• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Variant of atomic_t specialized for reference counts.
4  *
5  * The interface matches the atomic_t interface (to aid in porting) but only
6  * provides the few functions one should use for reference counting.
7  *
8  * Saturation semantics
9  * ====================
10  *
11  * refcount_t differs from atomic_t in that the counter saturates at
12  * REFCOUNT_SATURATED and will not move once there. This avoids wrapping the
13  * counter and causing 'spurious' use-after-free issues. In order to avoid the
14  * cost associated with introducing cmpxchg() loops into all of the saturating
15  * operations, we temporarily allow the counter to take on an unchecked value
16  * and then explicitly set it to REFCOUNT_SATURATED on detecting that underflow
17  * or overflow has occurred. Although this is racy when multiple threads
18  * access the refcount concurrently, by placing REFCOUNT_SATURATED roughly
19  * equidistant from 0 and INT_MAX we minimise the scope for error:
20  *
21  * 	                           INT_MAX     REFCOUNT_SATURATED   UINT_MAX
22  *   0                          (0x7fff_ffff)    (0xc000_0000)    (0xffff_ffff)
23  *   +--------------------------------+----------------+----------------+
24  *                                     <---------- bad value! ---------->
25  *
26  * (in a signed view of the world, the "bad value" range corresponds to
27  * a negative counter value).
28  *
29  * As an example, consider a refcount_inc() operation that causes the counter
30  * to overflow:
31  *
32  * 	int old = atomic_fetch_add_relaxed(r);
33  *	// old is INT_MAX, refcount now INT_MIN (0x8000_0000)
34  *	if (old < 0)
35  *		atomic_set(r, REFCOUNT_SATURATED);
36  *
37  * If another thread also performs a refcount_inc() operation between the two
38  * atomic operations, then the count will continue to edge closer to 0. If it
39  * reaches a value of 1 before /any/ of the threads reset it to the saturated
40  * value, then a concurrent refcount_dec_and_test() may erroneously free the
41  * underlying object. Given the precise timing details involved with the
42  * round-robin scheduling of each thread manipulating the refcount and the need
43  * to hit the race multiple times in succession, there doesn't appear to be a
44  * practical avenue of attack even if using refcount_add() operations with
45  * larger increments.
46  *
47  * Memory ordering
48  * ===============
49  *
50  * Memory ordering rules are slightly relaxed wrt regular atomic_t functions
51  * and provide only what is strictly required for refcounts.
52  *
53  * The increments are fully relaxed; these will not provide ordering. The
54  * rationale is that whatever is used to obtain the object we're increasing the
55  * reference count on will provide the ordering. For locked data structures,
56  * its the lock acquire, for RCU/lockless data structures its the dependent
57  * load.
58  *
59  * Do note that inc_not_zero() provides a control dependency which will order
60  * future stores against the inc, this ensures we'll never modify the object
61  * if we did not in fact acquire a reference.
62  *
63  * The decrements will provide release order, such that all the prior loads and
64  * stores will be issued before, it also provides a control dependency, which
65  * will order us against the subsequent free().
66  *
67  * The control dependency is against the load of the cmpxchg (ll/sc) that
68  * succeeded. This means the stores aren't fully ordered, but this is fine
69  * because the 1->0 transition indicates no concurrency.
70  *
71  * Note that the allocator is responsible for ordering things between free()
72  * and alloc().
73  *
74  * The decrements dec_and_test() and sub_and_test() also provide acquire
75  * ordering on success.
76  *
77  */
78 
79 #ifndef _LINUX_REFCOUNT_H
80 #define _LINUX_REFCOUNT_H
81 
82 #include <linux/atomic.h>
83 #include <linux/bug.h>
84 #include <linux/compiler.h>
85 #include <linux/limits.h>
86 #include <linux/spinlock_types.h>
87 
88 struct mutex;
89 
90 /**
91  * struct refcount_t - variant of atomic_t specialized for reference counts
92  * @refs: atomic_t counter field
93  *
94  * The counter saturates at REFCOUNT_SATURATED and will not move once
95  * there. This avoids wrapping the counter and causing 'spurious'
96  * use-after-free bugs.
97  */
98 typedef struct refcount_struct {
99 	atomic_t refs;
100 } refcount_t;
101 
102 #define REFCOUNT_INIT(n)	{ .refs = ATOMIC_INIT(n), }
103 #define REFCOUNT_MAX		INT_MAX
104 #define REFCOUNT_SATURATED	(INT_MIN / 2)
105 
106 enum refcount_saturation_type {
107 	REFCOUNT_ADD_NOT_ZERO_OVF,
108 	REFCOUNT_ADD_OVF,
109 	REFCOUNT_ADD_UAF,
110 	REFCOUNT_SUB_UAF,
111 	REFCOUNT_DEC_LEAK,
112 };
113 
114 void refcount_warn_saturate(refcount_t *r, enum refcount_saturation_type t);
115 
116 /**
117  * refcount_set - set a refcount's value
118  * @r: the refcount
119  * @n: value to which the refcount will be set
120  */
refcount_set(refcount_t * r,int n)121 static inline void refcount_set(refcount_t *r, int n)
122 {
123 	atomic_set(&r->refs, n);
124 }
125 
126 /**
127  * refcount_read - get a refcount's value
128  * @r: the refcount
129  *
130  * Return: the refcount's value
131  */
refcount_read(const refcount_t * r)132 static inline unsigned int refcount_read(const refcount_t *r)
133 {
134 	return atomic_read(&r->refs);
135 }
136 
137 /**
138  * refcount_add_not_zero - add a value to a refcount unless it is 0
139  * @i: the value to add to the refcount
140  * @r: the refcount
141  *
142  * Will saturate at REFCOUNT_SATURATED and WARN.
143  *
144  * Provides no memory ordering, it is assumed the caller has guaranteed the
145  * object memory to be stable (RCU, etc.). It does provide a control dependency
146  * and thereby orders future stores. See the comment on top.
147  *
148  * Use of this function is not recommended for the normal reference counting
149  * use case in which references are taken and released one at a time.  In these
150  * cases, refcount_inc(), or one of its variants, should instead be used to
151  * increment a reference count.
152  *
153  * Return: false if the passed refcount is 0, true otherwise
154  */
refcount_add_not_zero(int i,refcount_t * r)155 static inline __must_check bool refcount_add_not_zero(int i, refcount_t *r)
156 {
157 	int old = refcount_read(r);
158 
159 	do {
160 		if (!old)
161 			break;
162 	} while (!atomic_try_cmpxchg_relaxed(&r->refs, &old, old + i));
163 
164 	if (unlikely(old < 0 || old + i < 0))
165 		refcount_warn_saturate(r, REFCOUNT_ADD_NOT_ZERO_OVF);
166 
167 	return old;
168 }
169 
170 /**
171  * refcount_add - add a value to a refcount
172  * @i: the value to add to the refcount
173  * @r: the refcount
174  *
175  * Similar to atomic_add(), but will saturate at REFCOUNT_SATURATED and WARN.
176  *
177  * Provides no memory ordering, it is assumed the caller has guaranteed the
178  * object memory to be stable (RCU, etc.). It does provide a control dependency
179  * and thereby orders future stores. See the comment on top.
180  *
181  * Use of this function is not recommended for the normal reference counting
182  * use case in which references are taken and released one at a time.  In these
183  * cases, refcount_inc(), or one of its variants, should instead be used to
184  * increment a reference count.
185  */
refcount_add(int i,refcount_t * r)186 static inline void refcount_add(int i, refcount_t *r)
187 {
188 	int old = atomic_fetch_add_relaxed(i, &r->refs);
189 
190 	if (unlikely(!old))
191 		refcount_warn_saturate(r, REFCOUNT_ADD_UAF);
192 	else if (unlikely(old < 0 || old + i < 0))
193 		refcount_warn_saturate(r, REFCOUNT_ADD_OVF);
194 }
195 
196 /**
197  * refcount_inc_not_zero - increment a refcount unless it is 0
198  * @r: the refcount to increment
199  *
200  * Similar to atomic_inc_not_zero(), but will saturate at REFCOUNT_SATURATED
201  * and WARN.
202  *
203  * Provides no memory ordering, it is assumed the caller has guaranteed the
204  * object memory to be stable (RCU, etc.). It does provide a control dependency
205  * and thereby orders future stores. See the comment on top.
206  *
207  * Return: true if the increment was successful, false otherwise
208  */
refcount_inc_not_zero(refcount_t * r)209 static inline __must_check bool refcount_inc_not_zero(refcount_t *r)
210 {
211 	return refcount_add_not_zero(1, r);
212 }
213 
214 /**
215  * refcount_inc - increment a refcount
216  * @r: the refcount to increment
217  *
218  * Similar to atomic_inc(), but will saturate at REFCOUNT_SATURATED and WARN.
219  *
220  * Provides no memory ordering, it is assumed the caller already has a
221  * reference on the object.
222  *
223  * Will WARN if the refcount is 0, as this represents a possible use-after-free
224  * condition.
225  */
refcount_inc(refcount_t * r)226 static inline void refcount_inc(refcount_t *r)
227 {
228 	refcount_add(1, r);
229 }
230 
231 /**
232  * refcount_sub_and_test - subtract from a refcount and test if it is 0
233  * @i: amount to subtract from the refcount
234  * @r: the refcount
235  *
236  * Similar to atomic_dec_and_test(), but it will WARN, return false and
237  * ultimately leak on underflow and will fail to decrement when saturated
238  * at REFCOUNT_SATURATED.
239  *
240  * Provides release memory ordering, such that prior loads and stores are done
241  * before, and provides an acquire ordering on success such that free()
242  * must come after.
243  *
244  * Use of this function is not recommended for the normal reference counting
245  * use case in which references are taken and released one at a time.  In these
246  * cases, refcount_dec(), or one of its variants, should instead be used to
247  * decrement a reference count.
248  *
249  * Return: true if the resulting refcount is 0, false otherwise
250  */
refcount_sub_and_test(int i,refcount_t * r)251 static inline __must_check bool refcount_sub_and_test(int i, refcount_t *r)
252 {
253 	int old = atomic_fetch_sub_release(i, &r->refs);
254 
255 	if (old == i) {
256 		smp_acquire__after_ctrl_dep();
257 		return true;
258 	}
259 
260 	if (unlikely(old < 0 || old - i < 0))
261 		refcount_warn_saturate(r, REFCOUNT_SUB_UAF);
262 
263 	return false;
264 }
265 
266 /**
267  * refcount_dec_and_test - decrement a refcount and test if it is 0
268  * @r: the refcount
269  *
270  * Similar to atomic_dec_and_test(), it will WARN on underflow and fail to
271  * decrement when saturated at REFCOUNT_SATURATED.
272  *
273  * Provides release memory ordering, such that prior loads and stores are done
274  * before, and provides an acquire ordering on success such that free()
275  * must come after.
276  *
277  * Return: true if the resulting refcount is 0, false otherwise
278  */
refcount_dec_and_test(refcount_t * r)279 static inline __must_check bool refcount_dec_and_test(refcount_t *r)
280 {
281 	return refcount_sub_and_test(1, r);
282 }
283 
284 /**
285  * refcount_dec - decrement a refcount
286  * @r: the refcount
287  *
288  * Similar to atomic_dec(), it will WARN on underflow and fail to decrement
289  * when saturated at REFCOUNT_SATURATED.
290  *
291  * Provides release memory ordering, such that prior loads and stores are done
292  * before.
293  */
refcount_dec(refcount_t * r)294 static inline void refcount_dec(refcount_t *r)
295 {
296 	if (unlikely(atomic_fetch_sub_release(1, &r->refs) <= 1))
297 		refcount_warn_saturate(r, REFCOUNT_DEC_LEAK);
298 }
299 
300 extern __must_check bool refcount_dec_if_one(refcount_t *r);
301 extern __must_check bool refcount_dec_not_one(refcount_t *r);
302 extern __must_check bool refcount_dec_and_mutex_lock(refcount_t *r, struct mutex *lock);
303 extern __must_check bool refcount_dec_and_lock(refcount_t *r, spinlock_t *lock);
304 extern __must_check bool refcount_dec_and_lock_irqsave(refcount_t *r,
305 						       spinlock_t *lock,
306 						       unsigned long *flags);
307 #endif /* _LINUX_REFCOUNT_H */
308