• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2007, 2017 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/pagemap.h>
34 #include <linux/slab.h>
35 #include <linux/rbtree.h>
36 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
37 
38 #include "rds.h"
39 
40 /*
41  * XXX
42  *  - build with sparse
43  *  - should we detect duplicate keys on a socket?  hmm.
44  *  - an rdma is an mlock, apply rlimit?
45  */
46 
47 /*
48  * get the number of pages by looking at the page indices that the start and
49  * end addresses fall in.
50  *
51  * Returns 0 if the vec is invalid.  It is invalid if the number of bytes
52  * causes the address to wrap or overflows an unsigned int.  This comes
53  * from being stored in the 'length' member of 'struct scatterlist'.
54  */
rds_pages_in_vec(struct rds_iovec * vec)55 static unsigned int rds_pages_in_vec(struct rds_iovec *vec)
56 {
57 	if ((vec->addr + vec->bytes <= vec->addr) ||
58 	    (vec->bytes > (u64)UINT_MAX))
59 		return 0;
60 
61 	return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) -
62 		(vec->addr >> PAGE_SHIFT);
63 }
64 
rds_mr_tree_walk(struct rb_root * root,u64 key,struct rds_mr * insert)65 static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key,
66 				       struct rds_mr *insert)
67 {
68 	struct rb_node **p = &root->rb_node;
69 	struct rb_node *parent = NULL;
70 	struct rds_mr *mr;
71 
72 	while (*p) {
73 		parent = *p;
74 		mr = rb_entry(parent, struct rds_mr, r_rb_node);
75 
76 		if (key < mr->r_key)
77 			p = &(*p)->rb_left;
78 		else if (key > mr->r_key)
79 			p = &(*p)->rb_right;
80 		else
81 			return mr;
82 	}
83 
84 	if (insert) {
85 		rb_link_node(&insert->r_rb_node, parent, p);
86 		rb_insert_color(&insert->r_rb_node, root);
87 		refcount_inc(&insert->r_refcount);
88 	}
89 	return NULL;
90 }
91 
92 /*
93  * Destroy the transport-specific part of a MR.
94  */
rds_destroy_mr(struct rds_mr * mr)95 static void rds_destroy_mr(struct rds_mr *mr)
96 {
97 	struct rds_sock *rs = mr->r_sock;
98 	void *trans_private = NULL;
99 	unsigned long flags;
100 
101 	rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
102 			mr->r_key, refcount_read(&mr->r_refcount));
103 
104 	if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state))
105 		return;
106 
107 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
108 	if (!RB_EMPTY_NODE(&mr->r_rb_node))
109 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
110 	trans_private = mr->r_trans_private;
111 	mr->r_trans_private = NULL;
112 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
113 
114 	if (trans_private)
115 		mr->r_trans->free_mr(trans_private, mr->r_invalidate);
116 }
117 
__rds_put_mr_final(struct rds_mr * mr)118 void __rds_put_mr_final(struct rds_mr *mr)
119 {
120 	rds_destroy_mr(mr);
121 	kfree(mr);
122 }
123 
124 /*
125  * By the time this is called we can't have any more ioctls called on
126  * the socket so we don't need to worry about racing with others.
127  */
rds_rdma_drop_keys(struct rds_sock * rs)128 void rds_rdma_drop_keys(struct rds_sock *rs)
129 {
130 	struct rds_mr *mr;
131 	struct rb_node *node;
132 	unsigned long flags;
133 
134 	/* Release any MRs associated with this socket */
135 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
136 	while ((node = rb_first(&rs->rs_rdma_keys))) {
137 		mr = rb_entry(node, struct rds_mr, r_rb_node);
138 		if (mr->r_trans == rs->rs_transport)
139 			mr->r_invalidate = 0;
140 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
141 		RB_CLEAR_NODE(&mr->r_rb_node);
142 		spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
143 		rds_destroy_mr(mr);
144 		rds_mr_put(mr);
145 		spin_lock_irqsave(&rs->rs_rdma_lock, flags);
146 	}
147 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
148 
149 	if (rs->rs_transport && rs->rs_transport->flush_mrs)
150 		rs->rs_transport->flush_mrs();
151 }
152 
153 /*
154  * Helper function to pin user pages.
155  */
rds_pin_pages(unsigned long user_addr,unsigned int nr_pages,struct page ** pages,int write)156 static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages,
157 			struct page **pages, int write)
158 {
159 	int ret;
160 
161 	ret = get_user_pages_fast(user_addr, nr_pages, write ? FOLL_WRITE : 0,
162 				  pages);
163 
164 	if (ret >= 0 && ret < nr_pages) {
165 		while (ret--)
166 			put_page(pages[ret]);
167 		ret = -EFAULT;
168 	}
169 
170 	return ret;
171 }
172 
__rds_rdma_map(struct rds_sock * rs,struct rds_get_mr_args * args,u64 * cookie_ret,struct rds_mr ** mr_ret,struct rds_conn_path * cp)173 static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args,
174 			  u64 *cookie_ret, struct rds_mr **mr_ret,
175 			  struct rds_conn_path *cp)
176 {
177 	struct rds_mr *mr = NULL, *found;
178 	unsigned int nr_pages;
179 	struct page **pages = NULL;
180 	struct scatterlist *sg;
181 	void *trans_private;
182 	unsigned long flags;
183 	rds_rdma_cookie_t cookie;
184 	unsigned int nents;
185 	long i;
186 	int ret;
187 
188 	if (ipv6_addr_any(&rs->rs_bound_addr) || !rs->rs_transport) {
189 		ret = -ENOTCONN; /* XXX not a great errno */
190 		goto out;
191 	}
192 
193 	if (!rs->rs_transport->get_mr) {
194 		ret = -EOPNOTSUPP;
195 		goto out;
196 	}
197 
198 	nr_pages = rds_pages_in_vec(&args->vec);
199 	if (nr_pages == 0) {
200 		ret = -EINVAL;
201 		goto out;
202 	}
203 
204 	/* Restrict the size of mr irrespective of underlying transport
205 	 * To account for unaligned mr regions, subtract one from nr_pages
206 	 */
207 	if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) {
208 		ret = -EMSGSIZE;
209 		goto out;
210 	}
211 
212 	rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
213 		args->vec.addr, args->vec.bytes, nr_pages);
214 
215 	/* XXX clamp nr_pages to limit the size of this alloc? */
216 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
217 	if (!pages) {
218 		ret = -ENOMEM;
219 		goto out;
220 	}
221 
222 	mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL);
223 	if (!mr) {
224 		ret = -ENOMEM;
225 		goto out;
226 	}
227 
228 	refcount_set(&mr->r_refcount, 1);
229 	RB_CLEAR_NODE(&mr->r_rb_node);
230 	mr->r_trans = rs->rs_transport;
231 	mr->r_sock = rs;
232 
233 	if (args->flags & RDS_RDMA_USE_ONCE)
234 		mr->r_use_once = 1;
235 	if (args->flags & RDS_RDMA_INVALIDATE)
236 		mr->r_invalidate = 1;
237 	if (args->flags & RDS_RDMA_READWRITE)
238 		mr->r_write = 1;
239 
240 	/*
241 	 * Pin the pages that make up the user buffer and transfer the page
242 	 * pointers to the mr's sg array.  We check to see if we've mapped
243 	 * the whole region after transferring the partial page references
244 	 * to the sg array so that we can have one page ref cleanup path.
245 	 *
246 	 * For now we have no flag that tells us whether the mapping is
247 	 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
248 	 * the zero page.
249 	 */
250 	ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1);
251 	if (ret < 0)
252 		goto out;
253 
254 	nents = ret;
255 	sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL);
256 	if (!sg) {
257 		ret = -ENOMEM;
258 		goto out;
259 	}
260 	WARN_ON(!nents);
261 	sg_init_table(sg, nents);
262 
263 	/* Stick all pages into the scatterlist */
264 	for (i = 0 ; i < nents; i++)
265 		sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
266 
267 	rdsdebug("RDS: trans_private nents is %u\n", nents);
268 
269 	/* Obtain a transport specific MR. If this succeeds, the
270 	 * s/g list is now owned by the MR.
271 	 * Note that dma_map() implies that pending writes are
272 	 * flushed to RAM, so no dma_sync is needed here. */
273 	trans_private = rs->rs_transport->get_mr(sg, nents, rs,
274 						 &mr->r_key,
275 						 cp ? cp->cp_conn : NULL);
276 
277 	if (IS_ERR(trans_private)) {
278 		for (i = 0 ; i < nents; i++)
279 			put_page(sg_page(&sg[i]));
280 		kfree(sg);
281 		ret = PTR_ERR(trans_private);
282 		/* Trigger connection so that its ready for the next retry */
283 		if (ret == -ENODEV && cp)
284 			rds_conn_connect_if_down(cp->cp_conn);
285 		goto out;
286 	}
287 
288 	mr->r_trans_private = trans_private;
289 
290 	rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
291 	       mr->r_key, (void *)(unsigned long) args->cookie_addr);
292 
293 	/* The user may pass us an unaligned address, but we can only
294 	 * map page aligned regions. So we keep the offset, and build
295 	 * a 64bit cookie containing <R_Key, offset> and pass that
296 	 * around. */
297 	cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK);
298 	if (cookie_ret)
299 		*cookie_ret = cookie;
300 
301 	if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) {
302 		ret = -EFAULT;
303 		goto out;
304 	}
305 
306 	/* Inserting the new MR into the rbtree bumps its
307 	 * reference count. */
308 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
309 	found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr);
310 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
311 
312 	BUG_ON(found && found != mr);
313 
314 	rdsdebug("RDS: get_mr key is %x\n", mr->r_key);
315 	if (mr_ret) {
316 		refcount_inc(&mr->r_refcount);
317 		*mr_ret = mr;
318 	}
319 
320 	ret = 0;
321 out:
322 	kfree(pages);
323 	if (mr)
324 		rds_mr_put(mr);
325 	return ret;
326 }
327 
rds_get_mr(struct rds_sock * rs,char __user * optval,int optlen)328 int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen)
329 {
330 	struct rds_get_mr_args args;
331 
332 	if (optlen != sizeof(struct rds_get_mr_args))
333 		return -EINVAL;
334 
335 	if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval,
336 			   sizeof(struct rds_get_mr_args)))
337 		return -EFAULT;
338 
339 	return __rds_rdma_map(rs, &args, NULL, NULL, NULL);
340 }
341 
rds_get_mr_for_dest(struct rds_sock * rs,char __user * optval,int optlen)342 int rds_get_mr_for_dest(struct rds_sock *rs, char __user *optval, int optlen)
343 {
344 	struct rds_get_mr_for_dest_args args;
345 	struct rds_get_mr_args new_args;
346 
347 	if (optlen != sizeof(struct rds_get_mr_for_dest_args))
348 		return -EINVAL;
349 
350 	if (copy_from_user(&args, (struct rds_get_mr_for_dest_args __user *)optval,
351 			   sizeof(struct rds_get_mr_for_dest_args)))
352 		return -EFAULT;
353 
354 	/*
355 	 * Initially, just behave like get_mr().
356 	 * TODO: Implement get_mr as wrapper around this
357 	 *	 and deprecate it.
358 	 */
359 	new_args.vec = args.vec;
360 	new_args.cookie_addr = args.cookie_addr;
361 	new_args.flags = args.flags;
362 
363 	return __rds_rdma_map(rs, &new_args, NULL, NULL, NULL);
364 }
365 
366 /*
367  * Free the MR indicated by the given R_Key
368  */
rds_free_mr(struct rds_sock * rs,char __user * optval,int optlen)369 int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen)
370 {
371 	struct rds_free_mr_args args;
372 	struct rds_mr *mr;
373 	unsigned long flags;
374 
375 	if (optlen != sizeof(struct rds_free_mr_args))
376 		return -EINVAL;
377 
378 	if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval,
379 			   sizeof(struct rds_free_mr_args)))
380 		return -EFAULT;
381 
382 	/* Special case - a null cookie means flush all unused MRs */
383 	if (args.cookie == 0) {
384 		if (!rs->rs_transport || !rs->rs_transport->flush_mrs)
385 			return -EINVAL;
386 		rs->rs_transport->flush_mrs();
387 		return 0;
388 	}
389 
390 	/* Look up the MR given its R_key and remove it from the rbtree
391 	 * so nobody else finds it.
392 	 * This should also prevent races with rds_rdma_unuse.
393 	 */
394 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
395 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL);
396 	if (mr) {
397 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
398 		RB_CLEAR_NODE(&mr->r_rb_node);
399 		if (args.flags & RDS_RDMA_INVALIDATE)
400 			mr->r_invalidate = 1;
401 	}
402 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
403 
404 	if (!mr)
405 		return -EINVAL;
406 
407 	/*
408 	 * call rds_destroy_mr() ourselves so that we're sure it's done by the time
409 	 * we return.  If we let rds_mr_put() do it it might not happen until
410 	 * someone else drops their ref.
411 	 */
412 	rds_destroy_mr(mr);
413 	rds_mr_put(mr);
414 	return 0;
415 }
416 
417 /*
418  * This is called when we receive an extension header that
419  * tells us this MR was used. It allows us to implement
420  * use_once semantics
421  */
rds_rdma_unuse(struct rds_sock * rs,u32 r_key,int force)422 void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force)
423 {
424 	struct rds_mr *mr;
425 	unsigned long flags;
426 	int zot_me = 0;
427 
428 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
429 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
430 	if (!mr) {
431 		pr_debug("rds: trying to unuse MR with unknown r_key %u!\n",
432 			 r_key);
433 		spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
434 		return;
435 	}
436 
437 	if (mr->r_use_once || force) {
438 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
439 		RB_CLEAR_NODE(&mr->r_rb_node);
440 		zot_me = 1;
441 	}
442 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
443 
444 	/* May have to issue a dma_sync on this memory region.
445 	 * Note we could avoid this if the operation was a RDMA READ,
446 	 * but at this point we can't tell. */
447 	if (mr->r_trans->sync_mr)
448 		mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE);
449 
450 	/* If the MR was marked as invalidate, this will
451 	 * trigger an async flush. */
452 	if (zot_me) {
453 		rds_destroy_mr(mr);
454 		rds_mr_put(mr);
455 	}
456 }
457 
rds_rdma_free_op(struct rm_rdma_op * ro)458 void rds_rdma_free_op(struct rm_rdma_op *ro)
459 {
460 	unsigned int i;
461 
462 	for (i = 0; i < ro->op_nents; i++) {
463 		struct page *page = sg_page(&ro->op_sg[i]);
464 
465 		/* Mark page dirty if it was possibly modified, which
466 		 * is the case for a RDMA_READ which copies from remote
467 		 * to local memory */
468 		if (!ro->op_write) {
469 			WARN_ON(!page->mapping && irqs_disabled());
470 			set_page_dirty(page);
471 		}
472 		put_page(page);
473 	}
474 
475 	kfree(ro->op_notifier);
476 	ro->op_notifier = NULL;
477 	ro->op_active = 0;
478 }
479 
rds_atomic_free_op(struct rm_atomic_op * ao)480 void rds_atomic_free_op(struct rm_atomic_op *ao)
481 {
482 	struct page *page = sg_page(ao->op_sg);
483 
484 	/* Mark page dirty if it was possibly modified, which
485 	 * is the case for a RDMA_READ which copies from remote
486 	 * to local memory */
487 	set_page_dirty(page);
488 	put_page(page);
489 
490 	kfree(ao->op_notifier);
491 	ao->op_notifier = NULL;
492 	ao->op_active = 0;
493 }
494 
495 
496 /*
497  * Count the number of pages needed to describe an incoming iovec array.
498  */
rds_rdma_pages(struct rds_iovec iov[],int nr_iovecs)499 static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs)
500 {
501 	int tot_pages = 0;
502 	unsigned int nr_pages;
503 	unsigned int i;
504 
505 	/* figure out the number of pages in the vector */
506 	for (i = 0; i < nr_iovecs; i++) {
507 		nr_pages = rds_pages_in_vec(&iov[i]);
508 		if (nr_pages == 0)
509 			return -EINVAL;
510 
511 		tot_pages += nr_pages;
512 
513 		/*
514 		 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
515 		 * so tot_pages cannot overflow without first going negative.
516 		 */
517 		if (tot_pages < 0)
518 			return -EINVAL;
519 	}
520 
521 	return tot_pages;
522 }
523 
rds_rdma_extra_size(struct rds_rdma_args * args,struct rds_iov_vector * iov)524 int rds_rdma_extra_size(struct rds_rdma_args *args,
525 			struct rds_iov_vector *iov)
526 {
527 	struct rds_iovec *vec;
528 	struct rds_iovec __user *local_vec;
529 	int tot_pages = 0;
530 	unsigned int nr_pages;
531 	unsigned int i;
532 
533 	local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
534 
535 	if (args->nr_local == 0)
536 		return -EINVAL;
537 
538 	if (args->nr_local > UIO_MAXIOV)
539 		return -EMSGSIZE;
540 
541 	iov->iov = kcalloc(args->nr_local,
542 			   sizeof(struct rds_iovec),
543 			   GFP_KERNEL);
544 	if (!iov->iov)
545 		return -ENOMEM;
546 
547 	vec = &iov->iov[0];
548 
549 	if (copy_from_user(vec, local_vec, args->nr_local *
550 			   sizeof(struct rds_iovec)))
551 		return -EFAULT;
552 	iov->len = args->nr_local;
553 
554 	/* figure out the number of pages in the vector */
555 	for (i = 0; i < args->nr_local; i++, vec++) {
556 
557 		nr_pages = rds_pages_in_vec(vec);
558 		if (nr_pages == 0)
559 			return -EINVAL;
560 
561 		tot_pages += nr_pages;
562 
563 		/*
564 		 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
565 		 * so tot_pages cannot overflow without first going negative.
566 		 */
567 		if (tot_pages < 0)
568 			return -EINVAL;
569 	}
570 
571 	return tot_pages * sizeof(struct scatterlist);
572 }
573 
574 /*
575  * The application asks for a RDMA transfer.
576  * Extract all arguments and set up the rdma_op
577  */
rds_cmsg_rdma_args(struct rds_sock * rs,struct rds_message * rm,struct cmsghdr * cmsg,struct rds_iov_vector * vec)578 int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm,
579 		       struct cmsghdr *cmsg,
580 		       struct rds_iov_vector *vec)
581 {
582 	struct rds_rdma_args *args;
583 	struct rm_rdma_op *op = &rm->rdma;
584 	int nr_pages;
585 	unsigned int nr_bytes;
586 	struct page **pages = NULL;
587 	struct rds_iovec *iovs;
588 	unsigned int i, j;
589 	int ret = 0;
590 
591 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args))
592 	    || rm->rdma.op_active)
593 		return -EINVAL;
594 
595 	args = CMSG_DATA(cmsg);
596 
597 	if (ipv6_addr_any(&rs->rs_bound_addr)) {
598 		ret = -ENOTCONN; /* XXX not a great errno */
599 		goto out_ret;
600 	}
601 
602 	if (args->nr_local > UIO_MAXIOV) {
603 		ret = -EMSGSIZE;
604 		goto out_ret;
605 	}
606 
607 	if (vec->len != args->nr_local) {
608 		ret = -EINVAL;
609 		goto out_ret;
610 	}
611 
612 	iovs = vec->iov;
613 
614 	nr_pages = rds_rdma_pages(iovs, args->nr_local);
615 	if (nr_pages < 0) {
616 		ret = -EINVAL;
617 		goto out_ret;
618 	}
619 
620 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
621 	if (!pages) {
622 		ret = -ENOMEM;
623 		goto out_ret;
624 	}
625 
626 	op->op_write = !!(args->flags & RDS_RDMA_READWRITE);
627 	op->op_fence = !!(args->flags & RDS_RDMA_FENCE);
628 	op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
629 	op->op_silent = !!(args->flags & RDS_RDMA_SILENT);
630 	op->op_active = 1;
631 	op->op_recverr = rs->rs_recverr;
632 	WARN_ON(!nr_pages);
633 	op->op_sg = rds_message_alloc_sgs(rm, nr_pages);
634 	if (IS_ERR(op->op_sg)) {
635 		ret = PTR_ERR(op->op_sg);
636 		goto out_pages;
637 	}
638 
639 	if (op->op_notify || op->op_recverr) {
640 		/* We allocate an uninitialized notifier here, because
641 		 * we don't want to do that in the completion handler. We
642 		 * would have to use GFP_ATOMIC there, and don't want to deal
643 		 * with failed allocations.
644 		 */
645 		op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL);
646 		if (!op->op_notifier) {
647 			ret = -ENOMEM;
648 			goto out_pages;
649 		}
650 		op->op_notifier->n_user_token = args->user_token;
651 		op->op_notifier->n_status = RDS_RDMA_SUCCESS;
652 	}
653 
654 	/* The cookie contains the R_Key of the remote memory region, and
655 	 * optionally an offset into it. This is how we implement RDMA into
656 	 * unaligned memory.
657 	 * When setting up the RDMA, we need to add that offset to the
658 	 * destination address (which is really an offset into the MR)
659 	 * FIXME: We may want to move this into ib_rdma.c
660 	 */
661 	op->op_rkey = rds_rdma_cookie_key(args->cookie);
662 	op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie);
663 
664 	nr_bytes = 0;
665 
666 	rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
667 	       (unsigned long long)args->nr_local,
668 	       (unsigned long long)args->remote_vec.addr,
669 	       op->op_rkey);
670 
671 	for (i = 0; i < args->nr_local; i++) {
672 		struct rds_iovec *iov = &iovs[i];
673 		/* don't need to check, rds_rdma_pages() verified nr will be +nonzero */
674 		unsigned int nr = rds_pages_in_vec(iov);
675 
676 		rs->rs_user_addr = iov->addr;
677 		rs->rs_user_bytes = iov->bytes;
678 
679 		/* If it's a WRITE operation, we want to pin the pages for reading.
680 		 * If it's a READ operation, we need to pin the pages for writing.
681 		 */
682 		ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write);
683 		if (ret < 0)
684 			goto out_pages;
685 		else
686 			ret = 0;
687 
688 		rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n",
689 			 nr_bytes, nr, iov->bytes, iov->addr);
690 
691 		nr_bytes += iov->bytes;
692 
693 		for (j = 0; j < nr; j++) {
694 			unsigned int offset = iov->addr & ~PAGE_MASK;
695 			struct scatterlist *sg;
696 
697 			sg = &op->op_sg[op->op_nents + j];
698 			sg_set_page(sg, pages[j],
699 					min_t(unsigned int, iov->bytes, PAGE_SIZE - offset),
700 					offset);
701 
702 			rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n",
703 			       sg->offset, sg->length, iov->addr, iov->bytes);
704 
705 			iov->addr += sg->length;
706 			iov->bytes -= sg->length;
707 		}
708 
709 		op->op_nents += nr;
710 	}
711 
712 	if (nr_bytes > args->remote_vec.bytes) {
713 		rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
714 				nr_bytes,
715 				(unsigned int) args->remote_vec.bytes);
716 		ret = -EINVAL;
717 		goto out_pages;
718 	}
719 	op->op_bytes = nr_bytes;
720 
721 out_pages:
722 	kfree(pages);
723 out_ret:
724 	if (ret)
725 		rds_rdma_free_op(op);
726 	else
727 		rds_stats_inc(s_send_rdma);
728 
729 	return ret;
730 }
731 
732 /*
733  * The application wants us to pass an RDMA destination (aka MR)
734  * to the remote
735  */
rds_cmsg_rdma_dest(struct rds_sock * rs,struct rds_message * rm,struct cmsghdr * cmsg)736 int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm,
737 			  struct cmsghdr *cmsg)
738 {
739 	unsigned long flags;
740 	struct rds_mr *mr;
741 	u32 r_key;
742 	int err = 0;
743 
744 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) ||
745 	    rm->m_rdma_cookie != 0)
746 		return -EINVAL;
747 
748 	memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie));
749 
750 	/* We are reusing a previously mapped MR here. Most likely, the
751 	 * application has written to the buffer, so we need to explicitly
752 	 * flush those writes to RAM. Otherwise the HCA may not see them
753 	 * when doing a DMA from that buffer.
754 	 */
755 	r_key = rds_rdma_cookie_key(rm->m_rdma_cookie);
756 
757 	spin_lock_irqsave(&rs->rs_rdma_lock, flags);
758 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
759 	if (!mr)
760 		err = -EINVAL;	/* invalid r_key */
761 	else
762 		refcount_inc(&mr->r_refcount);
763 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
764 
765 	if (mr) {
766 		mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE);
767 		rm->rdma.op_rdma_mr = mr;
768 	}
769 	return err;
770 }
771 
772 /*
773  * The application passes us an address range it wants to enable RDMA
774  * to/from. We map the area, and save the <R_Key,offset> pair
775  * in rm->m_rdma_cookie. This causes it to be sent along to the peer
776  * in an extension header.
777  */
rds_cmsg_rdma_map(struct rds_sock * rs,struct rds_message * rm,struct cmsghdr * cmsg)778 int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm,
779 			  struct cmsghdr *cmsg)
780 {
781 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) ||
782 	    rm->m_rdma_cookie != 0)
783 		return -EINVAL;
784 
785 	return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie,
786 			      &rm->rdma.op_rdma_mr, rm->m_conn_path);
787 }
788 
789 /*
790  * Fill in rds_message for an atomic request.
791  */
rds_cmsg_atomic(struct rds_sock * rs,struct rds_message * rm,struct cmsghdr * cmsg)792 int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm,
793 		    struct cmsghdr *cmsg)
794 {
795 	struct page *page = NULL;
796 	struct rds_atomic_args *args;
797 	int ret = 0;
798 
799 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args))
800 	 || rm->atomic.op_active)
801 		return -EINVAL;
802 
803 	args = CMSG_DATA(cmsg);
804 
805 	/* Nonmasked & masked cmsg ops converted to masked hw ops */
806 	switch (cmsg->cmsg_type) {
807 	case RDS_CMSG_ATOMIC_FADD:
808 		rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
809 		rm->atomic.op_m_fadd.add = args->fadd.add;
810 		rm->atomic.op_m_fadd.nocarry_mask = 0;
811 		break;
812 	case RDS_CMSG_MASKED_ATOMIC_FADD:
813 		rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
814 		rm->atomic.op_m_fadd.add = args->m_fadd.add;
815 		rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask;
816 		break;
817 	case RDS_CMSG_ATOMIC_CSWP:
818 		rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
819 		rm->atomic.op_m_cswp.compare = args->cswp.compare;
820 		rm->atomic.op_m_cswp.swap = args->cswp.swap;
821 		rm->atomic.op_m_cswp.compare_mask = ~0;
822 		rm->atomic.op_m_cswp.swap_mask = ~0;
823 		break;
824 	case RDS_CMSG_MASKED_ATOMIC_CSWP:
825 		rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
826 		rm->atomic.op_m_cswp.compare = args->m_cswp.compare;
827 		rm->atomic.op_m_cswp.swap = args->m_cswp.swap;
828 		rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask;
829 		rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask;
830 		break;
831 	default:
832 		BUG(); /* should never happen */
833 	}
834 
835 	rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
836 	rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT);
837 	rm->atomic.op_active = 1;
838 	rm->atomic.op_recverr = rs->rs_recverr;
839 	rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1);
840 	if (IS_ERR(rm->atomic.op_sg)) {
841 		ret = PTR_ERR(rm->atomic.op_sg);
842 		goto err;
843 	}
844 
845 	/* verify 8 byte-aligned */
846 	if (args->local_addr & 0x7) {
847 		ret = -EFAULT;
848 		goto err;
849 	}
850 
851 	ret = rds_pin_pages(args->local_addr, 1, &page, 1);
852 	if (ret != 1)
853 		goto err;
854 	ret = 0;
855 
856 	sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr));
857 
858 	if (rm->atomic.op_notify || rm->atomic.op_recverr) {
859 		/* We allocate an uninitialized notifier here, because
860 		 * we don't want to do that in the completion handler. We
861 		 * would have to use GFP_ATOMIC there, and don't want to deal
862 		 * with failed allocations.
863 		 */
864 		rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL);
865 		if (!rm->atomic.op_notifier) {
866 			ret = -ENOMEM;
867 			goto err;
868 		}
869 
870 		rm->atomic.op_notifier->n_user_token = args->user_token;
871 		rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS;
872 	}
873 
874 	rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie);
875 	rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie);
876 
877 	return ret;
878 err:
879 	if (page)
880 		put_page(page);
881 	rm->atomic.op_active = 0;
882 	kfree(rm->atomic.op_notifier);
883 
884 	return ret;
885 }
886