• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events ring-buffer code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/perf_event.h>
12 #include <linux/vmalloc.h>
13 #include <linux/slab.h>
14 #include <linux/circ_buf.h>
15 #include <linux/poll.h>
16 #include <linux/nospec.h>
17 
18 #include "internal.h"
19 
perf_output_wakeup(struct perf_output_handle * handle)20 static void perf_output_wakeup(struct perf_output_handle *handle)
21 {
22 	atomic_set(&handle->rb->poll, EPOLLIN);
23 
24 	handle->event->pending_wakeup = 1;
25 	irq_work_queue(&handle->event->pending);
26 }
27 
28 /*
29  * We need to ensure a later event_id doesn't publish a head when a former
30  * event isn't done writing. However since we need to deal with NMIs we
31  * cannot fully serialize things.
32  *
33  * We only publish the head (and generate a wakeup) when the outer-most
34  * event completes.
35  */
perf_output_get_handle(struct perf_output_handle * handle)36 static void perf_output_get_handle(struct perf_output_handle *handle)
37 {
38 	struct ring_buffer *rb = handle->rb;
39 
40 	preempt_disable();
41 
42 	/*
43 	 * Avoid an explicit LOAD/STORE such that architectures with memops
44 	 * can use them.
45 	 */
46 	(*(volatile unsigned int *)&rb->nest)++;
47 	handle->wakeup = local_read(&rb->wakeup);
48 }
49 
perf_output_put_handle(struct perf_output_handle * handle)50 static void perf_output_put_handle(struct perf_output_handle *handle)
51 {
52 	struct ring_buffer *rb = handle->rb;
53 	unsigned long head;
54 	unsigned int nest;
55 
56 	/*
57 	 * If this isn't the outermost nesting, we don't have to update
58 	 * @rb->user_page->data_head.
59 	 */
60 	nest = READ_ONCE(rb->nest);
61 	if (nest > 1) {
62 		WRITE_ONCE(rb->nest, nest - 1);
63 		goto out;
64 	}
65 
66 again:
67 	/*
68 	 * In order to avoid publishing a head value that goes backwards,
69 	 * we must ensure the load of @rb->head happens after we've
70 	 * incremented @rb->nest.
71 	 *
72 	 * Otherwise we can observe a @rb->head value before one published
73 	 * by an IRQ/NMI happening between the load and the increment.
74 	 */
75 	barrier();
76 	head = local_read(&rb->head);
77 
78 	/*
79 	 * IRQ/NMI can happen here and advance @rb->head, causing our
80 	 * load above to be stale.
81 	 */
82 
83 	/*
84 	 * Since the mmap() consumer (userspace) can run on a different CPU:
85 	 *
86 	 *   kernel				user
87 	 *
88 	 *   if (LOAD ->data_tail) {		LOAD ->data_head
89 	 *			(A)		smp_rmb()	(C)
90 	 *	STORE $data			LOAD $data
91 	 *	smp_wmb()	(B)		smp_mb()	(D)
92 	 *	STORE ->data_head		STORE ->data_tail
93 	 *   }
94 	 *
95 	 * Where A pairs with D, and B pairs with C.
96 	 *
97 	 * In our case (A) is a control dependency that separates the load of
98 	 * the ->data_tail and the stores of $data. In case ->data_tail
99 	 * indicates there is no room in the buffer to store $data we do not.
100 	 *
101 	 * D needs to be a full barrier since it separates the data READ
102 	 * from the tail WRITE.
103 	 *
104 	 * For B a WMB is sufficient since it separates two WRITEs, and for C
105 	 * an RMB is sufficient since it separates two READs.
106 	 *
107 	 * See perf_output_begin().
108 	 */
109 	smp_wmb(); /* B, matches C */
110 	WRITE_ONCE(rb->user_page->data_head, head);
111 
112 	/*
113 	 * We must publish the head before decrementing the nest count,
114 	 * otherwise an IRQ/NMI can publish a more recent head value and our
115 	 * write will (temporarily) publish a stale value.
116 	 */
117 	barrier();
118 	WRITE_ONCE(rb->nest, 0);
119 
120 	/*
121 	 * Ensure we decrement @rb->nest before we validate the @rb->head.
122 	 * Otherwise we cannot be sure we caught the 'last' nested update.
123 	 */
124 	barrier();
125 	if (unlikely(head != local_read(&rb->head))) {
126 		WRITE_ONCE(rb->nest, 1);
127 		goto again;
128 	}
129 
130 	if (handle->wakeup != local_read(&rb->wakeup))
131 		perf_output_wakeup(handle);
132 
133 out:
134 	preempt_enable();
135 }
136 
137 static __always_inline bool
ring_buffer_has_space(unsigned long head,unsigned long tail,unsigned long data_size,unsigned int size,bool backward)138 ring_buffer_has_space(unsigned long head, unsigned long tail,
139 		      unsigned long data_size, unsigned int size,
140 		      bool backward)
141 {
142 	if (!backward)
143 		return CIRC_SPACE(head, tail, data_size) >= size;
144 	else
145 		return CIRC_SPACE(tail, head, data_size) >= size;
146 }
147 
148 static __always_inline int
__perf_output_begin(struct perf_output_handle * handle,struct perf_event * event,unsigned int size,bool backward)149 __perf_output_begin(struct perf_output_handle *handle,
150 		    struct perf_event *event, unsigned int size,
151 		    bool backward)
152 {
153 	struct ring_buffer *rb;
154 	unsigned long tail, offset, head;
155 	int have_lost, page_shift;
156 	struct {
157 		struct perf_event_header header;
158 		u64			 id;
159 		u64			 lost;
160 	} lost_event;
161 
162 	rcu_read_lock();
163 	/*
164 	 * For inherited events we send all the output towards the parent.
165 	 */
166 	if (event->parent)
167 		event = event->parent;
168 
169 	rb = rcu_dereference(event->rb);
170 	if (unlikely(!rb))
171 		goto out;
172 
173 	if (unlikely(rb->paused)) {
174 		if (rb->nr_pages)
175 			local_inc(&rb->lost);
176 		goto out;
177 	}
178 
179 	handle->rb    = rb;
180 	handle->event = event;
181 
182 	have_lost = local_read(&rb->lost);
183 	if (unlikely(have_lost)) {
184 		size += sizeof(lost_event);
185 		if (event->attr.sample_id_all)
186 			size += event->id_header_size;
187 	}
188 
189 	perf_output_get_handle(handle);
190 
191 	do {
192 		tail = READ_ONCE(rb->user_page->data_tail);
193 		offset = head = local_read(&rb->head);
194 		if (!rb->overwrite) {
195 			if (unlikely(!ring_buffer_has_space(head, tail,
196 							    perf_data_size(rb),
197 							    size, backward)))
198 				goto fail;
199 		}
200 
201 		/*
202 		 * The above forms a control dependency barrier separating the
203 		 * @tail load above from the data stores below. Since the @tail
204 		 * load is required to compute the branch to fail below.
205 		 *
206 		 * A, matches D; the full memory barrier userspace SHOULD issue
207 		 * after reading the data and before storing the new tail
208 		 * position.
209 		 *
210 		 * See perf_output_put_handle().
211 		 */
212 
213 		if (!backward)
214 			head += size;
215 		else
216 			head -= size;
217 	} while (local_cmpxchg(&rb->head, offset, head) != offset);
218 
219 	if (backward) {
220 		offset = head;
221 		head = (u64)(-head);
222 	}
223 
224 	/*
225 	 * We rely on the implied barrier() by local_cmpxchg() to ensure
226 	 * none of the data stores below can be lifted up by the compiler.
227 	 */
228 
229 	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
230 		local_add(rb->watermark, &rb->wakeup);
231 
232 	page_shift = PAGE_SHIFT + page_order(rb);
233 
234 	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
235 	offset &= (1UL << page_shift) - 1;
236 	handle->addr = rb->data_pages[handle->page] + offset;
237 	handle->size = (1UL << page_shift) - offset;
238 
239 	if (unlikely(have_lost)) {
240 		struct perf_sample_data sample_data;
241 
242 		lost_event.header.size = sizeof(lost_event);
243 		lost_event.header.type = PERF_RECORD_LOST;
244 		lost_event.header.misc = 0;
245 		lost_event.id          = event->id;
246 		lost_event.lost        = local_xchg(&rb->lost, 0);
247 
248 		perf_event_header__init_id(&lost_event.header,
249 					   &sample_data, event);
250 		perf_output_put(handle, lost_event);
251 		perf_event__output_id_sample(event, handle, &sample_data);
252 	}
253 
254 	return 0;
255 
256 fail:
257 	local_inc(&rb->lost);
258 	perf_output_put_handle(handle);
259 out:
260 	rcu_read_unlock();
261 
262 	return -ENOSPC;
263 }
264 
perf_output_begin_forward(struct perf_output_handle * handle,struct perf_event * event,unsigned int size)265 int perf_output_begin_forward(struct perf_output_handle *handle,
266 			     struct perf_event *event, unsigned int size)
267 {
268 	return __perf_output_begin(handle, event, size, false);
269 }
270 
perf_output_begin_backward(struct perf_output_handle * handle,struct perf_event * event,unsigned int size)271 int perf_output_begin_backward(struct perf_output_handle *handle,
272 			       struct perf_event *event, unsigned int size)
273 {
274 	return __perf_output_begin(handle, event, size, true);
275 }
276 
perf_output_begin(struct perf_output_handle * handle,struct perf_event * event,unsigned int size)277 int perf_output_begin(struct perf_output_handle *handle,
278 		      struct perf_event *event, unsigned int size)
279 {
280 
281 	return __perf_output_begin(handle, event, size,
282 				   unlikely(is_write_backward(event)));
283 }
284 
perf_output_copy(struct perf_output_handle * handle,const void * buf,unsigned int len)285 unsigned int perf_output_copy(struct perf_output_handle *handle,
286 		      const void *buf, unsigned int len)
287 {
288 	return __output_copy(handle, buf, len);
289 }
290 
perf_output_skip(struct perf_output_handle * handle,unsigned int len)291 unsigned int perf_output_skip(struct perf_output_handle *handle,
292 			      unsigned int len)
293 {
294 	return __output_skip(handle, NULL, len);
295 }
296 
perf_output_end(struct perf_output_handle * handle)297 void perf_output_end(struct perf_output_handle *handle)
298 {
299 	perf_output_put_handle(handle);
300 	rcu_read_unlock();
301 }
302 
303 static void
ring_buffer_init(struct ring_buffer * rb,long watermark,int flags)304 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
305 {
306 	long max_size = perf_data_size(rb);
307 
308 	if (watermark)
309 		rb->watermark = min(max_size, watermark);
310 
311 	if (!rb->watermark)
312 		rb->watermark = max_size / 2;
313 
314 	if (flags & RING_BUFFER_WRITABLE)
315 		rb->overwrite = 0;
316 	else
317 		rb->overwrite = 1;
318 
319 	refcount_set(&rb->refcount, 1);
320 
321 	INIT_LIST_HEAD(&rb->event_list);
322 	spin_lock_init(&rb->event_lock);
323 
324 	/*
325 	 * perf_output_begin() only checks rb->paused, therefore
326 	 * rb->paused must be true if we have no pages for output.
327 	 */
328 	if (!rb->nr_pages)
329 		rb->paused = 1;
330 }
331 
perf_aux_output_flag(struct perf_output_handle * handle,u64 flags)332 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags)
333 {
334 	/*
335 	 * OVERWRITE is determined by perf_aux_output_end() and can't
336 	 * be passed in directly.
337 	 */
338 	if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE))
339 		return;
340 
341 	handle->aux_flags |= flags;
342 }
343 EXPORT_SYMBOL_GPL(perf_aux_output_flag);
344 
345 /*
346  * This is called before hardware starts writing to the AUX area to
347  * obtain an output handle and make sure there's room in the buffer.
348  * When the capture completes, call perf_aux_output_end() to commit
349  * the recorded data to the buffer.
350  *
351  * The ordering is similar to that of perf_output_{begin,end}, with
352  * the exception of (B), which should be taken care of by the pmu
353  * driver, since ordering rules will differ depending on hardware.
354  *
355  * Call this from pmu::start(); see the comment in perf_aux_output_end()
356  * about its use in pmu callbacks. Both can also be called from the PMI
357  * handler if needed.
358  */
perf_aux_output_begin(struct perf_output_handle * handle,struct perf_event * event)359 void *perf_aux_output_begin(struct perf_output_handle *handle,
360 			    struct perf_event *event)
361 {
362 	struct perf_event *output_event = event;
363 	unsigned long aux_head, aux_tail;
364 	struct ring_buffer *rb;
365 	unsigned int nest;
366 
367 	if (output_event->parent)
368 		output_event = output_event->parent;
369 
370 	/*
371 	 * Since this will typically be open across pmu::add/pmu::del, we
372 	 * grab ring_buffer's refcount instead of holding rcu read lock
373 	 * to make sure it doesn't disappear under us.
374 	 */
375 	rb = ring_buffer_get(output_event);
376 	if (!rb)
377 		return NULL;
378 
379 	if (!rb_has_aux(rb))
380 		goto err;
381 
382 	/*
383 	 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
384 	 * about to get freed, so we leave immediately.
385 	 *
386 	 * Checking rb::aux_mmap_count and rb::refcount has to be done in
387 	 * the same order, see perf_mmap_close. Otherwise we end up freeing
388 	 * aux pages in this path, which is a bug, because in_atomic().
389 	 */
390 	if (!atomic_read(&rb->aux_mmap_count))
391 		goto err;
392 
393 	if (!refcount_inc_not_zero(&rb->aux_refcount))
394 		goto err;
395 
396 	nest = READ_ONCE(rb->aux_nest);
397 	/*
398 	 * Nesting is not supported for AUX area, make sure nested
399 	 * writers are caught early
400 	 */
401 	if (WARN_ON_ONCE(nest))
402 		goto err_put;
403 
404 	WRITE_ONCE(rb->aux_nest, nest + 1);
405 
406 	aux_head = rb->aux_head;
407 
408 	handle->rb = rb;
409 	handle->event = event;
410 	handle->head = aux_head;
411 	handle->size = 0;
412 	handle->aux_flags = 0;
413 
414 	/*
415 	 * In overwrite mode, AUX data stores do not depend on aux_tail,
416 	 * therefore (A) control dependency barrier does not exist. The
417 	 * (B) <-> (C) ordering is still observed by the pmu driver.
418 	 */
419 	if (!rb->aux_overwrite) {
420 		aux_tail = READ_ONCE(rb->user_page->aux_tail);
421 		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
422 		if (aux_head - aux_tail < perf_aux_size(rb))
423 			handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
424 
425 		/*
426 		 * handle->size computation depends on aux_tail load; this forms a
427 		 * control dependency barrier separating aux_tail load from aux data
428 		 * store that will be enabled on successful return
429 		 */
430 		if (!handle->size) { /* A, matches D */
431 			event->pending_disable = smp_processor_id();
432 			perf_output_wakeup(handle);
433 			WRITE_ONCE(rb->aux_nest, 0);
434 			goto err_put;
435 		}
436 	}
437 
438 	return handle->rb->aux_priv;
439 
440 err_put:
441 	/* can't be last */
442 	rb_free_aux(rb);
443 
444 err:
445 	ring_buffer_put(rb);
446 	handle->event = NULL;
447 
448 	return NULL;
449 }
450 EXPORT_SYMBOL_GPL(perf_aux_output_begin);
451 
rb_need_aux_wakeup(struct ring_buffer * rb)452 static __always_inline bool rb_need_aux_wakeup(struct ring_buffer *rb)
453 {
454 	if (rb->aux_overwrite)
455 		return false;
456 
457 	if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
458 		rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
459 		return true;
460 	}
461 
462 	return false;
463 }
464 
465 /*
466  * Commit the data written by hardware into the ring buffer by adjusting
467  * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
468  * pmu driver's responsibility to observe ordering rules of the hardware,
469  * so that all the data is externally visible before this is called.
470  *
471  * Note: this has to be called from pmu::stop() callback, as the assumption
472  * of the AUX buffer management code is that after pmu::stop(), the AUX
473  * transaction must be stopped and therefore drop the AUX reference count.
474  */
perf_aux_output_end(struct perf_output_handle * handle,unsigned long size)475 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
476 {
477 	bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
478 	struct ring_buffer *rb = handle->rb;
479 	unsigned long aux_head;
480 
481 	/* in overwrite mode, driver provides aux_head via handle */
482 	if (rb->aux_overwrite) {
483 		handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
484 
485 		aux_head = handle->head;
486 		rb->aux_head = aux_head;
487 	} else {
488 		handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
489 
490 		aux_head = rb->aux_head;
491 		rb->aux_head += size;
492 	}
493 
494 	/*
495 	 * Only send RECORD_AUX if we have something useful to communicate
496 	 *
497 	 * Note: the OVERWRITE records by themselves are not considered
498 	 * useful, as they don't communicate any *new* information,
499 	 * aside from the short-lived offset, that becomes history at
500 	 * the next event sched-in and therefore isn't useful.
501 	 * The userspace that needs to copy out AUX data in overwrite
502 	 * mode should know to use user_page::aux_head for the actual
503 	 * offset. So, from now on we don't output AUX records that
504 	 * have *only* OVERWRITE flag set.
505 	 */
506 	if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE))
507 		perf_event_aux_event(handle->event, aux_head, size,
508 				     handle->aux_flags);
509 
510 	WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
511 	if (rb_need_aux_wakeup(rb))
512 		wakeup = true;
513 
514 	if (wakeup) {
515 		if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
516 			handle->event->pending_disable = smp_processor_id();
517 		perf_output_wakeup(handle);
518 	}
519 
520 	handle->event = NULL;
521 
522 	WRITE_ONCE(rb->aux_nest, 0);
523 	/* can't be last */
524 	rb_free_aux(rb);
525 	ring_buffer_put(rb);
526 }
527 EXPORT_SYMBOL_GPL(perf_aux_output_end);
528 
529 /*
530  * Skip over a given number of bytes in the AUX buffer, due to, for example,
531  * hardware's alignment constraints.
532  */
perf_aux_output_skip(struct perf_output_handle * handle,unsigned long size)533 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
534 {
535 	struct ring_buffer *rb = handle->rb;
536 
537 	if (size > handle->size)
538 		return -ENOSPC;
539 
540 	rb->aux_head += size;
541 
542 	WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
543 	if (rb_need_aux_wakeup(rb)) {
544 		perf_output_wakeup(handle);
545 		handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
546 	}
547 
548 	handle->head = rb->aux_head;
549 	handle->size -= size;
550 
551 	return 0;
552 }
553 EXPORT_SYMBOL_GPL(perf_aux_output_skip);
554 
perf_get_aux(struct perf_output_handle * handle)555 void *perf_get_aux(struct perf_output_handle *handle)
556 {
557 	/* this is only valid between perf_aux_output_begin and *_end */
558 	if (!handle->event)
559 		return NULL;
560 
561 	return handle->rb->aux_priv;
562 }
563 EXPORT_SYMBOL_GPL(perf_get_aux);
564 
565 #define PERF_AUX_GFP	(GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
566 
rb_alloc_aux_page(int node,int order)567 static struct page *rb_alloc_aux_page(int node, int order)
568 {
569 	struct page *page;
570 
571 	if (order > MAX_ORDER)
572 		order = MAX_ORDER;
573 
574 	do {
575 		page = alloc_pages_node(node, PERF_AUX_GFP, order);
576 	} while (!page && order--);
577 
578 	if (page && order) {
579 		/*
580 		 * Communicate the allocation size to the driver:
581 		 * if we managed to secure a high-order allocation,
582 		 * set its first page's private to this order;
583 		 * !PagePrivate(page) means it's just a normal page.
584 		 */
585 		split_page(page, order);
586 		SetPagePrivate(page);
587 		set_page_private(page, order);
588 	}
589 
590 	return page;
591 }
592 
rb_free_aux_page(struct ring_buffer * rb,int idx)593 static void rb_free_aux_page(struct ring_buffer *rb, int idx)
594 {
595 	struct page *page = virt_to_page(rb->aux_pages[idx]);
596 
597 	ClearPagePrivate(page);
598 	page->mapping = NULL;
599 	__free_page(page);
600 }
601 
__rb_free_aux(struct ring_buffer * rb)602 static void __rb_free_aux(struct ring_buffer *rb)
603 {
604 	int pg;
605 
606 	/*
607 	 * Should never happen, the last reference should be dropped from
608 	 * perf_mmap_close() path, which first stops aux transactions (which
609 	 * in turn are the atomic holders of aux_refcount) and then does the
610 	 * last rb_free_aux().
611 	 */
612 	WARN_ON_ONCE(in_atomic());
613 
614 	if (rb->aux_priv) {
615 		rb->free_aux(rb->aux_priv);
616 		rb->free_aux = NULL;
617 		rb->aux_priv = NULL;
618 	}
619 
620 	if (rb->aux_nr_pages) {
621 		for (pg = 0; pg < rb->aux_nr_pages; pg++)
622 			rb_free_aux_page(rb, pg);
623 
624 		kfree(rb->aux_pages);
625 		rb->aux_nr_pages = 0;
626 	}
627 }
628 
rb_alloc_aux(struct ring_buffer * rb,struct perf_event * event,pgoff_t pgoff,int nr_pages,long watermark,int flags)629 int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event,
630 		 pgoff_t pgoff, int nr_pages, long watermark, int flags)
631 {
632 	bool overwrite = !(flags & RING_BUFFER_WRITABLE);
633 	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
634 	int ret = -ENOMEM, max_order;
635 
636 	if (!has_aux(event))
637 		return -EOPNOTSUPP;
638 
639 	/*
640 	 * We need to start with the max_order that fits in nr_pages,
641 	 * not the other way around, hence ilog2() and not get_order.
642 	 */
643 	max_order = ilog2(nr_pages);
644 
645 	/*
646 	 * PMU requests more than one contiguous chunks of memory
647 	 * for SW double buffering
648 	 */
649 	if (!overwrite) {
650 		if (!max_order)
651 			return -EINVAL;
652 
653 		max_order--;
654 	}
655 
656 	/*
657 	 * kcalloc_node() is unable to allocate buffer if the size is larger
658 	 * than: PAGE_SIZE << MAX_ORDER; directly bail out in this case.
659 	 */
660 	if (get_order((unsigned long)nr_pages * sizeof(void *)) > MAX_ORDER)
661 		return -ENOMEM;
662 	rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL,
663 				     node);
664 	if (!rb->aux_pages)
665 		return -ENOMEM;
666 
667 	rb->free_aux = event->pmu->free_aux;
668 	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
669 		struct page *page;
670 		int last, order;
671 
672 		order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
673 		page = rb_alloc_aux_page(node, order);
674 		if (!page)
675 			goto out;
676 
677 		for (last = rb->aux_nr_pages + (1 << page_private(page));
678 		     last > rb->aux_nr_pages; rb->aux_nr_pages++)
679 			rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
680 	}
681 
682 	/*
683 	 * In overwrite mode, PMUs that don't support SG may not handle more
684 	 * than one contiguous allocation, since they rely on PMI to do double
685 	 * buffering. In this case, the entire buffer has to be one contiguous
686 	 * chunk.
687 	 */
688 	if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
689 	    overwrite) {
690 		struct page *page = virt_to_page(rb->aux_pages[0]);
691 
692 		if (page_private(page) != max_order)
693 			goto out;
694 	}
695 
696 	rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages,
697 					     overwrite);
698 	if (!rb->aux_priv)
699 		goto out;
700 
701 	ret = 0;
702 
703 	/*
704 	 * aux_pages (and pmu driver's private data, aux_priv) will be
705 	 * referenced in both producer's and consumer's contexts, thus
706 	 * we keep a refcount here to make sure either of the two can
707 	 * reference them safely.
708 	 */
709 	refcount_set(&rb->aux_refcount, 1);
710 
711 	rb->aux_overwrite = overwrite;
712 	rb->aux_watermark = watermark;
713 
714 	if (!rb->aux_watermark && !rb->aux_overwrite)
715 		rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1);
716 
717 out:
718 	if (!ret)
719 		rb->aux_pgoff = pgoff;
720 	else
721 		__rb_free_aux(rb);
722 
723 	return ret;
724 }
725 
rb_free_aux(struct ring_buffer * rb)726 void rb_free_aux(struct ring_buffer *rb)
727 {
728 	if (refcount_dec_and_test(&rb->aux_refcount))
729 		__rb_free_aux(rb);
730 }
731 
732 #ifndef CONFIG_PERF_USE_VMALLOC
733 
734 /*
735  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
736  */
737 
738 static struct page *
__perf_mmap_to_page(struct ring_buffer * rb,unsigned long pgoff)739 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
740 {
741 	if (pgoff > rb->nr_pages)
742 		return NULL;
743 
744 	if (pgoff == 0)
745 		return virt_to_page(rb->user_page);
746 
747 	return virt_to_page(rb->data_pages[pgoff - 1]);
748 }
749 
perf_mmap_alloc_page(int cpu)750 static void *perf_mmap_alloc_page(int cpu)
751 {
752 	struct page *page;
753 	int node;
754 
755 	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
756 	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
757 	if (!page)
758 		return NULL;
759 
760 	return page_address(page);
761 }
762 
rb_alloc(int nr_pages,long watermark,int cpu,int flags)763 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
764 {
765 	struct ring_buffer *rb;
766 	unsigned long size;
767 	int i;
768 
769 	size = sizeof(struct ring_buffer);
770 	size += nr_pages * sizeof(void *);
771 
772 	if (order_base_2(size) >= PAGE_SHIFT+MAX_ORDER)
773 		goto fail;
774 
775 	rb = kzalloc(size, GFP_KERNEL);
776 	if (!rb)
777 		goto fail;
778 
779 	rb->user_page = perf_mmap_alloc_page(cpu);
780 	if (!rb->user_page)
781 		goto fail_user_page;
782 
783 	for (i = 0; i < nr_pages; i++) {
784 		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
785 		if (!rb->data_pages[i])
786 			goto fail_data_pages;
787 	}
788 
789 	rb->nr_pages = nr_pages;
790 
791 	ring_buffer_init(rb, watermark, flags);
792 
793 	return rb;
794 
795 fail_data_pages:
796 	for (i--; i >= 0; i--)
797 		free_page((unsigned long)rb->data_pages[i]);
798 
799 	free_page((unsigned long)rb->user_page);
800 
801 fail_user_page:
802 	kfree(rb);
803 
804 fail:
805 	return NULL;
806 }
807 
perf_mmap_free_page(unsigned long addr)808 static void perf_mmap_free_page(unsigned long addr)
809 {
810 	struct page *page = virt_to_page((void *)addr);
811 
812 	page->mapping = NULL;
813 	__free_page(page);
814 }
815 
rb_free(struct ring_buffer * rb)816 void rb_free(struct ring_buffer *rb)
817 {
818 	int i;
819 
820 	perf_mmap_free_page((unsigned long)rb->user_page);
821 	for (i = 0; i < rb->nr_pages; i++)
822 		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
823 	kfree(rb);
824 }
825 
826 #else
data_page_nr(struct ring_buffer * rb)827 static int data_page_nr(struct ring_buffer *rb)
828 {
829 	return rb->nr_pages << page_order(rb);
830 }
831 
832 static struct page *
__perf_mmap_to_page(struct ring_buffer * rb,unsigned long pgoff)833 __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
834 {
835 	/* The '>' counts in the user page. */
836 	if (pgoff > data_page_nr(rb))
837 		return NULL;
838 
839 	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
840 }
841 
perf_mmap_unmark_page(void * addr)842 static void perf_mmap_unmark_page(void *addr)
843 {
844 	struct page *page = vmalloc_to_page(addr);
845 
846 	page->mapping = NULL;
847 }
848 
rb_free_work(struct work_struct * work)849 static void rb_free_work(struct work_struct *work)
850 {
851 	struct ring_buffer *rb;
852 	void *base;
853 	int i, nr;
854 
855 	rb = container_of(work, struct ring_buffer, work);
856 	nr = data_page_nr(rb);
857 
858 	base = rb->user_page;
859 	/* The '<=' counts in the user page. */
860 	for (i = 0; i <= nr; i++)
861 		perf_mmap_unmark_page(base + (i * PAGE_SIZE));
862 
863 	vfree(base);
864 	kfree(rb);
865 }
866 
rb_free(struct ring_buffer * rb)867 void rb_free(struct ring_buffer *rb)
868 {
869 	schedule_work(&rb->work);
870 }
871 
rb_alloc(int nr_pages,long watermark,int cpu,int flags)872 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
873 {
874 	struct ring_buffer *rb;
875 	unsigned long size;
876 	void *all_buf;
877 
878 	size = sizeof(struct ring_buffer);
879 	size += sizeof(void *);
880 
881 	rb = kzalloc(size, GFP_KERNEL);
882 	if (!rb)
883 		goto fail;
884 
885 	INIT_WORK(&rb->work, rb_free_work);
886 
887 	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
888 	if (!all_buf)
889 		goto fail_all_buf;
890 
891 	rb->user_page = all_buf;
892 	rb->data_pages[0] = all_buf + PAGE_SIZE;
893 	if (nr_pages) {
894 		rb->nr_pages = 1;
895 		rb->page_order = ilog2(nr_pages);
896 	}
897 
898 	ring_buffer_init(rb, watermark, flags);
899 
900 	return rb;
901 
902 fail_all_buf:
903 	kfree(rb);
904 
905 fail:
906 	return NULL;
907 }
908 
909 #endif
910 
911 struct page *
perf_mmap_to_page(struct ring_buffer * rb,unsigned long pgoff)912 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
913 {
914 	if (rb->aux_nr_pages) {
915 		/* above AUX space */
916 		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
917 			return NULL;
918 
919 		/* AUX space */
920 		if (pgoff >= rb->aux_pgoff) {
921 			int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages);
922 			return virt_to_page(rb->aux_pages[aux_pgoff]);
923 		}
924 	}
925 
926 	return __perf_mmap_to_page(rb, pgoff);
927 }
928