1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/net/sunrpc/sched.c
4 *
5 * Scheduling for synchronous and asynchronous RPC requests.
6 *
7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 *
9 * TCP NFS related read + write fixes
10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11 */
12
13 #include <linux/module.h>
14
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27
28 #include "sunrpc.h"
29
30 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
31 #define RPCDBG_FACILITY RPCDBG_SCHED
32 #endif
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/sunrpc.h>
36
37 /*
38 * RPC slabs and memory pools
39 */
40 #define RPC_BUFFER_MAXSIZE (2048)
41 #define RPC_BUFFER_POOLSIZE (8)
42 #define RPC_TASK_POOLSIZE (8)
43 static struct kmem_cache *rpc_task_slabp __read_mostly;
44 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
45 static mempool_t *rpc_task_mempool __read_mostly;
46 static mempool_t *rpc_buffer_mempool __read_mostly;
47
48 static void rpc_async_schedule(struct work_struct *);
49 static void rpc_release_task(struct rpc_task *task);
50 static void __rpc_queue_timer_fn(struct work_struct *);
51
52 /*
53 * RPC tasks sit here while waiting for conditions to improve.
54 */
55 static struct rpc_wait_queue delay_queue;
56
57 /*
58 * rpciod-related stuff
59 */
60 struct workqueue_struct *rpciod_workqueue __read_mostly;
61 struct workqueue_struct *xprtiod_workqueue __read_mostly;
62 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
63
64 unsigned long
rpc_task_timeout(const struct rpc_task * task)65 rpc_task_timeout(const struct rpc_task *task)
66 {
67 unsigned long timeout = READ_ONCE(task->tk_timeout);
68
69 if (timeout != 0) {
70 unsigned long now = jiffies;
71 if (time_before(now, timeout))
72 return timeout - now;
73 }
74 return 0;
75 }
76 EXPORT_SYMBOL_GPL(rpc_task_timeout);
77
78 /*
79 * Disable the timer for a given RPC task. Should be called with
80 * queue->lock and bh_disabled in order to avoid races within
81 * rpc_run_timer().
82 */
83 static void
__rpc_disable_timer(struct rpc_wait_queue * queue,struct rpc_task * task)84 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
85 {
86 if (list_empty(&task->u.tk_wait.timer_list))
87 return;
88 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
89 task->tk_timeout = 0;
90 list_del(&task->u.tk_wait.timer_list);
91 if (list_empty(&queue->timer_list.list))
92 cancel_delayed_work(&queue->timer_list.dwork);
93 }
94
95 static void
rpc_set_queue_timer(struct rpc_wait_queue * queue,unsigned long expires)96 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
97 {
98 unsigned long now = jiffies;
99 queue->timer_list.expires = expires;
100 if (time_before_eq(expires, now))
101 expires = 0;
102 else
103 expires -= now;
104 mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
105 }
106
107 /*
108 * Set up a timer for the current task.
109 */
110 static void
__rpc_add_timer(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned long timeout)111 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
112 unsigned long timeout)
113 {
114 dprintk("RPC: %5u setting alarm for %u ms\n",
115 task->tk_pid, jiffies_to_msecs(timeout - jiffies));
116
117 task->tk_timeout = timeout;
118 if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
119 rpc_set_queue_timer(queue, timeout);
120 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
121 }
122
rpc_set_waitqueue_priority(struct rpc_wait_queue * queue,int priority)123 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
124 {
125 if (queue->priority != priority) {
126 queue->priority = priority;
127 queue->nr = 1U << priority;
128 }
129 }
130
rpc_reset_waitqueue_priority(struct rpc_wait_queue * queue)131 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
132 {
133 rpc_set_waitqueue_priority(queue, queue->maxpriority);
134 }
135
136 /*
137 * Add a request to a queue list
138 */
139 static void
__rpc_list_enqueue_task(struct list_head * q,struct rpc_task * task)140 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
141 {
142 struct rpc_task *t;
143
144 list_for_each_entry(t, q, u.tk_wait.list) {
145 if (t->tk_owner == task->tk_owner) {
146 list_add_tail(&task->u.tk_wait.links,
147 &t->u.tk_wait.links);
148 /* Cache the queue head in task->u.tk_wait.list */
149 task->u.tk_wait.list.next = q;
150 task->u.tk_wait.list.prev = NULL;
151 return;
152 }
153 }
154 INIT_LIST_HEAD(&task->u.tk_wait.links);
155 list_add_tail(&task->u.tk_wait.list, q);
156 }
157
158 /*
159 * Remove request from a queue list
160 */
161 static void
__rpc_list_dequeue_task(struct rpc_task * task)162 __rpc_list_dequeue_task(struct rpc_task *task)
163 {
164 struct list_head *q;
165 struct rpc_task *t;
166
167 if (task->u.tk_wait.list.prev == NULL) {
168 list_del(&task->u.tk_wait.links);
169 return;
170 }
171 if (!list_empty(&task->u.tk_wait.links)) {
172 t = list_first_entry(&task->u.tk_wait.links,
173 struct rpc_task,
174 u.tk_wait.links);
175 /* Assume __rpc_list_enqueue_task() cached the queue head */
176 q = t->u.tk_wait.list.next;
177 list_add_tail(&t->u.tk_wait.list, q);
178 list_del(&task->u.tk_wait.links);
179 }
180 list_del(&task->u.tk_wait.list);
181 }
182
183 /*
184 * Add new request to a priority queue.
185 */
__rpc_add_wait_queue_priority(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned char queue_priority)186 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
187 struct rpc_task *task,
188 unsigned char queue_priority)
189 {
190 if (unlikely(queue_priority > queue->maxpriority))
191 queue_priority = queue->maxpriority;
192 __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
193 }
194
195 /*
196 * Add new request to wait queue.
197 *
198 * Swapper tasks always get inserted at the head of the queue.
199 * This should avoid many nasty memory deadlocks and hopefully
200 * improve overall performance.
201 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
202 */
__rpc_add_wait_queue(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned char queue_priority)203 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
204 struct rpc_task *task,
205 unsigned char queue_priority)
206 {
207 INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
208 if (RPC_IS_PRIORITY(queue))
209 __rpc_add_wait_queue_priority(queue, task, queue_priority);
210 else if (RPC_IS_SWAPPER(task))
211 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
212 else
213 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
214 task->tk_waitqueue = queue;
215 queue->qlen++;
216 /* barrier matches the read in rpc_wake_up_task_queue_locked() */
217 smp_wmb();
218 rpc_set_queued(task);
219
220 dprintk("RPC: %5u added to queue %p \"%s\"\n",
221 task->tk_pid, queue, rpc_qname(queue));
222 }
223
224 /*
225 * Remove request from a priority queue.
226 */
__rpc_remove_wait_queue_priority(struct rpc_task * task)227 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
228 {
229 __rpc_list_dequeue_task(task);
230 }
231
232 /*
233 * Remove request from queue.
234 * Note: must be called with spin lock held.
235 */
__rpc_remove_wait_queue(struct rpc_wait_queue * queue,struct rpc_task * task)236 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
237 {
238 __rpc_disable_timer(queue, task);
239 if (RPC_IS_PRIORITY(queue))
240 __rpc_remove_wait_queue_priority(task);
241 else
242 list_del(&task->u.tk_wait.list);
243 queue->qlen--;
244 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
245 task->tk_pid, queue, rpc_qname(queue));
246 }
247
__rpc_init_priority_wait_queue(struct rpc_wait_queue * queue,const char * qname,unsigned char nr_queues)248 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
249 {
250 int i;
251
252 spin_lock_init(&queue->lock);
253 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
254 INIT_LIST_HEAD(&queue->tasks[i]);
255 queue->maxpriority = nr_queues - 1;
256 rpc_reset_waitqueue_priority(queue);
257 queue->qlen = 0;
258 queue->timer_list.expires = 0;
259 INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
260 INIT_LIST_HEAD(&queue->timer_list.list);
261 rpc_assign_waitqueue_name(queue, qname);
262 }
263
rpc_init_priority_wait_queue(struct rpc_wait_queue * queue,const char * qname)264 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
265 {
266 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
267 }
268 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
269
rpc_init_wait_queue(struct rpc_wait_queue * queue,const char * qname)270 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
271 {
272 __rpc_init_priority_wait_queue(queue, qname, 1);
273 }
274 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
275
rpc_destroy_wait_queue(struct rpc_wait_queue * queue)276 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
277 {
278 cancel_delayed_work_sync(&queue->timer_list.dwork);
279 }
280 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
281
rpc_wait_bit_killable(struct wait_bit_key * key,int mode)282 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
283 {
284 freezable_schedule_unsafe();
285 if (signal_pending_state(mode, current))
286 return -ERESTARTSYS;
287 return 0;
288 }
289
290 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
rpc_task_set_debuginfo(struct rpc_task * task)291 static void rpc_task_set_debuginfo(struct rpc_task *task)
292 {
293 static atomic_t rpc_pid;
294
295 task->tk_pid = atomic_inc_return(&rpc_pid);
296 }
297 #else
rpc_task_set_debuginfo(struct rpc_task * task)298 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
299 {
300 }
301 #endif
302
rpc_set_active(struct rpc_task * task)303 static void rpc_set_active(struct rpc_task *task)
304 {
305 rpc_task_set_debuginfo(task);
306 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
307 trace_rpc_task_begin(task, NULL);
308 }
309
310 /*
311 * Mark an RPC call as having completed by clearing the 'active' bit
312 * and then waking up all tasks that were sleeping.
313 */
rpc_complete_task(struct rpc_task * task)314 static int rpc_complete_task(struct rpc_task *task)
315 {
316 void *m = &task->tk_runstate;
317 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
318 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
319 unsigned long flags;
320 int ret;
321
322 trace_rpc_task_complete(task, NULL);
323
324 spin_lock_irqsave(&wq->lock, flags);
325 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
326 ret = atomic_dec_and_test(&task->tk_count);
327 if (waitqueue_active(wq))
328 __wake_up_locked_key(wq, TASK_NORMAL, &k);
329 spin_unlock_irqrestore(&wq->lock, flags);
330 return ret;
331 }
332
333 /*
334 * Allow callers to wait for completion of an RPC call
335 *
336 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
337 * to enforce taking of the wq->lock and hence avoid races with
338 * rpc_complete_task().
339 */
__rpc_wait_for_completion_task(struct rpc_task * task,wait_bit_action_f * action)340 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
341 {
342 if (action == NULL)
343 action = rpc_wait_bit_killable;
344 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
345 action, TASK_KILLABLE);
346 }
347 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
348
349 /*
350 * Make an RPC task runnable.
351 *
352 * Note: If the task is ASYNC, and is being made runnable after sitting on an
353 * rpc_wait_queue, this must be called with the queue spinlock held to protect
354 * the wait queue operation.
355 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
356 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
357 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
358 * the RPC_TASK_RUNNING flag.
359 */
rpc_make_runnable(struct workqueue_struct * wq,struct rpc_task * task)360 static void rpc_make_runnable(struct workqueue_struct *wq,
361 struct rpc_task *task)
362 {
363 bool need_wakeup = !rpc_test_and_set_running(task);
364
365 rpc_clear_queued(task);
366 if (!need_wakeup)
367 return;
368 if (RPC_IS_ASYNC(task)) {
369 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
370 queue_work(wq, &task->u.tk_work);
371 } else
372 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
373 }
374
375 /*
376 * Prepare for sleeping on a wait queue.
377 * By always appending tasks to the list we ensure FIFO behavior.
378 * NB: An RPC task will only receive interrupt-driven events as long
379 * as it's on a wait queue.
380 */
__rpc_do_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,unsigned char queue_priority)381 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
382 struct rpc_task *task,
383 unsigned char queue_priority)
384 {
385 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
386 task->tk_pid, rpc_qname(q), jiffies);
387
388 trace_rpc_task_sleep(task, q);
389
390 __rpc_add_wait_queue(q, task, queue_priority);
391
392 }
393
__rpc_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,unsigned char queue_priority)394 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
395 struct rpc_task *task,
396 unsigned char queue_priority)
397 {
398 if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
399 return;
400 __rpc_do_sleep_on_priority(q, task, queue_priority);
401 }
402
__rpc_sleep_on_priority_timeout(struct rpc_wait_queue * q,struct rpc_task * task,unsigned long timeout,unsigned char queue_priority)403 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
404 struct rpc_task *task, unsigned long timeout,
405 unsigned char queue_priority)
406 {
407 if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
408 return;
409 if (time_is_after_jiffies(timeout)) {
410 __rpc_do_sleep_on_priority(q, task, queue_priority);
411 __rpc_add_timer(q, task, timeout);
412 } else
413 task->tk_status = -ETIMEDOUT;
414 }
415
rpc_set_tk_callback(struct rpc_task * task,rpc_action action)416 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
417 {
418 if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
419 task->tk_callback = action;
420 }
421
rpc_sleep_check_activated(struct rpc_task * task)422 static bool rpc_sleep_check_activated(struct rpc_task *task)
423 {
424 /* We shouldn't ever put an inactive task to sleep */
425 if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
426 task->tk_status = -EIO;
427 rpc_put_task_async(task);
428 return false;
429 }
430 return true;
431 }
432
rpc_sleep_on_timeout(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action,unsigned long timeout)433 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
434 rpc_action action, unsigned long timeout)
435 {
436 if (!rpc_sleep_check_activated(task))
437 return;
438
439 rpc_set_tk_callback(task, action);
440
441 /*
442 * Protect the queue operations.
443 */
444 spin_lock(&q->lock);
445 __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
446 spin_unlock(&q->lock);
447 }
448 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
449
rpc_sleep_on(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action)450 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
451 rpc_action action)
452 {
453 if (!rpc_sleep_check_activated(task))
454 return;
455
456 rpc_set_tk_callback(task, action);
457
458 WARN_ON_ONCE(task->tk_timeout != 0);
459 /*
460 * Protect the queue operations.
461 */
462 spin_lock(&q->lock);
463 __rpc_sleep_on_priority(q, task, task->tk_priority);
464 spin_unlock(&q->lock);
465 }
466 EXPORT_SYMBOL_GPL(rpc_sleep_on);
467
rpc_sleep_on_priority_timeout(struct rpc_wait_queue * q,struct rpc_task * task,unsigned long timeout,int priority)468 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
469 struct rpc_task *task, unsigned long timeout, int priority)
470 {
471 if (!rpc_sleep_check_activated(task))
472 return;
473
474 priority -= RPC_PRIORITY_LOW;
475 /*
476 * Protect the queue operations.
477 */
478 spin_lock(&q->lock);
479 __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
480 spin_unlock(&q->lock);
481 }
482 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
483
rpc_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,int priority)484 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
485 int priority)
486 {
487 if (!rpc_sleep_check_activated(task))
488 return;
489
490 WARN_ON_ONCE(task->tk_timeout != 0);
491 priority -= RPC_PRIORITY_LOW;
492 /*
493 * Protect the queue operations.
494 */
495 spin_lock(&q->lock);
496 __rpc_sleep_on_priority(q, task, priority);
497 spin_unlock(&q->lock);
498 }
499 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
500
501 /**
502 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
503 * @wq: workqueue on which to run task
504 * @queue: wait queue
505 * @task: task to be woken up
506 *
507 * Caller must hold queue->lock, and have cleared the task queued flag.
508 */
__rpc_do_wake_up_task_on_wq(struct workqueue_struct * wq,struct rpc_wait_queue * queue,struct rpc_task * task)509 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
510 struct rpc_wait_queue *queue,
511 struct rpc_task *task)
512 {
513 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
514 task->tk_pid, jiffies);
515
516 /* Has the task been executed yet? If not, we cannot wake it up! */
517 if (!RPC_IS_ACTIVATED(task)) {
518 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
519 return;
520 }
521
522 trace_rpc_task_wakeup(task, queue);
523
524 __rpc_remove_wait_queue(queue, task);
525
526 rpc_make_runnable(wq, task);
527
528 dprintk("RPC: __rpc_wake_up_task done\n");
529 }
530
531 /*
532 * Wake up a queued task while the queue lock is being held
533 */
534 static struct rpc_task *
rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct * wq,struct rpc_wait_queue * queue,struct rpc_task * task,bool (* action)(struct rpc_task *,void *),void * data)535 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
536 struct rpc_wait_queue *queue, struct rpc_task *task,
537 bool (*action)(struct rpc_task *, void *), void *data)
538 {
539 if (RPC_IS_QUEUED(task)) {
540 smp_rmb();
541 if (task->tk_waitqueue == queue) {
542 if (action == NULL || action(task, data)) {
543 __rpc_do_wake_up_task_on_wq(wq, queue, task);
544 return task;
545 }
546 }
547 }
548 return NULL;
549 }
550
551 /*
552 * Wake up a queued task while the queue lock is being held
553 */
rpc_wake_up_task_queue_locked(struct rpc_wait_queue * queue,struct rpc_task * task)554 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
555 struct rpc_task *task)
556 {
557 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
558 task, NULL, NULL);
559 }
560
561 /*
562 * Wake up a task on a specific queue
563 */
rpc_wake_up_queued_task(struct rpc_wait_queue * queue,struct rpc_task * task)564 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
565 {
566 if (!RPC_IS_QUEUED(task))
567 return;
568 spin_lock(&queue->lock);
569 rpc_wake_up_task_queue_locked(queue, task);
570 spin_unlock(&queue->lock);
571 }
572 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
573
rpc_task_action_set_status(struct rpc_task * task,void * status)574 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
575 {
576 task->tk_status = *(int *)status;
577 return true;
578 }
579
580 static void
rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue * queue,struct rpc_task * task,int status)581 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
582 struct rpc_task *task, int status)
583 {
584 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
585 task, rpc_task_action_set_status, &status);
586 }
587
588 /**
589 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
590 * @queue: pointer to rpc_wait_queue
591 * @task: pointer to rpc_task
592 * @status: integer error value
593 *
594 * If @task is queued on @queue, then it is woken up, and @task->tk_status is
595 * set to the value of @status.
596 */
597 void
rpc_wake_up_queued_task_set_status(struct rpc_wait_queue * queue,struct rpc_task * task,int status)598 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
599 struct rpc_task *task, int status)
600 {
601 if (!RPC_IS_QUEUED(task))
602 return;
603 spin_lock(&queue->lock);
604 rpc_wake_up_task_queue_set_status_locked(queue, task, status);
605 spin_unlock(&queue->lock);
606 }
607
608 /*
609 * Wake up the next task on a priority queue.
610 */
__rpc_find_next_queued_priority(struct rpc_wait_queue * queue)611 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
612 {
613 struct list_head *q;
614 struct rpc_task *task;
615
616 /*
617 * Service the privileged queue.
618 */
619 q = &queue->tasks[RPC_NR_PRIORITY - 1];
620 if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
621 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
622 goto out;
623 }
624
625 /*
626 * Service a batch of tasks from a single owner.
627 */
628 q = &queue->tasks[queue->priority];
629 if (!list_empty(q) && queue->nr) {
630 queue->nr--;
631 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
632 goto out;
633 }
634
635 /*
636 * Service the next queue.
637 */
638 do {
639 if (q == &queue->tasks[0])
640 q = &queue->tasks[queue->maxpriority];
641 else
642 q = q - 1;
643 if (!list_empty(q)) {
644 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
645 goto new_queue;
646 }
647 } while (q != &queue->tasks[queue->priority]);
648
649 rpc_reset_waitqueue_priority(queue);
650 return NULL;
651
652 new_queue:
653 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
654 out:
655 return task;
656 }
657
__rpc_find_next_queued(struct rpc_wait_queue * queue)658 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
659 {
660 if (RPC_IS_PRIORITY(queue))
661 return __rpc_find_next_queued_priority(queue);
662 if (!list_empty(&queue->tasks[0]))
663 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
664 return NULL;
665 }
666
667 /*
668 * Wake up the first task on the wait queue.
669 */
rpc_wake_up_first_on_wq(struct workqueue_struct * wq,struct rpc_wait_queue * queue,bool (* func)(struct rpc_task *,void *),void * data)670 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
671 struct rpc_wait_queue *queue,
672 bool (*func)(struct rpc_task *, void *), void *data)
673 {
674 struct rpc_task *task = NULL;
675
676 dprintk("RPC: wake_up_first(%p \"%s\")\n",
677 queue, rpc_qname(queue));
678 spin_lock(&queue->lock);
679 task = __rpc_find_next_queued(queue);
680 if (task != NULL)
681 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
682 task, func, data);
683 spin_unlock(&queue->lock);
684
685 return task;
686 }
687
688 /*
689 * Wake up the first task on the wait queue.
690 */
rpc_wake_up_first(struct rpc_wait_queue * queue,bool (* func)(struct rpc_task *,void *),void * data)691 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
692 bool (*func)(struct rpc_task *, void *), void *data)
693 {
694 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
695 }
696 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
697
rpc_wake_up_next_func(struct rpc_task * task,void * data)698 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
699 {
700 return true;
701 }
702
703 /*
704 * Wake up the next task on the wait queue.
705 */
rpc_wake_up_next(struct rpc_wait_queue * queue)706 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
707 {
708 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
709 }
710 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
711
712 /**
713 * rpc_wake_up_locked - wake up all rpc_tasks
714 * @queue: rpc_wait_queue on which the tasks are sleeping
715 *
716 */
rpc_wake_up_locked(struct rpc_wait_queue * queue)717 static void rpc_wake_up_locked(struct rpc_wait_queue *queue)
718 {
719 struct rpc_task *task;
720
721 for (;;) {
722 task = __rpc_find_next_queued(queue);
723 if (task == NULL)
724 break;
725 rpc_wake_up_task_queue_locked(queue, task);
726 }
727 }
728
729 /**
730 * rpc_wake_up - wake up all rpc_tasks
731 * @queue: rpc_wait_queue on which the tasks are sleeping
732 *
733 * Grabs queue->lock
734 */
rpc_wake_up(struct rpc_wait_queue * queue)735 void rpc_wake_up(struct rpc_wait_queue *queue)
736 {
737 spin_lock(&queue->lock);
738 rpc_wake_up_locked(queue);
739 spin_unlock(&queue->lock);
740 }
741 EXPORT_SYMBOL_GPL(rpc_wake_up);
742
743 /**
744 * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value.
745 * @queue: rpc_wait_queue on which the tasks are sleeping
746 * @status: status value to set
747 */
rpc_wake_up_status_locked(struct rpc_wait_queue * queue,int status)748 static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status)
749 {
750 struct rpc_task *task;
751
752 for (;;) {
753 task = __rpc_find_next_queued(queue);
754 if (task == NULL)
755 break;
756 rpc_wake_up_task_queue_set_status_locked(queue, task, status);
757 }
758 }
759
760 /**
761 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
762 * @queue: rpc_wait_queue on which the tasks are sleeping
763 * @status: status value to set
764 *
765 * Grabs queue->lock
766 */
rpc_wake_up_status(struct rpc_wait_queue * queue,int status)767 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
768 {
769 spin_lock(&queue->lock);
770 rpc_wake_up_status_locked(queue, status);
771 spin_unlock(&queue->lock);
772 }
773 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
774
__rpc_queue_timer_fn(struct work_struct * work)775 static void __rpc_queue_timer_fn(struct work_struct *work)
776 {
777 struct rpc_wait_queue *queue = container_of(work,
778 struct rpc_wait_queue,
779 timer_list.dwork.work);
780 struct rpc_task *task, *n;
781 unsigned long expires, now, timeo;
782
783 spin_lock(&queue->lock);
784 expires = now = jiffies;
785 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
786 timeo = task->tk_timeout;
787 if (time_after_eq(now, timeo)) {
788 dprintk("RPC: %5u timeout\n", task->tk_pid);
789 task->tk_status = -ETIMEDOUT;
790 rpc_wake_up_task_queue_locked(queue, task);
791 continue;
792 }
793 if (expires == now || time_after(expires, timeo))
794 expires = timeo;
795 }
796 if (!list_empty(&queue->timer_list.list))
797 rpc_set_queue_timer(queue, expires);
798 spin_unlock(&queue->lock);
799 }
800
__rpc_atrun(struct rpc_task * task)801 static void __rpc_atrun(struct rpc_task *task)
802 {
803 if (task->tk_status == -ETIMEDOUT)
804 task->tk_status = 0;
805 }
806
807 /*
808 * Run a task at a later time
809 */
rpc_delay(struct rpc_task * task,unsigned long delay)810 void rpc_delay(struct rpc_task *task, unsigned long delay)
811 {
812 rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
813 }
814 EXPORT_SYMBOL_GPL(rpc_delay);
815
816 /*
817 * Helper to call task->tk_ops->rpc_call_prepare
818 */
rpc_prepare_task(struct rpc_task * task)819 void rpc_prepare_task(struct rpc_task *task)
820 {
821 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
822 }
823
824 static void
rpc_init_task_statistics(struct rpc_task * task)825 rpc_init_task_statistics(struct rpc_task *task)
826 {
827 /* Initialize retry counters */
828 task->tk_garb_retry = 2;
829 task->tk_cred_retry = 2;
830
831 /* starting timestamp */
832 task->tk_start = ktime_get();
833 }
834
835 static void
rpc_reset_task_statistics(struct rpc_task * task)836 rpc_reset_task_statistics(struct rpc_task *task)
837 {
838 task->tk_timeouts = 0;
839 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
840 rpc_init_task_statistics(task);
841 }
842
843 /*
844 * Helper that calls task->tk_ops->rpc_call_done if it exists
845 */
rpc_exit_task(struct rpc_task * task)846 void rpc_exit_task(struct rpc_task *task)
847 {
848 trace_rpc_task_end(task, task->tk_action);
849 task->tk_action = NULL;
850 if (task->tk_ops->rpc_count_stats)
851 task->tk_ops->rpc_count_stats(task, task->tk_calldata);
852 else if (task->tk_client)
853 rpc_count_iostats(task, task->tk_client->cl_metrics);
854 if (task->tk_ops->rpc_call_done != NULL) {
855 task->tk_ops->rpc_call_done(task, task->tk_calldata);
856 if (task->tk_action != NULL) {
857 /* Always release the RPC slot and buffer memory */
858 xprt_release(task);
859 rpc_reset_task_statistics(task);
860 }
861 }
862 }
863
rpc_signal_task(struct rpc_task * task)864 void rpc_signal_task(struct rpc_task *task)
865 {
866 struct rpc_wait_queue *queue;
867
868 if (!RPC_IS_ACTIVATED(task))
869 return;
870 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
871 smp_mb__after_atomic();
872 queue = READ_ONCE(task->tk_waitqueue);
873 if (queue)
874 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
875 }
876
rpc_exit(struct rpc_task * task,int status)877 void rpc_exit(struct rpc_task *task, int status)
878 {
879 task->tk_status = status;
880 task->tk_action = rpc_exit_task;
881 rpc_wake_up_queued_task(task->tk_waitqueue, task);
882 }
883 EXPORT_SYMBOL_GPL(rpc_exit);
884
rpc_release_calldata(const struct rpc_call_ops * ops,void * calldata)885 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
886 {
887 if (ops->rpc_release != NULL)
888 ops->rpc_release(calldata);
889 }
890
891 /*
892 * This is the RPC `scheduler' (or rather, the finite state machine).
893 */
__rpc_execute(struct rpc_task * task)894 static void __rpc_execute(struct rpc_task *task)
895 {
896 struct rpc_wait_queue *queue;
897 int task_is_async = RPC_IS_ASYNC(task);
898 int status = 0;
899
900 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
901 task->tk_pid, task->tk_flags);
902
903 WARN_ON_ONCE(RPC_IS_QUEUED(task));
904 if (RPC_IS_QUEUED(task))
905 return;
906
907 for (;;) {
908 void (*do_action)(struct rpc_task *);
909
910 /*
911 * Perform the next FSM step or a pending callback.
912 *
913 * tk_action may be NULL if the task has been killed.
914 * In particular, note that rpc_killall_tasks may
915 * do this at any time, so beware when dereferencing.
916 */
917 do_action = task->tk_action;
918 if (task->tk_callback) {
919 do_action = task->tk_callback;
920 task->tk_callback = NULL;
921 }
922 if (!do_action)
923 break;
924 trace_rpc_task_run_action(task, do_action);
925 do_action(task);
926
927 /*
928 * Lockless check for whether task is sleeping or not.
929 */
930 if (!RPC_IS_QUEUED(task))
931 continue;
932
933 /*
934 * Signalled tasks should exit rather than sleep.
935 */
936 if (RPC_SIGNALLED(task)) {
937 task->tk_rpc_status = -ERESTARTSYS;
938 rpc_exit(task, -ERESTARTSYS);
939 }
940
941 /*
942 * The queue->lock protects against races with
943 * rpc_make_runnable().
944 *
945 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
946 * rpc_task, rpc_make_runnable() can assign it to a
947 * different workqueue. We therefore cannot assume that the
948 * rpc_task pointer may still be dereferenced.
949 */
950 queue = task->tk_waitqueue;
951 spin_lock(&queue->lock);
952 if (!RPC_IS_QUEUED(task)) {
953 spin_unlock(&queue->lock);
954 continue;
955 }
956 rpc_clear_running(task);
957 spin_unlock(&queue->lock);
958 if (task_is_async)
959 return;
960
961 /* sync task: sleep here */
962 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
963 status = out_of_line_wait_on_bit(&task->tk_runstate,
964 RPC_TASK_QUEUED, rpc_wait_bit_killable,
965 TASK_KILLABLE);
966 if (status < 0) {
967 /*
968 * When a sync task receives a signal, it exits with
969 * -ERESTARTSYS. In order to catch any callbacks that
970 * clean up after sleeping on some queue, we don't
971 * break the loop here, but go around once more.
972 */
973 dprintk("RPC: %5u got signal\n", task->tk_pid);
974 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
975 task->tk_rpc_status = -ERESTARTSYS;
976 rpc_exit(task, -ERESTARTSYS);
977 }
978 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
979 }
980
981 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
982 task->tk_status);
983 /* Release all resources associated with the task */
984 rpc_release_task(task);
985 }
986
987 /*
988 * User-visible entry point to the scheduler.
989 *
990 * This may be called recursively if e.g. an async NFS task updates
991 * the attributes and finds that dirty pages must be flushed.
992 * NOTE: Upon exit of this function the task is guaranteed to be
993 * released. In particular note that tk_release() will have
994 * been called, so your task memory may have been freed.
995 */
rpc_execute(struct rpc_task * task)996 void rpc_execute(struct rpc_task *task)
997 {
998 bool is_async = RPC_IS_ASYNC(task);
999
1000 rpc_set_active(task);
1001 rpc_make_runnable(rpciod_workqueue, task);
1002 if (!is_async) {
1003 unsigned int pflags = memalloc_nofs_save();
1004 __rpc_execute(task);
1005 memalloc_nofs_restore(pflags);
1006 }
1007 }
1008
rpc_async_schedule(struct work_struct * work)1009 static void rpc_async_schedule(struct work_struct *work)
1010 {
1011 unsigned int pflags = memalloc_nofs_save();
1012
1013 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
1014 memalloc_nofs_restore(pflags);
1015 }
1016
1017 /**
1018 * rpc_malloc - allocate RPC buffer resources
1019 * @task: RPC task
1020 *
1021 * A single memory region is allocated, which is split between the
1022 * RPC call and RPC reply that this task is being used for. When
1023 * this RPC is retired, the memory is released by calling rpc_free.
1024 *
1025 * To prevent rpciod from hanging, this allocator never sleeps,
1026 * returning -ENOMEM and suppressing warning if the request cannot
1027 * be serviced immediately. The caller can arrange to sleep in a
1028 * way that is safe for rpciod.
1029 *
1030 * Most requests are 'small' (under 2KiB) and can be serviced from a
1031 * mempool, ensuring that NFS reads and writes can always proceed,
1032 * and that there is good locality of reference for these buffers.
1033 */
rpc_malloc(struct rpc_task * task)1034 int rpc_malloc(struct rpc_task *task)
1035 {
1036 struct rpc_rqst *rqst = task->tk_rqstp;
1037 size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1038 struct rpc_buffer *buf;
1039 gfp_t gfp = GFP_NOFS;
1040
1041 if (RPC_IS_ASYNC(task))
1042 gfp = GFP_NOWAIT | __GFP_NOWARN;
1043 if (RPC_IS_SWAPPER(task))
1044 gfp |= __GFP_MEMALLOC;
1045
1046 size += sizeof(struct rpc_buffer);
1047 if (size <= RPC_BUFFER_MAXSIZE)
1048 buf = mempool_alloc(rpc_buffer_mempool, gfp);
1049 else
1050 buf = kmalloc(size, gfp);
1051
1052 if (!buf)
1053 return -ENOMEM;
1054
1055 buf->len = size;
1056 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
1057 task->tk_pid, size, buf);
1058 rqst->rq_buffer = buf->data;
1059 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1060 return 0;
1061 }
1062 EXPORT_SYMBOL_GPL(rpc_malloc);
1063
1064 /**
1065 * rpc_free - free RPC buffer resources allocated via rpc_malloc
1066 * @task: RPC task
1067 *
1068 */
rpc_free(struct rpc_task * task)1069 void rpc_free(struct rpc_task *task)
1070 {
1071 void *buffer = task->tk_rqstp->rq_buffer;
1072 size_t size;
1073 struct rpc_buffer *buf;
1074
1075 buf = container_of(buffer, struct rpc_buffer, data);
1076 size = buf->len;
1077
1078 dprintk("RPC: freeing buffer of size %zu at %p\n",
1079 size, buf);
1080
1081 if (size <= RPC_BUFFER_MAXSIZE)
1082 mempool_free(buf, rpc_buffer_mempool);
1083 else
1084 kfree(buf);
1085 }
1086 EXPORT_SYMBOL_GPL(rpc_free);
1087
1088 /*
1089 * Creation and deletion of RPC task structures
1090 */
rpc_init_task(struct rpc_task * task,const struct rpc_task_setup * task_setup_data)1091 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1092 {
1093 memset(task, 0, sizeof(*task));
1094 atomic_set(&task->tk_count, 1);
1095 task->tk_flags = task_setup_data->flags;
1096 task->tk_ops = task_setup_data->callback_ops;
1097 task->tk_calldata = task_setup_data->callback_data;
1098 INIT_LIST_HEAD(&task->tk_task);
1099
1100 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1101 task->tk_owner = current->tgid;
1102
1103 /* Initialize workqueue for async tasks */
1104 task->tk_workqueue = task_setup_data->workqueue;
1105
1106 task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1107 xprt_get(task_setup_data->rpc_xprt));
1108
1109 task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1110
1111 if (task->tk_ops->rpc_call_prepare != NULL)
1112 task->tk_action = rpc_prepare_task;
1113
1114 rpc_init_task_statistics(task);
1115
1116 dprintk("RPC: new task initialized, procpid %u\n",
1117 task_pid_nr(current));
1118 }
1119
1120 static struct rpc_task *
rpc_alloc_task(void)1121 rpc_alloc_task(void)
1122 {
1123 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1124 }
1125
1126 /*
1127 * Create a new task for the specified client.
1128 */
rpc_new_task(const struct rpc_task_setup * setup_data)1129 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1130 {
1131 struct rpc_task *task = setup_data->task;
1132 unsigned short flags = 0;
1133
1134 if (task == NULL) {
1135 task = rpc_alloc_task();
1136 flags = RPC_TASK_DYNAMIC;
1137 }
1138
1139 rpc_init_task(task, setup_data);
1140 task->tk_flags |= flags;
1141 dprintk("RPC: allocated task %p\n", task);
1142 return task;
1143 }
1144
1145 /*
1146 * rpc_free_task - release rpc task and perform cleanups
1147 *
1148 * Note that we free up the rpc_task _after_ rpc_release_calldata()
1149 * in order to work around a workqueue dependency issue.
1150 *
1151 * Tejun Heo states:
1152 * "Workqueue currently considers two work items to be the same if they're
1153 * on the same address and won't execute them concurrently - ie. it
1154 * makes a work item which is queued again while being executed wait
1155 * for the previous execution to complete.
1156 *
1157 * If a work function frees the work item, and then waits for an event
1158 * which should be performed by another work item and *that* work item
1159 * recycles the freed work item, it can create a false dependency loop.
1160 * There really is no reliable way to detect this short of verifying
1161 * every memory free."
1162 *
1163 */
rpc_free_task(struct rpc_task * task)1164 static void rpc_free_task(struct rpc_task *task)
1165 {
1166 unsigned short tk_flags = task->tk_flags;
1167
1168 put_rpccred(task->tk_op_cred);
1169 rpc_release_calldata(task->tk_ops, task->tk_calldata);
1170
1171 if (tk_flags & RPC_TASK_DYNAMIC) {
1172 dprintk("RPC: %5u freeing task\n", task->tk_pid);
1173 mempool_free(task, rpc_task_mempool);
1174 }
1175 }
1176
rpc_async_release(struct work_struct * work)1177 static void rpc_async_release(struct work_struct *work)
1178 {
1179 unsigned int pflags = memalloc_nofs_save();
1180
1181 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1182 memalloc_nofs_restore(pflags);
1183 }
1184
rpc_release_resources_task(struct rpc_task * task)1185 static void rpc_release_resources_task(struct rpc_task *task)
1186 {
1187 xprt_release(task);
1188 if (task->tk_msg.rpc_cred) {
1189 put_cred(task->tk_msg.rpc_cred);
1190 task->tk_msg.rpc_cred = NULL;
1191 }
1192 rpc_task_release_client(task);
1193 }
1194
rpc_final_put_task(struct rpc_task * task,struct workqueue_struct * q)1195 static void rpc_final_put_task(struct rpc_task *task,
1196 struct workqueue_struct *q)
1197 {
1198 if (q != NULL) {
1199 INIT_WORK(&task->u.tk_work, rpc_async_release);
1200 queue_work(q, &task->u.tk_work);
1201 } else
1202 rpc_free_task(task);
1203 }
1204
rpc_do_put_task(struct rpc_task * task,struct workqueue_struct * q)1205 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1206 {
1207 if (atomic_dec_and_test(&task->tk_count)) {
1208 rpc_release_resources_task(task);
1209 rpc_final_put_task(task, q);
1210 }
1211 }
1212
rpc_put_task(struct rpc_task * task)1213 void rpc_put_task(struct rpc_task *task)
1214 {
1215 rpc_do_put_task(task, NULL);
1216 }
1217 EXPORT_SYMBOL_GPL(rpc_put_task);
1218
rpc_put_task_async(struct rpc_task * task)1219 void rpc_put_task_async(struct rpc_task *task)
1220 {
1221 rpc_do_put_task(task, task->tk_workqueue);
1222 }
1223 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1224
rpc_release_task(struct rpc_task * task)1225 static void rpc_release_task(struct rpc_task *task)
1226 {
1227 dprintk("RPC: %5u release task\n", task->tk_pid);
1228
1229 WARN_ON_ONCE(RPC_IS_QUEUED(task));
1230
1231 rpc_release_resources_task(task);
1232
1233 /*
1234 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1235 * so it should be safe to use task->tk_count as a test for whether
1236 * or not any other processes still hold references to our rpc_task.
1237 */
1238 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1239 /* Wake up anyone who may be waiting for task completion */
1240 if (!rpc_complete_task(task))
1241 return;
1242 } else {
1243 if (!atomic_dec_and_test(&task->tk_count))
1244 return;
1245 }
1246 rpc_final_put_task(task, task->tk_workqueue);
1247 }
1248
rpciod_up(void)1249 int rpciod_up(void)
1250 {
1251 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1252 }
1253
rpciod_down(void)1254 void rpciod_down(void)
1255 {
1256 module_put(THIS_MODULE);
1257 }
1258
1259 /*
1260 * Start up the rpciod workqueue.
1261 */
rpciod_start(void)1262 static int rpciod_start(void)
1263 {
1264 struct workqueue_struct *wq;
1265
1266 /*
1267 * Create the rpciod thread and wait for it to start.
1268 */
1269 dprintk("RPC: creating workqueue rpciod\n");
1270 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1271 if (!wq)
1272 goto out_failed;
1273 rpciod_workqueue = wq;
1274 /* Note: highpri because network receive is latency sensitive */
1275 wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1276 if (!wq)
1277 goto free_rpciod;
1278 xprtiod_workqueue = wq;
1279 return 1;
1280 free_rpciod:
1281 wq = rpciod_workqueue;
1282 rpciod_workqueue = NULL;
1283 destroy_workqueue(wq);
1284 out_failed:
1285 return 0;
1286 }
1287
rpciod_stop(void)1288 static void rpciod_stop(void)
1289 {
1290 struct workqueue_struct *wq = NULL;
1291
1292 if (rpciod_workqueue == NULL)
1293 return;
1294 dprintk("RPC: destroying workqueue rpciod\n");
1295
1296 wq = rpciod_workqueue;
1297 rpciod_workqueue = NULL;
1298 destroy_workqueue(wq);
1299 wq = xprtiod_workqueue;
1300 xprtiod_workqueue = NULL;
1301 destroy_workqueue(wq);
1302 }
1303
1304 void
rpc_destroy_mempool(void)1305 rpc_destroy_mempool(void)
1306 {
1307 rpciod_stop();
1308 mempool_destroy(rpc_buffer_mempool);
1309 mempool_destroy(rpc_task_mempool);
1310 kmem_cache_destroy(rpc_task_slabp);
1311 kmem_cache_destroy(rpc_buffer_slabp);
1312 rpc_destroy_wait_queue(&delay_queue);
1313 }
1314
1315 int
rpc_init_mempool(void)1316 rpc_init_mempool(void)
1317 {
1318 /*
1319 * The following is not strictly a mempool initialisation,
1320 * but there is no harm in doing it here
1321 */
1322 rpc_init_wait_queue(&delay_queue, "delayq");
1323 if (!rpciod_start())
1324 goto err_nomem;
1325
1326 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1327 sizeof(struct rpc_task),
1328 0, SLAB_HWCACHE_ALIGN,
1329 NULL);
1330 if (!rpc_task_slabp)
1331 goto err_nomem;
1332 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1333 RPC_BUFFER_MAXSIZE,
1334 0, SLAB_HWCACHE_ALIGN,
1335 NULL);
1336 if (!rpc_buffer_slabp)
1337 goto err_nomem;
1338 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1339 rpc_task_slabp);
1340 if (!rpc_task_mempool)
1341 goto err_nomem;
1342 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1343 rpc_buffer_slabp);
1344 if (!rpc_buffer_mempool)
1345 goto err_nomem;
1346 return 0;
1347 err_nomem:
1348 rpc_destroy_mempool();
1349 return -ENOMEM;
1350 }
1351