1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/mm.h>
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
89
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
92
93 #include <net/compat.h>
94 #include <net/wext.h>
95 #include <net/cls_cgroup.h>
96
97 #include <net/sock.h>
98 #include <linux/netfilter.h>
99
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/sockios.h>
104 #include <net/busy_poll.h>
105 #include <linux/errqueue.h>
106
107 #ifdef CONFIG_NET_RX_BUSY_POLL
108 unsigned int sysctl_net_busy_read __read_mostly;
109 unsigned int sysctl_net_busy_poll __read_mostly;
110 #endif
111
112 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
113 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
114 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
115
116 static int sock_close(struct inode *inode, struct file *file);
117 static __poll_t sock_poll(struct file *file,
118 struct poll_table_struct *wait);
119 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
120 #ifdef CONFIG_COMPAT
121 static long compat_sock_ioctl(struct file *file,
122 unsigned int cmd, unsigned long arg);
123 #endif
124 static int sock_fasync(int fd, struct file *filp, int on);
125 static ssize_t sock_sendpage(struct file *file, struct page *page,
126 int offset, size_t size, loff_t *ppos, int more);
127 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
128 struct pipe_inode_info *pipe, size_t len,
129 unsigned int flags);
130
131 /*
132 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
133 * in the operation structures but are done directly via the socketcall() multiplexor.
134 */
135
136 static const struct file_operations socket_file_ops = {
137 .owner = THIS_MODULE,
138 .llseek = no_llseek,
139 .read_iter = sock_read_iter,
140 .write_iter = sock_write_iter,
141 .poll = sock_poll,
142 .unlocked_ioctl = sock_ioctl,
143 #ifdef CONFIG_COMPAT
144 .compat_ioctl = compat_sock_ioctl,
145 #endif
146 .mmap = sock_mmap,
147 .release = sock_close,
148 .fasync = sock_fasync,
149 .sendpage = sock_sendpage,
150 .splice_write = generic_splice_sendpage,
151 .splice_read = sock_splice_read,
152 };
153
154 /*
155 * The protocol list. Each protocol is registered in here.
156 */
157
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
160
161 /*
162 * Support routines.
163 * Move socket addresses back and forth across the kernel/user
164 * divide and look after the messy bits.
165 */
166
167 /**
168 * move_addr_to_kernel - copy a socket address into kernel space
169 * @uaddr: Address in user space
170 * @kaddr: Address in kernel space
171 * @ulen: Length in user space
172 *
173 * The address is copied into kernel space. If the provided address is
174 * too long an error code of -EINVAL is returned. If the copy gives
175 * invalid addresses -EFAULT is returned. On a success 0 is returned.
176 */
177
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)178 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
179 {
180 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
181 return -EINVAL;
182 if (ulen == 0)
183 return 0;
184 if (copy_from_user(kaddr, uaddr, ulen))
185 return -EFAULT;
186 return audit_sockaddr(ulen, kaddr);
187 }
188
189 /**
190 * move_addr_to_user - copy an address to user space
191 * @kaddr: kernel space address
192 * @klen: length of address in kernel
193 * @uaddr: user space address
194 * @ulen: pointer to user length field
195 *
196 * The value pointed to by ulen on entry is the buffer length available.
197 * This is overwritten with the buffer space used. -EINVAL is returned
198 * if an overlong buffer is specified or a negative buffer size. -EFAULT
199 * is returned if either the buffer or the length field are not
200 * accessible.
201 * After copying the data up to the limit the user specifies, the true
202 * length of the data is written over the length limit the user
203 * specified. Zero is returned for a success.
204 */
205
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)206 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
207 void __user *uaddr, int __user *ulen)
208 {
209 int err;
210 int len;
211
212 BUG_ON(klen > sizeof(struct sockaddr_storage));
213 err = get_user(len, ulen);
214 if (err)
215 return err;
216 if (len > klen)
217 len = klen;
218 if (len < 0)
219 return -EINVAL;
220 if (len) {
221 if (audit_sockaddr(klen, kaddr))
222 return -ENOMEM;
223 if (copy_to_user(uaddr, kaddr, len))
224 return -EFAULT;
225 }
226 /*
227 * "fromlen shall refer to the value before truncation.."
228 * 1003.1g
229 */
230 return __put_user(klen, ulen);
231 }
232
233 static struct kmem_cache *sock_inode_cachep __ro_after_init;
234
sock_alloc_inode(struct super_block * sb)235 static struct inode *sock_alloc_inode(struct super_block *sb)
236 {
237 struct socket_alloc *ei;
238
239 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
240 if (!ei)
241 return NULL;
242 init_waitqueue_head(&ei->socket.wq.wait);
243 ei->socket.wq.fasync_list = NULL;
244 ei->socket.wq.flags = 0;
245
246 ei->socket.state = SS_UNCONNECTED;
247 ei->socket.flags = 0;
248 ei->socket.ops = NULL;
249 ei->socket.sk = NULL;
250 ei->socket.file = NULL;
251
252 return &ei->vfs_inode;
253 }
254
sock_free_inode(struct inode * inode)255 static void sock_free_inode(struct inode *inode)
256 {
257 struct socket_alloc *ei;
258
259 ei = container_of(inode, struct socket_alloc, vfs_inode);
260 kmem_cache_free(sock_inode_cachep, ei);
261 }
262
init_once(void * foo)263 static void init_once(void *foo)
264 {
265 struct socket_alloc *ei = (struct socket_alloc *)foo;
266
267 inode_init_once(&ei->vfs_inode);
268 }
269
init_inodecache(void)270 static void init_inodecache(void)
271 {
272 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
273 sizeof(struct socket_alloc),
274 0,
275 (SLAB_HWCACHE_ALIGN |
276 SLAB_RECLAIM_ACCOUNT |
277 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
278 init_once);
279 BUG_ON(sock_inode_cachep == NULL);
280 }
281
282 static const struct super_operations sockfs_ops = {
283 .alloc_inode = sock_alloc_inode,
284 .free_inode = sock_free_inode,
285 .statfs = simple_statfs,
286 };
287
288 /*
289 * sockfs_dname() is called from d_path().
290 */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)291 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
292 {
293 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
294 d_inode(dentry)->i_ino);
295 }
296
297 static const struct dentry_operations sockfs_dentry_operations = {
298 .d_dname = sockfs_dname,
299 };
300
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size,int flags)301 static int sockfs_xattr_get(const struct xattr_handler *handler,
302 struct dentry *dentry, struct inode *inode,
303 const char *suffix, void *value, size_t size,
304 int flags)
305 {
306 if (value) {
307 if (dentry->d_name.len + 1 > size)
308 return -ERANGE;
309 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
310 }
311 return dentry->d_name.len + 1;
312 }
313
314 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
315 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
316 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
317
318 static const struct xattr_handler sockfs_xattr_handler = {
319 .name = XATTR_NAME_SOCKPROTONAME,
320 .get = sockfs_xattr_get,
321 };
322
sockfs_security_xattr_set(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)323 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
324 struct dentry *dentry, struct inode *inode,
325 const char *suffix, const void *value,
326 size_t size, int flags)
327 {
328 /* Handled by LSM. */
329 return -EAGAIN;
330 }
331
332 static const struct xattr_handler sockfs_security_xattr_handler = {
333 .prefix = XATTR_SECURITY_PREFIX,
334 .set = sockfs_security_xattr_set,
335 };
336
337 static const struct xattr_handler *sockfs_xattr_handlers[] = {
338 &sockfs_xattr_handler,
339 &sockfs_security_xattr_handler,
340 NULL
341 };
342
sockfs_init_fs_context(struct fs_context * fc)343 static int sockfs_init_fs_context(struct fs_context *fc)
344 {
345 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
346 if (!ctx)
347 return -ENOMEM;
348 ctx->ops = &sockfs_ops;
349 ctx->dops = &sockfs_dentry_operations;
350 ctx->xattr = sockfs_xattr_handlers;
351 return 0;
352 }
353
354 static struct vfsmount *sock_mnt __read_mostly;
355
356 static struct file_system_type sock_fs_type = {
357 .name = "sockfs",
358 .init_fs_context = sockfs_init_fs_context,
359 .kill_sb = kill_anon_super,
360 };
361
362 /*
363 * Obtains the first available file descriptor and sets it up for use.
364 *
365 * These functions create file structures and maps them to fd space
366 * of the current process. On success it returns file descriptor
367 * and file struct implicitly stored in sock->file.
368 * Note that another thread may close file descriptor before we return
369 * from this function. We use the fact that now we do not refer
370 * to socket after mapping. If one day we will need it, this
371 * function will increment ref. count on file by 1.
372 *
373 * In any case returned fd MAY BE not valid!
374 * This race condition is unavoidable
375 * with shared fd spaces, we cannot solve it inside kernel,
376 * but we take care of internal coherence yet.
377 */
378
379 /**
380 * sock_alloc_file - Bind a &socket to a &file
381 * @sock: socket
382 * @flags: file status flags
383 * @dname: protocol name
384 *
385 * Returns the &file bound with @sock, implicitly storing it
386 * in sock->file. If dname is %NULL, sets to "".
387 * On failure the return is a ERR pointer (see linux/err.h).
388 * This function uses GFP_KERNEL internally.
389 */
390
sock_alloc_file(struct socket * sock,int flags,const char * dname)391 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
392 {
393 struct file *file;
394
395 if (!dname)
396 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
397
398 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
399 O_RDWR | (flags & O_NONBLOCK),
400 &socket_file_ops);
401 if (IS_ERR(file)) {
402 sock_release(sock);
403 return file;
404 }
405
406 sock->file = file;
407 file->private_data = sock;
408 return file;
409 }
410 EXPORT_SYMBOL(sock_alloc_file);
411
sock_map_fd(struct socket * sock,int flags)412 static int sock_map_fd(struct socket *sock, int flags)
413 {
414 struct file *newfile;
415 int fd = get_unused_fd_flags(flags);
416 if (unlikely(fd < 0)) {
417 sock_release(sock);
418 return fd;
419 }
420
421 newfile = sock_alloc_file(sock, flags, NULL);
422 if (!IS_ERR(newfile)) {
423 fd_install(fd, newfile);
424 return fd;
425 }
426
427 put_unused_fd(fd);
428 return PTR_ERR(newfile);
429 }
430
431 /**
432 * sock_from_file - Return the &socket bounded to @file.
433 * @file: file
434 * @err: pointer to an error code return
435 *
436 * On failure returns %NULL and assigns -ENOTSOCK to @err.
437 */
438
sock_from_file(struct file * file,int * err)439 struct socket *sock_from_file(struct file *file, int *err)
440 {
441 if (file->f_op == &socket_file_ops)
442 return file->private_data; /* set in sock_map_fd */
443
444 *err = -ENOTSOCK;
445 return NULL;
446 }
447 EXPORT_SYMBOL(sock_from_file);
448
449 /**
450 * sockfd_lookup - Go from a file number to its socket slot
451 * @fd: file handle
452 * @err: pointer to an error code return
453 *
454 * The file handle passed in is locked and the socket it is bound
455 * to is returned. If an error occurs the err pointer is overwritten
456 * with a negative errno code and NULL is returned. The function checks
457 * for both invalid handles and passing a handle which is not a socket.
458 *
459 * On a success the socket object pointer is returned.
460 */
461
sockfd_lookup(int fd,int * err)462 struct socket *sockfd_lookup(int fd, int *err)
463 {
464 struct file *file;
465 struct socket *sock;
466
467 file = fget(fd);
468 if (!file) {
469 *err = -EBADF;
470 return NULL;
471 }
472
473 sock = sock_from_file(file, err);
474 if (!sock)
475 fput(file);
476 return sock;
477 }
478 EXPORT_SYMBOL(sockfd_lookup);
479
sockfd_lookup_light(int fd,int * err,int * fput_needed)480 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
481 {
482 struct fd f = fdget(fd);
483 struct socket *sock;
484
485 *err = -EBADF;
486 if (f.file) {
487 sock = sock_from_file(f.file, err);
488 if (likely(sock)) {
489 *fput_needed = f.flags & FDPUT_FPUT;
490 return sock;
491 }
492 fdput(f);
493 }
494 return NULL;
495 }
496
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)497 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
498 size_t size)
499 {
500 ssize_t len;
501 ssize_t used = 0;
502
503 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
504 if (len < 0)
505 return len;
506 used += len;
507 if (buffer) {
508 if (size < used)
509 return -ERANGE;
510 buffer += len;
511 }
512
513 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
514 used += len;
515 if (buffer) {
516 if (size < used)
517 return -ERANGE;
518 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
519 buffer += len;
520 }
521
522 return used;
523 }
524
sockfs_setattr(struct dentry * dentry,struct iattr * iattr)525 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
526 {
527 int err = simple_setattr(dentry, iattr);
528
529 if (!err && (iattr->ia_valid & ATTR_UID)) {
530 struct socket *sock = SOCKET_I(d_inode(dentry));
531
532 if (sock->sk)
533 sock->sk->sk_uid = iattr->ia_uid;
534 else
535 err = -ENOENT;
536 }
537
538 return err;
539 }
540
541 static const struct inode_operations sockfs_inode_ops = {
542 .listxattr = sockfs_listxattr,
543 .setattr = sockfs_setattr,
544 };
545
546 /**
547 * sock_alloc - allocate a socket
548 *
549 * Allocate a new inode and socket object. The two are bound together
550 * and initialised. The socket is then returned. If we are out of inodes
551 * NULL is returned. This functions uses GFP_KERNEL internally.
552 */
553
sock_alloc(void)554 struct socket *sock_alloc(void)
555 {
556 struct inode *inode;
557 struct socket *sock;
558
559 inode = new_inode_pseudo(sock_mnt->mnt_sb);
560 if (!inode)
561 return NULL;
562
563 sock = SOCKET_I(inode);
564
565 inode->i_ino = get_next_ino();
566 inode->i_mode = S_IFSOCK | S_IRWXUGO;
567 inode->i_uid = current_fsuid();
568 inode->i_gid = current_fsgid();
569 inode->i_op = &sockfs_inode_ops;
570
571 return sock;
572 }
573 EXPORT_SYMBOL(sock_alloc);
574
575 /**
576 * sock_release - close a socket
577 * @sock: socket to close
578 *
579 * The socket is released from the protocol stack if it has a release
580 * callback, and the inode is then released if the socket is bound to
581 * an inode not a file.
582 */
583
__sock_release(struct socket * sock,struct inode * inode)584 static void __sock_release(struct socket *sock, struct inode *inode)
585 {
586 if (sock->ops) {
587 struct module *owner = sock->ops->owner;
588
589 if (inode)
590 inode_lock(inode);
591 sock->ops->release(sock);
592 sock->sk = NULL;
593 if (inode)
594 inode_unlock(inode);
595 sock->ops = NULL;
596 module_put(owner);
597 }
598
599 if (sock->wq.fasync_list)
600 pr_err("%s: fasync list not empty!\n", __func__);
601
602 if (!sock->file) {
603 iput(SOCK_INODE(sock));
604 return;
605 }
606 sock->file = NULL;
607 }
608
sock_release(struct socket * sock)609 void sock_release(struct socket *sock)
610 {
611 __sock_release(sock, NULL);
612 }
613 EXPORT_SYMBOL(sock_release);
614
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)615 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
616 {
617 u8 flags = *tx_flags;
618
619 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
620 flags |= SKBTX_HW_TSTAMP;
621
622 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
623 flags |= SKBTX_SW_TSTAMP;
624
625 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
626 flags |= SKBTX_SCHED_TSTAMP;
627
628 *tx_flags = flags;
629 }
630 EXPORT_SYMBOL(__sock_tx_timestamp);
631
632 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
633 size_t));
634 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
635 size_t));
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)636 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
637 {
638 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
639 inet_sendmsg, sock, msg,
640 msg_data_left(msg));
641 BUG_ON(ret == -EIOCBQUEUED);
642 return ret;
643 }
644
__sock_sendmsg(struct socket * sock,struct msghdr * msg)645 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
646 {
647 int err = security_socket_sendmsg(sock, msg,
648 msg_data_left(msg));
649
650 return err ?: sock_sendmsg_nosec(sock, msg);
651 }
652
653 /**
654 * sock_sendmsg - send a message through @sock
655 * @sock: socket
656 * @msg: message to send
657 *
658 * Sends @msg through @sock, passing through LSM.
659 * Returns the number of bytes sent, or an error code.
660 */
sock_sendmsg(struct socket * sock,struct msghdr * msg)661 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
662 {
663 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
664 struct sockaddr_storage address;
665 int save_len = msg->msg_namelen;
666 int ret;
667
668 if (msg->msg_name) {
669 memcpy(&address, msg->msg_name, msg->msg_namelen);
670 msg->msg_name = &address;
671 }
672
673 ret = __sock_sendmsg(sock, msg);
674 msg->msg_name = save_addr;
675 msg->msg_namelen = save_len;
676
677 return ret;
678 }
679 EXPORT_SYMBOL(sock_sendmsg);
680
681 /**
682 * kernel_sendmsg - send a message through @sock (kernel-space)
683 * @sock: socket
684 * @msg: message header
685 * @vec: kernel vec
686 * @num: vec array length
687 * @size: total message data size
688 *
689 * Builds the message data with @vec and sends it through @sock.
690 * Returns the number of bytes sent, or an error code.
691 */
692
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)693 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
694 struct kvec *vec, size_t num, size_t size)
695 {
696 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
697 return sock_sendmsg(sock, msg);
698 }
699 EXPORT_SYMBOL(kernel_sendmsg);
700
701 /**
702 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
703 * @sk: sock
704 * @msg: message header
705 * @vec: output s/g array
706 * @num: output s/g array length
707 * @size: total message data size
708 *
709 * Builds the message data with @vec and sends it through @sock.
710 * Returns the number of bytes sent, or an error code.
711 * Caller must hold @sk.
712 */
713
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)714 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
715 struct kvec *vec, size_t num, size_t size)
716 {
717 struct socket *sock = sk->sk_socket;
718
719 if (!sock->ops->sendmsg_locked)
720 return sock_no_sendmsg_locked(sk, msg, size);
721
722 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
723
724 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
725 }
726 EXPORT_SYMBOL(kernel_sendmsg_locked);
727
skb_is_err_queue(const struct sk_buff * skb)728 static bool skb_is_err_queue(const struct sk_buff *skb)
729 {
730 /* pkt_type of skbs enqueued on the error queue are set to
731 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
732 * in recvmsg, since skbs received on a local socket will never
733 * have a pkt_type of PACKET_OUTGOING.
734 */
735 return skb->pkt_type == PACKET_OUTGOING;
736 }
737
738 /* On transmit, software and hardware timestamps are returned independently.
739 * As the two skb clones share the hardware timestamp, which may be updated
740 * before the software timestamp is received, a hardware TX timestamp may be
741 * returned only if there is no software TX timestamp. Ignore false software
742 * timestamps, which may be made in the __sock_recv_timestamp() call when the
743 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
744 * hardware timestamp.
745 */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)746 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
747 {
748 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
749 }
750
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb)751 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
752 {
753 struct scm_ts_pktinfo ts_pktinfo;
754 struct net_device *orig_dev;
755
756 if (!skb_mac_header_was_set(skb))
757 return;
758
759 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
760
761 rcu_read_lock();
762 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
763 if (orig_dev)
764 ts_pktinfo.if_index = orig_dev->ifindex;
765 rcu_read_unlock();
766
767 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
768 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
769 sizeof(ts_pktinfo), &ts_pktinfo);
770 }
771
772 /*
773 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
774 */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)775 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
776 struct sk_buff *skb)
777 {
778 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
779 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
780 struct scm_timestamping_internal tss;
781
782 int empty = 1, false_tstamp = 0;
783 struct skb_shared_hwtstamps *shhwtstamps =
784 skb_hwtstamps(skb);
785
786 /* Race occurred between timestamp enabling and packet
787 receiving. Fill in the current time for now. */
788 if (need_software_tstamp && skb->tstamp == 0) {
789 __net_timestamp(skb);
790 false_tstamp = 1;
791 }
792
793 if (need_software_tstamp) {
794 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
795 if (new_tstamp) {
796 struct __kernel_sock_timeval tv;
797
798 skb_get_new_timestamp(skb, &tv);
799 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
800 sizeof(tv), &tv);
801 } else {
802 struct __kernel_old_timeval tv;
803
804 skb_get_timestamp(skb, &tv);
805 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
806 sizeof(tv), &tv);
807 }
808 } else {
809 if (new_tstamp) {
810 struct __kernel_timespec ts;
811
812 skb_get_new_timestampns(skb, &ts);
813 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
814 sizeof(ts), &ts);
815 } else {
816 struct timespec ts;
817
818 skb_get_timestampns(skb, &ts);
819 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
820 sizeof(ts), &ts);
821 }
822 }
823 }
824
825 memset(&tss, 0, sizeof(tss));
826 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
827 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
828 empty = 0;
829 if (shhwtstamps &&
830 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
831 !skb_is_swtx_tstamp(skb, false_tstamp) &&
832 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
833 empty = 0;
834 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
835 !skb_is_err_queue(skb))
836 put_ts_pktinfo(msg, skb);
837 }
838 if (!empty) {
839 if (sock_flag(sk, SOCK_TSTAMP_NEW))
840 put_cmsg_scm_timestamping64(msg, &tss);
841 else
842 put_cmsg_scm_timestamping(msg, &tss);
843
844 if (skb_is_err_queue(skb) && skb->len &&
845 SKB_EXT_ERR(skb)->opt_stats)
846 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
847 skb->len, skb->data);
848 }
849 }
850 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
851
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)852 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
853 struct sk_buff *skb)
854 {
855 int ack;
856
857 if (!sock_flag(sk, SOCK_WIFI_STATUS))
858 return;
859 if (!skb->wifi_acked_valid)
860 return;
861
862 ack = skb->wifi_acked;
863
864 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
865 }
866 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
867
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)868 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
869 struct sk_buff *skb)
870 {
871 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
872 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
873 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
874 }
875
__sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)876 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
877 struct sk_buff *skb)
878 {
879 sock_recv_timestamp(msg, sk, skb);
880 sock_recv_drops(msg, sk, skb);
881 }
882 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
883
884 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
885 size_t, int));
886 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
887 size_t, int));
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)888 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
889 int flags)
890 {
891 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
892 inet_recvmsg, sock, msg, msg_data_left(msg),
893 flags);
894 }
895
896 /**
897 * sock_recvmsg - receive a message from @sock
898 * @sock: socket
899 * @msg: message to receive
900 * @flags: message flags
901 *
902 * Receives @msg from @sock, passing through LSM. Returns the total number
903 * of bytes received, or an error.
904 */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)905 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
906 {
907 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
908
909 return err ?: sock_recvmsg_nosec(sock, msg, flags);
910 }
911 EXPORT_SYMBOL(sock_recvmsg);
912
913 /**
914 * kernel_recvmsg - Receive a message from a socket (kernel space)
915 * @sock: The socket to receive the message from
916 * @msg: Received message
917 * @vec: Input s/g array for message data
918 * @num: Size of input s/g array
919 * @size: Number of bytes to read
920 * @flags: Message flags (MSG_DONTWAIT, etc...)
921 *
922 * On return the msg structure contains the scatter/gather array passed in the
923 * vec argument. The array is modified so that it consists of the unfilled
924 * portion of the original array.
925 *
926 * The returned value is the total number of bytes received, or an error.
927 */
928
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)929 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
930 struct kvec *vec, size_t num, size_t size, int flags)
931 {
932 mm_segment_t oldfs = get_fs();
933 int result;
934
935 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
936 set_fs(KERNEL_DS);
937 result = sock_recvmsg(sock, msg, flags);
938 set_fs(oldfs);
939 return result;
940 }
941 EXPORT_SYMBOL(kernel_recvmsg);
942
sock_sendpage(struct file * file,struct page * page,int offset,size_t size,loff_t * ppos,int more)943 static ssize_t sock_sendpage(struct file *file, struct page *page,
944 int offset, size_t size, loff_t *ppos, int more)
945 {
946 struct socket *sock;
947 int flags;
948
949 sock = file->private_data;
950
951 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
952 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
953 flags |= more;
954
955 return kernel_sendpage(sock, page, offset, size, flags);
956 }
957
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)958 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
959 struct pipe_inode_info *pipe, size_t len,
960 unsigned int flags)
961 {
962 struct socket *sock = file->private_data;
963
964 if (unlikely(!sock->ops->splice_read))
965 return generic_file_splice_read(file, ppos, pipe, len, flags);
966
967 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
968 }
969
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)970 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
971 {
972 struct file *file = iocb->ki_filp;
973 struct socket *sock = file->private_data;
974 struct msghdr msg = {.msg_iter = *to,
975 .msg_iocb = iocb};
976 ssize_t res;
977
978 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
979 msg.msg_flags = MSG_DONTWAIT;
980
981 if (iocb->ki_pos != 0)
982 return -ESPIPE;
983
984 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
985 return 0;
986
987 res = sock_recvmsg(sock, &msg, msg.msg_flags);
988 *to = msg.msg_iter;
989 return res;
990 }
991
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)992 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
993 {
994 struct file *file = iocb->ki_filp;
995 struct socket *sock = file->private_data;
996 struct msghdr msg = {.msg_iter = *from,
997 .msg_iocb = iocb};
998 ssize_t res;
999
1000 if (iocb->ki_pos != 0)
1001 return -ESPIPE;
1002
1003 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1004 msg.msg_flags = MSG_DONTWAIT;
1005
1006 if (sock->type == SOCK_SEQPACKET)
1007 msg.msg_flags |= MSG_EOR;
1008
1009 res = __sock_sendmsg(sock, &msg);
1010 *from = msg.msg_iter;
1011 return res;
1012 }
1013
1014 /*
1015 * Atomic setting of ioctl hooks to avoid race
1016 * with module unload.
1017 */
1018
1019 static DEFINE_MUTEX(br_ioctl_mutex);
1020 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1021
brioctl_set(int (* hook)(struct net *,unsigned int,void __user *))1022 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1023 {
1024 mutex_lock(&br_ioctl_mutex);
1025 br_ioctl_hook = hook;
1026 mutex_unlock(&br_ioctl_mutex);
1027 }
1028 EXPORT_SYMBOL(brioctl_set);
1029
1030 static DEFINE_MUTEX(vlan_ioctl_mutex);
1031 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1032
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1033 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1034 {
1035 mutex_lock(&vlan_ioctl_mutex);
1036 vlan_ioctl_hook = hook;
1037 mutex_unlock(&vlan_ioctl_mutex);
1038 }
1039 EXPORT_SYMBOL(vlan_ioctl_set);
1040
1041 static DEFINE_MUTEX(dlci_ioctl_mutex);
1042 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1043
dlci_ioctl_set(int (* hook)(unsigned int,void __user *))1044 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1045 {
1046 mutex_lock(&dlci_ioctl_mutex);
1047 dlci_ioctl_hook = hook;
1048 mutex_unlock(&dlci_ioctl_mutex);
1049 }
1050 EXPORT_SYMBOL(dlci_ioctl_set);
1051
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1052 static long sock_do_ioctl(struct net *net, struct socket *sock,
1053 unsigned int cmd, unsigned long arg)
1054 {
1055 int err;
1056 void __user *argp = (void __user *)arg;
1057
1058 err = sock->ops->ioctl(sock, cmd, arg);
1059
1060 /*
1061 * If this ioctl is unknown try to hand it down
1062 * to the NIC driver.
1063 */
1064 if (err != -ENOIOCTLCMD)
1065 return err;
1066
1067 if (cmd == SIOCGIFCONF) {
1068 struct ifconf ifc;
1069 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1070 return -EFAULT;
1071 rtnl_lock();
1072 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1073 rtnl_unlock();
1074 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1075 err = -EFAULT;
1076 } else if (is_socket_ioctl_cmd(cmd)) {
1077 struct ifreq ifr;
1078 bool need_copyout;
1079 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1080 return -EFAULT;
1081 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1082 if (!err && need_copyout)
1083 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1084 return -EFAULT;
1085 } else {
1086 err = -ENOTTY;
1087 }
1088 return err;
1089 }
1090
1091 /*
1092 * With an ioctl, arg may well be a user mode pointer, but we don't know
1093 * what to do with it - that's up to the protocol still.
1094 */
1095
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1096 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1097 {
1098 struct socket *sock;
1099 struct sock *sk;
1100 void __user *argp = (void __user *)arg;
1101 int pid, err;
1102 struct net *net;
1103
1104 sock = file->private_data;
1105 sk = sock->sk;
1106 net = sock_net(sk);
1107 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1108 struct ifreq ifr;
1109 bool need_copyout;
1110 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1111 return -EFAULT;
1112 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1113 if (!err && need_copyout)
1114 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1115 return -EFAULT;
1116 } else
1117 #ifdef CONFIG_WEXT_CORE
1118 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1119 err = wext_handle_ioctl(net, cmd, argp);
1120 } else
1121 #endif
1122 switch (cmd) {
1123 case FIOSETOWN:
1124 case SIOCSPGRP:
1125 err = -EFAULT;
1126 if (get_user(pid, (int __user *)argp))
1127 break;
1128 err = f_setown(sock->file, pid, 1);
1129 break;
1130 case FIOGETOWN:
1131 case SIOCGPGRP:
1132 err = put_user(f_getown(sock->file),
1133 (int __user *)argp);
1134 break;
1135 case SIOCGIFBR:
1136 case SIOCSIFBR:
1137 case SIOCBRADDBR:
1138 case SIOCBRDELBR:
1139 err = -ENOPKG;
1140 if (!br_ioctl_hook)
1141 request_module("bridge");
1142
1143 mutex_lock(&br_ioctl_mutex);
1144 if (br_ioctl_hook)
1145 err = br_ioctl_hook(net, cmd, argp);
1146 mutex_unlock(&br_ioctl_mutex);
1147 break;
1148 case SIOCGIFVLAN:
1149 case SIOCSIFVLAN:
1150 err = -ENOPKG;
1151 if (!vlan_ioctl_hook)
1152 request_module("8021q");
1153
1154 mutex_lock(&vlan_ioctl_mutex);
1155 if (vlan_ioctl_hook)
1156 err = vlan_ioctl_hook(net, argp);
1157 mutex_unlock(&vlan_ioctl_mutex);
1158 break;
1159 case SIOCADDDLCI:
1160 case SIOCDELDLCI:
1161 err = -ENOPKG;
1162 if (!dlci_ioctl_hook)
1163 request_module("dlci");
1164
1165 mutex_lock(&dlci_ioctl_mutex);
1166 if (dlci_ioctl_hook)
1167 err = dlci_ioctl_hook(cmd, argp);
1168 mutex_unlock(&dlci_ioctl_mutex);
1169 break;
1170 case SIOCGSKNS:
1171 err = -EPERM;
1172 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1173 break;
1174
1175 err = open_related_ns(&net->ns, get_net_ns);
1176 break;
1177 case SIOCGSTAMP_OLD:
1178 case SIOCGSTAMPNS_OLD:
1179 if (!sock->ops->gettstamp) {
1180 err = -ENOIOCTLCMD;
1181 break;
1182 }
1183 err = sock->ops->gettstamp(sock, argp,
1184 cmd == SIOCGSTAMP_OLD,
1185 !IS_ENABLED(CONFIG_64BIT));
1186 break;
1187 case SIOCGSTAMP_NEW:
1188 case SIOCGSTAMPNS_NEW:
1189 if (!sock->ops->gettstamp) {
1190 err = -ENOIOCTLCMD;
1191 break;
1192 }
1193 err = sock->ops->gettstamp(sock, argp,
1194 cmd == SIOCGSTAMP_NEW,
1195 false);
1196 break;
1197 default:
1198 err = sock_do_ioctl(net, sock, cmd, arg);
1199 break;
1200 }
1201 return err;
1202 }
1203
1204 /**
1205 * sock_create_lite - creates a socket
1206 * @family: protocol family (AF_INET, ...)
1207 * @type: communication type (SOCK_STREAM, ...)
1208 * @protocol: protocol (0, ...)
1209 * @res: new socket
1210 *
1211 * Creates a new socket and assigns it to @res, passing through LSM.
1212 * The new socket initialization is not complete, see kernel_accept().
1213 * Returns 0 or an error. On failure @res is set to %NULL.
1214 * This function internally uses GFP_KERNEL.
1215 */
1216
sock_create_lite(int family,int type,int protocol,struct socket ** res)1217 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1218 {
1219 int err;
1220 struct socket *sock = NULL;
1221
1222 err = security_socket_create(family, type, protocol, 1);
1223 if (err)
1224 goto out;
1225
1226 sock = sock_alloc();
1227 if (!sock) {
1228 err = -ENOMEM;
1229 goto out;
1230 }
1231
1232 sock->type = type;
1233 err = security_socket_post_create(sock, family, type, protocol, 1);
1234 if (err)
1235 goto out_release;
1236
1237 out:
1238 *res = sock;
1239 return err;
1240 out_release:
1241 sock_release(sock);
1242 sock = NULL;
1243 goto out;
1244 }
1245 EXPORT_SYMBOL(sock_create_lite);
1246
1247 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1248 static __poll_t sock_poll(struct file *file, poll_table *wait)
1249 {
1250 struct socket *sock = file->private_data;
1251 __poll_t events = poll_requested_events(wait), flag = 0;
1252
1253 if (!sock->ops->poll)
1254 return 0;
1255
1256 if (sk_can_busy_loop(sock->sk)) {
1257 /* poll once if requested by the syscall */
1258 if (events & POLL_BUSY_LOOP)
1259 sk_busy_loop(sock->sk, 1);
1260
1261 /* if this socket can poll_ll, tell the system call */
1262 flag = POLL_BUSY_LOOP;
1263 }
1264
1265 return sock->ops->poll(file, sock, wait) | flag;
1266 }
1267
sock_mmap(struct file * file,struct vm_area_struct * vma)1268 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1269 {
1270 struct socket *sock = file->private_data;
1271
1272 return sock->ops->mmap(file, sock, vma);
1273 }
1274
sock_close(struct inode * inode,struct file * filp)1275 static int sock_close(struct inode *inode, struct file *filp)
1276 {
1277 __sock_release(SOCKET_I(inode), inode);
1278 return 0;
1279 }
1280
1281 /*
1282 * Update the socket async list
1283 *
1284 * Fasync_list locking strategy.
1285 *
1286 * 1. fasync_list is modified only under process context socket lock
1287 * i.e. under semaphore.
1288 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1289 * or under socket lock
1290 */
1291
sock_fasync(int fd,struct file * filp,int on)1292 static int sock_fasync(int fd, struct file *filp, int on)
1293 {
1294 struct socket *sock = filp->private_data;
1295 struct sock *sk = sock->sk;
1296 struct socket_wq *wq = &sock->wq;
1297
1298 if (sk == NULL)
1299 return -EINVAL;
1300
1301 lock_sock(sk);
1302 fasync_helper(fd, filp, on, &wq->fasync_list);
1303
1304 if (!wq->fasync_list)
1305 sock_reset_flag(sk, SOCK_FASYNC);
1306 else
1307 sock_set_flag(sk, SOCK_FASYNC);
1308
1309 release_sock(sk);
1310 return 0;
1311 }
1312
1313 /* This function may be called only under rcu_lock */
1314
sock_wake_async(struct socket_wq * wq,int how,int band)1315 int sock_wake_async(struct socket_wq *wq, int how, int band)
1316 {
1317 if (!wq || !wq->fasync_list)
1318 return -1;
1319
1320 switch (how) {
1321 case SOCK_WAKE_WAITD:
1322 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1323 break;
1324 goto call_kill;
1325 case SOCK_WAKE_SPACE:
1326 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1327 break;
1328 /* fall through */
1329 case SOCK_WAKE_IO:
1330 call_kill:
1331 kill_fasync(&wq->fasync_list, SIGIO, band);
1332 break;
1333 case SOCK_WAKE_URG:
1334 kill_fasync(&wq->fasync_list, SIGURG, band);
1335 }
1336
1337 return 0;
1338 }
1339 EXPORT_SYMBOL(sock_wake_async);
1340
1341 /**
1342 * __sock_create - creates a socket
1343 * @net: net namespace
1344 * @family: protocol family (AF_INET, ...)
1345 * @type: communication type (SOCK_STREAM, ...)
1346 * @protocol: protocol (0, ...)
1347 * @res: new socket
1348 * @kern: boolean for kernel space sockets
1349 *
1350 * Creates a new socket and assigns it to @res, passing through LSM.
1351 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1352 * be set to true if the socket resides in kernel space.
1353 * This function internally uses GFP_KERNEL.
1354 */
1355
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1356 int __sock_create(struct net *net, int family, int type, int protocol,
1357 struct socket **res, int kern)
1358 {
1359 int err;
1360 struct socket *sock;
1361 const struct net_proto_family *pf;
1362
1363 /*
1364 * Check protocol is in range
1365 */
1366 if (family < 0 || family >= NPROTO)
1367 return -EAFNOSUPPORT;
1368 if (type < 0 || type >= SOCK_MAX)
1369 return -EINVAL;
1370
1371 /* Compatibility.
1372
1373 This uglymoron is moved from INET layer to here to avoid
1374 deadlock in module load.
1375 */
1376 if (family == PF_INET && type == SOCK_PACKET) {
1377 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1378 current->comm);
1379 family = PF_PACKET;
1380 }
1381
1382 err = security_socket_create(family, type, protocol, kern);
1383 if (err)
1384 return err;
1385
1386 /*
1387 * Allocate the socket and allow the family to set things up. if
1388 * the protocol is 0, the family is instructed to select an appropriate
1389 * default.
1390 */
1391 sock = sock_alloc();
1392 if (!sock) {
1393 net_warn_ratelimited("socket: no more sockets\n");
1394 return -ENFILE; /* Not exactly a match, but its the
1395 closest posix thing */
1396 }
1397
1398 sock->type = type;
1399
1400 #ifdef CONFIG_MODULES
1401 /* Attempt to load a protocol module if the find failed.
1402 *
1403 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1404 * requested real, full-featured networking support upon configuration.
1405 * Otherwise module support will break!
1406 */
1407 if (rcu_access_pointer(net_families[family]) == NULL)
1408 request_module("net-pf-%d", family);
1409 #endif
1410
1411 rcu_read_lock();
1412 pf = rcu_dereference(net_families[family]);
1413 err = -EAFNOSUPPORT;
1414 if (!pf)
1415 goto out_release;
1416
1417 /*
1418 * We will call the ->create function, that possibly is in a loadable
1419 * module, so we have to bump that loadable module refcnt first.
1420 */
1421 if (!try_module_get(pf->owner))
1422 goto out_release;
1423
1424 /* Now protected by module ref count */
1425 rcu_read_unlock();
1426
1427 err = pf->create(net, sock, protocol, kern);
1428 if (err < 0)
1429 goto out_module_put;
1430
1431 /*
1432 * Now to bump the refcnt of the [loadable] module that owns this
1433 * socket at sock_release time we decrement its refcnt.
1434 */
1435 if (!try_module_get(sock->ops->owner))
1436 goto out_module_busy;
1437
1438 /*
1439 * Now that we're done with the ->create function, the [loadable]
1440 * module can have its refcnt decremented
1441 */
1442 module_put(pf->owner);
1443 err = security_socket_post_create(sock, family, type, protocol, kern);
1444 if (err)
1445 goto out_sock_release;
1446 *res = sock;
1447
1448 return 0;
1449
1450 out_module_busy:
1451 err = -EAFNOSUPPORT;
1452 out_module_put:
1453 sock->ops = NULL;
1454 module_put(pf->owner);
1455 out_sock_release:
1456 sock_release(sock);
1457 return err;
1458
1459 out_release:
1460 rcu_read_unlock();
1461 goto out_sock_release;
1462 }
1463 EXPORT_SYMBOL(__sock_create);
1464
1465 /**
1466 * sock_create - creates a socket
1467 * @family: protocol family (AF_INET, ...)
1468 * @type: communication type (SOCK_STREAM, ...)
1469 * @protocol: protocol (0, ...)
1470 * @res: new socket
1471 *
1472 * A wrapper around __sock_create().
1473 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1474 */
1475
sock_create(int family,int type,int protocol,struct socket ** res)1476 int sock_create(int family, int type, int protocol, struct socket **res)
1477 {
1478 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1479 }
1480 EXPORT_SYMBOL(sock_create);
1481
1482 /**
1483 * sock_create_kern - creates a socket (kernel space)
1484 * @net: net namespace
1485 * @family: protocol family (AF_INET, ...)
1486 * @type: communication type (SOCK_STREAM, ...)
1487 * @protocol: protocol (0, ...)
1488 * @res: new socket
1489 *
1490 * A wrapper around __sock_create().
1491 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1492 */
1493
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1494 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1495 {
1496 return __sock_create(net, family, type, protocol, res, 1);
1497 }
1498 EXPORT_SYMBOL(sock_create_kern);
1499
__sys_socket(int family,int type,int protocol)1500 int __sys_socket(int family, int type, int protocol)
1501 {
1502 int retval;
1503 struct socket *sock;
1504 int flags;
1505
1506 /* Check the SOCK_* constants for consistency. */
1507 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1508 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1509 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1510 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1511
1512 flags = type & ~SOCK_TYPE_MASK;
1513 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1514 return -EINVAL;
1515 type &= SOCK_TYPE_MASK;
1516
1517 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1518 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1519
1520 retval = sock_create(family, type, protocol, &sock);
1521 if (retval < 0)
1522 return retval;
1523
1524 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1525 }
1526
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1527 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1528 {
1529 return __sys_socket(family, type, protocol);
1530 }
1531
1532 /*
1533 * Create a pair of connected sockets.
1534 */
1535
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1536 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1537 {
1538 struct socket *sock1, *sock2;
1539 int fd1, fd2, err;
1540 struct file *newfile1, *newfile2;
1541 int flags;
1542
1543 flags = type & ~SOCK_TYPE_MASK;
1544 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1545 return -EINVAL;
1546 type &= SOCK_TYPE_MASK;
1547
1548 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1549 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1550
1551 /*
1552 * reserve descriptors and make sure we won't fail
1553 * to return them to userland.
1554 */
1555 fd1 = get_unused_fd_flags(flags);
1556 if (unlikely(fd1 < 0))
1557 return fd1;
1558
1559 fd2 = get_unused_fd_flags(flags);
1560 if (unlikely(fd2 < 0)) {
1561 put_unused_fd(fd1);
1562 return fd2;
1563 }
1564
1565 err = put_user(fd1, &usockvec[0]);
1566 if (err)
1567 goto out;
1568
1569 err = put_user(fd2, &usockvec[1]);
1570 if (err)
1571 goto out;
1572
1573 /*
1574 * Obtain the first socket and check if the underlying protocol
1575 * supports the socketpair call.
1576 */
1577
1578 err = sock_create(family, type, protocol, &sock1);
1579 if (unlikely(err < 0))
1580 goto out;
1581
1582 err = sock_create(family, type, protocol, &sock2);
1583 if (unlikely(err < 0)) {
1584 sock_release(sock1);
1585 goto out;
1586 }
1587
1588 err = security_socket_socketpair(sock1, sock2);
1589 if (unlikely(err)) {
1590 sock_release(sock2);
1591 sock_release(sock1);
1592 goto out;
1593 }
1594
1595 err = sock1->ops->socketpair(sock1, sock2);
1596 if (unlikely(err < 0)) {
1597 sock_release(sock2);
1598 sock_release(sock1);
1599 goto out;
1600 }
1601
1602 newfile1 = sock_alloc_file(sock1, flags, NULL);
1603 if (IS_ERR(newfile1)) {
1604 err = PTR_ERR(newfile1);
1605 sock_release(sock2);
1606 goto out;
1607 }
1608
1609 newfile2 = sock_alloc_file(sock2, flags, NULL);
1610 if (IS_ERR(newfile2)) {
1611 err = PTR_ERR(newfile2);
1612 fput(newfile1);
1613 goto out;
1614 }
1615
1616 audit_fd_pair(fd1, fd2);
1617
1618 fd_install(fd1, newfile1);
1619 fd_install(fd2, newfile2);
1620 return 0;
1621
1622 out:
1623 put_unused_fd(fd2);
1624 put_unused_fd(fd1);
1625 return err;
1626 }
1627
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1628 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1629 int __user *, usockvec)
1630 {
1631 return __sys_socketpair(family, type, protocol, usockvec);
1632 }
1633
1634 /*
1635 * Bind a name to a socket. Nothing much to do here since it's
1636 * the protocol's responsibility to handle the local address.
1637 *
1638 * We move the socket address to kernel space before we call
1639 * the protocol layer (having also checked the address is ok).
1640 */
1641
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1642 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1643 {
1644 struct socket *sock;
1645 struct sockaddr_storage address;
1646 int err, fput_needed;
1647
1648 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1649 if (sock) {
1650 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1651 if (!err) {
1652 err = security_socket_bind(sock,
1653 (struct sockaddr *)&address,
1654 addrlen);
1655 if (!err)
1656 err = sock->ops->bind(sock,
1657 (struct sockaddr *)
1658 &address, addrlen);
1659 }
1660 fput_light(sock->file, fput_needed);
1661 }
1662 return err;
1663 }
1664
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1665 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1666 {
1667 return __sys_bind(fd, umyaddr, addrlen);
1668 }
1669
1670 /*
1671 * Perform a listen. Basically, we allow the protocol to do anything
1672 * necessary for a listen, and if that works, we mark the socket as
1673 * ready for listening.
1674 */
1675
__sys_listen(int fd,int backlog)1676 int __sys_listen(int fd, int backlog)
1677 {
1678 struct socket *sock;
1679 int err, fput_needed;
1680 int somaxconn;
1681
1682 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1683 if (sock) {
1684 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1685 if ((unsigned int)backlog > somaxconn)
1686 backlog = somaxconn;
1687
1688 err = security_socket_listen(sock, backlog);
1689 if (!err)
1690 err = sock->ops->listen(sock, backlog);
1691
1692 fput_light(sock->file, fput_needed);
1693 }
1694 return err;
1695 }
1696
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1697 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1698 {
1699 return __sys_listen(fd, backlog);
1700 }
1701
1702 /*
1703 * For accept, we attempt to create a new socket, set up the link
1704 * with the client, wake up the client, then return the new
1705 * connected fd. We collect the address of the connector in kernel
1706 * space and move it to user at the very end. This is unclean because
1707 * we open the socket then return an error.
1708 *
1709 * 1003.1g adds the ability to recvmsg() to query connection pending
1710 * status to recvmsg. We need to add that support in a way thats
1711 * clean when we restructure accept also.
1712 */
1713
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1714 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1715 int __user *upeer_addrlen, int flags)
1716 {
1717 struct socket *sock, *newsock;
1718 struct file *newfile;
1719 int err, len, newfd, fput_needed;
1720 struct sockaddr_storage address;
1721
1722 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1723 return -EINVAL;
1724
1725 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1726 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1727
1728 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1729 if (!sock)
1730 goto out;
1731
1732 err = -ENFILE;
1733 newsock = sock_alloc();
1734 if (!newsock)
1735 goto out_put;
1736
1737 newsock->type = sock->type;
1738 newsock->ops = sock->ops;
1739
1740 /*
1741 * We don't need try_module_get here, as the listening socket (sock)
1742 * has the protocol module (sock->ops->owner) held.
1743 */
1744 __module_get(newsock->ops->owner);
1745
1746 newfd = get_unused_fd_flags(flags);
1747 if (unlikely(newfd < 0)) {
1748 err = newfd;
1749 sock_release(newsock);
1750 goto out_put;
1751 }
1752 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1753 if (IS_ERR(newfile)) {
1754 err = PTR_ERR(newfile);
1755 put_unused_fd(newfd);
1756 goto out_put;
1757 }
1758
1759 err = security_socket_accept(sock, newsock);
1760 if (err)
1761 goto out_fd;
1762
1763 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1764 if (err < 0)
1765 goto out_fd;
1766
1767 if (upeer_sockaddr) {
1768 len = newsock->ops->getname(newsock,
1769 (struct sockaddr *)&address, 2);
1770 if (len < 0) {
1771 err = -ECONNABORTED;
1772 goto out_fd;
1773 }
1774 err = move_addr_to_user(&address,
1775 len, upeer_sockaddr, upeer_addrlen);
1776 if (err < 0)
1777 goto out_fd;
1778 }
1779
1780 /* File flags are not inherited via accept() unlike another OSes. */
1781
1782 fd_install(newfd, newfile);
1783 err = newfd;
1784
1785 out_put:
1786 fput_light(sock->file, fput_needed);
1787 out:
1788 return err;
1789 out_fd:
1790 fput(newfile);
1791 put_unused_fd(newfd);
1792 goto out_put;
1793 }
1794
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)1795 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1796 int __user *, upeer_addrlen, int, flags)
1797 {
1798 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1799 }
1800
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)1801 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1802 int __user *, upeer_addrlen)
1803 {
1804 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1805 }
1806
1807 /*
1808 * Attempt to connect to a socket with the server address. The address
1809 * is in user space so we verify it is OK and move it to kernel space.
1810 *
1811 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1812 * break bindings
1813 *
1814 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1815 * other SEQPACKET protocols that take time to connect() as it doesn't
1816 * include the -EINPROGRESS status for such sockets.
1817 */
1818
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)1819 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1820 {
1821 struct socket *sock;
1822 struct sockaddr_storage address;
1823 int err, fput_needed;
1824
1825 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1826 if (!sock)
1827 goto out;
1828 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1829 if (err < 0)
1830 goto out_put;
1831
1832 err =
1833 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1834 if (err)
1835 goto out_put;
1836
1837 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1838 sock->file->f_flags);
1839 out_put:
1840 fput_light(sock->file, fput_needed);
1841 out:
1842 return err;
1843 }
1844
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)1845 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1846 int, addrlen)
1847 {
1848 return __sys_connect(fd, uservaddr, addrlen);
1849 }
1850
1851 /*
1852 * Get the local address ('name') of a socket object. Move the obtained
1853 * name to user space.
1854 */
1855
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1856 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1857 int __user *usockaddr_len)
1858 {
1859 struct socket *sock;
1860 struct sockaddr_storage address;
1861 int err, fput_needed;
1862
1863 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1864 if (!sock)
1865 goto out;
1866
1867 err = security_socket_getsockname(sock);
1868 if (err)
1869 goto out_put;
1870
1871 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1872 if (err < 0)
1873 goto out_put;
1874 /* "err" is actually length in this case */
1875 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1876
1877 out_put:
1878 fput_light(sock->file, fput_needed);
1879 out:
1880 return err;
1881 }
1882
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1883 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1884 int __user *, usockaddr_len)
1885 {
1886 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1887 }
1888
1889 /*
1890 * Get the remote address ('name') of a socket object. Move the obtained
1891 * name to user space.
1892 */
1893
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)1894 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1895 int __user *usockaddr_len)
1896 {
1897 struct socket *sock;
1898 struct sockaddr_storage address;
1899 int err, fput_needed;
1900
1901 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1902 if (sock != NULL) {
1903 err = security_socket_getpeername(sock);
1904 if (err) {
1905 fput_light(sock->file, fput_needed);
1906 return err;
1907 }
1908
1909 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1910 if (err >= 0)
1911 /* "err" is actually length in this case */
1912 err = move_addr_to_user(&address, err, usockaddr,
1913 usockaddr_len);
1914 fput_light(sock->file, fput_needed);
1915 }
1916 return err;
1917 }
1918
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)1919 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1920 int __user *, usockaddr_len)
1921 {
1922 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1923 }
1924
1925 /*
1926 * Send a datagram to a given address. We move the address into kernel
1927 * space and check the user space data area is readable before invoking
1928 * the protocol.
1929 */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)1930 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1931 struct sockaddr __user *addr, int addr_len)
1932 {
1933 struct socket *sock;
1934 struct sockaddr_storage address;
1935 int err;
1936 struct msghdr msg;
1937 struct iovec iov;
1938 int fput_needed;
1939
1940 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1941 if (unlikely(err))
1942 return err;
1943 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1944 if (!sock)
1945 goto out;
1946
1947 msg.msg_name = NULL;
1948 msg.msg_control = NULL;
1949 msg.msg_controllen = 0;
1950 msg.msg_namelen = 0;
1951 if (addr) {
1952 err = move_addr_to_kernel(addr, addr_len, &address);
1953 if (err < 0)
1954 goto out_put;
1955 msg.msg_name = (struct sockaddr *)&address;
1956 msg.msg_namelen = addr_len;
1957 }
1958 if (sock->file->f_flags & O_NONBLOCK)
1959 flags |= MSG_DONTWAIT;
1960 msg.msg_flags = flags;
1961 err = __sock_sendmsg(sock, &msg);
1962
1963 out_put:
1964 fput_light(sock->file, fput_needed);
1965 out:
1966 return err;
1967 }
1968
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)1969 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1970 unsigned int, flags, struct sockaddr __user *, addr,
1971 int, addr_len)
1972 {
1973 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1974 }
1975
1976 /*
1977 * Send a datagram down a socket.
1978 */
1979
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)1980 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1981 unsigned int, flags)
1982 {
1983 return __sys_sendto(fd, buff, len, flags, NULL, 0);
1984 }
1985
1986 /*
1987 * Receive a frame from the socket and optionally record the address of the
1988 * sender. We verify the buffers are writable and if needed move the
1989 * sender address from kernel to user space.
1990 */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)1991 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1992 struct sockaddr __user *addr, int __user *addr_len)
1993 {
1994 struct socket *sock;
1995 struct iovec iov;
1996 struct msghdr msg;
1997 struct sockaddr_storage address;
1998 int err, err2;
1999 int fput_needed;
2000
2001 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2002 if (unlikely(err))
2003 return err;
2004 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2005 if (!sock)
2006 goto out;
2007
2008 msg.msg_control = NULL;
2009 msg.msg_controllen = 0;
2010 /* Save some cycles and don't copy the address if not needed */
2011 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2012 /* We assume all kernel code knows the size of sockaddr_storage */
2013 msg.msg_namelen = 0;
2014 msg.msg_iocb = NULL;
2015 msg.msg_flags = 0;
2016 if (sock->file->f_flags & O_NONBLOCK)
2017 flags |= MSG_DONTWAIT;
2018 err = sock_recvmsg(sock, &msg, flags);
2019
2020 if (err >= 0 && addr != NULL) {
2021 err2 = move_addr_to_user(&address,
2022 msg.msg_namelen, addr, addr_len);
2023 if (err2 < 0)
2024 err = err2;
2025 }
2026
2027 fput_light(sock->file, fput_needed);
2028 out:
2029 return err;
2030 }
2031
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2032 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2033 unsigned int, flags, struct sockaddr __user *, addr,
2034 int __user *, addr_len)
2035 {
2036 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2037 }
2038
2039 /*
2040 * Receive a datagram from a socket.
2041 */
2042
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2043 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2044 unsigned int, flags)
2045 {
2046 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2047 }
2048
2049 /*
2050 * Set a socket option. Because we don't know the option lengths we have
2051 * to pass the user mode parameter for the protocols to sort out.
2052 */
2053
__sys_setsockopt(int fd,int level,int optname,char __user * optval,int optlen)2054 static int __sys_setsockopt(int fd, int level, int optname,
2055 char __user *optval, int optlen)
2056 {
2057 mm_segment_t oldfs = get_fs();
2058 char *kernel_optval = NULL;
2059 int err, fput_needed;
2060 struct socket *sock;
2061
2062 if (optlen < 0)
2063 return -EINVAL;
2064
2065 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2066 if (sock != NULL) {
2067 err = security_socket_setsockopt(sock, level, optname);
2068 if (err)
2069 goto out_put;
2070
2071 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level,
2072 &optname, optval, &optlen,
2073 &kernel_optval);
2074
2075 if (err < 0) {
2076 goto out_put;
2077 } else if (err > 0) {
2078 err = 0;
2079 goto out_put;
2080 }
2081
2082 if (kernel_optval) {
2083 set_fs(KERNEL_DS);
2084 optval = (char __user __force *)kernel_optval;
2085 }
2086
2087 if (level == SOL_SOCKET)
2088 err =
2089 sock_setsockopt(sock, level, optname, optval,
2090 optlen);
2091 else
2092 err =
2093 sock->ops->setsockopt(sock, level, optname, optval,
2094 optlen);
2095
2096 if (kernel_optval) {
2097 set_fs(oldfs);
2098 kfree(kernel_optval);
2099 }
2100 out_put:
2101 fput_light(sock->file, fput_needed);
2102 }
2103 return err;
2104 }
2105
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2106 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2107 char __user *, optval, int, optlen)
2108 {
2109 return __sys_setsockopt(fd, level, optname, optval, optlen);
2110 }
2111
2112 /*
2113 * Get a socket option. Because we don't know the option lengths we have
2114 * to pass a user mode parameter for the protocols to sort out.
2115 */
2116
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2117 static int __sys_getsockopt(int fd, int level, int optname,
2118 char __user *optval, int __user *optlen)
2119 {
2120 int err, fput_needed;
2121 struct socket *sock;
2122 int max_optlen;
2123
2124 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2125 if (sock != NULL) {
2126 err = security_socket_getsockopt(sock, level, optname);
2127 if (err)
2128 goto out_put;
2129
2130 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2131
2132 if (level == SOL_SOCKET)
2133 err =
2134 sock_getsockopt(sock, level, optname, optval,
2135 optlen);
2136 else
2137 err =
2138 sock->ops->getsockopt(sock, level, optname, optval,
2139 optlen);
2140
2141 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2142 optval, optlen,
2143 max_optlen, err);
2144 out_put:
2145 fput_light(sock->file, fput_needed);
2146 }
2147 return err;
2148 }
2149
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2150 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2151 char __user *, optval, int __user *, optlen)
2152 {
2153 return __sys_getsockopt(fd, level, optname, optval, optlen);
2154 }
2155
2156 /*
2157 * Shutdown a socket.
2158 */
2159
__sys_shutdown(int fd,int how)2160 int __sys_shutdown(int fd, int how)
2161 {
2162 int err, fput_needed;
2163 struct socket *sock;
2164
2165 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2166 if (sock != NULL) {
2167 err = security_socket_shutdown(sock, how);
2168 if (!err)
2169 err = sock->ops->shutdown(sock, how);
2170 fput_light(sock->file, fput_needed);
2171 }
2172 return err;
2173 }
2174
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2175 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2176 {
2177 return __sys_shutdown(fd, how);
2178 }
2179
2180 /* A couple of helpful macros for getting the address of the 32/64 bit
2181 * fields which are the same type (int / unsigned) on our platforms.
2182 */
2183 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2184 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2185 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2186
2187 struct used_address {
2188 struct sockaddr_storage name;
2189 unsigned int name_len;
2190 };
2191
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2192 static int copy_msghdr_from_user(struct msghdr *kmsg,
2193 struct user_msghdr __user *umsg,
2194 struct sockaddr __user **save_addr,
2195 struct iovec **iov)
2196 {
2197 struct user_msghdr msg;
2198 ssize_t err;
2199
2200 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2201 return -EFAULT;
2202
2203 kmsg->msg_control = (void __force *)msg.msg_control;
2204 kmsg->msg_controllen = msg.msg_controllen;
2205 kmsg->msg_flags = msg.msg_flags;
2206
2207 kmsg->msg_namelen = msg.msg_namelen;
2208 if (!msg.msg_name)
2209 kmsg->msg_namelen = 0;
2210
2211 if (kmsg->msg_namelen < 0)
2212 return -EINVAL;
2213
2214 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2215 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2216
2217 if (save_addr)
2218 *save_addr = msg.msg_name;
2219
2220 if (msg.msg_name && kmsg->msg_namelen) {
2221 if (!save_addr) {
2222 err = move_addr_to_kernel(msg.msg_name,
2223 kmsg->msg_namelen,
2224 kmsg->msg_name);
2225 if (err < 0)
2226 return err;
2227 }
2228 } else {
2229 kmsg->msg_name = NULL;
2230 kmsg->msg_namelen = 0;
2231 }
2232
2233 if (msg.msg_iovlen > UIO_MAXIOV)
2234 return -EMSGSIZE;
2235
2236 kmsg->msg_iocb = NULL;
2237
2238 err = import_iovec(save_addr ? READ : WRITE,
2239 msg.msg_iov, msg.msg_iovlen,
2240 UIO_FASTIOV, iov, &kmsg->msg_iter);
2241 return err < 0 ? err : 0;
2242 }
2243
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2244 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2245 unsigned int flags, struct used_address *used_address,
2246 unsigned int allowed_msghdr_flags)
2247 {
2248 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2249 __aligned(sizeof(__kernel_size_t));
2250 /* 20 is size of ipv6_pktinfo */
2251 unsigned char *ctl_buf = ctl;
2252 int ctl_len;
2253 ssize_t err;
2254
2255 err = -ENOBUFS;
2256
2257 if (msg_sys->msg_controllen > INT_MAX)
2258 goto out;
2259 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2260 ctl_len = msg_sys->msg_controllen;
2261 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2262 err =
2263 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2264 sizeof(ctl));
2265 if (err)
2266 goto out;
2267 ctl_buf = msg_sys->msg_control;
2268 ctl_len = msg_sys->msg_controllen;
2269 } else if (ctl_len) {
2270 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2271 CMSG_ALIGN(sizeof(struct cmsghdr)));
2272 if (ctl_len > sizeof(ctl)) {
2273 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2274 if (ctl_buf == NULL)
2275 goto out;
2276 }
2277 err = -EFAULT;
2278 /*
2279 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2280 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2281 * checking falls down on this.
2282 */
2283 if (copy_from_user(ctl_buf,
2284 (void __user __force *)msg_sys->msg_control,
2285 ctl_len))
2286 goto out_freectl;
2287 msg_sys->msg_control = ctl_buf;
2288 }
2289 msg_sys->msg_flags = flags;
2290
2291 if (sock->file->f_flags & O_NONBLOCK)
2292 msg_sys->msg_flags |= MSG_DONTWAIT;
2293 /*
2294 * If this is sendmmsg() and current destination address is same as
2295 * previously succeeded address, omit asking LSM's decision.
2296 * used_address->name_len is initialized to UINT_MAX so that the first
2297 * destination address never matches.
2298 */
2299 if (used_address && msg_sys->msg_name &&
2300 used_address->name_len == msg_sys->msg_namelen &&
2301 !memcmp(&used_address->name, msg_sys->msg_name,
2302 used_address->name_len)) {
2303 err = sock_sendmsg_nosec(sock, msg_sys);
2304 goto out_freectl;
2305 }
2306 err = __sock_sendmsg(sock, msg_sys);
2307 /*
2308 * If this is sendmmsg() and sending to current destination address was
2309 * successful, remember it.
2310 */
2311 if (used_address && err >= 0) {
2312 used_address->name_len = msg_sys->msg_namelen;
2313 if (msg_sys->msg_name)
2314 memcpy(&used_address->name, msg_sys->msg_name,
2315 used_address->name_len);
2316 }
2317
2318 out_freectl:
2319 if (ctl_buf != ctl)
2320 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2321 out:
2322 return err;
2323 }
2324
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2325 static int sendmsg_copy_msghdr(struct msghdr *msg,
2326 struct user_msghdr __user *umsg, unsigned flags,
2327 struct iovec **iov)
2328 {
2329 int err;
2330
2331 if (flags & MSG_CMSG_COMPAT) {
2332 struct compat_msghdr __user *msg_compat;
2333
2334 msg_compat = (struct compat_msghdr __user *) umsg;
2335 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2336 } else {
2337 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2338 }
2339 if (err < 0)
2340 return err;
2341
2342 return 0;
2343 }
2344
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2345 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2346 struct msghdr *msg_sys, unsigned int flags,
2347 struct used_address *used_address,
2348 unsigned int allowed_msghdr_flags)
2349 {
2350 struct sockaddr_storage address;
2351 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2352 ssize_t err;
2353
2354 msg_sys->msg_name = &address;
2355
2356 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2357 if (err < 0)
2358 return err;
2359
2360 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2361 allowed_msghdr_flags);
2362 kfree(iov);
2363 return err;
2364 }
2365
2366 /*
2367 * BSD sendmsg interface
2368 */
__sys_sendmsg_sock(struct socket * sock,struct user_msghdr __user * umsg,unsigned int flags)2369 long __sys_sendmsg_sock(struct socket *sock, struct user_msghdr __user *umsg,
2370 unsigned int flags)
2371 {
2372 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2373 struct sockaddr_storage address;
2374 struct msghdr msg = { .msg_name = &address };
2375 ssize_t err;
2376
2377 err = sendmsg_copy_msghdr(&msg, umsg, flags, &iov);
2378 if (err)
2379 return err;
2380 /* disallow ancillary data requests from this path */
2381 if (msg.msg_control || msg.msg_controllen) {
2382 err = -EINVAL;
2383 goto out;
2384 }
2385
2386 err = ____sys_sendmsg(sock, &msg, flags, NULL, 0);
2387 out:
2388 kfree(iov);
2389 return err;
2390 }
2391
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2392 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2393 bool forbid_cmsg_compat)
2394 {
2395 int fput_needed, err;
2396 struct msghdr msg_sys;
2397 struct socket *sock;
2398
2399 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2400 return -EINVAL;
2401
2402 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2403 if (!sock)
2404 goto out;
2405
2406 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2407
2408 fput_light(sock->file, fput_needed);
2409 out:
2410 return err;
2411 }
2412
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2413 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2414 {
2415 return __sys_sendmsg(fd, msg, flags, true);
2416 }
2417
2418 /*
2419 * Linux sendmmsg interface
2420 */
2421
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2422 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2423 unsigned int flags, bool forbid_cmsg_compat)
2424 {
2425 int fput_needed, err, datagrams;
2426 struct socket *sock;
2427 struct mmsghdr __user *entry;
2428 struct compat_mmsghdr __user *compat_entry;
2429 struct msghdr msg_sys;
2430 struct used_address used_address;
2431 unsigned int oflags = flags;
2432
2433 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2434 return -EINVAL;
2435
2436 if (vlen > UIO_MAXIOV)
2437 vlen = UIO_MAXIOV;
2438
2439 datagrams = 0;
2440
2441 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2442 if (!sock)
2443 return err;
2444
2445 used_address.name_len = UINT_MAX;
2446 entry = mmsg;
2447 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2448 err = 0;
2449 flags |= MSG_BATCH;
2450
2451 while (datagrams < vlen) {
2452 if (datagrams == vlen - 1)
2453 flags = oflags;
2454
2455 if (MSG_CMSG_COMPAT & flags) {
2456 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2457 &msg_sys, flags, &used_address, MSG_EOR);
2458 if (err < 0)
2459 break;
2460 err = __put_user(err, &compat_entry->msg_len);
2461 ++compat_entry;
2462 } else {
2463 err = ___sys_sendmsg(sock,
2464 (struct user_msghdr __user *)entry,
2465 &msg_sys, flags, &used_address, MSG_EOR);
2466 if (err < 0)
2467 break;
2468 err = put_user(err, &entry->msg_len);
2469 ++entry;
2470 }
2471
2472 if (err)
2473 break;
2474 ++datagrams;
2475 if (msg_data_left(&msg_sys))
2476 break;
2477 cond_resched();
2478 }
2479
2480 fput_light(sock->file, fput_needed);
2481
2482 /* We only return an error if no datagrams were able to be sent */
2483 if (datagrams != 0)
2484 return datagrams;
2485
2486 return err;
2487 }
2488
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2489 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2490 unsigned int, vlen, unsigned int, flags)
2491 {
2492 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2493 }
2494
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2495 static int recvmsg_copy_msghdr(struct msghdr *msg,
2496 struct user_msghdr __user *umsg, unsigned flags,
2497 struct sockaddr __user **uaddr,
2498 struct iovec **iov)
2499 {
2500 ssize_t err;
2501
2502 if (MSG_CMSG_COMPAT & flags) {
2503 struct compat_msghdr __user *msg_compat;
2504
2505 msg_compat = (struct compat_msghdr __user *) umsg;
2506 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2507 } else {
2508 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2509 }
2510 if (err < 0)
2511 return err;
2512
2513 return 0;
2514 }
2515
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2516 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2517 struct user_msghdr __user *msg,
2518 struct sockaddr __user *uaddr,
2519 unsigned int flags, int nosec)
2520 {
2521 struct compat_msghdr __user *msg_compat =
2522 (struct compat_msghdr __user *) msg;
2523 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2524 struct sockaddr_storage addr;
2525 unsigned long cmsg_ptr;
2526 int len;
2527 ssize_t err;
2528
2529 msg_sys->msg_name = &addr;
2530 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2531 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2532
2533 /* We assume all kernel code knows the size of sockaddr_storage */
2534 msg_sys->msg_namelen = 0;
2535
2536 if (sock->file->f_flags & O_NONBLOCK)
2537 flags |= MSG_DONTWAIT;
2538 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2539 if (err < 0)
2540 goto out;
2541 len = err;
2542
2543 if (uaddr != NULL) {
2544 err = move_addr_to_user(&addr,
2545 msg_sys->msg_namelen, uaddr,
2546 uaddr_len);
2547 if (err < 0)
2548 goto out;
2549 }
2550 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2551 COMPAT_FLAGS(msg));
2552 if (err)
2553 goto out;
2554 if (MSG_CMSG_COMPAT & flags)
2555 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2556 &msg_compat->msg_controllen);
2557 else
2558 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2559 &msg->msg_controllen);
2560 if (err)
2561 goto out;
2562 err = len;
2563 out:
2564 return err;
2565 }
2566
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2567 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2568 struct msghdr *msg_sys, unsigned int flags, int nosec)
2569 {
2570 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2571 /* user mode address pointers */
2572 struct sockaddr __user *uaddr;
2573 ssize_t err;
2574
2575 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2576 if (err < 0)
2577 return err;
2578
2579 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2580 kfree(iov);
2581 return err;
2582 }
2583
2584 /*
2585 * BSD recvmsg interface
2586 */
2587
__sys_recvmsg_sock(struct socket * sock,struct user_msghdr __user * umsg,unsigned int flags)2588 long __sys_recvmsg_sock(struct socket *sock, struct user_msghdr __user *umsg,
2589 unsigned int flags)
2590 {
2591 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2592 struct sockaddr_storage address;
2593 struct msghdr msg = { .msg_name = &address };
2594 struct sockaddr __user *uaddr;
2595 ssize_t err;
2596
2597 err = recvmsg_copy_msghdr(&msg, umsg, flags, &uaddr, &iov);
2598 if (err)
2599 return err;
2600 /* disallow ancillary data requests from this path */
2601 if (msg.msg_control || msg.msg_controllen) {
2602 err = -EINVAL;
2603 goto out;
2604 }
2605
2606 err = ____sys_recvmsg(sock, &msg, umsg, uaddr, flags, 0);
2607 out:
2608 kfree(iov);
2609 return err;
2610 }
2611
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2612 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2613 bool forbid_cmsg_compat)
2614 {
2615 int fput_needed, err;
2616 struct msghdr msg_sys;
2617 struct socket *sock;
2618
2619 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2620 return -EINVAL;
2621
2622 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2623 if (!sock)
2624 goto out;
2625
2626 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2627
2628 fput_light(sock->file, fput_needed);
2629 out:
2630 return err;
2631 }
2632
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2633 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2634 unsigned int, flags)
2635 {
2636 return __sys_recvmsg(fd, msg, flags, true);
2637 }
2638
2639 /*
2640 * Linux recvmmsg interface
2641 */
2642
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2643 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2644 unsigned int vlen, unsigned int flags,
2645 struct timespec64 *timeout)
2646 {
2647 int fput_needed, err, datagrams;
2648 struct socket *sock;
2649 struct mmsghdr __user *entry;
2650 struct compat_mmsghdr __user *compat_entry;
2651 struct msghdr msg_sys;
2652 struct timespec64 end_time;
2653 struct timespec64 timeout64;
2654
2655 if (timeout &&
2656 poll_select_set_timeout(&end_time, timeout->tv_sec,
2657 timeout->tv_nsec))
2658 return -EINVAL;
2659
2660 datagrams = 0;
2661
2662 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2663 if (!sock)
2664 return err;
2665
2666 if (likely(!(flags & MSG_ERRQUEUE))) {
2667 err = sock_error(sock->sk);
2668 if (err) {
2669 datagrams = err;
2670 goto out_put;
2671 }
2672 }
2673
2674 entry = mmsg;
2675 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2676
2677 while (datagrams < vlen) {
2678 /*
2679 * No need to ask LSM for more than the first datagram.
2680 */
2681 if (MSG_CMSG_COMPAT & flags) {
2682 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2683 &msg_sys, flags & ~MSG_WAITFORONE,
2684 datagrams);
2685 if (err < 0)
2686 break;
2687 err = __put_user(err, &compat_entry->msg_len);
2688 ++compat_entry;
2689 } else {
2690 err = ___sys_recvmsg(sock,
2691 (struct user_msghdr __user *)entry,
2692 &msg_sys, flags & ~MSG_WAITFORONE,
2693 datagrams);
2694 if (err < 0)
2695 break;
2696 err = put_user(err, &entry->msg_len);
2697 ++entry;
2698 }
2699
2700 if (err)
2701 break;
2702 ++datagrams;
2703
2704 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2705 if (flags & MSG_WAITFORONE)
2706 flags |= MSG_DONTWAIT;
2707
2708 if (timeout) {
2709 ktime_get_ts64(&timeout64);
2710 *timeout = timespec64_sub(end_time, timeout64);
2711 if (timeout->tv_sec < 0) {
2712 timeout->tv_sec = timeout->tv_nsec = 0;
2713 break;
2714 }
2715
2716 /* Timeout, return less than vlen datagrams */
2717 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2718 break;
2719 }
2720
2721 /* Out of band data, return right away */
2722 if (msg_sys.msg_flags & MSG_OOB)
2723 break;
2724 cond_resched();
2725 }
2726
2727 if (err == 0)
2728 goto out_put;
2729
2730 if (datagrams == 0) {
2731 datagrams = err;
2732 goto out_put;
2733 }
2734
2735 /*
2736 * We may return less entries than requested (vlen) if the
2737 * sock is non block and there aren't enough datagrams...
2738 */
2739 if (err != -EAGAIN) {
2740 /*
2741 * ... or if recvmsg returns an error after we
2742 * received some datagrams, where we record the
2743 * error to return on the next call or if the
2744 * app asks about it using getsockopt(SO_ERROR).
2745 */
2746 WRITE_ONCE(sock->sk->sk_err, -err);
2747 }
2748 out_put:
2749 fput_light(sock->file, fput_needed);
2750
2751 return datagrams;
2752 }
2753
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2754 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2755 unsigned int vlen, unsigned int flags,
2756 struct __kernel_timespec __user *timeout,
2757 struct old_timespec32 __user *timeout32)
2758 {
2759 int datagrams;
2760 struct timespec64 timeout_sys;
2761
2762 if (timeout && get_timespec64(&timeout_sys, timeout))
2763 return -EFAULT;
2764
2765 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2766 return -EFAULT;
2767
2768 if (!timeout && !timeout32)
2769 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2770
2771 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2772
2773 if (datagrams <= 0)
2774 return datagrams;
2775
2776 if (timeout && put_timespec64(&timeout_sys, timeout))
2777 datagrams = -EFAULT;
2778
2779 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2780 datagrams = -EFAULT;
2781
2782 return datagrams;
2783 }
2784
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)2785 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2786 unsigned int, vlen, unsigned int, flags,
2787 struct __kernel_timespec __user *, timeout)
2788 {
2789 if (flags & MSG_CMSG_COMPAT)
2790 return -EINVAL;
2791
2792 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2793 }
2794
2795 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)2796 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2797 unsigned int, vlen, unsigned int, flags,
2798 struct old_timespec32 __user *, timeout)
2799 {
2800 if (flags & MSG_CMSG_COMPAT)
2801 return -EINVAL;
2802
2803 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2804 }
2805 #endif
2806
2807 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2808 /* Argument list sizes for sys_socketcall */
2809 #define AL(x) ((x) * sizeof(unsigned long))
2810 static const unsigned char nargs[21] = {
2811 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2812 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2813 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2814 AL(4), AL(5), AL(4)
2815 };
2816
2817 #undef AL
2818
2819 /*
2820 * System call vectors.
2821 *
2822 * Argument checking cleaned up. Saved 20% in size.
2823 * This function doesn't need to set the kernel lock because
2824 * it is set by the callees.
2825 */
2826
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)2827 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2828 {
2829 unsigned long a[AUDITSC_ARGS];
2830 unsigned long a0, a1;
2831 int err;
2832 unsigned int len;
2833
2834 if (call < 1 || call > SYS_SENDMMSG)
2835 return -EINVAL;
2836 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2837
2838 len = nargs[call];
2839 if (len > sizeof(a))
2840 return -EINVAL;
2841
2842 /* copy_from_user should be SMP safe. */
2843 if (copy_from_user(a, args, len))
2844 return -EFAULT;
2845
2846 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2847 if (err)
2848 return err;
2849
2850 a0 = a[0];
2851 a1 = a[1];
2852
2853 switch (call) {
2854 case SYS_SOCKET:
2855 err = __sys_socket(a0, a1, a[2]);
2856 break;
2857 case SYS_BIND:
2858 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2859 break;
2860 case SYS_CONNECT:
2861 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2862 break;
2863 case SYS_LISTEN:
2864 err = __sys_listen(a0, a1);
2865 break;
2866 case SYS_ACCEPT:
2867 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2868 (int __user *)a[2], 0);
2869 break;
2870 case SYS_GETSOCKNAME:
2871 err =
2872 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2873 (int __user *)a[2]);
2874 break;
2875 case SYS_GETPEERNAME:
2876 err =
2877 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2878 (int __user *)a[2]);
2879 break;
2880 case SYS_SOCKETPAIR:
2881 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2882 break;
2883 case SYS_SEND:
2884 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2885 NULL, 0);
2886 break;
2887 case SYS_SENDTO:
2888 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2889 (struct sockaddr __user *)a[4], a[5]);
2890 break;
2891 case SYS_RECV:
2892 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2893 NULL, NULL);
2894 break;
2895 case SYS_RECVFROM:
2896 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2897 (struct sockaddr __user *)a[4],
2898 (int __user *)a[5]);
2899 break;
2900 case SYS_SHUTDOWN:
2901 err = __sys_shutdown(a0, a1);
2902 break;
2903 case SYS_SETSOCKOPT:
2904 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2905 a[4]);
2906 break;
2907 case SYS_GETSOCKOPT:
2908 err =
2909 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2910 (int __user *)a[4]);
2911 break;
2912 case SYS_SENDMSG:
2913 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2914 a[2], true);
2915 break;
2916 case SYS_SENDMMSG:
2917 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2918 a[3], true);
2919 break;
2920 case SYS_RECVMSG:
2921 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2922 a[2], true);
2923 break;
2924 case SYS_RECVMMSG:
2925 if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2926 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2927 a[2], a[3],
2928 (struct __kernel_timespec __user *)a[4],
2929 NULL);
2930 else
2931 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2932 a[2], a[3], NULL,
2933 (struct old_timespec32 __user *)a[4]);
2934 break;
2935 case SYS_ACCEPT4:
2936 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2937 (int __user *)a[2], a[3]);
2938 break;
2939 default:
2940 err = -EINVAL;
2941 break;
2942 }
2943 return err;
2944 }
2945
2946 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2947
2948 /**
2949 * sock_register - add a socket protocol handler
2950 * @ops: description of protocol
2951 *
2952 * This function is called by a protocol handler that wants to
2953 * advertise its address family, and have it linked into the
2954 * socket interface. The value ops->family corresponds to the
2955 * socket system call protocol family.
2956 */
sock_register(const struct net_proto_family * ops)2957 int sock_register(const struct net_proto_family *ops)
2958 {
2959 int err;
2960
2961 if (ops->family >= NPROTO) {
2962 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2963 return -ENOBUFS;
2964 }
2965
2966 spin_lock(&net_family_lock);
2967 if (rcu_dereference_protected(net_families[ops->family],
2968 lockdep_is_held(&net_family_lock)))
2969 err = -EEXIST;
2970 else {
2971 rcu_assign_pointer(net_families[ops->family], ops);
2972 err = 0;
2973 }
2974 spin_unlock(&net_family_lock);
2975
2976 pr_info("NET: Registered protocol family %d\n", ops->family);
2977 return err;
2978 }
2979 EXPORT_SYMBOL(sock_register);
2980
2981 /**
2982 * sock_unregister - remove a protocol handler
2983 * @family: protocol family to remove
2984 *
2985 * This function is called by a protocol handler that wants to
2986 * remove its address family, and have it unlinked from the
2987 * new socket creation.
2988 *
2989 * If protocol handler is a module, then it can use module reference
2990 * counts to protect against new references. If protocol handler is not
2991 * a module then it needs to provide its own protection in
2992 * the ops->create routine.
2993 */
sock_unregister(int family)2994 void sock_unregister(int family)
2995 {
2996 BUG_ON(family < 0 || family >= NPROTO);
2997
2998 spin_lock(&net_family_lock);
2999 RCU_INIT_POINTER(net_families[family], NULL);
3000 spin_unlock(&net_family_lock);
3001
3002 synchronize_rcu();
3003
3004 pr_info("NET: Unregistered protocol family %d\n", family);
3005 }
3006 EXPORT_SYMBOL(sock_unregister);
3007
sock_is_registered(int family)3008 bool sock_is_registered(int family)
3009 {
3010 return family < NPROTO && rcu_access_pointer(net_families[family]);
3011 }
3012
sock_init(void)3013 static int __init sock_init(void)
3014 {
3015 int err;
3016 /*
3017 * Initialize the network sysctl infrastructure.
3018 */
3019 err = net_sysctl_init();
3020 if (err)
3021 goto out;
3022
3023 /*
3024 * Initialize skbuff SLAB cache
3025 */
3026 skb_init();
3027
3028 /*
3029 * Initialize the protocols module.
3030 */
3031
3032 init_inodecache();
3033
3034 err = register_filesystem(&sock_fs_type);
3035 if (err)
3036 goto out_fs;
3037 sock_mnt = kern_mount(&sock_fs_type);
3038 if (IS_ERR(sock_mnt)) {
3039 err = PTR_ERR(sock_mnt);
3040 goto out_mount;
3041 }
3042
3043 /* The real protocol initialization is performed in later initcalls.
3044 */
3045
3046 #ifdef CONFIG_NETFILTER
3047 err = netfilter_init();
3048 if (err)
3049 goto out;
3050 #endif
3051
3052 ptp_classifier_init();
3053
3054 out:
3055 return err;
3056
3057 out_mount:
3058 unregister_filesystem(&sock_fs_type);
3059 out_fs:
3060 goto out;
3061 }
3062
3063 core_initcall(sock_init); /* early initcall */
3064
3065 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3066 void socket_seq_show(struct seq_file *seq)
3067 {
3068 seq_printf(seq, "sockets: used %d\n",
3069 sock_inuse_get(seq->private));
3070 }
3071 #endif /* CONFIG_PROC_FS */
3072
3073 #ifdef CONFIG_COMPAT
compat_dev_ifconf(struct net * net,struct compat_ifconf __user * uifc32)3074 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3075 {
3076 struct compat_ifconf ifc32;
3077 struct ifconf ifc;
3078 int err;
3079
3080 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3081 return -EFAULT;
3082
3083 ifc.ifc_len = ifc32.ifc_len;
3084 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3085
3086 rtnl_lock();
3087 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3088 rtnl_unlock();
3089 if (err)
3090 return err;
3091
3092 ifc32.ifc_len = ifc.ifc_len;
3093 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3094 return -EFAULT;
3095
3096 return 0;
3097 }
3098
ethtool_ioctl(struct net * net,struct compat_ifreq __user * ifr32)3099 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3100 {
3101 struct compat_ethtool_rxnfc __user *compat_rxnfc;
3102 bool convert_in = false, convert_out = false;
3103 size_t buf_size = 0;
3104 struct ethtool_rxnfc __user *rxnfc = NULL;
3105 struct ifreq ifr;
3106 u32 rule_cnt = 0, actual_rule_cnt;
3107 u32 ethcmd;
3108 u32 data;
3109 int ret;
3110
3111 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3112 return -EFAULT;
3113
3114 compat_rxnfc = compat_ptr(data);
3115
3116 if (get_user(ethcmd, &compat_rxnfc->cmd))
3117 return -EFAULT;
3118
3119 /* Most ethtool structures are defined without padding.
3120 * Unfortunately struct ethtool_rxnfc is an exception.
3121 */
3122 switch (ethcmd) {
3123 default:
3124 break;
3125 case ETHTOOL_GRXCLSRLALL:
3126 /* Buffer size is variable */
3127 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3128 return -EFAULT;
3129 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3130 return -ENOMEM;
3131 buf_size += rule_cnt * sizeof(u32);
3132 /* fall through */
3133 case ETHTOOL_GRXRINGS:
3134 case ETHTOOL_GRXCLSRLCNT:
3135 case ETHTOOL_GRXCLSRULE:
3136 case ETHTOOL_SRXCLSRLINS:
3137 convert_out = true;
3138 /* fall through */
3139 case ETHTOOL_SRXCLSRLDEL:
3140 buf_size += sizeof(struct ethtool_rxnfc);
3141 convert_in = true;
3142 rxnfc = compat_alloc_user_space(buf_size);
3143 break;
3144 }
3145
3146 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3147 return -EFAULT;
3148
3149 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3150
3151 if (convert_in) {
3152 /* We expect there to be holes between fs.m_ext and
3153 * fs.ring_cookie and at the end of fs, but nowhere else.
3154 */
3155 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3156 sizeof(compat_rxnfc->fs.m_ext) !=
3157 offsetof(struct ethtool_rxnfc, fs.m_ext) +
3158 sizeof(rxnfc->fs.m_ext));
3159 BUILD_BUG_ON(
3160 offsetof(struct compat_ethtool_rxnfc, fs.location) -
3161 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3162 offsetof(struct ethtool_rxnfc, fs.location) -
3163 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3164
3165 if (copy_in_user(rxnfc, compat_rxnfc,
3166 (void __user *)(&rxnfc->fs.m_ext + 1) -
3167 (void __user *)rxnfc) ||
3168 copy_in_user(&rxnfc->fs.ring_cookie,
3169 &compat_rxnfc->fs.ring_cookie,
3170 (void __user *)(&rxnfc->fs.location + 1) -
3171 (void __user *)&rxnfc->fs.ring_cookie))
3172 return -EFAULT;
3173 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3174 if (put_user(rule_cnt, &rxnfc->rule_cnt))
3175 return -EFAULT;
3176 } else if (copy_in_user(&rxnfc->rule_cnt,
3177 &compat_rxnfc->rule_cnt,
3178 sizeof(rxnfc->rule_cnt)))
3179 return -EFAULT;
3180 }
3181
3182 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3183 if (ret)
3184 return ret;
3185
3186 if (convert_out) {
3187 if (copy_in_user(compat_rxnfc, rxnfc,
3188 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3189 (const void __user *)rxnfc) ||
3190 copy_in_user(&compat_rxnfc->fs.ring_cookie,
3191 &rxnfc->fs.ring_cookie,
3192 (const void __user *)(&rxnfc->fs.location + 1) -
3193 (const void __user *)&rxnfc->fs.ring_cookie) ||
3194 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3195 sizeof(rxnfc->rule_cnt)))
3196 return -EFAULT;
3197
3198 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3199 /* As an optimisation, we only copy the actual
3200 * number of rules that the underlying
3201 * function returned. Since Mallory might
3202 * change the rule count in user memory, we
3203 * check that it is less than the rule count
3204 * originally given (as the user buffer size),
3205 * which has been range-checked.
3206 */
3207 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3208 return -EFAULT;
3209 if (actual_rule_cnt < rule_cnt)
3210 rule_cnt = actual_rule_cnt;
3211 if (copy_in_user(&compat_rxnfc->rule_locs[0],
3212 &rxnfc->rule_locs[0],
3213 rule_cnt * sizeof(u32)))
3214 return -EFAULT;
3215 }
3216 }
3217
3218 return 0;
3219 }
3220
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3221 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3222 {
3223 compat_uptr_t uptr32;
3224 struct ifreq ifr;
3225 void __user *saved;
3226 int err;
3227
3228 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3229 return -EFAULT;
3230
3231 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3232 return -EFAULT;
3233
3234 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3235 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3236
3237 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3238 if (!err) {
3239 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3240 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3241 err = -EFAULT;
3242 }
3243 return err;
3244 }
3245
3246 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3247 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3248 struct compat_ifreq __user *u_ifreq32)
3249 {
3250 struct ifreq ifreq;
3251 u32 data32;
3252
3253 if (!is_socket_ioctl_cmd(cmd))
3254 return -ENOTTY;
3255 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3256 return -EFAULT;
3257 if (get_user(data32, &u_ifreq32->ifr_data))
3258 return -EFAULT;
3259 ifreq.ifr_data = compat_ptr(data32);
3260
3261 return dev_ioctl(net, cmd, &ifreq, NULL);
3262 }
3263
compat_ifreq_ioctl(struct net * net,struct socket * sock,unsigned int cmd,struct compat_ifreq __user * uifr32)3264 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3265 unsigned int cmd,
3266 struct compat_ifreq __user *uifr32)
3267 {
3268 struct ifreq __user *uifr;
3269 int err;
3270
3271 /* Handle the fact that while struct ifreq has the same *layout* on
3272 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3273 * which are handled elsewhere, it still has different *size* due to
3274 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3275 * resulting in struct ifreq being 32 and 40 bytes respectively).
3276 * As a result, if the struct happens to be at the end of a page and
3277 * the next page isn't readable/writable, we get a fault. To prevent
3278 * that, copy back and forth to the full size.
3279 */
3280
3281 uifr = compat_alloc_user_space(sizeof(*uifr));
3282 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3283 return -EFAULT;
3284
3285 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3286
3287 if (!err) {
3288 switch (cmd) {
3289 case SIOCGIFFLAGS:
3290 case SIOCGIFMETRIC:
3291 case SIOCGIFMTU:
3292 case SIOCGIFMEM:
3293 case SIOCGIFHWADDR:
3294 case SIOCGIFINDEX:
3295 case SIOCGIFADDR:
3296 case SIOCGIFBRDADDR:
3297 case SIOCGIFDSTADDR:
3298 case SIOCGIFNETMASK:
3299 case SIOCGIFPFLAGS:
3300 case SIOCGIFTXQLEN:
3301 case SIOCGMIIPHY:
3302 case SIOCGMIIREG:
3303 case SIOCGIFNAME:
3304 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3305 err = -EFAULT;
3306 break;
3307 }
3308 }
3309 return err;
3310 }
3311
compat_sioc_ifmap(struct net * net,unsigned int cmd,struct compat_ifreq __user * uifr32)3312 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3313 struct compat_ifreq __user *uifr32)
3314 {
3315 struct ifreq ifr;
3316 struct compat_ifmap __user *uifmap32;
3317 int err;
3318
3319 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3320 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3321 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3322 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3323 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3324 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3325 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3326 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3327 if (err)
3328 return -EFAULT;
3329
3330 err = dev_ioctl(net, cmd, &ifr, NULL);
3331
3332 if (cmd == SIOCGIFMAP && !err) {
3333 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3334 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3335 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3336 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3337 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3338 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3339 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3340 if (err)
3341 err = -EFAULT;
3342 }
3343 return err;
3344 }
3345
3346 struct rtentry32 {
3347 u32 rt_pad1;
3348 struct sockaddr rt_dst; /* target address */
3349 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3350 struct sockaddr rt_genmask; /* target network mask (IP) */
3351 unsigned short rt_flags;
3352 short rt_pad2;
3353 u32 rt_pad3;
3354 unsigned char rt_tos;
3355 unsigned char rt_class;
3356 short rt_pad4;
3357 short rt_metric; /* +1 for binary compatibility! */
3358 /* char * */ u32 rt_dev; /* forcing the device at add */
3359 u32 rt_mtu; /* per route MTU/Window */
3360 u32 rt_window; /* Window clamping */
3361 unsigned short rt_irtt; /* Initial RTT */
3362 };
3363
3364 struct in6_rtmsg32 {
3365 struct in6_addr rtmsg_dst;
3366 struct in6_addr rtmsg_src;
3367 struct in6_addr rtmsg_gateway;
3368 u32 rtmsg_type;
3369 u16 rtmsg_dst_len;
3370 u16 rtmsg_src_len;
3371 u32 rtmsg_metric;
3372 u32 rtmsg_info;
3373 u32 rtmsg_flags;
3374 s32 rtmsg_ifindex;
3375 };
3376
routing_ioctl(struct net * net,struct socket * sock,unsigned int cmd,void __user * argp)3377 static int routing_ioctl(struct net *net, struct socket *sock,
3378 unsigned int cmd, void __user *argp)
3379 {
3380 int ret;
3381 void *r = NULL;
3382 struct in6_rtmsg r6;
3383 struct rtentry r4;
3384 char devname[16];
3385 u32 rtdev;
3386 mm_segment_t old_fs = get_fs();
3387
3388 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3389 struct in6_rtmsg32 __user *ur6 = argp;
3390 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3391 3 * sizeof(struct in6_addr));
3392 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3393 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3394 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3395 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3396 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3397 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3398 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3399
3400 r = (void *) &r6;
3401 } else { /* ipv4 */
3402 struct rtentry32 __user *ur4 = argp;
3403 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3404 3 * sizeof(struct sockaddr));
3405 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3406 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3407 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3408 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3409 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3410 ret |= get_user(rtdev, &(ur4->rt_dev));
3411 if (rtdev) {
3412 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3413 r4.rt_dev = (char __user __force *)devname;
3414 devname[15] = 0;
3415 } else
3416 r4.rt_dev = NULL;
3417
3418 r = (void *) &r4;
3419 }
3420
3421 if (ret) {
3422 ret = -EFAULT;
3423 goto out;
3424 }
3425
3426 set_fs(KERNEL_DS);
3427 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3428 set_fs(old_fs);
3429
3430 out:
3431 return ret;
3432 }
3433
3434 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3435 * for some operations; this forces use of the newer bridge-utils that
3436 * use compatible ioctls
3437 */
old_bridge_ioctl(compat_ulong_t __user * argp)3438 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3439 {
3440 compat_ulong_t tmp;
3441
3442 if (get_user(tmp, argp))
3443 return -EFAULT;
3444 if (tmp == BRCTL_GET_VERSION)
3445 return BRCTL_VERSION + 1;
3446 return -EINVAL;
3447 }
3448
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3449 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3450 unsigned int cmd, unsigned long arg)
3451 {
3452 void __user *argp = compat_ptr(arg);
3453 struct sock *sk = sock->sk;
3454 struct net *net = sock_net(sk);
3455
3456 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3457 return compat_ifr_data_ioctl(net, cmd, argp);
3458
3459 switch (cmd) {
3460 case SIOCSIFBR:
3461 case SIOCGIFBR:
3462 return old_bridge_ioctl(argp);
3463 case SIOCGIFCONF:
3464 return compat_dev_ifconf(net, argp);
3465 case SIOCETHTOOL:
3466 return ethtool_ioctl(net, argp);
3467 case SIOCWANDEV:
3468 return compat_siocwandev(net, argp);
3469 case SIOCGIFMAP:
3470 case SIOCSIFMAP:
3471 return compat_sioc_ifmap(net, cmd, argp);
3472 case SIOCADDRT:
3473 case SIOCDELRT:
3474 return routing_ioctl(net, sock, cmd, argp);
3475 case SIOCGSTAMP_OLD:
3476 case SIOCGSTAMPNS_OLD:
3477 if (!sock->ops->gettstamp)
3478 return -ENOIOCTLCMD;
3479 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3480 !COMPAT_USE_64BIT_TIME);
3481
3482 case SIOCBONDSLAVEINFOQUERY:
3483 case SIOCBONDINFOQUERY:
3484 case SIOCSHWTSTAMP:
3485 case SIOCGHWTSTAMP:
3486 return compat_ifr_data_ioctl(net, cmd, argp);
3487
3488 case FIOSETOWN:
3489 case SIOCSPGRP:
3490 case FIOGETOWN:
3491 case SIOCGPGRP:
3492 case SIOCBRADDBR:
3493 case SIOCBRDELBR:
3494 case SIOCGIFVLAN:
3495 case SIOCSIFVLAN:
3496 case SIOCADDDLCI:
3497 case SIOCDELDLCI:
3498 case SIOCGSKNS:
3499 case SIOCGSTAMP_NEW:
3500 case SIOCGSTAMPNS_NEW:
3501 return sock_ioctl(file, cmd, arg);
3502
3503 case SIOCGIFFLAGS:
3504 case SIOCSIFFLAGS:
3505 case SIOCGIFMETRIC:
3506 case SIOCSIFMETRIC:
3507 case SIOCGIFMTU:
3508 case SIOCSIFMTU:
3509 case SIOCGIFMEM:
3510 case SIOCSIFMEM:
3511 case SIOCGIFHWADDR:
3512 case SIOCSIFHWADDR:
3513 case SIOCADDMULTI:
3514 case SIOCDELMULTI:
3515 case SIOCGIFINDEX:
3516 case SIOCGIFADDR:
3517 case SIOCSIFADDR:
3518 case SIOCSIFHWBROADCAST:
3519 case SIOCDIFADDR:
3520 case SIOCGIFBRDADDR:
3521 case SIOCSIFBRDADDR:
3522 case SIOCGIFDSTADDR:
3523 case SIOCSIFDSTADDR:
3524 case SIOCGIFNETMASK:
3525 case SIOCSIFNETMASK:
3526 case SIOCSIFPFLAGS:
3527 case SIOCGIFPFLAGS:
3528 case SIOCGIFTXQLEN:
3529 case SIOCSIFTXQLEN:
3530 case SIOCBRADDIF:
3531 case SIOCBRDELIF:
3532 case SIOCGIFNAME:
3533 case SIOCSIFNAME:
3534 case SIOCGMIIPHY:
3535 case SIOCGMIIREG:
3536 case SIOCSMIIREG:
3537 case SIOCBONDENSLAVE:
3538 case SIOCBONDRELEASE:
3539 case SIOCBONDSETHWADDR:
3540 case SIOCBONDCHANGEACTIVE:
3541 return compat_ifreq_ioctl(net, sock, cmd, argp);
3542
3543 case SIOCSARP:
3544 case SIOCGARP:
3545 case SIOCDARP:
3546 case SIOCOUTQNSD:
3547 case SIOCATMARK:
3548 return sock_do_ioctl(net, sock, cmd, arg);
3549 }
3550
3551 return -ENOIOCTLCMD;
3552 }
3553
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3554 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3555 unsigned long arg)
3556 {
3557 struct socket *sock = file->private_data;
3558 int ret = -ENOIOCTLCMD;
3559 struct sock *sk;
3560 struct net *net;
3561
3562 sk = sock->sk;
3563 net = sock_net(sk);
3564
3565 if (sock->ops->compat_ioctl)
3566 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3567
3568 if (ret == -ENOIOCTLCMD &&
3569 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3570 ret = compat_wext_handle_ioctl(net, cmd, arg);
3571
3572 if (ret == -ENOIOCTLCMD)
3573 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3574
3575 return ret;
3576 }
3577 #endif
3578
3579 /**
3580 * kernel_bind - bind an address to a socket (kernel space)
3581 * @sock: socket
3582 * @addr: address
3583 * @addrlen: length of address
3584 *
3585 * Returns 0 or an error.
3586 */
3587
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3588 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3589 {
3590 struct sockaddr_storage address;
3591
3592 memcpy(&address, addr, addrlen);
3593
3594 return sock->ops->bind(sock, (struct sockaddr *)&address, addrlen);
3595 }
3596 EXPORT_SYMBOL(kernel_bind);
3597
3598 /**
3599 * kernel_listen - move socket to listening state (kernel space)
3600 * @sock: socket
3601 * @backlog: pending connections queue size
3602 *
3603 * Returns 0 or an error.
3604 */
3605
kernel_listen(struct socket * sock,int backlog)3606 int kernel_listen(struct socket *sock, int backlog)
3607 {
3608 return sock->ops->listen(sock, backlog);
3609 }
3610 EXPORT_SYMBOL(kernel_listen);
3611
3612 /**
3613 * kernel_accept - accept a connection (kernel space)
3614 * @sock: listening socket
3615 * @newsock: new connected socket
3616 * @flags: flags
3617 *
3618 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3619 * If it fails, @newsock is guaranteed to be %NULL.
3620 * Returns 0 or an error.
3621 */
3622
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3623 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3624 {
3625 struct sock *sk = sock->sk;
3626 int err;
3627
3628 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3629 newsock);
3630 if (err < 0)
3631 goto done;
3632
3633 err = sock->ops->accept(sock, *newsock, flags, true);
3634 if (err < 0) {
3635 sock_release(*newsock);
3636 *newsock = NULL;
3637 goto done;
3638 }
3639
3640 (*newsock)->ops = sock->ops;
3641 __module_get((*newsock)->ops->owner);
3642
3643 done:
3644 return err;
3645 }
3646 EXPORT_SYMBOL(kernel_accept);
3647
3648 /**
3649 * kernel_connect - connect a socket (kernel space)
3650 * @sock: socket
3651 * @addr: address
3652 * @addrlen: address length
3653 * @flags: flags (O_NONBLOCK, ...)
3654 *
3655 * For datagram sockets, @addr is the addres to which datagrams are sent
3656 * by default, and the only address from which datagrams are received.
3657 * For stream sockets, attempts to connect to @addr.
3658 * Returns 0 or an error code.
3659 */
3660
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3661 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3662 int flags)
3663 {
3664 struct sockaddr_storage address;
3665
3666 memcpy(&address, addr, addrlen);
3667
3668 return sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, flags);
3669 }
3670 EXPORT_SYMBOL(kernel_connect);
3671
3672 /**
3673 * kernel_getsockname - get the address which the socket is bound (kernel space)
3674 * @sock: socket
3675 * @addr: address holder
3676 *
3677 * Fills the @addr pointer with the address which the socket is bound.
3678 * Returns 0 or an error code.
3679 */
3680
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3681 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3682 {
3683 return sock->ops->getname(sock, addr, 0);
3684 }
3685 EXPORT_SYMBOL(kernel_getsockname);
3686
3687 /**
3688 * kernel_peername - get the address which the socket is connected (kernel space)
3689 * @sock: socket
3690 * @addr: address holder
3691 *
3692 * Fills the @addr pointer with the address which the socket is connected.
3693 * Returns 0 or an error code.
3694 */
3695
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3696 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3697 {
3698 return sock->ops->getname(sock, addr, 1);
3699 }
3700 EXPORT_SYMBOL(kernel_getpeername);
3701
3702 /**
3703 * kernel_getsockopt - get a socket option (kernel space)
3704 * @sock: socket
3705 * @level: API level (SOL_SOCKET, ...)
3706 * @optname: option tag
3707 * @optval: option value
3708 * @optlen: option length
3709 *
3710 * Assigns the option length to @optlen.
3711 * Returns 0 or an error.
3712 */
3713
kernel_getsockopt(struct socket * sock,int level,int optname,char * optval,int * optlen)3714 int kernel_getsockopt(struct socket *sock, int level, int optname,
3715 char *optval, int *optlen)
3716 {
3717 mm_segment_t oldfs = get_fs();
3718 char __user *uoptval;
3719 int __user *uoptlen;
3720 int err;
3721
3722 uoptval = (char __user __force *) optval;
3723 uoptlen = (int __user __force *) optlen;
3724
3725 set_fs(KERNEL_DS);
3726 if (level == SOL_SOCKET)
3727 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3728 else
3729 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3730 uoptlen);
3731 set_fs(oldfs);
3732 return err;
3733 }
3734 EXPORT_SYMBOL(kernel_getsockopt);
3735
3736 /**
3737 * kernel_setsockopt - set a socket option (kernel space)
3738 * @sock: socket
3739 * @level: API level (SOL_SOCKET, ...)
3740 * @optname: option tag
3741 * @optval: option value
3742 * @optlen: option length
3743 *
3744 * Returns 0 or an error.
3745 */
3746
kernel_setsockopt(struct socket * sock,int level,int optname,char * optval,unsigned int optlen)3747 int kernel_setsockopt(struct socket *sock, int level, int optname,
3748 char *optval, unsigned int optlen)
3749 {
3750 mm_segment_t oldfs = get_fs();
3751 char __user *uoptval;
3752 int err;
3753
3754 uoptval = (char __user __force *) optval;
3755
3756 set_fs(KERNEL_DS);
3757 if (level == SOL_SOCKET)
3758 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3759 else
3760 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3761 optlen);
3762 set_fs(oldfs);
3763 return err;
3764 }
3765 EXPORT_SYMBOL(kernel_setsockopt);
3766
3767 /**
3768 * kernel_sendpage - send a &page through a socket (kernel space)
3769 * @sock: socket
3770 * @page: page
3771 * @offset: page offset
3772 * @size: total size in bytes
3773 * @flags: flags (MSG_DONTWAIT, ...)
3774 *
3775 * Returns the total amount sent in bytes or an error.
3776 */
3777
kernel_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)3778 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3779 size_t size, int flags)
3780 {
3781 if (sock->ops->sendpage)
3782 return sock->ops->sendpage(sock, page, offset, size, flags);
3783
3784 return sock_no_sendpage(sock, page, offset, size, flags);
3785 }
3786 EXPORT_SYMBOL(kernel_sendpage);
3787
3788 /**
3789 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3790 * @sk: sock
3791 * @page: page
3792 * @offset: page offset
3793 * @size: total size in bytes
3794 * @flags: flags (MSG_DONTWAIT, ...)
3795 *
3796 * Returns the total amount sent in bytes or an error.
3797 * Caller must hold @sk.
3798 */
3799
kernel_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)3800 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3801 size_t size, int flags)
3802 {
3803 struct socket *sock = sk->sk_socket;
3804
3805 if (sock->ops->sendpage_locked)
3806 return sock->ops->sendpage_locked(sk, page, offset, size,
3807 flags);
3808
3809 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3810 }
3811 EXPORT_SYMBOL(kernel_sendpage_locked);
3812
3813 /**
3814 * kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3815 * @sock: socket
3816 * @how: connection part
3817 *
3818 * Returns 0 or an error.
3819 */
3820
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3821 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3822 {
3823 return sock->ops->shutdown(sock, how);
3824 }
3825 EXPORT_SYMBOL(kernel_sock_shutdown);
3826
3827 /**
3828 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3829 * @sk: socket
3830 *
3831 * This routine returns the IP overhead imposed by a socket i.e.
3832 * the length of the underlying IP header, depending on whether
3833 * this is an IPv4 or IPv6 socket and the length from IP options turned
3834 * on at the socket. Assumes that the caller has a lock on the socket.
3835 */
3836
kernel_sock_ip_overhead(struct sock * sk)3837 u32 kernel_sock_ip_overhead(struct sock *sk)
3838 {
3839 struct inet_sock *inet;
3840 struct ip_options_rcu *opt;
3841 u32 overhead = 0;
3842 #if IS_ENABLED(CONFIG_IPV6)
3843 struct ipv6_pinfo *np;
3844 struct ipv6_txoptions *optv6 = NULL;
3845 #endif /* IS_ENABLED(CONFIG_IPV6) */
3846
3847 if (!sk)
3848 return overhead;
3849
3850 switch (sk->sk_family) {
3851 case AF_INET:
3852 inet = inet_sk(sk);
3853 overhead += sizeof(struct iphdr);
3854 opt = rcu_dereference_protected(inet->inet_opt,
3855 sock_owned_by_user(sk));
3856 if (opt)
3857 overhead += opt->opt.optlen;
3858 return overhead;
3859 #if IS_ENABLED(CONFIG_IPV6)
3860 case AF_INET6:
3861 np = inet6_sk(sk);
3862 overhead += sizeof(struct ipv6hdr);
3863 if (np)
3864 optv6 = rcu_dereference_protected(np->opt,
3865 sock_owned_by_user(sk));
3866 if (optv6)
3867 overhead += (optv6->opt_flen + optv6->opt_nflen);
3868 return overhead;
3869 #endif /* IS_ENABLED(CONFIG_IPV6) */
3870 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3871 return overhead;
3872 }
3873 }
3874 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3875