• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/security.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kthread.h>	/* for self test */
18 #include <linux/module.h>
19 #include <linux/percpu.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/list.h>
26 #include <linux/cpu.h>
27 #include <linux/oom.h>
28 
29 #include <asm/local.h>
30 
31 static void update_pages_handler(struct work_struct *work);
32 
33 /*
34  * The ring buffer header is special. We must manually up keep it.
35  */
ring_buffer_print_entry_header(struct trace_seq * s)36 int ring_buffer_print_entry_header(struct trace_seq *s)
37 {
38 	trace_seq_puts(s, "# compressed entry header\n");
39 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
40 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
41 	trace_seq_puts(s, "\tarray       :   32 bits\n");
42 	trace_seq_putc(s, '\n');
43 	trace_seq_printf(s, "\tpadding     : type == %d\n",
44 			 RINGBUF_TYPE_PADDING);
45 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
46 			 RINGBUF_TYPE_TIME_EXTEND);
47 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
48 			 RINGBUF_TYPE_TIME_STAMP);
49 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
50 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
51 
52 	return !trace_seq_has_overflowed(s);
53 }
54 
55 /*
56  * The ring buffer is made up of a list of pages. A separate list of pages is
57  * allocated for each CPU. A writer may only write to a buffer that is
58  * associated with the CPU it is currently executing on.  A reader may read
59  * from any per cpu buffer.
60  *
61  * The reader is special. For each per cpu buffer, the reader has its own
62  * reader page. When a reader has read the entire reader page, this reader
63  * page is swapped with another page in the ring buffer.
64  *
65  * Now, as long as the writer is off the reader page, the reader can do what
66  * ever it wants with that page. The writer will never write to that page
67  * again (as long as it is out of the ring buffer).
68  *
69  * Here's some silly ASCII art.
70  *
71  *   +------+
72  *   |reader|          RING BUFFER
73  *   |page  |
74  *   +------+        +---+   +---+   +---+
75  *                   |   |-->|   |-->|   |
76  *                   +---+   +---+   +---+
77  *                     ^               |
78  *                     |               |
79  *                     +---------------+
80  *
81  *
82  *   +------+
83  *   |reader|          RING BUFFER
84  *   |page  |------------------v
85  *   +------+        +---+   +---+   +---+
86  *                   |   |-->|   |-->|   |
87  *                   +---+   +---+   +---+
88  *                     ^               |
89  *                     |               |
90  *                     +---------------+
91  *
92  *
93  *   +------+
94  *   |reader|          RING BUFFER
95  *   |page  |------------------v
96  *   +------+        +---+   +---+   +---+
97  *      ^            |   |-->|   |-->|   |
98  *      |            +---+   +---+   +---+
99  *      |                              |
100  *      |                              |
101  *      +------------------------------+
102  *
103  *
104  *   +------+
105  *   |buffer|          RING BUFFER
106  *   |page  |------------------v
107  *   +------+        +---+   +---+   +---+
108  *      ^            |   |   |   |-->|   |
109  *      |   New      +---+   +---+   +---+
110  *      |  Reader------^               |
111  *      |   page                       |
112  *      +------------------------------+
113  *
114  *
115  * After we make this swap, the reader can hand this page off to the splice
116  * code and be done with it. It can even allocate a new page if it needs to
117  * and swap that into the ring buffer.
118  *
119  * We will be using cmpxchg soon to make all this lockless.
120  *
121  */
122 
123 /* Used for individual buffers (after the counter) */
124 #define RB_BUFFER_OFF		(1 << 20)
125 
126 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
127 
128 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
129 #define RB_ALIGNMENT		4U
130 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
131 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
132 
133 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
134 # define RB_FORCE_8BYTE_ALIGNMENT	0
135 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
136 #else
137 # define RB_FORCE_8BYTE_ALIGNMENT	1
138 # define RB_ARCH_ALIGNMENT		8U
139 #endif
140 
141 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
142 
143 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
144 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
145 
146 enum {
147 	RB_LEN_TIME_EXTEND = 8,
148 	RB_LEN_TIME_STAMP =  8,
149 };
150 
151 #define skip_time_extend(event) \
152 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
153 
154 #define extended_time(event) \
155 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
156 
rb_null_event(struct ring_buffer_event * event)157 static inline int rb_null_event(struct ring_buffer_event *event)
158 {
159 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
160 }
161 
rb_event_set_padding(struct ring_buffer_event * event)162 static void rb_event_set_padding(struct ring_buffer_event *event)
163 {
164 	/* padding has a NULL time_delta */
165 	event->type_len = RINGBUF_TYPE_PADDING;
166 	event->time_delta = 0;
167 }
168 
169 static unsigned
rb_event_data_length(struct ring_buffer_event * event)170 rb_event_data_length(struct ring_buffer_event *event)
171 {
172 	unsigned length;
173 
174 	if (event->type_len)
175 		length = event->type_len * RB_ALIGNMENT;
176 	else
177 		length = event->array[0];
178 	return length + RB_EVNT_HDR_SIZE;
179 }
180 
181 /*
182  * Return the length of the given event. Will return
183  * the length of the time extend if the event is a
184  * time extend.
185  */
186 static inline unsigned
rb_event_length(struct ring_buffer_event * event)187 rb_event_length(struct ring_buffer_event *event)
188 {
189 	switch (event->type_len) {
190 	case RINGBUF_TYPE_PADDING:
191 		if (rb_null_event(event))
192 			/* undefined */
193 			return -1;
194 		return  event->array[0] + RB_EVNT_HDR_SIZE;
195 
196 	case RINGBUF_TYPE_TIME_EXTEND:
197 		return RB_LEN_TIME_EXTEND;
198 
199 	case RINGBUF_TYPE_TIME_STAMP:
200 		return RB_LEN_TIME_STAMP;
201 
202 	case RINGBUF_TYPE_DATA:
203 		return rb_event_data_length(event);
204 	default:
205 		BUG();
206 	}
207 	/* not hit */
208 	return 0;
209 }
210 
211 /*
212  * Return total length of time extend and data,
213  *   or just the event length for all other events.
214  */
215 static inline unsigned
rb_event_ts_length(struct ring_buffer_event * event)216 rb_event_ts_length(struct ring_buffer_event *event)
217 {
218 	unsigned len = 0;
219 
220 	if (extended_time(event)) {
221 		/* time extends include the data event after it */
222 		len = RB_LEN_TIME_EXTEND;
223 		event = skip_time_extend(event);
224 	}
225 	return len + rb_event_length(event);
226 }
227 
228 /**
229  * ring_buffer_event_length - return the length of the event
230  * @event: the event to get the length of
231  *
232  * Returns the size of the data load of a data event.
233  * If the event is something other than a data event, it
234  * returns the size of the event itself. With the exception
235  * of a TIME EXTEND, where it still returns the size of the
236  * data load of the data event after it.
237  */
ring_buffer_event_length(struct ring_buffer_event * event)238 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
239 {
240 	unsigned length;
241 
242 	if (extended_time(event))
243 		event = skip_time_extend(event);
244 
245 	length = rb_event_length(event);
246 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
247 		return length;
248 	length -= RB_EVNT_HDR_SIZE;
249 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
250                 length -= sizeof(event->array[0]);
251 	return length;
252 }
253 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
254 
255 /* inline for ring buffer fast paths */
256 static __always_inline void *
rb_event_data(struct ring_buffer_event * event)257 rb_event_data(struct ring_buffer_event *event)
258 {
259 	if (extended_time(event))
260 		event = skip_time_extend(event);
261 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
262 	/* If length is in len field, then array[0] has the data */
263 	if (event->type_len)
264 		return (void *)&event->array[0];
265 	/* Otherwise length is in array[0] and array[1] has the data */
266 	return (void *)&event->array[1];
267 }
268 
269 /**
270  * ring_buffer_event_data - return the data of the event
271  * @event: the event to get the data from
272  */
ring_buffer_event_data(struct ring_buffer_event * event)273 void *ring_buffer_event_data(struct ring_buffer_event *event)
274 {
275 	return rb_event_data(event);
276 }
277 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
278 
279 #define for_each_buffer_cpu(buffer, cpu)		\
280 	for_each_cpu(cpu, buffer->cpumask)
281 
282 #define TS_SHIFT	27
283 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
284 #define TS_DELTA_TEST	(~TS_MASK)
285 
286 /**
287  * ring_buffer_event_time_stamp - return the event's extended timestamp
288  * @event: the event to get the timestamp of
289  *
290  * Returns the extended timestamp associated with a data event.
291  * An extended time_stamp is a 64-bit timestamp represented
292  * internally in a special way that makes the best use of space
293  * contained within a ring buffer event.  This function decodes
294  * it and maps it to a straight u64 value.
295  */
ring_buffer_event_time_stamp(struct ring_buffer_event * event)296 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
297 {
298 	u64 ts;
299 
300 	ts = event->array[0];
301 	ts <<= TS_SHIFT;
302 	ts += event->time_delta;
303 
304 	return ts;
305 }
306 
307 /* Flag when events were overwritten */
308 #define RB_MISSED_EVENTS	(1 << 31)
309 /* Missed count stored at end */
310 #define RB_MISSED_STORED	(1 << 30)
311 
312 #define RB_MISSED_FLAGS		(RB_MISSED_EVENTS|RB_MISSED_STORED)
313 
314 struct buffer_data_page {
315 	u64		 time_stamp;	/* page time stamp */
316 	local_t		 commit;	/* write committed index */
317 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
318 };
319 
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329 	struct list_head list;		/* list of buffer pages */
330 	local_t		 write;		/* index for next write */
331 	unsigned	 read;		/* index for next read */
332 	local_t		 entries;	/* entries on this page */
333 	unsigned long	 real_end;	/* real end of data */
334 	struct buffer_data_page *page;	/* Actual data page */
335 };
336 
337 /*
338  * The buffer page counters, write and entries, must be reset
339  * atomically when crossing page boundaries. To synchronize this
340  * update, two counters are inserted into the number. One is
341  * the actual counter for the write position or count on the page.
342  *
343  * The other is a counter of updaters. Before an update happens
344  * the update partition of the counter is incremented. This will
345  * allow the updater to update the counter atomically.
346  *
347  * The counter is 20 bits, and the state data is 12.
348  */
349 #define RB_WRITE_MASK		0xfffff
350 #define RB_WRITE_INTCNT		(1 << 20)
351 
rb_init_page(struct buffer_data_page * bpage)352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354 	local_set(&bpage->commit, 0);
355 }
356 
357 /*
358  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
359  * this issue out.
360  */
free_buffer_page(struct buffer_page * bpage)361 static void free_buffer_page(struct buffer_page *bpage)
362 {
363 	free_page((unsigned long)bpage->page);
364 	kfree(bpage);
365 }
366 
367 /*
368  * We need to fit the time_stamp delta into 27 bits.
369  */
test_time_stamp(u64 delta)370 static inline int test_time_stamp(u64 delta)
371 {
372 	if (delta & TS_DELTA_TEST)
373 		return 1;
374 	return 0;
375 }
376 
377 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
378 
379 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
380 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
381 
ring_buffer_print_page_header(struct trace_seq * s)382 int ring_buffer_print_page_header(struct trace_seq *s)
383 {
384 	struct buffer_data_page field;
385 
386 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
387 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
388 			 (unsigned int)sizeof(field.time_stamp),
389 			 (unsigned int)is_signed_type(u64));
390 
391 	trace_seq_printf(s, "\tfield: local_t commit;\t"
392 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
393 			 (unsigned int)offsetof(typeof(field), commit),
394 			 (unsigned int)sizeof(field.commit),
395 			 (unsigned int)is_signed_type(long));
396 
397 	trace_seq_printf(s, "\tfield: int overwrite;\t"
398 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
399 			 (unsigned int)offsetof(typeof(field), commit),
400 			 1,
401 			 (unsigned int)is_signed_type(long));
402 
403 	trace_seq_printf(s, "\tfield: char data;\t"
404 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
405 			 (unsigned int)offsetof(typeof(field), data),
406 			 (unsigned int)BUF_PAGE_SIZE,
407 			 (unsigned int)is_signed_type(char));
408 
409 	return !trace_seq_has_overflowed(s);
410 }
411 
412 struct rb_irq_work {
413 	struct irq_work			work;
414 	wait_queue_head_t		waiters;
415 	wait_queue_head_t		full_waiters;
416 	bool				waiters_pending;
417 	bool				full_waiters_pending;
418 	bool				wakeup_full;
419 };
420 
421 /*
422  * Structure to hold event state and handle nested events.
423  */
424 struct rb_event_info {
425 	u64			ts;
426 	u64			delta;
427 	unsigned long		length;
428 	struct buffer_page	*tail_page;
429 	int			add_timestamp;
430 };
431 
432 /*
433  * Used for which event context the event is in.
434  *  TRANSITION = 0
435  *  NMI     = 1
436  *  IRQ     = 2
437  *  SOFTIRQ = 3
438  *  NORMAL  = 4
439  *
440  * See trace_recursive_lock() comment below for more details.
441  */
442 enum {
443 	RB_CTX_TRANSITION,
444 	RB_CTX_NMI,
445 	RB_CTX_IRQ,
446 	RB_CTX_SOFTIRQ,
447 	RB_CTX_NORMAL,
448 	RB_CTX_MAX
449 };
450 
451 /*
452  * head_page == tail_page && head == tail then buffer is empty.
453  */
454 struct ring_buffer_per_cpu {
455 	int				cpu;
456 	atomic_t			record_disabled;
457 	struct ring_buffer		*buffer;
458 	raw_spinlock_t			reader_lock;	/* serialize readers */
459 	arch_spinlock_t			lock;
460 	struct lock_class_key		lock_key;
461 	struct buffer_data_page		*free_page;
462 	unsigned long			nr_pages;
463 	unsigned int			current_context;
464 	struct list_head		*pages;
465 	struct buffer_page		*head_page;	/* read from head */
466 	struct buffer_page		*tail_page;	/* write to tail */
467 	struct buffer_page		*commit_page;	/* committed pages */
468 	struct buffer_page		*reader_page;
469 	unsigned long			lost_events;
470 	unsigned long			last_overrun;
471 	unsigned long			nest;
472 	local_t				entries_bytes;
473 	local_t				entries;
474 	local_t				overrun;
475 	local_t				commit_overrun;
476 	local_t				dropped_events;
477 	local_t				committing;
478 	local_t				commits;
479 	local_t				pages_touched;
480 	local_t				pages_lost;
481 	local_t				pages_read;
482 	long				last_pages_touch;
483 	size_t				shortest_full;
484 	unsigned long			read;
485 	unsigned long			read_bytes;
486 	u64				write_stamp;
487 	u64				read_stamp;
488 	/* pages removed since last reset */
489 	unsigned long			pages_removed;
490 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
491 	long				nr_pages_to_update;
492 	struct list_head		new_pages; /* new pages to add */
493 	struct work_struct		update_pages_work;
494 	struct completion		update_done;
495 
496 	struct rb_irq_work		irq_work;
497 };
498 
499 struct ring_buffer {
500 	unsigned			flags;
501 	int				cpus;
502 	atomic_t			record_disabled;
503 	atomic_t			resize_disabled;
504 	cpumask_var_t			cpumask;
505 
506 	struct lock_class_key		*reader_lock_key;
507 
508 	struct mutex			mutex;
509 
510 	struct ring_buffer_per_cpu	**buffers;
511 
512 	struct hlist_node		node;
513 	u64				(*clock)(void);
514 
515 	struct rb_irq_work		irq_work;
516 	bool				time_stamp_abs;
517 };
518 
519 struct ring_buffer_iter {
520 	struct ring_buffer_per_cpu	*cpu_buffer;
521 	unsigned long			head;
522 	struct buffer_page		*head_page;
523 	struct buffer_page		*cache_reader_page;
524 	unsigned long			cache_read;
525 	unsigned long			cache_pages_removed;
526 	u64				read_stamp;
527 };
528 
529 /**
530  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
531  * @buffer: The ring_buffer to get the number of pages from
532  * @cpu: The cpu of the ring_buffer to get the number of pages from
533  *
534  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
535  */
ring_buffer_nr_pages(struct ring_buffer * buffer,int cpu)536 size_t ring_buffer_nr_pages(struct ring_buffer *buffer, int cpu)
537 {
538 	return buffer->buffers[cpu]->nr_pages;
539 }
540 
541 /**
542  * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
543  * @buffer: The ring_buffer to get the number of pages from
544  * @cpu: The cpu of the ring_buffer to get the number of pages from
545  *
546  * Returns the number of pages that have content in the ring buffer.
547  */
ring_buffer_nr_dirty_pages(struct ring_buffer * buffer,int cpu)548 size_t ring_buffer_nr_dirty_pages(struct ring_buffer *buffer, int cpu)
549 {
550 	size_t read;
551 	size_t lost;
552 	size_t cnt;
553 
554 	read = local_read(&buffer->buffers[cpu]->pages_read);
555 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
556 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
557 
558 	if (WARN_ON_ONCE(cnt < lost))
559 		return 0;
560 
561 	cnt -= lost;
562 
563 	/* The reader can read an empty page, but not more than that */
564 	if (cnt < read) {
565 		WARN_ON_ONCE(read > cnt + 1);
566 		return 0;
567 	}
568 
569 	return cnt - read;
570 }
571 
572 /*
573  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
574  *
575  * Schedules a delayed work to wake up any task that is blocked on the
576  * ring buffer waiters queue.
577  */
rb_wake_up_waiters(struct irq_work * work)578 static void rb_wake_up_waiters(struct irq_work *work)
579 {
580 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
581 
582 	wake_up_all(&rbwork->waiters);
583 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
584 		rbwork->wakeup_full = false;
585 		rbwork->full_waiters_pending = false;
586 		wake_up_all(&rbwork->full_waiters);
587 	}
588 }
589 
590 /**
591  * ring_buffer_wait - wait for input to the ring buffer
592  * @buffer: buffer to wait on
593  * @cpu: the cpu buffer to wait on
594  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
595  *
596  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
597  * as data is added to any of the @buffer's cpu buffers. Otherwise
598  * it will wait for data to be added to a specific cpu buffer.
599  */
ring_buffer_wait(struct ring_buffer * buffer,int cpu,int full)600 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, int full)
601 {
602 	struct ring_buffer_per_cpu *cpu_buffer;
603 	DEFINE_WAIT(wait);
604 	struct rb_irq_work *work;
605 	int ret = 0;
606 
607 	/*
608 	 * Depending on what the caller is waiting for, either any
609 	 * data in any cpu buffer, or a specific buffer, put the
610 	 * caller on the appropriate wait queue.
611 	 */
612 	if (cpu == RING_BUFFER_ALL_CPUS) {
613 		work = &buffer->irq_work;
614 		/* Full only makes sense on per cpu reads */
615 		full = 0;
616 	} else {
617 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
618 			return -ENODEV;
619 		cpu_buffer = buffer->buffers[cpu];
620 		work = &cpu_buffer->irq_work;
621 	}
622 
623 
624 	while (true) {
625 		if (full)
626 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
627 		else
628 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
629 
630 		/*
631 		 * The events can happen in critical sections where
632 		 * checking a work queue can cause deadlocks.
633 		 * After adding a task to the queue, this flag is set
634 		 * only to notify events to try to wake up the queue
635 		 * using irq_work.
636 		 *
637 		 * We don't clear it even if the buffer is no longer
638 		 * empty. The flag only causes the next event to run
639 		 * irq_work to do the work queue wake up. The worse
640 		 * that can happen if we race with !trace_empty() is that
641 		 * an event will cause an irq_work to try to wake up
642 		 * an empty queue.
643 		 *
644 		 * There's no reason to protect this flag either, as
645 		 * the work queue and irq_work logic will do the necessary
646 		 * synchronization for the wake ups. The only thing
647 		 * that is necessary is that the wake up happens after
648 		 * a task has been queued. It's OK for spurious wake ups.
649 		 */
650 		if (full)
651 			work->full_waiters_pending = true;
652 		else
653 			work->waiters_pending = true;
654 
655 		if (signal_pending(current)) {
656 			ret = -EINTR;
657 			break;
658 		}
659 
660 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
661 			break;
662 
663 		if (cpu != RING_BUFFER_ALL_CPUS &&
664 		    !ring_buffer_empty_cpu(buffer, cpu)) {
665 			unsigned long flags;
666 			bool pagebusy;
667 			size_t nr_pages;
668 			size_t dirty;
669 
670 			if (!full)
671 				break;
672 
673 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
674 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
675 			nr_pages = cpu_buffer->nr_pages;
676 			dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
677 			if (!cpu_buffer->shortest_full ||
678 			    cpu_buffer->shortest_full > full)
679 				cpu_buffer->shortest_full = full;
680 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
681 			if (!pagebusy &&
682 			    (!nr_pages || (dirty * 100) > full * nr_pages))
683 				break;
684 		}
685 
686 		schedule();
687 	}
688 
689 	if (full)
690 		finish_wait(&work->full_waiters, &wait);
691 	else
692 		finish_wait(&work->waiters, &wait);
693 
694 	return ret;
695 }
696 
697 /**
698  * ring_buffer_poll_wait - poll on buffer input
699  * @buffer: buffer to wait on
700  * @cpu: the cpu buffer to wait on
701  * @filp: the file descriptor
702  * @poll_table: The poll descriptor
703  *
704  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
705  * as data is added to any of the @buffer's cpu buffers. Otherwise
706  * it will wait for data to be added to a specific cpu buffer.
707  *
708  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
709  * zero otherwise.
710  */
ring_buffer_poll_wait(struct ring_buffer * buffer,int cpu,struct file * filp,poll_table * poll_table)711 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
712 			  struct file *filp, poll_table *poll_table)
713 {
714 	struct ring_buffer_per_cpu *cpu_buffer;
715 	struct rb_irq_work *work;
716 
717 	if (cpu == RING_BUFFER_ALL_CPUS)
718 		work = &buffer->irq_work;
719 	else {
720 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
721 			return EPOLLERR;
722 
723 		cpu_buffer = buffer->buffers[cpu];
724 		work = &cpu_buffer->irq_work;
725 	}
726 
727 	poll_wait(filp, &work->waiters, poll_table);
728 	work->waiters_pending = true;
729 	/*
730 	 * There's a tight race between setting the waiters_pending and
731 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
732 	 * is set, the next event will wake the task up, but we can get stuck
733 	 * if there's only a single event in.
734 	 *
735 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
736 	 * but adding a memory barrier to all events will cause too much of a
737 	 * performance hit in the fast path.  We only need a memory barrier when
738 	 * the buffer goes from empty to having content.  But as this race is
739 	 * extremely small, and it's not a problem if another event comes in, we
740 	 * will fix it later.
741 	 */
742 	smp_mb();
743 
744 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
745 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
746 		return EPOLLIN | EPOLLRDNORM;
747 	return 0;
748 }
749 
750 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
751 #define RB_WARN_ON(b, cond)						\
752 	({								\
753 		int _____ret = unlikely(cond);				\
754 		if (_____ret) {						\
755 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
756 				struct ring_buffer_per_cpu *__b =	\
757 					(void *)b;			\
758 				atomic_inc(&__b->buffer->record_disabled); \
759 			} else						\
760 				atomic_inc(&b->record_disabled);	\
761 			WARN_ON(1);					\
762 		}							\
763 		_____ret;						\
764 	})
765 
766 /* Up this if you want to test the TIME_EXTENTS and normalization */
767 #define DEBUG_SHIFT 0
768 
rb_time_stamp(struct ring_buffer * buffer)769 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
770 {
771 	/* shift to debug/test normalization and TIME_EXTENTS */
772 	return buffer->clock() << DEBUG_SHIFT;
773 }
774 
ring_buffer_time_stamp(struct ring_buffer * buffer,int cpu)775 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
776 {
777 	u64 time;
778 
779 	preempt_disable_notrace();
780 	time = rb_time_stamp(buffer);
781 	preempt_enable_notrace();
782 
783 	return time;
784 }
785 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
786 
ring_buffer_normalize_time_stamp(struct ring_buffer * buffer,int cpu,u64 * ts)787 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
788 				      int cpu, u64 *ts)
789 {
790 	/* Just stupid testing the normalize function and deltas */
791 	*ts >>= DEBUG_SHIFT;
792 }
793 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
794 
795 /*
796  * Making the ring buffer lockless makes things tricky.
797  * Although writes only happen on the CPU that they are on,
798  * and they only need to worry about interrupts. Reads can
799  * happen on any CPU.
800  *
801  * The reader page is always off the ring buffer, but when the
802  * reader finishes with a page, it needs to swap its page with
803  * a new one from the buffer. The reader needs to take from
804  * the head (writes go to the tail). But if a writer is in overwrite
805  * mode and wraps, it must push the head page forward.
806  *
807  * Here lies the problem.
808  *
809  * The reader must be careful to replace only the head page, and
810  * not another one. As described at the top of the file in the
811  * ASCII art, the reader sets its old page to point to the next
812  * page after head. It then sets the page after head to point to
813  * the old reader page. But if the writer moves the head page
814  * during this operation, the reader could end up with the tail.
815  *
816  * We use cmpxchg to help prevent this race. We also do something
817  * special with the page before head. We set the LSB to 1.
818  *
819  * When the writer must push the page forward, it will clear the
820  * bit that points to the head page, move the head, and then set
821  * the bit that points to the new head page.
822  *
823  * We also don't want an interrupt coming in and moving the head
824  * page on another writer. Thus we use the second LSB to catch
825  * that too. Thus:
826  *
827  * head->list->prev->next        bit 1          bit 0
828  *                              -------        -------
829  * Normal page                     0              0
830  * Points to head page             0              1
831  * New head page                   1              0
832  *
833  * Note we can not trust the prev pointer of the head page, because:
834  *
835  * +----+       +-----+        +-----+
836  * |    |------>|  T  |---X--->|  N  |
837  * |    |<------|     |        |     |
838  * +----+       +-----+        +-----+
839  *   ^                           ^ |
840  *   |          +-----+          | |
841  *   +----------|  R  |----------+ |
842  *              |     |<-----------+
843  *              +-----+
844  *
845  * Key:  ---X-->  HEAD flag set in pointer
846  *         T      Tail page
847  *         R      Reader page
848  *         N      Next page
849  *
850  * (see __rb_reserve_next() to see where this happens)
851  *
852  *  What the above shows is that the reader just swapped out
853  *  the reader page with a page in the buffer, but before it
854  *  could make the new header point back to the new page added
855  *  it was preempted by a writer. The writer moved forward onto
856  *  the new page added by the reader and is about to move forward
857  *  again.
858  *
859  *  You can see, it is legitimate for the previous pointer of
860  *  the head (or any page) not to point back to itself. But only
861  *  temporarily.
862  */
863 
864 #define RB_PAGE_NORMAL		0UL
865 #define RB_PAGE_HEAD		1UL
866 #define RB_PAGE_UPDATE		2UL
867 
868 
869 #define RB_FLAG_MASK		3UL
870 
871 /* PAGE_MOVED is not part of the mask */
872 #define RB_PAGE_MOVED		4UL
873 
874 /*
875  * rb_list_head - remove any bit
876  */
rb_list_head(struct list_head * list)877 static struct list_head *rb_list_head(struct list_head *list)
878 {
879 	unsigned long val = (unsigned long)list;
880 
881 	return (struct list_head *)(val & ~RB_FLAG_MASK);
882 }
883 
884 /*
885  * rb_is_head_page - test if the given page is the head page
886  *
887  * Because the reader may move the head_page pointer, we can
888  * not trust what the head page is (it may be pointing to
889  * the reader page). But if the next page is a header page,
890  * its flags will be non zero.
891  */
892 static inline int
rb_is_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * page,struct list_head * list)893 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
894 		struct buffer_page *page, struct list_head *list)
895 {
896 	unsigned long val;
897 
898 	val = (unsigned long)list->next;
899 
900 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
901 		return RB_PAGE_MOVED;
902 
903 	return val & RB_FLAG_MASK;
904 }
905 
906 /*
907  * rb_is_reader_page
908  *
909  * The unique thing about the reader page, is that, if the
910  * writer is ever on it, the previous pointer never points
911  * back to the reader page.
912  */
rb_is_reader_page(struct buffer_page * page)913 static bool rb_is_reader_page(struct buffer_page *page)
914 {
915 	struct list_head *list = page->list.prev;
916 
917 	return rb_list_head(list->next) != &page->list;
918 }
919 
920 /*
921  * rb_set_list_to_head - set a list_head to be pointing to head.
922  */
rb_set_list_to_head(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)923 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
924 				struct list_head *list)
925 {
926 	unsigned long *ptr;
927 
928 	ptr = (unsigned long *)&list->next;
929 	*ptr |= RB_PAGE_HEAD;
930 	*ptr &= ~RB_PAGE_UPDATE;
931 }
932 
933 /*
934  * rb_head_page_activate - sets up head page
935  */
rb_head_page_activate(struct ring_buffer_per_cpu * cpu_buffer)936 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
937 {
938 	struct buffer_page *head;
939 
940 	head = cpu_buffer->head_page;
941 	if (!head)
942 		return;
943 
944 	/*
945 	 * Set the previous list pointer to have the HEAD flag.
946 	 */
947 	rb_set_list_to_head(cpu_buffer, head->list.prev);
948 }
949 
rb_list_head_clear(struct list_head * list)950 static void rb_list_head_clear(struct list_head *list)
951 {
952 	unsigned long *ptr = (unsigned long *)&list->next;
953 
954 	*ptr &= ~RB_FLAG_MASK;
955 }
956 
957 /*
958  * rb_head_page_deactivate - clears head page ptr (for free list)
959  */
960 static void
rb_head_page_deactivate(struct ring_buffer_per_cpu * cpu_buffer)961 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
962 {
963 	struct list_head *hd;
964 
965 	/* Go through the whole list and clear any pointers found. */
966 	rb_list_head_clear(cpu_buffer->pages);
967 
968 	list_for_each(hd, cpu_buffer->pages)
969 		rb_list_head_clear(hd);
970 }
971 
rb_head_page_set(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag,int new_flag)972 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
973 			    struct buffer_page *head,
974 			    struct buffer_page *prev,
975 			    int old_flag, int new_flag)
976 {
977 	struct list_head *list;
978 	unsigned long val = (unsigned long)&head->list;
979 	unsigned long ret;
980 
981 	list = &prev->list;
982 
983 	val &= ~RB_FLAG_MASK;
984 
985 	ret = cmpxchg((unsigned long *)&list->next,
986 		      val | old_flag, val | new_flag);
987 
988 	/* check if the reader took the page */
989 	if ((ret & ~RB_FLAG_MASK) != val)
990 		return RB_PAGE_MOVED;
991 
992 	return ret & RB_FLAG_MASK;
993 }
994 
rb_head_page_set_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)995 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
996 				   struct buffer_page *head,
997 				   struct buffer_page *prev,
998 				   int old_flag)
999 {
1000 	return rb_head_page_set(cpu_buffer, head, prev,
1001 				old_flag, RB_PAGE_UPDATE);
1002 }
1003 
rb_head_page_set_head(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1004 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1005 				 struct buffer_page *head,
1006 				 struct buffer_page *prev,
1007 				 int old_flag)
1008 {
1009 	return rb_head_page_set(cpu_buffer, head, prev,
1010 				old_flag, RB_PAGE_HEAD);
1011 }
1012 
rb_head_page_set_normal(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * head,struct buffer_page * prev,int old_flag)1013 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1014 				   struct buffer_page *head,
1015 				   struct buffer_page *prev,
1016 				   int old_flag)
1017 {
1018 	return rb_head_page_set(cpu_buffer, head, prev,
1019 				old_flag, RB_PAGE_NORMAL);
1020 }
1021 
rb_inc_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page ** bpage)1022 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
1023 			       struct buffer_page **bpage)
1024 {
1025 	struct list_head *p = rb_list_head((*bpage)->list.next);
1026 
1027 	*bpage = list_entry(p, struct buffer_page, list);
1028 }
1029 
1030 static struct buffer_page *
rb_set_head_page(struct ring_buffer_per_cpu * cpu_buffer)1031 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1032 {
1033 	struct buffer_page *head;
1034 	struct buffer_page *page;
1035 	struct list_head *list;
1036 	int i;
1037 
1038 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1039 		return NULL;
1040 
1041 	/* sanity check */
1042 	list = cpu_buffer->pages;
1043 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1044 		return NULL;
1045 
1046 	page = head = cpu_buffer->head_page;
1047 	/*
1048 	 * It is possible that the writer moves the header behind
1049 	 * where we started, and we miss in one loop.
1050 	 * A second loop should grab the header, but we'll do
1051 	 * three loops just because I'm paranoid.
1052 	 */
1053 	for (i = 0; i < 3; i++) {
1054 		do {
1055 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1056 				cpu_buffer->head_page = page;
1057 				return page;
1058 			}
1059 			rb_inc_page(cpu_buffer, &page);
1060 		} while (page != head);
1061 	}
1062 
1063 	RB_WARN_ON(cpu_buffer, 1);
1064 
1065 	return NULL;
1066 }
1067 
rb_head_page_replace(struct buffer_page * old,struct buffer_page * new)1068 static int rb_head_page_replace(struct buffer_page *old,
1069 				struct buffer_page *new)
1070 {
1071 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1072 	unsigned long val;
1073 	unsigned long ret;
1074 
1075 	val = *ptr & ~RB_FLAG_MASK;
1076 	val |= RB_PAGE_HEAD;
1077 
1078 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1079 
1080 	return ret == val;
1081 }
1082 
1083 /*
1084  * rb_tail_page_update - move the tail page forward
1085  */
rb_tail_page_update(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)1086 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1087 			       struct buffer_page *tail_page,
1088 			       struct buffer_page *next_page)
1089 {
1090 	unsigned long old_entries;
1091 	unsigned long old_write;
1092 
1093 	/*
1094 	 * The tail page now needs to be moved forward.
1095 	 *
1096 	 * We need to reset the tail page, but without messing
1097 	 * with possible erasing of data brought in by interrupts
1098 	 * that have moved the tail page and are currently on it.
1099 	 *
1100 	 * We add a counter to the write field to denote this.
1101 	 */
1102 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1103 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1104 
1105 	local_inc(&cpu_buffer->pages_touched);
1106 	/*
1107 	 * Just make sure we have seen our old_write and synchronize
1108 	 * with any interrupts that come in.
1109 	 */
1110 	barrier();
1111 
1112 	/*
1113 	 * If the tail page is still the same as what we think
1114 	 * it is, then it is up to us to update the tail
1115 	 * pointer.
1116 	 */
1117 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1118 		/* Zero the write counter */
1119 		unsigned long val = old_write & ~RB_WRITE_MASK;
1120 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1121 
1122 		/*
1123 		 * This will only succeed if an interrupt did
1124 		 * not come in and change it. In which case, we
1125 		 * do not want to modify it.
1126 		 *
1127 		 * We add (void) to let the compiler know that we do not care
1128 		 * about the return value of these functions. We use the
1129 		 * cmpxchg to only update if an interrupt did not already
1130 		 * do it for us. If the cmpxchg fails, we don't care.
1131 		 */
1132 		(void)local_cmpxchg(&next_page->write, old_write, val);
1133 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1134 
1135 		/*
1136 		 * No need to worry about races with clearing out the commit.
1137 		 * it only can increment when a commit takes place. But that
1138 		 * only happens in the outer most nested commit.
1139 		 */
1140 		local_set(&next_page->page->commit, 0);
1141 
1142 		/* Again, either we update tail_page or an interrupt does */
1143 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1144 	}
1145 }
1146 
rb_check_bpage(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * bpage)1147 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1148 			  struct buffer_page *bpage)
1149 {
1150 	unsigned long val = (unsigned long)bpage;
1151 
1152 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1153 		return 1;
1154 
1155 	return 0;
1156 }
1157 
1158 /**
1159  * rb_check_list - make sure a pointer to a list has the last bits zero
1160  */
rb_check_list(struct ring_buffer_per_cpu * cpu_buffer,struct list_head * list)1161 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1162 			 struct list_head *list)
1163 {
1164 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1165 		return 1;
1166 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1167 		return 1;
1168 	return 0;
1169 }
1170 
1171 /**
1172  * rb_check_pages - integrity check of buffer pages
1173  * @cpu_buffer: CPU buffer with pages to test
1174  *
1175  * As a safety measure we check to make sure the data pages have not
1176  * been corrupted.
1177  */
rb_check_pages(struct ring_buffer_per_cpu * cpu_buffer)1178 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1179 {
1180 	struct list_head *head = cpu_buffer->pages;
1181 	struct buffer_page *bpage, *tmp;
1182 
1183 	/* Reset the head page if it exists */
1184 	if (cpu_buffer->head_page)
1185 		rb_set_head_page(cpu_buffer);
1186 
1187 	rb_head_page_deactivate(cpu_buffer);
1188 
1189 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1190 		return -1;
1191 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1192 		return -1;
1193 
1194 	if (rb_check_list(cpu_buffer, head))
1195 		return -1;
1196 
1197 	list_for_each_entry_safe(bpage, tmp, head, list) {
1198 		if (RB_WARN_ON(cpu_buffer,
1199 			       bpage->list.next->prev != &bpage->list))
1200 			return -1;
1201 		if (RB_WARN_ON(cpu_buffer,
1202 			       bpage->list.prev->next != &bpage->list))
1203 			return -1;
1204 		if (rb_check_list(cpu_buffer, &bpage->list))
1205 			return -1;
1206 	}
1207 
1208 	rb_head_page_activate(cpu_buffer);
1209 
1210 	return 0;
1211 }
1212 
__rb_allocate_pages(long nr_pages,struct list_head * pages,int cpu)1213 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1214 {
1215 	struct buffer_page *bpage, *tmp;
1216 	bool user_thread = current->mm != NULL;
1217 	gfp_t mflags;
1218 	long i;
1219 
1220 	/*
1221 	 * Check if the available memory is there first.
1222 	 * Note, si_mem_available() only gives us a rough estimate of available
1223 	 * memory. It may not be accurate. But we don't care, we just want
1224 	 * to prevent doing any allocation when it is obvious that it is
1225 	 * not going to succeed.
1226 	 */
1227 	i = si_mem_available();
1228 	if (i < nr_pages)
1229 		return -ENOMEM;
1230 
1231 	/*
1232 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1233 	 * gracefully without invoking oom-killer and the system is not
1234 	 * destabilized.
1235 	 */
1236 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1237 
1238 	/*
1239 	 * If a user thread allocates too much, and si_mem_available()
1240 	 * reports there's enough memory, even though there is not.
1241 	 * Make sure the OOM killer kills this thread. This can happen
1242 	 * even with RETRY_MAYFAIL because another task may be doing
1243 	 * an allocation after this task has taken all memory.
1244 	 * This is the task the OOM killer needs to take out during this
1245 	 * loop, even if it was triggered by an allocation somewhere else.
1246 	 */
1247 	if (user_thread)
1248 		set_current_oom_origin();
1249 	for (i = 0; i < nr_pages; i++) {
1250 		struct page *page;
1251 
1252 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1253 				    mflags, cpu_to_node(cpu));
1254 		if (!bpage)
1255 			goto free_pages;
1256 
1257 		list_add(&bpage->list, pages);
1258 
1259 		page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1260 		if (!page)
1261 			goto free_pages;
1262 		bpage->page = page_address(page);
1263 		rb_init_page(bpage->page);
1264 
1265 		if (user_thread && fatal_signal_pending(current))
1266 			goto free_pages;
1267 	}
1268 	if (user_thread)
1269 		clear_current_oom_origin();
1270 
1271 	return 0;
1272 
1273 free_pages:
1274 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1275 		list_del_init(&bpage->list);
1276 		free_buffer_page(bpage);
1277 	}
1278 	if (user_thread)
1279 		clear_current_oom_origin();
1280 
1281 	return -ENOMEM;
1282 }
1283 
rb_allocate_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1284 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1285 			     unsigned long nr_pages)
1286 {
1287 	LIST_HEAD(pages);
1288 
1289 	WARN_ON(!nr_pages);
1290 
1291 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1292 		return -ENOMEM;
1293 
1294 	/*
1295 	 * The ring buffer page list is a circular list that does not
1296 	 * start and end with a list head. All page list items point to
1297 	 * other pages.
1298 	 */
1299 	cpu_buffer->pages = pages.next;
1300 	list_del(&pages);
1301 
1302 	cpu_buffer->nr_pages = nr_pages;
1303 
1304 	rb_check_pages(cpu_buffer);
1305 
1306 	return 0;
1307 }
1308 
1309 static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct ring_buffer * buffer,long nr_pages,int cpu)1310 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1311 {
1312 	struct ring_buffer_per_cpu *cpu_buffer;
1313 	struct buffer_page *bpage;
1314 	struct page *page;
1315 	int ret;
1316 
1317 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1318 				  GFP_KERNEL, cpu_to_node(cpu));
1319 	if (!cpu_buffer)
1320 		return NULL;
1321 
1322 	cpu_buffer->cpu = cpu;
1323 	cpu_buffer->buffer = buffer;
1324 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1325 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1326 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1327 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1328 	init_completion(&cpu_buffer->update_done);
1329 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1330 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1331 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1332 
1333 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1334 			    GFP_KERNEL, cpu_to_node(cpu));
1335 	if (!bpage)
1336 		goto fail_free_buffer;
1337 
1338 	rb_check_bpage(cpu_buffer, bpage);
1339 
1340 	cpu_buffer->reader_page = bpage;
1341 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1342 	if (!page)
1343 		goto fail_free_reader;
1344 	bpage->page = page_address(page);
1345 	rb_init_page(bpage->page);
1346 
1347 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1348 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1349 
1350 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1351 	if (ret < 0)
1352 		goto fail_free_reader;
1353 
1354 	cpu_buffer->head_page
1355 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1356 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1357 
1358 	rb_head_page_activate(cpu_buffer);
1359 
1360 	return cpu_buffer;
1361 
1362  fail_free_reader:
1363 	free_buffer_page(cpu_buffer->reader_page);
1364 
1365  fail_free_buffer:
1366 	kfree(cpu_buffer);
1367 	return NULL;
1368 }
1369 
rb_free_cpu_buffer(struct ring_buffer_per_cpu * cpu_buffer)1370 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1371 {
1372 	struct list_head *head = cpu_buffer->pages;
1373 	struct buffer_page *bpage, *tmp;
1374 
1375 	irq_work_sync(&cpu_buffer->irq_work.work);
1376 
1377 	free_buffer_page(cpu_buffer->reader_page);
1378 
1379 	if (head) {
1380 		rb_head_page_deactivate(cpu_buffer);
1381 
1382 		list_for_each_entry_safe(bpage, tmp, head, list) {
1383 			list_del_init(&bpage->list);
1384 			free_buffer_page(bpage);
1385 		}
1386 		bpage = list_entry(head, struct buffer_page, list);
1387 		free_buffer_page(bpage);
1388 	}
1389 
1390 	free_page((unsigned long)cpu_buffer->free_page);
1391 
1392 	kfree(cpu_buffer);
1393 }
1394 
1395 /**
1396  * __ring_buffer_alloc - allocate a new ring_buffer
1397  * @size: the size in bytes per cpu that is needed.
1398  * @flags: attributes to set for the ring buffer.
1399  *
1400  * Currently the only flag that is available is the RB_FL_OVERWRITE
1401  * flag. This flag means that the buffer will overwrite old data
1402  * when the buffer wraps. If this flag is not set, the buffer will
1403  * drop data when the tail hits the head.
1404  */
__ring_buffer_alloc(unsigned long size,unsigned flags,struct lock_class_key * key)1405 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1406 					struct lock_class_key *key)
1407 {
1408 	struct ring_buffer *buffer;
1409 	long nr_pages;
1410 	int bsize;
1411 	int cpu;
1412 	int ret;
1413 
1414 	/* keep it in its own cache line */
1415 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1416 			 GFP_KERNEL);
1417 	if (!buffer)
1418 		return NULL;
1419 
1420 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1421 		goto fail_free_buffer;
1422 
1423 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1424 	buffer->flags = flags;
1425 	buffer->clock = trace_clock_local;
1426 	buffer->reader_lock_key = key;
1427 
1428 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1429 	init_waitqueue_head(&buffer->irq_work.waiters);
1430 
1431 	/* need at least two pages */
1432 	if (nr_pages < 2)
1433 		nr_pages = 2;
1434 
1435 	buffer->cpus = nr_cpu_ids;
1436 
1437 	bsize = sizeof(void *) * nr_cpu_ids;
1438 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1439 				  GFP_KERNEL);
1440 	if (!buffer->buffers)
1441 		goto fail_free_cpumask;
1442 
1443 	cpu = raw_smp_processor_id();
1444 	cpumask_set_cpu(cpu, buffer->cpumask);
1445 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1446 	if (!buffer->buffers[cpu])
1447 		goto fail_free_buffers;
1448 
1449 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1450 	if (ret < 0)
1451 		goto fail_free_buffers;
1452 
1453 	mutex_init(&buffer->mutex);
1454 
1455 	return buffer;
1456 
1457  fail_free_buffers:
1458 	for_each_buffer_cpu(buffer, cpu) {
1459 		if (buffer->buffers[cpu])
1460 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1461 	}
1462 	kfree(buffer->buffers);
1463 
1464  fail_free_cpumask:
1465 	free_cpumask_var(buffer->cpumask);
1466 
1467  fail_free_buffer:
1468 	kfree(buffer);
1469 	return NULL;
1470 }
1471 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1472 
1473 /**
1474  * ring_buffer_free - free a ring buffer.
1475  * @buffer: the buffer to free.
1476  */
1477 void
ring_buffer_free(struct ring_buffer * buffer)1478 ring_buffer_free(struct ring_buffer *buffer)
1479 {
1480 	int cpu;
1481 
1482 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1483 
1484 	irq_work_sync(&buffer->irq_work.work);
1485 
1486 	for_each_buffer_cpu(buffer, cpu)
1487 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1488 
1489 	kfree(buffer->buffers);
1490 	free_cpumask_var(buffer->cpumask);
1491 
1492 	kfree(buffer);
1493 }
1494 EXPORT_SYMBOL_GPL(ring_buffer_free);
1495 
ring_buffer_set_clock(struct ring_buffer * buffer,u64 (* clock)(void))1496 void ring_buffer_set_clock(struct ring_buffer *buffer,
1497 			   u64 (*clock)(void))
1498 {
1499 	buffer->clock = clock;
1500 }
1501 
ring_buffer_set_time_stamp_abs(struct ring_buffer * buffer,bool abs)1502 void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
1503 {
1504 	buffer->time_stamp_abs = abs;
1505 }
1506 
ring_buffer_time_stamp_abs(struct ring_buffer * buffer)1507 bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
1508 {
1509 	return buffer->time_stamp_abs;
1510 }
1511 
1512 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1513 
rb_page_entries(struct buffer_page * bpage)1514 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1515 {
1516 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1517 }
1518 
rb_page_write(struct buffer_page * bpage)1519 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1520 {
1521 	return local_read(&bpage->write) & RB_WRITE_MASK;
1522 }
1523 
1524 static int
rb_remove_pages(struct ring_buffer_per_cpu * cpu_buffer,unsigned long nr_pages)1525 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1526 {
1527 	struct list_head *tail_page, *to_remove, *next_page;
1528 	struct buffer_page *to_remove_page, *tmp_iter_page;
1529 	struct buffer_page *last_page, *first_page;
1530 	unsigned long nr_removed;
1531 	unsigned long head_bit;
1532 	int page_entries;
1533 
1534 	head_bit = 0;
1535 
1536 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1537 	atomic_inc(&cpu_buffer->record_disabled);
1538 	/*
1539 	 * We don't race with the readers since we have acquired the reader
1540 	 * lock. We also don't race with writers after disabling recording.
1541 	 * This makes it easy to figure out the first and the last page to be
1542 	 * removed from the list. We unlink all the pages in between including
1543 	 * the first and last pages. This is done in a busy loop so that we
1544 	 * lose the least number of traces.
1545 	 * The pages are freed after we restart recording and unlock readers.
1546 	 */
1547 	tail_page = &cpu_buffer->tail_page->list;
1548 
1549 	/*
1550 	 * tail page might be on reader page, we remove the next page
1551 	 * from the ring buffer
1552 	 */
1553 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1554 		tail_page = rb_list_head(tail_page->next);
1555 	to_remove = tail_page;
1556 
1557 	/* start of pages to remove */
1558 	first_page = list_entry(rb_list_head(to_remove->next),
1559 				struct buffer_page, list);
1560 
1561 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1562 		to_remove = rb_list_head(to_remove)->next;
1563 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1564 	}
1565 	/* Read iterators need to reset themselves when some pages removed */
1566 	cpu_buffer->pages_removed += nr_removed;
1567 
1568 	next_page = rb_list_head(to_remove)->next;
1569 
1570 	/*
1571 	 * Now we remove all pages between tail_page and next_page.
1572 	 * Make sure that we have head_bit value preserved for the
1573 	 * next page
1574 	 */
1575 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1576 						head_bit);
1577 	next_page = rb_list_head(next_page);
1578 	next_page->prev = tail_page;
1579 
1580 	/* make sure pages points to a valid page in the ring buffer */
1581 	cpu_buffer->pages = next_page;
1582 
1583 	/* update head page */
1584 	if (head_bit)
1585 		cpu_buffer->head_page = list_entry(next_page,
1586 						struct buffer_page, list);
1587 
1588 	/* pages are removed, resume tracing and then free the pages */
1589 	atomic_dec(&cpu_buffer->record_disabled);
1590 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1591 
1592 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1593 
1594 	/* last buffer page to remove */
1595 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1596 				list);
1597 	tmp_iter_page = first_page;
1598 
1599 	do {
1600 		cond_resched();
1601 
1602 		to_remove_page = tmp_iter_page;
1603 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1604 
1605 		/* update the counters */
1606 		page_entries = rb_page_entries(to_remove_page);
1607 		if (page_entries) {
1608 			/*
1609 			 * If something was added to this page, it was full
1610 			 * since it is not the tail page. So we deduct the
1611 			 * bytes consumed in ring buffer from here.
1612 			 * Increment overrun to account for the lost events.
1613 			 */
1614 			local_add(page_entries, &cpu_buffer->overrun);
1615 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1616 			local_inc(&cpu_buffer->pages_lost);
1617 		}
1618 
1619 		/*
1620 		 * We have already removed references to this list item, just
1621 		 * free up the buffer_page and its page
1622 		 */
1623 		free_buffer_page(to_remove_page);
1624 		nr_removed--;
1625 
1626 	} while (to_remove_page != last_page);
1627 
1628 	RB_WARN_ON(cpu_buffer, nr_removed);
1629 
1630 	return nr_removed == 0;
1631 }
1632 
1633 static int
rb_insert_pages(struct ring_buffer_per_cpu * cpu_buffer)1634 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1635 {
1636 	struct list_head *pages = &cpu_buffer->new_pages;
1637 	int retries, success;
1638 
1639 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1640 	/*
1641 	 * We are holding the reader lock, so the reader page won't be swapped
1642 	 * in the ring buffer. Now we are racing with the writer trying to
1643 	 * move head page and the tail page.
1644 	 * We are going to adapt the reader page update process where:
1645 	 * 1. We first splice the start and end of list of new pages between
1646 	 *    the head page and its previous page.
1647 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1648 	 *    start of new pages list.
1649 	 * 3. Finally, we update the head->prev to the end of new list.
1650 	 *
1651 	 * We will try this process 10 times, to make sure that we don't keep
1652 	 * spinning.
1653 	 */
1654 	retries = 10;
1655 	success = 0;
1656 	while (retries--) {
1657 		struct list_head *head_page, *prev_page, *r;
1658 		struct list_head *last_page, *first_page;
1659 		struct list_head *head_page_with_bit;
1660 
1661 		head_page = &rb_set_head_page(cpu_buffer)->list;
1662 		if (!head_page)
1663 			break;
1664 		prev_page = head_page->prev;
1665 
1666 		first_page = pages->next;
1667 		last_page  = pages->prev;
1668 
1669 		head_page_with_bit = (struct list_head *)
1670 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1671 
1672 		last_page->next = head_page_with_bit;
1673 		first_page->prev = prev_page;
1674 
1675 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1676 
1677 		if (r == head_page_with_bit) {
1678 			/*
1679 			 * yay, we replaced the page pointer to our new list,
1680 			 * now, we just have to update to head page's prev
1681 			 * pointer to point to end of list
1682 			 */
1683 			head_page->prev = last_page;
1684 			success = 1;
1685 			break;
1686 		}
1687 	}
1688 
1689 	if (success)
1690 		INIT_LIST_HEAD(pages);
1691 	/*
1692 	 * If we weren't successful in adding in new pages, warn and stop
1693 	 * tracing
1694 	 */
1695 	RB_WARN_ON(cpu_buffer, !success);
1696 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1697 
1698 	/* free pages if they weren't inserted */
1699 	if (!success) {
1700 		struct buffer_page *bpage, *tmp;
1701 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1702 					 list) {
1703 			list_del_init(&bpage->list);
1704 			free_buffer_page(bpage);
1705 		}
1706 	}
1707 	return success;
1708 }
1709 
rb_update_pages(struct ring_buffer_per_cpu * cpu_buffer)1710 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1711 {
1712 	int success;
1713 
1714 	if (cpu_buffer->nr_pages_to_update > 0)
1715 		success = rb_insert_pages(cpu_buffer);
1716 	else
1717 		success = rb_remove_pages(cpu_buffer,
1718 					-cpu_buffer->nr_pages_to_update);
1719 
1720 	if (success)
1721 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1722 }
1723 
update_pages_handler(struct work_struct * work)1724 static void update_pages_handler(struct work_struct *work)
1725 {
1726 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1727 			struct ring_buffer_per_cpu, update_pages_work);
1728 	rb_update_pages(cpu_buffer);
1729 	complete(&cpu_buffer->update_done);
1730 }
1731 
1732 /**
1733  * ring_buffer_resize - resize the ring buffer
1734  * @buffer: the buffer to resize.
1735  * @size: the new size.
1736  * @cpu_id: the cpu buffer to resize
1737  *
1738  * Minimum size is 2 * BUF_PAGE_SIZE.
1739  *
1740  * Returns 0 on success and < 0 on failure.
1741  */
ring_buffer_resize(struct ring_buffer * buffer,unsigned long size,int cpu_id)1742 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1743 			int cpu_id)
1744 {
1745 	struct ring_buffer_per_cpu *cpu_buffer;
1746 	unsigned long nr_pages;
1747 	int cpu, err;
1748 
1749 	/*
1750 	 * Always succeed at resizing a non-existent buffer:
1751 	 */
1752 	if (!buffer)
1753 		return 0;
1754 
1755 	/* Make sure the requested buffer exists */
1756 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
1757 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
1758 		return 0;
1759 
1760 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1761 
1762 	/* we need a minimum of two pages */
1763 	if (nr_pages < 2)
1764 		nr_pages = 2;
1765 
1766 	size = nr_pages * BUF_PAGE_SIZE;
1767 
1768 	/*
1769 	 * Don't succeed if resizing is disabled, as a reader might be
1770 	 * manipulating the ring buffer and is expecting a sane state while
1771 	 * this is true.
1772 	 */
1773 	if (atomic_read(&buffer->resize_disabled))
1774 		return -EBUSY;
1775 
1776 	/* prevent another thread from changing buffer sizes */
1777 	mutex_lock(&buffer->mutex);
1778 
1779 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1780 		/* calculate the pages to update */
1781 		for_each_buffer_cpu(buffer, cpu) {
1782 			cpu_buffer = buffer->buffers[cpu];
1783 
1784 			cpu_buffer->nr_pages_to_update = nr_pages -
1785 							cpu_buffer->nr_pages;
1786 			/*
1787 			 * nothing more to do for removing pages or no update
1788 			 */
1789 			if (cpu_buffer->nr_pages_to_update <= 0)
1790 				continue;
1791 			/*
1792 			 * to add pages, make sure all new pages can be
1793 			 * allocated without receiving ENOMEM
1794 			 */
1795 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1796 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1797 						&cpu_buffer->new_pages, cpu)) {
1798 				/* not enough memory for new pages */
1799 				err = -ENOMEM;
1800 				goto out_err;
1801 			}
1802 
1803 			cond_resched();
1804 		}
1805 
1806 		get_online_cpus();
1807 		/*
1808 		 * Fire off all the required work handlers
1809 		 * We can't schedule on offline CPUs, but it's not necessary
1810 		 * since we can change their buffer sizes without any race.
1811 		 */
1812 		for_each_buffer_cpu(buffer, cpu) {
1813 			cpu_buffer = buffer->buffers[cpu];
1814 			if (!cpu_buffer->nr_pages_to_update)
1815 				continue;
1816 
1817 			/* Can't run something on an offline CPU. */
1818 			if (!cpu_online(cpu)) {
1819 				rb_update_pages(cpu_buffer);
1820 				cpu_buffer->nr_pages_to_update = 0;
1821 			} else {
1822 				schedule_work_on(cpu,
1823 						&cpu_buffer->update_pages_work);
1824 			}
1825 		}
1826 
1827 		/* wait for all the updates to complete */
1828 		for_each_buffer_cpu(buffer, cpu) {
1829 			cpu_buffer = buffer->buffers[cpu];
1830 			if (!cpu_buffer->nr_pages_to_update)
1831 				continue;
1832 
1833 			if (cpu_online(cpu))
1834 				wait_for_completion(&cpu_buffer->update_done);
1835 			cpu_buffer->nr_pages_to_update = 0;
1836 		}
1837 
1838 		put_online_cpus();
1839 	} else {
1840 		/* Make sure this CPU has been initialized */
1841 		if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1842 			goto out;
1843 
1844 		cpu_buffer = buffer->buffers[cpu_id];
1845 
1846 		if (nr_pages == cpu_buffer->nr_pages)
1847 			goto out;
1848 
1849 		cpu_buffer->nr_pages_to_update = nr_pages -
1850 						cpu_buffer->nr_pages;
1851 
1852 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1853 		if (cpu_buffer->nr_pages_to_update > 0 &&
1854 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1855 					    &cpu_buffer->new_pages, cpu_id)) {
1856 			err = -ENOMEM;
1857 			goto out_err;
1858 		}
1859 
1860 		get_online_cpus();
1861 
1862 		/* Can't run something on an offline CPU. */
1863 		if (!cpu_online(cpu_id))
1864 			rb_update_pages(cpu_buffer);
1865 		else {
1866 			schedule_work_on(cpu_id,
1867 					 &cpu_buffer->update_pages_work);
1868 			wait_for_completion(&cpu_buffer->update_done);
1869 		}
1870 
1871 		cpu_buffer->nr_pages_to_update = 0;
1872 		put_online_cpus();
1873 	}
1874 
1875  out:
1876 	/*
1877 	 * The ring buffer resize can happen with the ring buffer
1878 	 * enabled, so that the update disturbs the tracing as little
1879 	 * as possible. But if the buffer is disabled, we do not need
1880 	 * to worry about that, and we can take the time to verify
1881 	 * that the buffer is not corrupt.
1882 	 */
1883 	if (atomic_read(&buffer->record_disabled)) {
1884 		atomic_inc(&buffer->record_disabled);
1885 		/*
1886 		 * Even though the buffer was disabled, we must make sure
1887 		 * that it is truly disabled before calling rb_check_pages.
1888 		 * There could have been a race between checking
1889 		 * record_disable and incrementing it.
1890 		 */
1891 		synchronize_rcu();
1892 		for_each_buffer_cpu(buffer, cpu) {
1893 			cpu_buffer = buffer->buffers[cpu];
1894 			rb_check_pages(cpu_buffer);
1895 		}
1896 		atomic_dec(&buffer->record_disabled);
1897 	}
1898 
1899 	mutex_unlock(&buffer->mutex);
1900 	return 0;
1901 
1902  out_err:
1903 	for_each_buffer_cpu(buffer, cpu) {
1904 		struct buffer_page *bpage, *tmp;
1905 
1906 		cpu_buffer = buffer->buffers[cpu];
1907 		cpu_buffer->nr_pages_to_update = 0;
1908 
1909 		if (list_empty(&cpu_buffer->new_pages))
1910 			continue;
1911 
1912 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1913 					list) {
1914 			list_del_init(&bpage->list);
1915 			free_buffer_page(bpage);
1916 		}
1917 	}
1918 	mutex_unlock(&buffer->mutex);
1919 	return err;
1920 }
1921 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1922 
ring_buffer_change_overwrite(struct ring_buffer * buffer,int val)1923 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1924 {
1925 	mutex_lock(&buffer->mutex);
1926 	if (val)
1927 		buffer->flags |= RB_FL_OVERWRITE;
1928 	else
1929 		buffer->flags &= ~RB_FL_OVERWRITE;
1930 	mutex_unlock(&buffer->mutex);
1931 }
1932 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1933 
__rb_page_index(struct buffer_page * bpage,unsigned index)1934 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1935 {
1936 	return bpage->page->data + index;
1937 }
1938 
1939 static __always_inline struct ring_buffer_event *
rb_reader_event(struct ring_buffer_per_cpu * cpu_buffer)1940 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1941 {
1942 	return __rb_page_index(cpu_buffer->reader_page,
1943 			       cpu_buffer->reader_page->read);
1944 }
1945 
1946 static __always_inline struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter * iter)1947 rb_iter_head_event(struct ring_buffer_iter *iter)
1948 {
1949 	return __rb_page_index(iter->head_page, iter->head);
1950 }
1951 
rb_page_commit(struct buffer_page * bpage)1952 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1953 {
1954 	return local_read(&bpage->page->commit);
1955 }
1956 
1957 /* Size is determined by what has been committed */
rb_page_size(struct buffer_page * bpage)1958 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1959 {
1960 	return rb_page_commit(bpage);
1961 }
1962 
1963 static __always_inline unsigned
rb_commit_index(struct ring_buffer_per_cpu * cpu_buffer)1964 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1965 {
1966 	return rb_page_commit(cpu_buffer->commit_page);
1967 }
1968 
1969 static __always_inline unsigned
rb_event_index(struct ring_buffer_event * event)1970 rb_event_index(struct ring_buffer_event *event)
1971 {
1972 	unsigned long addr = (unsigned long)event;
1973 
1974 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1975 }
1976 
rb_inc_iter(struct ring_buffer_iter * iter)1977 static void rb_inc_iter(struct ring_buffer_iter *iter)
1978 {
1979 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1980 
1981 	/*
1982 	 * The iterator could be on the reader page (it starts there).
1983 	 * But the head could have moved, since the reader was
1984 	 * found. Check for this case and assign the iterator
1985 	 * to the head page instead of next.
1986 	 */
1987 	if (iter->head_page == cpu_buffer->reader_page)
1988 		iter->head_page = rb_set_head_page(cpu_buffer);
1989 	else
1990 		rb_inc_page(cpu_buffer, &iter->head_page);
1991 
1992 	iter->read_stamp = iter->head_page->page->time_stamp;
1993 	iter->head = 0;
1994 }
1995 
1996 /*
1997  * rb_handle_head_page - writer hit the head page
1998  *
1999  * Returns: +1 to retry page
2000  *           0 to continue
2001  *          -1 on error
2002  */
2003 static int
rb_handle_head_page(struct ring_buffer_per_cpu * cpu_buffer,struct buffer_page * tail_page,struct buffer_page * next_page)2004 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2005 		    struct buffer_page *tail_page,
2006 		    struct buffer_page *next_page)
2007 {
2008 	struct buffer_page *new_head;
2009 	int entries;
2010 	int type;
2011 	int ret;
2012 
2013 	entries = rb_page_entries(next_page);
2014 
2015 	/*
2016 	 * The hard part is here. We need to move the head
2017 	 * forward, and protect against both readers on
2018 	 * other CPUs and writers coming in via interrupts.
2019 	 */
2020 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2021 				       RB_PAGE_HEAD);
2022 
2023 	/*
2024 	 * type can be one of four:
2025 	 *  NORMAL - an interrupt already moved it for us
2026 	 *  HEAD   - we are the first to get here.
2027 	 *  UPDATE - we are the interrupt interrupting
2028 	 *           a current move.
2029 	 *  MOVED  - a reader on another CPU moved the next
2030 	 *           pointer to its reader page. Give up
2031 	 *           and try again.
2032 	 */
2033 
2034 	switch (type) {
2035 	case RB_PAGE_HEAD:
2036 		/*
2037 		 * We changed the head to UPDATE, thus
2038 		 * it is our responsibility to update
2039 		 * the counters.
2040 		 */
2041 		local_add(entries, &cpu_buffer->overrun);
2042 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2043 		local_inc(&cpu_buffer->pages_lost);
2044 
2045 		/*
2046 		 * The entries will be zeroed out when we move the
2047 		 * tail page.
2048 		 */
2049 
2050 		/* still more to do */
2051 		break;
2052 
2053 	case RB_PAGE_UPDATE:
2054 		/*
2055 		 * This is an interrupt that interrupt the
2056 		 * previous update. Still more to do.
2057 		 */
2058 		break;
2059 	case RB_PAGE_NORMAL:
2060 		/*
2061 		 * An interrupt came in before the update
2062 		 * and processed this for us.
2063 		 * Nothing left to do.
2064 		 */
2065 		return 1;
2066 	case RB_PAGE_MOVED:
2067 		/*
2068 		 * The reader is on another CPU and just did
2069 		 * a swap with our next_page.
2070 		 * Try again.
2071 		 */
2072 		return 1;
2073 	default:
2074 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2075 		return -1;
2076 	}
2077 
2078 	/*
2079 	 * Now that we are here, the old head pointer is
2080 	 * set to UPDATE. This will keep the reader from
2081 	 * swapping the head page with the reader page.
2082 	 * The reader (on another CPU) will spin till
2083 	 * we are finished.
2084 	 *
2085 	 * We just need to protect against interrupts
2086 	 * doing the job. We will set the next pointer
2087 	 * to HEAD. After that, we set the old pointer
2088 	 * to NORMAL, but only if it was HEAD before.
2089 	 * otherwise we are an interrupt, and only
2090 	 * want the outer most commit to reset it.
2091 	 */
2092 	new_head = next_page;
2093 	rb_inc_page(cpu_buffer, &new_head);
2094 
2095 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2096 				    RB_PAGE_NORMAL);
2097 
2098 	/*
2099 	 * Valid returns are:
2100 	 *  HEAD   - an interrupt came in and already set it.
2101 	 *  NORMAL - One of two things:
2102 	 *            1) We really set it.
2103 	 *            2) A bunch of interrupts came in and moved
2104 	 *               the page forward again.
2105 	 */
2106 	switch (ret) {
2107 	case RB_PAGE_HEAD:
2108 	case RB_PAGE_NORMAL:
2109 		/* OK */
2110 		break;
2111 	default:
2112 		RB_WARN_ON(cpu_buffer, 1);
2113 		return -1;
2114 	}
2115 
2116 	/*
2117 	 * It is possible that an interrupt came in,
2118 	 * set the head up, then more interrupts came in
2119 	 * and moved it again. When we get back here,
2120 	 * the page would have been set to NORMAL but we
2121 	 * just set it back to HEAD.
2122 	 *
2123 	 * How do you detect this? Well, if that happened
2124 	 * the tail page would have moved.
2125 	 */
2126 	if (ret == RB_PAGE_NORMAL) {
2127 		struct buffer_page *buffer_tail_page;
2128 
2129 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2130 		/*
2131 		 * If the tail had moved passed next, then we need
2132 		 * to reset the pointer.
2133 		 */
2134 		if (buffer_tail_page != tail_page &&
2135 		    buffer_tail_page != next_page)
2136 			rb_head_page_set_normal(cpu_buffer, new_head,
2137 						next_page,
2138 						RB_PAGE_HEAD);
2139 	}
2140 
2141 	/*
2142 	 * If this was the outer most commit (the one that
2143 	 * changed the original pointer from HEAD to UPDATE),
2144 	 * then it is up to us to reset it to NORMAL.
2145 	 */
2146 	if (type == RB_PAGE_HEAD) {
2147 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2148 					      tail_page,
2149 					      RB_PAGE_UPDATE);
2150 		if (RB_WARN_ON(cpu_buffer,
2151 			       ret != RB_PAGE_UPDATE))
2152 			return -1;
2153 	}
2154 
2155 	return 0;
2156 }
2157 
2158 static inline void
rb_reset_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2159 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2160 	      unsigned long tail, struct rb_event_info *info)
2161 {
2162 	struct buffer_page *tail_page = info->tail_page;
2163 	struct ring_buffer_event *event;
2164 	unsigned long length = info->length;
2165 
2166 	/*
2167 	 * Only the event that crossed the page boundary
2168 	 * must fill the old tail_page with padding.
2169 	 */
2170 	if (tail >= BUF_PAGE_SIZE) {
2171 		/*
2172 		 * If the page was filled, then we still need
2173 		 * to update the real_end. Reset it to zero
2174 		 * and the reader will ignore it.
2175 		 */
2176 		if (tail == BUF_PAGE_SIZE)
2177 			tail_page->real_end = 0;
2178 
2179 		local_sub(length, &tail_page->write);
2180 		return;
2181 	}
2182 
2183 	event = __rb_page_index(tail_page, tail);
2184 
2185 	/* account for padding bytes */
2186 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2187 
2188 	/*
2189 	 * Save the original length to the meta data.
2190 	 * This will be used by the reader to add lost event
2191 	 * counter.
2192 	 */
2193 	tail_page->real_end = tail;
2194 
2195 	/*
2196 	 * If this event is bigger than the minimum size, then
2197 	 * we need to be careful that we don't subtract the
2198 	 * write counter enough to allow another writer to slip
2199 	 * in on this page.
2200 	 * We put in a discarded commit instead, to make sure
2201 	 * that this space is not used again.
2202 	 *
2203 	 * If we are less than the minimum size, we don't need to
2204 	 * worry about it.
2205 	 */
2206 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2207 		/* No room for any events */
2208 
2209 		/* Mark the rest of the page with padding */
2210 		rb_event_set_padding(event);
2211 
2212 		/* Make sure the padding is visible before the write update */
2213 		smp_wmb();
2214 
2215 		/* Set the write back to the previous setting */
2216 		local_sub(length, &tail_page->write);
2217 		return;
2218 	}
2219 
2220 	/* Put in a discarded event */
2221 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2222 	event->type_len = RINGBUF_TYPE_PADDING;
2223 	/* time delta must be non zero */
2224 	event->time_delta = 1;
2225 
2226 	/* Make sure the padding is visible before the tail_page->write update */
2227 	smp_wmb();
2228 
2229 	/* Set write to end of buffer */
2230 	length = (tail + length) - BUF_PAGE_SIZE;
2231 	local_sub(length, &tail_page->write);
2232 }
2233 
2234 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2235 
2236 /*
2237  * This is the slow path, force gcc not to inline it.
2238  */
2239 static noinline struct ring_buffer_event *
rb_move_tail(struct ring_buffer_per_cpu * cpu_buffer,unsigned long tail,struct rb_event_info * info)2240 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2241 	     unsigned long tail, struct rb_event_info *info)
2242 {
2243 	struct buffer_page *tail_page = info->tail_page;
2244 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2245 	struct ring_buffer *buffer = cpu_buffer->buffer;
2246 	struct buffer_page *next_page;
2247 	int ret;
2248 
2249 	next_page = tail_page;
2250 
2251 	rb_inc_page(cpu_buffer, &next_page);
2252 
2253 	/*
2254 	 * If for some reason, we had an interrupt storm that made
2255 	 * it all the way around the buffer, bail, and warn
2256 	 * about it.
2257 	 */
2258 	if (unlikely(next_page == commit_page)) {
2259 		local_inc(&cpu_buffer->commit_overrun);
2260 		goto out_reset;
2261 	}
2262 
2263 	/*
2264 	 * This is where the fun begins!
2265 	 *
2266 	 * We are fighting against races between a reader that
2267 	 * could be on another CPU trying to swap its reader
2268 	 * page with the buffer head.
2269 	 *
2270 	 * We are also fighting against interrupts coming in and
2271 	 * moving the head or tail on us as well.
2272 	 *
2273 	 * If the next page is the head page then we have filled
2274 	 * the buffer, unless the commit page is still on the
2275 	 * reader page.
2276 	 */
2277 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2278 
2279 		/*
2280 		 * If the commit is not on the reader page, then
2281 		 * move the header page.
2282 		 */
2283 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2284 			/*
2285 			 * If we are not in overwrite mode,
2286 			 * this is easy, just stop here.
2287 			 */
2288 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2289 				local_inc(&cpu_buffer->dropped_events);
2290 				goto out_reset;
2291 			}
2292 
2293 			ret = rb_handle_head_page(cpu_buffer,
2294 						  tail_page,
2295 						  next_page);
2296 			if (ret < 0)
2297 				goto out_reset;
2298 			if (ret)
2299 				goto out_again;
2300 		} else {
2301 			/*
2302 			 * We need to be careful here too. The
2303 			 * commit page could still be on the reader
2304 			 * page. We could have a small buffer, and
2305 			 * have filled up the buffer with events
2306 			 * from interrupts and such, and wrapped.
2307 			 *
2308 			 * Note, if the tail page is also the on the
2309 			 * reader_page, we let it move out.
2310 			 */
2311 			if (unlikely((cpu_buffer->commit_page !=
2312 				      cpu_buffer->tail_page) &&
2313 				     (cpu_buffer->commit_page ==
2314 				      cpu_buffer->reader_page))) {
2315 				local_inc(&cpu_buffer->commit_overrun);
2316 				goto out_reset;
2317 			}
2318 		}
2319 	}
2320 
2321 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2322 
2323  out_again:
2324 
2325 	rb_reset_tail(cpu_buffer, tail, info);
2326 
2327 	/* Commit what we have for now. */
2328 	rb_end_commit(cpu_buffer);
2329 	/* rb_end_commit() decs committing */
2330 	local_inc(&cpu_buffer->committing);
2331 
2332 	/* fail and let the caller try again */
2333 	return ERR_PTR(-EAGAIN);
2334 
2335  out_reset:
2336 	/* reset write */
2337 	rb_reset_tail(cpu_buffer, tail, info);
2338 
2339 	return NULL;
2340 }
2341 
2342 /* Slow path, do not inline */
2343 static noinline struct ring_buffer_event *
rb_add_time_stamp(struct ring_buffer_event * event,u64 delta,bool abs)2344 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2345 {
2346 	if (abs)
2347 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2348 	else
2349 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2350 
2351 	/* Not the first event on the page, or not delta? */
2352 	if (abs || rb_event_index(event)) {
2353 		event->time_delta = delta & TS_MASK;
2354 		event->array[0] = delta >> TS_SHIFT;
2355 	} else {
2356 		/* nope, just zero it */
2357 		event->time_delta = 0;
2358 		event->array[0] = 0;
2359 	}
2360 
2361 	return skip_time_extend(event);
2362 }
2363 
2364 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2365 				     struct ring_buffer_event *event);
2366 
2367 /**
2368  * rb_update_event - update event type and data
2369  * @event: the event to update
2370  * @type: the type of event
2371  * @length: the size of the event field in the ring buffer
2372  *
2373  * Update the type and data fields of the event. The length
2374  * is the actual size that is written to the ring buffer,
2375  * and with this, we can determine what to place into the
2376  * data field.
2377  */
2378 static void
rb_update_event(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event,struct rb_event_info * info)2379 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2380 		struct ring_buffer_event *event,
2381 		struct rb_event_info *info)
2382 {
2383 	unsigned length = info->length;
2384 	u64 delta = info->delta;
2385 
2386 	/* Only a commit updates the timestamp */
2387 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2388 		delta = 0;
2389 
2390 	/*
2391 	 * If we need to add a timestamp, then we
2392 	 * add it to the start of the reserved space.
2393 	 */
2394 	if (unlikely(info->add_timestamp)) {
2395 		bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2396 
2397 		event = rb_add_time_stamp(event, abs ? info->delta : delta, abs);
2398 		length -= RB_LEN_TIME_EXTEND;
2399 		delta = 0;
2400 	}
2401 
2402 	event->time_delta = delta;
2403 	length -= RB_EVNT_HDR_SIZE;
2404 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2405 		event->type_len = 0;
2406 		event->array[0] = length;
2407 	} else
2408 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2409 }
2410 
rb_calculate_event_length(unsigned length)2411 static unsigned rb_calculate_event_length(unsigned length)
2412 {
2413 	struct ring_buffer_event event; /* Used only for sizeof array */
2414 
2415 	/* zero length can cause confusions */
2416 	if (!length)
2417 		length++;
2418 
2419 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2420 		length += sizeof(event.array[0]);
2421 
2422 	length += RB_EVNT_HDR_SIZE;
2423 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2424 
2425 	/*
2426 	 * In case the time delta is larger than the 27 bits for it
2427 	 * in the header, we need to add a timestamp. If another
2428 	 * event comes in when trying to discard this one to increase
2429 	 * the length, then the timestamp will be added in the allocated
2430 	 * space of this event. If length is bigger than the size needed
2431 	 * for the TIME_EXTEND, then padding has to be used. The events
2432 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2433 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2434 	 * As length is a multiple of 4, we only need to worry if it
2435 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2436 	 */
2437 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2438 		length += RB_ALIGNMENT;
2439 
2440 	return length;
2441 }
2442 
2443 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
sched_clock_stable(void)2444 static inline bool sched_clock_stable(void)
2445 {
2446 	return true;
2447 }
2448 #endif
2449 
2450 static inline int
rb_try_to_discard(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2451 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2452 		  struct ring_buffer_event *event)
2453 {
2454 	unsigned long new_index, old_index;
2455 	struct buffer_page *bpage;
2456 	unsigned long index;
2457 	unsigned long addr;
2458 
2459 	new_index = rb_event_index(event);
2460 	old_index = new_index + rb_event_ts_length(event);
2461 	addr = (unsigned long)event;
2462 	addr &= PAGE_MASK;
2463 
2464 	bpage = READ_ONCE(cpu_buffer->tail_page);
2465 
2466 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2467 		unsigned long write_mask =
2468 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2469 		unsigned long event_length = rb_event_length(event);
2470 		/*
2471 		 * This is on the tail page. It is possible that
2472 		 * a write could come in and move the tail page
2473 		 * and write to the next page. That is fine
2474 		 * because we just shorten what is on this page.
2475 		 */
2476 		old_index += write_mask;
2477 		new_index += write_mask;
2478 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2479 		if (index == old_index) {
2480 			/* update counters */
2481 			local_sub(event_length, &cpu_buffer->entries_bytes);
2482 			return 1;
2483 		}
2484 	}
2485 
2486 	/* could not discard */
2487 	return 0;
2488 }
2489 
rb_start_commit(struct ring_buffer_per_cpu * cpu_buffer)2490 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2491 {
2492 	local_inc(&cpu_buffer->committing);
2493 	local_inc(&cpu_buffer->commits);
2494 }
2495 
2496 static __always_inline void
rb_set_commit_to_write(struct ring_buffer_per_cpu * cpu_buffer)2497 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2498 {
2499 	unsigned long max_count;
2500 
2501 	/*
2502 	 * We only race with interrupts and NMIs on this CPU.
2503 	 * If we own the commit event, then we can commit
2504 	 * all others that interrupted us, since the interruptions
2505 	 * are in stack format (they finish before they come
2506 	 * back to us). This allows us to do a simple loop to
2507 	 * assign the commit to the tail.
2508 	 */
2509  again:
2510 	max_count = cpu_buffer->nr_pages * 100;
2511 
2512 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2513 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2514 			return;
2515 		if (RB_WARN_ON(cpu_buffer,
2516 			       rb_is_reader_page(cpu_buffer->tail_page)))
2517 			return;
2518 		/*
2519 		 * No need for a memory barrier here, as the update
2520 		 * of the tail_page did it for this page.
2521 		 */
2522 		local_set(&cpu_buffer->commit_page->page->commit,
2523 			  rb_page_write(cpu_buffer->commit_page));
2524 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2525 		/* Only update the write stamp if the page has an event */
2526 		if (rb_page_write(cpu_buffer->commit_page))
2527 			cpu_buffer->write_stamp =
2528 				cpu_buffer->commit_page->page->time_stamp;
2529 		/* add barrier to keep gcc from optimizing too much */
2530 		barrier();
2531 	}
2532 	while (rb_commit_index(cpu_buffer) !=
2533 	       rb_page_write(cpu_buffer->commit_page)) {
2534 
2535 		/* Make sure the readers see the content of what is committed. */
2536 		smp_wmb();
2537 		local_set(&cpu_buffer->commit_page->page->commit,
2538 			  rb_page_write(cpu_buffer->commit_page));
2539 		RB_WARN_ON(cpu_buffer,
2540 			   local_read(&cpu_buffer->commit_page->page->commit) &
2541 			   ~RB_WRITE_MASK);
2542 		barrier();
2543 	}
2544 
2545 	/* again, keep gcc from optimizing */
2546 	barrier();
2547 
2548 	/*
2549 	 * If an interrupt came in just after the first while loop
2550 	 * and pushed the tail page forward, we will be left with
2551 	 * a dangling commit that will never go forward.
2552 	 */
2553 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2554 		goto again;
2555 }
2556 
rb_end_commit(struct ring_buffer_per_cpu * cpu_buffer)2557 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2558 {
2559 	unsigned long commits;
2560 
2561 	if (RB_WARN_ON(cpu_buffer,
2562 		       !local_read(&cpu_buffer->committing)))
2563 		return;
2564 
2565  again:
2566 	commits = local_read(&cpu_buffer->commits);
2567 	/* synchronize with interrupts */
2568 	barrier();
2569 	if (local_read(&cpu_buffer->committing) == 1)
2570 		rb_set_commit_to_write(cpu_buffer);
2571 
2572 	local_dec(&cpu_buffer->committing);
2573 
2574 	/* synchronize with interrupts */
2575 	barrier();
2576 
2577 	/*
2578 	 * Need to account for interrupts coming in between the
2579 	 * updating of the commit page and the clearing of the
2580 	 * committing counter.
2581 	 */
2582 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2583 	    !local_read(&cpu_buffer->committing)) {
2584 		local_inc(&cpu_buffer->committing);
2585 		goto again;
2586 	}
2587 }
2588 
rb_event_discard(struct ring_buffer_event * event)2589 static inline void rb_event_discard(struct ring_buffer_event *event)
2590 {
2591 	if (extended_time(event))
2592 		event = skip_time_extend(event);
2593 
2594 	/* array[0] holds the actual length for the discarded event */
2595 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2596 	event->type_len = RINGBUF_TYPE_PADDING;
2597 	/* time delta must be non zero */
2598 	if (!event->time_delta)
2599 		event->time_delta = 1;
2600 }
2601 
2602 static __always_inline bool
rb_event_is_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2603 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2604 		   struct ring_buffer_event *event)
2605 {
2606 	unsigned long addr = (unsigned long)event;
2607 	unsigned long index;
2608 
2609 	index = rb_event_index(event);
2610 	addr &= PAGE_MASK;
2611 
2612 	return cpu_buffer->commit_page->page == (void *)addr &&
2613 		rb_commit_index(cpu_buffer) == index;
2614 }
2615 
2616 static __always_inline void
rb_update_write_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2617 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2618 		      struct ring_buffer_event *event)
2619 {
2620 	u64 delta;
2621 
2622 	/*
2623 	 * The event first in the commit queue updates the
2624 	 * time stamp.
2625 	 */
2626 	if (rb_event_is_commit(cpu_buffer, event)) {
2627 		/*
2628 		 * A commit event that is first on a page
2629 		 * updates the write timestamp with the page stamp
2630 		 */
2631 		if (!rb_event_index(event))
2632 			cpu_buffer->write_stamp =
2633 				cpu_buffer->commit_page->page->time_stamp;
2634 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2635 			delta = ring_buffer_event_time_stamp(event);
2636 			cpu_buffer->write_stamp += delta;
2637 		} else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2638 			delta = ring_buffer_event_time_stamp(event);
2639 			cpu_buffer->write_stamp = delta;
2640 		} else
2641 			cpu_buffer->write_stamp += event->time_delta;
2642 	}
2643 }
2644 
rb_commit(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)2645 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2646 		      struct ring_buffer_event *event)
2647 {
2648 	local_inc(&cpu_buffer->entries);
2649 	rb_update_write_stamp(cpu_buffer, event);
2650 	rb_end_commit(cpu_buffer);
2651 }
2652 
2653 static __always_inline void
rb_wakeups(struct ring_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer)2654 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2655 {
2656 	size_t nr_pages;
2657 	size_t dirty;
2658 	size_t full;
2659 
2660 	if (buffer->irq_work.waiters_pending) {
2661 		buffer->irq_work.waiters_pending = false;
2662 		/* irq_work_queue() supplies it's own memory barriers */
2663 		irq_work_queue(&buffer->irq_work.work);
2664 	}
2665 
2666 	if (cpu_buffer->irq_work.waiters_pending) {
2667 		cpu_buffer->irq_work.waiters_pending = false;
2668 		/* irq_work_queue() supplies it's own memory barriers */
2669 		irq_work_queue(&cpu_buffer->irq_work.work);
2670 	}
2671 
2672 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2673 		return;
2674 
2675 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2676 		return;
2677 
2678 	if (!cpu_buffer->irq_work.full_waiters_pending)
2679 		return;
2680 
2681 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2682 
2683 	full = cpu_buffer->shortest_full;
2684 	nr_pages = cpu_buffer->nr_pages;
2685 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2686 	if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2687 		return;
2688 
2689 	cpu_buffer->irq_work.wakeup_full = true;
2690 	cpu_buffer->irq_work.full_waiters_pending = false;
2691 	/* irq_work_queue() supplies it's own memory barriers */
2692 	irq_work_queue(&cpu_buffer->irq_work.work);
2693 }
2694 
2695 /*
2696  * The lock and unlock are done within a preempt disable section.
2697  * The current_context per_cpu variable can only be modified
2698  * by the current task between lock and unlock. But it can
2699  * be modified more than once via an interrupt. To pass this
2700  * information from the lock to the unlock without having to
2701  * access the 'in_interrupt()' functions again (which do show
2702  * a bit of overhead in something as critical as function tracing,
2703  * we use a bitmask trick.
2704  *
2705  *  bit 1 =  NMI context
2706  *  bit 2 =  IRQ context
2707  *  bit 3 =  SoftIRQ context
2708  *  bit 4 =  normal context.
2709  *
2710  * This works because this is the order of contexts that can
2711  * preempt other contexts. A SoftIRQ never preempts an IRQ
2712  * context.
2713  *
2714  * When the context is determined, the corresponding bit is
2715  * checked and set (if it was set, then a recursion of that context
2716  * happened).
2717  *
2718  * On unlock, we need to clear this bit. To do so, just subtract
2719  * 1 from the current_context and AND it to itself.
2720  *
2721  * (binary)
2722  *  101 - 1 = 100
2723  *  101 & 100 = 100 (clearing bit zero)
2724  *
2725  *  1010 - 1 = 1001
2726  *  1010 & 1001 = 1000 (clearing bit 1)
2727  *
2728  * The least significant bit can be cleared this way, and it
2729  * just so happens that it is the same bit corresponding to
2730  * the current context.
2731  *
2732  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
2733  * is set when a recursion is detected at the current context, and if
2734  * the TRANSITION bit is already set, it will fail the recursion.
2735  * This is needed because there's a lag between the changing of
2736  * interrupt context and updating the preempt count. In this case,
2737  * a false positive will be found. To handle this, one extra recursion
2738  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
2739  * bit is already set, then it is considered a recursion and the function
2740  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
2741  *
2742  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
2743  * to be cleared. Even if it wasn't the context that set it. That is,
2744  * if an interrupt comes in while NORMAL bit is set and the ring buffer
2745  * is called before preempt_count() is updated, since the check will
2746  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
2747  * NMI then comes in, it will set the NMI bit, but when the NMI code
2748  * does the trace_recursive_unlock() it will clear the TRANSTION bit
2749  * and leave the NMI bit set. But this is fine, because the interrupt
2750  * code that set the TRANSITION bit will then clear the NMI bit when it
2751  * calls trace_recursive_unlock(). If another NMI comes in, it will
2752  * set the TRANSITION bit and continue.
2753  *
2754  * Note: The TRANSITION bit only handles a single transition between context.
2755  */
2756 
2757 static __always_inline int
trace_recursive_lock(struct ring_buffer_per_cpu * cpu_buffer)2758 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2759 {
2760 	unsigned int val = cpu_buffer->current_context;
2761 	unsigned long pc = preempt_count();
2762 	int bit;
2763 
2764 	if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2765 		bit = RB_CTX_NORMAL;
2766 	else
2767 		bit = pc & NMI_MASK ? RB_CTX_NMI :
2768 			pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2769 
2770 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
2771 		/*
2772 		 * It is possible that this was called by transitioning
2773 		 * between interrupt context, and preempt_count() has not
2774 		 * been updated yet. In this case, use the TRANSITION bit.
2775 		 */
2776 		bit = RB_CTX_TRANSITION;
2777 		if (val & (1 << (bit + cpu_buffer->nest)))
2778 			return 1;
2779 	}
2780 
2781 	val |= (1 << (bit + cpu_buffer->nest));
2782 	cpu_buffer->current_context = val;
2783 
2784 	return 0;
2785 }
2786 
2787 static __always_inline void
trace_recursive_unlock(struct ring_buffer_per_cpu * cpu_buffer)2788 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2789 {
2790 	cpu_buffer->current_context &=
2791 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
2792 }
2793 
2794 /* The recursive locking above uses 5 bits */
2795 #define NESTED_BITS 5
2796 
2797 /**
2798  * ring_buffer_nest_start - Allow to trace while nested
2799  * @buffer: The ring buffer to modify
2800  *
2801  * The ring buffer has a safety mechanism to prevent recursion.
2802  * But there may be a case where a trace needs to be done while
2803  * tracing something else. In this case, calling this function
2804  * will allow this function to nest within a currently active
2805  * ring_buffer_lock_reserve().
2806  *
2807  * Call this function before calling another ring_buffer_lock_reserve() and
2808  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2809  */
ring_buffer_nest_start(struct ring_buffer * buffer)2810 void ring_buffer_nest_start(struct ring_buffer *buffer)
2811 {
2812 	struct ring_buffer_per_cpu *cpu_buffer;
2813 	int cpu;
2814 
2815 	/* Enabled by ring_buffer_nest_end() */
2816 	preempt_disable_notrace();
2817 	cpu = raw_smp_processor_id();
2818 	cpu_buffer = buffer->buffers[cpu];
2819 	/* This is the shift value for the above recursive locking */
2820 	cpu_buffer->nest += NESTED_BITS;
2821 }
2822 
2823 /**
2824  * ring_buffer_nest_end - Allow to trace while nested
2825  * @buffer: The ring buffer to modify
2826  *
2827  * Must be called after ring_buffer_nest_start() and after the
2828  * ring_buffer_unlock_commit().
2829  */
ring_buffer_nest_end(struct ring_buffer * buffer)2830 void ring_buffer_nest_end(struct ring_buffer *buffer)
2831 {
2832 	struct ring_buffer_per_cpu *cpu_buffer;
2833 	int cpu;
2834 
2835 	/* disabled by ring_buffer_nest_start() */
2836 	cpu = raw_smp_processor_id();
2837 	cpu_buffer = buffer->buffers[cpu];
2838 	/* This is the shift value for the above recursive locking */
2839 	cpu_buffer->nest -= NESTED_BITS;
2840 	preempt_enable_notrace();
2841 }
2842 
2843 /**
2844  * ring_buffer_unlock_commit - commit a reserved
2845  * @buffer: The buffer to commit to
2846  * @event: The event pointer to commit.
2847  *
2848  * This commits the data to the ring buffer, and releases any locks held.
2849  *
2850  * Must be paired with ring_buffer_lock_reserve.
2851  */
ring_buffer_unlock_commit(struct ring_buffer * buffer,struct ring_buffer_event * event)2852 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2853 			      struct ring_buffer_event *event)
2854 {
2855 	struct ring_buffer_per_cpu *cpu_buffer;
2856 	int cpu = raw_smp_processor_id();
2857 
2858 	cpu_buffer = buffer->buffers[cpu];
2859 
2860 	rb_commit(cpu_buffer, event);
2861 
2862 	rb_wakeups(buffer, cpu_buffer);
2863 
2864 	trace_recursive_unlock(cpu_buffer);
2865 
2866 	preempt_enable_notrace();
2867 
2868 	return 0;
2869 }
2870 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2871 
2872 static noinline void
rb_handle_timestamp(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)2873 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2874 		    struct rb_event_info *info)
2875 {
2876 	WARN_ONCE(info->delta > (1ULL << 59),
2877 		  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2878 		  (unsigned long long)info->delta,
2879 		  (unsigned long long)info->ts,
2880 		  (unsigned long long)cpu_buffer->write_stamp,
2881 		  sched_clock_stable() ? "" :
2882 		  "If you just came from a suspend/resume,\n"
2883 		  "please switch to the trace global clock:\n"
2884 		  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2885 		  "or add trace_clock=global to the kernel command line\n");
2886 	info->add_timestamp = 1;
2887 }
2888 
2889 static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu * cpu_buffer,struct rb_event_info * info)2890 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2891 		  struct rb_event_info *info)
2892 {
2893 	struct ring_buffer_event *event;
2894 	struct buffer_page *tail_page;
2895 	unsigned long tail, write;
2896 
2897 	/*
2898 	 * If the time delta since the last event is too big to
2899 	 * hold in the time field of the event, then we append a
2900 	 * TIME EXTEND event ahead of the data event.
2901 	 */
2902 	if (unlikely(info->add_timestamp))
2903 		info->length += RB_LEN_TIME_EXTEND;
2904 
2905 	/* Don't let the compiler play games with cpu_buffer->tail_page */
2906 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2907 	write = local_add_return(info->length, &tail_page->write);
2908 
2909 	/* set write to only the index of the write */
2910 	write &= RB_WRITE_MASK;
2911 	tail = write - info->length;
2912 
2913 	/*
2914 	 * If this is the first commit on the page, then it has the same
2915 	 * timestamp as the page itself.
2916 	 */
2917 	if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2918 		info->delta = 0;
2919 
2920 	/* See if we shot pass the end of this buffer page */
2921 	if (unlikely(write > BUF_PAGE_SIZE))
2922 		return rb_move_tail(cpu_buffer, tail, info);
2923 
2924 	/* We reserved something on the buffer */
2925 
2926 	event = __rb_page_index(tail_page, tail);
2927 	rb_update_event(cpu_buffer, event, info);
2928 
2929 	local_inc(&tail_page->entries);
2930 
2931 	/*
2932 	 * If this is the first commit on the page, then update
2933 	 * its timestamp.
2934 	 */
2935 	if (!tail)
2936 		tail_page->page->time_stamp = info->ts;
2937 
2938 	/* account for these added bytes */
2939 	local_add(info->length, &cpu_buffer->entries_bytes);
2940 
2941 	return event;
2942 }
2943 
2944 static __always_inline struct ring_buffer_event *
rb_reserve_next_event(struct ring_buffer * buffer,struct ring_buffer_per_cpu * cpu_buffer,unsigned long length)2945 rb_reserve_next_event(struct ring_buffer *buffer,
2946 		      struct ring_buffer_per_cpu *cpu_buffer,
2947 		      unsigned long length)
2948 {
2949 	struct ring_buffer_event *event;
2950 	struct rb_event_info info;
2951 	int nr_loops = 0;
2952 	u64 diff;
2953 
2954 	/* ring buffer does cmpxchg, make sure it is safe in NMI context */
2955 	if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
2956 	    (unlikely(in_nmi()))) {
2957 		return NULL;
2958 	}
2959 
2960 	rb_start_commit(cpu_buffer);
2961 
2962 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2963 	/*
2964 	 * Due to the ability to swap a cpu buffer from a buffer
2965 	 * it is possible it was swapped before we committed.
2966 	 * (committing stops a swap). We check for it here and
2967 	 * if it happened, we have to fail the write.
2968 	 */
2969 	barrier();
2970 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2971 		local_dec(&cpu_buffer->committing);
2972 		local_dec(&cpu_buffer->commits);
2973 		return NULL;
2974 	}
2975 #endif
2976 
2977 	info.length = rb_calculate_event_length(length);
2978  again:
2979 	info.add_timestamp = 0;
2980 	info.delta = 0;
2981 
2982 	/*
2983 	 * We allow for interrupts to reenter here and do a trace.
2984 	 * If one does, it will cause this original code to loop
2985 	 * back here. Even with heavy interrupts happening, this
2986 	 * should only happen a few times in a row. If this happens
2987 	 * 1000 times in a row, there must be either an interrupt
2988 	 * storm or we have something buggy.
2989 	 * Bail!
2990 	 */
2991 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2992 		goto out_fail;
2993 
2994 	info.ts = rb_time_stamp(cpu_buffer->buffer);
2995 	diff = info.ts - cpu_buffer->write_stamp;
2996 
2997 	/* make sure this diff is calculated here */
2998 	barrier();
2999 
3000 	if (ring_buffer_time_stamp_abs(buffer)) {
3001 		info.delta = info.ts;
3002 		rb_handle_timestamp(cpu_buffer, &info);
3003 	} else /* Did the write stamp get updated already? */
3004 		if (likely(info.ts >= cpu_buffer->write_stamp)) {
3005 		info.delta = diff;
3006 		if (unlikely(test_time_stamp(info.delta)))
3007 			rb_handle_timestamp(cpu_buffer, &info);
3008 	}
3009 
3010 	event = __rb_reserve_next(cpu_buffer, &info);
3011 
3012 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3013 		if (info.add_timestamp)
3014 			info.length -= RB_LEN_TIME_EXTEND;
3015 		goto again;
3016 	}
3017 
3018 	if (!event)
3019 		goto out_fail;
3020 
3021 	return event;
3022 
3023  out_fail:
3024 	rb_end_commit(cpu_buffer);
3025 	return NULL;
3026 }
3027 
3028 /**
3029  * ring_buffer_lock_reserve - reserve a part of the buffer
3030  * @buffer: the ring buffer to reserve from
3031  * @length: the length of the data to reserve (excluding event header)
3032  *
3033  * Returns a reserved event on the ring buffer to copy directly to.
3034  * The user of this interface will need to get the body to write into
3035  * and can use the ring_buffer_event_data() interface.
3036  *
3037  * The length is the length of the data needed, not the event length
3038  * which also includes the event header.
3039  *
3040  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3041  * If NULL is returned, then nothing has been allocated or locked.
3042  */
3043 struct ring_buffer_event *
ring_buffer_lock_reserve(struct ring_buffer * buffer,unsigned long length)3044 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
3045 {
3046 	struct ring_buffer_per_cpu *cpu_buffer;
3047 	struct ring_buffer_event *event;
3048 	int cpu;
3049 
3050 	/* If we are tracing schedule, we don't want to recurse */
3051 	preempt_disable_notrace();
3052 
3053 	if (unlikely(atomic_read(&buffer->record_disabled)))
3054 		goto out;
3055 
3056 	cpu = raw_smp_processor_id();
3057 
3058 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3059 		goto out;
3060 
3061 	cpu_buffer = buffer->buffers[cpu];
3062 
3063 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3064 		goto out;
3065 
3066 	if (unlikely(length > BUF_MAX_DATA_SIZE))
3067 		goto out;
3068 
3069 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3070 		goto out;
3071 
3072 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3073 	if (!event)
3074 		goto out_unlock;
3075 
3076 	return event;
3077 
3078  out_unlock:
3079 	trace_recursive_unlock(cpu_buffer);
3080  out:
3081 	preempt_enable_notrace();
3082 	return NULL;
3083 }
3084 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3085 
3086 /*
3087  * Decrement the entries to the page that an event is on.
3088  * The event does not even need to exist, only the pointer
3089  * to the page it is on. This may only be called before the commit
3090  * takes place.
3091  */
3092 static inline void
rb_decrement_entry(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3093 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3094 		   struct ring_buffer_event *event)
3095 {
3096 	unsigned long addr = (unsigned long)event;
3097 	struct buffer_page *bpage = cpu_buffer->commit_page;
3098 	struct buffer_page *start;
3099 
3100 	addr &= PAGE_MASK;
3101 
3102 	/* Do the likely case first */
3103 	if (likely(bpage->page == (void *)addr)) {
3104 		local_dec(&bpage->entries);
3105 		return;
3106 	}
3107 
3108 	/*
3109 	 * Because the commit page may be on the reader page we
3110 	 * start with the next page and check the end loop there.
3111 	 */
3112 	rb_inc_page(cpu_buffer, &bpage);
3113 	start = bpage;
3114 	do {
3115 		if (bpage->page == (void *)addr) {
3116 			local_dec(&bpage->entries);
3117 			return;
3118 		}
3119 		rb_inc_page(cpu_buffer, &bpage);
3120 	} while (bpage != start);
3121 
3122 	/* commit not part of this buffer?? */
3123 	RB_WARN_ON(cpu_buffer, 1);
3124 }
3125 
3126 /**
3127  * ring_buffer_commit_discard - discard an event that has not been committed
3128  * @buffer: the ring buffer
3129  * @event: non committed event to discard
3130  *
3131  * Sometimes an event that is in the ring buffer needs to be ignored.
3132  * This function lets the user discard an event in the ring buffer
3133  * and then that event will not be read later.
3134  *
3135  * This function only works if it is called before the item has been
3136  * committed. It will try to free the event from the ring buffer
3137  * if another event has not been added behind it.
3138  *
3139  * If another event has been added behind it, it will set the event
3140  * up as discarded, and perform the commit.
3141  *
3142  * If this function is called, do not call ring_buffer_unlock_commit on
3143  * the event.
3144  */
ring_buffer_discard_commit(struct ring_buffer * buffer,struct ring_buffer_event * event)3145 void ring_buffer_discard_commit(struct ring_buffer *buffer,
3146 				struct ring_buffer_event *event)
3147 {
3148 	struct ring_buffer_per_cpu *cpu_buffer;
3149 	int cpu;
3150 
3151 	/* The event is discarded regardless */
3152 	rb_event_discard(event);
3153 
3154 	cpu = smp_processor_id();
3155 	cpu_buffer = buffer->buffers[cpu];
3156 
3157 	/*
3158 	 * This must only be called if the event has not been
3159 	 * committed yet. Thus we can assume that preemption
3160 	 * is still disabled.
3161 	 */
3162 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3163 
3164 	rb_decrement_entry(cpu_buffer, event);
3165 	if (rb_try_to_discard(cpu_buffer, event))
3166 		goto out;
3167 
3168 	/*
3169 	 * The commit is still visible by the reader, so we
3170 	 * must still update the timestamp.
3171 	 */
3172 	rb_update_write_stamp(cpu_buffer, event);
3173  out:
3174 	rb_end_commit(cpu_buffer);
3175 
3176 	trace_recursive_unlock(cpu_buffer);
3177 
3178 	preempt_enable_notrace();
3179 
3180 }
3181 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3182 
3183 /**
3184  * ring_buffer_write - write data to the buffer without reserving
3185  * @buffer: The ring buffer to write to.
3186  * @length: The length of the data being written (excluding the event header)
3187  * @data: The data to write to the buffer.
3188  *
3189  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3190  * one function. If you already have the data to write to the buffer, it
3191  * may be easier to simply call this function.
3192  *
3193  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3194  * and not the length of the event which would hold the header.
3195  */
ring_buffer_write(struct ring_buffer * buffer,unsigned long length,void * data)3196 int ring_buffer_write(struct ring_buffer *buffer,
3197 		      unsigned long length,
3198 		      void *data)
3199 {
3200 	struct ring_buffer_per_cpu *cpu_buffer;
3201 	struct ring_buffer_event *event;
3202 	void *body;
3203 	int ret = -EBUSY;
3204 	int cpu;
3205 
3206 	preempt_disable_notrace();
3207 
3208 	if (atomic_read(&buffer->record_disabled))
3209 		goto out;
3210 
3211 	cpu = raw_smp_processor_id();
3212 
3213 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3214 		goto out;
3215 
3216 	cpu_buffer = buffer->buffers[cpu];
3217 
3218 	if (atomic_read(&cpu_buffer->record_disabled))
3219 		goto out;
3220 
3221 	if (length > BUF_MAX_DATA_SIZE)
3222 		goto out;
3223 
3224 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3225 		goto out;
3226 
3227 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3228 	if (!event)
3229 		goto out_unlock;
3230 
3231 	body = rb_event_data(event);
3232 
3233 	memcpy(body, data, length);
3234 
3235 	rb_commit(cpu_buffer, event);
3236 
3237 	rb_wakeups(buffer, cpu_buffer);
3238 
3239 	ret = 0;
3240 
3241  out_unlock:
3242 	trace_recursive_unlock(cpu_buffer);
3243 
3244  out:
3245 	preempt_enable_notrace();
3246 
3247 	return ret;
3248 }
3249 EXPORT_SYMBOL_GPL(ring_buffer_write);
3250 
rb_per_cpu_empty(struct ring_buffer_per_cpu * cpu_buffer)3251 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3252 {
3253 	struct buffer_page *reader = cpu_buffer->reader_page;
3254 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3255 	struct buffer_page *commit = cpu_buffer->commit_page;
3256 
3257 	/* In case of error, head will be NULL */
3258 	if (unlikely(!head))
3259 		return true;
3260 
3261 	/* Reader should exhaust content in reader page */
3262 	if (reader->read != rb_page_commit(reader))
3263 		return false;
3264 
3265 	/*
3266 	 * If writers are committing on the reader page, knowing all
3267 	 * committed content has been read, the ring buffer is empty.
3268 	 */
3269 	if (commit == reader)
3270 		return true;
3271 
3272 	/*
3273 	 * If writers are committing on a page other than reader page
3274 	 * and head page, there should always be content to read.
3275 	 */
3276 	if (commit != head)
3277 		return false;
3278 
3279 	/*
3280 	 * Writers are committing on the head page, we just need
3281 	 * to care about there're committed data, and the reader will
3282 	 * swap reader page with head page when it is to read data.
3283 	 */
3284 	return rb_page_commit(commit) == 0;
3285 }
3286 
3287 /**
3288  * ring_buffer_record_disable - stop all writes into the buffer
3289  * @buffer: The ring buffer to stop writes to.
3290  *
3291  * This prevents all writes to the buffer. Any attempt to write
3292  * to the buffer after this will fail and return NULL.
3293  *
3294  * The caller should call synchronize_rcu() after this.
3295  */
ring_buffer_record_disable(struct ring_buffer * buffer)3296 void ring_buffer_record_disable(struct ring_buffer *buffer)
3297 {
3298 	atomic_inc(&buffer->record_disabled);
3299 }
3300 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3301 
3302 /**
3303  * ring_buffer_record_enable - enable writes to the buffer
3304  * @buffer: The ring buffer to enable writes
3305  *
3306  * Note, multiple disables will need the same number of enables
3307  * to truly enable the writing (much like preempt_disable).
3308  */
ring_buffer_record_enable(struct ring_buffer * buffer)3309 void ring_buffer_record_enable(struct ring_buffer *buffer)
3310 {
3311 	atomic_dec(&buffer->record_disabled);
3312 }
3313 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3314 
3315 /**
3316  * ring_buffer_record_off - stop all writes into the buffer
3317  * @buffer: The ring buffer to stop writes to.
3318  *
3319  * This prevents all writes to the buffer. Any attempt to write
3320  * to the buffer after this will fail and return NULL.
3321  *
3322  * This is different than ring_buffer_record_disable() as
3323  * it works like an on/off switch, where as the disable() version
3324  * must be paired with a enable().
3325  */
ring_buffer_record_off(struct ring_buffer * buffer)3326 void ring_buffer_record_off(struct ring_buffer *buffer)
3327 {
3328 	unsigned int rd;
3329 	unsigned int new_rd;
3330 
3331 	do {
3332 		rd = atomic_read(&buffer->record_disabled);
3333 		new_rd = rd | RB_BUFFER_OFF;
3334 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3335 }
3336 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3337 
3338 /**
3339  * ring_buffer_record_on - restart writes into the buffer
3340  * @buffer: The ring buffer to start writes to.
3341  *
3342  * This enables all writes to the buffer that was disabled by
3343  * ring_buffer_record_off().
3344  *
3345  * This is different than ring_buffer_record_enable() as
3346  * it works like an on/off switch, where as the enable() version
3347  * must be paired with a disable().
3348  */
ring_buffer_record_on(struct ring_buffer * buffer)3349 void ring_buffer_record_on(struct ring_buffer *buffer)
3350 {
3351 	unsigned int rd;
3352 	unsigned int new_rd;
3353 
3354 	do {
3355 		rd = atomic_read(&buffer->record_disabled);
3356 		new_rd = rd & ~RB_BUFFER_OFF;
3357 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3358 }
3359 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3360 
3361 /**
3362  * ring_buffer_record_is_on - return true if the ring buffer can write
3363  * @buffer: The ring buffer to see if write is enabled
3364  *
3365  * Returns true if the ring buffer is in a state that it accepts writes.
3366  */
ring_buffer_record_is_on(struct ring_buffer * buffer)3367 bool ring_buffer_record_is_on(struct ring_buffer *buffer)
3368 {
3369 	return !atomic_read(&buffer->record_disabled);
3370 }
3371 
3372 /**
3373  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3374  * @buffer: The ring buffer to see if write is set enabled
3375  *
3376  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3377  * Note that this does NOT mean it is in a writable state.
3378  *
3379  * It may return true when the ring buffer has been disabled by
3380  * ring_buffer_record_disable(), as that is a temporary disabling of
3381  * the ring buffer.
3382  */
ring_buffer_record_is_set_on(struct ring_buffer * buffer)3383 bool ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3384 {
3385 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3386 }
3387 
3388 /**
3389  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3390  * @buffer: The ring buffer to stop writes to.
3391  * @cpu: The CPU buffer to stop
3392  *
3393  * This prevents all writes to the buffer. Any attempt to write
3394  * to the buffer after this will fail and return NULL.
3395  *
3396  * The caller should call synchronize_rcu() after this.
3397  */
ring_buffer_record_disable_cpu(struct ring_buffer * buffer,int cpu)3398 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3399 {
3400 	struct ring_buffer_per_cpu *cpu_buffer;
3401 
3402 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3403 		return;
3404 
3405 	cpu_buffer = buffer->buffers[cpu];
3406 	atomic_inc(&cpu_buffer->record_disabled);
3407 }
3408 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3409 
3410 /**
3411  * ring_buffer_record_enable_cpu - enable writes to the buffer
3412  * @buffer: The ring buffer to enable writes
3413  * @cpu: The CPU to enable.
3414  *
3415  * Note, multiple disables will need the same number of enables
3416  * to truly enable the writing (much like preempt_disable).
3417  */
ring_buffer_record_enable_cpu(struct ring_buffer * buffer,int cpu)3418 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3419 {
3420 	struct ring_buffer_per_cpu *cpu_buffer;
3421 
3422 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3423 		return;
3424 
3425 	cpu_buffer = buffer->buffers[cpu];
3426 	atomic_dec(&cpu_buffer->record_disabled);
3427 }
3428 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3429 
3430 /*
3431  * The total entries in the ring buffer is the running counter
3432  * of entries entered into the ring buffer, minus the sum of
3433  * the entries read from the ring buffer and the number of
3434  * entries that were overwritten.
3435  */
3436 static inline unsigned long
rb_num_of_entries(struct ring_buffer_per_cpu * cpu_buffer)3437 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3438 {
3439 	return local_read(&cpu_buffer->entries) -
3440 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3441 }
3442 
3443 /**
3444  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3445  * @buffer: The ring buffer
3446  * @cpu: The per CPU buffer to read from.
3447  */
ring_buffer_oldest_event_ts(struct ring_buffer * buffer,int cpu)3448 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3449 {
3450 	unsigned long flags;
3451 	struct ring_buffer_per_cpu *cpu_buffer;
3452 	struct buffer_page *bpage;
3453 	u64 ret = 0;
3454 
3455 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3456 		return 0;
3457 
3458 	cpu_buffer = buffer->buffers[cpu];
3459 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3460 	/*
3461 	 * if the tail is on reader_page, oldest time stamp is on the reader
3462 	 * page
3463 	 */
3464 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3465 		bpage = cpu_buffer->reader_page;
3466 	else
3467 		bpage = rb_set_head_page(cpu_buffer);
3468 	if (bpage)
3469 		ret = bpage->page->time_stamp;
3470 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3471 
3472 	return ret;
3473 }
3474 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3475 
3476 /**
3477  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3478  * @buffer: The ring buffer
3479  * @cpu: The per CPU buffer to read from.
3480  */
ring_buffer_bytes_cpu(struct ring_buffer * buffer,int cpu)3481 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3482 {
3483 	struct ring_buffer_per_cpu *cpu_buffer;
3484 	unsigned long ret;
3485 
3486 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3487 		return 0;
3488 
3489 	cpu_buffer = buffer->buffers[cpu];
3490 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3491 
3492 	return ret;
3493 }
3494 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3495 
3496 /**
3497  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3498  * @buffer: The ring buffer
3499  * @cpu: The per CPU buffer to get the entries from.
3500  */
ring_buffer_entries_cpu(struct ring_buffer * buffer,int cpu)3501 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3502 {
3503 	struct ring_buffer_per_cpu *cpu_buffer;
3504 
3505 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3506 		return 0;
3507 
3508 	cpu_buffer = buffer->buffers[cpu];
3509 
3510 	return rb_num_of_entries(cpu_buffer);
3511 }
3512 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3513 
3514 /**
3515  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3516  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3517  * @buffer: The ring buffer
3518  * @cpu: The per CPU buffer to get the number of overruns from
3519  */
ring_buffer_overrun_cpu(struct ring_buffer * buffer,int cpu)3520 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3521 {
3522 	struct ring_buffer_per_cpu *cpu_buffer;
3523 	unsigned long ret;
3524 
3525 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3526 		return 0;
3527 
3528 	cpu_buffer = buffer->buffers[cpu];
3529 	ret = local_read(&cpu_buffer->overrun);
3530 
3531 	return ret;
3532 }
3533 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3534 
3535 /**
3536  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3537  * commits failing due to the buffer wrapping around while there are uncommitted
3538  * events, such as during an interrupt storm.
3539  * @buffer: The ring buffer
3540  * @cpu: The per CPU buffer to get the number of overruns from
3541  */
3542 unsigned long
ring_buffer_commit_overrun_cpu(struct ring_buffer * buffer,int cpu)3543 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3544 {
3545 	struct ring_buffer_per_cpu *cpu_buffer;
3546 	unsigned long ret;
3547 
3548 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3549 		return 0;
3550 
3551 	cpu_buffer = buffer->buffers[cpu];
3552 	ret = local_read(&cpu_buffer->commit_overrun);
3553 
3554 	return ret;
3555 }
3556 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3557 
3558 /**
3559  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3560  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3561  * @buffer: The ring buffer
3562  * @cpu: The per CPU buffer to get the number of overruns from
3563  */
3564 unsigned long
ring_buffer_dropped_events_cpu(struct ring_buffer * buffer,int cpu)3565 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3566 {
3567 	struct ring_buffer_per_cpu *cpu_buffer;
3568 	unsigned long ret;
3569 
3570 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3571 		return 0;
3572 
3573 	cpu_buffer = buffer->buffers[cpu];
3574 	ret = local_read(&cpu_buffer->dropped_events);
3575 
3576 	return ret;
3577 }
3578 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3579 
3580 /**
3581  * ring_buffer_read_events_cpu - get the number of events successfully read
3582  * @buffer: The ring buffer
3583  * @cpu: The per CPU buffer to get the number of events read
3584  */
3585 unsigned long
ring_buffer_read_events_cpu(struct ring_buffer * buffer,int cpu)3586 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3587 {
3588 	struct ring_buffer_per_cpu *cpu_buffer;
3589 
3590 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3591 		return 0;
3592 
3593 	cpu_buffer = buffer->buffers[cpu];
3594 	return cpu_buffer->read;
3595 }
3596 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3597 
3598 /**
3599  * ring_buffer_entries - get the number of entries in a buffer
3600  * @buffer: The ring buffer
3601  *
3602  * Returns the total number of entries in the ring buffer
3603  * (all CPU entries)
3604  */
ring_buffer_entries(struct ring_buffer * buffer)3605 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3606 {
3607 	struct ring_buffer_per_cpu *cpu_buffer;
3608 	unsigned long entries = 0;
3609 	int cpu;
3610 
3611 	/* if you care about this being correct, lock the buffer */
3612 	for_each_buffer_cpu(buffer, cpu) {
3613 		cpu_buffer = buffer->buffers[cpu];
3614 		entries += rb_num_of_entries(cpu_buffer);
3615 	}
3616 
3617 	return entries;
3618 }
3619 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3620 
3621 /**
3622  * ring_buffer_overruns - get the number of overruns in buffer
3623  * @buffer: The ring buffer
3624  *
3625  * Returns the total number of overruns in the ring buffer
3626  * (all CPU entries)
3627  */
ring_buffer_overruns(struct ring_buffer * buffer)3628 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3629 {
3630 	struct ring_buffer_per_cpu *cpu_buffer;
3631 	unsigned long overruns = 0;
3632 	int cpu;
3633 
3634 	/* if you care about this being correct, lock the buffer */
3635 	for_each_buffer_cpu(buffer, cpu) {
3636 		cpu_buffer = buffer->buffers[cpu];
3637 		overruns += local_read(&cpu_buffer->overrun);
3638 	}
3639 
3640 	return overruns;
3641 }
3642 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3643 
rb_iter_reset(struct ring_buffer_iter * iter)3644 static void rb_iter_reset(struct ring_buffer_iter *iter)
3645 {
3646 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3647 
3648 	/* Iterator usage is expected to have record disabled */
3649 	iter->head_page = cpu_buffer->reader_page;
3650 	iter->head = cpu_buffer->reader_page->read;
3651 
3652 	iter->cache_reader_page = iter->head_page;
3653 	iter->cache_read = cpu_buffer->read;
3654 	iter->cache_pages_removed = cpu_buffer->pages_removed;
3655 
3656 	if (iter->head)
3657 		iter->read_stamp = cpu_buffer->read_stamp;
3658 	else
3659 		iter->read_stamp = iter->head_page->page->time_stamp;
3660 }
3661 
3662 /**
3663  * ring_buffer_iter_reset - reset an iterator
3664  * @iter: The iterator to reset
3665  *
3666  * Resets the iterator, so that it will start from the beginning
3667  * again.
3668  */
ring_buffer_iter_reset(struct ring_buffer_iter * iter)3669 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3670 {
3671 	struct ring_buffer_per_cpu *cpu_buffer;
3672 	unsigned long flags;
3673 
3674 	if (!iter)
3675 		return;
3676 
3677 	cpu_buffer = iter->cpu_buffer;
3678 
3679 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3680 	rb_iter_reset(iter);
3681 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3682 }
3683 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3684 
3685 /**
3686  * ring_buffer_iter_empty - check if an iterator has no more to read
3687  * @iter: The iterator to check
3688  */
ring_buffer_iter_empty(struct ring_buffer_iter * iter)3689 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3690 {
3691 	struct ring_buffer_per_cpu *cpu_buffer;
3692 	struct buffer_page *reader;
3693 	struct buffer_page *head_page;
3694 	struct buffer_page *commit_page;
3695 	unsigned commit;
3696 
3697 	cpu_buffer = iter->cpu_buffer;
3698 
3699 	/* Remember, trace recording is off when iterator is in use */
3700 	reader = cpu_buffer->reader_page;
3701 	head_page = cpu_buffer->head_page;
3702 	commit_page = cpu_buffer->commit_page;
3703 	commit = rb_page_commit(commit_page);
3704 
3705 	return ((iter->head_page == commit_page && iter->head == commit) ||
3706 		(iter->head_page == reader && commit_page == head_page &&
3707 		 head_page->read == commit &&
3708 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3709 }
3710 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3711 
3712 static void
rb_update_read_stamp(struct ring_buffer_per_cpu * cpu_buffer,struct ring_buffer_event * event)3713 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3714 		     struct ring_buffer_event *event)
3715 {
3716 	u64 delta;
3717 
3718 	switch (event->type_len) {
3719 	case RINGBUF_TYPE_PADDING:
3720 		return;
3721 
3722 	case RINGBUF_TYPE_TIME_EXTEND:
3723 		delta = ring_buffer_event_time_stamp(event);
3724 		cpu_buffer->read_stamp += delta;
3725 		return;
3726 
3727 	case RINGBUF_TYPE_TIME_STAMP:
3728 		delta = ring_buffer_event_time_stamp(event);
3729 		cpu_buffer->read_stamp = delta;
3730 		return;
3731 
3732 	case RINGBUF_TYPE_DATA:
3733 		cpu_buffer->read_stamp += event->time_delta;
3734 		return;
3735 
3736 	default:
3737 		BUG();
3738 	}
3739 	return;
3740 }
3741 
3742 static void
rb_update_iter_read_stamp(struct ring_buffer_iter * iter,struct ring_buffer_event * event)3743 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3744 			  struct ring_buffer_event *event)
3745 {
3746 	u64 delta;
3747 
3748 	switch (event->type_len) {
3749 	case RINGBUF_TYPE_PADDING:
3750 		return;
3751 
3752 	case RINGBUF_TYPE_TIME_EXTEND:
3753 		delta = ring_buffer_event_time_stamp(event);
3754 		iter->read_stamp += delta;
3755 		return;
3756 
3757 	case RINGBUF_TYPE_TIME_STAMP:
3758 		delta = ring_buffer_event_time_stamp(event);
3759 		iter->read_stamp = delta;
3760 		return;
3761 
3762 	case RINGBUF_TYPE_DATA:
3763 		iter->read_stamp += event->time_delta;
3764 		return;
3765 
3766 	default:
3767 		BUG();
3768 	}
3769 	return;
3770 }
3771 
3772 static struct buffer_page *
rb_get_reader_page(struct ring_buffer_per_cpu * cpu_buffer)3773 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3774 {
3775 	struct buffer_page *reader = NULL;
3776 	unsigned long overwrite;
3777 	unsigned long flags;
3778 	int nr_loops = 0;
3779 	int ret;
3780 
3781 	local_irq_save(flags);
3782 	arch_spin_lock(&cpu_buffer->lock);
3783 
3784  again:
3785 	/*
3786 	 * This should normally only loop twice. But because the
3787 	 * start of the reader inserts an empty page, it causes
3788 	 * a case where we will loop three times. There should be no
3789 	 * reason to loop four times (that I know of).
3790 	 */
3791 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3792 		reader = NULL;
3793 		goto out;
3794 	}
3795 
3796 	reader = cpu_buffer->reader_page;
3797 
3798 	/* If there's more to read, return this page */
3799 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3800 		goto out;
3801 
3802 	/* Never should we have an index greater than the size */
3803 	if (RB_WARN_ON(cpu_buffer,
3804 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3805 		goto out;
3806 
3807 	/* check if we caught up to the tail */
3808 	reader = NULL;
3809 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3810 		goto out;
3811 
3812 	/* Don't bother swapping if the ring buffer is empty */
3813 	if (rb_num_of_entries(cpu_buffer) == 0)
3814 		goto out;
3815 
3816 	/*
3817 	 * Reset the reader page to size zero.
3818 	 */
3819 	local_set(&cpu_buffer->reader_page->write, 0);
3820 	local_set(&cpu_buffer->reader_page->entries, 0);
3821 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3822 	cpu_buffer->reader_page->real_end = 0;
3823 
3824  spin:
3825 	/*
3826 	 * Splice the empty reader page into the list around the head.
3827 	 */
3828 	reader = rb_set_head_page(cpu_buffer);
3829 	if (!reader)
3830 		goto out;
3831 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3832 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3833 
3834 	/*
3835 	 * cpu_buffer->pages just needs to point to the buffer, it
3836 	 *  has no specific buffer page to point to. Lets move it out
3837 	 *  of our way so we don't accidentally swap it.
3838 	 */
3839 	cpu_buffer->pages = reader->list.prev;
3840 
3841 	/* The reader page will be pointing to the new head */
3842 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3843 
3844 	/*
3845 	 * We want to make sure we read the overruns after we set up our
3846 	 * pointers to the next object. The writer side does a
3847 	 * cmpxchg to cross pages which acts as the mb on the writer
3848 	 * side. Note, the reader will constantly fail the swap
3849 	 * while the writer is updating the pointers, so this
3850 	 * guarantees that the overwrite recorded here is the one we
3851 	 * want to compare with the last_overrun.
3852 	 */
3853 	smp_mb();
3854 	overwrite = local_read(&(cpu_buffer->overrun));
3855 
3856 	/*
3857 	 * Here's the tricky part.
3858 	 *
3859 	 * We need to move the pointer past the header page.
3860 	 * But we can only do that if a writer is not currently
3861 	 * moving it. The page before the header page has the
3862 	 * flag bit '1' set if it is pointing to the page we want.
3863 	 * but if the writer is in the process of moving it
3864 	 * than it will be '2' or already moved '0'.
3865 	 */
3866 
3867 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3868 
3869 	/*
3870 	 * If we did not convert it, then we must try again.
3871 	 */
3872 	if (!ret)
3873 		goto spin;
3874 
3875 	/*
3876 	 * Yay! We succeeded in replacing the page.
3877 	 *
3878 	 * Now make the new head point back to the reader page.
3879 	 */
3880 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3881 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3882 
3883 	local_inc(&cpu_buffer->pages_read);
3884 
3885 	/* Finally update the reader page to the new head */
3886 	cpu_buffer->reader_page = reader;
3887 	cpu_buffer->reader_page->read = 0;
3888 
3889 	if (overwrite != cpu_buffer->last_overrun) {
3890 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3891 		cpu_buffer->last_overrun = overwrite;
3892 	}
3893 
3894 	goto again;
3895 
3896  out:
3897 	/* Update the read_stamp on the first event */
3898 	if (reader && reader->read == 0)
3899 		cpu_buffer->read_stamp = reader->page->time_stamp;
3900 
3901 	arch_spin_unlock(&cpu_buffer->lock);
3902 	local_irq_restore(flags);
3903 
3904 	/*
3905 	 * The writer has preempt disable, wait for it. But not forever
3906 	 * Although, 1 second is pretty much "forever"
3907 	 */
3908 #define USECS_WAIT	1000000
3909         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
3910 		/* If the write is past the end of page, a writer is still updating it */
3911 		if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
3912 			break;
3913 
3914 		udelay(1);
3915 
3916 		/* Get the latest version of the reader write value */
3917 		smp_rmb();
3918 	}
3919 
3920 	/* The writer is not moving forward? Something is wrong */
3921 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
3922 		reader = NULL;
3923 
3924 	/*
3925 	 * Make sure we see any padding after the write update
3926 	 * (see rb_reset_tail()).
3927 	 *
3928 	 * In addition, a writer may be writing on the reader page
3929 	 * if the page has not been fully filled, so the read barrier
3930 	 * is also needed to make sure we see the content of what is
3931 	 * committed by the writer (see rb_set_commit_to_write()).
3932 	 */
3933 	smp_rmb();
3934 
3935 
3936 	return reader;
3937 }
3938 
rb_advance_reader(struct ring_buffer_per_cpu * cpu_buffer)3939 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3940 {
3941 	struct ring_buffer_event *event;
3942 	struct buffer_page *reader;
3943 	unsigned length;
3944 
3945 	reader = rb_get_reader_page(cpu_buffer);
3946 
3947 	/* This function should not be called when buffer is empty */
3948 	if (RB_WARN_ON(cpu_buffer, !reader))
3949 		return;
3950 
3951 	event = rb_reader_event(cpu_buffer);
3952 
3953 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3954 		cpu_buffer->read++;
3955 
3956 	rb_update_read_stamp(cpu_buffer, event);
3957 
3958 	length = rb_event_length(event);
3959 	cpu_buffer->reader_page->read += length;
3960 }
3961 
rb_advance_iter(struct ring_buffer_iter * iter)3962 static void rb_advance_iter(struct ring_buffer_iter *iter)
3963 {
3964 	struct ring_buffer_per_cpu *cpu_buffer;
3965 	struct ring_buffer_event *event;
3966 	unsigned length;
3967 
3968 	cpu_buffer = iter->cpu_buffer;
3969 
3970 	/*
3971 	 * Check if we are at the end of the buffer.
3972 	 */
3973 	if (iter->head >= rb_page_size(iter->head_page)) {
3974 		/* discarded commits can make the page empty */
3975 		if (iter->head_page == cpu_buffer->commit_page)
3976 			return;
3977 		rb_inc_iter(iter);
3978 		return;
3979 	}
3980 
3981 	event = rb_iter_head_event(iter);
3982 
3983 	length = rb_event_length(event);
3984 
3985 	/*
3986 	 * This should not be called to advance the header if we are
3987 	 * at the tail of the buffer.
3988 	 */
3989 	if (RB_WARN_ON(cpu_buffer,
3990 		       (iter->head_page == cpu_buffer->commit_page) &&
3991 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3992 		return;
3993 
3994 	rb_update_iter_read_stamp(iter, event);
3995 
3996 	iter->head += length;
3997 
3998 	/* check for end of page padding */
3999 	if ((iter->head >= rb_page_size(iter->head_page)) &&
4000 	    (iter->head_page != cpu_buffer->commit_page))
4001 		rb_inc_iter(iter);
4002 }
4003 
rb_lost_events(struct ring_buffer_per_cpu * cpu_buffer)4004 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4005 {
4006 	return cpu_buffer->lost_events;
4007 }
4008 
4009 static struct ring_buffer_event *
rb_buffer_peek(struct ring_buffer_per_cpu * cpu_buffer,u64 * ts,unsigned long * lost_events)4010 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4011 	       unsigned long *lost_events)
4012 {
4013 	struct ring_buffer_event *event;
4014 	struct buffer_page *reader;
4015 	int nr_loops = 0;
4016 
4017 	if (ts)
4018 		*ts = 0;
4019  again:
4020 	/*
4021 	 * We repeat when a time extend is encountered.
4022 	 * Since the time extend is always attached to a data event,
4023 	 * we should never loop more than once.
4024 	 * (We never hit the following condition more than twice).
4025 	 */
4026 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4027 		return NULL;
4028 
4029 	reader = rb_get_reader_page(cpu_buffer);
4030 	if (!reader)
4031 		return NULL;
4032 
4033 	event = rb_reader_event(cpu_buffer);
4034 
4035 	switch (event->type_len) {
4036 	case RINGBUF_TYPE_PADDING:
4037 		if (rb_null_event(event))
4038 			RB_WARN_ON(cpu_buffer, 1);
4039 		/*
4040 		 * Because the writer could be discarding every
4041 		 * event it creates (which would probably be bad)
4042 		 * if we were to go back to "again" then we may never
4043 		 * catch up, and will trigger the warn on, or lock
4044 		 * the box. Return the padding, and we will release
4045 		 * the current locks, and try again.
4046 		 */
4047 		return event;
4048 
4049 	case RINGBUF_TYPE_TIME_EXTEND:
4050 		/* Internal data, OK to advance */
4051 		rb_advance_reader(cpu_buffer);
4052 		goto again;
4053 
4054 	case RINGBUF_TYPE_TIME_STAMP:
4055 		if (ts) {
4056 			*ts = ring_buffer_event_time_stamp(event);
4057 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4058 							 cpu_buffer->cpu, ts);
4059 		}
4060 		/* Internal data, OK to advance */
4061 		rb_advance_reader(cpu_buffer);
4062 		goto again;
4063 
4064 	case RINGBUF_TYPE_DATA:
4065 		if (ts && !(*ts)) {
4066 			*ts = cpu_buffer->read_stamp + event->time_delta;
4067 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4068 							 cpu_buffer->cpu, ts);
4069 		}
4070 		if (lost_events)
4071 			*lost_events = rb_lost_events(cpu_buffer);
4072 		return event;
4073 
4074 	default:
4075 		BUG();
4076 	}
4077 
4078 	return NULL;
4079 }
4080 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4081 
4082 static struct ring_buffer_event *
rb_iter_peek(struct ring_buffer_iter * iter,u64 * ts)4083 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4084 {
4085 	struct ring_buffer *buffer;
4086 	struct ring_buffer_per_cpu *cpu_buffer;
4087 	struct ring_buffer_event *event;
4088 	int nr_loops = 0;
4089 
4090 	if (ts)
4091 		*ts = 0;
4092 
4093 	cpu_buffer = iter->cpu_buffer;
4094 	buffer = cpu_buffer->buffer;
4095 
4096 	/*
4097 	 * Check if someone performed a consuming read to the buffer
4098 	 * or removed some pages from the buffer. In these cases,
4099 	 * iterator was invalidated and we need to reset it.
4100 	 */
4101 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4102 		     iter->cache_reader_page != cpu_buffer->reader_page ||
4103 		     iter->cache_pages_removed != cpu_buffer->pages_removed))
4104 		rb_iter_reset(iter);
4105 
4106  again:
4107 	if (ring_buffer_iter_empty(iter))
4108 		return NULL;
4109 
4110 	/*
4111 	 * We repeat when a time extend is encountered or we hit
4112 	 * the end of the page. Since the time extend is always attached
4113 	 * to a data event, we should never loop more than three times.
4114 	 * Once for going to next page, once on time extend, and
4115 	 * finally once to get the event.
4116 	 * (We never hit the following condition more than thrice).
4117 	 */
4118 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
4119 		return NULL;
4120 
4121 	if (rb_per_cpu_empty(cpu_buffer))
4122 		return NULL;
4123 
4124 	if (iter->head >= rb_page_size(iter->head_page)) {
4125 		rb_inc_iter(iter);
4126 		goto again;
4127 	}
4128 
4129 	event = rb_iter_head_event(iter);
4130 
4131 	switch (event->type_len) {
4132 	case RINGBUF_TYPE_PADDING:
4133 		if (rb_null_event(event)) {
4134 			rb_inc_iter(iter);
4135 			goto again;
4136 		}
4137 		rb_advance_iter(iter);
4138 		return event;
4139 
4140 	case RINGBUF_TYPE_TIME_EXTEND:
4141 		/* Internal data, OK to advance */
4142 		rb_advance_iter(iter);
4143 		goto again;
4144 
4145 	case RINGBUF_TYPE_TIME_STAMP:
4146 		if (ts) {
4147 			*ts = ring_buffer_event_time_stamp(event);
4148 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4149 							 cpu_buffer->cpu, ts);
4150 		}
4151 		/* Internal data, OK to advance */
4152 		rb_advance_iter(iter);
4153 		goto again;
4154 
4155 	case RINGBUF_TYPE_DATA:
4156 		if (ts && !(*ts)) {
4157 			*ts = iter->read_stamp + event->time_delta;
4158 			ring_buffer_normalize_time_stamp(buffer,
4159 							 cpu_buffer->cpu, ts);
4160 		}
4161 		return event;
4162 
4163 	default:
4164 		BUG();
4165 	}
4166 
4167 	return NULL;
4168 }
4169 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4170 
rb_reader_lock(struct ring_buffer_per_cpu * cpu_buffer)4171 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4172 {
4173 	if (likely(!in_nmi())) {
4174 		raw_spin_lock(&cpu_buffer->reader_lock);
4175 		return true;
4176 	}
4177 
4178 	/*
4179 	 * If an NMI die dumps out the content of the ring buffer
4180 	 * trylock must be used to prevent a deadlock if the NMI
4181 	 * preempted a task that holds the ring buffer locks. If
4182 	 * we get the lock then all is fine, if not, then continue
4183 	 * to do the read, but this can corrupt the ring buffer,
4184 	 * so it must be permanently disabled from future writes.
4185 	 * Reading from NMI is a oneshot deal.
4186 	 */
4187 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4188 		return true;
4189 
4190 	/* Continue without locking, but disable the ring buffer */
4191 	atomic_inc(&cpu_buffer->record_disabled);
4192 	return false;
4193 }
4194 
4195 static inline void
rb_reader_unlock(struct ring_buffer_per_cpu * cpu_buffer,bool locked)4196 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4197 {
4198 	if (likely(locked))
4199 		raw_spin_unlock(&cpu_buffer->reader_lock);
4200 	return;
4201 }
4202 
4203 /**
4204  * ring_buffer_peek - peek at the next event to be read
4205  * @buffer: The ring buffer to read
4206  * @cpu: The cpu to peak at
4207  * @ts: The timestamp counter of this event.
4208  * @lost_events: a variable to store if events were lost (may be NULL)
4209  *
4210  * This will return the event that will be read next, but does
4211  * not consume the data.
4212  */
4213 struct ring_buffer_event *
ring_buffer_peek(struct ring_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)4214 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4215 		 unsigned long *lost_events)
4216 {
4217 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4218 	struct ring_buffer_event *event;
4219 	unsigned long flags;
4220 	bool dolock;
4221 
4222 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4223 		return NULL;
4224 
4225  again:
4226 	local_irq_save(flags);
4227 	dolock = rb_reader_lock(cpu_buffer);
4228 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4229 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4230 		rb_advance_reader(cpu_buffer);
4231 	rb_reader_unlock(cpu_buffer, dolock);
4232 	local_irq_restore(flags);
4233 
4234 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4235 		goto again;
4236 
4237 	return event;
4238 }
4239 
4240 /**
4241  * ring_buffer_iter_peek - peek at the next event to be read
4242  * @iter: The ring buffer iterator
4243  * @ts: The timestamp counter of this event.
4244  *
4245  * This will return the event that will be read next, but does
4246  * not increment the iterator.
4247  */
4248 struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter * iter,u64 * ts)4249 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4250 {
4251 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4252 	struct ring_buffer_event *event;
4253 	unsigned long flags;
4254 
4255  again:
4256 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4257 	event = rb_iter_peek(iter, ts);
4258 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4259 
4260 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4261 		goto again;
4262 
4263 	return event;
4264 }
4265 
4266 /**
4267  * ring_buffer_consume - return an event and consume it
4268  * @buffer: The ring buffer to get the next event from
4269  * @cpu: the cpu to read the buffer from
4270  * @ts: a variable to store the timestamp (may be NULL)
4271  * @lost_events: a variable to store if events were lost (may be NULL)
4272  *
4273  * Returns the next event in the ring buffer, and that event is consumed.
4274  * Meaning, that sequential reads will keep returning a different event,
4275  * and eventually empty the ring buffer if the producer is slower.
4276  */
4277 struct ring_buffer_event *
ring_buffer_consume(struct ring_buffer * buffer,int cpu,u64 * ts,unsigned long * lost_events)4278 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4279 		    unsigned long *lost_events)
4280 {
4281 	struct ring_buffer_per_cpu *cpu_buffer;
4282 	struct ring_buffer_event *event = NULL;
4283 	unsigned long flags;
4284 	bool dolock;
4285 
4286  again:
4287 	/* might be called in atomic */
4288 	preempt_disable();
4289 
4290 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4291 		goto out;
4292 
4293 	cpu_buffer = buffer->buffers[cpu];
4294 	local_irq_save(flags);
4295 	dolock = rb_reader_lock(cpu_buffer);
4296 
4297 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4298 	if (event) {
4299 		cpu_buffer->lost_events = 0;
4300 		rb_advance_reader(cpu_buffer);
4301 	}
4302 
4303 	rb_reader_unlock(cpu_buffer, dolock);
4304 	local_irq_restore(flags);
4305 
4306  out:
4307 	preempt_enable();
4308 
4309 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4310 		goto again;
4311 
4312 	return event;
4313 }
4314 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4315 
4316 /**
4317  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4318  * @buffer: The ring buffer to read from
4319  * @cpu: The cpu buffer to iterate over
4320  * @flags: gfp flags to use for memory allocation
4321  *
4322  * This performs the initial preparations necessary to iterate
4323  * through the buffer.  Memory is allocated, buffer recording
4324  * is disabled, and the iterator pointer is returned to the caller.
4325  *
4326  * Disabling buffer recording prevents the reading from being
4327  * corrupted. This is not a consuming read, so a producer is not
4328  * expected.
4329  *
4330  * After a sequence of ring_buffer_read_prepare calls, the user is
4331  * expected to make at least one call to ring_buffer_read_prepare_sync.
4332  * Afterwards, ring_buffer_read_start is invoked to get things going
4333  * for real.
4334  *
4335  * This overall must be paired with ring_buffer_read_finish.
4336  */
4337 struct ring_buffer_iter *
ring_buffer_read_prepare(struct ring_buffer * buffer,int cpu,gfp_t flags)4338 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu, gfp_t flags)
4339 {
4340 	struct ring_buffer_per_cpu *cpu_buffer;
4341 	struct ring_buffer_iter *iter;
4342 
4343 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4344 		return NULL;
4345 
4346 	iter = kmalloc(sizeof(*iter), flags);
4347 	if (!iter)
4348 		return NULL;
4349 
4350 	cpu_buffer = buffer->buffers[cpu];
4351 
4352 	iter->cpu_buffer = cpu_buffer;
4353 
4354 	atomic_inc(&buffer->resize_disabled);
4355 	atomic_inc(&cpu_buffer->record_disabled);
4356 
4357 	return iter;
4358 }
4359 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4360 
4361 /**
4362  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4363  *
4364  * All previously invoked ring_buffer_read_prepare calls to prepare
4365  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4366  * calls on those iterators are allowed.
4367  */
4368 void
ring_buffer_read_prepare_sync(void)4369 ring_buffer_read_prepare_sync(void)
4370 {
4371 	synchronize_rcu();
4372 }
4373 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4374 
4375 /**
4376  * ring_buffer_read_start - start a non consuming read of the buffer
4377  * @iter: The iterator returned by ring_buffer_read_prepare
4378  *
4379  * This finalizes the startup of an iteration through the buffer.
4380  * The iterator comes from a call to ring_buffer_read_prepare and
4381  * an intervening ring_buffer_read_prepare_sync must have been
4382  * performed.
4383  *
4384  * Must be paired with ring_buffer_read_finish.
4385  */
4386 void
ring_buffer_read_start(struct ring_buffer_iter * iter)4387 ring_buffer_read_start(struct ring_buffer_iter *iter)
4388 {
4389 	struct ring_buffer_per_cpu *cpu_buffer;
4390 	unsigned long flags;
4391 
4392 	if (!iter)
4393 		return;
4394 
4395 	cpu_buffer = iter->cpu_buffer;
4396 
4397 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4398 	arch_spin_lock(&cpu_buffer->lock);
4399 	rb_iter_reset(iter);
4400 	arch_spin_unlock(&cpu_buffer->lock);
4401 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4402 }
4403 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4404 
4405 /**
4406  * ring_buffer_read_finish - finish reading the iterator of the buffer
4407  * @iter: The iterator retrieved by ring_buffer_start
4408  *
4409  * This re-enables the recording to the buffer, and frees the
4410  * iterator.
4411  */
4412 void
ring_buffer_read_finish(struct ring_buffer_iter * iter)4413 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4414 {
4415 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4416 	unsigned long flags;
4417 
4418 	/*
4419 	 * Ring buffer is disabled from recording, here's a good place
4420 	 * to check the integrity of the ring buffer.
4421 	 * Must prevent readers from trying to read, as the check
4422 	 * clears the HEAD page and readers require it.
4423 	 */
4424 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4425 	rb_check_pages(cpu_buffer);
4426 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4427 
4428 	atomic_dec(&cpu_buffer->record_disabled);
4429 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
4430 	kfree(iter);
4431 }
4432 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4433 
4434 /**
4435  * ring_buffer_read - read the next item in the ring buffer by the iterator
4436  * @iter: The ring buffer iterator
4437  * @ts: The time stamp of the event read.
4438  *
4439  * This reads the next event in the ring buffer and increments the iterator.
4440  */
4441 struct ring_buffer_event *
ring_buffer_read(struct ring_buffer_iter * iter,u64 * ts)4442 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4443 {
4444 	struct ring_buffer_event *event;
4445 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4446 	unsigned long flags;
4447 
4448 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4449  again:
4450 	event = rb_iter_peek(iter, ts);
4451 	if (!event)
4452 		goto out;
4453 
4454 	if (event->type_len == RINGBUF_TYPE_PADDING)
4455 		goto again;
4456 
4457 	rb_advance_iter(iter);
4458  out:
4459 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4460 
4461 	return event;
4462 }
4463 EXPORT_SYMBOL_GPL(ring_buffer_read);
4464 
4465 /**
4466  * ring_buffer_size - return the size of the ring buffer (in bytes)
4467  * @buffer: The ring buffer.
4468  */
ring_buffer_size(struct ring_buffer * buffer,int cpu)4469 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4470 {
4471 	/*
4472 	 * Earlier, this method returned
4473 	 *	BUF_PAGE_SIZE * buffer->nr_pages
4474 	 * Since the nr_pages field is now removed, we have converted this to
4475 	 * return the per cpu buffer value.
4476 	 */
4477 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4478 		return 0;
4479 
4480 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4481 }
4482 EXPORT_SYMBOL_GPL(ring_buffer_size);
4483 
rb_clear_buffer_page(struct buffer_page * page)4484 static void rb_clear_buffer_page(struct buffer_page *page)
4485 {
4486 	local_set(&page->write, 0);
4487 	local_set(&page->entries, 0);
4488 	rb_init_page(page->page);
4489 	page->read = 0;
4490 }
4491 
4492 static void
rb_reset_cpu(struct ring_buffer_per_cpu * cpu_buffer)4493 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4494 {
4495 	struct buffer_page *page;
4496 
4497 	rb_head_page_deactivate(cpu_buffer);
4498 
4499 	cpu_buffer->head_page
4500 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
4501 	rb_clear_buffer_page(cpu_buffer->head_page);
4502 	list_for_each_entry(page, cpu_buffer->pages, list) {
4503 		rb_clear_buffer_page(page);
4504 	}
4505 
4506 	cpu_buffer->tail_page = cpu_buffer->head_page;
4507 	cpu_buffer->commit_page = cpu_buffer->head_page;
4508 
4509 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4510 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
4511 	rb_clear_buffer_page(cpu_buffer->reader_page);
4512 
4513 	local_set(&cpu_buffer->entries_bytes, 0);
4514 	local_set(&cpu_buffer->overrun, 0);
4515 	local_set(&cpu_buffer->commit_overrun, 0);
4516 	local_set(&cpu_buffer->dropped_events, 0);
4517 	local_set(&cpu_buffer->entries, 0);
4518 	local_set(&cpu_buffer->committing, 0);
4519 	local_set(&cpu_buffer->commits, 0);
4520 	local_set(&cpu_buffer->pages_touched, 0);
4521 	local_set(&cpu_buffer->pages_lost, 0);
4522 	local_set(&cpu_buffer->pages_read, 0);
4523 	cpu_buffer->last_pages_touch = 0;
4524 	cpu_buffer->shortest_full = 0;
4525 	cpu_buffer->read = 0;
4526 	cpu_buffer->read_bytes = 0;
4527 
4528 	cpu_buffer->write_stamp = 0;
4529 	cpu_buffer->read_stamp = 0;
4530 
4531 	cpu_buffer->lost_events = 0;
4532 	cpu_buffer->last_overrun = 0;
4533 
4534 	rb_head_page_activate(cpu_buffer);
4535 	cpu_buffer->pages_removed = 0;
4536 }
4537 
4538 /**
4539  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4540  * @buffer: The ring buffer to reset a per cpu buffer of
4541  * @cpu: The CPU buffer to be reset
4542  */
ring_buffer_reset_cpu(struct ring_buffer * buffer,int cpu)4543 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4544 {
4545 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4546 	unsigned long flags;
4547 
4548 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4549 		return;
4550 	/* prevent another thread from changing buffer sizes */
4551 	mutex_lock(&buffer->mutex);
4552 
4553 	atomic_inc(&buffer->resize_disabled);
4554 	atomic_inc(&cpu_buffer->record_disabled);
4555 
4556 	/* Make sure all commits have finished */
4557 	synchronize_rcu();
4558 
4559 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4560 
4561 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4562 		goto out;
4563 
4564 	arch_spin_lock(&cpu_buffer->lock);
4565 
4566 	rb_reset_cpu(cpu_buffer);
4567 
4568 	arch_spin_unlock(&cpu_buffer->lock);
4569 
4570  out:
4571 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4572 
4573 	atomic_dec(&cpu_buffer->record_disabled);
4574 	atomic_dec(&buffer->resize_disabled);
4575 
4576 	mutex_unlock(&buffer->mutex);
4577 }
4578 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4579 
4580 /**
4581  * ring_buffer_reset - reset a ring buffer
4582  * @buffer: The ring buffer to reset all cpu buffers
4583  */
ring_buffer_reset(struct ring_buffer * buffer)4584 void ring_buffer_reset(struct ring_buffer *buffer)
4585 {
4586 	int cpu;
4587 
4588 	for_each_buffer_cpu(buffer, cpu)
4589 		ring_buffer_reset_cpu(buffer, cpu);
4590 }
4591 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4592 
4593 /**
4594  * rind_buffer_empty - is the ring buffer empty?
4595  * @buffer: The ring buffer to test
4596  */
ring_buffer_empty(struct ring_buffer * buffer)4597 bool ring_buffer_empty(struct ring_buffer *buffer)
4598 {
4599 	struct ring_buffer_per_cpu *cpu_buffer;
4600 	unsigned long flags;
4601 	bool dolock;
4602 	int cpu;
4603 	int ret;
4604 
4605 	/* yes this is racy, but if you don't like the race, lock the buffer */
4606 	for_each_buffer_cpu(buffer, cpu) {
4607 		cpu_buffer = buffer->buffers[cpu];
4608 		local_irq_save(flags);
4609 		dolock = rb_reader_lock(cpu_buffer);
4610 		ret = rb_per_cpu_empty(cpu_buffer);
4611 		rb_reader_unlock(cpu_buffer, dolock);
4612 		local_irq_restore(flags);
4613 
4614 		if (!ret)
4615 			return false;
4616 	}
4617 
4618 	return true;
4619 }
4620 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4621 
4622 /**
4623  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4624  * @buffer: The ring buffer
4625  * @cpu: The CPU buffer to test
4626  */
ring_buffer_empty_cpu(struct ring_buffer * buffer,int cpu)4627 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4628 {
4629 	struct ring_buffer_per_cpu *cpu_buffer;
4630 	unsigned long flags;
4631 	bool dolock;
4632 	int ret;
4633 
4634 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4635 		return true;
4636 
4637 	cpu_buffer = buffer->buffers[cpu];
4638 	local_irq_save(flags);
4639 	dolock = rb_reader_lock(cpu_buffer);
4640 	ret = rb_per_cpu_empty(cpu_buffer);
4641 	rb_reader_unlock(cpu_buffer, dolock);
4642 	local_irq_restore(flags);
4643 
4644 	return ret;
4645 }
4646 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4647 
4648 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4649 /**
4650  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4651  * @buffer_a: One buffer to swap with
4652  * @buffer_b: The other buffer to swap with
4653  *
4654  * This function is useful for tracers that want to take a "snapshot"
4655  * of a CPU buffer and has another back up buffer lying around.
4656  * it is expected that the tracer handles the cpu buffer not being
4657  * used at the moment.
4658  */
ring_buffer_swap_cpu(struct ring_buffer * buffer_a,struct ring_buffer * buffer_b,int cpu)4659 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4660 			 struct ring_buffer *buffer_b, int cpu)
4661 {
4662 	struct ring_buffer_per_cpu *cpu_buffer_a;
4663 	struct ring_buffer_per_cpu *cpu_buffer_b;
4664 	int ret = -EINVAL;
4665 
4666 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4667 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4668 		goto out;
4669 
4670 	cpu_buffer_a = buffer_a->buffers[cpu];
4671 	cpu_buffer_b = buffer_b->buffers[cpu];
4672 
4673 	/* At least make sure the two buffers are somewhat the same */
4674 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4675 		goto out;
4676 
4677 	ret = -EAGAIN;
4678 
4679 	if (atomic_read(&buffer_a->record_disabled))
4680 		goto out;
4681 
4682 	if (atomic_read(&buffer_b->record_disabled))
4683 		goto out;
4684 
4685 	if (atomic_read(&cpu_buffer_a->record_disabled))
4686 		goto out;
4687 
4688 	if (atomic_read(&cpu_buffer_b->record_disabled))
4689 		goto out;
4690 
4691 	/*
4692 	 * We can't do a synchronize_rcu here because this
4693 	 * function can be called in atomic context.
4694 	 * Normally this will be called from the same CPU as cpu.
4695 	 * If not it's up to the caller to protect this.
4696 	 */
4697 	atomic_inc(&cpu_buffer_a->record_disabled);
4698 	atomic_inc(&cpu_buffer_b->record_disabled);
4699 
4700 	ret = -EBUSY;
4701 	if (local_read(&cpu_buffer_a->committing))
4702 		goto out_dec;
4703 	if (local_read(&cpu_buffer_b->committing))
4704 		goto out_dec;
4705 
4706 	buffer_a->buffers[cpu] = cpu_buffer_b;
4707 	buffer_b->buffers[cpu] = cpu_buffer_a;
4708 
4709 	cpu_buffer_b->buffer = buffer_a;
4710 	cpu_buffer_a->buffer = buffer_b;
4711 
4712 	ret = 0;
4713 
4714 out_dec:
4715 	atomic_dec(&cpu_buffer_a->record_disabled);
4716 	atomic_dec(&cpu_buffer_b->record_disabled);
4717 out:
4718 	return ret;
4719 }
4720 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4721 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4722 
4723 /**
4724  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4725  * @buffer: the buffer to allocate for.
4726  * @cpu: the cpu buffer to allocate.
4727  *
4728  * This function is used in conjunction with ring_buffer_read_page.
4729  * When reading a full page from the ring buffer, these functions
4730  * can be used to speed up the process. The calling function should
4731  * allocate a few pages first with this function. Then when it
4732  * needs to get pages from the ring buffer, it passes the result
4733  * of this function into ring_buffer_read_page, which will swap
4734  * the page that was allocated, with the read page of the buffer.
4735  *
4736  * Returns:
4737  *  The page allocated, or ERR_PTR
4738  */
ring_buffer_alloc_read_page(struct ring_buffer * buffer,int cpu)4739 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4740 {
4741 	struct ring_buffer_per_cpu *cpu_buffer;
4742 	struct buffer_data_page *bpage = NULL;
4743 	unsigned long flags;
4744 	struct page *page;
4745 
4746 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4747 		return ERR_PTR(-ENODEV);
4748 
4749 	cpu_buffer = buffer->buffers[cpu];
4750 	local_irq_save(flags);
4751 	arch_spin_lock(&cpu_buffer->lock);
4752 
4753 	if (cpu_buffer->free_page) {
4754 		bpage = cpu_buffer->free_page;
4755 		cpu_buffer->free_page = NULL;
4756 	}
4757 
4758 	arch_spin_unlock(&cpu_buffer->lock);
4759 	local_irq_restore(flags);
4760 
4761 	if (bpage)
4762 		goto out;
4763 
4764 	page = alloc_pages_node(cpu_to_node(cpu),
4765 				GFP_KERNEL | __GFP_NORETRY, 0);
4766 	if (!page)
4767 		return ERR_PTR(-ENOMEM);
4768 
4769 	bpage = page_address(page);
4770 
4771  out:
4772 	rb_init_page(bpage);
4773 
4774 	return bpage;
4775 }
4776 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4777 
4778 /**
4779  * ring_buffer_free_read_page - free an allocated read page
4780  * @buffer: the buffer the page was allocate for
4781  * @cpu: the cpu buffer the page came from
4782  * @data: the page to free
4783  *
4784  * Free a page allocated from ring_buffer_alloc_read_page.
4785  */
ring_buffer_free_read_page(struct ring_buffer * buffer,int cpu,void * data)4786 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4787 {
4788 	struct ring_buffer_per_cpu *cpu_buffer;
4789 	struct buffer_data_page *bpage = data;
4790 	struct page *page = virt_to_page(bpage);
4791 	unsigned long flags;
4792 
4793 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
4794 		return;
4795 
4796 	cpu_buffer = buffer->buffers[cpu];
4797 
4798 	/* If the page is still in use someplace else, we can't reuse it */
4799 	if (page_ref_count(page) > 1)
4800 		goto out;
4801 
4802 	local_irq_save(flags);
4803 	arch_spin_lock(&cpu_buffer->lock);
4804 
4805 	if (!cpu_buffer->free_page) {
4806 		cpu_buffer->free_page = bpage;
4807 		bpage = NULL;
4808 	}
4809 
4810 	arch_spin_unlock(&cpu_buffer->lock);
4811 	local_irq_restore(flags);
4812 
4813  out:
4814 	free_page((unsigned long)bpage);
4815 }
4816 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4817 
4818 /**
4819  * ring_buffer_read_page - extract a page from the ring buffer
4820  * @buffer: buffer to extract from
4821  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4822  * @len: amount to extract
4823  * @cpu: the cpu of the buffer to extract
4824  * @full: should the extraction only happen when the page is full.
4825  *
4826  * This function will pull out a page from the ring buffer and consume it.
4827  * @data_page must be the address of the variable that was returned
4828  * from ring_buffer_alloc_read_page. This is because the page might be used
4829  * to swap with a page in the ring buffer.
4830  *
4831  * for example:
4832  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
4833  *	if (IS_ERR(rpage))
4834  *		return PTR_ERR(rpage);
4835  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4836  *	if (ret >= 0)
4837  *		process_page(rpage, ret);
4838  *
4839  * When @full is set, the function will not return true unless
4840  * the writer is off the reader page.
4841  *
4842  * Note: it is up to the calling functions to handle sleeps and wakeups.
4843  *  The ring buffer can be used anywhere in the kernel and can not
4844  *  blindly call wake_up. The layer that uses the ring buffer must be
4845  *  responsible for that.
4846  *
4847  * Returns:
4848  *  >=0 if data has been transferred, returns the offset of consumed data.
4849  *  <0 if no data has been transferred.
4850  */
ring_buffer_read_page(struct ring_buffer * buffer,void ** data_page,size_t len,int cpu,int full)4851 int ring_buffer_read_page(struct ring_buffer *buffer,
4852 			  void **data_page, size_t len, int cpu, int full)
4853 {
4854 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4855 	struct ring_buffer_event *event;
4856 	struct buffer_data_page *bpage;
4857 	struct buffer_page *reader;
4858 	unsigned long missed_events;
4859 	unsigned long flags;
4860 	unsigned int commit;
4861 	unsigned int read;
4862 	u64 save_timestamp;
4863 	int ret = -1;
4864 
4865 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4866 		goto out;
4867 
4868 	/*
4869 	 * If len is not big enough to hold the page header, then
4870 	 * we can not copy anything.
4871 	 */
4872 	if (len <= BUF_PAGE_HDR_SIZE)
4873 		goto out;
4874 
4875 	len -= BUF_PAGE_HDR_SIZE;
4876 
4877 	if (!data_page)
4878 		goto out;
4879 
4880 	bpage = *data_page;
4881 	if (!bpage)
4882 		goto out;
4883 
4884 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4885 
4886 	reader = rb_get_reader_page(cpu_buffer);
4887 	if (!reader)
4888 		goto out_unlock;
4889 
4890 	event = rb_reader_event(cpu_buffer);
4891 
4892 	read = reader->read;
4893 	commit = rb_page_commit(reader);
4894 
4895 	/* Check if any events were dropped */
4896 	missed_events = cpu_buffer->lost_events;
4897 
4898 	/*
4899 	 * If this page has been partially read or
4900 	 * if len is not big enough to read the rest of the page or
4901 	 * a writer is still on the page, then
4902 	 * we must copy the data from the page to the buffer.
4903 	 * Otherwise, we can simply swap the page with the one passed in.
4904 	 */
4905 	if (read || (len < (commit - read)) ||
4906 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4907 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4908 		unsigned int rpos = read;
4909 		unsigned int pos = 0;
4910 		unsigned int size;
4911 
4912 		/*
4913 		 * If a full page is expected, this can still be returned
4914 		 * if there's been a previous partial read and the
4915 		 * rest of the page can be read and the commit page is off
4916 		 * the reader page.
4917 		 */
4918 		if (full &&
4919 		    (!read || (len < (commit - read)) ||
4920 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
4921 			goto out_unlock;
4922 
4923 		if (len > (commit - read))
4924 			len = (commit - read);
4925 
4926 		/* Always keep the time extend and data together */
4927 		size = rb_event_ts_length(event);
4928 
4929 		if (len < size)
4930 			goto out_unlock;
4931 
4932 		/* save the current timestamp, since the user will need it */
4933 		save_timestamp = cpu_buffer->read_stamp;
4934 
4935 		/* Need to copy one event at a time */
4936 		do {
4937 			/* We need the size of one event, because
4938 			 * rb_advance_reader only advances by one event,
4939 			 * whereas rb_event_ts_length may include the size of
4940 			 * one or two events.
4941 			 * We have already ensured there's enough space if this
4942 			 * is a time extend. */
4943 			size = rb_event_length(event);
4944 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4945 
4946 			len -= size;
4947 
4948 			rb_advance_reader(cpu_buffer);
4949 			rpos = reader->read;
4950 			pos += size;
4951 
4952 			if (rpos >= commit)
4953 				break;
4954 
4955 			event = rb_reader_event(cpu_buffer);
4956 			/* Always keep the time extend and data together */
4957 			size = rb_event_ts_length(event);
4958 		} while (len >= size);
4959 
4960 		/* update bpage */
4961 		local_set(&bpage->commit, pos);
4962 		bpage->time_stamp = save_timestamp;
4963 
4964 		/* we copied everything to the beginning */
4965 		read = 0;
4966 	} else {
4967 		/* update the entry counter */
4968 		cpu_buffer->read += rb_page_entries(reader);
4969 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4970 
4971 		/* swap the pages */
4972 		rb_init_page(bpage);
4973 		bpage = reader->page;
4974 		reader->page = *data_page;
4975 		local_set(&reader->write, 0);
4976 		local_set(&reader->entries, 0);
4977 		reader->read = 0;
4978 		*data_page = bpage;
4979 
4980 		/*
4981 		 * Use the real_end for the data size,
4982 		 * This gives us a chance to store the lost events
4983 		 * on the page.
4984 		 */
4985 		if (reader->real_end)
4986 			local_set(&bpage->commit, reader->real_end);
4987 	}
4988 	ret = read;
4989 
4990 	cpu_buffer->lost_events = 0;
4991 
4992 	commit = local_read(&bpage->commit);
4993 	/*
4994 	 * Set a flag in the commit field if we lost events
4995 	 */
4996 	if (missed_events) {
4997 		/* If there is room at the end of the page to save the
4998 		 * missed events, then record it there.
4999 		 */
5000 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5001 			memcpy(&bpage->data[commit], &missed_events,
5002 			       sizeof(missed_events));
5003 			local_add(RB_MISSED_STORED, &bpage->commit);
5004 			commit += sizeof(missed_events);
5005 		}
5006 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5007 	}
5008 
5009 	/*
5010 	 * This page may be off to user land. Zero it out here.
5011 	 */
5012 	if (commit < BUF_PAGE_SIZE)
5013 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5014 
5015  out_unlock:
5016 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5017 
5018  out:
5019 	return ret;
5020 }
5021 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5022 
5023 /*
5024  * We only allocate new buffers, never free them if the CPU goes down.
5025  * If we were to free the buffer, then the user would lose any trace that was in
5026  * the buffer.
5027  */
trace_rb_cpu_prepare(unsigned int cpu,struct hlist_node * node)5028 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5029 {
5030 	struct ring_buffer *buffer;
5031 	long nr_pages_same;
5032 	int cpu_i;
5033 	unsigned long nr_pages;
5034 
5035 	buffer = container_of(node, struct ring_buffer, node);
5036 	if (cpumask_test_cpu(cpu, buffer->cpumask))
5037 		return 0;
5038 
5039 	nr_pages = 0;
5040 	nr_pages_same = 1;
5041 	/* check if all cpu sizes are same */
5042 	for_each_buffer_cpu(buffer, cpu_i) {
5043 		/* fill in the size from first enabled cpu */
5044 		if (nr_pages == 0)
5045 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5046 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5047 			nr_pages_same = 0;
5048 			break;
5049 		}
5050 	}
5051 	/* allocate minimum pages, user can later expand it */
5052 	if (!nr_pages_same)
5053 		nr_pages = 2;
5054 	buffer->buffers[cpu] =
5055 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5056 	if (!buffer->buffers[cpu]) {
5057 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5058 		     cpu);
5059 		return -ENOMEM;
5060 	}
5061 	smp_wmb();
5062 	cpumask_set_cpu(cpu, buffer->cpumask);
5063 	return 0;
5064 }
5065 
5066 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5067 /*
5068  * This is a basic integrity check of the ring buffer.
5069  * Late in the boot cycle this test will run when configured in.
5070  * It will kick off a thread per CPU that will go into a loop
5071  * writing to the per cpu ring buffer various sizes of data.
5072  * Some of the data will be large items, some small.
5073  *
5074  * Another thread is created that goes into a spin, sending out
5075  * IPIs to the other CPUs to also write into the ring buffer.
5076  * this is to test the nesting ability of the buffer.
5077  *
5078  * Basic stats are recorded and reported. If something in the
5079  * ring buffer should happen that's not expected, a big warning
5080  * is displayed and all ring buffers are disabled.
5081  */
5082 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5083 
5084 struct rb_test_data {
5085 	struct ring_buffer	*buffer;
5086 	unsigned long		events;
5087 	unsigned long		bytes_written;
5088 	unsigned long		bytes_alloc;
5089 	unsigned long		bytes_dropped;
5090 	unsigned long		events_nested;
5091 	unsigned long		bytes_written_nested;
5092 	unsigned long		bytes_alloc_nested;
5093 	unsigned long		bytes_dropped_nested;
5094 	int			min_size_nested;
5095 	int			max_size_nested;
5096 	int			max_size;
5097 	int			min_size;
5098 	int			cpu;
5099 	int			cnt;
5100 };
5101 
5102 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5103 
5104 /* 1 meg per cpu */
5105 #define RB_TEST_BUFFER_SIZE	1048576
5106 
5107 static char rb_string[] __initdata =
5108 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5109 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5110 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5111 
5112 static bool rb_test_started __initdata;
5113 
5114 struct rb_item {
5115 	int size;
5116 	char str[];
5117 };
5118 
rb_write_something(struct rb_test_data * data,bool nested)5119 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5120 {
5121 	struct ring_buffer_event *event;
5122 	struct rb_item *item;
5123 	bool started;
5124 	int event_len;
5125 	int size;
5126 	int len;
5127 	int cnt;
5128 
5129 	/* Have nested writes different that what is written */
5130 	cnt = data->cnt + (nested ? 27 : 0);
5131 
5132 	/* Multiply cnt by ~e, to make some unique increment */
5133 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5134 
5135 	len = size + sizeof(struct rb_item);
5136 
5137 	started = rb_test_started;
5138 	/* read rb_test_started before checking buffer enabled */
5139 	smp_rmb();
5140 
5141 	event = ring_buffer_lock_reserve(data->buffer, len);
5142 	if (!event) {
5143 		/* Ignore dropped events before test starts. */
5144 		if (started) {
5145 			if (nested)
5146 				data->bytes_dropped += len;
5147 			else
5148 				data->bytes_dropped_nested += len;
5149 		}
5150 		return len;
5151 	}
5152 
5153 	event_len = ring_buffer_event_length(event);
5154 
5155 	if (RB_WARN_ON(data->buffer, event_len < len))
5156 		goto out;
5157 
5158 	item = ring_buffer_event_data(event);
5159 	item->size = size;
5160 	memcpy(item->str, rb_string, size);
5161 
5162 	if (nested) {
5163 		data->bytes_alloc_nested += event_len;
5164 		data->bytes_written_nested += len;
5165 		data->events_nested++;
5166 		if (!data->min_size_nested || len < data->min_size_nested)
5167 			data->min_size_nested = len;
5168 		if (len > data->max_size_nested)
5169 			data->max_size_nested = len;
5170 	} else {
5171 		data->bytes_alloc += event_len;
5172 		data->bytes_written += len;
5173 		data->events++;
5174 		if (!data->min_size || len < data->min_size)
5175 			data->max_size = len;
5176 		if (len > data->max_size)
5177 			data->max_size = len;
5178 	}
5179 
5180  out:
5181 	ring_buffer_unlock_commit(data->buffer, event);
5182 
5183 	return 0;
5184 }
5185 
rb_test(void * arg)5186 static __init int rb_test(void *arg)
5187 {
5188 	struct rb_test_data *data = arg;
5189 
5190 	while (!kthread_should_stop()) {
5191 		rb_write_something(data, false);
5192 		data->cnt++;
5193 
5194 		set_current_state(TASK_INTERRUPTIBLE);
5195 		/* Now sleep between a min of 100-300us and a max of 1ms */
5196 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5197 	}
5198 
5199 	return 0;
5200 }
5201 
rb_ipi(void * ignore)5202 static __init void rb_ipi(void *ignore)
5203 {
5204 	struct rb_test_data *data;
5205 	int cpu = smp_processor_id();
5206 
5207 	data = &rb_data[cpu];
5208 	rb_write_something(data, true);
5209 }
5210 
rb_hammer_test(void * arg)5211 static __init int rb_hammer_test(void *arg)
5212 {
5213 	while (!kthread_should_stop()) {
5214 
5215 		/* Send an IPI to all cpus to write data! */
5216 		smp_call_function(rb_ipi, NULL, 1);
5217 		/* No sleep, but for non preempt, let others run */
5218 		schedule();
5219 	}
5220 
5221 	return 0;
5222 }
5223 
test_ringbuffer(void)5224 static __init int test_ringbuffer(void)
5225 {
5226 	struct task_struct *rb_hammer;
5227 	struct ring_buffer *buffer;
5228 	int cpu;
5229 	int ret = 0;
5230 
5231 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
5232 		pr_warning("Lockdown is enabled, skipping ring buffer tests\n");
5233 		return 0;
5234 	}
5235 
5236 	pr_info("Running ring buffer tests...\n");
5237 
5238 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5239 	if (WARN_ON(!buffer))
5240 		return 0;
5241 
5242 	/* Disable buffer so that threads can't write to it yet */
5243 	ring_buffer_record_off(buffer);
5244 
5245 	for_each_online_cpu(cpu) {
5246 		rb_data[cpu].buffer = buffer;
5247 		rb_data[cpu].cpu = cpu;
5248 		rb_data[cpu].cnt = cpu;
5249 		rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5250 						 "rbtester/%d", cpu);
5251 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5252 			pr_cont("FAILED\n");
5253 			ret = PTR_ERR(rb_threads[cpu]);
5254 			goto out_free;
5255 		}
5256 
5257 		kthread_bind(rb_threads[cpu], cpu);
5258  		wake_up_process(rb_threads[cpu]);
5259 	}
5260 
5261 	/* Now create the rb hammer! */
5262 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5263 	if (WARN_ON(IS_ERR(rb_hammer))) {
5264 		pr_cont("FAILED\n");
5265 		ret = PTR_ERR(rb_hammer);
5266 		goto out_free;
5267 	}
5268 
5269 	ring_buffer_record_on(buffer);
5270 	/*
5271 	 * Show buffer is enabled before setting rb_test_started.
5272 	 * Yes there's a small race window where events could be
5273 	 * dropped and the thread wont catch it. But when a ring
5274 	 * buffer gets enabled, there will always be some kind of
5275 	 * delay before other CPUs see it. Thus, we don't care about
5276 	 * those dropped events. We care about events dropped after
5277 	 * the threads see that the buffer is active.
5278 	 */
5279 	smp_wmb();
5280 	rb_test_started = true;
5281 
5282 	set_current_state(TASK_INTERRUPTIBLE);
5283 	/* Just run for 10 seconds */;
5284 	schedule_timeout(10 * HZ);
5285 
5286 	kthread_stop(rb_hammer);
5287 
5288  out_free:
5289 	for_each_online_cpu(cpu) {
5290 		if (!rb_threads[cpu])
5291 			break;
5292 		kthread_stop(rb_threads[cpu]);
5293 	}
5294 	if (ret) {
5295 		ring_buffer_free(buffer);
5296 		return ret;
5297 	}
5298 
5299 	/* Report! */
5300 	pr_info("finished\n");
5301 	for_each_online_cpu(cpu) {
5302 		struct ring_buffer_event *event;
5303 		struct rb_test_data *data = &rb_data[cpu];
5304 		struct rb_item *item;
5305 		unsigned long total_events;
5306 		unsigned long total_dropped;
5307 		unsigned long total_written;
5308 		unsigned long total_alloc;
5309 		unsigned long total_read = 0;
5310 		unsigned long total_size = 0;
5311 		unsigned long total_len = 0;
5312 		unsigned long total_lost = 0;
5313 		unsigned long lost;
5314 		int big_event_size;
5315 		int small_event_size;
5316 
5317 		ret = -1;
5318 
5319 		total_events = data->events + data->events_nested;
5320 		total_written = data->bytes_written + data->bytes_written_nested;
5321 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5322 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5323 
5324 		big_event_size = data->max_size + data->max_size_nested;
5325 		small_event_size = data->min_size + data->min_size_nested;
5326 
5327 		pr_info("CPU %d:\n", cpu);
5328 		pr_info("              events:    %ld\n", total_events);
5329 		pr_info("       dropped bytes:    %ld\n", total_dropped);
5330 		pr_info("       alloced bytes:    %ld\n", total_alloc);
5331 		pr_info("       written bytes:    %ld\n", total_written);
5332 		pr_info("       biggest event:    %d\n", big_event_size);
5333 		pr_info("      smallest event:    %d\n", small_event_size);
5334 
5335 		if (RB_WARN_ON(buffer, total_dropped))
5336 			break;
5337 
5338 		ret = 0;
5339 
5340 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5341 			total_lost += lost;
5342 			item = ring_buffer_event_data(event);
5343 			total_len += ring_buffer_event_length(event);
5344 			total_size += item->size + sizeof(struct rb_item);
5345 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5346 				pr_info("FAILED!\n");
5347 				pr_info("buffer had: %.*s\n", item->size, item->str);
5348 				pr_info("expected:   %.*s\n", item->size, rb_string);
5349 				RB_WARN_ON(buffer, 1);
5350 				ret = -1;
5351 				break;
5352 			}
5353 			total_read++;
5354 		}
5355 		if (ret)
5356 			break;
5357 
5358 		ret = -1;
5359 
5360 		pr_info("         read events:   %ld\n", total_read);
5361 		pr_info("         lost events:   %ld\n", total_lost);
5362 		pr_info("        total events:   %ld\n", total_lost + total_read);
5363 		pr_info("  recorded len bytes:   %ld\n", total_len);
5364 		pr_info(" recorded size bytes:   %ld\n", total_size);
5365 		if (total_lost)
5366 			pr_info(" With dropped events, record len and size may not match\n"
5367 				" alloced and written from above\n");
5368 		if (!total_lost) {
5369 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
5370 				       total_size != total_written))
5371 				break;
5372 		}
5373 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5374 			break;
5375 
5376 		ret = 0;
5377 	}
5378 	if (!ret)
5379 		pr_info("Ring buffer PASSED!\n");
5380 
5381 	ring_buffer_free(buffer);
5382 	return 0;
5383 }
5384 
5385 late_initcall(test_ringbuffer);
5386 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5387