• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *	   Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13 
14 #include "../locking/rtmutex_common.h"
15 
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20 
21 /*
22  * Check the RCU kernel configuration parameters and print informative
23  * messages about anything out of the ordinary.
24  */
rcu_bootup_announce_oddness(void)25 static void __init rcu_bootup_announce_oddness(void)
26 {
27 	if (IS_ENABLED(CONFIG_RCU_TRACE))
28 		pr_info("\tRCU event tracing is enabled.\n");
29 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
31 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32 			RCU_FANOUT);
33 	if (rcu_fanout_exact)
34 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37 	if (IS_ENABLED(CONFIG_PROVE_RCU))
38 		pr_info("\tRCU lockdep checking is enabled.\n");
39 	if (RCU_NUM_LVLS >= 4)
40 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
41 	if (RCU_FANOUT_LEAF != 16)
42 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
43 			RCU_FANOUT_LEAF);
44 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
45 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
46 			rcu_fanout_leaf);
47 	if (nr_cpu_ids != NR_CPUS)
48 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
49 #ifdef CONFIG_RCU_BOOST
50 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51 		kthread_prio, CONFIG_RCU_BOOST_DELAY);
52 #endif
53 	if (blimit != DEFAULT_RCU_BLIMIT)
54 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
55 	if (qhimark != DEFAULT_RCU_QHIMARK)
56 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
57 	if (qlowmark != DEFAULT_RCU_QLOMARK)
58 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
59 	if (jiffies_till_first_fqs != ULONG_MAX)
60 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
61 	if (jiffies_till_next_fqs != ULONG_MAX)
62 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
63 	if (jiffies_till_sched_qs != ULONG_MAX)
64 		pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
65 	if (rcu_kick_kthreads)
66 		pr_info("\tKick kthreads if too-long grace period.\n");
67 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
68 		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
69 	if (gp_preinit_delay)
70 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
71 	if (gp_init_delay)
72 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
73 	if (gp_cleanup_delay)
74 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
75 	if (!use_softirq)
76 		pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
77 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
78 		pr_info("\tRCU debug extended QS entry/exit.\n");
79 	rcupdate_announce_bootup_oddness();
80 }
81 
82 #ifdef CONFIG_PREEMPT_RCU
83 
84 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
85 static void rcu_read_unlock_special(struct task_struct *t);
86 
87 /*
88  * Tell them what RCU they are running.
89  */
rcu_bootup_announce(void)90 static void __init rcu_bootup_announce(void)
91 {
92 	pr_info("Preemptible hierarchical RCU implementation.\n");
93 	rcu_bootup_announce_oddness();
94 }
95 
96 /* Flags for rcu_preempt_ctxt_queue() decision table. */
97 #define RCU_GP_TASKS	0x8
98 #define RCU_EXP_TASKS	0x4
99 #define RCU_GP_BLKD	0x2
100 #define RCU_EXP_BLKD	0x1
101 
102 /*
103  * Queues a task preempted within an RCU-preempt read-side critical
104  * section into the appropriate location within the ->blkd_tasks list,
105  * depending on the states of any ongoing normal and expedited grace
106  * periods.  The ->gp_tasks pointer indicates which element the normal
107  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
108  * indicates which element the expedited grace period is waiting on (again,
109  * NULL if none).  If a grace period is waiting on a given element in the
110  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
111  * adding a task to the tail of the list blocks any grace period that is
112  * already waiting on one of the elements.  In contrast, adding a task
113  * to the head of the list won't block any grace period that is already
114  * waiting on one of the elements.
115  *
116  * This queuing is imprecise, and can sometimes make an ongoing grace
117  * period wait for a task that is not strictly speaking blocking it.
118  * Given the choice, we needlessly block a normal grace period rather than
119  * blocking an expedited grace period.
120  *
121  * Note that an endless sequence of expedited grace periods still cannot
122  * indefinitely postpone a normal grace period.  Eventually, all of the
123  * fixed number of preempted tasks blocking the normal grace period that are
124  * not also blocking the expedited grace period will resume and complete
125  * their RCU read-side critical sections.  At that point, the ->gp_tasks
126  * pointer will equal the ->exp_tasks pointer, at which point the end of
127  * the corresponding expedited grace period will also be the end of the
128  * normal grace period.
129  */
rcu_preempt_ctxt_queue(struct rcu_node * rnp,struct rcu_data * rdp)130 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
131 	__releases(rnp->lock) /* But leaves rrupts disabled. */
132 {
133 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
134 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
135 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
136 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
137 	struct task_struct *t = current;
138 
139 	raw_lockdep_assert_held_rcu_node(rnp);
140 	WARN_ON_ONCE(rdp->mynode != rnp);
141 	WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
142 	/* RCU better not be waiting on newly onlined CPUs! */
143 	WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
144 		     rdp->grpmask);
145 
146 	/*
147 	 * Decide where to queue the newly blocked task.  In theory,
148 	 * this could be an if-statement.  In practice, when I tried
149 	 * that, it was quite messy.
150 	 */
151 	switch (blkd_state) {
152 	case 0:
153 	case                RCU_EXP_TASKS:
154 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
155 	case RCU_GP_TASKS:
156 	case RCU_GP_TASKS + RCU_EXP_TASKS:
157 
158 		/*
159 		 * Blocking neither GP, or first task blocking the normal
160 		 * GP but not blocking the already-waiting expedited GP.
161 		 * Queue at the head of the list to avoid unnecessarily
162 		 * blocking the already-waiting GPs.
163 		 */
164 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
165 		break;
166 
167 	case                                              RCU_EXP_BLKD:
168 	case                                RCU_GP_BLKD:
169 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
170 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
171 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
172 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
173 
174 		/*
175 		 * First task arriving that blocks either GP, or first task
176 		 * arriving that blocks the expedited GP (with the normal
177 		 * GP already waiting), or a task arriving that blocks
178 		 * both GPs with both GPs already waiting.  Queue at the
179 		 * tail of the list to avoid any GP waiting on any of the
180 		 * already queued tasks that are not blocking it.
181 		 */
182 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
183 		break;
184 
185 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
186 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
187 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
188 
189 		/*
190 		 * Second or subsequent task blocking the expedited GP.
191 		 * The task either does not block the normal GP, or is the
192 		 * first task blocking the normal GP.  Queue just after
193 		 * the first task blocking the expedited GP.
194 		 */
195 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
196 		break;
197 
198 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
199 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
200 
201 		/*
202 		 * Second or subsequent task blocking the normal GP.
203 		 * The task does not block the expedited GP. Queue just
204 		 * after the first task blocking the normal GP.
205 		 */
206 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
207 		break;
208 
209 	default:
210 
211 		/* Yet another exercise in excessive paranoia. */
212 		WARN_ON_ONCE(1);
213 		break;
214 	}
215 
216 	/*
217 	 * We have now queued the task.  If it was the first one to
218 	 * block either grace period, update the ->gp_tasks and/or
219 	 * ->exp_tasks pointers, respectively, to reference the newly
220 	 * blocked tasks.
221 	 */
222 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
223 		WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
224 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
225 	}
226 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
227 		rnp->exp_tasks = &t->rcu_node_entry;
228 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
229 		     !(rnp->qsmask & rdp->grpmask));
230 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
231 		     !(rnp->expmask & rdp->grpmask));
232 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
233 
234 	/*
235 	 * Report the quiescent state for the expedited GP.  This expedited
236 	 * GP should not be able to end until we report, so there should be
237 	 * no need to check for a subsequent expedited GP.  (Though we are
238 	 * still in a quiescent state in any case.)
239 	 */
240 	if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
241 		rcu_report_exp_rdp(rdp);
242 	else
243 		WARN_ON_ONCE(rdp->exp_deferred_qs);
244 }
245 
246 /*
247  * Record a preemptible-RCU quiescent state for the specified CPU.
248  * Note that this does not necessarily mean that the task currently running
249  * on the CPU is in a quiescent state:  Instead, it means that the current
250  * grace period need not wait on any RCU read-side critical section that
251  * starts later on this CPU.  It also means that if the current task is
252  * in an RCU read-side critical section, it has already added itself to
253  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
254  * current task, there might be any number of other tasks blocked while
255  * in an RCU read-side critical section.
256  *
257  * Callers to this function must disable preemption.
258  */
rcu_qs(void)259 static void rcu_qs(void)
260 {
261 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
262 	if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
263 		trace_rcu_grace_period(TPS("rcu_preempt"),
264 				       __this_cpu_read(rcu_data.gp_seq),
265 				       TPS("cpuqs"));
266 		__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
267 		barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
268 		WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
269 	}
270 }
271 
272 /*
273  * We have entered the scheduler, and the current task might soon be
274  * context-switched away from.  If this task is in an RCU read-side
275  * critical section, we will no longer be able to rely on the CPU to
276  * record that fact, so we enqueue the task on the blkd_tasks list.
277  * The task will dequeue itself when it exits the outermost enclosing
278  * RCU read-side critical section.  Therefore, the current grace period
279  * cannot be permitted to complete until the blkd_tasks list entries
280  * predating the current grace period drain, in other words, until
281  * rnp->gp_tasks becomes NULL.
282  *
283  * Caller must disable interrupts.
284  */
rcu_note_context_switch(bool preempt)285 void rcu_note_context_switch(bool preempt)
286 {
287 	struct task_struct *t = current;
288 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
289 	struct rcu_node *rnp;
290 
291 	trace_rcu_utilization(TPS("Start context switch"));
292 	lockdep_assert_irqs_disabled();
293 	WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
294 	if (t->rcu_read_lock_nesting > 0 &&
295 	    !t->rcu_read_unlock_special.b.blocked) {
296 
297 		/* Possibly blocking in an RCU read-side critical section. */
298 		rnp = rdp->mynode;
299 		raw_spin_lock_rcu_node(rnp);
300 		t->rcu_read_unlock_special.b.blocked = true;
301 		t->rcu_blocked_node = rnp;
302 
303 		/*
304 		 * Verify the CPU's sanity, trace the preemption, and
305 		 * then queue the task as required based on the states
306 		 * of any ongoing and expedited grace periods.
307 		 */
308 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
309 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
310 		trace_rcu_preempt_task(rcu_state.name,
311 				       t->pid,
312 				       (rnp->qsmask & rdp->grpmask)
313 				       ? rnp->gp_seq
314 				       : rcu_seq_snap(&rnp->gp_seq));
315 		rcu_preempt_ctxt_queue(rnp, rdp);
316 	} else {
317 		rcu_preempt_deferred_qs(t);
318 	}
319 
320 	/*
321 	 * Either we were not in an RCU read-side critical section to
322 	 * begin with, or we have now recorded that critical section
323 	 * globally.  Either way, we can now note a quiescent state
324 	 * for this CPU.  Again, if we were in an RCU read-side critical
325 	 * section, and if that critical section was blocking the current
326 	 * grace period, then the fact that the task has been enqueued
327 	 * means that we continue to block the current grace period.
328 	 */
329 	rcu_qs();
330 	if (rdp->exp_deferred_qs)
331 		rcu_report_exp_rdp(rdp);
332 	trace_rcu_utilization(TPS("End context switch"));
333 }
334 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
335 
336 /*
337  * Check for preempted RCU readers blocking the current grace period
338  * for the specified rcu_node structure.  If the caller needs a reliable
339  * answer, it must hold the rcu_node's ->lock.
340  */
rcu_preempt_blocked_readers_cgp(struct rcu_node * rnp)341 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
342 {
343 	return READ_ONCE(rnp->gp_tasks) != NULL;
344 }
345 
346 /* Bias and limit values for ->rcu_read_lock_nesting. */
347 #define RCU_NEST_BIAS INT_MAX
348 #define RCU_NEST_NMAX (-INT_MAX / 2)
349 #define RCU_NEST_PMAX (INT_MAX / 2)
350 
351 /*
352  * Preemptible RCU implementation for rcu_read_lock().
353  * Just increment ->rcu_read_lock_nesting, shared state will be updated
354  * if we block.
355  */
__rcu_read_lock(void)356 void __rcu_read_lock(void)
357 {
358 	current->rcu_read_lock_nesting++;
359 	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
360 		WARN_ON_ONCE(current->rcu_read_lock_nesting > RCU_NEST_PMAX);
361 	barrier();  /* critical section after entry code. */
362 }
363 EXPORT_SYMBOL_GPL(__rcu_read_lock);
364 
365 /*
366  * Preemptible RCU implementation for rcu_read_unlock().
367  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
368  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
369  * invoke rcu_read_unlock_special() to clean up after a context switch
370  * in an RCU read-side critical section and other special cases.
371  */
__rcu_read_unlock(void)372 void __rcu_read_unlock(void)
373 {
374 	struct task_struct *t = current;
375 
376 	if (t->rcu_read_lock_nesting != 1) {
377 		--t->rcu_read_lock_nesting;
378 	} else {
379 		barrier();  /* critical section before exit code. */
380 		t->rcu_read_lock_nesting = -RCU_NEST_BIAS;
381 		barrier();  /* assign before ->rcu_read_unlock_special load */
382 		if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
383 			rcu_read_unlock_special(t);
384 		barrier();  /* ->rcu_read_unlock_special load before assign */
385 		t->rcu_read_lock_nesting = 0;
386 	}
387 	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
388 		int rrln = t->rcu_read_lock_nesting;
389 
390 		WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
391 	}
392 }
393 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
394 
395 /*
396  * Advance a ->blkd_tasks-list pointer to the next entry, instead
397  * returning NULL if at the end of the list.
398  */
rcu_next_node_entry(struct task_struct * t,struct rcu_node * rnp)399 static struct list_head *rcu_next_node_entry(struct task_struct *t,
400 					     struct rcu_node *rnp)
401 {
402 	struct list_head *np;
403 
404 	np = t->rcu_node_entry.next;
405 	if (np == &rnp->blkd_tasks)
406 		np = NULL;
407 	return np;
408 }
409 
410 /*
411  * Return true if the specified rcu_node structure has tasks that were
412  * preempted within an RCU read-side critical section.
413  */
rcu_preempt_has_tasks(struct rcu_node * rnp)414 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
415 {
416 	return !list_empty(&rnp->blkd_tasks);
417 }
418 
419 /*
420  * Report deferred quiescent states.  The deferral time can
421  * be quite short, for example, in the case of the call from
422  * rcu_read_unlock_special().
423  */
424 static void
rcu_preempt_deferred_qs_irqrestore(struct task_struct * t,unsigned long flags)425 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
426 {
427 	bool empty_exp;
428 	bool empty_norm;
429 	bool empty_exp_now;
430 	struct list_head *np;
431 	bool drop_boost_mutex = false;
432 	struct rcu_data *rdp;
433 	struct rcu_node *rnp;
434 	union rcu_special special;
435 
436 	/*
437 	 * If RCU core is waiting for this CPU to exit its critical section,
438 	 * report the fact that it has exited.  Because irqs are disabled,
439 	 * t->rcu_read_unlock_special cannot change.
440 	 */
441 	special = t->rcu_read_unlock_special;
442 	rdp = this_cpu_ptr(&rcu_data);
443 	if (!special.s && !rdp->exp_deferred_qs) {
444 		local_irq_restore(flags);
445 		return;
446 	}
447 	t->rcu_read_unlock_special.b.deferred_qs = false;
448 	if (special.b.need_qs) {
449 		rcu_qs();
450 		t->rcu_read_unlock_special.b.need_qs = false;
451 		if (!t->rcu_read_unlock_special.s && !rdp->exp_deferred_qs) {
452 			local_irq_restore(flags);
453 			return;
454 		}
455 	}
456 
457 	/*
458 	 * Respond to a request by an expedited grace period for a
459 	 * quiescent state from this CPU.  Note that requests from
460 	 * tasks are handled when removing the task from the
461 	 * blocked-tasks list below.
462 	 */
463 	if (rdp->exp_deferred_qs) {
464 		rcu_report_exp_rdp(rdp);
465 		if (!t->rcu_read_unlock_special.s) {
466 			local_irq_restore(flags);
467 			return;
468 		}
469 	}
470 
471 	/* Clean up if blocked during RCU read-side critical section. */
472 	if (special.b.blocked) {
473 		t->rcu_read_unlock_special.b.blocked = false;
474 
475 		/*
476 		 * Remove this task from the list it blocked on.  The task
477 		 * now remains queued on the rcu_node corresponding to the
478 		 * CPU it first blocked on, so there is no longer any need
479 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
480 		 */
481 		rnp = t->rcu_blocked_node;
482 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
483 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
484 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
485 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
486 		WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
487 			     (!empty_norm || rnp->qsmask));
488 		empty_exp = sync_rcu_preempt_exp_done(rnp);
489 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
490 		np = rcu_next_node_entry(t, rnp);
491 		list_del_init(&t->rcu_node_entry);
492 		t->rcu_blocked_node = NULL;
493 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
494 						rnp->gp_seq, t->pid);
495 		if (&t->rcu_node_entry == rnp->gp_tasks)
496 			WRITE_ONCE(rnp->gp_tasks, np);
497 		if (&t->rcu_node_entry == rnp->exp_tasks)
498 			rnp->exp_tasks = np;
499 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
500 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
501 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
502 			if (&t->rcu_node_entry == rnp->boost_tasks)
503 				rnp->boost_tasks = np;
504 		}
505 
506 		/*
507 		 * If this was the last task on the current list, and if
508 		 * we aren't waiting on any CPUs, report the quiescent state.
509 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
510 		 * so we must take a snapshot of the expedited state.
511 		 */
512 		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
513 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
514 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
515 							 rnp->gp_seq,
516 							 0, rnp->qsmask,
517 							 rnp->level,
518 							 rnp->grplo,
519 							 rnp->grphi,
520 							 !!rnp->gp_tasks);
521 			rcu_report_unblock_qs_rnp(rnp, flags);
522 		} else {
523 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
524 		}
525 
526 		/*
527 		 * If this was the last task on the expedited lists,
528 		 * then we need to report up the rcu_node hierarchy.
529 		 */
530 		if (!empty_exp && empty_exp_now)
531 			rcu_report_exp_rnp(rnp, true);
532 
533 		/* Unboost if we were boosted. */
534 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
535 			rt_mutex_futex_unlock(&rnp->boost_mtx);
536 
537 	} else {
538 		local_irq_restore(flags);
539 	}
540 }
541 
542 /*
543  * Is a deferred quiescent-state pending, and are we also not in
544  * an RCU read-side critical section?  It is the caller's responsibility
545  * to ensure it is otherwise safe to report any deferred quiescent
546  * states.  The reason for this is that it is safe to report a
547  * quiescent state during context switch even though preemption
548  * is disabled.  This function cannot be expected to understand these
549  * nuances, so the caller must handle them.
550  */
rcu_preempt_need_deferred_qs(struct task_struct * t)551 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
552 {
553 	return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
554 		READ_ONCE(t->rcu_read_unlock_special.s)) &&
555 	       t->rcu_read_lock_nesting <= 0;
556 }
557 
558 /*
559  * Report a deferred quiescent state if needed and safe to do so.
560  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
561  * not being in an RCU read-side critical section.  The caller must
562  * evaluate safety in terms of interrupt, softirq, and preemption
563  * disabling.
564  */
rcu_preempt_deferred_qs(struct task_struct * t)565 static void rcu_preempt_deferred_qs(struct task_struct *t)
566 {
567 	unsigned long flags;
568 	bool couldrecurse = t->rcu_read_lock_nesting >= 0;
569 
570 	if (!rcu_preempt_need_deferred_qs(t))
571 		return;
572 	if (couldrecurse)
573 		t->rcu_read_lock_nesting -= RCU_NEST_BIAS;
574 	local_irq_save(flags);
575 	rcu_preempt_deferred_qs_irqrestore(t, flags);
576 	if (couldrecurse)
577 		t->rcu_read_lock_nesting += RCU_NEST_BIAS;
578 }
579 
580 /*
581  * Minimal handler to give the scheduler a chance to re-evaluate.
582  */
rcu_preempt_deferred_qs_handler(struct irq_work * iwp)583 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
584 {
585 	struct rcu_data *rdp;
586 
587 	rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
588 	rdp->defer_qs_iw_pending = false;
589 }
590 
591 /*
592  * Handle special cases during rcu_read_unlock(), such as needing to
593  * notify RCU core processing or task having blocked during the RCU
594  * read-side critical section.
595  */
rcu_read_unlock_special(struct task_struct * t)596 static void rcu_read_unlock_special(struct task_struct *t)
597 {
598 	unsigned long flags;
599 	bool preempt_bh_were_disabled =
600 			!!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
601 	bool irqs_were_disabled;
602 
603 	/* NMI handlers cannot block and cannot safely manipulate state. */
604 	if (in_nmi())
605 		return;
606 
607 	local_irq_save(flags);
608 	irqs_were_disabled = irqs_disabled_flags(flags);
609 	if (preempt_bh_were_disabled || irqs_were_disabled) {
610 		bool exp;
611 		struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
612 		struct rcu_node *rnp = rdp->mynode;
613 
614 		t->rcu_read_unlock_special.b.exp_hint = false;
615 		exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) ||
616 		      (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
617 		      tick_nohz_full_cpu(rdp->cpu);
618 		// Need to defer quiescent state until everything is enabled.
619 		if (irqs_were_disabled && use_softirq &&
620 		    (in_interrupt() ||
621 		     (exp && !t->rcu_read_unlock_special.b.deferred_qs))) {
622 			// Using softirq, safe to awaken, and we get
623 			// no help from enabling irqs, unlike bh/preempt.
624 			raise_softirq_irqoff(RCU_SOFTIRQ);
625 		} else {
626 			// Enabling BH or preempt does reschedule, so...
627 			// Also if no expediting or NO_HZ_FULL, slow is OK.
628 			set_tsk_need_resched(current);
629 			set_preempt_need_resched();
630 			if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
631 			    !rdp->defer_qs_iw_pending && exp) {
632 				// Get scheduler to re-evaluate and call hooks.
633 				// If !IRQ_WORK, FQS scan will eventually IPI.
634 				init_irq_work(&rdp->defer_qs_iw,
635 					      rcu_preempt_deferred_qs_handler);
636 				rdp->defer_qs_iw_pending = true;
637 				irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
638 			}
639 		}
640 		t->rcu_read_unlock_special.b.deferred_qs = true;
641 		local_irq_restore(flags);
642 		return;
643 	}
644 	WRITE_ONCE(t->rcu_read_unlock_special.b.exp_hint, false);
645 	rcu_preempt_deferred_qs_irqrestore(t, flags);
646 }
647 
648 /*
649  * Check that the list of blocked tasks for the newly completed grace
650  * period is in fact empty.  It is a serious bug to complete a grace
651  * period that still has RCU readers blocked!  This function must be
652  * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock
653  * must be held by the caller.
654  *
655  * Also, if there are blocked tasks on the list, they automatically
656  * block the newly created grace period, so set up ->gp_tasks accordingly.
657  */
rcu_preempt_check_blocked_tasks(struct rcu_node * rnp)658 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
659 {
660 	struct task_struct *t;
661 
662 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
663 	if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
664 		dump_blkd_tasks(rnp, 10);
665 	if (rcu_preempt_has_tasks(rnp) &&
666 	    (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
667 		WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
668 		t = container_of(rnp->gp_tasks, struct task_struct,
669 				 rcu_node_entry);
670 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
671 						rnp->gp_seq, t->pid);
672 	}
673 	WARN_ON_ONCE(rnp->qsmask);
674 }
675 
676 /*
677  * Check for a quiescent state from the current CPU, including voluntary
678  * context switches for Tasks RCU.  When a task blocks, the task is
679  * recorded in the corresponding CPU's rcu_node structure, which is checked
680  * elsewhere, hence this function need only check for quiescent states
681  * related to the current CPU, not to those related to tasks.
682  */
rcu_flavor_sched_clock_irq(int user)683 static void rcu_flavor_sched_clock_irq(int user)
684 {
685 	struct task_struct *t = current;
686 
687 	if (user || rcu_is_cpu_rrupt_from_idle()) {
688 		rcu_note_voluntary_context_switch(current);
689 	}
690 	if (t->rcu_read_lock_nesting > 0 ||
691 	    (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
692 		/* No QS, force context switch if deferred. */
693 		if (rcu_preempt_need_deferred_qs(t)) {
694 			set_tsk_need_resched(t);
695 			set_preempt_need_resched();
696 		}
697 	} else if (rcu_preempt_need_deferred_qs(t)) {
698 		rcu_preempt_deferred_qs(t); /* Report deferred QS. */
699 		return;
700 	} else if (!t->rcu_read_lock_nesting) {
701 		rcu_qs(); /* Report immediate QS. */
702 		return;
703 	}
704 
705 	/* If GP is oldish, ask for help from rcu_read_unlock_special(). */
706 	if (t->rcu_read_lock_nesting > 0 &&
707 	    __this_cpu_read(rcu_data.core_needs_qs) &&
708 	    __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
709 	    !t->rcu_read_unlock_special.b.need_qs &&
710 	    time_after(jiffies, rcu_state.gp_start + HZ))
711 		t->rcu_read_unlock_special.b.need_qs = true;
712 }
713 
714 /*
715  * Check for a task exiting while in a preemptible-RCU read-side
716  * critical section, clean up if so.  No need to issue warnings, as
717  * debug_check_no_locks_held() already does this if lockdep is enabled.
718  * Besides, if this function does anything other than just immediately
719  * return, there was a bug of some sort.  Spewing warnings from this
720  * function is like as not to simply obscure important prior warnings.
721  */
exit_rcu(void)722 void exit_rcu(void)
723 {
724 	struct task_struct *t = current;
725 
726 	if (unlikely(!list_empty(&current->rcu_node_entry))) {
727 		t->rcu_read_lock_nesting = 1;
728 		barrier();
729 		WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
730 	} else if (unlikely(t->rcu_read_lock_nesting)) {
731 		t->rcu_read_lock_nesting = 1;
732 	} else {
733 		return;
734 	}
735 	__rcu_read_unlock();
736 	rcu_preempt_deferred_qs(current);
737 }
738 
739 /*
740  * Dump the blocked-tasks state, but limit the list dump to the
741  * specified number of elements.
742  */
743 static void
dump_blkd_tasks(struct rcu_node * rnp,int ncheck)744 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
745 {
746 	int cpu;
747 	int i;
748 	struct list_head *lhp;
749 	bool onl;
750 	struct rcu_data *rdp;
751 	struct rcu_node *rnp1;
752 
753 	raw_lockdep_assert_held_rcu_node(rnp);
754 	pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
755 		__func__, rnp->grplo, rnp->grphi, rnp->level,
756 		(long)rnp->gp_seq, (long)rnp->completedqs);
757 	for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
758 		pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
759 			__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
760 	pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
761 		__func__, READ_ONCE(rnp->gp_tasks), rnp->boost_tasks,
762 		rnp->exp_tasks);
763 	pr_info("%s: ->blkd_tasks", __func__);
764 	i = 0;
765 	list_for_each(lhp, &rnp->blkd_tasks) {
766 		pr_cont(" %p", lhp);
767 		if (++i >= ncheck)
768 			break;
769 	}
770 	pr_cont("\n");
771 	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
772 		rdp = per_cpu_ptr(&rcu_data, cpu);
773 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
774 		pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
775 			cpu, ".o"[onl],
776 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
777 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
778 	}
779 }
780 
781 #else /* #ifdef CONFIG_PREEMPT_RCU */
782 
783 /*
784  * Tell them what RCU they are running.
785  */
rcu_bootup_announce(void)786 static void __init rcu_bootup_announce(void)
787 {
788 	pr_info("Hierarchical RCU implementation.\n");
789 	rcu_bootup_announce_oddness();
790 }
791 
792 /*
793  * Note a quiescent state for PREEMPT=n.  Because we do not need to know
794  * how many quiescent states passed, just if there was at least one since
795  * the start of the grace period, this just sets a flag.  The caller must
796  * have disabled preemption.
797  */
rcu_qs(void)798 static void rcu_qs(void)
799 {
800 	RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
801 	if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
802 		return;
803 	trace_rcu_grace_period(TPS("rcu_sched"),
804 			       __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
805 	__this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
806 	if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
807 		return;
808 	__this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
809 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
810 }
811 
812 /*
813  * Register an urgently needed quiescent state.  If there is an
814  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
815  * dyntick-idle quiescent state visible to other CPUs, which will in
816  * some cases serve for expedited as well as normal grace periods.
817  * Either way, register a lightweight quiescent state.
818  */
rcu_all_qs(void)819 void rcu_all_qs(void)
820 {
821 	unsigned long flags;
822 
823 	if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
824 		return;
825 	preempt_disable();
826 	/* Load rcu_urgent_qs before other flags. */
827 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
828 		preempt_enable();
829 		return;
830 	}
831 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
832 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
833 		local_irq_save(flags);
834 		rcu_momentary_dyntick_idle();
835 		local_irq_restore(flags);
836 	}
837 	rcu_qs();
838 	preempt_enable();
839 }
840 EXPORT_SYMBOL_GPL(rcu_all_qs);
841 
842 /*
843  * Note a PREEMPT=n context switch.  The caller must have disabled interrupts.
844  */
rcu_note_context_switch(bool preempt)845 void rcu_note_context_switch(bool preempt)
846 {
847 	trace_rcu_utilization(TPS("Start context switch"));
848 	rcu_qs();
849 	/* Load rcu_urgent_qs before other flags. */
850 	if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
851 		goto out;
852 	this_cpu_write(rcu_data.rcu_urgent_qs, false);
853 	if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
854 		rcu_momentary_dyntick_idle();
855 	if (!preempt)
856 		rcu_tasks_qs(current);
857 out:
858 	trace_rcu_utilization(TPS("End context switch"));
859 }
860 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
861 
862 /*
863  * Because preemptible RCU does not exist, there are never any preempted
864  * RCU readers.
865  */
rcu_preempt_blocked_readers_cgp(struct rcu_node * rnp)866 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
867 {
868 	return 0;
869 }
870 
871 /*
872  * Because there is no preemptible RCU, there can be no readers blocked.
873  */
rcu_preempt_has_tasks(struct rcu_node * rnp)874 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
875 {
876 	return false;
877 }
878 
879 /*
880  * Because there is no preemptible RCU, there can be no deferred quiescent
881  * states.
882  */
rcu_preempt_need_deferred_qs(struct task_struct * t)883 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
884 {
885 	return false;
886 }
rcu_preempt_deferred_qs(struct task_struct * t)887 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
888 
889 /*
890  * Because there is no preemptible RCU, there can be no readers blocked,
891  * so there is no need to check for blocked tasks.  So check only for
892  * bogus qsmask values.
893  */
rcu_preempt_check_blocked_tasks(struct rcu_node * rnp)894 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
895 {
896 	WARN_ON_ONCE(rnp->qsmask);
897 }
898 
899 /*
900  * Check to see if this CPU is in a non-context-switch quiescent state,
901  * namely user mode and idle loop.
902  */
rcu_flavor_sched_clock_irq(int user)903 static void rcu_flavor_sched_clock_irq(int user)
904 {
905 	if (user || rcu_is_cpu_rrupt_from_idle()) {
906 
907 		/*
908 		 * Get here if this CPU took its interrupt from user
909 		 * mode or from the idle loop, and if this is not a
910 		 * nested interrupt.  In this case, the CPU is in
911 		 * a quiescent state, so note it.
912 		 *
913 		 * No memory barrier is required here because rcu_qs()
914 		 * references only CPU-local variables that other CPUs
915 		 * neither access nor modify, at least not while the
916 		 * corresponding CPU is online.
917 		 */
918 
919 		rcu_qs();
920 	}
921 }
922 
923 /*
924  * Because preemptible RCU does not exist, tasks cannot possibly exit
925  * while in preemptible RCU read-side critical sections.
926  */
exit_rcu(void)927 void exit_rcu(void)
928 {
929 }
930 
931 /*
932  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
933  */
934 static void
dump_blkd_tasks(struct rcu_node * rnp,int ncheck)935 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
936 {
937 	WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
938 }
939 
940 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
941 
942 /*
943  * If boosting, set rcuc kthreads to realtime priority.
944  */
rcu_cpu_kthread_setup(unsigned int cpu)945 static void rcu_cpu_kthread_setup(unsigned int cpu)
946 {
947 #ifdef CONFIG_RCU_BOOST
948 	struct sched_param sp;
949 
950 	sp.sched_priority = kthread_prio;
951 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
952 #endif /* #ifdef CONFIG_RCU_BOOST */
953 }
954 
955 #ifdef CONFIG_RCU_BOOST
956 
957 /*
958  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
959  * or ->boost_tasks, advancing the pointer to the next task in the
960  * ->blkd_tasks list.
961  *
962  * Note that irqs must be enabled: boosting the task can block.
963  * Returns 1 if there are more tasks needing to be boosted.
964  */
rcu_boost(struct rcu_node * rnp)965 static int rcu_boost(struct rcu_node *rnp)
966 {
967 	unsigned long flags;
968 	struct task_struct *t;
969 	struct list_head *tb;
970 
971 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
972 	    READ_ONCE(rnp->boost_tasks) == NULL)
973 		return 0;  /* Nothing left to boost. */
974 
975 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
976 
977 	/*
978 	 * Recheck under the lock: all tasks in need of boosting
979 	 * might exit their RCU read-side critical sections on their own.
980 	 */
981 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
982 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
983 		return 0;
984 	}
985 
986 	/*
987 	 * Preferentially boost tasks blocking expedited grace periods.
988 	 * This cannot starve the normal grace periods because a second
989 	 * expedited grace period must boost all blocked tasks, including
990 	 * those blocking the pre-existing normal grace period.
991 	 */
992 	if (rnp->exp_tasks != NULL)
993 		tb = rnp->exp_tasks;
994 	else
995 		tb = rnp->boost_tasks;
996 
997 	/*
998 	 * We boost task t by manufacturing an rt_mutex that appears to
999 	 * be held by task t.  We leave a pointer to that rt_mutex where
1000 	 * task t can find it, and task t will release the mutex when it
1001 	 * exits its outermost RCU read-side critical section.  Then
1002 	 * simply acquiring this artificial rt_mutex will boost task
1003 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1004 	 *
1005 	 * Note that task t must acquire rnp->lock to remove itself from
1006 	 * the ->blkd_tasks list, which it will do from exit() if from
1007 	 * nowhere else.  We therefore are guaranteed that task t will
1008 	 * stay around at least until we drop rnp->lock.  Note that
1009 	 * rnp->lock also resolves races between our priority boosting
1010 	 * and task t's exiting its outermost RCU read-side critical
1011 	 * section.
1012 	 */
1013 	t = container_of(tb, struct task_struct, rcu_node_entry);
1014 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1015 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1016 	/* Lock only for side effect: boosts task t's priority. */
1017 	rt_mutex_lock(&rnp->boost_mtx);
1018 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1019 
1020 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1021 	       READ_ONCE(rnp->boost_tasks) != NULL;
1022 }
1023 
1024 /*
1025  * Priority-boosting kthread, one per leaf rcu_node.
1026  */
rcu_boost_kthread(void * arg)1027 static int rcu_boost_kthread(void *arg)
1028 {
1029 	struct rcu_node *rnp = (struct rcu_node *)arg;
1030 	int spincnt = 0;
1031 	int more2boost;
1032 
1033 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1034 	for (;;) {
1035 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1036 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1037 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1038 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1039 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1040 		more2boost = rcu_boost(rnp);
1041 		if (more2boost)
1042 			spincnt++;
1043 		else
1044 			spincnt = 0;
1045 		if (spincnt > 10) {
1046 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1047 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1048 			schedule_timeout_interruptible(2);
1049 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1050 			spincnt = 0;
1051 		}
1052 	}
1053 	/* NOTREACHED */
1054 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1055 	return 0;
1056 }
1057 
1058 /*
1059  * Check to see if it is time to start boosting RCU readers that are
1060  * blocking the current grace period, and, if so, tell the per-rcu_node
1061  * kthread to start boosting them.  If there is an expedited grace
1062  * period in progress, it is always time to boost.
1063  *
1064  * The caller must hold rnp->lock, which this function releases.
1065  * The ->boost_kthread_task is immortal, so we don't need to worry
1066  * about it going away.
1067  */
rcu_initiate_boost(struct rcu_node * rnp,unsigned long flags)1068 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1069 	__releases(rnp->lock)
1070 {
1071 	raw_lockdep_assert_held_rcu_node(rnp);
1072 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1073 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1074 		return;
1075 	}
1076 	if (rnp->exp_tasks != NULL ||
1077 	    (rnp->gp_tasks != NULL &&
1078 	     rnp->boost_tasks == NULL &&
1079 	     rnp->qsmask == 0 &&
1080 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1081 		if (rnp->exp_tasks == NULL)
1082 			rnp->boost_tasks = rnp->gp_tasks;
1083 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1084 		rcu_wake_cond(rnp->boost_kthread_task,
1085 			      rnp->boost_kthread_status);
1086 	} else {
1087 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1088 	}
1089 }
1090 
1091 /*
1092  * Is the current CPU running the RCU-callbacks kthread?
1093  * Caller must have preemption disabled.
1094  */
rcu_is_callbacks_kthread(void)1095 static bool rcu_is_callbacks_kthread(void)
1096 {
1097 	return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1098 }
1099 
1100 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1101 
1102 /*
1103  * Do priority-boost accounting for the start of a new grace period.
1104  */
rcu_preempt_boost_start_gp(struct rcu_node * rnp)1105 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1106 {
1107 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1108 }
1109 
1110 /*
1111  * Create an RCU-boost kthread for the specified node if one does not
1112  * already exist.  We only create this kthread for preemptible RCU.
1113  * Returns zero if all is well, a negated errno otherwise.
1114  */
rcu_spawn_one_boost_kthread(struct rcu_node * rnp)1115 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1116 {
1117 	int rnp_index = rnp - rcu_get_root();
1118 	unsigned long flags;
1119 	struct sched_param sp;
1120 	struct task_struct *t;
1121 
1122 	if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1123 		return;
1124 
1125 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1126 		return;
1127 
1128 	rcu_state.boost = 1;
1129 
1130 	if (rnp->boost_kthread_task != NULL)
1131 		return;
1132 
1133 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1134 			   "rcub/%d", rnp_index);
1135 	if (WARN_ON_ONCE(IS_ERR(t)))
1136 		return;
1137 
1138 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1139 	rnp->boost_kthread_task = t;
1140 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1141 	sp.sched_priority = kthread_prio;
1142 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1143 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1144 }
1145 
1146 /*
1147  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1148  * served by the rcu_node in question.  The CPU hotplug lock is still
1149  * held, so the value of rnp->qsmaskinit will be stable.
1150  *
1151  * We don't include outgoingcpu in the affinity set, use -1 if there is
1152  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1153  * this function allows the kthread to execute on any CPU.
1154  */
rcu_boost_kthread_setaffinity(struct rcu_node * rnp,int outgoingcpu)1155 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1156 {
1157 	struct task_struct *t = rnp->boost_kthread_task;
1158 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1159 	cpumask_var_t cm;
1160 	int cpu;
1161 
1162 	if (!t)
1163 		return;
1164 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1165 		return;
1166 	for_each_leaf_node_possible_cpu(rnp, cpu)
1167 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1168 		    cpu != outgoingcpu)
1169 			cpumask_set_cpu(cpu, cm);
1170 	if (cpumask_weight(cm) == 0)
1171 		cpumask_setall(cm);
1172 	set_cpus_allowed_ptr(t, cm);
1173 	free_cpumask_var(cm);
1174 }
1175 
1176 /*
1177  * Spawn boost kthreads -- called as soon as the scheduler is running.
1178  */
rcu_spawn_boost_kthreads(void)1179 static void __init rcu_spawn_boost_kthreads(void)
1180 {
1181 	struct rcu_node *rnp;
1182 
1183 	rcu_for_each_leaf_node(rnp)
1184 		rcu_spawn_one_boost_kthread(rnp);
1185 }
1186 
rcu_prepare_kthreads(int cpu)1187 static void rcu_prepare_kthreads(int cpu)
1188 {
1189 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1190 	struct rcu_node *rnp = rdp->mynode;
1191 
1192 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1193 	if (rcu_scheduler_fully_active)
1194 		rcu_spawn_one_boost_kthread(rnp);
1195 }
1196 
1197 #else /* #ifdef CONFIG_RCU_BOOST */
1198 
rcu_initiate_boost(struct rcu_node * rnp,unsigned long flags)1199 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1200 	__releases(rnp->lock)
1201 {
1202 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1203 }
1204 
rcu_is_callbacks_kthread(void)1205 static bool rcu_is_callbacks_kthread(void)
1206 {
1207 	return false;
1208 }
1209 
rcu_preempt_boost_start_gp(struct rcu_node * rnp)1210 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1211 {
1212 }
1213 
rcu_boost_kthread_setaffinity(struct rcu_node * rnp,int outgoingcpu)1214 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1215 {
1216 }
1217 
rcu_spawn_boost_kthreads(void)1218 static void __init rcu_spawn_boost_kthreads(void)
1219 {
1220 }
1221 
rcu_prepare_kthreads(int cpu)1222 static void rcu_prepare_kthreads(int cpu)
1223 {
1224 }
1225 
1226 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1227 
1228 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1229 
1230 /*
1231  * Check to see if any future non-offloaded RCU-related work will need
1232  * to be done by the current CPU, even if none need be done immediately,
1233  * returning 1 if so.  This function is part of the RCU implementation;
1234  * it is -not- an exported member of the RCU API.
1235  *
1236  * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1237  * CPU has RCU callbacks queued.
1238  */
rcu_needs_cpu(u64 basemono,u64 * nextevt)1239 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1240 {
1241 	*nextevt = KTIME_MAX;
1242 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1243 	       !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1244 }
1245 
1246 /*
1247  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1248  * after it.
1249  */
rcu_cleanup_after_idle(void)1250 static void rcu_cleanup_after_idle(void)
1251 {
1252 }
1253 
1254 /*
1255  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1256  * is nothing.
1257  */
rcu_prepare_for_idle(void)1258 static void rcu_prepare_for_idle(void)
1259 {
1260 }
1261 
1262 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1263 
1264 /*
1265  * This code is invoked when a CPU goes idle, at which point we want
1266  * to have the CPU do everything required for RCU so that it can enter
1267  * the energy-efficient dyntick-idle mode.  This is handled by a
1268  * state machine implemented by rcu_prepare_for_idle() below.
1269  *
1270  * The following three proprocessor symbols control this state machine:
1271  *
1272  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1273  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1274  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1275  *	benchmarkers who might otherwise be tempted to set this to a large
1276  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1277  *	system.  And if you are -that- concerned about energy efficiency,
1278  *	just power the system down and be done with it!
1279  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1280  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1281  *	callbacks pending.  Setting this too high can OOM your system.
1282  *
1283  * The values below work well in practice.  If future workloads require
1284  * adjustment, they can be converted into kernel config parameters, though
1285  * making the state machine smarter might be a better option.
1286  */
1287 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1288 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1289 
1290 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1291 module_param(rcu_idle_gp_delay, int, 0644);
1292 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1293 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1294 
1295 /*
1296  * Try to advance callbacks on the current CPU, but only if it has been
1297  * awhile since the last time we did so.  Afterwards, if there are any
1298  * callbacks ready for immediate invocation, return true.
1299  */
rcu_try_advance_all_cbs(void)1300 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1301 {
1302 	bool cbs_ready = false;
1303 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1304 	struct rcu_node *rnp;
1305 
1306 	/* Exit early if we advanced recently. */
1307 	if (jiffies == rdp->last_advance_all)
1308 		return false;
1309 	rdp->last_advance_all = jiffies;
1310 
1311 	rnp = rdp->mynode;
1312 
1313 	/*
1314 	 * Don't bother checking unless a grace period has
1315 	 * completed since we last checked and there are
1316 	 * callbacks not yet ready to invoke.
1317 	 */
1318 	if ((rcu_seq_completed_gp(rdp->gp_seq,
1319 				  rcu_seq_current(&rnp->gp_seq)) ||
1320 	     unlikely(READ_ONCE(rdp->gpwrap))) &&
1321 	    rcu_segcblist_pend_cbs(&rdp->cblist))
1322 		note_gp_changes(rdp);
1323 
1324 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
1325 		cbs_ready = true;
1326 	return cbs_ready;
1327 }
1328 
1329 /*
1330  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1331  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1332  * caller to set the timeout based on whether or not there are non-lazy
1333  * callbacks.
1334  *
1335  * The caller must have disabled interrupts.
1336  */
rcu_needs_cpu(u64 basemono,u64 * nextevt)1337 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1338 {
1339 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1340 	unsigned long dj;
1341 
1342 	lockdep_assert_irqs_disabled();
1343 
1344 	/* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1345 	if (rcu_segcblist_empty(&rdp->cblist) ||
1346 	    rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1347 		*nextevt = KTIME_MAX;
1348 		return 0;
1349 	}
1350 
1351 	/* Attempt to advance callbacks. */
1352 	if (rcu_try_advance_all_cbs()) {
1353 		/* Some ready to invoke, so initiate later invocation. */
1354 		invoke_rcu_core();
1355 		return 1;
1356 	}
1357 	rdp->last_accelerate = jiffies;
1358 
1359 	/* Request timer delay depending on laziness, and round. */
1360 	rdp->all_lazy = !rcu_segcblist_n_nonlazy_cbs(&rdp->cblist);
1361 	if (rdp->all_lazy) {
1362 		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1363 	} else {
1364 		dj = round_up(rcu_idle_gp_delay + jiffies,
1365 			       rcu_idle_gp_delay) - jiffies;
1366 	}
1367 	*nextevt = basemono + dj * TICK_NSEC;
1368 	return 0;
1369 }
1370 
1371 /*
1372  * Prepare a CPU for idle from an RCU perspective.  The first major task
1373  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1374  * The second major task is to check to see if a non-lazy callback has
1375  * arrived at a CPU that previously had only lazy callbacks.  The third
1376  * major task is to accelerate (that is, assign grace-period numbers to)
1377  * any recently arrived callbacks.
1378  *
1379  * The caller must have disabled interrupts.
1380  */
rcu_prepare_for_idle(void)1381 static void rcu_prepare_for_idle(void)
1382 {
1383 	bool needwake;
1384 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1385 	struct rcu_node *rnp;
1386 	int tne;
1387 
1388 	lockdep_assert_irqs_disabled();
1389 	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1390 		return;
1391 
1392 	/* Handle nohz enablement switches conservatively. */
1393 	tne = READ_ONCE(tick_nohz_active);
1394 	if (tne != rdp->tick_nohz_enabled_snap) {
1395 		if (!rcu_segcblist_empty(&rdp->cblist))
1396 			invoke_rcu_core(); /* force nohz to see update. */
1397 		rdp->tick_nohz_enabled_snap = tne;
1398 		return;
1399 	}
1400 	if (!tne)
1401 		return;
1402 
1403 	/*
1404 	 * If a non-lazy callback arrived at a CPU having only lazy
1405 	 * callbacks, invoke RCU core for the side-effect of recalculating
1406 	 * idle duration on re-entry to idle.
1407 	 */
1408 	if (rdp->all_lazy && rcu_segcblist_n_nonlazy_cbs(&rdp->cblist)) {
1409 		rdp->all_lazy = false;
1410 		invoke_rcu_core();
1411 		return;
1412 	}
1413 
1414 	/*
1415 	 * If we have not yet accelerated this jiffy, accelerate all
1416 	 * callbacks on this CPU.
1417 	 */
1418 	if (rdp->last_accelerate == jiffies)
1419 		return;
1420 	rdp->last_accelerate = jiffies;
1421 	if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1422 		rnp = rdp->mynode;
1423 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1424 		needwake = rcu_accelerate_cbs(rnp, rdp);
1425 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1426 		if (needwake)
1427 			rcu_gp_kthread_wake();
1428 	}
1429 }
1430 
1431 /*
1432  * Clean up for exit from idle.  Attempt to advance callbacks based on
1433  * any grace periods that elapsed while the CPU was idle, and if any
1434  * callbacks are now ready to invoke, initiate invocation.
1435  */
rcu_cleanup_after_idle(void)1436 static void rcu_cleanup_after_idle(void)
1437 {
1438 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1439 
1440 	lockdep_assert_irqs_disabled();
1441 	if (rcu_segcblist_is_offloaded(&rdp->cblist))
1442 		return;
1443 	if (rcu_try_advance_all_cbs())
1444 		invoke_rcu_core();
1445 }
1446 
1447 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1448 
1449 #ifdef CONFIG_RCU_NOCB_CPU
1450 
1451 /*
1452  * Offload callback processing from the boot-time-specified set of CPUs
1453  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1454  * created that pull the callbacks from the corresponding CPU, wait for
1455  * a grace period to elapse, and invoke the callbacks.  These kthreads
1456  * are organized into GP kthreads, which manage incoming callbacks, wait for
1457  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1458  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1459  * do a wake_up() on their GP kthread when they insert a callback into any
1460  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1461  * in which case each kthread actively polls its CPU.  (Which isn't so great
1462  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1463  *
1464  * This is intended to be used in conjunction with Frederic Weisbecker's
1465  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1466  * running CPU-bound user-mode computations.
1467  *
1468  * Offloading of callbacks can also be used as an energy-efficiency
1469  * measure because CPUs with no RCU callbacks queued are more aggressive
1470  * about entering dyntick-idle mode.
1471  */
1472 
1473 
1474 /*
1475  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1476  * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1477  * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is
1478  * given, a warning is emitted and all CPUs are offloaded.
1479  */
rcu_nocb_setup(char * str)1480 static int __init rcu_nocb_setup(char *str)
1481 {
1482 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1483 	if (!strcasecmp(str, "all"))
1484 		cpumask_setall(rcu_nocb_mask);
1485 	else
1486 		if (cpulist_parse(str, rcu_nocb_mask)) {
1487 			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1488 			cpumask_setall(rcu_nocb_mask);
1489 		}
1490 	return 1;
1491 }
1492 __setup("rcu_nocbs=", rcu_nocb_setup);
1493 
parse_rcu_nocb_poll(char * arg)1494 static int __init parse_rcu_nocb_poll(char *arg)
1495 {
1496 	rcu_nocb_poll = true;
1497 	return 0;
1498 }
1499 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1500 
1501 /*
1502  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1503  * After all, the main point of bypassing is to avoid lock contention
1504  * on ->nocb_lock, which only can happen at high call_rcu() rates.
1505  */
1506 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1507 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1508 
1509 /*
1510  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1511  * lock isn't immediately available, increment ->nocb_lock_contended to
1512  * flag the contention.
1513  */
rcu_nocb_bypass_lock(struct rcu_data * rdp)1514 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1515 {
1516 	lockdep_assert_irqs_disabled();
1517 	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1518 		return;
1519 	atomic_inc(&rdp->nocb_lock_contended);
1520 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1521 	smp_mb__after_atomic(); /* atomic_inc() before lock. */
1522 	raw_spin_lock(&rdp->nocb_bypass_lock);
1523 	smp_mb__before_atomic(); /* atomic_dec() after lock. */
1524 	atomic_dec(&rdp->nocb_lock_contended);
1525 }
1526 
1527 /*
1528  * Spinwait until the specified rcu_data structure's ->nocb_lock is
1529  * not contended.  Please note that this is extremely special-purpose,
1530  * relying on the fact that at most two kthreads and one CPU contend for
1531  * this lock, and also that the two kthreads are guaranteed to have frequent
1532  * grace-period-duration time intervals between successive acquisitions
1533  * of the lock.  This allows us to use an extremely simple throttling
1534  * mechanism, and further to apply it only to the CPU doing floods of
1535  * call_rcu() invocations.  Don't try this at home!
1536  */
rcu_nocb_wait_contended(struct rcu_data * rdp)1537 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1538 {
1539 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1540 	while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1541 		cpu_relax();
1542 }
1543 
1544 /*
1545  * Conditionally acquire the specified rcu_data structure's
1546  * ->nocb_bypass_lock.
1547  */
rcu_nocb_bypass_trylock(struct rcu_data * rdp)1548 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1549 {
1550 	lockdep_assert_irqs_disabled();
1551 	return raw_spin_trylock(&rdp->nocb_bypass_lock);
1552 }
1553 
1554 /*
1555  * Release the specified rcu_data structure's ->nocb_bypass_lock.
1556  */
rcu_nocb_bypass_unlock(struct rcu_data * rdp)1557 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1558 {
1559 	lockdep_assert_irqs_disabled();
1560 	raw_spin_unlock(&rdp->nocb_bypass_lock);
1561 }
1562 
1563 /*
1564  * Acquire the specified rcu_data structure's ->nocb_lock, but only
1565  * if it corresponds to a no-CBs CPU.
1566  */
rcu_nocb_lock(struct rcu_data * rdp)1567 static void rcu_nocb_lock(struct rcu_data *rdp)
1568 {
1569 	lockdep_assert_irqs_disabled();
1570 	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1571 		return;
1572 	raw_spin_lock(&rdp->nocb_lock);
1573 }
1574 
1575 /*
1576  * Release the specified rcu_data structure's ->nocb_lock, but only
1577  * if it corresponds to a no-CBs CPU.
1578  */
rcu_nocb_unlock(struct rcu_data * rdp)1579 static void rcu_nocb_unlock(struct rcu_data *rdp)
1580 {
1581 	if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1582 		lockdep_assert_irqs_disabled();
1583 		raw_spin_unlock(&rdp->nocb_lock);
1584 	}
1585 }
1586 
1587 /*
1588  * Release the specified rcu_data structure's ->nocb_lock and restore
1589  * interrupts, but only if it corresponds to a no-CBs CPU.
1590  */
rcu_nocb_unlock_irqrestore(struct rcu_data * rdp,unsigned long flags)1591 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1592 				       unsigned long flags)
1593 {
1594 	if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1595 		lockdep_assert_irqs_disabled();
1596 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1597 	} else {
1598 		local_irq_restore(flags);
1599 	}
1600 }
1601 
1602 /* Lockdep check that ->cblist may be safely accessed. */
rcu_lockdep_assert_cblist_protected(struct rcu_data * rdp)1603 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1604 {
1605 	lockdep_assert_irqs_disabled();
1606 	if (rcu_segcblist_is_offloaded(&rdp->cblist) &&
1607 	    cpu_online(rdp->cpu))
1608 		lockdep_assert_held(&rdp->nocb_lock);
1609 }
1610 
1611 /*
1612  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1613  * grace period.
1614  */
rcu_nocb_gp_cleanup(struct swait_queue_head * sq)1615 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1616 {
1617 	swake_up_all(sq);
1618 }
1619 
rcu_nocb_gp_get(struct rcu_node * rnp)1620 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1621 {
1622 	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1623 }
1624 
rcu_init_one_nocb(struct rcu_node * rnp)1625 static void rcu_init_one_nocb(struct rcu_node *rnp)
1626 {
1627 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1628 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1629 }
1630 
1631 /* Is the specified CPU a no-CBs CPU? */
rcu_is_nocb_cpu(int cpu)1632 bool rcu_is_nocb_cpu(int cpu)
1633 {
1634 	if (cpumask_available(rcu_nocb_mask))
1635 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1636 	return false;
1637 }
1638 
1639 /*
1640  * Kick the GP kthread for this NOCB group.  Caller holds ->nocb_lock
1641  * and this function releases it.
1642  */
wake_nocb_gp(struct rcu_data * rdp,bool force,unsigned long flags)1643 static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1644 			   unsigned long flags)
1645 	__releases(rdp->nocb_lock)
1646 {
1647 	bool needwake = false;
1648 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1649 
1650 	lockdep_assert_held(&rdp->nocb_lock);
1651 	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1652 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1653 				    TPS("AlreadyAwake"));
1654 		rcu_nocb_unlock_irqrestore(rdp, flags);
1655 		return;
1656 	}
1657 	del_timer(&rdp->nocb_timer);
1658 	rcu_nocb_unlock_irqrestore(rdp, flags);
1659 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1660 	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1661 		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1662 		needwake = true;
1663 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1664 	}
1665 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1666 	if (needwake)
1667 		wake_up_process(rdp_gp->nocb_gp_kthread);
1668 }
1669 
1670 /*
1671  * Arrange to wake the GP kthread for this NOCB group at some future
1672  * time when it is safe to do so.
1673  */
wake_nocb_gp_defer(struct rcu_data * rdp,int waketype,const char * reason)1674 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1675 			       const char *reason)
1676 {
1677 	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1678 		mod_timer(&rdp->nocb_timer, jiffies + 1);
1679 	if (rdp->nocb_defer_wakeup < waketype)
1680 		WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1681 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1682 }
1683 
1684 /*
1685  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1686  * However, if there is a callback to be enqueued and if ->nocb_bypass
1687  * proves to be initially empty, just return false because the no-CB GP
1688  * kthread may need to be awakened in this case.
1689  *
1690  * Note that this function always returns true if rhp is NULL.
1691  */
rcu_nocb_do_flush_bypass(struct rcu_data * rdp,struct rcu_head * rhp,unsigned long j)1692 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1693 				     unsigned long j)
1694 {
1695 	struct rcu_cblist rcl;
1696 
1697 	WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1698 	rcu_lockdep_assert_cblist_protected(rdp);
1699 	lockdep_assert_held(&rdp->nocb_bypass_lock);
1700 	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1701 		raw_spin_unlock(&rdp->nocb_bypass_lock);
1702 		return false;
1703 	}
1704 	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1705 	if (rhp)
1706 		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1707 	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1708 	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1709 	WRITE_ONCE(rdp->nocb_bypass_first, j);
1710 	rcu_nocb_bypass_unlock(rdp);
1711 	return true;
1712 }
1713 
1714 /*
1715  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1716  * However, if there is a callback to be enqueued and if ->nocb_bypass
1717  * proves to be initially empty, just return false because the no-CB GP
1718  * kthread may need to be awakened in this case.
1719  *
1720  * Note that this function always returns true if rhp is NULL.
1721  */
rcu_nocb_flush_bypass(struct rcu_data * rdp,struct rcu_head * rhp,unsigned long j)1722 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1723 				  unsigned long j)
1724 {
1725 	if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1726 		return true;
1727 	rcu_lockdep_assert_cblist_protected(rdp);
1728 	rcu_nocb_bypass_lock(rdp);
1729 	return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1730 }
1731 
1732 /*
1733  * If the ->nocb_bypass_lock is immediately available, flush the
1734  * ->nocb_bypass queue into ->cblist.
1735  */
rcu_nocb_try_flush_bypass(struct rcu_data * rdp,unsigned long j)1736 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1737 {
1738 	rcu_lockdep_assert_cblist_protected(rdp);
1739 	if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1740 	    !rcu_nocb_bypass_trylock(rdp))
1741 		return;
1742 	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1743 }
1744 
1745 /*
1746  * See whether it is appropriate to use the ->nocb_bypass list in order
1747  * to control contention on ->nocb_lock.  A limited number of direct
1748  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1749  * is non-empty, further callbacks must be placed into ->nocb_bypass,
1750  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1751  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1752  * used if ->cblist is empty, because otherwise callbacks can be stranded
1753  * on ->nocb_bypass because we cannot count on the current CPU ever again
1754  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1755  * non-empty, the corresponding no-CBs grace-period kthread must not be
1756  * in an indefinite sleep state.
1757  *
1758  * Finally, it is not permitted to use the bypass during early boot,
1759  * as doing so would confuse the auto-initialization code.  Besides
1760  * which, there is no point in worrying about lock contention while
1761  * there is only one CPU in operation.
1762  */
rcu_nocb_try_bypass(struct rcu_data * rdp,struct rcu_head * rhp,bool * was_alldone,unsigned long flags)1763 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1764 				bool *was_alldone, unsigned long flags)
1765 {
1766 	unsigned long c;
1767 	unsigned long cur_gp_seq;
1768 	unsigned long j = jiffies;
1769 	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1770 
1771 	if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1772 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1773 		return false; /* Not offloaded, no bypassing. */
1774 	}
1775 	lockdep_assert_irqs_disabled();
1776 
1777 	// Don't use ->nocb_bypass during early boot.
1778 	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1779 		rcu_nocb_lock(rdp);
1780 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1781 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1782 		return false;
1783 	}
1784 
1785 	// If we have advanced to a new jiffy, reset counts to allow
1786 	// moving back from ->nocb_bypass to ->cblist.
1787 	if (j == rdp->nocb_nobypass_last) {
1788 		c = rdp->nocb_nobypass_count + 1;
1789 	} else {
1790 		WRITE_ONCE(rdp->nocb_nobypass_last, j);
1791 		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1792 		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1793 				 nocb_nobypass_lim_per_jiffy))
1794 			c = 0;
1795 		else if (c > nocb_nobypass_lim_per_jiffy)
1796 			c = nocb_nobypass_lim_per_jiffy;
1797 	}
1798 	WRITE_ONCE(rdp->nocb_nobypass_count, c);
1799 
1800 	// If there hasn't yet been all that many ->cblist enqueues
1801 	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1802 	// ->nocb_bypass first.
1803 	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1804 		rcu_nocb_lock(rdp);
1805 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1806 		if (*was_alldone)
1807 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1808 					    TPS("FirstQ"));
1809 		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1810 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1811 		return false; // Caller must enqueue the callback.
1812 	}
1813 
1814 	// If ->nocb_bypass has been used too long or is too full,
1815 	// flush ->nocb_bypass to ->cblist.
1816 	if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1817 	    ncbs >= qhimark) {
1818 		rcu_nocb_lock(rdp);
1819 		if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1820 			*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1821 			if (*was_alldone)
1822 				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1823 						    TPS("FirstQ"));
1824 			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1825 			return false; // Caller must enqueue the callback.
1826 		}
1827 		if (j != rdp->nocb_gp_adv_time &&
1828 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1829 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1830 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1831 			rdp->nocb_gp_adv_time = j;
1832 		}
1833 		rcu_nocb_unlock_irqrestore(rdp, flags);
1834 		return true; // Callback already enqueued.
1835 	}
1836 
1837 	// We need to use the bypass.
1838 	rcu_nocb_wait_contended(rdp);
1839 	rcu_nocb_bypass_lock(rdp);
1840 	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1841 	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1842 	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1843 	if (!ncbs) {
1844 		WRITE_ONCE(rdp->nocb_bypass_first, j);
1845 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1846 	}
1847 	rcu_nocb_bypass_unlock(rdp);
1848 	smp_mb(); /* Order enqueue before wake. */
1849 	if (ncbs) {
1850 		local_irq_restore(flags);
1851 	} else {
1852 		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
1853 		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1854 		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1855 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1856 					    TPS("FirstBQwake"));
1857 			__call_rcu_nocb_wake(rdp, true, flags);
1858 		} else {
1859 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1860 					    TPS("FirstBQnoWake"));
1861 			rcu_nocb_unlock_irqrestore(rdp, flags);
1862 		}
1863 	}
1864 	return true; // Callback already enqueued.
1865 }
1866 
1867 /*
1868  * Awaken the no-CBs grace-period kthead if needed, either due to it
1869  * legitimately being asleep or due to overload conditions.
1870  *
1871  * If warranted, also wake up the kthread servicing this CPUs queues.
1872  */
__call_rcu_nocb_wake(struct rcu_data * rdp,bool was_alldone,unsigned long flags)1873 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1874 				 unsigned long flags)
1875 				 __releases(rdp->nocb_lock)
1876 {
1877 	unsigned long cur_gp_seq;
1878 	unsigned long j;
1879 	long len;
1880 	struct task_struct *t;
1881 
1882 	// If we are being polled or there is no kthread, just leave.
1883 	t = READ_ONCE(rdp->nocb_gp_kthread);
1884 	if (rcu_nocb_poll || !t) {
1885 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1886 				    TPS("WakeNotPoll"));
1887 		rcu_nocb_unlock_irqrestore(rdp, flags);
1888 		return;
1889 	}
1890 	// Need to actually to a wakeup.
1891 	len = rcu_segcblist_n_cbs(&rdp->cblist);
1892 	if (was_alldone) {
1893 		rdp->qlen_last_fqs_check = len;
1894 		if (!irqs_disabled_flags(flags)) {
1895 			/* ... if queue was empty ... */
1896 			wake_nocb_gp(rdp, false, flags);
1897 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1898 					    TPS("WakeEmpty"));
1899 		} else {
1900 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1901 					   TPS("WakeEmptyIsDeferred"));
1902 			rcu_nocb_unlock_irqrestore(rdp, flags);
1903 		}
1904 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1905 		/* ... or if many callbacks queued. */
1906 		rdp->qlen_last_fqs_check = len;
1907 		j = jiffies;
1908 		if (j != rdp->nocb_gp_adv_time &&
1909 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1910 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1911 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
1912 			rdp->nocb_gp_adv_time = j;
1913 		}
1914 		smp_mb(); /* Enqueue before timer_pending(). */
1915 		if ((rdp->nocb_cb_sleep ||
1916 		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1917 		    !timer_pending(&rdp->nocb_bypass_timer))
1918 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1919 					   TPS("WakeOvfIsDeferred"));
1920 		rcu_nocb_unlock_irqrestore(rdp, flags);
1921 	} else {
1922 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1923 		rcu_nocb_unlock_irqrestore(rdp, flags);
1924 	}
1925 	return;
1926 }
1927 
1928 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
do_nocb_bypass_wakeup_timer(struct timer_list * t)1929 static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1930 {
1931 	unsigned long flags;
1932 	struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1933 
1934 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1935 	rcu_nocb_lock_irqsave(rdp, flags);
1936 	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1937 	__call_rcu_nocb_wake(rdp, true, flags);
1938 }
1939 
1940 /*
1941  * No-CBs GP kthreads come here to wait for additional callbacks to show up
1942  * or for grace periods to end.
1943  */
nocb_gp_wait(struct rcu_data * my_rdp)1944 static void nocb_gp_wait(struct rcu_data *my_rdp)
1945 {
1946 	bool bypass = false;
1947 	long bypass_ncbs;
1948 	int __maybe_unused cpu = my_rdp->cpu;
1949 	unsigned long cur_gp_seq;
1950 	unsigned long flags;
1951 	bool gotcbs = false;
1952 	unsigned long j = jiffies;
1953 	bool needwait_gp = false; // This prevents actual uninitialized use.
1954 	bool needwake;
1955 	bool needwake_gp;
1956 	struct rcu_data *rdp;
1957 	struct rcu_node *rnp;
1958 	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1959 
1960 	/*
1961 	 * Each pass through the following loop checks for CBs and for the
1962 	 * nearest grace period (if any) to wait for next.  The CB kthreads
1963 	 * and the global grace-period kthread are awakened if needed.
1964 	 */
1965 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1966 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1967 		rcu_nocb_lock_irqsave(rdp, flags);
1968 		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1969 		if (bypass_ncbs &&
1970 		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1971 		     bypass_ncbs > 2 * qhimark)) {
1972 			// Bypass full or old, so flush it.
1973 			(void)rcu_nocb_try_flush_bypass(rdp, j);
1974 			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1975 		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1976 			rcu_nocb_unlock_irqrestore(rdp, flags);
1977 			continue; /* No callbacks here, try next. */
1978 		}
1979 		if (bypass_ncbs) {
1980 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1981 					    TPS("Bypass"));
1982 			bypass = true;
1983 		}
1984 		rnp = rdp->mynode;
1985 		if (bypass) {  // Avoid race with first bypass CB.
1986 			WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1987 				   RCU_NOCB_WAKE_NOT);
1988 			del_timer(&my_rdp->nocb_timer);
1989 		}
1990 		// Advance callbacks if helpful and low contention.
1991 		needwake_gp = false;
1992 		if (!rcu_segcblist_restempty(&rdp->cblist,
1993 					     RCU_NEXT_READY_TAIL) ||
1994 		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1995 		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1996 			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1997 			needwake_gp = rcu_advance_cbs(rnp, rdp);
1998 			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1999 		}
2000 		// Need to wait on some grace period?
2001 		WARN_ON_ONCE(!rcu_segcblist_restempty(&rdp->cblist,
2002 						      RCU_NEXT_READY_TAIL));
2003 		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
2004 			if (!needwait_gp ||
2005 			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
2006 				wait_gp_seq = cur_gp_seq;
2007 			needwait_gp = true;
2008 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2009 					    TPS("NeedWaitGP"));
2010 		}
2011 		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2012 			needwake = rdp->nocb_cb_sleep;
2013 			WRITE_ONCE(rdp->nocb_cb_sleep, false);
2014 			smp_mb(); /* CB invocation -after- GP end. */
2015 		} else {
2016 			needwake = false;
2017 		}
2018 		rcu_nocb_unlock_irqrestore(rdp, flags);
2019 		if (needwake) {
2020 			swake_up_one(&rdp->nocb_cb_wq);
2021 			gotcbs = true;
2022 		}
2023 		if (needwake_gp)
2024 			rcu_gp_kthread_wake();
2025 	}
2026 
2027 	my_rdp->nocb_gp_bypass = bypass;
2028 	my_rdp->nocb_gp_gp = needwait_gp;
2029 	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2030 	if (bypass && !rcu_nocb_poll) {
2031 		// At least one child with non-empty ->nocb_bypass, so set
2032 		// timer in order to avoid stranding its callbacks.
2033 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2034 		mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2035 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2036 	}
2037 	if (rcu_nocb_poll) {
2038 		/* Polling, so trace if first poll in the series. */
2039 		if (gotcbs)
2040 			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2041 		schedule_timeout_interruptible(1);
2042 	} else if (!needwait_gp) {
2043 		/* Wait for callbacks to appear. */
2044 		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2045 		swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2046 				!READ_ONCE(my_rdp->nocb_gp_sleep));
2047 		trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2048 	} else {
2049 		rnp = my_rdp->mynode;
2050 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2051 		swait_event_interruptible_exclusive(
2052 			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2053 			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2054 			!READ_ONCE(my_rdp->nocb_gp_sleep));
2055 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2056 	}
2057 	if (!rcu_nocb_poll) {
2058 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2059 		if (bypass)
2060 			del_timer(&my_rdp->nocb_bypass_timer);
2061 		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2062 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2063 	}
2064 	my_rdp->nocb_gp_seq = -1;
2065 	WARN_ON(signal_pending(current));
2066 }
2067 
2068 /*
2069  * No-CBs grace-period-wait kthread.  There is one of these per group
2070  * of CPUs, but only once at least one CPU in that group has come online
2071  * at least once since boot.  This kthread checks for newly posted
2072  * callbacks from any of the CPUs it is responsible for, waits for a
2073  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2074  * that then have callback-invocation work to do.
2075  */
rcu_nocb_gp_kthread(void * arg)2076 static int rcu_nocb_gp_kthread(void *arg)
2077 {
2078 	struct rcu_data *rdp = arg;
2079 
2080 	for (;;) {
2081 		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2082 		nocb_gp_wait(rdp);
2083 		cond_resched_tasks_rcu_qs();
2084 	}
2085 	return 0;
2086 }
2087 
2088 /*
2089  * Invoke any ready callbacks from the corresponding no-CBs CPU,
2090  * then, if there are no more, wait for more to appear.
2091  */
nocb_cb_wait(struct rcu_data * rdp)2092 static void nocb_cb_wait(struct rcu_data *rdp)
2093 {
2094 	unsigned long cur_gp_seq;
2095 	unsigned long flags;
2096 	bool needwake_gp = false;
2097 	struct rcu_node *rnp = rdp->mynode;
2098 
2099 	local_irq_save(flags);
2100 	rcu_momentary_dyntick_idle();
2101 	local_irq_restore(flags);
2102 	local_bh_disable();
2103 	rcu_do_batch(rdp);
2104 	local_bh_enable();
2105 	lockdep_assert_irqs_enabled();
2106 	rcu_nocb_lock_irqsave(rdp, flags);
2107 	if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2108 	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2109 	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2110 		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2111 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2112 	}
2113 	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2114 		rcu_nocb_unlock_irqrestore(rdp, flags);
2115 		if (needwake_gp)
2116 			rcu_gp_kthread_wake();
2117 		return;
2118 	}
2119 
2120 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2121 	WRITE_ONCE(rdp->nocb_cb_sleep, true);
2122 	rcu_nocb_unlock_irqrestore(rdp, flags);
2123 	if (needwake_gp)
2124 		rcu_gp_kthread_wake();
2125 	swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2126 				 !READ_ONCE(rdp->nocb_cb_sleep));
2127 	if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2128 		/* ^^^ Ensure CB invocation follows _sleep test. */
2129 		return;
2130 	}
2131 	WARN_ON(signal_pending(current));
2132 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2133 }
2134 
2135 /*
2136  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2137  * nocb_cb_wait() to do the dirty work.
2138  */
rcu_nocb_cb_kthread(void * arg)2139 static int rcu_nocb_cb_kthread(void *arg)
2140 {
2141 	struct rcu_data *rdp = arg;
2142 
2143 	// Each pass through this loop does one callback batch, and,
2144 	// if there are no more ready callbacks, waits for them.
2145 	for (;;) {
2146 		nocb_cb_wait(rdp);
2147 		cond_resched_tasks_rcu_qs();
2148 	}
2149 	return 0;
2150 }
2151 
2152 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
rcu_nocb_need_deferred_wakeup(struct rcu_data * rdp)2153 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2154 {
2155 	return READ_ONCE(rdp->nocb_defer_wakeup);
2156 }
2157 
2158 /* Do a deferred wakeup of rcu_nocb_kthread(). */
do_nocb_deferred_wakeup_common(struct rcu_data * rdp)2159 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2160 {
2161 	unsigned long flags;
2162 	int ndw;
2163 
2164 	rcu_nocb_lock_irqsave(rdp, flags);
2165 	if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2166 		rcu_nocb_unlock_irqrestore(rdp, flags);
2167 		return;
2168 	}
2169 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2170 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2171 	wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2172 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2173 }
2174 
2175 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
do_nocb_deferred_wakeup_timer(struct timer_list * t)2176 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2177 {
2178 	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2179 
2180 	do_nocb_deferred_wakeup_common(rdp);
2181 }
2182 
2183 /*
2184  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2185  * This means we do an inexact common-case check.  Note that if
2186  * we miss, ->nocb_timer will eventually clean things up.
2187  */
do_nocb_deferred_wakeup(struct rcu_data * rdp)2188 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2189 {
2190 	if (rcu_nocb_need_deferred_wakeup(rdp))
2191 		do_nocb_deferred_wakeup_common(rdp);
2192 }
2193 
rcu_nocb_flush_deferred_wakeup(void)2194 void rcu_nocb_flush_deferred_wakeup(void)
2195 {
2196 	do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
2197 }
2198 
rcu_init_nohz(void)2199 void __init rcu_init_nohz(void)
2200 {
2201 	int cpu;
2202 	bool need_rcu_nocb_mask = false;
2203 	struct rcu_data *rdp;
2204 
2205 #if defined(CONFIG_NO_HZ_FULL)
2206 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2207 		need_rcu_nocb_mask = true;
2208 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2209 
2210 	if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2211 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2212 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2213 			return;
2214 		}
2215 	}
2216 	if (!cpumask_available(rcu_nocb_mask))
2217 		return;
2218 
2219 #if defined(CONFIG_NO_HZ_FULL)
2220 	if (tick_nohz_full_running)
2221 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2222 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2223 
2224 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2225 		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2226 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2227 			    rcu_nocb_mask);
2228 	}
2229 	if (cpumask_empty(rcu_nocb_mask))
2230 		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2231 	else
2232 		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2233 			cpumask_pr_args(rcu_nocb_mask));
2234 	if (rcu_nocb_poll)
2235 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2236 
2237 	for_each_cpu(cpu, rcu_nocb_mask) {
2238 		rdp = per_cpu_ptr(&rcu_data, cpu);
2239 		if (rcu_segcblist_empty(&rdp->cblist))
2240 			rcu_segcblist_init(&rdp->cblist);
2241 		rcu_segcblist_offload(&rdp->cblist);
2242 	}
2243 	rcu_organize_nocb_kthreads();
2244 }
2245 
2246 /* Initialize per-rcu_data variables for no-CBs CPUs. */
rcu_boot_init_nocb_percpu_data(struct rcu_data * rdp)2247 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2248 {
2249 	init_swait_queue_head(&rdp->nocb_cb_wq);
2250 	init_swait_queue_head(&rdp->nocb_gp_wq);
2251 	raw_spin_lock_init(&rdp->nocb_lock);
2252 	raw_spin_lock_init(&rdp->nocb_bypass_lock);
2253 	raw_spin_lock_init(&rdp->nocb_gp_lock);
2254 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2255 	timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2256 	rcu_cblist_init(&rdp->nocb_bypass);
2257 }
2258 
2259 /*
2260  * If the specified CPU is a no-CBs CPU that does not already have its
2261  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2262  * for this CPU's group has not yet been created, spawn it as well.
2263  */
rcu_spawn_one_nocb_kthread(int cpu)2264 static void rcu_spawn_one_nocb_kthread(int cpu)
2265 {
2266 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2267 	struct rcu_data *rdp_gp;
2268 	struct task_struct *t;
2269 
2270 	/*
2271 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2272 	 * then nothing to do.
2273 	 */
2274 	if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2275 		return;
2276 
2277 	/* If we didn't spawn the GP kthread first, reorganize! */
2278 	rdp_gp = rdp->nocb_gp_rdp;
2279 	if (!rdp_gp->nocb_gp_kthread) {
2280 		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2281 				"rcuog/%d", rdp_gp->cpu);
2282 		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2283 			return;
2284 		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2285 	}
2286 
2287 	/* Spawn the kthread for this CPU. */
2288 	t = kthread_run(rcu_nocb_cb_kthread, rdp,
2289 			"rcuo%c/%d", rcu_state.abbr, cpu);
2290 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2291 		return;
2292 	WRITE_ONCE(rdp->nocb_cb_kthread, t);
2293 	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2294 }
2295 
2296 /*
2297  * If the specified CPU is a no-CBs CPU that does not already have its
2298  * rcuo kthread, spawn it.
2299  */
rcu_spawn_cpu_nocb_kthread(int cpu)2300 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2301 {
2302 	if (rcu_scheduler_fully_active)
2303 		rcu_spawn_one_nocb_kthread(cpu);
2304 }
2305 
2306 /*
2307  * Once the scheduler is running, spawn rcuo kthreads for all online
2308  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2309  * non-boot CPUs come online -- if this changes, we will need to add
2310  * some mutual exclusion.
2311  */
rcu_spawn_nocb_kthreads(void)2312 static void __init rcu_spawn_nocb_kthreads(void)
2313 {
2314 	int cpu;
2315 
2316 	for_each_online_cpu(cpu)
2317 		rcu_spawn_cpu_nocb_kthread(cpu);
2318 }
2319 
2320 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2321 static int rcu_nocb_gp_stride = -1;
2322 module_param(rcu_nocb_gp_stride, int, 0444);
2323 
2324 /*
2325  * Initialize GP-CB relationships for all no-CBs CPU.
2326  */
rcu_organize_nocb_kthreads(void)2327 static void __init rcu_organize_nocb_kthreads(void)
2328 {
2329 	int cpu;
2330 	bool firsttime = true;
2331 	bool gotnocbs = false;
2332 	bool gotnocbscbs = true;
2333 	int ls = rcu_nocb_gp_stride;
2334 	int nl = 0;  /* Next GP kthread. */
2335 	struct rcu_data *rdp;
2336 	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2337 	struct rcu_data *rdp_prev = NULL;
2338 
2339 	if (!cpumask_available(rcu_nocb_mask))
2340 		return;
2341 	if (ls == -1) {
2342 		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2343 		rcu_nocb_gp_stride = ls;
2344 	}
2345 
2346 	/*
2347 	 * Each pass through this loop sets up one rcu_data structure.
2348 	 * Should the corresponding CPU come online in the future, then
2349 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2350 	 */
2351 	for_each_cpu(cpu, rcu_nocb_mask) {
2352 		rdp = per_cpu_ptr(&rcu_data, cpu);
2353 		if (rdp->cpu >= nl) {
2354 			/* New GP kthread, set up for CBs & next GP. */
2355 			gotnocbs = true;
2356 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2357 			rdp->nocb_gp_rdp = rdp;
2358 			rdp_gp = rdp;
2359 			if (dump_tree) {
2360 				if (!firsttime)
2361 					pr_cont("%s\n", gotnocbscbs
2362 							? "" : " (self only)");
2363 				gotnocbscbs = false;
2364 				firsttime = false;
2365 				pr_alert("%s: No-CB GP kthread CPU %d:",
2366 					 __func__, cpu);
2367 			}
2368 		} else {
2369 			/* Another CB kthread, link to previous GP kthread. */
2370 			gotnocbscbs = true;
2371 			rdp->nocb_gp_rdp = rdp_gp;
2372 			rdp_prev->nocb_next_cb_rdp = rdp;
2373 			if (dump_tree)
2374 				pr_cont(" %d", cpu);
2375 		}
2376 		rdp_prev = rdp;
2377 	}
2378 	if (gotnocbs && dump_tree)
2379 		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2380 }
2381 
2382 /*
2383  * Bind the current task to the offloaded CPUs.  If there are no offloaded
2384  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2385  */
rcu_bind_current_to_nocb(void)2386 void rcu_bind_current_to_nocb(void)
2387 {
2388 	if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2389 		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2390 }
2391 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2392 
2393 /*
2394  * Dump out nocb grace-period kthread state for the specified rcu_data
2395  * structure.
2396  */
show_rcu_nocb_gp_state(struct rcu_data * rdp)2397 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2398 {
2399 	struct rcu_node *rnp = rdp->mynode;
2400 
2401 	pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2402 		rdp->cpu,
2403 		"kK"[!!rdp->nocb_gp_kthread],
2404 		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2405 		"dD"[!!rdp->nocb_defer_wakeup],
2406 		"tT"[timer_pending(&rdp->nocb_timer)],
2407 		"bB"[timer_pending(&rdp->nocb_bypass_timer)],
2408 		"sS"[!!rdp->nocb_gp_sleep],
2409 		".W"[swait_active(&rdp->nocb_gp_wq)],
2410 		".W"[swait_active(&rnp->nocb_gp_wq[0])],
2411 		".W"[swait_active(&rnp->nocb_gp_wq[1])],
2412 		".B"[!!rdp->nocb_gp_bypass],
2413 		".G"[!!rdp->nocb_gp_gp],
2414 		(long)rdp->nocb_gp_seq,
2415 		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2416 }
2417 
2418 /* Dump out nocb kthread state for the specified rcu_data structure. */
show_rcu_nocb_state(struct rcu_data * rdp)2419 static void show_rcu_nocb_state(struct rcu_data *rdp)
2420 {
2421 	struct rcu_segcblist *rsclp = &rdp->cblist;
2422 	bool waslocked;
2423 	bool wastimer;
2424 	bool wassleep;
2425 
2426 	if (rdp->nocb_gp_rdp == rdp)
2427 		show_rcu_nocb_gp_state(rdp);
2428 
2429 	pr_info("   CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2430 		rdp->cpu, rdp->nocb_gp_rdp->cpu,
2431 		"kK"[!!rdp->nocb_cb_kthread],
2432 		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2433 		"cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2434 		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2435 		"sS"[!!rdp->nocb_cb_sleep],
2436 		".W"[swait_active(&rdp->nocb_cb_wq)],
2437 		jiffies - rdp->nocb_bypass_first,
2438 		jiffies - rdp->nocb_nobypass_last,
2439 		rdp->nocb_nobypass_count,
2440 		".D"[rcu_segcblist_ready_cbs(rsclp)],
2441 		".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2442 		".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2443 		".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2444 		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2445 		rcu_segcblist_n_cbs(&rdp->cblist));
2446 
2447 	/* It is OK for GP kthreads to have GP state. */
2448 	if (rdp->nocb_gp_rdp == rdp)
2449 		return;
2450 
2451 	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2452 	wastimer = timer_pending(&rdp->nocb_timer);
2453 	wassleep = swait_active(&rdp->nocb_gp_wq);
2454 	if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2455 	    !waslocked && !wastimer && !wassleep)
2456 		return;  /* Nothing untowards. */
2457 
2458 	pr_info("   !!! %c%c%c%c %c\n",
2459 		"lL"[waslocked],
2460 		"dD"[!!rdp->nocb_defer_wakeup],
2461 		"tT"[wastimer],
2462 		"sS"[!!rdp->nocb_gp_sleep],
2463 		".W"[wassleep]);
2464 }
2465 
2466 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2467 
2468 /* No ->nocb_lock to acquire.  */
rcu_nocb_lock(struct rcu_data * rdp)2469 static void rcu_nocb_lock(struct rcu_data *rdp)
2470 {
2471 }
2472 
2473 /* No ->nocb_lock to release.  */
rcu_nocb_unlock(struct rcu_data * rdp)2474 static void rcu_nocb_unlock(struct rcu_data *rdp)
2475 {
2476 }
2477 
2478 /* No ->nocb_lock to release.  */
rcu_nocb_unlock_irqrestore(struct rcu_data * rdp,unsigned long flags)2479 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2480 				       unsigned long flags)
2481 {
2482 	local_irq_restore(flags);
2483 }
2484 
2485 /* Lockdep check that ->cblist may be safely accessed. */
rcu_lockdep_assert_cblist_protected(struct rcu_data * rdp)2486 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2487 {
2488 	lockdep_assert_irqs_disabled();
2489 }
2490 
rcu_nocb_gp_cleanup(struct swait_queue_head * sq)2491 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2492 {
2493 }
2494 
rcu_nocb_gp_get(struct rcu_node * rnp)2495 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2496 {
2497 	return NULL;
2498 }
2499 
rcu_init_one_nocb(struct rcu_node * rnp)2500 static void rcu_init_one_nocb(struct rcu_node *rnp)
2501 {
2502 }
2503 
rcu_nocb_flush_bypass(struct rcu_data * rdp,struct rcu_head * rhp,unsigned long j)2504 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2505 				  unsigned long j)
2506 {
2507 	return true;
2508 }
2509 
rcu_nocb_try_bypass(struct rcu_data * rdp,struct rcu_head * rhp,bool * was_alldone,unsigned long flags)2510 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2511 				bool *was_alldone, unsigned long flags)
2512 {
2513 	return false;
2514 }
2515 
__call_rcu_nocb_wake(struct rcu_data * rdp,bool was_empty,unsigned long flags)2516 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2517 				 unsigned long flags)
2518 {
2519 	WARN_ON_ONCE(1);  /* Should be dead code! */
2520 }
2521 
rcu_boot_init_nocb_percpu_data(struct rcu_data * rdp)2522 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2523 {
2524 }
2525 
rcu_nocb_need_deferred_wakeup(struct rcu_data * rdp)2526 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2527 {
2528 	return false;
2529 }
2530 
do_nocb_deferred_wakeup(struct rcu_data * rdp)2531 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2532 {
2533 }
2534 
rcu_spawn_cpu_nocb_kthread(int cpu)2535 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2536 {
2537 }
2538 
rcu_spawn_nocb_kthreads(void)2539 static void __init rcu_spawn_nocb_kthreads(void)
2540 {
2541 }
2542 
show_rcu_nocb_state(struct rcu_data * rdp)2543 static void show_rcu_nocb_state(struct rcu_data *rdp)
2544 {
2545 }
2546 
2547 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2548 
2549 /*
2550  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2551  * grace-period kthread will do force_quiescent_state() processing?
2552  * The idea is to avoid waking up RCU core processing on such a
2553  * CPU unless the grace period has extended for too long.
2554  *
2555  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2556  * CONFIG_RCU_NOCB_CPU CPUs.
2557  */
rcu_nohz_full_cpu(void)2558 static bool rcu_nohz_full_cpu(void)
2559 {
2560 #ifdef CONFIG_NO_HZ_FULL
2561 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2562 	    (!rcu_gp_in_progress() ||
2563 	     ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2564 		return true;
2565 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2566 	return false;
2567 }
2568 
2569 /*
2570  * Bind the RCU grace-period kthreads to the housekeeping CPU.
2571  */
rcu_bind_gp_kthread(void)2572 static void rcu_bind_gp_kthread(void)
2573 {
2574 	if (!tick_nohz_full_enabled())
2575 		return;
2576 	housekeeping_affine(current, HK_FLAG_RCU);
2577 }
2578 
2579 /* Record the current task on dyntick-idle entry. */
rcu_dynticks_task_enter(void)2580 static void rcu_dynticks_task_enter(void)
2581 {
2582 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2583 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2584 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2585 }
2586 
2587 /* Record no current task on dyntick-idle exit. */
rcu_dynticks_task_exit(void)2588 static void rcu_dynticks_task_exit(void)
2589 {
2590 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2591 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2592 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2593 }
2594