1 /*
2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33 #include <linux/module.h>
34 #include <linux/errno.h>
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/in.h>
38 #include <linux/ipv6.h>
39 #include <linux/poll.h>
40 #include <net/sock.h>
41
42 #include "rds.h"
43
44 /* this is just used for stats gathering :/ */
45 static DEFINE_SPINLOCK(rds_sock_lock);
46 static unsigned long rds_sock_count;
47 static LIST_HEAD(rds_sock_list);
48 DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);
49
50 /*
51 * This is called as the final descriptor referencing this socket is closed.
52 * We have to unbind the socket so that another socket can be bound to the
53 * address it was using.
54 *
55 * We have to be careful about racing with the incoming path. sock_orphan()
56 * sets SOCK_DEAD and we use that as an indicator to the rx path that new
57 * messages shouldn't be queued.
58 */
rds_release(struct socket * sock)59 static int rds_release(struct socket *sock)
60 {
61 struct sock *sk = sock->sk;
62 struct rds_sock *rs;
63
64 if (!sk)
65 goto out;
66
67 rs = rds_sk_to_rs(sk);
68
69 sock_orphan(sk);
70 /* Note - rds_clear_recv_queue grabs rs_recv_lock, so
71 * that ensures the recv path has completed messing
72 * with the socket. */
73 rds_clear_recv_queue(rs);
74 rds_cong_remove_socket(rs);
75
76 rds_remove_bound(rs);
77
78 rds_send_drop_to(rs, NULL);
79 rds_rdma_drop_keys(rs);
80 rds_notify_queue_get(rs, NULL);
81 rds_notify_msg_zcopy_purge(&rs->rs_zcookie_queue);
82
83 spin_lock_bh(&rds_sock_lock);
84 list_del_init(&rs->rs_item);
85 rds_sock_count--;
86 spin_unlock_bh(&rds_sock_lock);
87
88 rds_trans_put(rs->rs_transport);
89
90 sock->sk = NULL;
91 sock_put(sk);
92 out:
93 return 0;
94 }
95
96 /*
97 * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
98 * _bh() isn't OK here, we're called from interrupt handlers. It's probably OK
99 * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
100 * this seems more conservative.
101 * NB - normally, one would use sk_callback_lock for this, but we can
102 * get here from interrupts, whereas the network code grabs sk_callback_lock
103 * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
104 */
rds_wake_sk_sleep(struct rds_sock * rs)105 void rds_wake_sk_sleep(struct rds_sock *rs)
106 {
107 unsigned long flags;
108
109 read_lock_irqsave(&rs->rs_recv_lock, flags);
110 __rds_wake_sk_sleep(rds_rs_to_sk(rs));
111 read_unlock_irqrestore(&rs->rs_recv_lock, flags);
112 }
113
rds_getname(struct socket * sock,struct sockaddr * uaddr,int peer)114 static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
115 int peer)
116 {
117 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
118 struct sockaddr_in6 *sin6;
119 struct sockaddr_in *sin;
120 int uaddr_len;
121
122 /* racey, don't care */
123 if (peer) {
124 if (ipv6_addr_any(&rs->rs_conn_addr))
125 return -ENOTCONN;
126
127 if (ipv6_addr_v4mapped(&rs->rs_conn_addr)) {
128 sin = (struct sockaddr_in *)uaddr;
129 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
130 sin->sin_family = AF_INET;
131 sin->sin_port = rs->rs_conn_port;
132 sin->sin_addr.s_addr = rs->rs_conn_addr_v4;
133 uaddr_len = sizeof(*sin);
134 } else {
135 sin6 = (struct sockaddr_in6 *)uaddr;
136 sin6->sin6_family = AF_INET6;
137 sin6->sin6_port = rs->rs_conn_port;
138 sin6->sin6_addr = rs->rs_conn_addr;
139 sin6->sin6_flowinfo = 0;
140 /* scope_id is the same as in the bound address. */
141 sin6->sin6_scope_id = rs->rs_bound_scope_id;
142 uaddr_len = sizeof(*sin6);
143 }
144 } else {
145 /* If socket is not yet bound and the socket is connected,
146 * set the return address family to be the same as the
147 * connected address, but with 0 address value. If it is not
148 * connected, set the family to be AF_UNSPEC (value 0) and
149 * the address size to be that of an IPv4 address.
150 */
151 if (ipv6_addr_any(&rs->rs_bound_addr)) {
152 if (ipv6_addr_any(&rs->rs_conn_addr)) {
153 sin = (struct sockaddr_in *)uaddr;
154 memset(sin, 0, sizeof(*sin));
155 sin->sin_family = AF_UNSPEC;
156 return sizeof(*sin);
157 }
158
159 #if IS_ENABLED(CONFIG_IPV6)
160 if (!(ipv6_addr_type(&rs->rs_conn_addr) &
161 IPV6_ADDR_MAPPED)) {
162 sin6 = (struct sockaddr_in6 *)uaddr;
163 memset(sin6, 0, sizeof(*sin6));
164 sin6->sin6_family = AF_INET6;
165 return sizeof(*sin6);
166 }
167 #endif
168
169 sin = (struct sockaddr_in *)uaddr;
170 memset(sin, 0, sizeof(*sin));
171 sin->sin_family = AF_INET;
172 return sizeof(*sin);
173 }
174 if (ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
175 sin = (struct sockaddr_in *)uaddr;
176 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
177 sin->sin_family = AF_INET;
178 sin->sin_port = rs->rs_bound_port;
179 sin->sin_addr.s_addr = rs->rs_bound_addr_v4;
180 uaddr_len = sizeof(*sin);
181 } else {
182 sin6 = (struct sockaddr_in6 *)uaddr;
183 sin6->sin6_family = AF_INET6;
184 sin6->sin6_port = rs->rs_bound_port;
185 sin6->sin6_addr = rs->rs_bound_addr;
186 sin6->sin6_flowinfo = 0;
187 sin6->sin6_scope_id = rs->rs_bound_scope_id;
188 uaddr_len = sizeof(*sin6);
189 }
190 }
191
192 return uaddr_len;
193 }
194
195 /*
196 * RDS' poll is without a doubt the least intuitive part of the interface,
197 * as EPOLLIN and EPOLLOUT do not behave entirely as you would expect from
198 * a network protocol.
199 *
200 * EPOLLIN is asserted if
201 * - there is data on the receive queue.
202 * - to signal that a previously congested destination may have become
203 * uncongested
204 * - A notification has been queued to the socket (this can be a congestion
205 * update, or a RDMA completion, or a MSG_ZEROCOPY completion).
206 *
207 * EPOLLOUT is asserted if there is room on the send queue. This does not mean
208 * however, that the next sendmsg() call will succeed. If the application tries
209 * to send to a congested destination, the system call may still fail (and
210 * return ENOBUFS).
211 */
rds_poll(struct file * file,struct socket * sock,poll_table * wait)212 static __poll_t rds_poll(struct file *file, struct socket *sock,
213 poll_table *wait)
214 {
215 struct sock *sk = sock->sk;
216 struct rds_sock *rs = rds_sk_to_rs(sk);
217 __poll_t mask = 0;
218 unsigned long flags;
219
220 poll_wait(file, sk_sleep(sk), wait);
221
222 if (rs->rs_seen_congestion)
223 poll_wait(file, &rds_poll_waitq, wait);
224
225 read_lock_irqsave(&rs->rs_recv_lock, flags);
226 if (!rs->rs_cong_monitor) {
227 /* When a congestion map was updated, we signal EPOLLIN for
228 * "historical" reasons. Applications can also poll for
229 * WRBAND instead. */
230 if (rds_cong_updated_since(&rs->rs_cong_track))
231 mask |= (EPOLLIN | EPOLLRDNORM | EPOLLWRBAND);
232 } else {
233 spin_lock(&rs->rs_lock);
234 if (rs->rs_cong_notify)
235 mask |= (EPOLLIN | EPOLLRDNORM);
236 spin_unlock(&rs->rs_lock);
237 }
238 if (!list_empty(&rs->rs_recv_queue) ||
239 !list_empty(&rs->rs_notify_queue) ||
240 !list_empty(&rs->rs_zcookie_queue.zcookie_head))
241 mask |= (EPOLLIN | EPOLLRDNORM);
242 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
243 mask |= (EPOLLOUT | EPOLLWRNORM);
244 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
245 mask |= POLLERR;
246 read_unlock_irqrestore(&rs->rs_recv_lock, flags);
247
248 /* clear state any time we wake a seen-congested socket */
249 if (mask)
250 rs->rs_seen_congestion = 0;
251
252 return mask;
253 }
254
rds_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)255 static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
256 {
257 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
258 rds_tos_t utos, tos = 0;
259
260 switch (cmd) {
261 case SIOCRDSSETTOS:
262 if (get_user(utos, (rds_tos_t __user *)arg))
263 return -EFAULT;
264
265 if (rs->rs_transport &&
266 rs->rs_transport->get_tos_map)
267 tos = rs->rs_transport->get_tos_map(utos);
268 else
269 return -ENOIOCTLCMD;
270
271 spin_lock_bh(&rds_sock_lock);
272 if (rs->rs_tos || rs->rs_conn) {
273 spin_unlock_bh(&rds_sock_lock);
274 return -EINVAL;
275 }
276 rs->rs_tos = tos;
277 spin_unlock_bh(&rds_sock_lock);
278 break;
279 case SIOCRDSGETTOS:
280 spin_lock_bh(&rds_sock_lock);
281 tos = rs->rs_tos;
282 spin_unlock_bh(&rds_sock_lock);
283 if (put_user(tos, (rds_tos_t __user *)arg))
284 return -EFAULT;
285 break;
286 default:
287 return -ENOIOCTLCMD;
288 }
289
290 return 0;
291 }
292
rds_cancel_sent_to(struct rds_sock * rs,char __user * optval,int len)293 static int rds_cancel_sent_to(struct rds_sock *rs, char __user *optval,
294 int len)
295 {
296 struct sockaddr_in6 sin6;
297 struct sockaddr_in sin;
298 int ret = 0;
299
300 /* racing with another thread binding seems ok here */
301 if (ipv6_addr_any(&rs->rs_bound_addr)) {
302 ret = -ENOTCONN; /* XXX not a great errno */
303 goto out;
304 }
305
306 if (len < sizeof(struct sockaddr_in)) {
307 ret = -EINVAL;
308 goto out;
309 } else if (len < sizeof(struct sockaddr_in6)) {
310 /* Assume IPv4 */
311 if (copy_from_user(&sin, optval, sizeof(struct sockaddr_in))) {
312 ret = -EFAULT;
313 goto out;
314 }
315 ipv6_addr_set_v4mapped(sin.sin_addr.s_addr, &sin6.sin6_addr);
316 sin6.sin6_port = sin.sin_port;
317 } else {
318 if (copy_from_user(&sin6, optval,
319 sizeof(struct sockaddr_in6))) {
320 ret = -EFAULT;
321 goto out;
322 }
323 }
324
325 rds_send_drop_to(rs, &sin6);
326 out:
327 return ret;
328 }
329
rds_set_bool_option(unsigned char * optvar,char __user * optval,int optlen)330 static int rds_set_bool_option(unsigned char *optvar, char __user *optval,
331 int optlen)
332 {
333 int value;
334
335 if (optlen < sizeof(int))
336 return -EINVAL;
337 if (get_user(value, (int __user *) optval))
338 return -EFAULT;
339 *optvar = !!value;
340 return 0;
341 }
342
rds_cong_monitor(struct rds_sock * rs,char __user * optval,int optlen)343 static int rds_cong_monitor(struct rds_sock *rs, char __user *optval,
344 int optlen)
345 {
346 int ret;
347
348 ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
349 if (ret == 0) {
350 if (rs->rs_cong_monitor) {
351 rds_cong_add_socket(rs);
352 } else {
353 rds_cong_remove_socket(rs);
354 rs->rs_cong_mask = 0;
355 rs->rs_cong_notify = 0;
356 }
357 }
358 return ret;
359 }
360
rds_set_transport(struct rds_sock * rs,char __user * optval,int optlen)361 static int rds_set_transport(struct rds_sock *rs, char __user *optval,
362 int optlen)
363 {
364 int t_type;
365
366 if (rs->rs_transport)
367 return -EOPNOTSUPP; /* previously attached to transport */
368
369 if (optlen != sizeof(int))
370 return -EINVAL;
371
372 if (copy_from_user(&t_type, (int __user *)optval, sizeof(t_type)))
373 return -EFAULT;
374
375 if (t_type < 0 || t_type >= RDS_TRANS_COUNT)
376 return -EINVAL;
377
378 rs->rs_transport = rds_trans_get(t_type);
379
380 return rs->rs_transport ? 0 : -ENOPROTOOPT;
381 }
382
rds_enable_recvtstamp(struct sock * sk,char __user * optval,int optlen,int optname)383 static int rds_enable_recvtstamp(struct sock *sk, char __user *optval,
384 int optlen, int optname)
385 {
386 int val, valbool;
387
388 if (optlen != sizeof(int))
389 return -EFAULT;
390
391 if (get_user(val, (int __user *)optval))
392 return -EFAULT;
393
394 valbool = val ? 1 : 0;
395
396 if (optname == SO_TIMESTAMP_NEW)
397 sock_set_flag(sk, SOCK_TSTAMP_NEW);
398
399 if (valbool)
400 sock_set_flag(sk, SOCK_RCVTSTAMP);
401 else
402 sock_reset_flag(sk, SOCK_RCVTSTAMP);
403
404 return 0;
405 }
406
rds_recv_track_latency(struct rds_sock * rs,char __user * optval,int optlen)407 static int rds_recv_track_latency(struct rds_sock *rs, char __user *optval,
408 int optlen)
409 {
410 struct rds_rx_trace_so trace;
411 int i;
412
413 if (optlen != sizeof(struct rds_rx_trace_so))
414 return -EFAULT;
415
416 if (copy_from_user(&trace, optval, sizeof(trace)))
417 return -EFAULT;
418
419 if (trace.rx_traces > RDS_MSG_RX_DGRAM_TRACE_MAX)
420 return -EFAULT;
421
422 rs->rs_rx_traces = trace.rx_traces;
423 for (i = 0; i < rs->rs_rx_traces; i++) {
424 if (trace.rx_trace_pos[i] >= RDS_MSG_RX_DGRAM_TRACE_MAX) {
425 rs->rs_rx_traces = 0;
426 return -EFAULT;
427 }
428 rs->rs_rx_trace[i] = trace.rx_trace_pos[i];
429 }
430
431 return 0;
432 }
433
rds_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)434 static int rds_setsockopt(struct socket *sock, int level, int optname,
435 char __user *optval, unsigned int optlen)
436 {
437 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
438 int ret;
439
440 if (level != SOL_RDS) {
441 ret = -ENOPROTOOPT;
442 goto out;
443 }
444
445 switch (optname) {
446 case RDS_CANCEL_SENT_TO:
447 ret = rds_cancel_sent_to(rs, optval, optlen);
448 break;
449 case RDS_GET_MR:
450 ret = rds_get_mr(rs, optval, optlen);
451 break;
452 case RDS_GET_MR_FOR_DEST:
453 ret = rds_get_mr_for_dest(rs, optval, optlen);
454 break;
455 case RDS_FREE_MR:
456 ret = rds_free_mr(rs, optval, optlen);
457 break;
458 case RDS_RECVERR:
459 ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
460 break;
461 case RDS_CONG_MONITOR:
462 ret = rds_cong_monitor(rs, optval, optlen);
463 break;
464 case SO_RDS_TRANSPORT:
465 lock_sock(sock->sk);
466 ret = rds_set_transport(rs, optval, optlen);
467 release_sock(sock->sk);
468 break;
469 case SO_TIMESTAMP_OLD:
470 case SO_TIMESTAMP_NEW:
471 lock_sock(sock->sk);
472 ret = rds_enable_recvtstamp(sock->sk, optval, optlen, optname);
473 release_sock(sock->sk);
474 break;
475 case SO_RDS_MSG_RXPATH_LATENCY:
476 ret = rds_recv_track_latency(rs, optval, optlen);
477 break;
478 default:
479 ret = -ENOPROTOOPT;
480 }
481 out:
482 return ret;
483 }
484
rds_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)485 static int rds_getsockopt(struct socket *sock, int level, int optname,
486 char __user *optval, int __user *optlen)
487 {
488 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
489 int ret = -ENOPROTOOPT, len;
490 int trans;
491
492 if (level != SOL_RDS)
493 goto out;
494
495 if (get_user(len, optlen)) {
496 ret = -EFAULT;
497 goto out;
498 }
499
500 switch (optname) {
501 case RDS_INFO_FIRST ... RDS_INFO_LAST:
502 ret = rds_info_getsockopt(sock, optname, optval,
503 optlen);
504 break;
505
506 case RDS_RECVERR:
507 if (len < sizeof(int))
508 ret = -EINVAL;
509 else
510 if (put_user(rs->rs_recverr, (int __user *) optval) ||
511 put_user(sizeof(int), optlen))
512 ret = -EFAULT;
513 else
514 ret = 0;
515 break;
516 case SO_RDS_TRANSPORT:
517 if (len < sizeof(int)) {
518 ret = -EINVAL;
519 break;
520 }
521 trans = (rs->rs_transport ? rs->rs_transport->t_type :
522 RDS_TRANS_NONE); /* unbound */
523 if (put_user(trans, (int __user *)optval) ||
524 put_user(sizeof(int), optlen))
525 ret = -EFAULT;
526 else
527 ret = 0;
528 break;
529 default:
530 break;
531 }
532
533 out:
534 return ret;
535
536 }
537
rds_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)538 static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
539 int addr_len, int flags)
540 {
541 struct sock *sk = sock->sk;
542 struct sockaddr_in *sin;
543 struct rds_sock *rs = rds_sk_to_rs(sk);
544 int ret = 0;
545
546 if (addr_len < offsetofend(struct sockaddr, sa_family))
547 return -EINVAL;
548
549 lock_sock(sk);
550
551 switch (uaddr->sa_family) {
552 case AF_INET:
553 sin = (struct sockaddr_in *)uaddr;
554 if (addr_len < sizeof(struct sockaddr_in)) {
555 ret = -EINVAL;
556 break;
557 }
558 if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
559 ret = -EDESTADDRREQ;
560 break;
561 }
562 if (ipv4_is_multicast(sin->sin_addr.s_addr) ||
563 sin->sin_addr.s_addr == htonl(INADDR_BROADCAST)) {
564 ret = -EINVAL;
565 break;
566 }
567 ipv6_addr_set_v4mapped(sin->sin_addr.s_addr, &rs->rs_conn_addr);
568 rs->rs_conn_port = sin->sin_port;
569 break;
570
571 #if IS_ENABLED(CONFIG_IPV6)
572 case AF_INET6: {
573 struct sockaddr_in6 *sin6;
574 int addr_type;
575
576 sin6 = (struct sockaddr_in6 *)uaddr;
577 if (addr_len < sizeof(struct sockaddr_in6)) {
578 ret = -EINVAL;
579 break;
580 }
581 addr_type = ipv6_addr_type(&sin6->sin6_addr);
582 if (!(addr_type & IPV6_ADDR_UNICAST)) {
583 __be32 addr4;
584
585 if (!(addr_type & IPV6_ADDR_MAPPED)) {
586 ret = -EPROTOTYPE;
587 break;
588 }
589
590 /* It is a mapped address. Need to do some sanity
591 * checks.
592 */
593 addr4 = sin6->sin6_addr.s6_addr32[3];
594 if (addr4 == htonl(INADDR_ANY) ||
595 addr4 == htonl(INADDR_BROADCAST) ||
596 ipv4_is_multicast(addr4)) {
597 ret = -EPROTOTYPE;
598 break;
599 }
600 }
601
602 if (addr_type & IPV6_ADDR_LINKLOCAL) {
603 /* If socket is arleady bound to a link local address,
604 * the peer address must be on the same link.
605 */
606 if (sin6->sin6_scope_id == 0 ||
607 (!ipv6_addr_any(&rs->rs_bound_addr) &&
608 rs->rs_bound_scope_id &&
609 sin6->sin6_scope_id != rs->rs_bound_scope_id)) {
610 ret = -EINVAL;
611 break;
612 }
613 /* Remember the connected address scope ID. It will
614 * be checked against the binding local address when
615 * the socket is bound.
616 */
617 rs->rs_bound_scope_id = sin6->sin6_scope_id;
618 }
619 rs->rs_conn_addr = sin6->sin6_addr;
620 rs->rs_conn_port = sin6->sin6_port;
621 break;
622 }
623 #endif
624
625 default:
626 ret = -EAFNOSUPPORT;
627 break;
628 }
629
630 release_sock(sk);
631 return ret;
632 }
633
634 static struct proto rds_proto = {
635 .name = "RDS",
636 .owner = THIS_MODULE,
637 .obj_size = sizeof(struct rds_sock),
638 };
639
640 static const struct proto_ops rds_proto_ops = {
641 .family = AF_RDS,
642 .owner = THIS_MODULE,
643 .release = rds_release,
644 .bind = rds_bind,
645 .connect = rds_connect,
646 .socketpair = sock_no_socketpair,
647 .accept = sock_no_accept,
648 .getname = rds_getname,
649 .poll = rds_poll,
650 .ioctl = rds_ioctl,
651 .listen = sock_no_listen,
652 .shutdown = sock_no_shutdown,
653 .setsockopt = rds_setsockopt,
654 .getsockopt = rds_getsockopt,
655 .sendmsg = rds_sendmsg,
656 .recvmsg = rds_recvmsg,
657 .mmap = sock_no_mmap,
658 .sendpage = sock_no_sendpage,
659 };
660
rds_sock_destruct(struct sock * sk)661 static void rds_sock_destruct(struct sock *sk)
662 {
663 struct rds_sock *rs = rds_sk_to_rs(sk);
664
665 WARN_ON((&rs->rs_item != rs->rs_item.next ||
666 &rs->rs_item != rs->rs_item.prev));
667 }
668
__rds_create(struct socket * sock,struct sock * sk,int protocol)669 static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
670 {
671 struct rds_sock *rs;
672
673 sock_init_data(sock, sk);
674 sock->ops = &rds_proto_ops;
675 sk->sk_protocol = protocol;
676 sk->sk_destruct = rds_sock_destruct;
677
678 rs = rds_sk_to_rs(sk);
679 spin_lock_init(&rs->rs_lock);
680 rwlock_init(&rs->rs_recv_lock);
681 INIT_LIST_HEAD(&rs->rs_send_queue);
682 INIT_LIST_HEAD(&rs->rs_recv_queue);
683 INIT_LIST_HEAD(&rs->rs_notify_queue);
684 INIT_LIST_HEAD(&rs->rs_cong_list);
685 rds_message_zcopy_queue_init(&rs->rs_zcookie_queue);
686 spin_lock_init(&rs->rs_rdma_lock);
687 rs->rs_rdma_keys = RB_ROOT;
688 rs->rs_rx_traces = 0;
689 rs->rs_tos = 0;
690 rs->rs_conn = NULL;
691
692 spin_lock_bh(&rds_sock_lock);
693 list_add_tail(&rs->rs_item, &rds_sock_list);
694 rds_sock_count++;
695 spin_unlock_bh(&rds_sock_lock);
696
697 return 0;
698 }
699
rds_create(struct net * net,struct socket * sock,int protocol,int kern)700 static int rds_create(struct net *net, struct socket *sock, int protocol,
701 int kern)
702 {
703 struct sock *sk;
704
705 if (sock->type != SOCK_SEQPACKET || protocol)
706 return -ESOCKTNOSUPPORT;
707
708 sk = sk_alloc(net, AF_RDS, GFP_KERNEL, &rds_proto, kern);
709 if (!sk)
710 return -ENOMEM;
711
712 return __rds_create(sock, sk, protocol);
713 }
714
rds_sock_addref(struct rds_sock * rs)715 void rds_sock_addref(struct rds_sock *rs)
716 {
717 sock_hold(rds_rs_to_sk(rs));
718 }
719
rds_sock_put(struct rds_sock * rs)720 void rds_sock_put(struct rds_sock *rs)
721 {
722 sock_put(rds_rs_to_sk(rs));
723 }
724
725 static const struct net_proto_family rds_family_ops = {
726 .family = AF_RDS,
727 .create = rds_create,
728 .owner = THIS_MODULE,
729 };
730
rds_sock_inc_info(struct socket * sock,unsigned int len,struct rds_info_iterator * iter,struct rds_info_lengths * lens)731 static void rds_sock_inc_info(struct socket *sock, unsigned int len,
732 struct rds_info_iterator *iter,
733 struct rds_info_lengths *lens)
734 {
735 struct rds_sock *rs;
736 struct rds_incoming *inc;
737 unsigned int total = 0;
738
739 len /= sizeof(struct rds_info_message);
740
741 spin_lock_bh(&rds_sock_lock);
742
743 list_for_each_entry(rs, &rds_sock_list, rs_item) {
744 /* This option only supports IPv4 sockets. */
745 if (!ipv6_addr_v4mapped(&rs->rs_bound_addr))
746 continue;
747
748 read_lock(&rs->rs_recv_lock);
749
750 /* XXX too lazy to maintain counts.. */
751 list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
752 total++;
753 if (total <= len)
754 rds_inc_info_copy(inc, iter,
755 inc->i_saddr.s6_addr32[3],
756 rs->rs_bound_addr_v4,
757 1);
758 }
759
760 read_unlock(&rs->rs_recv_lock);
761 }
762
763 spin_unlock_bh(&rds_sock_lock);
764
765 lens->nr = total;
766 lens->each = sizeof(struct rds_info_message);
767 }
768
769 #if IS_ENABLED(CONFIG_IPV6)
rds6_sock_inc_info(struct socket * sock,unsigned int len,struct rds_info_iterator * iter,struct rds_info_lengths * lens)770 static void rds6_sock_inc_info(struct socket *sock, unsigned int len,
771 struct rds_info_iterator *iter,
772 struct rds_info_lengths *lens)
773 {
774 struct rds_incoming *inc;
775 unsigned int total = 0;
776 struct rds_sock *rs;
777
778 len /= sizeof(struct rds6_info_message);
779
780 spin_lock_bh(&rds_sock_lock);
781
782 list_for_each_entry(rs, &rds_sock_list, rs_item) {
783 read_lock(&rs->rs_recv_lock);
784
785 list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
786 total++;
787 if (total <= len)
788 rds6_inc_info_copy(inc, iter, &inc->i_saddr,
789 &rs->rs_bound_addr, 1);
790 }
791
792 read_unlock(&rs->rs_recv_lock);
793 }
794
795 spin_unlock_bh(&rds_sock_lock);
796
797 lens->nr = total;
798 lens->each = sizeof(struct rds6_info_message);
799 }
800 #endif
801
rds_sock_info(struct socket * sock,unsigned int len,struct rds_info_iterator * iter,struct rds_info_lengths * lens)802 static void rds_sock_info(struct socket *sock, unsigned int len,
803 struct rds_info_iterator *iter,
804 struct rds_info_lengths *lens)
805 {
806 struct rds_info_socket sinfo;
807 unsigned int cnt = 0;
808 struct rds_sock *rs;
809
810 len /= sizeof(struct rds_info_socket);
811
812 spin_lock_bh(&rds_sock_lock);
813
814 if (len < rds_sock_count) {
815 cnt = rds_sock_count;
816 goto out;
817 }
818
819 list_for_each_entry(rs, &rds_sock_list, rs_item) {
820 /* This option only supports IPv4 sockets. */
821 if (!ipv6_addr_v4mapped(&rs->rs_bound_addr))
822 continue;
823 sinfo.sndbuf = rds_sk_sndbuf(rs);
824 sinfo.rcvbuf = rds_sk_rcvbuf(rs);
825 sinfo.bound_addr = rs->rs_bound_addr_v4;
826 sinfo.connected_addr = rs->rs_conn_addr_v4;
827 sinfo.bound_port = rs->rs_bound_port;
828 sinfo.connected_port = rs->rs_conn_port;
829 sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));
830
831 rds_info_copy(iter, &sinfo, sizeof(sinfo));
832 cnt++;
833 }
834
835 out:
836 lens->nr = cnt;
837 lens->each = sizeof(struct rds_info_socket);
838
839 spin_unlock_bh(&rds_sock_lock);
840 }
841
842 #if IS_ENABLED(CONFIG_IPV6)
rds6_sock_info(struct socket * sock,unsigned int len,struct rds_info_iterator * iter,struct rds_info_lengths * lens)843 static void rds6_sock_info(struct socket *sock, unsigned int len,
844 struct rds_info_iterator *iter,
845 struct rds_info_lengths *lens)
846 {
847 struct rds6_info_socket sinfo6;
848 struct rds_sock *rs;
849
850 len /= sizeof(struct rds6_info_socket);
851
852 spin_lock_bh(&rds_sock_lock);
853
854 if (len < rds_sock_count)
855 goto out;
856
857 list_for_each_entry(rs, &rds_sock_list, rs_item) {
858 sinfo6.sndbuf = rds_sk_sndbuf(rs);
859 sinfo6.rcvbuf = rds_sk_rcvbuf(rs);
860 sinfo6.bound_addr = rs->rs_bound_addr;
861 sinfo6.connected_addr = rs->rs_conn_addr;
862 sinfo6.bound_port = rs->rs_bound_port;
863 sinfo6.connected_port = rs->rs_conn_port;
864 sinfo6.inum = sock_i_ino(rds_rs_to_sk(rs));
865
866 rds_info_copy(iter, &sinfo6, sizeof(sinfo6));
867 }
868
869 out:
870 lens->nr = rds_sock_count;
871 lens->each = sizeof(struct rds6_info_socket);
872
873 spin_unlock_bh(&rds_sock_lock);
874 }
875 #endif
876
rds_exit(void)877 static void rds_exit(void)
878 {
879 sock_unregister(rds_family_ops.family);
880 proto_unregister(&rds_proto);
881 rds_conn_exit();
882 rds_cong_exit();
883 rds_sysctl_exit();
884 rds_threads_exit();
885 rds_stats_exit();
886 rds_page_exit();
887 rds_bind_lock_destroy();
888 rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
889 rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
890 #if IS_ENABLED(CONFIG_IPV6)
891 rds_info_deregister_func(RDS6_INFO_SOCKETS, rds6_sock_info);
892 rds_info_deregister_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info);
893 #endif
894 }
895 module_exit(rds_exit);
896
897 u32 rds_gen_num;
898
rds_init(void)899 static int rds_init(void)
900 {
901 int ret;
902
903 net_get_random_once(&rds_gen_num, sizeof(rds_gen_num));
904
905 ret = rds_bind_lock_init();
906 if (ret)
907 goto out;
908
909 ret = rds_conn_init();
910 if (ret)
911 goto out_bind;
912
913 ret = rds_threads_init();
914 if (ret)
915 goto out_conn;
916 ret = rds_sysctl_init();
917 if (ret)
918 goto out_threads;
919 ret = rds_stats_init();
920 if (ret)
921 goto out_sysctl;
922 ret = proto_register(&rds_proto, 1);
923 if (ret)
924 goto out_stats;
925 ret = sock_register(&rds_family_ops);
926 if (ret)
927 goto out_proto;
928
929 rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
930 rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
931 #if IS_ENABLED(CONFIG_IPV6)
932 rds_info_register_func(RDS6_INFO_SOCKETS, rds6_sock_info);
933 rds_info_register_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info);
934 #endif
935
936 goto out;
937
938 out_proto:
939 proto_unregister(&rds_proto);
940 out_stats:
941 rds_stats_exit();
942 out_sysctl:
943 rds_sysctl_exit();
944 out_threads:
945 rds_threads_exit();
946 out_conn:
947 rds_conn_exit();
948 rds_cong_exit();
949 rds_page_exit();
950 out_bind:
951 rds_bind_lock_destroy();
952 out:
953 return ret;
954 }
955 module_init(rds_init);
956
957 #define DRV_VERSION "4.0"
958 #define DRV_RELDATE "Feb 12, 2009"
959
960 MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
961 MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
962 " v" DRV_VERSION " (" DRV_RELDATE ")");
963 MODULE_VERSION(DRV_VERSION);
964 MODULE_LICENSE("Dual BSD/GPL");
965 MODULE_ALIAS_NETPROTO(PF_RDS);
966