• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/block_dev.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
7  */
8 
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/fcntl.h>
12 #include <linux/slab.h>
13 #include <linux/kmod.h>
14 #include <linux/major.h>
15 #include <linux/device_cgroup.h>
16 #include <linux/highmem.h>
17 #include <linux/blkdev.h>
18 #include <linux/backing-dev.h>
19 #include <linux/module.h>
20 #include <linux/blkpg.h>
21 #include <linux/magic.h>
22 #include <linux/dax.h>
23 #include <linux/buffer_head.h>
24 #include <linux/swap.h>
25 #include <linux/pagevec.h>
26 #include <linux/writeback.h>
27 #include <linux/mpage.h>
28 #include <linux/mount.h>
29 #include <linux/pseudo_fs.h>
30 #include <linux/uio.h>
31 #include <linux/namei.h>
32 #include <linux/log2.h>
33 #include <linux/cleancache.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
37 #include <linux/suspend.h>
38 #include "internal.h"
39 
40 struct bdev_inode {
41 	struct block_device bdev;
42 	struct inode vfs_inode;
43 };
44 
45 static const struct address_space_operations def_blk_aops;
46 
BDEV_I(struct inode * inode)47 static inline struct bdev_inode *BDEV_I(struct inode *inode)
48 {
49 	return container_of(inode, struct bdev_inode, vfs_inode);
50 }
51 
I_BDEV(struct inode * inode)52 struct block_device *I_BDEV(struct inode *inode)
53 {
54 	return &BDEV_I(inode)->bdev;
55 }
56 EXPORT_SYMBOL(I_BDEV);
57 
bdev_write_inode(struct block_device * bdev)58 static void bdev_write_inode(struct block_device *bdev)
59 {
60 	struct inode *inode = bdev->bd_inode;
61 	int ret;
62 
63 	spin_lock(&inode->i_lock);
64 	while (inode->i_state & I_DIRTY) {
65 		spin_unlock(&inode->i_lock);
66 		ret = write_inode_now(inode, true);
67 		if (ret) {
68 			char name[BDEVNAME_SIZE];
69 			pr_warn_ratelimited("VFS: Dirty inode writeback failed "
70 					    "for block device %s (err=%d).\n",
71 					    bdevname(bdev, name), ret);
72 		}
73 		spin_lock(&inode->i_lock);
74 	}
75 	spin_unlock(&inode->i_lock);
76 }
77 
78 /* Kill _all_ buffers and pagecache , dirty or not.. */
kill_bdev(struct block_device * bdev)79 void kill_bdev(struct block_device *bdev)
80 {
81 	struct address_space *mapping = bdev->bd_inode->i_mapping;
82 
83 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
84 		return;
85 
86 	invalidate_bh_lrus();
87 	truncate_inode_pages(mapping, 0);
88 }
89 EXPORT_SYMBOL(kill_bdev);
90 
91 /* Invalidate clean unused buffers and pagecache. */
invalidate_bdev(struct block_device * bdev)92 void invalidate_bdev(struct block_device *bdev)
93 {
94 	struct address_space *mapping = bdev->bd_inode->i_mapping;
95 
96 	if (mapping->nrpages) {
97 		invalidate_bh_lrus();
98 		lru_add_drain_all();	/* make sure all lru add caches are flushed */
99 		invalidate_mapping_pages(mapping, 0, -1);
100 	}
101 	/* 99% of the time, we don't need to flush the cleancache on the bdev.
102 	 * But, for the strange corners, lets be cautious
103 	 */
104 	cleancache_invalidate_inode(mapping);
105 }
106 EXPORT_SYMBOL(invalidate_bdev);
107 
set_init_blocksize(struct block_device * bdev)108 static void set_init_blocksize(struct block_device *bdev)
109 {
110 	unsigned bsize = bdev_logical_block_size(bdev);
111 	loff_t size = i_size_read(bdev->bd_inode);
112 
113 	while (bsize < PAGE_SIZE) {
114 		if (size & bsize)
115 			break;
116 		bsize <<= 1;
117 	}
118 	bdev->bd_block_size = bsize;
119 	bdev->bd_inode->i_blkbits = blksize_bits(bsize);
120 }
121 
set_blocksize(struct block_device * bdev,int size)122 int set_blocksize(struct block_device *bdev, int size)
123 {
124 	/* Size must be a power of two, and between 512 and PAGE_SIZE */
125 	if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
126 		return -EINVAL;
127 
128 	/* Size cannot be smaller than the size supported by the device */
129 	if (size < bdev_logical_block_size(bdev))
130 		return -EINVAL;
131 
132 	/* Don't change the size if it is same as current */
133 	if (bdev->bd_block_size != size) {
134 		sync_blockdev(bdev);
135 		bdev->bd_block_size = size;
136 		bdev->bd_inode->i_blkbits = blksize_bits(size);
137 		kill_bdev(bdev);
138 	}
139 	return 0;
140 }
141 
142 EXPORT_SYMBOL(set_blocksize);
143 
sb_set_blocksize(struct super_block * sb,int size)144 int sb_set_blocksize(struct super_block *sb, int size)
145 {
146 	if (set_blocksize(sb->s_bdev, size))
147 		return 0;
148 	/* If we get here, we know size is power of two
149 	 * and it's value is between 512 and PAGE_SIZE */
150 	sb->s_blocksize = size;
151 	sb->s_blocksize_bits = blksize_bits(size);
152 	return sb->s_blocksize;
153 }
154 
155 EXPORT_SYMBOL(sb_set_blocksize);
156 
sb_min_blocksize(struct super_block * sb,int size)157 int sb_min_blocksize(struct super_block *sb, int size)
158 {
159 	int minsize = bdev_logical_block_size(sb->s_bdev);
160 	if (size < minsize)
161 		size = minsize;
162 	return sb_set_blocksize(sb, size);
163 }
164 
165 EXPORT_SYMBOL(sb_min_blocksize);
166 
167 static int
blkdev_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)168 blkdev_get_block(struct inode *inode, sector_t iblock,
169 		struct buffer_head *bh, int create)
170 {
171 	bh->b_bdev = I_BDEV(inode);
172 	bh->b_blocknr = iblock;
173 	set_buffer_mapped(bh);
174 	return 0;
175 }
176 
bdev_file_inode(struct file * file)177 static struct inode *bdev_file_inode(struct file *file)
178 {
179 	return file->f_mapping->host;
180 }
181 
dio_bio_write_op(struct kiocb * iocb)182 static unsigned int dio_bio_write_op(struct kiocb *iocb)
183 {
184 	unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
185 
186 	/* avoid the need for a I/O completion work item */
187 	if (iocb->ki_flags & IOCB_DSYNC)
188 		op |= REQ_FUA;
189 	return op;
190 }
191 
192 #define DIO_INLINE_BIO_VECS 4
193 
blkdev_bio_end_io_simple(struct bio * bio)194 static void blkdev_bio_end_io_simple(struct bio *bio)
195 {
196 	struct task_struct *waiter = bio->bi_private;
197 
198 	WRITE_ONCE(bio->bi_private, NULL);
199 	blk_wake_io_task(waiter);
200 }
201 
202 static ssize_t
__blkdev_direct_IO_simple(struct kiocb * iocb,struct iov_iter * iter,int nr_pages)203 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
204 		int nr_pages)
205 {
206 	struct file *file = iocb->ki_filp;
207 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
208 	struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs;
209 	loff_t pos = iocb->ki_pos;
210 	bool should_dirty = false;
211 	struct bio bio;
212 	ssize_t ret;
213 	blk_qc_t qc;
214 
215 	if ((pos | iov_iter_alignment(iter)) &
216 	    (bdev_logical_block_size(bdev) - 1))
217 		return -EINVAL;
218 
219 	if (nr_pages <= DIO_INLINE_BIO_VECS)
220 		vecs = inline_vecs;
221 	else {
222 		vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
223 				     GFP_KERNEL);
224 		if (!vecs)
225 			return -ENOMEM;
226 	}
227 
228 	bio_init(&bio, vecs, nr_pages);
229 	bio_set_dev(&bio, bdev);
230 	bio.bi_iter.bi_sector = pos >> 9;
231 	bio.bi_write_hint = iocb->ki_hint;
232 	bio.bi_private = current;
233 	bio.bi_end_io = blkdev_bio_end_io_simple;
234 	bio.bi_ioprio = iocb->ki_ioprio;
235 
236 	ret = bio_iov_iter_get_pages(&bio, iter);
237 	if (unlikely(ret))
238 		goto out;
239 	ret = bio.bi_iter.bi_size;
240 
241 	if (iov_iter_rw(iter) == READ) {
242 		bio.bi_opf = REQ_OP_READ;
243 		if (iter_is_iovec(iter))
244 			should_dirty = true;
245 	} else {
246 		bio.bi_opf = dio_bio_write_op(iocb);
247 		task_io_account_write(ret);
248 	}
249 	if (iocb->ki_flags & IOCB_NOWAIT)
250 		bio.bi_opf |= REQ_NOWAIT;
251 	if (iocb->ki_flags & IOCB_HIPRI)
252 		bio_set_polled(&bio, iocb);
253 
254 	qc = submit_bio(&bio);
255 	for (;;) {
256 		set_current_state(TASK_UNINTERRUPTIBLE);
257 		if (!READ_ONCE(bio.bi_private))
258 			break;
259 		if (!(iocb->ki_flags & IOCB_HIPRI) ||
260 		    !blk_poll(bdev_get_queue(bdev), qc, true))
261 			io_schedule();
262 	}
263 	__set_current_state(TASK_RUNNING);
264 
265 	bio_release_pages(&bio, should_dirty);
266 	if (unlikely(bio.bi_status))
267 		ret = blk_status_to_errno(bio.bi_status);
268 
269 out:
270 	if (vecs != inline_vecs)
271 		kfree(vecs);
272 
273 	bio_uninit(&bio);
274 
275 	return ret;
276 }
277 
278 struct blkdev_dio {
279 	union {
280 		struct kiocb		*iocb;
281 		struct task_struct	*waiter;
282 	};
283 	size_t			size;
284 	atomic_t		ref;
285 	bool			multi_bio : 1;
286 	bool			should_dirty : 1;
287 	bool			is_sync : 1;
288 	struct bio		bio;
289 };
290 
291 static struct bio_set blkdev_dio_pool;
292 
blkdev_iopoll(struct kiocb * kiocb,bool wait)293 static int blkdev_iopoll(struct kiocb *kiocb, bool wait)
294 {
295 	struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host);
296 	struct request_queue *q = bdev_get_queue(bdev);
297 
298 	return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait);
299 }
300 
blkdev_bio_end_io(struct bio * bio)301 static void blkdev_bio_end_io(struct bio *bio)
302 {
303 	struct blkdev_dio *dio = bio->bi_private;
304 	bool should_dirty = dio->should_dirty;
305 
306 	if (bio->bi_status && !dio->bio.bi_status)
307 		dio->bio.bi_status = bio->bi_status;
308 
309 	if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
310 		if (!dio->is_sync) {
311 			struct kiocb *iocb = dio->iocb;
312 			ssize_t ret;
313 
314 			if (likely(!dio->bio.bi_status)) {
315 				ret = dio->size;
316 				iocb->ki_pos += ret;
317 			} else {
318 				ret = blk_status_to_errno(dio->bio.bi_status);
319 			}
320 
321 			dio->iocb->ki_complete(iocb, ret, 0);
322 			if (dio->multi_bio)
323 				bio_put(&dio->bio);
324 		} else {
325 			struct task_struct *waiter = dio->waiter;
326 
327 			WRITE_ONCE(dio->waiter, NULL);
328 			blk_wake_io_task(waiter);
329 		}
330 	}
331 
332 	if (should_dirty) {
333 		bio_check_pages_dirty(bio);
334 	} else {
335 		bio_release_pages(bio, false);
336 		bio_put(bio);
337 	}
338 }
339 
340 static ssize_t
__blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter,int nr_pages)341 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
342 {
343 	struct file *file = iocb->ki_filp;
344 	struct inode *inode = bdev_file_inode(file);
345 	struct block_device *bdev = I_BDEV(inode);
346 	struct blk_plug plug;
347 	struct blkdev_dio *dio;
348 	struct bio *bio;
349 	bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
350 	bool is_read = (iov_iter_rw(iter) == READ), is_sync;
351 	loff_t pos = iocb->ki_pos;
352 	blk_qc_t qc = BLK_QC_T_NONE;
353 	int ret = 0;
354 
355 	if ((pos | iov_iter_alignment(iter)) &
356 	    (bdev_logical_block_size(bdev) - 1))
357 		return -EINVAL;
358 
359 	bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
360 
361 	dio = container_of(bio, struct blkdev_dio, bio);
362 	dio->is_sync = is_sync = is_sync_kiocb(iocb);
363 	if (dio->is_sync) {
364 		dio->waiter = current;
365 		bio_get(bio);
366 	} else {
367 		dio->iocb = iocb;
368 	}
369 
370 	dio->size = 0;
371 	dio->multi_bio = false;
372 	dio->should_dirty = is_read && iter_is_iovec(iter);
373 
374 	/*
375 	 * Don't plug for HIPRI/polled IO, as those should go straight
376 	 * to issue
377 	 */
378 	if (!is_poll)
379 		blk_start_plug(&plug);
380 
381 	for (;;) {
382 		bio_set_dev(bio, bdev);
383 		bio->bi_iter.bi_sector = pos >> 9;
384 		bio->bi_write_hint = iocb->ki_hint;
385 		bio->bi_private = dio;
386 		bio->bi_end_io = blkdev_bio_end_io;
387 		bio->bi_ioprio = iocb->ki_ioprio;
388 
389 		ret = bio_iov_iter_get_pages(bio, iter);
390 		if (unlikely(ret)) {
391 			bio->bi_status = BLK_STS_IOERR;
392 			bio_endio(bio);
393 			break;
394 		}
395 
396 		if (is_read) {
397 			bio->bi_opf = REQ_OP_READ;
398 			if (dio->should_dirty)
399 				bio_set_pages_dirty(bio);
400 		} else {
401 			bio->bi_opf = dio_bio_write_op(iocb);
402 			task_io_account_write(bio->bi_iter.bi_size);
403 		}
404 		if (iocb->ki_flags & IOCB_NOWAIT)
405 			bio->bi_opf |= REQ_NOWAIT;
406 
407 		dio->size += bio->bi_iter.bi_size;
408 		pos += bio->bi_iter.bi_size;
409 
410 		nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
411 		if (!nr_pages) {
412 			bool polled = false;
413 
414 			if (iocb->ki_flags & IOCB_HIPRI) {
415 				bio_set_polled(bio, iocb);
416 				polled = true;
417 			}
418 
419 			qc = submit_bio(bio);
420 
421 			if (polled)
422 				WRITE_ONCE(iocb->ki_cookie, qc);
423 			break;
424 		}
425 
426 		if (!dio->multi_bio) {
427 			/*
428 			 * AIO needs an extra reference to ensure the dio
429 			 * structure which is embedded into the first bio
430 			 * stays around.
431 			 */
432 			if (!is_sync)
433 				bio_get(bio);
434 			dio->multi_bio = true;
435 			atomic_set(&dio->ref, 2);
436 		} else {
437 			atomic_inc(&dio->ref);
438 		}
439 
440 		submit_bio(bio);
441 		bio = bio_alloc(GFP_KERNEL, nr_pages);
442 	}
443 
444 	if (!is_poll)
445 		blk_finish_plug(&plug);
446 
447 	if (!is_sync)
448 		return -EIOCBQUEUED;
449 
450 	for (;;) {
451 		set_current_state(TASK_UNINTERRUPTIBLE);
452 		if (!READ_ONCE(dio->waiter))
453 			break;
454 
455 		if (!(iocb->ki_flags & IOCB_HIPRI) ||
456 		    !blk_poll(bdev_get_queue(bdev), qc, true))
457 			io_schedule();
458 	}
459 	__set_current_state(TASK_RUNNING);
460 
461 	if (!ret)
462 		ret = blk_status_to_errno(dio->bio.bi_status);
463 	if (likely(!ret))
464 		ret = dio->size;
465 
466 	bio_put(&dio->bio);
467 	return ret;
468 }
469 
470 static ssize_t
blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter)471 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
472 {
473 	int nr_pages;
474 
475 	nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
476 	if (!nr_pages)
477 		return 0;
478 	if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
479 		return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
480 
481 	return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
482 }
483 
blkdev_init(void)484 static __init int blkdev_init(void)
485 {
486 	return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
487 }
488 module_init(blkdev_init);
489 
__sync_blockdev(struct block_device * bdev,int wait)490 int __sync_blockdev(struct block_device *bdev, int wait)
491 {
492 	if (!bdev)
493 		return 0;
494 	if (!wait)
495 		return filemap_flush(bdev->bd_inode->i_mapping);
496 	return filemap_write_and_wait(bdev->bd_inode->i_mapping);
497 }
498 
499 /*
500  * Write out and wait upon all the dirty data associated with a block
501  * device via its mapping.  Does not take the superblock lock.
502  */
sync_blockdev(struct block_device * bdev)503 int sync_blockdev(struct block_device *bdev)
504 {
505 	return __sync_blockdev(bdev, 1);
506 }
507 EXPORT_SYMBOL(sync_blockdev);
508 
509 /*
510  * Write out and wait upon all dirty data associated with this
511  * device.   Filesystem data as well as the underlying block
512  * device.  Takes the superblock lock.
513  */
fsync_bdev(struct block_device * bdev)514 int fsync_bdev(struct block_device *bdev)
515 {
516 	struct super_block *sb = get_super(bdev);
517 	if (sb) {
518 		int res = sync_filesystem(sb);
519 		drop_super(sb);
520 		return res;
521 	}
522 	return sync_blockdev(bdev);
523 }
524 EXPORT_SYMBOL(fsync_bdev);
525 
526 /**
527  * freeze_bdev  --  lock a filesystem and force it into a consistent state
528  * @bdev:	blockdevice to lock
529  *
530  * If a superblock is found on this device, we take the s_umount semaphore
531  * on it to make sure nobody unmounts until the snapshot creation is done.
532  * The reference counter (bd_fsfreeze_count) guarantees that only the last
533  * unfreeze process can unfreeze the frozen filesystem actually when multiple
534  * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
535  * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
536  * actually.
537  */
freeze_bdev(struct block_device * bdev)538 struct super_block *freeze_bdev(struct block_device *bdev)
539 {
540 	struct super_block *sb;
541 	int error = 0;
542 
543 	mutex_lock(&bdev->bd_fsfreeze_mutex);
544 	if (++bdev->bd_fsfreeze_count > 1) {
545 		/*
546 		 * We don't even need to grab a reference - the first call
547 		 * to freeze_bdev grab an active reference and only the last
548 		 * thaw_bdev drops it.
549 		 */
550 		sb = get_super(bdev);
551 		if (sb)
552 			drop_super(sb);
553 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
554 		return sb;
555 	}
556 
557 	sb = get_active_super(bdev);
558 	if (!sb)
559 		goto out;
560 	if (sb->s_op->freeze_super)
561 		error = sb->s_op->freeze_super(sb);
562 	else
563 		error = freeze_super(sb);
564 	if (error) {
565 		deactivate_super(sb);
566 		bdev->bd_fsfreeze_count--;
567 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
568 		return ERR_PTR(error);
569 	}
570 	deactivate_super(sb);
571  out:
572 	sync_blockdev(bdev);
573 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
574 	return sb;	/* thaw_bdev releases s->s_umount */
575 }
576 EXPORT_SYMBOL(freeze_bdev);
577 
578 /**
579  * thaw_bdev  -- unlock filesystem
580  * @bdev:	blockdevice to unlock
581  * @sb:		associated superblock
582  *
583  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
584  */
thaw_bdev(struct block_device * bdev,struct super_block * sb)585 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
586 {
587 	int error = -EINVAL;
588 
589 	mutex_lock(&bdev->bd_fsfreeze_mutex);
590 	if (!bdev->bd_fsfreeze_count)
591 		goto out;
592 
593 	error = 0;
594 	if (--bdev->bd_fsfreeze_count > 0)
595 		goto out;
596 
597 	if (!sb)
598 		goto out;
599 
600 	if (sb->s_op->thaw_super)
601 		error = sb->s_op->thaw_super(sb);
602 	else
603 		error = thaw_super(sb);
604 	if (error)
605 		bdev->bd_fsfreeze_count++;
606 out:
607 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
608 	return error;
609 }
610 EXPORT_SYMBOL(thaw_bdev);
611 
blkdev_writepage(struct page * page,struct writeback_control * wbc)612 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
613 {
614 	return block_write_full_page(page, blkdev_get_block, wbc);
615 }
616 
blkdev_readpage(struct file * file,struct page * page)617 static int blkdev_readpage(struct file * file, struct page * page)
618 {
619 	return block_read_full_page(page, blkdev_get_block);
620 }
621 
blkdev_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)622 static int blkdev_readpages(struct file *file, struct address_space *mapping,
623 			struct list_head *pages, unsigned nr_pages)
624 {
625 	return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
626 }
627 
blkdev_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)628 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
629 			loff_t pos, unsigned len, unsigned flags,
630 			struct page **pagep, void **fsdata)
631 {
632 	return block_write_begin(mapping, pos, len, flags, pagep,
633 				 blkdev_get_block);
634 }
635 
blkdev_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)636 static int blkdev_write_end(struct file *file, struct address_space *mapping,
637 			loff_t pos, unsigned len, unsigned copied,
638 			struct page *page, void *fsdata)
639 {
640 	int ret;
641 	ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
642 
643 	unlock_page(page);
644 	put_page(page);
645 
646 	return ret;
647 }
648 
649 /*
650  * private llseek:
651  * for a block special file file_inode(file)->i_size is zero
652  * so we compute the size by hand (just as in block_read/write above)
653  */
block_llseek(struct file * file,loff_t offset,int whence)654 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
655 {
656 	struct inode *bd_inode = bdev_file_inode(file);
657 	loff_t retval;
658 
659 	inode_lock(bd_inode);
660 	retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
661 	inode_unlock(bd_inode);
662 	return retval;
663 }
664 
blkdev_fsync(struct file * filp,loff_t start,loff_t end,int datasync)665 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
666 {
667 	struct inode *bd_inode = bdev_file_inode(filp);
668 	struct block_device *bdev = I_BDEV(bd_inode);
669 	int error;
670 
671 	error = file_write_and_wait_range(filp, start, end);
672 	if (error)
673 		return error;
674 
675 	/*
676 	 * There is no need to serialise calls to blkdev_issue_flush with
677 	 * i_mutex and doing so causes performance issues with concurrent
678 	 * O_SYNC writers to a block device.
679 	 */
680 	error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
681 	if (error == -EOPNOTSUPP)
682 		error = 0;
683 
684 	return error;
685 }
686 EXPORT_SYMBOL(blkdev_fsync);
687 
688 /**
689  * bdev_read_page() - Start reading a page from a block device
690  * @bdev: The device to read the page from
691  * @sector: The offset on the device to read the page to (need not be aligned)
692  * @page: The page to read
693  *
694  * On entry, the page should be locked.  It will be unlocked when the page
695  * has been read.  If the block driver implements rw_page synchronously,
696  * that will be true on exit from this function, but it need not be.
697  *
698  * Errors returned by this function are usually "soft", eg out of memory, or
699  * queue full; callers should try a different route to read this page rather
700  * than propagate an error back up the stack.
701  *
702  * Return: negative errno if an error occurs, 0 if submission was successful.
703  */
bdev_read_page(struct block_device * bdev,sector_t sector,struct page * page)704 int bdev_read_page(struct block_device *bdev, sector_t sector,
705 			struct page *page)
706 {
707 	const struct block_device_operations *ops = bdev->bd_disk->fops;
708 	int result = -EOPNOTSUPP;
709 
710 	if (!ops->rw_page || bdev_get_integrity(bdev))
711 		return result;
712 
713 	result = blk_queue_enter(bdev->bd_queue, 0);
714 	if (result)
715 		return result;
716 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
717 			      REQ_OP_READ);
718 	blk_queue_exit(bdev->bd_queue);
719 	return result;
720 }
721 EXPORT_SYMBOL_GPL(bdev_read_page);
722 
723 /**
724  * bdev_write_page() - Start writing a page to a block device
725  * @bdev: The device to write the page to
726  * @sector: The offset on the device to write the page to (need not be aligned)
727  * @page: The page to write
728  * @wbc: The writeback_control for the write
729  *
730  * On entry, the page should be locked and not currently under writeback.
731  * On exit, if the write started successfully, the page will be unlocked and
732  * under writeback.  If the write failed already (eg the driver failed to
733  * queue the page to the device), the page will still be locked.  If the
734  * caller is a ->writepage implementation, it will need to unlock the page.
735  *
736  * Errors returned by this function are usually "soft", eg out of memory, or
737  * queue full; callers should try a different route to write this page rather
738  * than propagate an error back up the stack.
739  *
740  * Return: negative errno if an error occurs, 0 if submission was successful.
741  */
bdev_write_page(struct block_device * bdev,sector_t sector,struct page * page,struct writeback_control * wbc)742 int bdev_write_page(struct block_device *bdev, sector_t sector,
743 			struct page *page, struct writeback_control *wbc)
744 {
745 	int result;
746 	const struct block_device_operations *ops = bdev->bd_disk->fops;
747 
748 	if (!ops->rw_page || bdev_get_integrity(bdev))
749 		return -EOPNOTSUPP;
750 	result = blk_queue_enter(bdev->bd_queue, 0);
751 	if (result)
752 		return result;
753 
754 	set_page_writeback(page);
755 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
756 			      REQ_OP_WRITE);
757 	if (result) {
758 		end_page_writeback(page);
759 	} else {
760 		clean_page_buffers(page);
761 		unlock_page(page);
762 	}
763 	blk_queue_exit(bdev->bd_queue);
764 	return result;
765 }
766 EXPORT_SYMBOL_GPL(bdev_write_page);
767 
768 /*
769  * pseudo-fs
770  */
771 
772 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
773 static struct kmem_cache * bdev_cachep __read_mostly;
774 
bdev_alloc_inode(struct super_block * sb)775 static struct inode *bdev_alloc_inode(struct super_block *sb)
776 {
777 	struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
778 	if (!ei)
779 		return NULL;
780 	return &ei->vfs_inode;
781 }
782 
bdev_free_inode(struct inode * inode)783 static void bdev_free_inode(struct inode *inode)
784 {
785 	kmem_cache_free(bdev_cachep, BDEV_I(inode));
786 }
787 
init_once(void * foo)788 static void init_once(void *foo)
789 {
790 	struct bdev_inode *ei = (struct bdev_inode *) foo;
791 	struct block_device *bdev = &ei->bdev;
792 
793 	memset(bdev, 0, sizeof(*bdev));
794 	mutex_init(&bdev->bd_mutex);
795 	INIT_LIST_HEAD(&bdev->bd_list);
796 #ifdef CONFIG_SYSFS
797 	INIT_LIST_HEAD(&bdev->bd_holder_disks);
798 #endif
799 	bdev->bd_bdi = &noop_backing_dev_info;
800 	inode_init_once(&ei->vfs_inode);
801 	/* Initialize mutex for freeze. */
802 	mutex_init(&bdev->bd_fsfreeze_mutex);
803 }
804 
bdev_evict_inode(struct inode * inode)805 static void bdev_evict_inode(struct inode *inode)
806 {
807 	struct block_device *bdev = &BDEV_I(inode)->bdev;
808 	truncate_inode_pages_final(&inode->i_data);
809 	invalidate_inode_buffers(inode); /* is it needed here? */
810 	clear_inode(inode);
811 	spin_lock(&bdev_lock);
812 	list_del_init(&bdev->bd_list);
813 	spin_unlock(&bdev_lock);
814 	/* Detach inode from wb early as bdi_put() may free bdi->wb */
815 	inode_detach_wb(inode);
816 	if (bdev->bd_bdi != &noop_backing_dev_info) {
817 		bdi_put(bdev->bd_bdi);
818 		bdev->bd_bdi = &noop_backing_dev_info;
819 	}
820 }
821 
822 static const struct super_operations bdev_sops = {
823 	.statfs = simple_statfs,
824 	.alloc_inode = bdev_alloc_inode,
825 	.free_inode = bdev_free_inode,
826 	.drop_inode = generic_delete_inode,
827 	.evict_inode = bdev_evict_inode,
828 };
829 
bd_init_fs_context(struct fs_context * fc)830 static int bd_init_fs_context(struct fs_context *fc)
831 {
832 	struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC);
833 	if (!ctx)
834 		return -ENOMEM;
835 	fc->s_iflags |= SB_I_CGROUPWB;
836 	ctx->ops = &bdev_sops;
837 	return 0;
838 }
839 
840 static struct file_system_type bd_type = {
841 	.name		= "bdev",
842 	.init_fs_context = bd_init_fs_context,
843 	.kill_sb	= kill_anon_super,
844 };
845 
846 struct super_block *blockdev_superblock __read_mostly;
847 EXPORT_SYMBOL_GPL(blockdev_superblock);
848 
bdev_cache_init(void)849 void __init bdev_cache_init(void)
850 {
851 	int err;
852 	static struct vfsmount *bd_mnt;
853 
854 	bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
855 			0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
856 				SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
857 			init_once);
858 	err = register_filesystem(&bd_type);
859 	if (err)
860 		panic("Cannot register bdev pseudo-fs");
861 	bd_mnt = kern_mount(&bd_type);
862 	if (IS_ERR(bd_mnt))
863 		panic("Cannot create bdev pseudo-fs");
864 	blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
865 }
866 
867 /*
868  * Most likely _very_ bad one - but then it's hardly critical for small
869  * /dev and can be fixed when somebody will need really large one.
870  * Keep in mind that it will be fed through icache hash function too.
871  */
hash(dev_t dev)872 static inline unsigned long hash(dev_t dev)
873 {
874 	return MAJOR(dev)+MINOR(dev);
875 }
876 
bdev_test(struct inode * inode,void * data)877 static int bdev_test(struct inode *inode, void *data)
878 {
879 	return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
880 }
881 
bdev_set(struct inode * inode,void * data)882 static int bdev_set(struct inode *inode, void *data)
883 {
884 	BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
885 	return 0;
886 }
887 
888 static LIST_HEAD(all_bdevs);
889 
890 /*
891  * If there is a bdev inode for this device, unhash it so that it gets evicted
892  * as soon as last inode reference is dropped.
893  */
bdev_unhash_inode(dev_t dev)894 void bdev_unhash_inode(dev_t dev)
895 {
896 	struct inode *inode;
897 
898 	inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
899 	if (inode) {
900 		remove_inode_hash(inode);
901 		iput(inode);
902 	}
903 }
904 
bdget(dev_t dev)905 struct block_device *bdget(dev_t dev)
906 {
907 	struct block_device *bdev;
908 	struct inode *inode;
909 
910 	inode = iget5_locked(blockdev_superblock, hash(dev),
911 			bdev_test, bdev_set, &dev);
912 
913 	if (!inode)
914 		return NULL;
915 
916 	bdev = &BDEV_I(inode)->bdev;
917 
918 	if (inode->i_state & I_NEW) {
919 		bdev->bd_contains = NULL;
920 		bdev->bd_super = NULL;
921 		bdev->bd_inode = inode;
922 		bdev->bd_block_size = i_blocksize(inode);
923 		bdev->bd_part_count = 0;
924 		bdev->bd_invalidated = 0;
925 		inode->i_mode = S_IFBLK;
926 		inode->i_rdev = dev;
927 		inode->i_bdev = bdev;
928 		inode->i_data.a_ops = &def_blk_aops;
929 		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
930 		spin_lock(&bdev_lock);
931 		list_add(&bdev->bd_list, &all_bdevs);
932 		spin_unlock(&bdev_lock);
933 		unlock_new_inode(inode);
934 	}
935 	return bdev;
936 }
937 
938 EXPORT_SYMBOL(bdget);
939 
940 /**
941  * bdgrab -- Grab a reference to an already referenced block device
942  * @bdev:	Block device to grab a reference to.
943  */
bdgrab(struct block_device * bdev)944 struct block_device *bdgrab(struct block_device *bdev)
945 {
946 	ihold(bdev->bd_inode);
947 	return bdev;
948 }
949 EXPORT_SYMBOL(bdgrab);
950 
nr_blockdev_pages(void)951 long nr_blockdev_pages(void)
952 {
953 	struct block_device *bdev;
954 	long ret = 0;
955 	spin_lock(&bdev_lock);
956 	list_for_each_entry(bdev, &all_bdevs, bd_list) {
957 		ret += bdev->bd_inode->i_mapping->nrpages;
958 	}
959 	spin_unlock(&bdev_lock);
960 	return ret;
961 }
962 
bdput(struct block_device * bdev)963 void bdput(struct block_device *bdev)
964 {
965 	iput(bdev->bd_inode);
966 }
967 
968 EXPORT_SYMBOL(bdput);
969 
bd_acquire(struct inode * inode)970 static struct block_device *bd_acquire(struct inode *inode)
971 {
972 	struct block_device *bdev;
973 
974 	spin_lock(&bdev_lock);
975 	bdev = inode->i_bdev;
976 	if (bdev && !inode_unhashed(bdev->bd_inode)) {
977 		bdgrab(bdev);
978 		spin_unlock(&bdev_lock);
979 		return bdev;
980 	}
981 	spin_unlock(&bdev_lock);
982 
983 	/*
984 	 * i_bdev references block device inode that was already shut down
985 	 * (corresponding device got removed).  Remove the reference and look
986 	 * up block device inode again just in case new device got
987 	 * reestablished under the same device number.
988 	 */
989 	if (bdev)
990 		bd_forget(inode);
991 
992 	bdev = bdget(inode->i_rdev);
993 	if (bdev) {
994 		spin_lock(&bdev_lock);
995 		if (!inode->i_bdev) {
996 			/*
997 			 * We take an additional reference to bd_inode,
998 			 * and it's released in clear_inode() of inode.
999 			 * So, we can access it via ->i_mapping always
1000 			 * without igrab().
1001 			 */
1002 			bdgrab(bdev);
1003 			inode->i_bdev = bdev;
1004 			inode->i_mapping = bdev->bd_inode->i_mapping;
1005 		}
1006 		spin_unlock(&bdev_lock);
1007 	}
1008 	return bdev;
1009 }
1010 
1011 /* Call when you free inode */
1012 
bd_forget(struct inode * inode)1013 void bd_forget(struct inode *inode)
1014 {
1015 	struct block_device *bdev = NULL;
1016 
1017 	spin_lock(&bdev_lock);
1018 	if (!sb_is_blkdev_sb(inode->i_sb))
1019 		bdev = inode->i_bdev;
1020 	inode->i_bdev = NULL;
1021 	inode->i_mapping = &inode->i_data;
1022 	spin_unlock(&bdev_lock);
1023 
1024 	if (bdev)
1025 		bdput(bdev);
1026 }
1027 
1028 /**
1029  * bd_may_claim - test whether a block device can be claimed
1030  * @bdev: block device of interest
1031  * @whole: whole block device containing @bdev, may equal @bdev
1032  * @holder: holder trying to claim @bdev
1033  *
1034  * Test whether @bdev can be claimed by @holder.
1035  *
1036  * CONTEXT:
1037  * spin_lock(&bdev_lock).
1038  *
1039  * RETURNS:
1040  * %true if @bdev can be claimed, %false otherwise.
1041  */
bd_may_claim(struct block_device * bdev,struct block_device * whole,void * holder)1042 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1043 			 void *holder)
1044 {
1045 	if (bdev->bd_holder == holder)
1046 		return true;	 /* already a holder */
1047 	else if (bdev->bd_holder != NULL)
1048 		return false; 	 /* held by someone else */
1049 	else if (whole == bdev)
1050 		return true;  	 /* is a whole device which isn't held */
1051 
1052 	else if (whole->bd_holder == bd_may_claim)
1053 		return true; 	 /* is a partition of a device that is being partitioned */
1054 	else if (whole->bd_holder != NULL)
1055 		return false;	 /* is a partition of a held device */
1056 	else
1057 		return true;	 /* is a partition of an un-held device */
1058 }
1059 
1060 /**
1061  * bd_prepare_to_claim - prepare to claim a block device
1062  * @bdev: block device of interest
1063  * @whole: the whole device containing @bdev, may equal @bdev
1064  * @holder: holder trying to claim @bdev
1065  *
1066  * Prepare to claim @bdev.  This function fails if @bdev is already
1067  * claimed by another holder and waits if another claiming is in
1068  * progress.  This function doesn't actually claim.  On successful
1069  * return, the caller has ownership of bd_claiming and bd_holder[s].
1070  *
1071  * CONTEXT:
1072  * spin_lock(&bdev_lock).  Might release bdev_lock, sleep and regrab
1073  * it multiple times.
1074  *
1075  * RETURNS:
1076  * 0 if @bdev can be claimed, -EBUSY otherwise.
1077  */
bd_prepare_to_claim(struct block_device * bdev,struct block_device * whole,void * holder)1078 static int bd_prepare_to_claim(struct block_device *bdev,
1079 			       struct block_device *whole, void *holder)
1080 {
1081 retry:
1082 	/* if someone else claimed, fail */
1083 	if (!bd_may_claim(bdev, whole, holder))
1084 		return -EBUSY;
1085 
1086 	/* if claiming is already in progress, wait for it to finish */
1087 	if (whole->bd_claiming) {
1088 		wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1089 		DEFINE_WAIT(wait);
1090 
1091 		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1092 		spin_unlock(&bdev_lock);
1093 		schedule();
1094 		finish_wait(wq, &wait);
1095 		spin_lock(&bdev_lock);
1096 		goto retry;
1097 	}
1098 
1099 	/* yay, all mine */
1100 	return 0;
1101 }
1102 
bdev_get_gendisk(struct block_device * bdev,int * partno)1103 static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1104 {
1105 	struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1106 
1107 	if (!disk)
1108 		return NULL;
1109 	/*
1110 	 * Now that we hold gendisk reference we make sure bdev we looked up is
1111 	 * not stale. If it is, it means device got removed and created before
1112 	 * we looked up gendisk and we fail open in such case. Associating
1113 	 * unhashed bdev with newly created gendisk could lead to two bdevs
1114 	 * (and thus two independent caches) being associated with one device
1115 	 * which is bad.
1116 	 */
1117 	if (inode_unhashed(bdev->bd_inode)) {
1118 		put_disk_and_module(disk);
1119 		return NULL;
1120 	}
1121 	return disk;
1122 }
1123 
1124 /**
1125  * bd_start_claiming - start claiming a block device
1126  * @bdev: block device of interest
1127  * @holder: holder trying to claim @bdev
1128  *
1129  * @bdev is about to be opened exclusively.  Check @bdev can be opened
1130  * exclusively and mark that an exclusive open is in progress.  Each
1131  * successful call to this function must be matched with a call to
1132  * either bd_finish_claiming() or bd_abort_claiming() (which do not
1133  * fail).
1134  *
1135  * This function is used to gain exclusive access to the block device
1136  * without actually causing other exclusive open attempts to fail. It
1137  * should be used when the open sequence itself requires exclusive
1138  * access but may subsequently fail.
1139  *
1140  * CONTEXT:
1141  * Might sleep.
1142  *
1143  * RETURNS:
1144  * Pointer to the block device containing @bdev on success, ERR_PTR()
1145  * value on failure.
1146  */
bd_start_claiming(struct block_device * bdev,void * holder)1147 struct block_device *bd_start_claiming(struct block_device *bdev, void *holder)
1148 {
1149 	struct gendisk *disk;
1150 	struct block_device *whole;
1151 	int partno, err;
1152 
1153 	might_sleep();
1154 
1155 	/*
1156 	 * @bdev might not have been initialized properly yet, look up
1157 	 * and grab the outer block device the hard way.
1158 	 */
1159 	disk = bdev_get_gendisk(bdev, &partno);
1160 	if (!disk)
1161 		return ERR_PTR(-ENXIO);
1162 
1163 	/*
1164 	 * Normally, @bdev should equal what's returned from bdget_disk()
1165 	 * if partno is 0; however, some drivers (floppy) use multiple
1166 	 * bdev's for the same physical device and @bdev may be one of the
1167 	 * aliases.  Keep @bdev if partno is 0.  This means claimer
1168 	 * tracking is broken for those devices but it has always been that
1169 	 * way.
1170 	 */
1171 	if (partno)
1172 		whole = bdget_disk(disk, 0);
1173 	else
1174 		whole = bdgrab(bdev);
1175 
1176 	put_disk_and_module(disk);
1177 	if (!whole)
1178 		return ERR_PTR(-ENOMEM);
1179 
1180 	/* prepare to claim, if successful, mark claiming in progress */
1181 	spin_lock(&bdev_lock);
1182 
1183 	err = bd_prepare_to_claim(bdev, whole, holder);
1184 	if (err == 0) {
1185 		whole->bd_claiming = holder;
1186 		spin_unlock(&bdev_lock);
1187 		return whole;
1188 	} else {
1189 		spin_unlock(&bdev_lock);
1190 		bdput(whole);
1191 		return ERR_PTR(err);
1192 	}
1193 }
1194 EXPORT_SYMBOL(bd_start_claiming);
1195 
bd_clear_claiming(struct block_device * whole,void * holder)1196 static void bd_clear_claiming(struct block_device *whole, void *holder)
1197 {
1198 	lockdep_assert_held(&bdev_lock);
1199 	/* tell others that we're done */
1200 	BUG_ON(whole->bd_claiming != holder);
1201 	whole->bd_claiming = NULL;
1202 	wake_up_bit(&whole->bd_claiming, 0);
1203 }
1204 
1205 /**
1206  * bd_finish_claiming - finish claiming of a block device
1207  * @bdev: block device of interest
1208  * @whole: whole block device (returned from bd_start_claiming())
1209  * @holder: holder that has claimed @bdev
1210  *
1211  * Finish exclusive open of a block device. Mark the device as exlusively
1212  * open by the holder and wake up all waiters for exclusive open to finish.
1213  */
bd_finish_claiming(struct block_device * bdev,struct block_device * whole,void * holder)1214 void bd_finish_claiming(struct block_device *bdev, struct block_device *whole,
1215 			void *holder)
1216 {
1217 	spin_lock(&bdev_lock);
1218 	BUG_ON(!bd_may_claim(bdev, whole, holder));
1219 	/*
1220 	 * Note that for a whole device bd_holders will be incremented twice,
1221 	 * and bd_holder will be set to bd_may_claim before being set to holder
1222 	 */
1223 	whole->bd_holders++;
1224 	whole->bd_holder = bd_may_claim;
1225 	bdev->bd_holders++;
1226 	bdev->bd_holder = holder;
1227 	bd_clear_claiming(whole, holder);
1228 	spin_unlock(&bdev_lock);
1229 }
1230 EXPORT_SYMBOL(bd_finish_claiming);
1231 
1232 /**
1233  * bd_abort_claiming - abort claiming of a block device
1234  * @bdev: block device of interest
1235  * @whole: whole block device (returned from bd_start_claiming())
1236  * @holder: holder that has claimed @bdev
1237  *
1238  * Abort claiming of a block device when the exclusive open failed. This can be
1239  * also used when exclusive open is not actually desired and we just needed
1240  * to block other exclusive openers for a while.
1241  */
bd_abort_claiming(struct block_device * bdev,struct block_device * whole,void * holder)1242 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole,
1243 		       void *holder)
1244 {
1245 	spin_lock(&bdev_lock);
1246 	bd_clear_claiming(whole, holder);
1247 	spin_unlock(&bdev_lock);
1248 }
1249 EXPORT_SYMBOL(bd_abort_claiming);
1250 
1251 #ifdef CONFIG_SYSFS
1252 struct bd_holder_disk {
1253 	struct list_head	list;
1254 	struct gendisk		*disk;
1255 	int			refcnt;
1256 };
1257 
bd_find_holder_disk(struct block_device * bdev,struct gendisk * disk)1258 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1259 						  struct gendisk *disk)
1260 {
1261 	struct bd_holder_disk *holder;
1262 
1263 	list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1264 		if (holder->disk == disk)
1265 			return holder;
1266 	return NULL;
1267 }
1268 
add_symlink(struct kobject * from,struct kobject * to)1269 static int add_symlink(struct kobject *from, struct kobject *to)
1270 {
1271 	return sysfs_create_link(from, to, kobject_name(to));
1272 }
1273 
del_symlink(struct kobject * from,struct kobject * to)1274 static void del_symlink(struct kobject *from, struct kobject *to)
1275 {
1276 	sysfs_remove_link(from, kobject_name(to));
1277 }
1278 
1279 /**
1280  * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1281  * @bdev: the claimed slave bdev
1282  * @disk: the holding disk
1283  *
1284  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1285  *
1286  * This functions creates the following sysfs symlinks.
1287  *
1288  * - from "slaves" directory of the holder @disk to the claimed @bdev
1289  * - from "holders" directory of the @bdev to the holder @disk
1290  *
1291  * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1292  * passed to bd_link_disk_holder(), then:
1293  *
1294  *   /sys/block/dm-0/slaves/sda --> /sys/block/sda
1295  *   /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1296  *
1297  * The caller must have claimed @bdev before calling this function and
1298  * ensure that both @bdev and @disk are valid during the creation and
1299  * lifetime of these symlinks.
1300  *
1301  * CONTEXT:
1302  * Might sleep.
1303  *
1304  * RETURNS:
1305  * 0 on success, -errno on failure.
1306  */
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)1307 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1308 {
1309 	struct bd_holder_disk *holder;
1310 	int ret = 0;
1311 
1312 	mutex_lock(&bdev->bd_mutex);
1313 
1314 	WARN_ON_ONCE(!bdev->bd_holder);
1315 
1316 	/* FIXME: remove the following once add_disk() handles errors */
1317 	if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1318 		goto out_unlock;
1319 
1320 	holder = bd_find_holder_disk(bdev, disk);
1321 	if (holder) {
1322 		holder->refcnt++;
1323 		goto out_unlock;
1324 	}
1325 
1326 	holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1327 	if (!holder) {
1328 		ret = -ENOMEM;
1329 		goto out_unlock;
1330 	}
1331 
1332 	INIT_LIST_HEAD(&holder->list);
1333 	holder->disk = disk;
1334 	holder->refcnt = 1;
1335 
1336 	ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1337 	if (ret)
1338 		goto out_free;
1339 
1340 	ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1341 	if (ret)
1342 		goto out_del;
1343 	/*
1344 	 * bdev could be deleted beneath us which would implicitly destroy
1345 	 * the holder directory.  Hold on to it.
1346 	 */
1347 	kobject_get(bdev->bd_part->holder_dir);
1348 
1349 	list_add(&holder->list, &bdev->bd_holder_disks);
1350 	goto out_unlock;
1351 
1352 out_del:
1353 	del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1354 out_free:
1355 	kfree(holder);
1356 out_unlock:
1357 	mutex_unlock(&bdev->bd_mutex);
1358 	return ret;
1359 }
1360 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1361 
1362 /**
1363  * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1364  * @bdev: the calimed slave bdev
1365  * @disk: the holding disk
1366  *
1367  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1368  *
1369  * CONTEXT:
1370  * Might sleep.
1371  */
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)1372 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1373 {
1374 	struct bd_holder_disk *holder;
1375 
1376 	mutex_lock(&bdev->bd_mutex);
1377 
1378 	holder = bd_find_holder_disk(bdev, disk);
1379 
1380 	if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1381 		del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1382 		del_symlink(bdev->bd_part->holder_dir,
1383 			    &disk_to_dev(disk)->kobj);
1384 		kobject_put(bdev->bd_part->holder_dir);
1385 		list_del_init(&holder->list);
1386 		kfree(holder);
1387 	}
1388 
1389 	mutex_unlock(&bdev->bd_mutex);
1390 }
1391 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1392 #endif
1393 
1394 /**
1395  * flush_disk - invalidates all buffer-cache entries on a disk
1396  *
1397  * @bdev:      struct block device to be flushed
1398  * @kill_dirty: flag to guide handling of dirty inodes
1399  *
1400  * Invalidates all buffer-cache entries on a disk. It should be called
1401  * when a disk has been changed -- either by a media change or online
1402  * resize.
1403  */
flush_disk(struct block_device * bdev,bool kill_dirty)1404 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1405 {
1406 	if (__invalidate_device(bdev, kill_dirty)) {
1407 		printk(KERN_WARNING "VFS: busy inodes on changed media or "
1408 		       "resized disk %s\n",
1409 		       bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1410 	}
1411 	bdev->bd_invalidated = 1;
1412 }
1413 
1414 /**
1415  * check_disk_size_change - checks for disk size change and adjusts bdev size.
1416  * @disk: struct gendisk to check
1417  * @bdev: struct bdev to adjust.
1418  * @verbose: if %true log a message about a size change if there is any
1419  *
1420  * This routine checks to see if the bdev size does not match the disk size
1421  * and adjusts it if it differs. When shrinking the bdev size, its all caches
1422  * are freed.
1423  */
check_disk_size_change(struct gendisk * disk,struct block_device * bdev,bool verbose)1424 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev,
1425 		bool verbose)
1426 {
1427 	loff_t disk_size, bdev_size;
1428 
1429 	disk_size = (loff_t)get_capacity(disk) << 9;
1430 	bdev_size = i_size_read(bdev->bd_inode);
1431 	if (disk_size != bdev_size) {
1432 		if (verbose) {
1433 			printk(KERN_INFO
1434 			       "%s: detected capacity change from %lld to %lld\n",
1435 			       disk->disk_name, bdev_size, disk_size);
1436 		}
1437 		i_size_write(bdev->bd_inode, disk_size);
1438 		if (bdev_size > disk_size)
1439 			flush_disk(bdev, false);
1440 	}
1441 }
1442 
1443 /**
1444  * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1445  * @disk: struct gendisk to be revalidated
1446  *
1447  * This routine is a wrapper for lower-level driver's revalidate_disk
1448  * call-backs.  It is used to do common pre and post operations needed
1449  * for all revalidate_disk operations.
1450  */
revalidate_disk(struct gendisk * disk)1451 int revalidate_disk(struct gendisk *disk)
1452 {
1453 	int ret = 0;
1454 
1455 	if (disk->fops->revalidate_disk)
1456 		ret = disk->fops->revalidate_disk(disk);
1457 
1458 	/*
1459 	 * Hidden disks don't have associated bdev so there's no point in
1460 	 * revalidating it.
1461 	 */
1462 	if (!(disk->flags & GENHD_FL_HIDDEN)) {
1463 		struct block_device *bdev = bdget_disk(disk, 0);
1464 
1465 		if (!bdev)
1466 			return ret;
1467 
1468 		mutex_lock(&bdev->bd_mutex);
1469 		check_disk_size_change(disk, bdev, ret == 0);
1470 		bdev->bd_invalidated = 0;
1471 		mutex_unlock(&bdev->bd_mutex);
1472 		bdput(bdev);
1473 	}
1474 	return ret;
1475 }
1476 EXPORT_SYMBOL(revalidate_disk);
1477 
1478 /*
1479  * This routine checks whether a removable media has been changed,
1480  * and invalidates all buffer-cache-entries in that case. This
1481  * is a relatively slow routine, so we have to try to minimize using
1482  * it. Thus it is called only upon a 'mount' or 'open'. This
1483  * is the best way of combining speed and utility, I think.
1484  * People changing diskettes in the middle of an operation deserve
1485  * to lose :-)
1486  */
check_disk_change(struct block_device * bdev)1487 int check_disk_change(struct block_device *bdev)
1488 {
1489 	struct gendisk *disk = bdev->bd_disk;
1490 	const struct block_device_operations *bdops = disk->fops;
1491 	unsigned int events;
1492 
1493 	events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1494 				   DISK_EVENT_EJECT_REQUEST);
1495 	if (!(events & DISK_EVENT_MEDIA_CHANGE))
1496 		return 0;
1497 
1498 	flush_disk(bdev, true);
1499 	if (bdops->revalidate_disk)
1500 		bdops->revalidate_disk(bdev->bd_disk);
1501 	return 1;
1502 }
1503 
1504 EXPORT_SYMBOL(check_disk_change);
1505 
bd_set_size(struct block_device * bdev,loff_t size)1506 void bd_set_size(struct block_device *bdev, loff_t size)
1507 {
1508 	inode_lock(bdev->bd_inode);
1509 	i_size_write(bdev->bd_inode, size);
1510 	inode_unlock(bdev->bd_inode);
1511 }
1512 EXPORT_SYMBOL(bd_set_size);
1513 
1514 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1515 
bdev_disk_changed(struct block_device * bdev,bool invalidate)1516 static void bdev_disk_changed(struct block_device *bdev, bool invalidate)
1517 {
1518 	if (disk_part_scan_enabled(bdev->bd_disk)) {
1519 		if (invalidate)
1520 			invalidate_partitions(bdev->bd_disk, bdev);
1521 		else
1522 			rescan_partitions(bdev->bd_disk, bdev);
1523 	} else {
1524 		check_disk_size_change(bdev->bd_disk, bdev, !invalidate);
1525 		bdev->bd_invalidated = 0;
1526 	}
1527 }
1528 
1529 /*
1530  * bd_mutex locking:
1531  *
1532  *  mutex_lock(part->bd_mutex)
1533  *    mutex_lock_nested(whole->bd_mutex, 1)
1534  */
1535 
__blkdev_get(struct block_device * bdev,fmode_t mode,int for_part)1536 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1537 {
1538 	struct gendisk *disk;
1539 	int ret;
1540 	int partno;
1541 	int perm = 0;
1542 	bool first_open = false;
1543 
1544 	if (mode & FMODE_READ)
1545 		perm |= MAY_READ;
1546 	if (mode & FMODE_WRITE)
1547 		perm |= MAY_WRITE;
1548 	/*
1549 	 * hooks: /n/, see "layering violations".
1550 	 */
1551 	if (!for_part) {
1552 		ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1553 		if (ret != 0)
1554 			return ret;
1555 	}
1556 
1557  restart:
1558 
1559 	ret = -ENXIO;
1560 	disk = bdev_get_gendisk(bdev, &partno);
1561 	if (!disk)
1562 		goto out;
1563 
1564 	disk_block_events(disk);
1565 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1566 	if (!bdev->bd_openers) {
1567 		first_open = true;
1568 		bdev->bd_disk = disk;
1569 		bdev->bd_queue = disk->queue;
1570 		bdev->bd_contains = bdev;
1571 		bdev->bd_partno = partno;
1572 
1573 		if (!partno) {
1574 			ret = -ENXIO;
1575 			bdev->bd_part = disk_get_part(disk, partno);
1576 			if (!bdev->bd_part)
1577 				goto out_clear;
1578 
1579 			ret = 0;
1580 			if (disk->fops->open) {
1581 				ret = disk->fops->open(bdev, mode);
1582 				if (ret == -ERESTARTSYS) {
1583 					/* Lost a race with 'disk' being
1584 					 * deleted, try again.
1585 					 * See md.c
1586 					 */
1587 					disk_put_part(bdev->bd_part);
1588 					bdev->bd_part = NULL;
1589 					bdev->bd_disk = NULL;
1590 					bdev->bd_queue = NULL;
1591 					mutex_unlock(&bdev->bd_mutex);
1592 					disk_unblock_events(disk);
1593 					put_disk_and_module(disk);
1594 					goto restart;
1595 				}
1596 			}
1597 
1598 			if (!ret) {
1599 				bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1600 				set_init_blocksize(bdev);
1601 			}
1602 
1603 			/*
1604 			 * If the device is invalidated, rescan partition
1605 			 * if open succeeded or failed with -ENOMEDIUM.
1606 			 * The latter is necessary to prevent ghost
1607 			 * partitions on a removed medium.
1608 			 */
1609 			if (bdev->bd_invalidated &&
1610 			    (!ret || ret == -ENOMEDIUM))
1611 				bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1612 
1613 			if (ret)
1614 				goto out_clear;
1615 		} else {
1616 			struct block_device *whole;
1617 			whole = bdget_disk(disk, 0);
1618 			ret = -ENOMEM;
1619 			if (!whole)
1620 				goto out_clear;
1621 			BUG_ON(for_part);
1622 			ret = __blkdev_get(whole, mode, 1);
1623 			if (ret) {
1624 				bdput(whole);
1625 				goto out_clear;
1626 			}
1627 			bdev->bd_contains = whole;
1628 			bdev->bd_part = disk_get_part(disk, partno);
1629 			if (!(disk->flags & GENHD_FL_UP) ||
1630 			    !bdev->bd_part || !bdev->bd_part->nr_sects) {
1631 				ret = -ENXIO;
1632 				goto out_clear;
1633 			}
1634 			bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1635 			set_init_blocksize(bdev);
1636 		}
1637 
1638 		if (bdev->bd_bdi == &noop_backing_dev_info)
1639 			bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1640 	} else {
1641 		if (bdev->bd_contains == bdev) {
1642 			ret = 0;
1643 			if (bdev->bd_disk->fops->open)
1644 				ret = bdev->bd_disk->fops->open(bdev, mode);
1645 			/* the same as first opener case, read comment there */
1646 			if (bdev->bd_invalidated &&
1647 			    (!ret || ret == -ENOMEDIUM))
1648 				bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1649 			if (ret)
1650 				goto out_unlock_bdev;
1651 		}
1652 	}
1653 	bdev->bd_openers++;
1654 	if (for_part)
1655 		bdev->bd_part_count++;
1656 	mutex_unlock(&bdev->bd_mutex);
1657 	disk_unblock_events(disk);
1658 	/* only one opener holds refs to the module and disk */
1659 	if (!first_open)
1660 		put_disk_and_module(disk);
1661 	return 0;
1662 
1663  out_clear:
1664 	disk_put_part(bdev->bd_part);
1665 	bdev->bd_disk = NULL;
1666 	bdev->bd_part = NULL;
1667 	bdev->bd_queue = NULL;
1668 	if (bdev != bdev->bd_contains)
1669 		__blkdev_put(bdev->bd_contains, mode, 1);
1670 	bdev->bd_contains = NULL;
1671  out_unlock_bdev:
1672 	mutex_unlock(&bdev->bd_mutex);
1673 	disk_unblock_events(disk);
1674 	put_disk_and_module(disk);
1675  out:
1676 
1677 	return ret;
1678 }
1679 
1680 /**
1681  * blkdev_get - open a block device
1682  * @bdev: block_device to open
1683  * @mode: FMODE_* mask
1684  * @holder: exclusive holder identifier
1685  *
1686  * Open @bdev with @mode.  If @mode includes %FMODE_EXCL, @bdev is
1687  * open with exclusive access.  Specifying %FMODE_EXCL with %NULL
1688  * @holder is invalid.  Exclusive opens may nest for the same @holder.
1689  *
1690  * On success, the reference count of @bdev is unchanged.  On failure,
1691  * @bdev is put.
1692  *
1693  * CONTEXT:
1694  * Might sleep.
1695  *
1696  * RETURNS:
1697  * 0 on success, -errno on failure.
1698  */
blkdev_get(struct block_device * bdev,fmode_t mode,void * holder)1699 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1700 {
1701 	struct block_device *whole = NULL;
1702 	int res;
1703 
1704 	WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1705 
1706 	if ((mode & FMODE_EXCL) && holder) {
1707 		whole = bd_start_claiming(bdev, holder);
1708 		if (IS_ERR(whole)) {
1709 			bdput(bdev);
1710 			return PTR_ERR(whole);
1711 		}
1712 	}
1713 
1714 	res = __blkdev_get(bdev, mode, 0);
1715 
1716 	if (whole) {
1717 		struct gendisk *disk = whole->bd_disk;
1718 
1719 		/* finish claiming */
1720 		mutex_lock(&bdev->bd_mutex);
1721 		if (!res)
1722 			bd_finish_claiming(bdev, whole, holder);
1723 		else
1724 			bd_abort_claiming(bdev, whole, holder);
1725 		/*
1726 		 * Block event polling for write claims if requested.  Any
1727 		 * write holder makes the write_holder state stick until
1728 		 * all are released.  This is good enough and tracking
1729 		 * individual writeable reference is too fragile given the
1730 		 * way @mode is used in blkdev_get/put().
1731 		 */
1732 		if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1733 		    (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1734 			bdev->bd_write_holder = true;
1735 			disk_block_events(disk);
1736 		}
1737 
1738 		mutex_unlock(&bdev->bd_mutex);
1739 		bdput(whole);
1740 	}
1741 
1742 	if (res)
1743 		bdput(bdev);
1744 
1745 	return res;
1746 }
1747 EXPORT_SYMBOL(blkdev_get);
1748 
1749 /**
1750  * blkdev_get_by_path - open a block device by name
1751  * @path: path to the block device to open
1752  * @mode: FMODE_* mask
1753  * @holder: exclusive holder identifier
1754  *
1755  * Open the blockdevice described by the device file at @path.  @mode
1756  * and @holder are identical to blkdev_get().
1757  *
1758  * On success, the returned block_device has reference count of one.
1759  *
1760  * CONTEXT:
1761  * Might sleep.
1762  *
1763  * RETURNS:
1764  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1765  */
blkdev_get_by_path(const char * path,fmode_t mode,void * holder)1766 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1767 					void *holder)
1768 {
1769 	struct block_device *bdev;
1770 	int err;
1771 
1772 	bdev = lookup_bdev(path);
1773 	if (IS_ERR(bdev))
1774 		return bdev;
1775 
1776 	err = blkdev_get(bdev, mode, holder);
1777 	if (err)
1778 		return ERR_PTR(err);
1779 
1780 	if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1781 		blkdev_put(bdev, mode);
1782 		return ERR_PTR(-EACCES);
1783 	}
1784 
1785 	return bdev;
1786 }
1787 EXPORT_SYMBOL(blkdev_get_by_path);
1788 
1789 /**
1790  * blkdev_get_by_dev - open a block device by device number
1791  * @dev: device number of block device to open
1792  * @mode: FMODE_* mask
1793  * @holder: exclusive holder identifier
1794  *
1795  * Open the blockdevice described by device number @dev.  @mode and
1796  * @holder are identical to blkdev_get().
1797  *
1798  * Use it ONLY if you really do not have anything better - i.e. when
1799  * you are behind a truly sucky interface and all you are given is a
1800  * device number.  _Never_ to be used for internal purposes.  If you
1801  * ever need it - reconsider your API.
1802  *
1803  * On success, the returned block_device has reference count of one.
1804  *
1805  * CONTEXT:
1806  * Might sleep.
1807  *
1808  * RETURNS:
1809  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1810  */
blkdev_get_by_dev(dev_t dev,fmode_t mode,void * holder)1811 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1812 {
1813 	struct block_device *bdev;
1814 	int err;
1815 
1816 	bdev = bdget(dev);
1817 	if (!bdev)
1818 		return ERR_PTR(-ENOMEM);
1819 
1820 	err = blkdev_get(bdev, mode, holder);
1821 	if (err)
1822 		return ERR_PTR(err);
1823 
1824 	return bdev;
1825 }
1826 EXPORT_SYMBOL(blkdev_get_by_dev);
1827 
blkdev_open(struct inode * inode,struct file * filp)1828 static int blkdev_open(struct inode * inode, struct file * filp)
1829 {
1830 	struct block_device *bdev;
1831 
1832 	/*
1833 	 * Preserve backwards compatibility and allow large file access
1834 	 * even if userspace doesn't ask for it explicitly. Some mkfs
1835 	 * binary needs it. We might want to drop this workaround
1836 	 * during an unstable branch.
1837 	 */
1838 	filp->f_flags |= O_LARGEFILE;
1839 
1840 	filp->f_mode |= FMODE_NOWAIT;
1841 
1842 	if (filp->f_flags & O_NDELAY)
1843 		filp->f_mode |= FMODE_NDELAY;
1844 	if (filp->f_flags & O_EXCL)
1845 		filp->f_mode |= FMODE_EXCL;
1846 	if ((filp->f_flags & O_ACCMODE) == 3)
1847 		filp->f_mode |= FMODE_WRITE_IOCTL;
1848 
1849 	bdev = bd_acquire(inode);
1850 	if (bdev == NULL)
1851 		return -ENOMEM;
1852 
1853 	filp->f_mapping = bdev->bd_inode->i_mapping;
1854 	filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1855 
1856 	return blkdev_get(bdev, filp->f_mode, filp);
1857 }
1858 
__blkdev_put(struct block_device * bdev,fmode_t mode,int for_part)1859 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1860 {
1861 	struct gendisk *disk = bdev->bd_disk;
1862 	struct block_device *victim = NULL;
1863 
1864 	/*
1865 	 * Sync early if it looks like we're the last one.  If someone else
1866 	 * opens the block device between now and the decrement of bd_openers
1867 	 * then we did a sync that we didn't need to, but that's not the end
1868 	 * of the world and we want to avoid long (could be several minute)
1869 	 * syncs while holding the mutex.
1870 	 */
1871 	if (bdev->bd_openers == 1)
1872 		sync_blockdev(bdev);
1873 
1874 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1875 	if (for_part)
1876 		bdev->bd_part_count--;
1877 
1878 	if (!--bdev->bd_openers) {
1879 		WARN_ON_ONCE(bdev->bd_holders);
1880 		sync_blockdev(bdev);
1881 		kill_bdev(bdev);
1882 
1883 		bdev_write_inode(bdev);
1884 	}
1885 	if (bdev->bd_contains == bdev) {
1886 		if (disk->fops->release)
1887 			disk->fops->release(disk, mode);
1888 	}
1889 	if (!bdev->bd_openers) {
1890 		disk_put_part(bdev->bd_part);
1891 		bdev->bd_part = NULL;
1892 		bdev->bd_disk = NULL;
1893 		if (bdev != bdev->bd_contains)
1894 			victim = bdev->bd_contains;
1895 		bdev->bd_contains = NULL;
1896 
1897 		put_disk_and_module(disk);
1898 	}
1899 	mutex_unlock(&bdev->bd_mutex);
1900 	bdput(bdev);
1901 	if (victim)
1902 		__blkdev_put(victim, mode, 1);
1903 }
1904 
blkdev_put(struct block_device * bdev,fmode_t mode)1905 void blkdev_put(struct block_device *bdev, fmode_t mode)
1906 {
1907 	mutex_lock(&bdev->bd_mutex);
1908 
1909 	if (mode & FMODE_EXCL) {
1910 		bool bdev_free;
1911 
1912 		/*
1913 		 * Release a claim on the device.  The holder fields
1914 		 * are protected with bdev_lock.  bd_mutex is to
1915 		 * synchronize disk_holder unlinking.
1916 		 */
1917 		spin_lock(&bdev_lock);
1918 
1919 		WARN_ON_ONCE(--bdev->bd_holders < 0);
1920 		WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1921 
1922 		/* bd_contains might point to self, check in a separate step */
1923 		if ((bdev_free = !bdev->bd_holders))
1924 			bdev->bd_holder = NULL;
1925 		if (!bdev->bd_contains->bd_holders)
1926 			bdev->bd_contains->bd_holder = NULL;
1927 
1928 		spin_unlock(&bdev_lock);
1929 
1930 		/*
1931 		 * If this was the last claim, remove holder link and
1932 		 * unblock evpoll if it was a write holder.
1933 		 */
1934 		if (bdev_free && bdev->bd_write_holder) {
1935 			disk_unblock_events(bdev->bd_disk);
1936 			bdev->bd_write_holder = false;
1937 		}
1938 	}
1939 
1940 	/*
1941 	 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1942 	 * event.  This is to ensure detection of media removal commanded
1943 	 * from userland - e.g. eject(1).
1944 	 */
1945 	disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1946 
1947 	mutex_unlock(&bdev->bd_mutex);
1948 
1949 	__blkdev_put(bdev, mode, 0);
1950 }
1951 EXPORT_SYMBOL(blkdev_put);
1952 
blkdev_close(struct inode * inode,struct file * filp)1953 static int blkdev_close(struct inode * inode, struct file * filp)
1954 {
1955 	struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1956 	blkdev_put(bdev, filp->f_mode);
1957 	return 0;
1958 }
1959 
block_ioctl(struct file * file,unsigned cmd,unsigned long arg)1960 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1961 {
1962 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1963 	fmode_t mode = file->f_mode;
1964 
1965 	/*
1966 	 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1967 	 * to updated it before every ioctl.
1968 	 */
1969 	if (file->f_flags & O_NDELAY)
1970 		mode |= FMODE_NDELAY;
1971 	else
1972 		mode &= ~FMODE_NDELAY;
1973 
1974 	return blkdev_ioctl(bdev, mode, cmd, arg);
1975 }
1976 
1977 /*
1978  * Write data to the block device.  Only intended for the block device itself
1979  * and the raw driver which basically is a fake block device.
1980  *
1981  * Does not take i_mutex for the write and thus is not for general purpose
1982  * use.
1983  */
blkdev_write_iter(struct kiocb * iocb,struct iov_iter * from)1984 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1985 {
1986 	struct file *file = iocb->ki_filp;
1987 	struct inode *bd_inode = bdev_file_inode(file);
1988 	loff_t size = i_size_read(bd_inode);
1989 	struct blk_plug plug;
1990 	size_t shorted = 0;
1991 	ssize_t ret;
1992 
1993 	if (bdev_read_only(I_BDEV(bd_inode)))
1994 		return -EPERM;
1995 
1996 	/* uswsusp needs write permission to the swap */
1997 	if (IS_SWAPFILE(bd_inode) && !hibernation_available())
1998 		return -ETXTBSY;
1999 
2000 	if (!iov_iter_count(from))
2001 		return 0;
2002 
2003 	if (iocb->ki_pos >= size)
2004 		return -ENOSPC;
2005 
2006 	if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
2007 		return -EOPNOTSUPP;
2008 
2009 	size -= iocb->ki_pos;
2010 	if (iov_iter_count(from) > size) {
2011 		shorted = iov_iter_count(from) - size;
2012 		iov_iter_truncate(from, size);
2013 	}
2014 
2015 	blk_start_plug(&plug);
2016 	ret = __generic_file_write_iter(iocb, from);
2017 	if (ret > 0)
2018 		ret = generic_write_sync(iocb, ret);
2019 	iov_iter_reexpand(from, iov_iter_count(from) + shorted);
2020 	blk_finish_plug(&plug);
2021 	return ret;
2022 }
2023 EXPORT_SYMBOL_GPL(blkdev_write_iter);
2024 
blkdev_read_iter(struct kiocb * iocb,struct iov_iter * to)2025 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
2026 {
2027 	struct file *file = iocb->ki_filp;
2028 	struct inode *bd_inode = bdev_file_inode(file);
2029 	loff_t size = i_size_read(bd_inode);
2030 	loff_t pos = iocb->ki_pos;
2031 	size_t shorted = 0;
2032 	ssize_t ret;
2033 
2034 	if (pos >= size)
2035 		return 0;
2036 
2037 	size -= pos;
2038 	if (iov_iter_count(to) > size) {
2039 		shorted = iov_iter_count(to) - size;
2040 		iov_iter_truncate(to, size);
2041 	}
2042 
2043 	ret = generic_file_read_iter(iocb, to);
2044 	iov_iter_reexpand(to, iov_iter_count(to) + shorted);
2045 	return ret;
2046 }
2047 EXPORT_SYMBOL_GPL(blkdev_read_iter);
2048 
2049 /*
2050  * Try to release a page associated with block device when the system
2051  * is under memory pressure.
2052  */
blkdev_releasepage(struct page * page,gfp_t wait)2053 static int blkdev_releasepage(struct page *page, gfp_t wait)
2054 {
2055 	struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
2056 
2057 	if (super && super->s_op->bdev_try_to_free_page)
2058 		return super->s_op->bdev_try_to_free_page(super, page, wait);
2059 
2060 	return try_to_free_buffers(page);
2061 }
2062 
blkdev_writepages(struct address_space * mapping,struct writeback_control * wbc)2063 static int blkdev_writepages(struct address_space *mapping,
2064 			     struct writeback_control *wbc)
2065 {
2066 	return generic_writepages(mapping, wbc);
2067 }
2068 
2069 static const struct address_space_operations def_blk_aops = {
2070 	.readpage	= blkdev_readpage,
2071 	.readpages	= blkdev_readpages,
2072 	.writepage	= blkdev_writepage,
2073 	.write_begin	= blkdev_write_begin,
2074 	.write_end	= blkdev_write_end,
2075 	.writepages	= blkdev_writepages,
2076 	.releasepage	= blkdev_releasepage,
2077 	.direct_IO	= blkdev_direct_IO,
2078 	.migratepage	= buffer_migrate_page_norefs,
2079 	.is_dirty_writeback = buffer_check_dirty_writeback,
2080 };
2081 
2082 #define	BLKDEV_FALLOC_FL_SUPPORTED					\
2083 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
2084 		 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2085 
blkdev_fallocate(struct file * file,int mode,loff_t start,loff_t len)2086 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2087 			     loff_t len)
2088 {
2089 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2090 	struct address_space *mapping;
2091 	loff_t end = start + len - 1;
2092 	loff_t isize;
2093 	int error;
2094 
2095 	/* Fail if we don't recognize the flags. */
2096 	if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2097 		return -EOPNOTSUPP;
2098 
2099 	/* Don't go off the end of the device. */
2100 	isize = i_size_read(bdev->bd_inode);
2101 	if (start >= isize)
2102 		return -EINVAL;
2103 	if (end >= isize) {
2104 		if (mode & FALLOC_FL_KEEP_SIZE) {
2105 			len = isize - start;
2106 			end = start + len - 1;
2107 		} else
2108 			return -EINVAL;
2109 	}
2110 
2111 	/*
2112 	 * Don't allow IO that isn't aligned to logical block size.
2113 	 */
2114 	if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2115 		return -EINVAL;
2116 
2117 	/*
2118 	 * Invalidate the page cache, including dirty pages, for valid
2119 	 * de-allocate mode calls to fallocate().
2120 	 */
2121 	mapping = bdev->bd_inode->i_mapping;
2122 
2123 	switch (mode) {
2124 	case FALLOC_FL_ZERO_RANGE:
2125 	case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2126 		truncate_inode_pages_range(mapping, start, end);
2127 		error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2128 					    GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2129 		break;
2130 	case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2131 		truncate_inode_pages_range(mapping, start, end);
2132 		error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2133 					     GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2134 		break;
2135 	case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2136 		truncate_inode_pages_range(mapping, start, end);
2137 		error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2138 					     GFP_KERNEL, 0);
2139 		break;
2140 	default:
2141 		return -EOPNOTSUPP;
2142 	}
2143 	if (error)
2144 		return error;
2145 
2146 	/*
2147 	 * Invalidate again; if someone wandered in and dirtied a page,
2148 	 * the caller will be given -EBUSY.  The third argument is
2149 	 * inclusive, so the rounding here is safe.
2150 	 */
2151 	return invalidate_inode_pages2_range(mapping,
2152 					     start >> PAGE_SHIFT,
2153 					     end >> PAGE_SHIFT);
2154 }
2155 
2156 const struct file_operations def_blk_fops = {
2157 	.open		= blkdev_open,
2158 	.release	= blkdev_close,
2159 	.llseek		= block_llseek,
2160 	.read_iter	= blkdev_read_iter,
2161 	.write_iter	= blkdev_write_iter,
2162 	.iopoll		= blkdev_iopoll,
2163 	.mmap		= generic_file_mmap,
2164 	.fsync		= blkdev_fsync,
2165 	.unlocked_ioctl	= block_ioctl,
2166 #ifdef CONFIG_COMPAT
2167 	.compat_ioctl	= compat_blkdev_ioctl,
2168 #endif
2169 	.splice_read	= generic_file_splice_read,
2170 	.splice_write	= iter_file_splice_write,
2171 	.fallocate	= blkdev_fallocate,
2172 };
2173 
ioctl_by_bdev(struct block_device * bdev,unsigned cmd,unsigned long arg)2174 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2175 {
2176 	int res;
2177 	mm_segment_t old_fs = get_fs();
2178 	set_fs(KERNEL_DS);
2179 	res = blkdev_ioctl(bdev, 0, cmd, arg);
2180 	set_fs(old_fs);
2181 	return res;
2182 }
2183 
2184 EXPORT_SYMBOL(ioctl_by_bdev);
2185 
2186 /**
2187  * lookup_bdev  - lookup a struct block_device by name
2188  * @pathname:	special file representing the block device
2189  *
2190  * Get a reference to the blockdevice at @pathname in the current
2191  * namespace if possible and return it.  Return ERR_PTR(error)
2192  * otherwise.
2193  */
lookup_bdev(const char * pathname)2194 struct block_device *lookup_bdev(const char *pathname)
2195 {
2196 	struct block_device *bdev;
2197 	struct inode *inode;
2198 	struct path path;
2199 	int error;
2200 
2201 	if (!pathname || !*pathname)
2202 		return ERR_PTR(-EINVAL);
2203 
2204 	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2205 	if (error)
2206 		return ERR_PTR(error);
2207 
2208 	inode = d_backing_inode(path.dentry);
2209 	error = -ENOTBLK;
2210 	if (!S_ISBLK(inode->i_mode))
2211 		goto fail;
2212 	error = -EACCES;
2213 	if (!may_open_dev(&path))
2214 		goto fail;
2215 	error = -ENOMEM;
2216 	bdev = bd_acquire(inode);
2217 	if (!bdev)
2218 		goto fail;
2219 out:
2220 	path_put(&path);
2221 	return bdev;
2222 fail:
2223 	bdev = ERR_PTR(error);
2224 	goto out;
2225 }
2226 EXPORT_SYMBOL(lookup_bdev);
2227 
__invalidate_device(struct block_device * bdev,bool kill_dirty)2228 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2229 {
2230 	struct super_block *sb = get_super(bdev);
2231 	int res = 0;
2232 
2233 	if (sb) {
2234 		/*
2235 		 * no need to lock the super, get_super holds the
2236 		 * read mutex so the filesystem cannot go away
2237 		 * under us (->put_super runs with the write lock
2238 		 * hold).
2239 		 */
2240 		shrink_dcache_sb(sb);
2241 		res = invalidate_inodes(sb, kill_dirty);
2242 		drop_super(sb);
2243 	}
2244 	invalidate_bdev(bdev);
2245 	return res;
2246 }
2247 EXPORT_SYMBOL(__invalidate_device);
2248 
iterate_bdevs(void (* func)(struct block_device *,void *),void * arg)2249 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2250 {
2251 	struct inode *inode, *old_inode = NULL;
2252 
2253 	spin_lock(&blockdev_superblock->s_inode_list_lock);
2254 	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2255 		struct address_space *mapping = inode->i_mapping;
2256 		struct block_device *bdev;
2257 
2258 		spin_lock(&inode->i_lock);
2259 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2260 		    mapping->nrpages == 0) {
2261 			spin_unlock(&inode->i_lock);
2262 			continue;
2263 		}
2264 		__iget(inode);
2265 		spin_unlock(&inode->i_lock);
2266 		spin_unlock(&blockdev_superblock->s_inode_list_lock);
2267 		/*
2268 		 * We hold a reference to 'inode' so it couldn't have been
2269 		 * removed from s_inodes list while we dropped the
2270 		 * s_inode_list_lock  We cannot iput the inode now as we can
2271 		 * be holding the last reference and we cannot iput it under
2272 		 * s_inode_list_lock. So we keep the reference and iput it
2273 		 * later.
2274 		 */
2275 		iput(old_inode);
2276 		old_inode = inode;
2277 		bdev = I_BDEV(inode);
2278 
2279 		mutex_lock(&bdev->bd_mutex);
2280 		if (bdev->bd_openers)
2281 			func(bdev, arg);
2282 		mutex_unlock(&bdev->bd_mutex);
2283 
2284 		spin_lock(&blockdev_superblock->s_inode_list_lock);
2285 	}
2286 	spin_unlock(&blockdev_superblock->s_inode_list_lock);
2287 	iput(old_inode);
2288 }
2289