sec = ts.tv_sec;
491 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
492
493 return tv;
494 }
495 EXPORT_SYMBOL(ns_to_timeval);
496
ns_to_kernel_old_timeval(const s64 nsec)497 struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
498 {
499 struct timespec64 ts = ns_to_timespec64(nsec);
500 struct __kernel_old_timeval tv;
501
502 tv.tv_sec = ts.tv_sec;
503 tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
504
505 return tv;
506 }
507 EXPORT_SYMBOL(ns_to_kernel_old_timeval);
508
509 /**
510 * set_normalized_timespec - set timespec sec and nsec parts and normalize
511 *
512 * @ts: pointer to timespec variable to be set
513 * @sec: seconds to set
514 * @nsec: nanoseconds to set
515 *
516 * Set seconds and nanoseconds field of a timespec variable and
517 * normalize to the timespec storage format
518 *
519 * Note: The tv_nsec part is always in the range of
520 * 0 <= tv_nsec < NSEC_PER_SEC
521 * For negative values only the tv_sec field is negative !
522 */
set_normalized_timespec64(struct timespec64 * ts,time64_t sec,s64 nsec)523 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
524 {
525 while (nsec >= NSEC_PER_SEC) {
526 /*
527 * The following asm() prevents the compiler from
528 * optimising this loop into a modulo operation. See
529 * also __iter_div_u64_rem() in include/linux/time.h
530 */
531 asm("" : "+rm"(nsec));
532 nsec -= NSEC_PER_SEC;
533 ++sec;
534 }
535 while (nsec < 0) {
536 asm("" : "+rm"(nsec));
537 nsec += NSEC_PER_SEC;
538 --sec;
539 }
540 ts->tv_sec = sec;
541 ts->tv_nsec = nsec;
542 }
543 EXPORT_SYMBOL(set_normalized_timespec64);
544
545 /**
546 * ns_to_timespec64 - Convert nanoseconds to timespec64
547 * @nsec: the nanoseconds value to be converted
548 *
549 * Returns the timespec64 representation of the nsec parameter.
550 */
ns_to_timespec64(const s64 nsec)551 struct timespec64 ns_to_timespec64(const s64 nsec)
552 {
553 struct timespec64 ts;
554 s32 rem;
555
556 if (!nsec)
557 return (struct timespec64) {0, 0};
558
559 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
560 if (unlikely(rem < 0)) {
561 ts.tv_sec--;
562 rem += NSEC_PER_SEC;
563 }
564 ts.tv_nsec = rem;
565
566 return ts;
567 }
568 EXPORT_SYMBOL(ns_to_timespec64);
569
570 /**
571 * msecs_to_jiffies: - convert milliseconds to jiffies
572 * @m: time in milliseconds
573 *
574 * conversion is done as follows:
575 *
576 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
577 *
578 * - 'too large' values [that would result in larger than
579 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
580 *
581 * - all other values are converted to jiffies by either multiplying
582 * the input value by a factor or dividing it with a factor and
583 * handling any 32-bit overflows.
584 * for the details see __msecs_to_jiffies()
585 *
586 * msecs_to_jiffies() checks for the passed in value being a constant
587 * via __builtin_constant_p() allowing gcc to eliminate most of the
588 * code, __msecs_to_jiffies() is called if the value passed does not
589 * allow constant folding and the actual conversion must be done at
590 * runtime.
591 * the _msecs_to_jiffies helpers are the HZ dependent conversion
592 * routines found in include/linux/jiffies.h
593 */
__msecs_to_jiffies(const unsigned int m)594 unsigned long __msecs_to_jiffies(const unsigned int m)
595 {
596 /*
597 * Negative value, means infinite timeout:
598 */
599 if ((int)m < 0)
600 return MAX_JIFFY_OFFSET;
601 return _msecs_to_jiffies(m);
602 }
603 EXPORT_SYMBOL(__msecs_to_jiffies);
604
__usecs_to_jiffies(const unsigned int u)605 unsigned long __usecs_to_jiffies(const unsigned int u)
606 {
607 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
608 return MAX_JIFFY_OFFSET;
609 return _usecs_to_jiffies(u);
610 }
611 EXPORT_SYMBOL(__usecs_to_jiffies);
612
613 /*
614 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
615 * that a remainder subtract here would not do the right thing as the
616 * resolution values don't fall on second boundries. I.e. the line:
617 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
618 * Note that due to the small error in the multiplier here, this
619 * rounding is incorrect for sufficiently large values of tv_nsec, but
620 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
621 * OK.
622 *
623 * Rather, we just shift the bits off the right.
624 *
625 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
626 * value to a scaled second value.
627 */
628 static unsigned long
__timespec64_to_jiffies(u64 sec,long nsec)629 __timespec64_to_jiffies(u64 sec, long nsec)
630 {
631 nsec = nsec + TICK_NSEC - 1;
632
633 if (sec >= MAX_SEC_IN_JIFFIES){
634 sec = MAX_SEC_IN_JIFFIES;
635 nsec = 0;
636 }
637 return ((sec * SEC_CONVERSION) +
638 (((u64)nsec * NSEC_CONVERSION) >>
639 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
640
641 }
642
643 static unsigned long
__timespec_to_jiffies(unsigned long sec,long nsec)644 __timespec_to_jiffies(unsigned long sec, long nsec)
645 {
646 return __timespec64_to_jiffies((u64)sec, nsec);
647 }
648
649 unsigned long
timespec64_to_jiffies(const struct timespec64 * value)650 timespec64_to_jiffies(const struct timespec64 *value)
651 {
652 return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
653 }
654 EXPORT_SYMBOL(timespec64_to_jiffies);
655
656 void
jiffies_to_timespec64(const unsigned long jiffies,struct timespec64 * value)657 jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
658 {
659 /*
660 * Convert jiffies to nanoseconds and separate with
661 * one divide.
662 */
663 u32 rem;
664 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
665 NSEC_PER_SEC, &rem);
666 value->tv_nsec = rem;
667 }
668 EXPORT_SYMBOL(jiffies_to_timespec64);
669
670 /*
671 * We could use a similar algorithm to timespec_to_jiffies (with a
672 * different multiplier for usec instead of nsec). But this has a
673 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
674 * usec value, since it's not necessarily integral.
675 *
676 * We could instead round in the intermediate scaled representation
677 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
678 * perilous: the scaling introduces a small positive error, which
679 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
680 * units to the intermediate before shifting) leads to accidental
681 * overflow and overestimates.
682 *
683 * At the cost of one additional multiplication by a constant, just
684 * use the timespec implementation.
685 */
686 unsigned long
timeval_to_jiffies(const struct timeval * value)687 timeval_to_jiffies(const struct timeval *value)
688 {
689 return __timespec_to_jiffies(value->tv_sec,
690 value->tv_usec * NSEC_PER_USEC);
691 }
692 EXPORT_SYMBOL(timeval_to_jiffies);
693
jiffies_to_timeval(const unsigned long jiffies,struct timeval * value)694 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
695 {
696 /*
697 * Convert jiffies to nanoseconds and separate with
698 * one divide.
699 */
700 u32 rem;
701
702 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
703 NSEC_PER_SEC, &rem);
704 value->tv_usec = rem / NSEC_PER_USEC;
705 }
706 EXPORT_SYMBOL(jiffies_to_timeval);
707
708 /*
709 * Convert jiffies/jiffies_64 to clock_t and back.
710 */
jiffies_to_clock_t(unsigned long x)711 clock_t jiffies_to_clock_t(unsigned long x)
712 {
713 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
714 # if HZ < USER_HZ
715 return x * (USER_HZ / HZ);
716 # else
717 return x / (HZ / USER_HZ);
718 # endif
719 #else
720 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
721 #endif
722 }
723 EXPORT_SYMBOL(jiffies_to_clock_t);
724
clock_t_to_jiffies(unsigned long x)725 unsigned long clock_t_to_jiffies(unsigned long x)
726 {
727 #if (HZ % USER_HZ)==0
728 if (x >= ~0UL / (HZ / USER_HZ))
729 return ~0UL;
730 return x * (HZ / USER_HZ);
731 #else
732 /* Don't worry about loss of precision here .. */
733 if (x >= ~0UL / HZ * USER_HZ)
734 return ~0UL;
735
736 /* .. but do try to contain it here */
737 return div_u64((u64)x * HZ, USER_HZ);
738 #endif
739 }
740 EXPORT_SYMBOL(clock_t_to_jiffies);
741
jiffies_64_to_clock_t(u64 x)742 u64 jiffies_64_to_clock_t(u64 x)
743 {
744 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
745 # if HZ < USER_HZ
746 x = div_u64(x * USER_HZ, HZ);
747 # elif HZ > USER_HZ
748 x = div_u64(x, HZ / USER_HZ);
749 # else
750 /* Nothing to do */
751 # endif
752 #else
753 /*
754 * There are better ways that don't overflow early,
755 * but even this doesn't overflow in hundreds of years
756 * in 64 bits, so..
757 */
758 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
759 #endif
760 return x;
761 }
762 EXPORT_SYMBOL(jiffies_64_to_clock_t);
763
nsec_to_clock_t(u64 x)764 u64 nsec_to_clock_t(u64 x)
765 {
766 #if (NSEC_PER_SEC % USER_HZ) == 0
767 return div_u64(x, NSEC_PER_SEC / USER_HZ);
768 #elif (USER_HZ % 512) == 0
769 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
770 #else
771 /*
772 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
773 * overflow after 64.99 years.
774 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
775 */
776 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
777 #endif
778 }
779 EXPORT_SYMBOL_GPL(nsec_to_clock_t);
780
jiffies64_to_nsecs(u64 j)781 u64 jiffies64_to_nsecs(u64 j)
782 {
783 #if !(NSEC_PER_SEC % HZ)
784 return (NSEC_PER_SEC / HZ) * j;
785 # else
786 return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
787 #endif
788 }
789 EXPORT_SYMBOL(jiffies64_to_nsecs);
790
jiffies64_to_msecs(const u64 j)791 u64 jiffies64_to_msecs(const u64 j)
792 {
793 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
794 return (MSEC_PER_SEC / HZ) * j;
795 #else
796 return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
797 #endif
798 }
799 EXPORT_SYMBOL(jiffies64_to_msecs);
800
801 /**
802 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
803 *
804 * @n: nsecs in u64
805 *
806 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
807 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
808 * for scheduler, not for use in device drivers to calculate timeout value.
809 *
810 * note:
811 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
812 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
813 */
nsecs_to_jiffies64(u64 n)814 u64 nsecs_to_jiffies64(u64 n)
815 {
816 #if (NSEC_PER_SEC % HZ) == 0
817 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
818 return div_u64(n, NSEC_PER_SEC / HZ);
819 #elif (HZ % 512) == 0
820 /* overflow after 292 years if HZ = 1024 */
821 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
822 #else
823 /*
824 * Generic case - optimized for cases where HZ is a multiple of 3.
825 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
826 */
827 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
828 #endif
829 }
830 EXPORT_SYMBOL(nsecs_to_jiffies64);
831
832 /**
833 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
834 *
835 * @n: nsecs in u64
836 *
837 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
838 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
839 * for scheduler, not for use in device drivers to calculate timeout value.
840 *
841 * note:
842 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
843 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
844 */
nsecs_to_jiffies(u64 n)845 unsigned long nsecs_to_jiffies(u64 n)
846 {
847 return (unsigned long)nsecs_to_jiffies64(n);
848 }
849 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
850
851 /*
852 * Add two timespec64 values and do a safety check for overflow.
853 * It's assumed that both values are valid (>= 0).
854 * And, each timespec64 is in normalized form.
855 */
timespec64_add_safe(const struct timespec64 lhs,const struct timespec64 rhs)856 struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
857 const struct timespec64 rhs)
858 {
859 struct timespec64 res;
860
861 set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
862 lhs.tv_nsec + rhs.tv_nsec);
863
864 if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
865 res.tv_sec = TIME64_MAX;
866 res.tv_nsec = 0;
867 }
868
869 return res;
870 }
871
get_timespec64(struct timespec64 * ts,const struct __kernel_timespec __user * uts)872 int get_timespec64(struct timespec64 *ts,
873 const struct __kernel_timespec __user *uts)
874 {
875 struct __kernel_timespec kts;
876 int ret;
877
878 ret = copy_from_user(&kts, uts, sizeof(kts));
879 if (ret)
880 return -EFAULT;
881
882 ts->tv_sec = kts.tv_sec;
883
884 /* Zero out the padding for 32 bit systems or in compat mode */
885 if (IS_ENABLED(CONFIG_64BIT_TIME) && (!IS_ENABLED(CONFIG_64BIT) ||
886 in_compat_syscall()))
887 kts.tv_nsec &= 0xFFFFFFFFUL;
888
889 ts->tv_nsec = kts.tv_nsec;
890
891 return 0;
892 }
893 EXPORT_SYMBOL_GPL(get_timespec64);
894
put_timespec64(const struct timespec64 * ts,struct __kernel_timespec __user * uts)895 int put_timespec64(const struct timespec64 *ts,
896 struct __kernel_timespec __user *uts)
897 {
898 struct __kernel_timespec kts = {
899 .tv_sec = ts->tv_sec,
900 .tv_nsec = ts->tv_nsec
901 };
902
903 return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
904 }
905 EXPORT_SYMBOL_GPL(put_timespec64);
906
__get_old_timespec32(struct timespec64 * ts64,const struct old_timespec32 __user * cts)907 static int __get_old_timespec32(struct timespec64 *ts64,
908 const struct old_timespec32 __user *cts)
909 {
910 struct old_timespec32 ts;
911 int ret;
912
913 ret = copy_from_user(&ts, cts, sizeof(ts));
914 if (ret)
915 return -EFAULT;
916
917 ts64->tv_sec = ts.tv_sec;
918 ts64->tv_nsec = ts.tv_nsec;
919
920 return 0;
921 }
922
__put_old_timespec32(const struct timespec64 * ts64,struct old_timespec32 __user * cts)923 static int __put_old_timespec32(const struct timespec64 *ts64,
924 struct old_timespec32 __user *cts)
925 {
926 struct old_timespec32 ts = {
927 .tv_sec = ts64->tv_sec,
928 .tv_nsec = ts64->tv_nsec
929 };
930 return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
931 }
932
get_old_timespec32(struct timespec64 * ts,const void __user * uts)933 int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
934 {
935 if (COMPAT_USE_64BIT_TIME)
936 return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
937 else
938 return __get_old_timespec32(ts, uts);
939 }
940 EXPORT_SYMBOL_GPL(get_old_timespec32);
941
put_old_timespec32(const struct timespec64 * ts,void __user * uts)942 int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
943 {
944 if (COMPAT_USE_64BIT_TIME)
945 return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
946 else
947 return __put_old_timespec32(ts, uts);
948 }
949 EXPORT_SYMBOL_GPL(put_old_timespec32);
950
get_itimerspec64(struct itimerspec64 * it,const struct __kernel_itimerspec __user * uit)951 int get_itimerspec64(struct itimerspec64 *it,
952 const struct __kernel_itimerspec __user *uit)
953 {
954 int ret;
955
956 ret = get_timespec64(&it->it_interval, &uit->it_interval);
957 if (ret)
958 return ret;
959
960 ret = get_timespec64(&it->it_value, &uit->it_value);
961
962 return ret;
963 }
964 EXPORT_SYMBOL_GPL(get_itimerspec64);
965
put_itimerspec64(const struct itimerspec64 * it,struct __kernel_itimerspec __user * uit)966 int put_itimerspec64(const struct itimerspec64 *it,
967 struct __kernel_itimerspec __user *uit)
968 {
969 int ret;
970
971 ret = put_timespec64(&it->it_interval, &uit->it_interval);
972 if (ret)
973 return ret;
974
975 ret = put_timespec64(&it->it_value, &uit->it_value);
976
977 return ret;
978 }
979 EXPORT_SYMBOL_GPL(put_itimerspec64);
980
get_old_itimerspec32(struct itimerspec64 * its,const struct old_itimerspec32 __user * uits)981 int get_old_itimerspec32(struct itimerspec64 *its,
982 const struct old_itimerspec32 __user *uits)
983 {
984
985 if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
986 __get_old_timespec32(&its->it_value, &uits->it_value))
987 return -EFAULT;
988 return 0;
989 }
990 EXPORT_SYMBOL_GPL(get_old_itimerspec32);
991
put_old_itimerspec32(const struct itimerspec64 * its,struct old_itimerspec32 __user * uits)992 int put_old_itimerspec32(const struct itimerspec64 *its,
993 struct old_itimerspec32 __user *uits)
994 {
995 if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
996 __put_old_timespec32(&its->it_value, &uits->it_value))
997 return -EFAULT;
998 return 0;
999 }
1000 EXPORT_SYMBOL_GPL(put_old_itimerspec32);
1001