1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include "sched.h"
10
11 #include <linux/nospec.h>
12
13 #include <linux/kcov.h>
14 #include <linux/scs.h>
15
16 #include <asm/switch_to.h>
17 #include <asm/tlb.h>
18
19 #include "../workqueue_internal.h"
20 #include "../smpboot.h"
21
22 #include "pelt.h"
23
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/sched.h>
26
27 #undef CREATE_TRACE_POINTS
28 #include <trace/hooks/dtask.h>
29
30 #undef CREATE_TRACE_POINTS
31 #include <trace/hooks/sched.h>
32
33 /*
34 * Export tracepoints that act as a bare tracehook (ie: have no trace event
35 * associated with them) to allow external modules to probe them.
36 */
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
43
44 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
45 EXPORT_SYMBOL_GPL(runqueues);
46
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49 * Debugging: various feature bits
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
54 */
55 #define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 0;
60 #undef SCHED_FEAT
61 #endif
62
63 /*
64 * Number of tasks to iterate in a single balance run.
65 * Limited because this is done with IRQs disabled.
66 */
67 const_debug unsigned int sysctl_sched_nr_migrate = 32;
68
69 /*
70 * period over which we measure -rt task CPU usage in us.
71 * default: 1s
72 */
73 unsigned int sysctl_sched_rt_period = 1000000;
74
75 __read_mostly int scheduler_running;
76
77 /*
78 * part of the period that we allow rt tasks to run in us.
79 * default: 0.95s
80 */
81 int sysctl_sched_rt_runtime = 950000;
82
83 /*
84 * __task_rq_lock - lock the rq @p resides on.
85 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)86 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
87 __acquires(rq->lock)
88 {
89 struct rq *rq;
90
91 lockdep_assert_held(&p->pi_lock);
92
93 for (;;) {
94 rq = task_rq(p);
95 raw_spin_lock(&rq->lock);
96 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
97 rq_pin_lock(rq, rf);
98 return rq;
99 }
100 raw_spin_unlock(&rq->lock);
101
102 while (unlikely(task_on_rq_migrating(p)))
103 cpu_relax();
104 }
105 }
106
107 /*
108 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
109 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)110 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
111 __acquires(p->pi_lock)
112 __acquires(rq->lock)
113 {
114 struct rq *rq;
115
116 for (;;) {
117 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
118 rq = task_rq(p);
119 raw_spin_lock(&rq->lock);
120 /*
121 * move_queued_task() task_rq_lock()
122 *
123 * ACQUIRE (rq->lock)
124 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
125 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
126 * [S] ->cpu = new_cpu [L] task_rq()
127 * [L] ->on_rq
128 * RELEASE (rq->lock)
129 *
130 * If we observe the old CPU in task_rq_lock(), the acquire of
131 * the old rq->lock will fully serialize against the stores.
132 *
133 * If we observe the new CPU in task_rq_lock(), the address
134 * dependency headed by '[L] rq = task_rq()' and the acquire
135 * will pair with the WMB to ensure we then also see migrating.
136 */
137 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
138 rq_pin_lock(rq, rf);
139 return rq;
140 }
141 raw_spin_unlock(&rq->lock);
142 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
143
144 while (unlikely(task_on_rq_migrating(p)))
145 cpu_relax();
146 }
147 }
148
149 /*
150 * RQ-clock updating methods:
151 */
152
update_rq_clock_task(struct rq * rq,s64 delta)153 static void update_rq_clock_task(struct rq *rq, s64 delta)
154 {
155 /*
156 * In theory, the compile should just see 0 here, and optimize out the call
157 * to sched_rt_avg_update. But I don't trust it...
158 */
159 s64 __maybe_unused steal = 0, irq_delta = 0;
160
161 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
162 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
163
164 /*
165 * Since irq_time is only updated on {soft,}irq_exit, we might run into
166 * this case when a previous update_rq_clock() happened inside a
167 * {soft,}irq region.
168 *
169 * When this happens, we stop ->clock_task and only update the
170 * prev_irq_time stamp to account for the part that fit, so that a next
171 * update will consume the rest. This ensures ->clock_task is
172 * monotonic.
173 *
174 * It does however cause some slight miss-attribution of {soft,}irq
175 * time, a more accurate solution would be to update the irq_time using
176 * the current rq->clock timestamp, except that would require using
177 * atomic ops.
178 */
179 if (irq_delta > delta)
180 irq_delta = delta;
181
182 rq->prev_irq_time += irq_delta;
183 delta -= irq_delta;
184 #endif
185 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
186 if (static_key_false((¶virt_steal_rq_enabled))) {
187 steal = paravirt_steal_clock(cpu_of(rq));
188 steal -= rq->prev_steal_time_rq;
189
190 if (unlikely(steal > delta))
191 steal = delta;
192
193 rq->prev_steal_time_rq += steal;
194 delta -= steal;
195 }
196 #endif
197
198 rq->clock_task += delta;
199
200 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
201 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
202 update_irq_load_avg(rq, irq_delta + steal);
203 #endif
204 update_rq_clock_pelt(rq, delta);
205 }
206
update_rq_clock(struct rq * rq)207 void update_rq_clock(struct rq *rq)
208 {
209 s64 delta;
210
211 lockdep_assert_held(&rq->lock);
212
213 if (rq->clock_update_flags & RQCF_ACT_SKIP)
214 return;
215
216 #ifdef CONFIG_SCHED_DEBUG
217 if (sched_feat(WARN_DOUBLE_CLOCK))
218 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
219 rq->clock_update_flags |= RQCF_UPDATED;
220 #endif
221
222 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
223 if (delta < 0)
224 return;
225 rq->clock += delta;
226 update_rq_clock_task(rq, delta);
227 }
228
229
230 #ifdef CONFIG_SCHED_HRTICK
231 /*
232 * Use HR-timers to deliver accurate preemption points.
233 */
234
hrtick_clear(struct rq * rq)235 static void hrtick_clear(struct rq *rq)
236 {
237 if (hrtimer_active(&rq->hrtick_timer))
238 hrtimer_cancel(&rq->hrtick_timer);
239 }
240
241 /*
242 * High-resolution timer tick.
243 * Runs from hardirq context with interrupts disabled.
244 */
hrtick(struct hrtimer * timer)245 static enum hrtimer_restart hrtick(struct hrtimer *timer)
246 {
247 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
248 struct rq_flags rf;
249
250 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
251
252 rq_lock(rq, &rf);
253 update_rq_clock(rq);
254 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
255 rq_unlock(rq, &rf);
256
257 return HRTIMER_NORESTART;
258 }
259
260 #ifdef CONFIG_SMP
261
__hrtick_restart(struct rq * rq)262 static void __hrtick_restart(struct rq *rq)
263 {
264 struct hrtimer *timer = &rq->hrtick_timer;
265
266 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
267 }
268
269 /*
270 * called from hardirq (IPI) context
271 */
__hrtick_start(void * arg)272 static void __hrtick_start(void *arg)
273 {
274 struct rq *rq = arg;
275 struct rq_flags rf;
276
277 rq_lock(rq, &rf);
278 __hrtick_restart(rq);
279 rq->hrtick_csd_pending = 0;
280 rq_unlock(rq, &rf);
281 }
282
283 /*
284 * Called to set the hrtick timer state.
285 *
286 * called with rq->lock held and irqs disabled
287 */
hrtick_start(struct rq * rq,u64 delay)288 void hrtick_start(struct rq *rq, u64 delay)
289 {
290 struct hrtimer *timer = &rq->hrtick_timer;
291 ktime_t time;
292 s64 delta;
293
294 /*
295 * Don't schedule slices shorter than 10000ns, that just
296 * doesn't make sense and can cause timer DoS.
297 */
298 delta = max_t(s64, delay, 10000LL);
299 time = ktime_add_ns(timer->base->get_time(), delta);
300
301 hrtimer_set_expires(timer, time);
302
303 if (rq == this_rq()) {
304 __hrtick_restart(rq);
305 } else if (!rq->hrtick_csd_pending) {
306 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
307 rq->hrtick_csd_pending = 1;
308 }
309 }
310
311 #else
312 /*
313 * Called to set the hrtick timer state.
314 *
315 * called with rq->lock held and irqs disabled
316 */
hrtick_start(struct rq * rq,u64 delay)317 void hrtick_start(struct rq *rq, u64 delay)
318 {
319 /*
320 * Don't schedule slices shorter than 10000ns, that just
321 * doesn't make sense. Rely on vruntime for fairness.
322 */
323 delay = max_t(u64, delay, 10000LL);
324 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
325 HRTIMER_MODE_REL_PINNED_HARD);
326 }
327 #endif /* CONFIG_SMP */
328
hrtick_rq_init(struct rq * rq)329 static void hrtick_rq_init(struct rq *rq)
330 {
331 #ifdef CONFIG_SMP
332 rq->hrtick_csd_pending = 0;
333
334 rq->hrtick_csd.flags = 0;
335 rq->hrtick_csd.func = __hrtick_start;
336 rq->hrtick_csd.info = rq;
337 #endif
338
339 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
340 rq->hrtick_timer.function = hrtick;
341 }
342 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)343 static inline void hrtick_clear(struct rq *rq)
344 {
345 }
346
hrtick_rq_init(struct rq * rq)347 static inline void hrtick_rq_init(struct rq *rq)
348 {
349 }
350 #endif /* CONFIG_SCHED_HRTICK */
351
352 /*
353 * cmpxchg based fetch_or, macro so it works for different integer types
354 */
355 #define fetch_or(ptr, mask) \
356 ({ \
357 typeof(ptr) _ptr = (ptr); \
358 typeof(mask) _mask = (mask); \
359 typeof(*_ptr) _old, _val = *_ptr; \
360 \
361 for (;;) { \
362 _old = cmpxchg(_ptr, _val, _val | _mask); \
363 if (_old == _val) \
364 break; \
365 _val = _old; \
366 } \
367 _old; \
368 })
369
370 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
371 /*
372 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
373 * this avoids any races wrt polling state changes and thereby avoids
374 * spurious IPIs.
375 */
set_nr_and_not_polling(struct task_struct * p)376 static bool set_nr_and_not_polling(struct task_struct *p)
377 {
378 struct thread_info *ti = task_thread_info(p);
379 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
380 }
381
382 /*
383 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
384 *
385 * If this returns true, then the idle task promises to call
386 * sched_ttwu_pending() and reschedule soon.
387 */
set_nr_if_polling(struct task_struct * p)388 static bool set_nr_if_polling(struct task_struct *p)
389 {
390 struct thread_info *ti = task_thread_info(p);
391 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
392
393 for (;;) {
394 if (!(val & _TIF_POLLING_NRFLAG))
395 return false;
396 if (val & _TIF_NEED_RESCHED)
397 return true;
398 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
399 if (old == val)
400 break;
401 val = old;
402 }
403 return true;
404 }
405
406 #else
set_nr_and_not_polling(struct task_struct * p)407 static bool set_nr_and_not_polling(struct task_struct *p)
408 {
409 set_tsk_need_resched(p);
410 return true;
411 }
412
413 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)414 static bool set_nr_if_polling(struct task_struct *p)
415 {
416 return false;
417 }
418 #endif
419 #endif
420
__wake_q_add(struct wake_q_head * head,struct task_struct * task)421 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
422 {
423 struct wake_q_node *node = &task->wake_q;
424
425 /*
426 * Atomically grab the task, if ->wake_q is !nil already it means
427 * its already queued (either by us or someone else) and will get the
428 * wakeup due to that.
429 *
430 * In order to ensure that a pending wakeup will observe our pending
431 * state, even in the failed case, an explicit smp_mb() must be used.
432 */
433 smp_mb__before_atomic();
434 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
435 return false;
436
437 /*
438 * The head is context local, there can be no concurrency.
439 */
440 *head->lastp = node;
441 head->lastp = &node->next;
442 return true;
443 }
444
445 /**
446 * wake_q_add() - queue a wakeup for 'later' waking.
447 * @head: the wake_q_head to add @task to
448 * @task: the task to queue for 'later' wakeup
449 *
450 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
451 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
452 * instantly.
453 *
454 * This function must be used as-if it were wake_up_process(); IOW the task
455 * must be ready to be woken at this location.
456 */
wake_q_add(struct wake_q_head * head,struct task_struct * task)457 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
458 {
459 if (__wake_q_add(head, task))
460 get_task_struct(task);
461 }
462
463 /**
464 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
465 * @head: the wake_q_head to add @task to
466 * @task: the task to queue for 'later' wakeup
467 *
468 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
469 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
470 * instantly.
471 *
472 * This function must be used as-if it were wake_up_process(); IOW the task
473 * must be ready to be woken at this location.
474 *
475 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
476 * that already hold reference to @task can call the 'safe' version and trust
477 * wake_q to do the right thing depending whether or not the @task is already
478 * queued for wakeup.
479 */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)480 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
481 {
482 if (!__wake_q_add(head, task))
483 put_task_struct(task);
484 }
485
wake_up_q(struct wake_q_head * head)486 void wake_up_q(struct wake_q_head *head)
487 {
488 struct wake_q_node *node = head->first;
489
490 while (node != WAKE_Q_TAIL) {
491 struct task_struct *task;
492
493 task = container_of(node, struct task_struct, wake_q);
494 BUG_ON(!task);
495 /* Task can safely be re-inserted now: */
496 node = node->next;
497 task->wake_q.next = NULL;
498
499 /*
500 * wake_up_process() executes a full barrier, which pairs with
501 * the queueing in wake_q_add() so as not to miss wakeups.
502 */
503 wake_up_process(task);
504 put_task_struct(task);
505 }
506 }
507
508 /*
509 * resched_curr - mark rq's current task 'to be rescheduled now'.
510 *
511 * On UP this means the setting of the need_resched flag, on SMP it
512 * might also involve a cross-CPU call to trigger the scheduler on
513 * the target CPU.
514 */
resched_curr(struct rq * rq)515 void resched_curr(struct rq *rq)
516 {
517 struct task_struct *curr = rq->curr;
518 int cpu;
519
520 lockdep_assert_held(&rq->lock);
521
522 if (test_tsk_need_resched(curr))
523 return;
524
525 cpu = cpu_of(rq);
526
527 if (cpu == smp_processor_id()) {
528 set_tsk_need_resched(curr);
529 set_preempt_need_resched();
530 return;
531 }
532
533 if (set_nr_and_not_polling(curr))
534 smp_send_reschedule(cpu);
535 else
536 trace_sched_wake_idle_without_ipi(cpu);
537 }
538
resched_cpu(int cpu)539 void resched_cpu(int cpu)
540 {
541 struct rq *rq = cpu_rq(cpu);
542 unsigned long flags;
543
544 raw_spin_lock_irqsave(&rq->lock, flags);
545 if (cpu_online(cpu) || cpu == smp_processor_id())
546 resched_curr(rq);
547 raw_spin_unlock_irqrestore(&rq->lock, flags);
548 }
549
550 #ifdef CONFIG_SMP
551 #ifdef CONFIG_NO_HZ_COMMON
552 /*
553 * In the semi idle case, use the nearest busy CPU for migrating timers
554 * from an idle CPU. This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle CPU will add more delays to the timers than intended
558 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
559 */
get_nohz_timer_target(void)560 int get_nohz_timer_target(void)
561 {
562 int i, cpu = smp_processor_id();
563 struct sched_domain *sd;
564
565 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
566 return cpu;
567
568 rcu_read_lock();
569 for_each_domain(cpu, sd) {
570 for_each_cpu(i, sched_domain_span(sd)) {
571 if (cpu == i)
572 continue;
573
574 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
575 cpu = i;
576 goto unlock;
577 }
578 }
579 }
580
581 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
582 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
583 unlock:
584 rcu_read_unlock();
585 return cpu;
586 }
587
588 /*
589 * When add_timer_on() enqueues a timer into the timer wheel of an
590 * idle CPU then this timer might expire before the next timer event
591 * which is scheduled to wake up that CPU. In case of a completely
592 * idle system the next event might even be infinite time into the
593 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
594 * leaves the inner idle loop so the newly added timer is taken into
595 * account when the CPU goes back to idle and evaluates the timer
596 * wheel for the next timer event.
597 */
wake_up_idle_cpu(int cpu)598 static void wake_up_idle_cpu(int cpu)
599 {
600 struct rq *rq = cpu_rq(cpu);
601
602 if (cpu == smp_processor_id())
603 return;
604
605 if (set_nr_and_not_polling(rq->idle))
606 smp_send_reschedule(cpu);
607 else
608 trace_sched_wake_idle_without_ipi(cpu);
609 }
610
wake_up_full_nohz_cpu(int cpu)611 static bool wake_up_full_nohz_cpu(int cpu)
612 {
613 /*
614 * We just need the target to call irq_exit() and re-evaluate
615 * the next tick. The nohz full kick at least implies that.
616 * If needed we can still optimize that later with an
617 * empty IRQ.
618 */
619 if (cpu_is_offline(cpu))
620 return true; /* Don't try to wake offline CPUs. */
621 if (tick_nohz_full_cpu(cpu)) {
622 if (cpu != smp_processor_id() ||
623 tick_nohz_tick_stopped())
624 tick_nohz_full_kick_cpu(cpu);
625 return true;
626 }
627
628 return false;
629 }
630
631 /*
632 * Wake up the specified CPU. If the CPU is going offline, it is the
633 * caller's responsibility to deal with the lost wakeup, for example,
634 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
635 */
wake_up_nohz_cpu(int cpu)636 void wake_up_nohz_cpu(int cpu)
637 {
638 if (!wake_up_full_nohz_cpu(cpu))
639 wake_up_idle_cpu(cpu);
640 }
641
got_nohz_idle_kick(void)642 static inline bool got_nohz_idle_kick(void)
643 {
644 int cpu = smp_processor_id();
645
646 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
647 return false;
648
649 if (idle_cpu(cpu) && !need_resched())
650 return true;
651
652 /*
653 * We can't run Idle Load Balance on this CPU for this time so we
654 * cancel it and clear NOHZ_BALANCE_KICK
655 */
656 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
657 return false;
658 }
659
660 #else /* CONFIG_NO_HZ_COMMON */
661
got_nohz_idle_kick(void)662 static inline bool got_nohz_idle_kick(void)
663 {
664 return false;
665 }
666
667 #endif /* CONFIG_NO_HZ_COMMON */
668
669 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(struct rq * rq)670 bool sched_can_stop_tick(struct rq *rq)
671 {
672 int fifo_nr_running;
673
674 /* Deadline tasks, even if single, need the tick */
675 if (rq->dl.dl_nr_running)
676 return false;
677
678 /*
679 * If there are more than one RR tasks, we need the tick to effect the
680 * actual RR behaviour.
681 */
682 if (rq->rt.rr_nr_running) {
683 if (rq->rt.rr_nr_running == 1)
684 return true;
685 else
686 return false;
687 }
688
689 /*
690 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
691 * forced preemption between FIFO tasks.
692 */
693 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
694 if (fifo_nr_running)
695 return true;
696
697 /*
698 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
699 * if there's more than one we need the tick for involuntary
700 * preemption.
701 */
702 if (rq->nr_running > 1)
703 return false;
704
705 return true;
706 }
707 #endif /* CONFIG_NO_HZ_FULL */
708 #endif /* CONFIG_SMP */
709
710 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
711 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
712 /*
713 * Iterate task_group tree rooted at *from, calling @down when first entering a
714 * node and @up when leaving it for the final time.
715 *
716 * Caller must hold rcu_lock or sufficient equivalent.
717 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)718 int walk_tg_tree_from(struct task_group *from,
719 tg_visitor down, tg_visitor up, void *data)
720 {
721 struct task_group *parent, *child;
722 int ret;
723
724 parent = from;
725
726 down:
727 ret = (*down)(parent, data);
728 if (ret)
729 goto out;
730 list_for_each_entry_rcu(child, &parent->children, siblings) {
731 parent = child;
732 goto down;
733
734 up:
735 continue;
736 }
737 ret = (*up)(parent, data);
738 if (ret || parent == from)
739 goto out;
740
741 child = parent;
742 parent = parent->parent;
743 if (parent)
744 goto up;
745 out:
746 return ret;
747 }
748
tg_nop(struct task_group * tg,void * data)749 int tg_nop(struct task_group *tg, void *data)
750 {
751 return 0;
752 }
753 #endif
754
set_load_weight(struct task_struct * p,bool update_load)755 static void set_load_weight(struct task_struct *p, bool update_load)
756 {
757 int prio = p->static_prio - MAX_RT_PRIO;
758 struct load_weight *load = &p->se.load;
759
760 /*
761 * SCHED_IDLE tasks get minimal weight:
762 */
763 if (task_has_idle_policy(p)) {
764 load->weight = scale_load(WEIGHT_IDLEPRIO);
765 load->inv_weight = WMULT_IDLEPRIO;
766 p->se.runnable_weight = load->weight;
767 return;
768 }
769
770 /*
771 * SCHED_OTHER tasks have to update their load when changing their
772 * weight
773 */
774 if (update_load && p->sched_class == &fair_sched_class) {
775 reweight_task(p, prio);
776 } else {
777 load->weight = scale_load(sched_prio_to_weight[prio]);
778 load->inv_weight = sched_prio_to_wmult[prio];
779 p->se.runnable_weight = load->weight;
780 }
781 }
782
783 #ifdef CONFIG_UCLAMP_TASK
784 /*
785 * Serializes updates of utilization clamp values
786 *
787 * The (slow-path) user-space triggers utilization clamp value updates which
788 * can require updates on (fast-path) scheduler's data structures used to
789 * support enqueue/dequeue operations.
790 * While the per-CPU rq lock protects fast-path update operations, user-space
791 * requests are serialized using a mutex to reduce the risk of conflicting
792 * updates or API abuses.
793 */
794 static DEFINE_MUTEX(uclamp_mutex);
795
796 /* Max allowed minimum utilization */
797 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
798
799 /* Max allowed maximum utilization */
800 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
801
802 /* All clamps are required to be less or equal than these values */
803 static struct uclamp_se uclamp_default[UCLAMP_CNT];
804
805 /*
806 * This static key is used to reduce the uclamp overhead in the fast path. It
807 * primarily disables the call to uclamp_rq_{inc, dec}() in
808 * enqueue/dequeue_task().
809 *
810 * This allows users to continue to enable uclamp in their kernel config with
811 * minimum uclamp overhead in the fast path.
812 *
813 * As soon as userspace modifies any of the uclamp knobs, the static key is
814 * enabled, since we have an actual users that make use of uclamp
815 * functionality.
816 *
817 * The knobs that would enable this static key are:
818 *
819 * * A task modifying its uclamp value with sched_setattr().
820 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
821 * * An admin modifying the cgroup cpu.uclamp.{min, max}
822 */
823 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
824
825 /* Integer rounded range for each bucket */
826 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
827
828 #define for_each_clamp_id(clamp_id) \
829 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
830
uclamp_bucket_id(unsigned int clamp_value)831 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
832 {
833 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
834 }
835
uclamp_bucket_base_value(unsigned int clamp_value)836 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
837 {
838 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
839 }
840
uclamp_none(enum uclamp_id clamp_id)841 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
842 {
843 if (clamp_id == UCLAMP_MIN)
844 return 0;
845 return SCHED_CAPACITY_SCALE;
846 }
847
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)848 static inline void uclamp_se_set(struct uclamp_se *uc_se,
849 unsigned int value, bool user_defined)
850 {
851 uc_se->value = value;
852 uc_se->bucket_id = uclamp_bucket_id(value);
853 uc_se->user_defined = user_defined;
854 }
855
856 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)857 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
858 unsigned int clamp_value)
859 {
860 /*
861 * Avoid blocked utilization pushing up the frequency when we go
862 * idle (which drops the max-clamp) by retaining the last known
863 * max-clamp.
864 */
865 if (clamp_id == UCLAMP_MAX) {
866 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
867 return clamp_value;
868 }
869
870 return uclamp_none(UCLAMP_MIN);
871 }
872
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)873 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
874 unsigned int clamp_value)
875 {
876 /* Reset max-clamp retention only on idle exit */
877 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
878 return;
879
880 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
881 }
882
883 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)884 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
885 unsigned int clamp_value)
886 {
887 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
888 int bucket_id = UCLAMP_BUCKETS - 1;
889
890 /*
891 * Since both min and max clamps are max aggregated, find the
892 * top most bucket with tasks in.
893 */
894 for ( ; bucket_id >= 0; bucket_id--) {
895 if (!bucket[bucket_id].tasks)
896 continue;
897 return bucket[bucket_id].value;
898 }
899
900 /* No tasks -- default clamp values */
901 return uclamp_idle_value(rq, clamp_id, clamp_value);
902 }
903
904 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)905 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
906 {
907 /* Copy by value as we could modify it */
908 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
909 #ifdef CONFIG_UCLAMP_TASK_GROUP
910 unsigned int tg_min, tg_max, value;
911
912 /*
913 * Tasks in autogroups or root task group will be
914 * restricted by system defaults.
915 */
916 if (task_group_is_autogroup(task_group(p)))
917 return uc_req;
918 if (task_group(p) == &root_task_group)
919 return uc_req;
920
921 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
922 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
923 value = uc_req.value;
924 value = clamp(value, tg_min, tg_max);
925 uclamp_se_set(&uc_req, value, false);
926 #endif
927
928 return uc_req;
929 }
930
931 /*
932 * The effective clamp bucket index of a task depends on, by increasing
933 * priority:
934 * - the task specific clamp value, when explicitly requested from userspace
935 * - the task group effective clamp value, for tasks not either in the root
936 * group or in an autogroup
937 * - the system default clamp value, defined by the sysadmin
938 */
939 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)940 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
941 {
942 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
943 struct uclamp_se uc_max = uclamp_default[clamp_id];
944
945 /* System default restrictions always apply */
946 if (unlikely(uc_req.value > uc_max.value))
947 return uc_max;
948
949 return uc_req;
950 }
951
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)952 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
953 {
954 struct uclamp_se uc_eff;
955
956 /* Task currently refcounted: use back-annotated (effective) value */
957 if (p->uclamp[clamp_id].active)
958 return (unsigned long)p->uclamp[clamp_id].value;
959
960 uc_eff = uclamp_eff_get(p, clamp_id);
961
962 return (unsigned long)uc_eff.value;
963 }
964
965 /*
966 * When a task is enqueued on a rq, the clamp bucket currently defined by the
967 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
968 * updates the rq's clamp value if required.
969 *
970 * Tasks can have a task-specific value requested from user-space, track
971 * within each bucket the maximum value for tasks refcounted in it.
972 * This "local max aggregation" allows to track the exact "requested" value
973 * for each bucket when all its RUNNABLE tasks require the same clamp.
974 */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)975 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
976 enum uclamp_id clamp_id)
977 {
978 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
979 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
980 struct uclamp_bucket *bucket;
981
982 lockdep_assert_held(&rq->lock);
983
984 /* Update task effective clamp */
985 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
986
987 bucket = &uc_rq->bucket[uc_se->bucket_id];
988 bucket->tasks++;
989 uc_se->active = true;
990
991 uclamp_idle_reset(rq, clamp_id, uc_se->value);
992
993 /*
994 * Local max aggregation: rq buckets always track the max
995 * "requested" clamp value of its RUNNABLE tasks.
996 */
997 if (bucket->tasks == 1 || uc_se->value > bucket->value)
998 bucket->value = uc_se->value;
999
1000 if (uc_se->value > READ_ONCE(uc_rq->value))
1001 WRITE_ONCE(uc_rq->value, uc_se->value);
1002 }
1003
1004 /*
1005 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1006 * is released. If this is the last task reference counting the rq's max
1007 * active clamp value, then the rq's clamp value is updated.
1008 *
1009 * Both refcounted tasks and rq's cached clamp values are expected to be
1010 * always valid. If it's detected they are not, as defensive programming,
1011 * enforce the expected state and warn.
1012 */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1013 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1014 enum uclamp_id clamp_id)
1015 {
1016 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1017 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1018 struct uclamp_bucket *bucket;
1019 unsigned int bkt_clamp;
1020 unsigned int rq_clamp;
1021
1022 lockdep_assert_held(&rq->lock);
1023
1024 /*
1025 * If sched_uclamp_used was enabled after task @p was enqueued,
1026 * we could end up with unbalanced call to uclamp_rq_dec_id().
1027 *
1028 * In this case the uc_se->active flag should be false since no uclamp
1029 * accounting was performed at enqueue time and we can just return
1030 * here.
1031 *
1032 * Need to be careful of the following enqeueue/dequeue ordering
1033 * problem too
1034 *
1035 * enqueue(taskA)
1036 * // sched_uclamp_used gets enabled
1037 * enqueue(taskB)
1038 * dequeue(taskA)
1039 * // Must not decrement bukcet->tasks here
1040 * dequeue(taskB)
1041 *
1042 * where we could end up with stale data in uc_se and
1043 * bucket[uc_se->bucket_id].
1044 *
1045 * The following check here eliminates the possibility of such race.
1046 */
1047 if (unlikely(!uc_se->active))
1048 return;
1049
1050 bucket = &uc_rq->bucket[uc_se->bucket_id];
1051
1052 SCHED_WARN_ON(!bucket->tasks);
1053 if (likely(bucket->tasks))
1054 bucket->tasks--;
1055
1056 uc_se->active = false;
1057
1058 /*
1059 * Keep "local max aggregation" simple and accept to (possibly)
1060 * overboost some RUNNABLE tasks in the same bucket.
1061 * The rq clamp bucket value is reset to its base value whenever
1062 * there are no more RUNNABLE tasks refcounting it.
1063 */
1064 if (likely(bucket->tasks))
1065 return;
1066
1067 rq_clamp = READ_ONCE(uc_rq->value);
1068 /*
1069 * Defensive programming: this should never happen. If it happens,
1070 * e.g. due to future modification, warn and fixup the expected value.
1071 */
1072 SCHED_WARN_ON(bucket->value > rq_clamp);
1073 if (bucket->value >= rq_clamp) {
1074 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1075 WRITE_ONCE(uc_rq->value, bkt_clamp);
1076 }
1077 }
1078
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1079 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1080 {
1081 enum uclamp_id clamp_id;
1082
1083 /*
1084 * Avoid any overhead until uclamp is actually used by the userspace.
1085 *
1086 * The condition is constructed such that a NOP is generated when
1087 * sched_uclamp_used is disabled.
1088 */
1089 if (!static_branch_unlikely(&sched_uclamp_used))
1090 return;
1091
1092 if (unlikely(!p->sched_class->uclamp_enabled))
1093 return;
1094
1095 for_each_clamp_id(clamp_id)
1096 uclamp_rq_inc_id(rq, p, clamp_id);
1097
1098 /* Reset clamp idle holding when there is one RUNNABLE task */
1099 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1100 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1101 }
1102
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1103 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1104 {
1105 enum uclamp_id clamp_id;
1106
1107 /*
1108 * Avoid any overhead until uclamp is actually used by the userspace.
1109 *
1110 * The condition is constructed such that a NOP is generated when
1111 * sched_uclamp_used is disabled.
1112 */
1113 if (!static_branch_unlikely(&sched_uclamp_used))
1114 return;
1115
1116 if (unlikely(!p->sched_class->uclamp_enabled))
1117 return;
1118
1119 for_each_clamp_id(clamp_id)
1120 uclamp_rq_dec_id(rq, p, clamp_id);
1121 }
1122
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1123 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1124 enum uclamp_id clamp_id)
1125 {
1126 if (!p->uclamp[clamp_id].active)
1127 return;
1128
1129 uclamp_rq_dec_id(rq, p, clamp_id);
1130 uclamp_rq_inc_id(rq, p, clamp_id);
1131
1132 /*
1133 * Make sure to clear the idle flag if we've transiently reached 0
1134 * active tasks on rq.
1135 */
1136 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1137 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1138 }
1139
1140 static inline void
uclamp_update_active(struct task_struct * p)1141 uclamp_update_active(struct task_struct *p)
1142 {
1143 enum uclamp_id clamp_id;
1144 struct rq_flags rf;
1145 struct rq *rq;
1146
1147 /*
1148 * Lock the task and the rq where the task is (or was) queued.
1149 *
1150 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1151 * price to pay to safely serialize util_{min,max} updates with
1152 * enqueues, dequeues and migration operations.
1153 * This is the same locking schema used by __set_cpus_allowed_ptr().
1154 */
1155 rq = task_rq_lock(p, &rf);
1156
1157 /*
1158 * Setting the clamp bucket is serialized by task_rq_lock().
1159 * If the task is not yet RUNNABLE and its task_struct is not
1160 * affecting a valid clamp bucket, the next time it's enqueued,
1161 * it will already see the updated clamp bucket value.
1162 */
1163 for_each_clamp_id(clamp_id)
1164 uclamp_rq_reinc_id(rq, p, clamp_id);
1165
1166 task_rq_unlock(rq, p, &rf);
1167 }
1168
1169 #ifdef CONFIG_UCLAMP_TASK_GROUP
1170 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1171 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1172 {
1173 struct css_task_iter it;
1174 struct task_struct *p;
1175
1176 css_task_iter_start(css, 0, &it);
1177 while ((p = css_task_iter_next(&it)))
1178 uclamp_update_active(p);
1179 css_task_iter_end(&it);
1180 }
1181
1182 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
uclamp_update_root_tg(void)1183 static void uclamp_update_root_tg(void)
1184 {
1185 struct task_group *tg = &root_task_group;
1186
1187 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1188 sysctl_sched_uclamp_util_min, false);
1189 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1190 sysctl_sched_uclamp_util_max, false);
1191
1192 rcu_read_lock();
1193 cpu_util_update_eff(&root_task_group.css);
1194 rcu_read_unlock();
1195 }
1196 #else
uclamp_update_root_tg(void)1197 static void uclamp_update_root_tg(void) { }
1198 #endif
1199
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)1200 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1201 void __user *buffer, size_t *lenp,
1202 loff_t *ppos)
1203 {
1204 bool update_root_tg = false;
1205 int old_min, old_max;
1206 int result;
1207
1208 mutex_lock(&uclamp_mutex);
1209 old_min = sysctl_sched_uclamp_util_min;
1210 old_max = sysctl_sched_uclamp_util_max;
1211
1212 result = proc_dointvec(table, write, buffer, lenp, ppos);
1213 if (result)
1214 goto undo;
1215 if (!write)
1216 goto done;
1217
1218 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1219 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1220 result = -EINVAL;
1221 goto undo;
1222 }
1223
1224 if (old_min != sysctl_sched_uclamp_util_min) {
1225 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1226 sysctl_sched_uclamp_util_min, false);
1227 update_root_tg = true;
1228 }
1229 if (old_max != sysctl_sched_uclamp_util_max) {
1230 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1231 sysctl_sched_uclamp_util_max, false);
1232 update_root_tg = true;
1233 }
1234
1235 if (update_root_tg) {
1236 static_branch_enable(&sched_uclamp_used);
1237 uclamp_update_root_tg();
1238 }
1239
1240 /*
1241 * We update all RUNNABLE tasks only when task groups are in use.
1242 * Otherwise, keep it simple and do just a lazy update at each next
1243 * task enqueue time.
1244 */
1245
1246 goto done;
1247
1248 undo:
1249 sysctl_sched_uclamp_util_min = old_min;
1250 sysctl_sched_uclamp_util_max = old_max;
1251 done:
1252 mutex_unlock(&uclamp_mutex);
1253
1254 return result;
1255 }
1256
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1257 static int uclamp_validate(struct task_struct *p,
1258 const struct sched_attr *attr)
1259 {
1260 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1261 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1262
1263 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1264 lower_bound = attr->sched_util_min;
1265 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1266 upper_bound = attr->sched_util_max;
1267
1268 if (lower_bound > upper_bound)
1269 return -EINVAL;
1270 if (upper_bound > SCHED_CAPACITY_SCALE)
1271 return -EINVAL;
1272
1273 /*
1274 * We have valid uclamp attributes; make sure uclamp is enabled.
1275 *
1276 * We need to do that here, because enabling static branches is a
1277 * blocking operation which obviously cannot be done while holding
1278 * scheduler locks.
1279 */
1280 static_branch_enable(&sched_uclamp_used);
1281
1282 return 0;
1283 }
1284
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1285 static void __setscheduler_uclamp(struct task_struct *p,
1286 const struct sched_attr *attr)
1287 {
1288 enum uclamp_id clamp_id;
1289
1290 /*
1291 * On scheduling class change, reset to default clamps for tasks
1292 * without a task-specific value.
1293 */
1294 for_each_clamp_id(clamp_id) {
1295 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1296 unsigned int clamp_value = uclamp_none(clamp_id);
1297
1298 /* Keep using defined clamps across class changes */
1299 if (uc_se->user_defined)
1300 continue;
1301
1302 /* By default, RT tasks always get 100% boost */
1303 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1304 clamp_value = uclamp_none(UCLAMP_MAX);
1305
1306 uclamp_se_set(uc_se, clamp_value, false);
1307 }
1308
1309 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1310 return;
1311
1312 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1313 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1314 attr->sched_util_min, true);
1315 }
1316
1317 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1318 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1319 attr->sched_util_max, true);
1320 }
1321 }
1322
uclamp_fork(struct task_struct * p)1323 static void uclamp_fork(struct task_struct *p)
1324 {
1325 enum uclamp_id clamp_id;
1326
1327 for_each_clamp_id(clamp_id)
1328 p->uclamp[clamp_id].active = false;
1329
1330 if (likely(!p->sched_reset_on_fork))
1331 return;
1332
1333 for_each_clamp_id(clamp_id) {
1334 uclamp_se_set(&p->uclamp_req[clamp_id],
1335 uclamp_none(clamp_id), false);
1336 }
1337 }
1338
init_uclamp_rq(struct rq * rq)1339 static void __init init_uclamp_rq(struct rq *rq)
1340 {
1341 enum uclamp_id clamp_id;
1342 struct uclamp_rq *uc_rq = rq->uclamp;
1343
1344 for_each_clamp_id(clamp_id) {
1345 uc_rq[clamp_id] = (struct uclamp_rq) {
1346 .value = uclamp_none(clamp_id)
1347 };
1348 }
1349
1350 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1351 }
1352
init_uclamp(void)1353 static void __init init_uclamp(void)
1354 {
1355 struct uclamp_se uc_max = {};
1356 enum uclamp_id clamp_id;
1357 int cpu;
1358
1359 mutex_init(&uclamp_mutex);
1360
1361 for_each_possible_cpu(cpu)
1362 init_uclamp_rq(cpu_rq(cpu));
1363
1364 for_each_clamp_id(clamp_id) {
1365 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1366 uclamp_none(clamp_id), false);
1367 }
1368
1369 /* System defaults allow max clamp values for both indexes */
1370 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1371 for_each_clamp_id(clamp_id) {
1372 uclamp_default[clamp_id] = uc_max;
1373 #ifdef CONFIG_UCLAMP_TASK_GROUP
1374 root_task_group.uclamp_req[clamp_id] = uc_max;
1375 root_task_group.uclamp[clamp_id] = uc_max;
1376 #endif
1377 }
1378 }
1379
1380 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1381 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1382 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1383 static inline int uclamp_validate(struct task_struct *p,
1384 const struct sched_attr *attr)
1385 {
1386 return -EOPNOTSUPP;
1387 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1388 static void __setscheduler_uclamp(struct task_struct *p,
1389 const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)1390 static inline void uclamp_fork(struct task_struct *p) { }
init_uclamp(void)1391 static inline void init_uclamp(void) { }
1392 #endif /* CONFIG_UCLAMP_TASK */
1393
enqueue_task(struct rq * rq,struct task_struct * p,int flags)1394 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1395 {
1396 if (!(flags & ENQUEUE_NOCLOCK))
1397 update_rq_clock(rq);
1398
1399 if (!(flags & ENQUEUE_RESTORE)) {
1400 sched_info_queued(rq, p);
1401 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1402 }
1403
1404 uclamp_rq_inc(rq, p);
1405 p->sched_class->enqueue_task(rq, p, flags);
1406
1407 trace_android_rvh_enqueue_task(rq, p);
1408 }
1409
dequeue_task(struct rq * rq,struct task_struct * p,int flags)1410 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1411 {
1412 if (!(flags & DEQUEUE_NOCLOCK))
1413 update_rq_clock(rq);
1414
1415 if (!(flags & DEQUEUE_SAVE)) {
1416 sched_info_dequeued(rq, p);
1417 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1418 }
1419
1420 uclamp_rq_dec(rq, p);
1421 p->sched_class->dequeue_task(rq, p, flags);
1422
1423 trace_android_rvh_dequeue_task(rq, p);
1424 }
1425
activate_task(struct rq * rq,struct task_struct * p,int flags)1426 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1427 {
1428 if (task_on_rq_migrating(p))
1429 flags |= ENQUEUE_MIGRATED;
1430
1431 if (task_contributes_to_load(p))
1432 rq->nr_uninterruptible--;
1433
1434 enqueue_task(rq, p, flags);
1435
1436 p->on_rq = TASK_ON_RQ_QUEUED;
1437 }
1438
deactivate_task(struct rq * rq,struct task_struct * p,int flags)1439 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1440 {
1441 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1442
1443 if (task_contributes_to_load(p))
1444 rq->nr_uninterruptible++;
1445
1446 dequeue_task(rq, p, flags);
1447 }
1448
1449 /*
1450 * __normal_prio - return the priority that is based on the static prio
1451 */
__normal_prio(struct task_struct * p)1452 static inline int __normal_prio(struct task_struct *p)
1453 {
1454 return p->static_prio;
1455 }
1456
1457 /*
1458 * Calculate the expected normal priority: i.e. priority
1459 * without taking RT-inheritance into account. Might be
1460 * boosted by interactivity modifiers. Changes upon fork,
1461 * setprio syscalls, and whenever the interactivity
1462 * estimator recalculates.
1463 */
normal_prio(struct task_struct * p)1464 static inline int normal_prio(struct task_struct *p)
1465 {
1466 int prio;
1467
1468 if (task_has_dl_policy(p))
1469 prio = MAX_DL_PRIO-1;
1470 else if (task_has_rt_policy(p))
1471 prio = MAX_RT_PRIO-1 - p->rt_priority;
1472 else
1473 prio = __normal_prio(p);
1474 return prio;
1475 }
1476
1477 /*
1478 * Calculate the current priority, i.e. the priority
1479 * taken into account by the scheduler. This value might
1480 * be boosted by RT tasks, or might be boosted by
1481 * interactivity modifiers. Will be RT if the task got
1482 * RT-boosted. If not then it returns p->normal_prio.
1483 */
effective_prio(struct task_struct * p)1484 static int effective_prio(struct task_struct *p)
1485 {
1486 p->normal_prio = normal_prio(p);
1487 /*
1488 * If we are RT tasks or we were boosted to RT priority,
1489 * keep the priority unchanged. Otherwise, update priority
1490 * to the normal priority:
1491 */
1492 if (!rt_prio(p->prio))
1493 return p->normal_prio;
1494 return p->prio;
1495 }
1496
1497 /**
1498 * task_curr - is this task currently executing on a CPU?
1499 * @p: the task in question.
1500 *
1501 * Return: 1 if the task is currently executing. 0 otherwise.
1502 */
task_curr(const struct task_struct * p)1503 inline int task_curr(const struct task_struct *p)
1504 {
1505 return cpu_curr(task_cpu(p)) == p;
1506 }
1507
1508 /*
1509 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1510 * use the balance_callback list if you want balancing.
1511 *
1512 * this means any call to check_class_changed() must be followed by a call to
1513 * balance_callback().
1514 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)1515 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1516 const struct sched_class *prev_class,
1517 int oldprio)
1518 {
1519 if (prev_class != p->sched_class) {
1520 if (prev_class->switched_from)
1521 prev_class->switched_from(rq, p);
1522
1523 p->sched_class->switched_to(rq, p);
1524 } else if (oldprio != p->prio || dl_task(p))
1525 p->sched_class->prio_changed(rq, p, oldprio);
1526 }
1527
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)1528 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1529 {
1530 const struct sched_class *class;
1531
1532 if (p->sched_class == rq->curr->sched_class) {
1533 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1534 } else {
1535 for_each_class(class) {
1536 if (class == rq->curr->sched_class)
1537 break;
1538 if (class == p->sched_class) {
1539 resched_curr(rq);
1540 break;
1541 }
1542 }
1543 }
1544
1545 /*
1546 * A queue event has occurred, and we're going to schedule. In
1547 * this case, we can save a useless back to back clock update.
1548 */
1549 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1550 rq_clock_skip_update(rq);
1551 }
1552
1553 #ifdef CONFIG_SMP
1554
is_per_cpu_kthread(struct task_struct * p)1555 static inline bool is_per_cpu_kthread(struct task_struct *p)
1556 {
1557 if (!(p->flags & PF_KTHREAD))
1558 return false;
1559
1560 if (p->nr_cpus_allowed != 1)
1561 return false;
1562
1563 return true;
1564 }
1565
1566 /*
1567 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1568 * __set_cpus_allowed_ptr() and select_fallback_rq().
1569 */
is_cpu_allowed(struct task_struct * p,int cpu)1570 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1571 {
1572 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1573 return false;
1574
1575 if (is_per_cpu_kthread(p))
1576 return cpu_online(cpu);
1577
1578 return cpu_active(cpu);
1579 }
1580
1581 /*
1582 * This is how migration works:
1583 *
1584 * 1) we invoke migration_cpu_stop() on the target CPU using
1585 * stop_one_cpu().
1586 * 2) stopper starts to run (implicitly forcing the migrated thread
1587 * off the CPU)
1588 * 3) it checks whether the migrated task is still in the wrong runqueue.
1589 * 4) if it's in the wrong runqueue then the migration thread removes
1590 * it and puts it into the right queue.
1591 * 5) stopper completes and stop_one_cpu() returns and the migration
1592 * is done.
1593 */
1594
1595 /*
1596 * move_queued_task - move a queued task to new rq.
1597 *
1598 * Returns (locked) new rq. Old rq's lock is released.
1599 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)1600 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1601 struct task_struct *p, int new_cpu)
1602 {
1603 lockdep_assert_held(&rq->lock);
1604
1605 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1606 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1607 set_task_cpu(p, new_cpu);
1608 rq_unlock(rq, rf);
1609
1610 rq = cpu_rq(new_cpu);
1611
1612 rq_lock(rq, rf);
1613 BUG_ON(task_cpu(p) != new_cpu);
1614 enqueue_task(rq, p, 0);
1615 p->on_rq = TASK_ON_RQ_QUEUED;
1616 check_preempt_curr(rq, p, 0);
1617
1618 return rq;
1619 }
1620
1621 struct migration_arg {
1622 struct task_struct *task;
1623 int dest_cpu;
1624 };
1625
1626 /*
1627 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1628 * this because either it can't run here any more (set_cpus_allowed()
1629 * away from this CPU, or CPU going down), or because we're
1630 * attempting to rebalance this task on exec (sched_exec).
1631 *
1632 * So we race with normal scheduler movements, but that's OK, as long
1633 * as the task is no longer on this CPU.
1634 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)1635 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1636 struct task_struct *p, int dest_cpu)
1637 {
1638 /* Affinity changed (again). */
1639 if (!is_cpu_allowed(p, dest_cpu))
1640 return rq;
1641
1642 update_rq_clock(rq);
1643 rq = move_queued_task(rq, rf, p, dest_cpu);
1644
1645 return rq;
1646 }
1647
1648 /*
1649 * migration_cpu_stop - this will be executed by a highprio stopper thread
1650 * and performs thread migration by bumping thread off CPU then
1651 * 'pushing' onto another runqueue.
1652 */
migration_cpu_stop(void * data)1653 static int migration_cpu_stop(void *data)
1654 {
1655 struct migration_arg *arg = data;
1656 struct task_struct *p = arg->task;
1657 struct rq *rq = this_rq();
1658 struct rq_flags rf;
1659
1660 /*
1661 * The original target CPU might have gone down and we might
1662 * be on another CPU but it doesn't matter.
1663 */
1664 local_irq_disable();
1665 /*
1666 * We need to explicitly wake pending tasks before running
1667 * __migrate_task() such that we will not miss enforcing cpus_ptr
1668 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1669 */
1670 sched_ttwu_pending();
1671
1672 raw_spin_lock(&p->pi_lock);
1673 rq_lock(rq, &rf);
1674 /*
1675 * If task_rq(p) != rq, it cannot be migrated here, because we're
1676 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1677 * we're holding p->pi_lock.
1678 */
1679 if (task_rq(p) == rq) {
1680 if (task_on_rq_queued(p))
1681 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1682 else
1683 p->wake_cpu = arg->dest_cpu;
1684 }
1685 rq_unlock(rq, &rf);
1686 raw_spin_unlock(&p->pi_lock);
1687
1688 local_irq_enable();
1689 return 0;
1690 }
1691
1692 /*
1693 * sched_class::set_cpus_allowed must do the below, but is not required to
1694 * actually call this function.
1695 */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask)1696 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1697 {
1698 cpumask_copy(&p->cpus_mask, new_mask);
1699 p->nr_cpus_allowed = cpumask_weight(new_mask);
1700 }
1701
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1702 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1703 {
1704 struct rq *rq = task_rq(p);
1705 bool queued, running;
1706
1707 lockdep_assert_held(&p->pi_lock);
1708
1709 queued = task_on_rq_queued(p);
1710 running = task_current(rq, p);
1711
1712 if (queued) {
1713 /*
1714 * Because __kthread_bind() calls this on blocked tasks without
1715 * holding rq->lock.
1716 */
1717 lockdep_assert_held(&rq->lock);
1718 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1719 }
1720 if (running)
1721 put_prev_task(rq, p);
1722
1723 p->sched_class->set_cpus_allowed(p, new_mask);
1724
1725 if (queued)
1726 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1727 if (running)
1728 set_next_task(rq, p);
1729 }
1730
1731 /*
1732 * Change a given task's CPU affinity. Migrate the thread to a
1733 * proper CPU and schedule it away if the CPU it's executing on
1734 * is removed from the allowed bitmask.
1735 *
1736 * NOTE: the caller must have a valid reference to the task, the
1737 * task must not exit() & deallocate itself prematurely. The
1738 * call is not atomic; no spinlocks may be held.
1739 */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)1740 static int __set_cpus_allowed_ptr(struct task_struct *p,
1741 const struct cpumask *new_mask, bool check)
1742 {
1743 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1744 unsigned int dest_cpu;
1745 struct rq_flags rf;
1746 struct rq *rq;
1747 int ret = 0;
1748
1749 rq = task_rq_lock(p, &rf);
1750 update_rq_clock(rq);
1751
1752 if (p->flags & PF_KTHREAD) {
1753 /*
1754 * Kernel threads are allowed on online && !active CPUs
1755 */
1756 cpu_valid_mask = cpu_online_mask;
1757 }
1758
1759 /*
1760 * Must re-check here, to close a race against __kthread_bind(),
1761 * sched_setaffinity() is not guaranteed to observe the flag.
1762 */
1763 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1764 ret = -EINVAL;
1765 goto out;
1766 }
1767
1768 if (cpumask_equal(&p->cpus_mask, new_mask))
1769 goto out;
1770
1771 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1772 if (dest_cpu >= nr_cpu_ids) {
1773 ret = -EINVAL;
1774 goto out;
1775 }
1776
1777 do_set_cpus_allowed(p, new_mask);
1778
1779 if (p->flags & PF_KTHREAD) {
1780 /*
1781 * For kernel threads that do indeed end up on online &&
1782 * !active we want to ensure they are strict per-CPU threads.
1783 */
1784 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1785 !cpumask_intersects(new_mask, cpu_active_mask) &&
1786 p->nr_cpus_allowed != 1);
1787 }
1788
1789 /* Can the task run on the task's current CPU? If so, we're done */
1790 if (cpumask_test_cpu(task_cpu(p), new_mask))
1791 goto out;
1792
1793 if (task_running(rq, p) || p->state == TASK_WAKING) {
1794 struct migration_arg arg = { p, dest_cpu };
1795 /* Need help from migration thread: drop lock and wait. */
1796 task_rq_unlock(rq, p, &rf);
1797 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1798 return 0;
1799 } else if (task_on_rq_queued(p)) {
1800 /*
1801 * OK, since we're going to drop the lock immediately
1802 * afterwards anyway.
1803 */
1804 rq = move_queued_task(rq, &rf, p, dest_cpu);
1805 }
1806 out:
1807 task_rq_unlock(rq, p, &rf);
1808
1809 return ret;
1810 }
1811
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1812 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1813 {
1814 return __set_cpus_allowed_ptr(p, new_mask, false);
1815 }
1816 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1817
set_task_cpu(struct task_struct * p,unsigned int new_cpu)1818 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1819 {
1820 #ifdef CONFIG_SCHED_DEBUG
1821 /*
1822 * We should never call set_task_cpu() on a blocked task,
1823 * ttwu() will sort out the placement.
1824 */
1825 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1826 !p->on_rq);
1827
1828 /*
1829 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1830 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1831 * time relying on p->on_rq.
1832 */
1833 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1834 p->sched_class == &fair_sched_class &&
1835 (p->on_rq && !task_on_rq_migrating(p)));
1836
1837 #ifdef CONFIG_LOCKDEP
1838 /*
1839 * The caller should hold either p->pi_lock or rq->lock, when changing
1840 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1841 *
1842 * sched_move_task() holds both and thus holding either pins the cgroup,
1843 * see task_group().
1844 *
1845 * Furthermore, all task_rq users should acquire both locks, see
1846 * task_rq_lock().
1847 */
1848 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1849 lockdep_is_held(&task_rq(p)->lock)));
1850 #endif
1851 /*
1852 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1853 */
1854 WARN_ON_ONCE(!cpu_online(new_cpu));
1855 #endif
1856
1857 trace_sched_migrate_task(p, new_cpu);
1858
1859 if (task_cpu(p) != new_cpu) {
1860 if (p->sched_class->migrate_task_rq)
1861 p->sched_class->migrate_task_rq(p, new_cpu);
1862 p->se.nr_migrations++;
1863 rseq_migrate(p);
1864 perf_event_task_migrate(p);
1865 }
1866
1867 __set_task_cpu(p, new_cpu);
1868 }
1869
1870 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)1871 static void __migrate_swap_task(struct task_struct *p, int cpu)
1872 {
1873 if (task_on_rq_queued(p)) {
1874 struct rq *src_rq, *dst_rq;
1875 struct rq_flags srf, drf;
1876
1877 src_rq = task_rq(p);
1878 dst_rq = cpu_rq(cpu);
1879
1880 rq_pin_lock(src_rq, &srf);
1881 rq_pin_lock(dst_rq, &drf);
1882
1883 deactivate_task(src_rq, p, 0);
1884 set_task_cpu(p, cpu);
1885 activate_task(dst_rq, p, 0);
1886 check_preempt_curr(dst_rq, p, 0);
1887
1888 rq_unpin_lock(dst_rq, &drf);
1889 rq_unpin_lock(src_rq, &srf);
1890
1891 } else {
1892 /*
1893 * Task isn't running anymore; make it appear like we migrated
1894 * it before it went to sleep. This means on wakeup we make the
1895 * previous CPU our target instead of where it really is.
1896 */
1897 p->wake_cpu = cpu;
1898 }
1899 }
1900
1901 struct migration_swap_arg {
1902 struct task_struct *src_task, *dst_task;
1903 int src_cpu, dst_cpu;
1904 };
1905
migrate_swap_stop(void * data)1906 static int migrate_swap_stop(void *data)
1907 {
1908 struct migration_swap_arg *arg = data;
1909 struct rq *src_rq, *dst_rq;
1910 int ret = -EAGAIN;
1911
1912 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1913 return -EAGAIN;
1914
1915 src_rq = cpu_rq(arg->src_cpu);
1916 dst_rq = cpu_rq(arg->dst_cpu);
1917
1918 double_raw_lock(&arg->src_task->pi_lock,
1919 &arg->dst_task->pi_lock);
1920 double_rq_lock(src_rq, dst_rq);
1921
1922 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1923 goto unlock;
1924
1925 if (task_cpu(arg->src_task) != arg->src_cpu)
1926 goto unlock;
1927
1928 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1929 goto unlock;
1930
1931 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1932 goto unlock;
1933
1934 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1935 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1936
1937 ret = 0;
1938
1939 unlock:
1940 double_rq_unlock(src_rq, dst_rq);
1941 raw_spin_unlock(&arg->dst_task->pi_lock);
1942 raw_spin_unlock(&arg->src_task->pi_lock);
1943
1944 return ret;
1945 }
1946
1947 /*
1948 * Cross migrate two tasks
1949 */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)1950 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1951 int target_cpu, int curr_cpu)
1952 {
1953 struct migration_swap_arg arg;
1954 int ret = -EINVAL;
1955
1956 arg = (struct migration_swap_arg){
1957 .src_task = cur,
1958 .src_cpu = curr_cpu,
1959 .dst_task = p,
1960 .dst_cpu = target_cpu,
1961 };
1962
1963 if (arg.src_cpu == arg.dst_cpu)
1964 goto out;
1965
1966 /*
1967 * These three tests are all lockless; this is OK since all of them
1968 * will be re-checked with proper locks held further down the line.
1969 */
1970 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1971 goto out;
1972
1973 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1974 goto out;
1975
1976 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1977 goto out;
1978
1979 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1980 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1981
1982 out:
1983 return ret;
1984 }
1985 #endif /* CONFIG_NUMA_BALANCING */
1986
1987 /*
1988 * wait_task_inactive - wait for a thread to unschedule.
1989 *
1990 * If @match_state is nonzero, it's the @p->state value just checked and
1991 * not expected to change. If it changes, i.e. @p might have woken up,
1992 * then return zero. When we succeed in waiting for @p to be off its CPU,
1993 * we return a positive number (its total switch count). If a second call
1994 * a short while later returns the same number, the caller can be sure that
1995 * @p has remained unscheduled the whole time.
1996 *
1997 * The caller must ensure that the task *will* unschedule sometime soon,
1998 * else this function might spin for a *long* time. This function can't
1999 * be called with interrupts off, or it may introduce deadlock with
2000 * smp_call_function() if an IPI is sent by the same process we are
2001 * waiting to become inactive.
2002 */
wait_task_inactive(struct task_struct * p,long match_state)2003 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2004 {
2005 int running, queued;
2006 struct rq_flags rf;
2007 unsigned long ncsw;
2008 struct rq *rq;
2009
2010 for (;;) {
2011 /*
2012 * We do the initial early heuristics without holding
2013 * any task-queue locks at all. We'll only try to get
2014 * the runqueue lock when things look like they will
2015 * work out!
2016 */
2017 rq = task_rq(p);
2018
2019 /*
2020 * If the task is actively running on another CPU
2021 * still, just relax and busy-wait without holding
2022 * any locks.
2023 *
2024 * NOTE! Since we don't hold any locks, it's not
2025 * even sure that "rq" stays as the right runqueue!
2026 * But we don't care, since "task_running()" will
2027 * return false if the runqueue has changed and p
2028 * is actually now running somewhere else!
2029 */
2030 while (task_running(rq, p)) {
2031 if (match_state && unlikely(p->state != match_state))
2032 return 0;
2033 cpu_relax();
2034 }
2035
2036 /*
2037 * Ok, time to look more closely! We need the rq
2038 * lock now, to be *sure*. If we're wrong, we'll
2039 * just go back and repeat.
2040 */
2041 rq = task_rq_lock(p, &rf);
2042 trace_sched_wait_task(p);
2043 running = task_running(rq, p);
2044 queued = task_on_rq_queued(p);
2045 ncsw = 0;
2046 if (!match_state || p->state == match_state)
2047 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2048 task_rq_unlock(rq, p, &rf);
2049
2050 /*
2051 * If it changed from the expected state, bail out now.
2052 */
2053 if (unlikely(!ncsw))
2054 break;
2055
2056 /*
2057 * Was it really running after all now that we
2058 * checked with the proper locks actually held?
2059 *
2060 * Oops. Go back and try again..
2061 */
2062 if (unlikely(running)) {
2063 cpu_relax();
2064 continue;
2065 }
2066
2067 /*
2068 * It's not enough that it's not actively running,
2069 * it must be off the runqueue _entirely_, and not
2070 * preempted!
2071 *
2072 * So if it was still runnable (but just not actively
2073 * running right now), it's preempted, and we should
2074 * yield - it could be a while.
2075 */
2076 if (unlikely(queued)) {
2077 ktime_t to = NSEC_PER_SEC / HZ;
2078
2079 set_current_state(TASK_UNINTERRUPTIBLE);
2080 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2081 continue;
2082 }
2083
2084 /*
2085 * Ahh, all good. It wasn't running, and it wasn't
2086 * runnable, which means that it will never become
2087 * running in the future either. We're all done!
2088 */
2089 break;
2090 }
2091
2092 return ncsw;
2093 }
2094
2095 /***
2096 * kick_process - kick a running thread to enter/exit the kernel
2097 * @p: the to-be-kicked thread
2098 *
2099 * Cause a process which is running on another CPU to enter
2100 * kernel-mode, without any delay. (to get signals handled.)
2101 *
2102 * NOTE: this function doesn't have to take the runqueue lock,
2103 * because all it wants to ensure is that the remote task enters
2104 * the kernel. If the IPI races and the task has been migrated
2105 * to another CPU then no harm is done and the purpose has been
2106 * achieved as well.
2107 */
kick_process(struct task_struct * p)2108 void kick_process(struct task_struct *p)
2109 {
2110 int cpu;
2111
2112 preempt_disable();
2113 cpu = task_cpu(p);
2114 if ((cpu != smp_processor_id()) && task_curr(p))
2115 smp_send_reschedule(cpu);
2116 preempt_enable();
2117 }
2118 EXPORT_SYMBOL_GPL(kick_process);
2119
2120 /*
2121 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2122 *
2123 * A few notes on cpu_active vs cpu_online:
2124 *
2125 * - cpu_active must be a subset of cpu_online
2126 *
2127 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2128 * see __set_cpus_allowed_ptr(). At this point the newly online
2129 * CPU isn't yet part of the sched domains, and balancing will not
2130 * see it.
2131 *
2132 * - on CPU-down we clear cpu_active() to mask the sched domains and
2133 * avoid the load balancer to place new tasks on the to be removed
2134 * CPU. Existing tasks will remain running there and will be taken
2135 * off.
2136 *
2137 * This means that fallback selection must not select !active CPUs.
2138 * And can assume that any active CPU must be online. Conversely
2139 * select_task_rq() below may allow selection of !active CPUs in order
2140 * to satisfy the above rules.
2141 */
select_fallback_rq(int cpu,struct task_struct * p)2142 static int select_fallback_rq(int cpu, struct task_struct *p)
2143 {
2144 int nid = cpu_to_node(cpu);
2145 const struct cpumask *nodemask = NULL;
2146 enum { cpuset, possible, fail } state = cpuset;
2147 int dest_cpu = -1;
2148
2149 trace_android_rvh_select_fallback_rq(cpu, p, &dest_cpu);
2150 if (dest_cpu >= 0)
2151 return dest_cpu;
2152
2153 /*
2154 * If the node that the CPU is on has been offlined, cpu_to_node()
2155 * will return -1. There is no CPU on the node, and we should
2156 * select the CPU on the other node.
2157 */
2158 if (nid != -1) {
2159 nodemask = cpumask_of_node(nid);
2160
2161 /* Look for allowed, online CPU in same node. */
2162 for_each_cpu(dest_cpu, nodemask) {
2163 if (!cpu_active(dest_cpu))
2164 continue;
2165 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2166 return dest_cpu;
2167 }
2168 }
2169
2170 for (;;) {
2171 /* Any allowed, online CPU? */
2172 for_each_cpu(dest_cpu, p->cpus_ptr) {
2173 if (!is_cpu_allowed(p, dest_cpu))
2174 continue;
2175
2176 goto out;
2177 }
2178
2179 /* No more Mr. Nice Guy. */
2180 switch (state) {
2181 case cpuset:
2182 if (IS_ENABLED(CONFIG_CPUSETS)) {
2183 cpuset_cpus_allowed_fallback(p);
2184 state = possible;
2185 break;
2186 }
2187 /* Fall-through */
2188 case possible:
2189 do_set_cpus_allowed(p, cpu_possible_mask);
2190 state = fail;
2191 break;
2192
2193 case fail:
2194 BUG();
2195 break;
2196 }
2197 }
2198
2199 out:
2200 if (state != cpuset) {
2201 /*
2202 * Don't tell them about moving exiting tasks or
2203 * kernel threads (both mm NULL), since they never
2204 * leave kernel.
2205 */
2206 if (p->mm && printk_ratelimit()) {
2207 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2208 task_pid_nr(p), p->comm, cpu);
2209 }
2210 }
2211
2212 return dest_cpu;
2213 }
2214
2215 /*
2216 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2217 */
2218 static inline
select_task_rq(struct task_struct * p,int cpu,int sd_flags,int wake_flags)2219 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2220 {
2221 lockdep_assert_held(&p->pi_lock);
2222
2223 if (p->nr_cpus_allowed > 1)
2224 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2225 else
2226 cpu = cpumask_any(p->cpus_ptr);
2227
2228 /*
2229 * In order not to call set_task_cpu() on a blocking task we need
2230 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2231 * CPU.
2232 *
2233 * Since this is common to all placement strategies, this lives here.
2234 *
2235 * [ this allows ->select_task() to simply return task_cpu(p) and
2236 * not worry about this generic constraint ]
2237 */
2238 if (unlikely(!is_cpu_allowed(p, cpu)))
2239 cpu = select_fallback_rq(task_cpu(p), p);
2240
2241 return cpu;
2242 }
2243
update_avg(u64 * avg,u64 sample)2244 static void update_avg(u64 *avg, u64 sample)
2245 {
2246 s64 diff = sample - *avg;
2247 *avg += diff >> 3;
2248 }
2249
sched_set_stop_task(int cpu,struct task_struct * stop)2250 void sched_set_stop_task(int cpu, struct task_struct *stop)
2251 {
2252 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2253 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2254
2255 if (stop) {
2256 /*
2257 * Make it appear like a SCHED_FIFO task, its something
2258 * userspace knows about and won't get confused about.
2259 *
2260 * Also, it will make PI more or less work without too
2261 * much confusion -- but then, stop work should not
2262 * rely on PI working anyway.
2263 */
2264 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
2265
2266 stop->sched_class = &stop_sched_class;
2267 }
2268
2269 cpu_rq(cpu)->stop = stop;
2270
2271 if (old_stop) {
2272 /*
2273 * Reset it back to a normal scheduling class so that
2274 * it can die in pieces.
2275 */
2276 old_stop->sched_class = &rt_sched_class;
2277 }
2278 }
2279
2280 #else
2281
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)2282 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2283 const struct cpumask *new_mask, bool check)
2284 {
2285 return set_cpus_allowed_ptr(p, new_mask);
2286 }
2287
2288 #endif /* CONFIG_SMP */
2289
2290 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)2291 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2292 {
2293 struct rq *rq;
2294
2295 if (!schedstat_enabled())
2296 return;
2297
2298 rq = this_rq();
2299
2300 #ifdef CONFIG_SMP
2301 if (cpu == rq->cpu) {
2302 __schedstat_inc(rq->ttwu_local);
2303 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2304 } else {
2305 struct sched_domain *sd;
2306
2307 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2308 rcu_read_lock();
2309 for_each_domain(rq->cpu, sd) {
2310 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2311 __schedstat_inc(sd->ttwu_wake_remote);
2312 break;
2313 }
2314 }
2315 rcu_read_unlock();
2316 }
2317
2318 if (wake_flags & WF_MIGRATED)
2319 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2320 #endif /* CONFIG_SMP */
2321
2322 __schedstat_inc(rq->ttwu_count);
2323 __schedstat_inc(p->se.statistics.nr_wakeups);
2324
2325 if (wake_flags & WF_SYNC)
2326 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2327 }
2328
2329 /*
2330 * Mark the task runnable and perform wakeup-preemption.
2331 */
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)2332 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2333 struct rq_flags *rf)
2334 {
2335 check_preempt_curr(rq, p, wake_flags);
2336 p->state = TASK_RUNNING;
2337 trace_sched_wakeup(p);
2338
2339 #ifdef CONFIG_SMP
2340 if (p->sched_class->task_woken) {
2341 /*
2342 * Our task @p is fully woken up and running; so its safe to
2343 * drop the rq->lock, hereafter rq is only used for statistics.
2344 */
2345 rq_unpin_lock(rq, rf);
2346 p->sched_class->task_woken(rq, p);
2347 rq_repin_lock(rq, rf);
2348 }
2349
2350 if (rq->idle_stamp) {
2351 u64 delta = rq_clock(rq) - rq->idle_stamp;
2352 u64 max = 2*rq->max_idle_balance_cost;
2353
2354 update_avg(&rq->avg_idle, delta);
2355
2356 if (rq->avg_idle > max)
2357 rq->avg_idle = max;
2358
2359 rq->idle_stamp = 0;
2360 }
2361 #endif
2362 }
2363
2364 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)2365 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2366 struct rq_flags *rf)
2367 {
2368 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2369
2370 lockdep_assert_held(&rq->lock);
2371
2372 #ifdef CONFIG_SMP
2373 if (p->sched_contributes_to_load)
2374 rq->nr_uninterruptible--;
2375
2376 if (wake_flags & WF_MIGRATED)
2377 en_flags |= ENQUEUE_MIGRATED;
2378 #endif
2379
2380 activate_task(rq, p, en_flags);
2381 ttwu_do_wakeup(rq, p, wake_flags, rf);
2382 }
2383
2384 /*
2385 * Called in case the task @p isn't fully descheduled from its runqueue,
2386 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2387 * since all we need to do is flip p->state to TASK_RUNNING, since
2388 * the task is still ->on_rq.
2389 */
ttwu_remote(struct task_struct * p,int wake_flags)2390 static int ttwu_remote(struct task_struct *p, int wake_flags)
2391 {
2392 struct rq_flags rf;
2393 struct rq *rq;
2394 int ret = 0;
2395
2396 rq = __task_rq_lock(p, &rf);
2397 if (task_on_rq_queued(p)) {
2398 /* check_preempt_curr() may use rq clock */
2399 update_rq_clock(rq);
2400 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2401 ret = 1;
2402 }
2403 __task_rq_unlock(rq, &rf);
2404
2405 return ret;
2406 }
2407
2408 #ifdef CONFIG_SMP
sched_ttwu_pending(void)2409 void sched_ttwu_pending(void)
2410 {
2411 struct rq *rq = this_rq();
2412 struct llist_node *llist = llist_del_all(&rq->wake_list);
2413 struct task_struct *p, *t;
2414 struct rq_flags rf;
2415
2416 if (!llist)
2417 return;
2418
2419 rq_lock_irqsave(rq, &rf);
2420 update_rq_clock(rq);
2421
2422 llist_for_each_entry_safe(p, t, llist, wake_entry)
2423 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2424
2425 rq_unlock_irqrestore(rq, &rf);
2426 }
2427
scheduler_ipi(void)2428 void scheduler_ipi(void)
2429 {
2430 /*
2431 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2432 * TIF_NEED_RESCHED remotely (for the first time) will also send
2433 * this IPI.
2434 */
2435 preempt_fold_need_resched();
2436
2437 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2438 return;
2439
2440 /*
2441 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2442 * traditionally all their work was done from the interrupt return
2443 * path. Now that we actually do some work, we need to make sure
2444 * we do call them.
2445 *
2446 * Some archs already do call them, luckily irq_enter/exit nest
2447 * properly.
2448 *
2449 * Arguably we should visit all archs and update all handlers,
2450 * however a fair share of IPIs are still resched only so this would
2451 * somewhat pessimize the simple resched case.
2452 */
2453 irq_enter();
2454 sched_ttwu_pending();
2455
2456 /*
2457 * Check if someone kicked us for doing the nohz idle load balance.
2458 */
2459 if (unlikely(got_nohz_idle_kick())) {
2460 this_rq()->idle_balance = 1;
2461 raise_softirq_irqoff(SCHED_SOFTIRQ);
2462 }
2463 irq_exit();
2464 }
2465
ttwu_queue_remote(struct task_struct * p,int cpu,int wake_flags)2466 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2467 {
2468 struct rq *rq = cpu_rq(cpu);
2469
2470 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2471
2472 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2473 if (!set_nr_if_polling(rq->idle))
2474 smp_send_reschedule(cpu);
2475 else
2476 trace_sched_wake_idle_without_ipi(cpu);
2477 }
2478 }
2479
wake_up_if_idle(int cpu)2480 void wake_up_if_idle(int cpu)
2481 {
2482 struct rq *rq = cpu_rq(cpu);
2483 struct rq_flags rf;
2484
2485 rcu_read_lock();
2486
2487 if (!is_idle_task(rcu_dereference(rq->curr)))
2488 goto out;
2489
2490 if (set_nr_if_polling(rq->idle)) {
2491 trace_sched_wake_idle_without_ipi(cpu);
2492 } else {
2493 rq_lock_irqsave(rq, &rf);
2494 if (is_idle_task(rq->curr))
2495 smp_send_reschedule(cpu);
2496 /* Else CPU is not idle, do nothing here: */
2497 rq_unlock_irqrestore(rq, &rf);
2498 }
2499
2500 out:
2501 rcu_read_unlock();
2502 }
2503
cpus_share_cache(int this_cpu,int that_cpu)2504 bool cpus_share_cache(int this_cpu, int that_cpu)
2505 {
2506 if (this_cpu == that_cpu)
2507 return true;
2508
2509 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2510 }
2511 #endif /* CONFIG_SMP */
2512
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)2513 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2514 {
2515 struct rq *rq = cpu_rq(cpu);
2516 struct rq_flags rf;
2517
2518 #if defined(CONFIG_SMP)
2519 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2520 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2521 ttwu_queue_remote(p, cpu, wake_flags);
2522 return;
2523 }
2524 #endif
2525
2526 rq_lock(rq, &rf);
2527 update_rq_clock(rq);
2528 ttwu_do_activate(rq, p, wake_flags, &rf);
2529 rq_unlock(rq, &rf);
2530 }
2531
2532 /*
2533 * Notes on Program-Order guarantees on SMP systems.
2534 *
2535 * MIGRATION
2536 *
2537 * The basic program-order guarantee on SMP systems is that when a task [t]
2538 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2539 * execution on its new CPU [c1].
2540 *
2541 * For migration (of runnable tasks) this is provided by the following means:
2542 *
2543 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2544 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2545 * rq(c1)->lock (if not at the same time, then in that order).
2546 * C) LOCK of the rq(c1)->lock scheduling in task
2547 *
2548 * Release/acquire chaining guarantees that B happens after A and C after B.
2549 * Note: the CPU doing B need not be c0 or c1
2550 *
2551 * Example:
2552 *
2553 * CPU0 CPU1 CPU2
2554 *
2555 * LOCK rq(0)->lock
2556 * sched-out X
2557 * sched-in Y
2558 * UNLOCK rq(0)->lock
2559 *
2560 * LOCK rq(0)->lock // orders against CPU0
2561 * dequeue X
2562 * UNLOCK rq(0)->lock
2563 *
2564 * LOCK rq(1)->lock
2565 * enqueue X
2566 * UNLOCK rq(1)->lock
2567 *
2568 * LOCK rq(1)->lock // orders against CPU2
2569 * sched-out Z
2570 * sched-in X
2571 * UNLOCK rq(1)->lock
2572 *
2573 *
2574 * BLOCKING -- aka. SLEEP + WAKEUP
2575 *
2576 * For blocking we (obviously) need to provide the same guarantee as for
2577 * migration. However the means are completely different as there is no lock
2578 * chain to provide order. Instead we do:
2579 *
2580 * 1) smp_store_release(X->on_cpu, 0)
2581 * 2) smp_cond_load_acquire(!X->on_cpu)
2582 *
2583 * Example:
2584 *
2585 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2586 *
2587 * LOCK rq(0)->lock LOCK X->pi_lock
2588 * dequeue X
2589 * sched-out X
2590 * smp_store_release(X->on_cpu, 0);
2591 *
2592 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2593 * X->state = WAKING
2594 * set_task_cpu(X,2)
2595 *
2596 * LOCK rq(2)->lock
2597 * enqueue X
2598 * X->state = RUNNING
2599 * UNLOCK rq(2)->lock
2600 *
2601 * LOCK rq(2)->lock // orders against CPU1
2602 * sched-out Z
2603 * sched-in X
2604 * UNLOCK rq(2)->lock
2605 *
2606 * UNLOCK X->pi_lock
2607 * UNLOCK rq(0)->lock
2608 *
2609 *
2610 * However, for wakeups there is a second guarantee we must provide, namely we
2611 * must ensure that CONDITION=1 done by the caller can not be reordered with
2612 * accesses to the task state; see try_to_wake_up() and set_current_state().
2613 */
2614
2615 /**
2616 * try_to_wake_up - wake up a thread
2617 * @p: the thread to be awakened
2618 * @state: the mask of task states that can be woken
2619 * @wake_flags: wake modifier flags (WF_*)
2620 *
2621 * If (@state & @p->state) @p->state = TASK_RUNNING.
2622 *
2623 * If the task was not queued/runnable, also place it back on a runqueue.
2624 *
2625 * Atomic against schedule() which would dequeue a task, also see
2626 * set_current_state().
2627 *
2628 * This function executes a full memory barrier before accessing the task
2629 * state; see set_current_state().
2630 *
2631 * Return: %true if @p->state changes (an actual wakeup was done),
2632 * %false otherwise.
2633 */
2634 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)2635 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2636 {
2637 unsigned long flags;
2638 int cpu, success = 0;
2639
2640 preempt_disable();
2641 if (p == current) {
2642 /*
2643 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2644 * == smp_processor_id()'. Together this means we can special
2645 * case the whole 'p->on_rq && ttwu_remote()' case below
2646 * without taking any locks.
2647 *
2648 * In particular:
2649 * - we rely on Program-Order guarantees for all the ordering,
2650 * - we're serialized against set_special_state() by virtue of
2651 * it disabling IRQs (this allows not taking ->pi_lock).
2652 */
2653 if (!(p->state & state))
2654 goto out;
2655
2656 success = 1;
2657 cpu = task_cpu(p);
2658 trace_sched_waking(p);
2659 p->state = TASK_RUNNING;
2660 trace_sched_wakeup(p);
2661 goto out;
2662 }
2663
2664 /*
2665 * If we are going to wake up a thread waiting for CONDITION we
2666 * need to ensure that CONDITION=1 done by the caller can not be
2667 * reordered with p->state check below. This pairs with mb() in
2668 * set_current_state() the waiting thread does.
2669 */
2670 raw_spin_lock_irqsave(&p->pi_lock, flags);
2671 smp_mb__after_spinlock();
2672 if (!(p->state & state))
2673 goto unlock;
2674
2675 trace_sched_waking(p);
2676
2677 /* We're going to change ->state: */
2678 success = 1;
2679 cpu = task_cpu(p);
2680
2681 /*
2682 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2683 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2684 * in smp_cond_load_acquire() below.
2685 *
2686 * sched_ttwu_pending() try_to_wake_up()
2687 * STORE p->on_rq = 1 LOAD p->state
2688 * UNLOCK rq->lock
2689 *
2690 * __schedule() (switch to task 'p')
2691 * LOCK rq->lock smp_rmb();
2692 * smp_mb__after_spinlock();
2693 * UNLOCK rq->lock
2694 *
2695 * [task p]
2696 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2697 *
2698 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2699 * __schedule(). See the comment for smp_mb__after_spinlock().
2700 */
2701 smp_rmb();
2702 if (p->on_rq && ttwu_remote(p, wake_flags))
2703 goto unlock;
2704
2705 #ifdef CONFIG_SMP
2706 /*
2707 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2708 * possible to, falsely, observe p->on_cpu == 0.
2709 *
2710 * One must be running (->on_cpu == 1) in order to remove oneself
2711 * from the runqueue.
2712 *
2713 * __schedule() (switch to task 'p') try_to_wake_up()
2714 * STORE p->on_cpu = 1 LOAD p->on_rq
2715 * UNLOCK rq->lock
2716 *
2717 * __schedule() (put 'p' to sleep)
2718 * LOCK rq->lock smp_rmb();
2719 * smp_mb__after_spinlock();
2720 * STORE p->on_rq = 0 LOAD p->on_cpu
2721 *
2722 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2723 * __schedule(). See the comment for smp_mb__after_spinlock().
2724 */
2725 smp_rmb();
2726
2727 /*
2728 * If the owning (remote) CPU is still in the middle of schedule() with
2729 * this task as prev, wait until its done referencing the task.
2730 *
2731 * Pairs with the smp_store_release() in finish_task().
2732 *
2733 * This ensures that tasks getting woken will be fully ordered against
2734 * their previous state and preserve Program Order.
2735 */
2736 smp_cond_load_acquire(&p->on_cpu, !VAL);
2737
2738 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2739 p->state = TASK_WAKING;
2740
2741 if (p->in_iowait) {
2742 delayacct_blkio_end(p);
2743 atomic_dec(&task_rq(p)->nr_iowait);
2744 }
2745
2746 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2747 if (task_cpu(p) != cpu) {
2748 wake_flags |= WF_MIGRATED;
2749 psi_ttwu_dequeue(p);
2750 set_task_cpu(p, cpu);
2751 }
2752
2753 #else /* CONFIG_SMP */
2754
2755 if (p->in_iowait) {
2756 delayacct_blkio_end(p);
2757 atomic_dec(&task_rq(p)->nr_iowait);
2758 }
2759
2760 #endif /* CONFIG_SMP */
2761
2762 ttwu_queue(p, cpu, wake_flags);
2763 unlock:
2764 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2765 out:
2766 if (success)
2767 ttwu_stat(p, cpu, wake_flags);
2768 preempt_enable();
2769
2770 return success;
2771 }
2772
2773 /**
2774 * wake_up_process - Wake up a specific process
2775 * @p: The process to be woken up.
2776 *
2777 * Attempt to wake up the nominated process and move it to the set of runnable
2778 * processes.
2779 *
2780 * Return: 1 if the process was woken up, 0 if it was already running.
2781 *
2782 * This function executes a full memory barrier before accessing the task state.
2783 */
wake_up_process(struct task_struct * p)2784 int wake_up_process(struct task_struct *p)
2785 {
2786 return try_to_wake_up(p, TASK_NORMAL, 0);
2787 }
2788 EXPORT_SYMBOL(wake_up_process);
2789
wake_up_state(struct task_struct * p,unsigned int state)2790 int wake_up_state(struct task_struct *p, unsigned int state)
2791 {
2792 return try_to_wake_up(p, state, 0);
2793 }
2794
2795 /*
2796 * Perform scheduler related setup for a newly forked process p.
2797 * p is forked by current.
2798 *
2799 * __sched_fork() is basic setup used by init_idle() too:
2800 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)2801 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2802 {
2803 p->on_rq = 0;
2804
2805 p->se.on_rq = 0;
2806 p->se.exec_start = 0;
2807 p->se.sum_exec_runtime = 0;
2808 p->se.prev_sum_exec_runtime = 0;
2809 p->se.nr_migrations = 0;
2810 p->se.vruntime = 0;
2811 INIT_LIST_HEAD(&p->se.group_node);
2812
2813 #ifdef CONFIG_FAIR_GROUP_SCHED
2814 p->se.cfs_rq = NULL;
2815 #endif
2816
2817 #ifdef CONFIG_SCHEDSTATS
2818 /* Even if schedstat is disabled, there should not be garbage */
2819 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2820 #endif
2821
2822 RB_CLEAR_NODE(&p->dl.rb_node);
2823 init_dl_task_timer(&p->dl);
2824 init_dl_inactive_task_timer(&p->dl);
2825 __dl_clear_params(p);
2826
2827 INIT_LIST_HEAD(&p->rt.run_list);
2828 p->rt.timeout = 0;
2829 p->rt.time_slice = sched_rr_timeslice;
2830 p->rt.on_rq = 0;
2831 p->rt.on_list = 0;
2832
2833 #ifdef CONFIG_PREEMPT_NOTIFIERS
2834 INIT_HLIST_HEAD(&p->preempt_notifiers);
2835 #endif
2836
2837 #ifdef CONFIG_COMPACTION
2838 p->capture_control = NULL;
2839 #endif
2840 init_numa_balancing(clone_flags, p);
2841 }
2842
2843 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2844
2845 #ifdef CONFIG_NUMA_BALANCING
2846
set_numabalancing_state(bool enabled)2847 void set_numabalancing_state(bool enabled)
2848 {
2849 if (enabled)
2850 static_branch_enable(&sched_numa_balancing);
2851 else
2852 static_branch_disable(&sched_numa_balancing);
2853 }
2854
2855 #ifdef CONFIG_PROC_SYSCTL
sysctl_numa_balancing(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2856 int sysctl_numa_balancing(struct ctl_table *table, int write,
2857 void __user *buffer, size_t *lenp, loff_t *ppos)
2858 {
2859 struct ctl_table t;
2860 int err;
2861 int state = static_branch_likely(&sched_numa_balancing);
2862
2863 if (write && !capable(CAP_SYS_ADMIN))
2864 return -EPERM;
2865
2866 t = *table;
2867 t.data = &state;
2868 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2869 if (err < 0)
2870 return err;
2871 if (write)
2872 set_numabalancing_state(state);
2873 return err;
2874 }
2875 #endif
2876 #endif
2877
2878 #ifdef CONFIG_SCHEDSTATS
2879
2880 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2881 static bool __initdata __sched_schedstats = false;
2882
set_schedstats(bool enabled)2883 static void set_schedstats(bool enabled)
2884 {
2885 if (enabled)
2886 static_branch_enable(&sched_schedstats);
2887 else
2888 static_branch_disable(&sched_schedstats);
2889 }
2890
force_schedstat_enabled(void)2891 void force_schedstat_enabled(void)
2892 {
2893 if (!schedstat_enabled()) {
2894 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2895 static_branch_enable(&sched_schedstats);
2896 }
2897 }
2898
setup_schedstats(char * str)2899 static int __init setup_schedstats(char *str)
2900 {
2901 int ret = 0;
2902 if (!str)
2903 goto out;
2904
2905 /*
2906 * This code is called before jump labels have been set up, so we can't
2907 * change the static branch directly just yet. Instead set a temporary
2908 * variable so init_schedstats() can do it later.
2909 */
2910 if (!strcmp(str, "enable")) {
2911 __sched_schedstats = true;
2912 ret = 1;
2913 } else if (!strcmp(str, "disable")) {
2914 __sched_schedstats = false;
2915 ret = 1;
2916 }
2917 out:
2918 if (!ret)
2919 pr_warn("Unable to parse schedstats=\n");
2920
2921 return ret;
2922 }
2923 __setup("schedstats=", setup_schedstats);
2924
init_schedstats(void)2925 static void __init init_schedstats(void)
2926 {
2927 set_schedstats(__sched_schedstats);
2928 }
2929
2930 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2931 int sysctl_schedstats(struct ctl_table *table, int write,
2932 void __user *buffer, size_t *lenp, loff_t *ppos)
2933 {
2934 struct ctl_table t;
2935 int err;
2936 int state = static_branch_likely(&sched_schedstats);
2937
2938 if (write && !capable(CAP_SYS_ADMIN))
2939 return -EPERM;
2940
2941 t = *table;
2942 t.data = &state;
2943 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2944 if (err < 0)
2945 return err;
2946 if (write)
2947 set_schedstats(state);
2948 return err;
2949 }
2950 #endif /* CONFIG_PROC_SYSCTL */
2951 #else /* !CONFIG_SCHEDSTATS */
init_schedstats(void)2952 static inline void init_schedstats(void) {}
2953 #endif /* CONFIG_SCHEDSTATS */
2954
2955 /*
2956 * fork()/clone()-time setup:
2957 */
sched_fork(unsigned long clone_flags,struct task_struct * p)2958 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2959 {
2960 unsigned long flags;
2961
2962 __sched_fork(clone_flags, p);
2963 /*
2964 * We mark the process as NEW here. This guarantees that
2965 * nobody will actually run it, and a signal or other external
2966 * event cannot wake it up and insert it on the runqueue either.
2967 */
2968 p->state = TASK_NEW;
2969
2970 /*
2971 * Make sure we do not leak PI boosting priority to the child.
2972 */
2973 p->prio = current->normal_prio;
2974 trace_android_rvh_prepare_prio_fork(p);
2975
2976 uclamp_fork(p);
2977
2978 /*
2979 * Revert to default priority/policy on fork if requested.
2980 */
2981 if (unlikely(p->sched_reset_on_fork)) {
2982 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2983 p->policy = SCHED_NORMAL;
2984 p->static_prio = NICE_TO_PRIO(0);
2985 p->rt_priority = 0;
2986 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2987 p->static_prio = NICE_TO_PRIO(0);
2988
2989 p->prio = p->normal_prio = __normal_prio(p);
2990 set_load_weight(p, false);
2991
2992 /*
2993 * We don't need the reset flag anymore after the fork. It has
2994 * fulfilled its duty:
2995 */
2996 p->sched_reset_on_fork = 0;
2997 }
2998
2999 if (dl_prio(p->prio))
3000 return -EAGAIN;
3001 else if (rt_prio(p->prio))
3002 p->sched_class = &rt_sched_class;
3003 else
3004 p->sched_class = &fair_sched_class;
3005
3006 init_entity_runnable_average(&p->se);
3007 trace_android_rvh_finish_prio_fork(p);
3008
3009 /*
3010 * The child is not yet in the pid-hash so no cgroup attach races,
3011 * and the cgroup is pinned to this child due to cgroup_fork()
3012 * is ran before sched_fork().
3013 *
3014 * Silence PROVE_RCU.
3015 */
3016 raw_spin_lock_irqsave(&p->pi_lock, flags);
3017 rseq_migrate(p);
3018 /*
3019 * We're setting the CPU for the first time, we don't migrate,
3020 * so use __set_task_cpu().
3021 */
3022 __set_task_cpu(p, smp_processor_id());
3023 if (p->sched_class->task_fork)
3024 p->sched_class->task_fork(p);
3025 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3026
3027 #ifdef CONFIG_SCHED_INFO
3028 if (likely(sched_info_on()))
3029 memset(&p->sched_info, 0, sizeof(p->sched_info));
3030 #endif
3031 #if defined(CONFIG_SMP)
3032 p->on_cpu = 0;
3033 #endif
3034 init_task_preempt_count(p);
3035 #ifdef CONFIG_SMP
3036 plist_node_init(&p->pushable_tasks, MAX_PRIO);
3037 RB_CLEAR_NODE(&p->pushable_dl_tasks);
3038 #endif
3039 return 0;
3040 }
3041
to_ratio(u64 period,u64 runtime)3042 unsigned long to_ratio(u64 period, u64 runtime)
3043 {
3044 if (runtime == RUNTIME_INF)
3045 return BW_UNIT;
3046
3047 /*
3048 * Doing this here saves a lot of checks in all
3049 * the calling paths, and returning zero seems
3050 * safe for them anyway.
3051 */
3052 if (period == 0)
3053 return 0;
3054
3055 return div64_u64(runtime << BW_SHIFT, period);
3056 }
3057
3058 /*
3059 * wake_up_new_task - wake up a newly created task for the first time.
3060 *
3061 * This function will do some initial scheduler statistics housekeeping
3062 * that must be done for every newly created context, then puts the task
3063 * on the runqueue and wakes it.
3064 */
wake_up_new_task(struct task_struct * p)3065 void wake_up_new_task(struct task_struct *p)
3066 {
3067 struct rq_flags rf;
3068 struct rq *rq;
3069
3070 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3071 p->state = TASK_RUNNING;
3072 #ifdef CONFIG_SMP
3073 /*
3074 * Fork balancing, do it here and not earlier because:
3075 * - cpus_ptr can change in the fork path
3076 * - any previously selected CPU might disappear through hotplug
3077 *
3078 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3079 * as we're not fully set-up yet.
3080 */
3081 p->recent_used_cpu = task_cpu(p);
3082 rseq_migrate(p);
3083 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3084 #endif
3085 rq = __task_rq_lock(p, &rf);
3086 update_rq_clock(rq);
3087 post_init_entity_util_avg(p);
3088
3089 activate_task(rq, p, ENQUEUE_NOCLOCK);
3090 trace_sched_wakeup_new(p);
3091 check_preempt_curr(rq, p, WF_FORK);
3092 #ifdef CONFIG_SMP
3093 if (p->sched_class->task_woken) {
3094 /*
3095 * Nothing relies on rq->lock after this, so its fine to
3096 * drop it.
3097 */
3098 rq_unpin_lock(rq, &rf);
3099 p->sched_class->task_woken(rq, p);
3100 rq_repin_lock(rq, &rf);
3101 }
3102 #endif
3103 task_rq_unlock(rq, p, &rf);
3104 }
3105
3106 #ifdef CONFIG_PREEMPT_NOTIFIERS
3107
3108 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3109
preempt_notifier_inc(void)3110 void preempt_notifier_inc(void)
3111 {
3112 static_branch_inc(&preempt_notifier_key);
3113 }
3114 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3115
preempt_notifier_dec(void)3116 void preempt_notifier_dec(void)
3117 {
3118 static_branch_dec(&preempt_notifier_key);
3119 }
3120 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3121
3122 /**
3123 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3124 * @notifier: notifier struct to register
3125 */
preempt_notifier_register(struct preempt_notifier * notifier)3126 void preempt_notifier_register(struct preempt_notifier *notifier)
3127 {
3128 if (!static_branch_unlikely(&preempt_notifier_key))
3129 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3130
3131 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
3132 }
3133 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3134
3135 /**
3136 * preempt_notifier_unregister - no longer interested in preemption notifications
3137 * @notifier: notifier struct to unregister
3138 *
3139 * This is *not* safe to call from within a preemption notifier.
3140 */
preempt_notifier_unregister(struct preempt_notifier * notifier)3141 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3142 {
3143 hlist_del(¬ifier->link);
3144 }
3145 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3146
__fire_sched_in_preempt_notifiers(struct task_struct * curr)3147 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3148 {
3149 struct preempt_notifier *notifier;
3150
3151 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3152 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3153 }
3154
fire_sched_in_preempt_notifiers(struct task_struct * curr)3155 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3156 {
3157 if (static_branch_unlikely(&preempt_notifier_key))
3158 __fire_sched_in_preempt_notifiers(curr);
3159 }
3160
3161 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3162 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3163 struct task_struct *next)
3164 {
3165 struct preempt_notifier *notifier;
3166
3167 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3168 notifier->ops->sched_out(notifier, next);
3169 }
3170
3171 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3172 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3173 struct task_struct *next)
3174 {
3175 if (static_branch_unlikely(&preempt_notifier_key))
3176 __fire_sched_out_preempt_notifiers(curr, next);
3177 }
3178
3179 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3180
fire_sched_in_preempt_notifiers(struct task_struct * curr)3181 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3182 {
3183 }
3184
3185 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3186 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3187 struct task_struct *next)
3188 {
3189 }
3190
3191 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3192
prepare_task(struct task_struct * next)3193 static inline void prepare_task(struct task_struct *next)
3194 {
3195 #ifdef CONFIG_SMP
3196 /*
3197 * Claim the task as running, we do this before switching to it
3198 * such that any running task will have this set.
3199 */
3200 next->on_cpu = 1;
3201 #endif
3202 }
3203
finish_task(struct task_struct * prev)3204 static inline void finish_task(struct task_struct *prev)
3205 {
3206 #ifdef CONFIG_SMP
3207 /*
3208 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3209 * We must ensure this doesn't happen until the switch is completely
3210 * finished.
3211 *
3212 * In particular, the load of prev->state in finish_task_switch() must
3213 * happen before this.
3214 *
3215 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3216 */
3217 smp_store_release(&prev->on_cpu, 0);
3218 #endif
3219 }
3220
3221 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)3222 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3223 {
3224 /*
3225 * Since the runqueue lock will be released by the next
3226 * task (which is an invalid locking op but in the case
3227 * of the scheduler it's an obvious special-case), so we
3228 * do an early lockdep release here:
3229 */
3230 rq_unpin_lock(rq, rf);
3231 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3232 #ifdef CONFIG_DEBUG_SPINLOCK
3233 /* this is a valid case when another task releases the spinlock */
3234 rq->lock.owner = next;
3235 #endif
3236 }
3237
finish_lock_switch(struct rq * rq)3238 static inline void finish_lock_switch(struct rq *rq)
3239 {
3240 /*
3241 * If we are tracking spinlock dependencies then we have to
3242 * fix up the runqueue lock - which gets 'carried over' from
3243 * prev into current:
3244 */
3245 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3246 raw_spin_unlock_irq(&rq->lock);
3247 }
3248
3249 /*
3250 * NOP if the arch has not defined these:
3251 */
3252
3253 #ifndef prepare_arch_switch
3254 # define prepare_arch_switch(next) do { } while (0)
3255 #endif
3256
3257 #ifndef finish_arch_post_lock_switch
3258 # define finish_arch_post_lock_switch() do { } while (0)
3259 #endif
3260
3261 /**
3262 * prepare_task_switch - prepare to switch tasks
3263 * @rq: the runqueue preparing to switch
3264 * @prev: the current task that is being switched out
3265 * @next: the task we are going to switch to.
3266 *
3267 * This is called with the rq lock held and interrupts off. It must
3268 * be paired with a subsequent finish_task_switch after the context
3269 * switch.
3270 *
3271 * prepare_task_switch sets up locking and calls architecture specific
3272 * hooks.
3273 */
3274 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)3275 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3276 struct task_struct *next)
3277 {
3278 kcov_prepare_switch(prev);
3279 sched_info_switch(rq, prev, next);
3280 perf_event_task_sched_out(prev, next);
3281 rseq_preempt(prev);
3282 fire_sched_out_preempt_notifiers(prev, next);
3283 prepare_task(next);
3284 prepare_arch_switch(next);
3285 }
3286
3287 /**
3288 * finish_task_switch - clean up after a task-switch
3289 * @prev: the thread we just switched away from.
3290 *
3291 * finish_task_switch must be called after the context switch, paired
3292 * with a prepare_task_switch call before the context switch.
3293 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3294 * and do any other architecture-specific cleanup actions.
3295 *
3296 * Note that we may have delayed dropping an mm in context_switch(). If
3297 * so, we finish that here outside of the runqueue lock. (Doing it
3298 * with the lock held can cause deadlocks; see schedule() for
3299 * details.)
3300 *
3301 * The context switch have flipped the stack from under us and restored the
3302 * local variables which were saved when this task called schedule() in the
3303 * past. prev == current is still correct but we need to recalculate this_rq
3304 * because prev may have moved to another CPU.
3305 */
finish_task_switch(struct task_struct * prev)3306 static struct rq *finish_task_switch(struct task_struct *prev)
3307 __releases(rq->lock)
3308 {
3309 struct rq *rq = this_rq();
3310 struct mm_struct *mm = rq->prev_mm;
3311 long prev_state;
3312
3313 /*
3314 * The previous task will have left us with a preempt_count of 2
3315 * because it left us after:
3316 *
3317 * schedule()
3318 * preempt_disable(); // 1
3319 * __schedule()
3320 * raw_spin_lock_irq(&rq->lock) // 2
3321 *
3322 * Also, see FORK_PREEMPT_COUNT.
3323 */
3324 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3325 "corrupted preempt_count: %s/%d/0x%x\n",
3326 current->comm, current->pid, preempt_count()))
3327 preempt_count_set(FORK_PREEMPT_COUNT);
3328
3329 rq->prev_mm = NULL;
3330
3331 /*
3332 * A task struct has one reference for the use as "current".
3333 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3334 * schedule one last time. The schedule call will never return, and
3335 * the scheduled task must drop that reference.
3336 *
3337 * We must observe prev->state before clearing prev->on_cpu (in
3338 * finish_task), otherwise a concurrent wakeup can get prev
3339 * running on another CPU and we could rave with its RUNNING -> DEAD
3340 * transition, resulting in a double drop.
3341 */
3342 prev_state = prev->state;
3343 vtime_task_switch(prev);
3344 perf_event_task_sched_in(prev, current);
3345 finish_task(prev);
3346 finish_lock_switch(rq);
3347 finish_arch_post_lock_switch();
3348 kcov_finish_switch(current);
3349
3350 fire_sched_in_preempt_notifiers(current);
3351 /*
3352 * When switching through a kernel thread, the loop in
3353 * membarrier_{private,global}_expedited() may have observed that
3354 * kernel thread and not issued an IPI. It is therefore possible to
3355 * schedule between user->kernel->user threads without passing though
3356 * switch_mm(). Membarrier requires a barrier after storing to
3357 * rq->curr, before returning to userspace, so provide them here:
3358 *
3359 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3360 * provided by mmdrop(),
3361 * - a sync_core for SYNC_CORE.
3362 */
3363 if (mm) {
3364 membarrier_mm_sync_core_before_usermode(mm);
3365 mmdrop(mm);
3366 }
3367 if (unlikely(prev_state == TASK_DEAD)) {
3368 if (prev->sched_class->task_dead)
3369 prev->sched_class->task_dead(prev);
3370
3371 /*
3372 * Remove function-return probe instances associated with this
3373 * task and put them back on the free list.
3374 */
3375 kprobe_flush_task(prev);
3376
3377 /* Task is done with its stack. */
3378 put_task_stack(prev);
3379
3380 put_task_struct_rcu_user(prev);
3381 }
3382
3383 tick_nohz_task_switch();
3384 return rq;
3385 }
3386
3387 #ifdef CONFIG_SMP
3388
3389 /* rq->lock is NOT held, but preemption is disabled */
__balance_callback(struct rq * rq)3390 static void __balance_callback(struct rq *rq)
3391 {
3392 struct callback_head *head, *next;
3393 void (*func)(struct rq *rq);
3394 unsigned long flags;
3395
3396 raw_spin_lock_irqsave(&rq->lock, flags);
3397 head = rq->balance_callback;
3398 rq->balance_callback = NULL;
3399 while (head) {
3400 func = (void (*)(struct rq *))head->func;
3401 next = head->next;
3402 head->next = NULL;
3403 head = next;
3404
3405 func(rq);
3406 }
3407 raw_spin_unlock_irqrestore(&rq->lock, flags);
3408 }
3409
balance_callback(struct rq * rq)3410 static inline void balance_callback(struct rq *rq)
3411 {
3412 if (unlikely(rq->balance_callback))
3413 __balance_callback(rq);
3414 }
3415
3416 #else
3417
balance_callback(struct rq * rq)3418 static inline void balance_callback(struct rq *rq)
3419 {
3420 }
3421
3422 #endif
3423
3424 /**
3425 * schedule_tail - first thing a freshly forked thread must call.
3426 * @prev: the thread we just switched away from.
3427 */
schedule_tail(struct task_struct * prev)3428 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3429 __releases(rq->lock)
3430 {
3431 struct rq *rq;
3432
3433 /*
3434 * New tasks start with FORK_PREEMPT_COUNT, see there and
3435 * finish_task_switch() for details.
3436 *
3437 * finish_task_switch() will drop rq->lock() and lower preempt_count
3438 * and the preempt_enable() will end up enabling preemption (on
3439 * PREEMPT_COUNT kernels).
3440 */
3441
3442 rq = finish_task_switch(prev);
3443 balance_callback(rq);
3444 preempt_enable();
3445
3446 if (current->set_child_tid)
3447 put_user(task_pid_vnr(current), current->set_child_tid);
3448
3449 calculate_sigpending();
3450 }
3451
3452 /*
3453 * context_switch - switch to the new MM and the new thread's register state.
3454 */
3455 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)3456 context_switch(struct rq *rq, struct task_struct *prev,
3457 struct task_struct *next, struct rq_flags *rf)
3458 {
3459 prepare_task_switch(rq, prev, next);
3460
3461 /*
3462 * For paravirt, this is coupled with an exit in switch_to to
3463 * combine the page table reload and the switch backend into
3464 * one hypercall.
3465 */
3466 arch_start_context_switch(prev);
3467
3468 /*
3469 * kernel -> kernel lazy + transfer active
3470 * user -> kernel lazy + mmgrab() active
3471 *
3472 * kernel -> user switch + mmdrop() active
3473 * user -> user switch
3474 */
3475 if (!next->mm) { // to kernel
3476 enter_lazy_tlb(prev->active_mm, next);
3477
3478 next->active_mm = prev->active_mm;
3479 if (prev->mm) // from user
3480 mmgrab(prev->active_mm);
3481 else
3482 prev->active_mm = NULL;
3483 } else { // to user
3484 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3485 /*
3486 * sys_membarrier() requires an smp_mb() between setting
3487 * rq->curr / membarrier_switch_mm() and returning to userspace.
3488 *
3489 * The below provides this either through switch_mm(), or in
3490 * case 'prev->active_mm == next->mm' through
3491 * finish_task_switch()'s mmdrop().
3492 */
3493 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3494
3495 if (!prev->mm) { // from kernel
3496 /* will mmdrop() in finish_task_switch(). */
3497 rq->prev_mm = prev->active_mm;
3498 prev->active_mm = NULL;
3499 }
3500 }
3501
3502 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3503
3504 prepare_lock_switch(rq, next, rf);
3505
3506 /* Here we just switch the register state and the stack. */
3507 switch_to(prev, next, prev);
3508 barrier();
3509
3510 return finish_task_switch(prev);
3511 }
3512
3513 /*
3514 * nr_running and nr_context_switches:
3515 *
3516 * externally visible scheduler statistics: current number of runnable
3517 * threads, total number of context switches performed since bootup.
3518 */
nr_running(void)3519 unsigned long nr_running(void)
3520 {
3521 unsigned long i, sum = 0;
3522
3523 for_each_online_cpu(i)
3524 sum += cpu_rq(i)->nr_running;
3525
3526 return sum;
3527 }
3528
3529 /*
3530 * Check if only the current task is running on the CPU.
3531 *
3532 * Caution: this function does not check that the caller has disabled
3533 * preemption, thus the result might have a time-of-check-to-time-of-use
3534 * race. The caller is responsible to use it correctly, for example:
3535 *
3536 * - from a non-preemptible section (of course)
3537 *
3538 * - from a thread that is bound to a single CPU
3539 *
3540 * - in a loop with very short iterations (e.g. a polling loop)
3541 */
single_task_running(void)3542 bool single_task_running(void)
3543 {
3544 return raw_rq()->nr_running == 1;
3545 }
3546 EXPORT_SYMBOL(single_task_running);
3547
nr_context_switches(void)3548 unsigned long long nr_context_switches(void)
3549 {
3550 int i;
3551 unsigned long long sum = 0;
3552
3553 for_each_possible_cpu(i)
3554 sum += cpu_rq(i)->nr_switches;
3555
3556 return sum;
3557 }
3558
3559 /*
3560 * Consumers of these two interfaces, like for example the cpuidle menu
3561 * governor, are using nonsensical data. Preferring shallow idle state selection
3562 * for a CPU that has IO-wait which might not even end up running the task when
3563 * it does become runnable.
3564 */
3565
nr_iowait_cpu(int cpu)3566 unsigned long nr_iowait_cpu(int cpu)
3567 {
3568 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3569 }
3570
3571 /*
3572 * IO-wait accounting, and how its mostly bollocks (on SMP).
3573 *
3574 * The idea behind IO-wait account is to account the idle time that we could
3575 * have spend running if it were not for IO. That is, if we were to improve the
3576 * storage performance, we'd have a proportional reduction in IO-wait time.
3577 *
3578 * This all works nicely on UP, where, when a task blocks on IO, we account
3579 * idle time as IO-wait, because if the storage were faster, it could've been
3580 * running and we'd not be idle.
3581 *
3582 * This has been extended to SMP, by doing the same for each CPU. This however
3583 * is broken.
3584 *
3585 * Imagine for instance the case where two tasks block on one CPU, only the one
3586 * CPU will have IO-wait accounted, while the other has regular idle. Even
3587 * though, if the storage were faster, both could've ran at the same time,
3588 * utilising both CPUs.
3589 *
3590 * This means, that when looking globally, the current IO-wait accounting on
3591 * SMP is a lower bound, by reason of under accounting.
3592 *
3593 * Worse, since the numbers are provided per CPU, they are sometimes
3594 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3595 * associated with any one particular CPU, it can wake to another CPU than it
3596 * blocked on. This means the per CPU IO-wait number is meaningless.
3597 *
3598 * Task CPU affinities can make all that even more 'interesting'.
3599 */
3600
nr_iowait(void)3601 unsigned long nr_iowait(void)
3602 {
3603 unsigned long i, sum = 0;
3604
3605 for_each_possible_cpu(i)
3606 sum += nr_iowait_cpu(i);
3607
3608 return sum;
3609 }
3610
3611 #ifdef CONFIG_SMP
3612
3613 /*
3614 * sched_exec - execve() is a valuable balancing opportunity, because at
3615 * this point the task has the smallest effective memory and cache footprint.
3616 */
sched_exec(void)3617 void sched_exec(void)
3618 {
3619 struct task_struct *p = current;
3620 unsigned long flags;
3621 int dest_cpu;
3622
3623 raw_spin_lock_irqsave(&p->pi_lock, flags);
3624 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3625 if (dest_cpu == smp_processor_id())
3626 goto unlock;
3627
3628 if (likely(cpu_active(dest_cpu))) {
3629 struct migration_arg arg = { p, dest_cpu };
3630
3631 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3632 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3633 return;
3634 }
3635 unlock:
3636 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3637 }
3638
3639 #endif
3640
3641 DEFINE_PER_CPU(struct kernel_stat, kstat);
3642 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3643
3644 EXPORT_PER_CPU_SYMBOL(kstat);
3645 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3646
3647 /*
3648 * The function fair_sched_class.update_curr accesses the struct curr
3649 * and its field curr->exec_start; when called from task_sched_runtime(),
3650 * we observe a high rate of cache misses in practice.
3651 * Prefetching this data results in improved performance.
3652 */
prefetch_curr_exec_start(struct task_struct * p)3653 static inline void prefetch_curr_exec_start(struct task_struct *p)
3654 {
3655 #ifdef CONFIG_FAIR_GROUP_SCHED
3656 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3657 #else
3658 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3659 #endif
3660 prefetch(curr);
3661 prefetch(&curr->exec_start);
3662 }
3663
3664 /*
3665 * Return accounted runtime for the task.
3666 * In case the task is currently running, return the runtime plus current's
3667 * pending runtime that have not been accounted yet.
3668 */
task_sched_runtime(struct task_struct * p)3669 unsigned long long task_sched_runtime(struct task_struct *p)
3670 {
3671 struct rq_flags rf;
3672 struct rq *rq;
3673 u64 ns;
3674
3675 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3676 /*
3677 * 64-bit doesn't need locks to atomically read a 64-bit value.
3678 * So we have a optimization chance when the task's delta_exec is 0.
3679 * Reading ->on_cpu is racy, but this is ok.
3680 *
3681 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3682 * If we race with it entering CPU, unaccounted time is 0. This is
3683 * indistinguishable from the read occurring a few cycles earlier.
3684 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3685 * been accounted, so we're correct here as well.
3686 */
3687 if (!p->on_cpu || !task_on_rq_queued(p))
3688 return p->se.sum_exec_runtime;
3689 #endif
3690
3691 rq = task_rq_lock(p, &rf);
3692 /*
3693 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3694 * project cycles that may never be accounted to this
3695 * thread, breaking clock_gettime().
3696 */
3697 if (task_current(rq, p) && task_on_rq_queued(p)) {
3698 prefetch_curr_exec_start(p);
3699 update_rq_clock(rq);
3700 p->sched_class->update_curr(rq);
3701 }
3702 ns = p->se.sum_exec_runtime;
3703 task_rq_unlock(rq, p, &rf);
3704
3705 return ns;
3706 }
3707
3708 /*
3709 * This function gets called by the timer code, with HZ frequency.
3710 * We call it with interrupts disabled.
3711 */
scheduler_tick(void)3712 void scheduler_tick(void)
3713 {
3714 int cpu = smp_processor_id();
3715 struct rq *rq = cpu_rq(cpu);
3716 struct task_struct *curr = rq->curr;
3717 struct rq_flags rf;
3718
3719 sched_clock_tick();
3720
3721 rq_lock(rq, &rf);
3722
3723 update_rq_clock(rq);
3724 curr->sched_class->task_tick(rq, curr, 0);
3725 calc_global_load_tick(rq);
3726 psi_task_tick(rq);
3727
3728 rq_unlock(rq, &rf);
3729
3730 perf_event_task_tick();
3731
3732 #ifdef CONFIG_SMP
3733 rq->idle_balance = idle_cpu(cpu);
3734 trigger_load_balance(rq);
3735 #endif
3736
3737 trace_android_vh_scheduler_tick(rq);
3738 }
3739
3740 #ifdef CONFIG_NO_HZ_FULL
3741
3742 struct tick_work {
3743 int cpu;
3744 atomic_t state;
3745 struct delayed_work work;
3746 };
3747 /* Values for ->state, see diagram below. */
3748 #define TICK_SCHED_REMOTE_OFFLINE 0
3749 #define TICK_SCHED_REMOTE_OFFLINING 1
3750 #define TICK_SCHED_REMOTE_RUNNING 2
3751
3752 /*
3753 * State diagram for ->state:
3754 *
3755 *
3756 * TICK_SCHED_REMOTE_OFFLINE
3757 * | ^
3758 * | |
3759 * | | sched_tick_remote()
3760 * | |
3761 * | |
3762 * +--TICK_SCHED_REMOTE_OFFLINING
3763 * | ^
3764 * | |
3765 * sched_tick_start() | | sched_tick_stop()
3766 * | |
3767 * V |
3768 * TICK_SCHED_REMOTE_RUNNING
3769 *
3770 *
3771 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3772 * and sched_tick_start() are happy to leave the state in RUNNING.
3773 */
3774
3775 static struct tick_work __percpu *tick_work_cpu;
3776
sched_tick_remote(struct work_struct * work)3777 static void sched_tick_remote(struct work_struct *work)
3778 {
3779 struct delayed_work *dwork = to_delayed_work(work);
3780 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3781 int cpu = twork->cpu;
3782 struct rq *rq = cpu_rq(cpu);
3783 struct task_struct *curr;
3784 struct rq_flags rf;
3785 u64 delta;
3786 int os;
3787
3788 /*
3789 * Handle the tick only if it appears the remote CPU is running in full
3790 * dynticks mode. The check is racy by nature, but missing a tick or
3791 * having one too much is no big deal because the scheduler tick updates
3792 * statistics and checks timeslices in a time-independent way, regardless
3793 * of when exactly it is running.
3794 */
3795 if (!tick_nohz_tick_stopped_cpu(cpu))
3796 goto out_requeue;
3797
3798 rq_lock_irq(rq, &rf);
3799 curr = rq->curr;
3800 if (cpu_is_offline(cpu))
3801 goto out_unlock;
3802
3803 update_rq_clock(rq);
3804
3805 if (!is_idle_task(curr)) {
3806 /*
3807 * Make sure the next tick runs within a reasonable
3808 * amount of time.
3809 */
3810 delta = rq_clock_task(rq) - curr->se.exec_start;
3811 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3812 }
3813 curr->sched_class->task_tick(rq, curr, 0);
3814
3815 calc_load_nohz_remote(rq);
3816 out_unlock:
3817 rq_unlock_irq(rq, &rf);
3818 out_requeue:
3819
3820 /*
3821 * Run the remote tick once per second (1Hz). This arbitrary
3822 * frequency is large enough to avoid overload but short enough
3823 * to keep scheduler internal stats reasonably up to date. But
3824 * first update state to reflect hotplug activity if required.
3825 */
3826 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3827 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3828 if (os == TICK_SCHED_REMOTE_RUNNING)
3829 queue_delayed_work(system_unbound_wq, dwork, HZ);
3830 }
3831
sched_tick_start(int cpu)3832 static void sched_tick_start(int cpu)
3833 {
3834 int os;
3835 struct tick_work *twork;
3836
3837 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3838 return;
3839
3840 WARN_ON_ONCE(!tick_work_cpu);
3841
3842 twork = per_cpu_ptr(tick_work_cpu, cpu);
3843 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3844 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3845 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3846 twork->cpu = cpu;
3847 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3848 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3849 }
3850 }
3851
3852 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)3853 static void sched_tick_stop(int cpu)
3854 {
3855 struct tick_work *twork;
3856 int os;
3857
3858 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3859 return;
3860
3861 WARN_ON_ONCE(!tick_work_cpu);
3862
3863 twork = per_cpu_ptr(tick_work_cpu, cpu);
3864 /* There cannot be competing actions, but don't rely on stop-machine. */
3865 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3866 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3867 /* Don't cancel, as this would mess up the state machine. */
3868 }
3869 #endif /* CONFIG_HOTPLUG_CPU */
3870
sched_tick_offload_init(void)3871 int __init sched_tick_offload_init(void)
3872 {
3873 tick_work_cpu = alloc_percpu(struct tick_work);
3874 BUG_ON(!tick_work_cpu);
3875 return 0;
3876 }
3877
3878 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)3879 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)3880 static inline void sched_tick_stop(int cpu) { }
3881 #endif
3882
3883 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3884 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3885 /*
3886 * If the value passed in is equal to the current preempt count
3887 * then we just disabled preemption. Start timing the latency.
3888 */
preempt_latency_start(int val)3889 static inline void preempt_latency_start(int val)
3890 {
3891 if (preempt_count() == val) {
3892 unsigned long ip = get_lock_parent_ip();
3893 #ifdef CONFIG_DEBUG_PREEMPT
3894 current->preempt_disable_ip = ip;
3895 #endif
3896 trace_preempt_off(CALLER_ADDR0, ip);
3897 }
3898 }
3899
preempt_count_add(int val)3900 void preempt_count_add(int val)
3901 {
3902 #ifdef CONFIG_DEBUG_PREEMPT
3903 /*
3904 * Underflow?
3905 */
3906 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3907 return;
3908 #endif
3909 __preempt_count_add(val);
3910 #ifdef CONFIG_DEBUG_PREEMPT
3911 /*
3912 * Spinlock count overflowing soon?
3913 */
3914 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3915 PREEMPT_MASK - 10);
3916 #endif
3917 preempt_latency_start(val);
3918 }
3919 EXPORT_SYMBOL(preempt_count_add);
3920 NOKPROBE_SYMBOL(preempt_count_add);
3921
3922 /*
3923 * If the value passed in equals to the current preempt count
3924 * then we just enabled preemption. Stop timing the latency.
3925 */
preempt_latency_stop(int val)3926 static inline void preempt_latency_stop(int val)
3927 {
3928 if (preempt_count() == val)
3929 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3930 }
3931
preempt_count_sub(int val)3932 void preempt_count_sub(int val)
3933 {
3934 #ifdef CONFIG_DEBUG_PREEMPT
3935 /*
3936 * Underflow?
3937 */
3938 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3939 return;
3940 /*
3941 * Is the spinlock portion underflowing?
3942 */
3943 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3944 !(preempt_count() & PREEMPT_MASK)))
3945 return;
3946 #endif
3947
3948 preempt_latency_stop(val);
3949 __preempt_count_sub(val);
3950 }
3951 EXPORT_SYMBOL(preempt_count_sub);
3952 NOKPROBE_SYMBOL(preempt_count_sub);
3953
3954 #else
preempt_latency_start(int val)3955 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)3956 static inline void preempt_latency_stop(int val) { }
3957 #endif
3958
get_preempt_disable_ip(struct task_struct * p)3959 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3960 {
3961 #ifdef CONFIG_DEBUG_PREEMPT
3962 return p->preempt_disable_ip;
3963 #else
3964 return 0;
3965 #endif
3966 }
3967
3968 /*
3969 * Print scheduling while atomic bug:
3970 */
__schedule_bug(struct task_struct * prev)3971 static noinline void __schedule_bug(struct task_struct *prev)
3972 {
3973 /* Save this before calling printk(), since that will clobber it */
3974 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3975
3976 if (oops_in_progress)
3977 return;
3978
3979 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3980 prev->comm, prev->pid, preempt_count());
3981
3982 debug_show_held_locks(prev);
3983 print_modules();
3984 if (irqs_disabled())
3985 print_irqtrace_events(prev);
3986 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3987 && in_atomic_preempt_off()) {
3988 pr_err("Preemption disabled at:");
3989 print_ip_sym(preempt_disable_ip);
3990 pr_cont("\n");
3991 }
3992 check_panic_on_warn("scheduling while atomic");
3993
3994 dump_stack();
3995 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3996 }
3997
3998 /*
3999 * Various schedule()-time debugging checks and statistics:
4000 */
schedule_debug(struct task_struct * prev,bool preempt)4001 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4002 {
4003 #ifdef CONFIG_SCHED_STACK_END_CHECK
4004 if (task_stack_end_corrupted(prev))
4005 panic("corrupted stack end detected inside scheduler\n");
4006 #endif
4007
4008 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4009 if (!preempt && prev->state && prev->non_block_count) {
4010 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4011 prev->comm, prev->pid, prev->non_block_count);
4012 dump_stack();
4013 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4014 }
4015 #endif
4016
4017 if (unlikely(in_atomic_preempt_off())) {
4018 __schedule_bug(prev);
4019 preempt_count_set(PREEMPT_DISABLED);
4020 }
4021 rcu_sleep_check();
4022
4023 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4024
4025 schedstat_inc(this_rq()->sched_count);
4026 }
4027
4028 /*
4029 * Pick up the highest-prio task:
4030 */
4031 static inline struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)4032 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4033 {
4034 const struct sched_class *class;
4035 struct task_struct *p;
4036
4037 /*
4038 * Optimization: we know that if all tasks are in the fair class we can
4039 * call that function directly, but only if the @prev task wasn't of a
4040 * higher scheduling class, because otherwise those loose the
4041 * opportunity to pull in more work from other CPUs.
4042 */
4043 if (likely((prev->sched_class == &idle_sched_class ||
4044 prev->sched_class == &fair_sched_class) &&
4045 rq->nr_running == rq->cfs.h_nr_running)) {
4046
4047 p = fair_sched_class.pick_next_task(rq, prev, rf);
4048 if (unlikely(p == RETRY_TASK))
4049 goto restart;
4050
4051 /* Assumes fair_sched_class->next == idle_sched_class */
4052 if (unlikely(!p))
4053 p = idle_sched_class.pick_next_task(rq, prev, rf);
4054
4055 return p;
4056 }
4057
4058 restart:
4059 #ifdef CONFIG_SMP
4060 /*
4061 * We must do the balancing pass before put_next_task(), such
4062 * that when we release the rq->lock the task is in the same
4063 * state as before we took rq->lock.
4064 *
4065 * We can terminate the balance pass as soon as we know there is
4066 * a runnable task of @class priority or higher.
4067 */
4068 for_class_range(class, prev->sched_class, &idle_sched_class) {
4069 if (class->balance(rq, prev, rf))
4070 break;
4071 }
4072 #endif
4073
4074 put_prev_task(rq, prev);
4075
4076 for_each_class(class) {
4077 p = class->pick_next_task(rq, NULL, NULL);
4078 if (p)
4079 return p;
4080 }
4081
4082 /* The idle class should always have a runnable task: */
4083 BUG();
4084 }
4085
4086 /*
4087 * __schedule() is the main scheduler function.
4088 *
4089 * The main means of driving the scheduler and thus entering this function are:
4090 *
4091 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4092 *
4093 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4094 * paths. For example, see arch/x86/entry_64.S.
4095 *
4096 * To drive preemption between tasks, the scheduler sets the flag in timer
4097 * interrupt handler scheduler_tick().
4098 *
4099 * 3. Wakeups don't really cause entry into schedule(). They add a
4100 * task to the run-queue and that's it.
4101 *
4102 * Now, if the new task added to the run-queue preempts the current
4103 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4104 * called on the nearest possible occasion:
4105 *
4106 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4107 *
4108 * - in syscall or exception context, at the next outmost
4109 * preempt_enable(). (this might be as soon as the wake_up()'s
4110 * spin_unlock()!)
4111 *
4112 * - in IRQ context, return from interrupt-handler to
4113 * preemptible context
4114 *
4115 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4116 * then at the next:
4117 *
4118 * - cond_resched() call
4119 * - explicit schedule() call
4120 * - return from syscall or exception to user-space
4121 * - return from interrupt-handler to user-space
4122 *
4123 * WARNING: must be called with preemption disabled!
4124 */
__schedule(bool preempt)4125 static void __sched notrace __schedule(bool preempt)
4126 {
4127 struct task_struct *prev, *next;
4128 unsigned long *switch_count;
4129 struct rq_flags rf;
4130 struct rq *rq;
4131 int cpu;
4132
4133 cpu = smp_processor_id();
4134 rq = cpu_rq(cpu);
4135 prev = rq->curr;
4136
4137 schedule_debug(prev, preempt);
4138
4139 if (sched_feat(HRTICK))
4140 hrtick_clear(rq);
4141
4142 local_irq_disable();
4143 rcu_note_context_switch(preempt);
4144
4145 /*
4146 * Make sure that signal_pending_state()->signal_pending() below
4147 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4148 * done by the caller to avoid the race with signal_wake_up().
4149 *
4150 * The membarrier system call requires a full memory barrier
4151 * after coming from user-space, before storing to rq->curr.
4152 */
4153 rq_lock(rq, &rf);
4154 smp_mb__after_spinlock();
4155
4156 /* Promote REQ to ACT */
4157 rq->clock_update_flags <<= 1;
4158 update_rq_clock(rq);
4159
4160 switch_count = &prev->nivcsw;
4161 if (!preempt && prev->state) {
4162 if (signal_pending_state(prev->state, prev)) {
4163 prev->state = TASK_RUNNING;
4164 } else {
4165 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4166
4167 if (prev->in_iowait) {
4168 atomic_inc(&rq->nr_iowait);
4169 delayacct_blkio_start();
4170 }
4171 }
4172 switch_count = &prev->nvcsw;
4173 }
4174
4175 next = pick_next_task(rq, prev, &rf);
4176 clear_tsk_need_resched(prev);
4177 clear_preempt_need_resched();
4178
4179 if (likely(prev != next)) {
4180 rq->nr_switches++;
4181 /*
4182 * RCU users of rcu_dereference(rq->curr) may not see
4183 * changes to task_struct made by pick_next_task().
4184 */
4185 RCU_INIT_POINTER(rq->curr, next);
4186 /*
4187 * The membarrier system call requires each architecture
4188 * to have a full memory barrier after updating
4189 * rq->curr, before returning to user-space.
4190 *
4191 * Here are the schemes providing that barrier on the
4192 * various architectures:
4193 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4194 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4195 * - finish_lock_switch() for weakly-ordered
4196 * architectures where spin_unlock is a full barrier,
4197 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4198 * is a RELEASE barrier),
4199 */
4200 ++*switch_count;
4201
4202 trace_sched_switch(preempt, prev, next);
4203
4204 /* Also unlocks the rq: */
4205 rq = context_switch(rq, prev, next, &rf);
4206 } else {
4207 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4208 rq_unlock_irq(rq, &rf);
4209 }
4210
4211 balance_callback(rq);
4212 }
4213
do_task_dead(void)4214 void __noreturn do_task_dead(void)
4215 {
4216 /* Causes final put_task_struct in finish_task_switch(): */
4217 set_special_state(TASK_DEAD);
4218
4219 /* Tell freezer to ignore us: */
4220 current->flags |= PF_NOFREEZE;
4221
4222 __schedule(false);
4223 BUG();
4224
4225 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4226 for (;;)
4227 cpu_relax();
4228 }
4229
sched_submit_work(struct task_struct * tsk)4230 static inline void sched_submit_work(struct task_struct *tsk)
4231 {
4232 if (!tsk->state)
4233 return;
4234
4235 /*
4236 * If a worker went to sleep, notify and ask workqueue whether
4237 * it wants to wake up a task to maintain concurrency.
4238 * As this function is called inside the schedule() context,
4239 * we disable preemption to avoid it calling schedule() again
4240 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4241 * requires it.
4242 */
4243 if (tsk->flags & PF_WQ_WORKER) {
4244 preempt_disable();
4245 wq_worker_sleeping(tsk);
4246 preempt_enable_no_resched();
4247 }
4248
4249 if (tsk_is_pi_blocked(tsk))
4250 return;
4251
4252 /*
4253 * If we are going to sleep and we have plugged IO queued,
4254 * make sure to submit it to avoid deadlocks.
4255 */
4256 if (blk_needs_flush_plug(tsk))
4257 blk_schedule_flush_plug(tsk);
4258 }
4259
sched_update_worker(struct task_struct * tsk)4260 static void sched_update_worker(struct task_struct *tsk)
4261 {
4262 if (tsk->flags & PF_WQ_WORKER)
4263 wq_worker_running(tsk);
4264 }
4265
schedule(void)4266 asmlinkage __visible void __sched schedule(void)
4267 {
4268 struct task_struct *tsk = current;
4269
4270 sched_submit_work(tsk);
4271 do {
4272 preempt_disable();
4273 __schedule(false);
4274 sched_preempt_enable_no_resched();
4275 } while (need_resched());
4276 sched_update_worker(tsk);
4277 }
4278 EXPORT_SYMBOL(schedule);
4279
4280 /*
4281 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4282 * state (have scheduled out non-voluntarily) by making sure that all
4283 * tasks have either left the run queue or have gone into user space.
4284 * As idle tasks do not do either, they must not ever be preempted
4285 * (schedule out non-voluntarily).
4286 *
4287 * schedule_idle() is similar to schedule_preempt_disable() except that it
4288 * never enables preemption because it does not call sched_submit_work().
4289 */
schedule_idle(void)4290 void __sched schedule_idle(void)
4291 {
4292 /*
4293 * As this skips calling sched_submit_work(), which the idle task does
4294 * regardless because that function is a nop when the task is in a
4295 * TASK_RUNNING state, make sure this isn't used someplace that the
4296 * current task can be in any other state. Note, idle is always in the
4297 * TASK_RUNNING state.
4298 */
4299 WARN_ON_ONCE(current->state);
4300 do {
4301 __schedule(false);
4302 } while (need_resched());
4303 }
4304
4305 #ifdef CONFIG_CONTEXT_TRACKING
schedule_user(void)4306 asmlinkage __visible void __sched schedule_user(void)
4307 {
4308 /*
4309 * If we come here after a random call to set_need_resched(),
4310 * or we have been woken up remotely but the IPI has not yet arrived,
4311 * we haven't yet exited the RCU idle mode. Do it here manually until
4312 * we find a better solution.
4313 *
4314 * NB: There are buggy callers of this function. Ideally we
4315 * should warn if prev_state != CONTEXT_USER, but that will trigger
4316 * too frequently to make sense yet.
4317 */
4318 enum ctx_state prev_state = exception_enter();
4319 schedule();
4320 exception_exit(prev_state);
4321 }
4322 #endif
4323
4324 /**
4325 * schedule_preempt_disabled - called with preemption disabled
4326 *
4327 * Returns with preemption disabled. Note: preempt_count must be 1
4328 */
schedule_preempt_disabled(void)4329 void __sched schedule_preempt_disabled(void)
4330 {
4331 sched_preempt_enable_no_resched();
4332 schedule();
4333 preempt_disable();
4334 }
4335
preempt_schedule_common(void)4336 static void __sched notrace preempt_schedule_common(void)
4337 {
4338 do {
4339 /*
4340 * Because the function tracer can trace preempt_count_sub()
4341 * and it also uses preempt_enable/disable_notrace(), if
4342 * NEED_RESCHED is set, the preempt_enable_notrace() called
4343 * by the function tracer will call this function again and
4344 * cause infinite recursion.
4345 *
4346 * Preemption must be disabled here before the function
4347 * tracer can trace. Break up preempt_disable() into two
4348 * calls. One to disable preemption without fear of being
4349 * traced. The other to still record the preemption latency,
4350 * which can also be traced by the function tracer.
4351 */
4352 preempt_disable_notrace();
4353 preempt_latency_start(1);
4354 __schedule(true);
4355 preempt_latency_stop(1);
4356 preempt_enable_no_resched_notrace();
4357
4358 /*
4359 * Check again in case we missed a preemption opportunity
4360 * between schedule and now.
4361 */
4362 } while (need_resched());
4363 }
4364
4365 #ifdef CONFIG_PREEMPTION
4366 /*
4367 * This is the entry point to schedule() from in-kernel preemption
4368 * off of preempt_enable.
4369 */
preempt_schedule(void)4370 asmlinkage __visible void __sched notrace preempt_schedule(void)
4371 {
4372 /*
4373 * If there is a non-zero preempt_count or interrupts are disabled,
4374 * we do not want to preempt the current task. Just return..
4375 */
4376 if (likely(!preemptible()))
4377 return;
4378
4379 preempt_schedule_common();
4380 }
4381 NOKPROBE_SYMBOL(preempt_schedule);
4382 EXPORT_SYMBOL(preempt_schedule);
4383
4384 /**
4385 * preempt_schedule_notrace - preempt_schedule called by tracing
4386 *
4387 * The tracing infrastructure uses preempt_enable_notrace to prevent
4388 * recursion and tracing preempt enabling caused by the tracing
4389 * infrastructure itself. But as tracing can happen in areas coming
4390 * from userspace or just about to enter userspace, a preempt enable
4391 * can occur before user_exit() is called. This will cause the scheduler
4392 * to be called when the system is still in usermode.
4393 *
4394 * To prevent this, the preempt_enable_notrace will use this function
4395 * instead of preempt_schedule() to exit user context if needed before
4396 * calling the scheduler.
4397 */
preempt_schedule_notrace(void)4398 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4399 {
4400 enum ctx_state prev_ctx;
4401
4402 if (likely(!preemptible()))
4403 return;
4404
4405 do {
4406 /*
4407 * Because the function tracer can trace preempt_count_sub()
4408 * and it also uses preempt_enable/disable_notrace(), if
4409 * NEED_RESCHED is set, the preempt_enable_notrace() called
4410 * by the function tracer will call this function again and
4411 * cause infinite recursion.
4412 *
4413 * Preemption must be disabled here before the function
4414 * tracer can trace. Break up preempt_disable() into two
4415 * calls. One to disable preemption without fear of being
4416 * traced. The other to still record the preemption latency,
4417 * which can also be traced by the function tracer.
4418 */
4419 preempt_disable_notrace();
4420 preempt_latency_start(1);
4421 /*
4422 * Needs preempt disabled in case user_exit() is traced
4423 * and the tracer calls preempt_enable_notrace() causing
4424 * an infinite recursion.
4425 */
4426 prev_ctx = exception_enter();
4427 __schedule(true);
4428 exception_exit(prev_ctx);
4429
4430 preempt_latency_stop(1);
4431 preempt_enable_no_resched_notrace();
4432 } while (need_resched());
4433 }
4434 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4435
4436 #endif /* CONFIG_PREEMPTION */
4437
4438 /*
4439 * This is the entry point to schedule() from kernel preemption
4440 * off of irq context.
4441 * Note, that this is called and return with irqs disabled. This will
4442 * protect us against recursive calling from irq.
4443 */
preempt_schedule_irq(void)4444 asmlinkage __visible void __sched preempt_schedule_irq(void)
4445 {
4446 enum ctx_state prev_state;
4447
4448 /* Catch callers which need to be fixed */
4449 BUG_ON(preempt_count() || !irqs_disabled());
4450
4451 prev_state = exception_enter();
4452
4453 do {
4454 preempt_disable();
4455 local_irq_enable();
4456 __schedule(true);
4457 local_irq_disable();
4458 sched_preempt_enable_no_resched();
4459 } while (need_resched());
4460
4461 exception_exit(prev_state);
4462 }
4463
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)4464 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4465 void *key)
4466 {
4467 return try_to_wake_up(curr->private, mode, wake_flags);
4468 }
4469 EXPORT_SYMBOL(default_wake_function);
4470
4471 #ifdef CONFIG_RT_MUTEXES
4472
__rt_effective_prio(struct task_struct * pi_task,int prio)4473 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4474 {
4475 if (pi_task)
4476 prio = min(prio, pi_task->prio);
4477
4478 return prio;
4479 }
4480
rt_effective_prio(struct task_struct * p,int prio)4481 static inline int rt_effective_prio(struct task_struct *p, int prio)
4482 {
4483 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4484
4485 return __rt_effective_prio(pi_task, prio);
4486 }
4487
4488 /*
4489 * rt_mutex_setprio - set the current priority of a task
4490 * @p: task to boost
4491 * @pi_task: donor task
4492 *
4493 * This function changes the 'effective' priority of a task. It does
4494 * not touch ->normal_prio like __setscheduler().
4495 *
4496 * Used by the rt_mutex code to implement priority inheritance
4497 * logic. Call site only calls if the priority of the task changed.
4498 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)4499 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4500 {
4501 int prio, oldprio, queued, running, queue_flag =
4502 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4503 const struct sched_class *prev_class;
4504 struct rq_flags rf;
4505 struct rq *rq;
4506
4507 trace_android_rvh_rtmutex_prepare_setprio(p, pi_task);
4508 /* XXX used to be waiter->prio, not waiter->task->prio */
4509 prio = __rt_effective_prio(pi_task, p->normal_prio);
4510
4511 /*
4512 * If nothing changed; bail early.
4513 */
4514 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4515 return;
4516
4517 rq = __task_rq_lock(p, &rf);
4518 update_rq_clock(rq);
4519 /*
4520 * Set under pi_lock && rq->lock, such that the value can be used under
4521 * either lock.
4522 *
4523 * Note that there is loads of tricky to make this pointer cache work
4524 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4525 * ensure a task is de-boosted (pi_task is set to NULL) before the
4526 * task is allowed to run again (and can exit). This ensures the pointer
4527 * points to a blocked task -- which guaratees the task is present.
4528 */
4529 p->pi_top_task = pi_task;
4530
4531 /*
4532 * For FIFO/RR we only need to set prio, if that matches we're done.
4533 */
4534 if (prio == p->prio && !dl_prio(prio))
4535 goto out_unlock;
4536
4537 /*
4538 * Idle task boosting is a nono in general. There is one
4539 * exception, when PREEMPT_RT and NOHZ is active:
4540 *
4541 * The idle task calls get_next_timer_interrupt() and holds
4542 * the timer wheel base->lock on the CPU and another CPU wants
4543 * to access the timer (probably to cancel it). We can safely
4544 * ignore the boosting request, as the idle CPU runs this code
4545 * with interrupts disabled and will complete the lock
4546 * protected section without being interrupted. So there is no
4547 * real need to boost.
4548 */
4549 if (unlikely(p == rq->idle)) {
4550 WARN_ON(p != rq->curr);
4551 WARN_ON(p->pi_blocked_on);
4552 goto out_unlock;
4553 }
4554
4555 trace_sched_pi_setprio(p, pi_task);
4556 oldprio = p->prio;
4557
4558 if (oldprio == prio)
4559 queue_flag &= ~DEQUEUE_MOVE;
4560
4561 prev_class = p->sched_class;
4562 queued = task_on_rq_queued(p);
4563 running = task_current(rq, p);
4564 if (queued)
4565 dequeue_task(rq, p, queue_flag);
4566 if (running)
4567 put_prev_task(rq, p);
4568
4569 /*
4570 * Boosting condition are:
4571 * 1. -rt task is running and holds mutex A
4572 * --> -dl task blocks on mutex A
4573 *
4574 * 2. -dl task is running and holds mutex A
4575 * --> -dl task blocks on mutex A and could preempt the
4576 * running task
4577 */
4578 if (dl_prio(prio)) {
4579 if (!dl_prio(p->normal_prio) ||
4580 (pi_task && dl_prio(pi_task->prio) &&
4581 dl_entity_preempt(&pi_task->dl, &p->dl))) {
4582 p->dl.dl_boosted = 1;
4583 queue_flag |= ENQUEUE_REPLENISH;
4584 } else
4585 p->dl.dl_boosted = 0;
4586 p->sched_class = &dl_sched_class;
4587 } else if (rt_prio(prio)) {
4588 if (dl_prio(oldprio))
4589 p->dl.dl_boosted = 0;
4590 if (oldprio < prio)
4591 queue_flag |= ENQUEUE_HEAD;
4592 p->sched_class = &rt_sched_class;
4593 } else {
4594 if (dl_prio(oldprio))
4595 p->dl.dl_boosted = 0;
4596 if (rt_prio(oldprio))
4597 p->rt.timeout = 0;
4598 p->sched_class = &fair_sched_class;
4599 }
4600
4601 p->prio = prio;
4602
4603 if (queued)
4604 enqueue_task(rq, p, queue_flag);
4605 if (running)
4606 set_next_task(rq, p);
4607
4608 check_class_changed(rq, p, prev_class, oldprio);
4609 out_unlock:
4610 /* Avoid rq from going away on us: */
4611 preempt_disable();
4612 __task_rq_unlock(rq, &rf);
4613
4614 balance_callback(rq);
4615 preempt_enable();
4616 }
4617 #else
rt_effective_prio(struct task_struct * p,int prio)4618 static inline int rt_effective_prio(struct task_struct *p, int prio)
4619 {
4620 return prio;
4621 }
4622 #endif
4623
set_user_nice(struct task_struct * p,long nice)4624 void set_user_nice(struct task_struct *p, long nice)
4625 {
4626 bool queued, running, allowed = false;
4627 int old_prio, delta;
4628 struct rq_flags rf;
4629 struct rq *rq;
4630
4631 trace_android_rvh_set_user_nice(p, &nice, &allowed);
4632 if ((task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) && !allowed)
4633 return;
4634 /*
4635 * We have to be careful, if called from sys_setpriority(),
4636 * the task might be in the middle of scheduling on another CPU.
4637 */
4638 rq = task_rq_lock(p, &rf);
4639 update_rq_clock(rq);
4640
4641 /*
4642 * The RT priorities are set via sched_setscheduler(), but we still
4643 * allow the 'normal' nice value to be set - but as expected
4644 * it wont have any effect on scheduling until the task is
4645 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4646 */
4647 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4648 p->static_prio = NICE_TO_PRIO(nice);
4649 goto out_unlock;
4650 }
4651 queued = task_on_rq_queued(p);
4652 running = task_current(rq, p);
4653 if (queued)
4654 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4655 if (running)
4656 put_prev_task(rq, p);
4657
4658 p->static_prio = NICE_TO_PRIO(nice);
4659 set_load_weight(p, true);
4660 old_prio = p->prio;
4661 p->prio = effective_prio(p);
4662 delta = p->prio - old_prio;
4663
4664 if (queued) {
4665 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4666 /*
4667 * If the task increased its priority or is running and
4668 * lowered its priority, then reschedule its CPU:
4669 */
4670 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4671 resched_curr(rq);
4672 }
4673 if (running)
4674 set_next_task(rq, p);
4675 out_unlock:
4676 task_rq_unlock(rq, p, &rf);
4677 }
4678 EXPORT_SYMBOL(set_user_nice);
4679
4680 /*
4681 * can_nice - check if a task can reduce its nice value
4682 * @p: task
4683 * @nice: nice value
4684 */
can_nice(const struct task_struct * p,const int nice)4685 int can_nice(const struct task_struct *p, const int nice)
4686 {
4687 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
4688 int nice_rlim = nice_to_rlimit(nice);
4689
4690 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4691 capable(CAP_SYS_NICE));
4692 }
4693
4694 #ifdef __ARCH_WANT_SYS_NICE
4695
4696 /*
4697 * sys_nice - change the priority of the current process.
4698 * @increment: priority increment
4699 *
4700 * sys_setpriority is a more generic, but much slower function that
4701 * does similar things.
4702 */
SYSCALL_DEFINE1(nice,int,increment)4703 SYSCALL_DEFINE1(nice, int, increment)
4704 {
4705 long nice, retval;
4706
4707 /*
4708 * Setpriority might change our priority at the same moment.
4709 * We don't have to worry. Conceptually one call occurs first
4710 * and we have a single winner.
4711 */
4712 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4713 nice = task_nice(current) + increment;
4714
4715 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4716 if (increment < 0 && !can_nice(current, nice))
4717 return -EPERM;
4718
4719 retval = security_task_setnice(current, nice);
4720 if (retval)
4721 return retval;
4722
4723 set_user_nice(current, nice);
4724 return 0;
4725 }
4726
4727 #endif
4728
4729 /**
4730 * task_prio - return the priority value of a given task.
4731 * @p: the task in question.
4732 *
4733 * Return: The priority value as seen by users in /proc.
4734 * RT tasks are offset by -200. Normal tasks are centered
4735 * around 0, value goes from -16 to +15.
4736 */
task_prio(const struct task_struct * p)4737 int task_prio(const struct task_struct *p)
4738 {
4739 return p->prio - MAX_RT_PRIO;
4740 }
4741
4742 /**
4743 * idle_cpu - is a given CPU idle currently?
4744 * @cpu: the processor in question.
4745 *
4746 * Return: 1 if the CPU is currently idle. 0 otherwise.
4747 */
idle_cpu(int cpu)4748 int idle_cpu(int cpu)
4749 {
4750 struct rq *rq = cpu_rq(cpu);
4751
4752 if (rq->curr != rq->idle)
4753 return 0;
4754
4755 if (rq->nr_running)
4756 return 0;
4757
4758 #ifdef CONFIG_SMP
4759 if (!llist_empty(&rq->wake_list))
4760 return 0;
4761 #endif
4762
4763 return 1;
4764 }
4765
4766 /**
4767 * available_idle_cpu - is a given CPU idle for enqueuing work.
4768 * @cpu: the CPU in question.
4769 *
4770 * Return: 1 if the CPU is currently idle. 0 otherwise.
4771 */
available_idle_cpu(int cpu)4772 int available_idle_cpu(int cpu)
4773 {
4774 if (!idle_cpu(cpu))
4775 return 0;
4776
4777 if (vcpu_is_preempted(cpu))
4778 return 0;
4779
4780 return 1;
4781 }
4782
4783 /**
4784 * idle_task - return the idle task for a given CPU.
4785 * @cpu: the processor in question.
4786 *
4787 * Return: The idle task for the CPU @cpu.
4788 */
idle_task(int cpu)4789 struct task_struct *idle_task(int cpu)
4790 {
4791 return cpu_rq(cpu)->idle;
4792 }
4793
4794 /**
4795 * find_process_by_pid - find a process with a matching PID value.
4796 * @pid: the pid in question.
4797 *
4798 * The task of @pid, if found. %NULL otherwise.
4799 */
find_process_by_pid(pid_t pid)4800 static struct task_struct *find_process_by_pid(pid_t pid)
4801 {
4802 return pid ? find_task_by_vpid(pid) : current;
4803 }
4804
4805 /*
4806 * sched_setparam() passes in -1 for its policy, to let the functions
4807 * it calls know not to change it.
4808 */
4809 #define SETPARAM_POLICY -1
4810
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)4811 static void __setscheduler_params(struct task_struct *p,
4812 const struct sched_attr *attr)
4813 {
4814 int policy = attr->sched_policy;
4815
4816 if (policy == SETPARAM_POLICY)
4817 policy = p->policy;
4818
4819 p->policy = policy;
4820
4821 if (dl_policy(policy))
4822 __setparam_dl(p, attr);
4823 else if (fair_policy(policy))
4824 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4825
4826 /*
4827 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4828 * !rt_policy. Always setting this ensures that things like
4829 * getparam()/getattr() don't report silly values for !rt tasks.
4830 */
4831 p->rt_priority = attr->sched_priority;
4832 p->normal_prio = normal_prio(p);
4833 set_load_weight(p, true);
4834 }
4835
4836 /* Actually do priority change: must hold pi & rq lock. */
__setscheduler(struct rq * rq,struct task_struct * p,const struct sched_attr * attr,bool keep_boost)4837 static void __setscheduler(struct rq *rq, struct task_struct *p,
4838 const struct sched_attr *attr, bool keep_boost)
4839 {
4840 /*
4841 * If params can't change scheduling class changes aren't allowed
4842 * either.
4843 */
4844 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4845 return;
4846
4847 __setscheduler_params(p, attr);
4848
4849 /*
4850 * Keep a potential priority boosting if called from
4851 * sched_setscheduler().
4852 */
4853 p->prio = normal_prio(p);
4854 if (keep_boost)
4855 p->prio = rt_effective_prio(p, p->prio);
4856
4857 if (dl_prio(p->prio))
4858 p->sched_class = &dl_sched_class;
4859 else if (rt_prio(p->prio))
4860 p->sched_class = &rt_sched_class;
4861 else
4862 p->sched_class = &fair_sched_class;
4863
4864 trace_android_rvh_setscheduler(p);
4865 }
4866
4867 /*
4868 * Check the target process has a UID that matches the current process's:
4869 */
check_same_owner(struct task_struct * p)4870 static bool check_same_owner(struct task_struct *p)
4871 {
4872 const struct cred *cred = current_cred(), *pcred;
4873 bool match;
4874
4875 rcu_read_lock();
4876 pcred = __task_cred(p);
4877 match = (uid_eq(cred->euid, pcred->euid) ||
4878 uid_eq(cred->euid, pcred->uid));
4879 rcu_read_unlock();
4880 return match;
4881 }
4882
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)4883 static int __sched_setscheduler(struct task_struct *p,
4884 const struct sched_attr *attr,
4885 bool user, bool pi)
4886 {
4887 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4888 MAX_RT_PRIO - 1 - attr->sched_priority;
4889 int retval, oldprio, oldpolicy = -1, queued, running;
4890 int new_effective_prio, policy = attr->sched_policy;
4891 const struct sched_class *prev_class;
4892 struct rq_flags rf;
4893 int reset_on_fork;
4894 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4895 struct rq *rq;
4896
4897 /* The pi code expects interrupts enabled */
4898 BUG_ON(pi && in_interrupt());
4899 recheck:
4900 /* Double check policy once rq lock held: */
4901 if (policy < 0) {
4902 reset_on_fork = p->sched_reset_on_fork;
4903 policy = oldpolicy = p->policy;
4904 } else {
4905 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4906
4907 if (!valid_policy(policy))
4908 return -EINVAL;
4909 }
4910
4911 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4912 return -EINVAL;
4913
4914 /*
4915 * Valid priorities for SCHED_FIFO and SCHED_RR are
4916 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4917 * SCHED_BATCH and SCHED_IDLE is 0.
4918 */
4919 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4920 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4921 return -EINVAL;
4922 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4923 (rt_policy(policy) != (attr->sched_priority != 0)))
4924 return -EINVAL;
4925
4926 /*
4927 * Allow unprivileged RT tasks to decrease priority:
4928 */
4929 if (user && !capable(CAP_SYS_NICE)) {
4930 if (fair_policy(policy)) {
4931 if (attr->sched_nice < task_nice(p) &&
4932 !can_nice(p, attr->sched_nice))
4933 return -EPERM;
4934 }
4935
4936 if (rt_policy(policy)) {
4937 unsigned long rlim_rtprio =
4938 task_rlimit(p, RLIMIT_RTPRIO);
4939
4940 /* Can't set/change the rt policy: */
4941 if (policy != p->policy && !rlim_rtprio)
4942 return -EPERM;
4943
4944 /* Can't increase priority: */
4945 if (attr->sched_priority > p->rt_priority &&
4946 attr->sched_priority > rlim_rtprio)
4947 return -EPERM;
4948 }
4949
4950 /*
4951 * Can't set/change SCHED_DEADLINE policy at all for now
4952 * (safest behavior); in the future we would like to allow
4953 * unprivileged DL tasks to increase their relative deadline
4954 * or reduce their runtime (both ways reducing utilization)
4955 */
4956 if (dl_policy(policy))
4957 return -EPERM;
4958
4959 /*
4960 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4961 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4962 */
4963 if (task_has_idle_policy(p) && !idle_policy(policy)) {
4964 if (!can_nice(p, task_nice(p)))
4965 return -EPERM;
4966 }
4967
4968 /* Can't change other user's priorities: */
4969 if (!check_same_owner(p))
4970 return -EPERM;
4971
4972 /* Normal users shall not reset the sched_reset_on_fork flag: */
4973 if (p->sched_reset_on_fork && !reset_on_fork)
4974 return -EPERM;
4975 }
4976
4977 if (user) {
4978 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4979 return -EINVAL;
4980
4981 retval = security_task_setscheduler(p);
4982 if (retval)
4983 return retval;
4984 }
4985
4986 /* Update task specific "requested" clamps */
4987 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4988 retval = uclamp_validate(p, attr);
4989 if (retval)
4990 return retval;
4991 }
4992
4993 /*
4994 * Make sure no PI-waiters arrive (or leave) while we are
4995 * changing the priority of the task:
4996 *
4997 * To be able to change p->policy safely, the appropriate
4998 * runqueue lock must be held.
4999 */
5000 rq = task_rq_lock(p, &rf);
5001 update_rq_clock(rq);
5002
5003 /*
5004 * Changing the policy of the stop threads its a very bad idea:
5005 */
5006 if (p == rq->stop) {
5007 retval = -EINVAL;
5008 goto unlock;
5009 }
5010
5011 /*
5012 * If not changing anything there's no need to proceed further,
5013 * but store a possible modification of reset_on_fork.
5014 */
5015 if (unlikely(policy == p->policy)) {
5016 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5017 goto change;
5018 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5019 goto change;
5020 if (dl_policy(policy) && dl_param_changed(p, attr))
5021 goto change;
5022 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5023 goto change;
5024
5025 p->sched_reset_on_fork = reset_on_fork;
5026 retval = 0;
5027 goto unlock;
5028 }
5029 change:
5030
5031 if (user) {
5032 #ifdef CONFIG_RT_GROUP_SCHED
5033 /*
5034 * Do not allow realtime tasks into groups that have no runtime
5035 * assigned.
5036 */
5037 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5038 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5039 !task_group_is_autogroup(task_group(p))) {
5040 retval = -EPERM;
5041 goto unlock;
5042 }
5043 #endif
5044 #ifdef CONFIG_SMP
5045 if (dl_bandwidth_enabled() && dl_policy(policy) &&
5046 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5047 cpumask_t *span = rq->rd->span;
5048
5049 /*
5050 * Don't allow tasks with an affinity mask smaller than
5051 * the entire root_domain to become SCHED_DEADLINE. We
5052 * will also fail if there's no bandwidth available.
5053 */
5054 if (!cpumask_subset(span, p->cpus_ptr) ||
5055 rq->rd->dl_bw.bw == 0) {
5056 retval = -EPERM;
5057 goto unlock;
5058 }
5059 }
5060 #endif
5061 }
5062
5063 /* Re-check policy now with rq lock held: */
5064 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5065 policy = oldpolicy = -1;
5066 task_rq_unlock(rq, p, &rf);
5067 goto recheck;
5068 }
5069
5070 /*
5071 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5072 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5073 * is available.
5074 */
5075 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5076 retval = -EBUSY;
5077 goto unlock;
5078 }
5079
5080 p->sched_reset_on_fork = reset_on_fork;
5081 oldprio = p->prio;
5082
5083 if (pi) {
5084 /*
5085 * Take priority boosted tasks into account. If the new
5086 * effective priority is unchanged, we just store the new
5087 * normal parameters and do not touch the scheduler class and
5088 * the runqueue. This will be done when the task deboost
5089 * itself.
5090 */
5091 new_effective_prio = rt_effective_prio(p, newprio);
5092 if (new_effective_prio == oldprio)
5093 queue_flags &= ~DEQUEUE_MOVE;
5094 }
5095
5096 queued = task_on_rq_queued(p);
5097 running = task_current(rq, p);
5098 if (queued)
5099 dequeue_task(rq, p, queue_flags);
5100 if (running)
5101 put_prev_task(rq, p);
5102
5103 prev_class = p->sched_class;
5104
5105 __setscheduler(rq, p, attr, pi);
5106 __setscheduler_uclamp(p, attr);
5107
5108 if (queued) {
5109 /*
5110 * We enqueue to tail when the priority of a task is
5111 * increased (user space view).
5112 */
5113 if (oldprio < p->prio)
5114 queue_flags |= ENQUEUE_HEAD;
5115
5116 enqueue_task(rq, p, queue_flags);
5117 }
5118 if (running)
5119 set_next_task(rq, p);
5120
5121 check_class_changed(rq, p, prev_class, oldprio);
5122
5123 /* Avoid rq from going away on us: */
5124 preempt_disable();
5125 task_rq_unlock(rq, p, &rf);
5126
5127 if (pi)
5128 rt_mutex_adjust_pi(p);
5129
5130 /* Run balance callbacks after we've adjusted the PI chain: */
5131 balance_callback(rq);
5132 preempt_enable();
5133
5134 return 0;
5135
5136 unlock:
5137 task_rq_unlock(rq, p, &rf);
5138 return retval;
5139 }
5140
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)5141 static int _sched_setscheduler(struct task_struct *p, int policy,
5142 const struct sched_param *param, bool check)
5143 {
5144 struct sched_attr attr = {
5145 .sched_policy = policy,
5146 .sched_priority = param->sched_priority,
5147 .sched_nice = PRIO_TO_NICE(p->static_prio),
5148 };
5149
5150 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5151 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5152 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5153 policy &= ~SCHED_RESET_ON_FORK;
5154 attr.sched_policy = policy;
5155 }
5156
5157 return __sched_setscheduler(p, &attr, check, true);
5158 }
5159 /**
5160 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5161 * @p: the task in question.
5162 * @policy: new policy.
5163 * @param: structure containing the new RT priority.
5164 *
5165 * Return: 0 on success. An error code otherwise.
5166 *
5167 * NOTE that the task may be already dead.
5168 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)5169 int sched_setscheduler(struct task_struct *p, int policy,
5170 const struct sched_param *param)
5171 {
5172 return _sched_setscheduler(p, policy, param, true);
5173 }
5174 EXPORT_SYMBOL_GPL(sched_setscheduler);
5175
sched_setattr(struct task_struct * p,const struct sched_attr * attr)5176 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5177 {
5178 return __sched_setscheduler(p, attr, true, true);
5179 }
5180 EXPORT_SYMBOL_GPL(sched_setattr);
5181
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)5182 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5183 {
5184 return __sched_setscheduler(p, attr, false, true);
5185 }
5186 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
5187
5188 /**
5189 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5190 * @p: the task in question.
5191 * @policy: new policy.
5192 * @param: structure containing the new RT priority.
5193 *
5194 * Just like sched_setscheduler, only don't bother checking if the
5195 * current context has permission. For example, this is needed in
5196 * stop_machine(): we create temporary high priority worker threads,
5197 * but our caller might not have that capability.
5198 *
5199 * Return: 0 on success. An error code otherwise.
5200 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)5201 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5202 const struct sched_param *param)
5203 {
5204 return _sched_setscheduler(p, policy, param, false);
5205 }
5206 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5207
5208 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)5209 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5210 {
5211 struct sched_param lparam;
5212 struct task_struct *p;
5213 int retval;
5214
5215 if (!param || pid < 0)
5216 return -EINVAL;
5217 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5218 return -EFAULT;
5219
5220 rcu_read_lock();
5221 retval = -ESRCH;
5222 p = find_process_by_pid(pid);
5223 if (p != NULL)
5224 retval = sched_setscheduler(p, policy, &lparam);
5225 rcu_read_unlock();
5226
5227 return retval;
5228 }
5229
5230 /*
5231 * Mimics kernel/events/core.c perf_copy_attr().
5232 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)5233 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5234 {
5235 u32 size;
5236 int ret;
5237
5238 /* Zero the full structure, so that a short copy will be nice: */
5239 memset(attr, 0, sizeof(*attr));
5240
5241 ret = get_user(size, &uattr->size);
5242 if (ret)
5243 return ret;
5244
5245 /* ABI compatibility quirk: */
5246 if (!size)
5247 size = SCHED_ATTR_SIZE_VER0;
5248 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5249 goto err_size;
5250
5251 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5252 if (ret) {
5253 if (ret == -E2BIG)
5254 goto err_size;
5255 return ret;
5256 }
5257
5258 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5259 size < SCHED_ATTR_SIZE_VER1)
5260 return -EINVAL;
5261
5262 /*
5263 * XXX: Do we want to be lenient like existing syscalls; or do we want
5264 * to be strict and return an error on out-of-bounds values?
5265 */
5266 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5267
5268 return 0;
5269
5270 err_size:
5271 put_user(sizeof(*attr), &uattr->size);
5272 return -E2BIG;
5273 }
5274
5275 /**
5276 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5277 * @pid: the pid in question.
5278 * @policy: new policy.
5279 * @param: structure containing the new RT priority.
5280 *
5281 * Return: 0 on success. An error code otherwise.
5282 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)5283 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5284 {
5285 if (policy < 0)
5286 return -EINVAL;
5287
5288 return do_sched_setscheduler(pid, policy, param);
5289 }
5290
5291 /**
5292 * sys_sched_setparam - set/change the RT priority of a thread
5293 * @pid: the pid in question.
5294 * @param: structure containing the new RT priority.
5295 *
5296 * Return: 0 on success. An error code otherwise.
5297 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)5298 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5299 {
5300 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5301 }
5302
5303 /**
5304 * sys_sched_setattr - same as above, but with extended sched_attr
5305 * @pid: the pid in question.
5306 * @uattr: structure containing the extended parameters.
5307 * @flags: for future extension.
5308 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)5309 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5310 unsigned int, flags)
5311 {
5312 struct sched_attr attr;
5313 struct task_struct *p;
5314 int retval;
5315
5316 if (!uattr || pid < 0 || flags)
5317 return -EINVAL;
5318
5319 retval = sched_copy_attr(uattr, &attr);
5320 if (retval)
5321 return retval;
5322
5323 if ((int)attr.sched_policy < 0)
5324 return -EINVAL;
5325 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5326 attr.sched_policy = SETPARAM_POLICY;
5327
5328 rcu_read_lock();
5329 retval = -ESRCH;
5330 p = find_process_by_pid(pid);
5331 if (likely(p))
5332 get_task_struct(p);
5333 rcu_read_unlock();
5334
5335 if (likely(p)) {
5336 retval = sched_setattr(p, &attr);
5337 put_task_struct(p);
5338 }
5339
5340 return retval;
5341 }
5342
5343 /**
5344 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5345 * @pid: the pid in question.
5346 *
5347 * Return: On success, the policy of the thread. Otherwise, a negative error
5348 * code.
5349 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)5350 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5351 {
5352 struct task_struct *p;
5353 int retval;
5354
5355 if (pid < 0)
5356 return -EINVAL;
5357
5358 retval = -ESRCH;
5359 rcu_read_lock();
5360 p = find_process_by_pid(pid);
5361 if (p) {
5362 retval = security_task_getscheduler(p);
5363 if (!retval)
5364 retval = p->policy
5365 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5366 }
5367 rcu_read_unlock();
5368 return retval;
5369 }
5370
5371 /**
5372 * sys_sched_getparam - get the RT priority of a thread
5373 * @pid: the pid in question.
5374 * @param: structure containing the RT priority.
5375 *
5376 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5377 * code.
5378 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)5379 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5380 {
5381 struct sched_param lp = { .sched_priority = 0 };
5382 struct task_struct *p;
5383 int retval;
5384
5385 if (!param || pid < 0)
5386 return -EINVAL;
5387
5388 rcu_read_lock();
5389 p = find_process_by_pid(pid);
5390 retval = -ESRCH;
5391 if (!p)
5392 goto out_unlock;
5393
5394 retval = security_task_getscheduler(p);
5395 if (retval)
5396 goto out_unlock;
5397
5398 if (task_has_rt_policy(p))
5399 lp.sched_priority = p->rt_priority;
5400 rcu_read_unlock();
5401
5402 /*
5403 * This one might sleep, we cannot do it with a spinlock held ...
5404 */
5405 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5406
5407 return retval;
5408
5409 out_unlock:
5410 rcu_read_unlock();
5411 return retval;
5412 }
5413
5414 /*
5415 * Copy the kernel size attribute structure (which might be larger
5416 * than what user-space knows about) to user-space.
5417 *
5418 * Note that all cases are valid: user-space buffer can be larger or
5419 * smaller than the kernel-space buffer. The usual case is that both
5420 * have the same size.
5421 */
5422 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)5423 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5424 struct sched_attr *kattr,
5425 unsigned int usize)
5426 {
5427 unsigned int ksize = sizeof(*kattr);
5428
5429 if (!access_ok(uattr, usize))
5430 return -EFAULT;
5431
5432 /*
5433 * sched_getattr() ABI forwards and backwards compatibility:
5434 *
5435 * If usize == ksize then we just copy everything to user-space and all is good.
5436 *
5437 * If usize < ksize then we only copy as much as user-space has space for,
5438 * this keeps ABI compatibility as well. We skip the rest.
5439 *
5440 * If usize > ksize then user-space is using a newer version of the ABI,
5441 * which part the kernel doesn't know about. Just ignore it - tooling can
5442 * detect the kernel's knowledge of attributes from the attr->size value
5443 * which is set to ksize in this case.
5444 */
5445 kattr->size = min(usize, ksize);
5446
5447 if (copy_to_user(uattr, kattr, kattr->size))
5448 return -EFAULT;
5449
5450 return 0;
5451 }
5452
5453 /**
5454 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5455 * @pid: the pid in question.
5456 * @uattr: structure containing the extended parameters.
5457 * @usize: sizeof(attr) for fwd/bwd comp.
5458 * @flags: for future extension.
5459 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)5460 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5461 unsigned int, usize, unsigned int, flags)
5462 {
5463 struct sched_attr kattr = { };
5464 struct task_struct *p;
5465 int retval;
5466
5467 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5468 usize < SCHED_ATTR_SIZE_VER0 || flags)
5469 return -EINVAL;
5470
5471 rcu_read_lock();
5472 p = find_process_by_pid(pid);
5473 retval = -ESRCH;
5474 if (!p)
5475 goto out_unlock;
5476
5477 retval = security_task_getscheduler(p);
5478 if (retval)
5479 goto out_unlock;
5480
5481 kattr.sched_policy = p->policy;
5482 if (p->sched_reset_on_fork)
5483 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5484 if (task_has_dl_policy(p))
5485 __getparam_dl(p, &kattr);
5486 else if (task_has_rt_policy(p))
5487 kattr.sched_priority = p->rt_priority;
5488 else
5489 kattr.sched_nice = task_nice(p);
5490
5491 #ifdef CONFIG_UCLAMP_TASK
5492 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5493 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5494 #endif
5495
5496 rcu_read_unlock();
5497
5498 return sched_attr_copy_to_user(uattr, &kattr, usize);
5499
5500 out_unlock:
5501 rcu_read_unlock();
5502 return retval;
5503 }
5504
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)5505 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5506 {
5507 cpumask_var_t cpus_allowed, new_mask;
5508 struct task_struct *p;
5509 int retval;
5510
5511 rcu_read_lock();
5512
5513 p = find_process_by_pid(pid);
5514 if (!p) {
5515 rcu_read_unlock();
5516 return -ESRCH;
5517 }
5518
5519 /* Prevent p going away */
5520 get_task_struct(p);
5521 rcu_read_unlock();
5522
5523 if (p->flags & PF_NO_SETAFFINITY) {
5524 retval = -EINVAL;
5525 goto out_put_task;
5526 }
5527 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5528 retval = -ENOMEM;
5529 goto out_put_task;
5530 }
5531 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5532 retval = -ENOMEM;
5533 goto out_free_cpus_allowed;
5534 }
5535 retval = -EPERM;
5536 if (!check_same_owner(p)) {
5537 rcu_read_lock();
5538 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5539 rcu_read_unlock();
5540 goto out_free_new_mask;
5541 }
5542 rcu_read_unlock();
5543 }
5544
5545 retval = security_task_setscheduler(p);
5546 if (retval)
5547 goto out_free_new_mask;
5548
5549
5550 cpuset_cpus_allowed(p, cpus_allowed);
5551 cpumask_and(new_mask, in_mask, cpus_allowed);
5552
5553 /*
5554 * Since bandwidth control happens on root_domain basis,
5555 * if admission test is enabled, we only admit -deadline
5556 * tasks allowed to run on all the CPUs in the task's
5557 * root_domain.
5558 */
5559 #ifdef CONFIG_SMP
5560 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5561 rcu_read_lock();
5562 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5563 retval = -EBUSY;
5564 rcu_read_unlock();
5565 goto out_free_new_mask;
5566 }
5567 rcu_read_unlock();
5568 }
5569 #endif
5570 again:
5571 retval = __set_cpus_allowed_ptr(p, new_mask, true);
5572
5573 if (!retval) {
5574 cpuset_cpus_allowed(p, cpus_allowed);
5575 if (!cpumask_subset(new_mask, cpus_allowed)) {
5576 /*
5577 * We must have raced with a concurrent cpuset
5578 * update. Just reset the cpus_allowed to the
5579 * cpuset's cpus_allowed
5580 */
5581 cpumask_copy(new_mask, cpus_allowed);
5582 goto again;
5583 }
5584 }
5585 out_free_new_mask:
5586 free_cpumask_var(new_mask);
5587 out_free_cpus_allowed:
5588 free_cpumask_var(cpus_allowed);
5589 out_put_task:
5590 put_task_struct(p);
5591 return retval;
5592 }
5593
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)5594 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5595 struct cpumask *new_mask)
5596 {
5597 if (len < cpumask_size())
5598 cpumask_clear(new_mask);
5599 else if (len > cpumask_size())
5600 len = cpumask_size();
5601
5602 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5603 }
5604
5605 /**
5606 * sys_sched_setaffinity - set the CPU affinity of a process
5607 * @pid: pid of the process
5608 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5609 * @user_mask_ptr: user-space pointer to the new CPU mask
5610 *
5611 * Return: 0 on success. An error code otherwise.
5612 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)5613 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5614 unsigned long __user *, user_mask_ptr)
5615 {
5616 cpumask_var_t new_mask;
5617 int retval;
5618
5619 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5620 return -ENOMEM;
5621
5622 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5623 if (retval == 0)
5624 retval = sched_setaffinity(pid, new_mask);
5625 free_cpumask_var(new_mask);
5626 return retval;
5627 }
5628
sched_getaffinity(pid_t pid,struct cpumask * mask)5629 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5630 {
5631 struct task_struct *p;
5632 unsigned long flags;
5633 int retval;
5634
5635 rcu_read_lock();
5636
5637 retval = -ESRCH;
5638 p = find_process_by_pid(pid);
5639 if (!p)
5640 goto out_unlock;
5641
5642 retval = security_task_getscheduler(p);
5643 if (retval)
5644 goto out_unlock;
5645
5646 raw_spin_lock_irqsave(&p->pi_lock, flags);
5647 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5648 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5649
5650 out_unlock:
5651 rcu_read_unlock();
5652
5653 return retval;
5654 }
5655
5656 /**
5657 * sys_sched_getaffinity - get the CPU affinity of a process
5658 * @pid: pid of the process
5659 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5660 * @user_mask_ptr: user-space pointer to hold the current CPU mask
5661 *
5662 * Return: size of CPU mask copied to user_mask_ptr on success. An
5663 * error code otherwise.
5664 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)5665 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5666 unsigned long __user *, user_mask_ptr)
5667 {
5668 int ret;
5669 cpumask_var_t mask;
5670
5671 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5672 return -EINVAL;
5673 if (len & (sizeof(unsigned long)-1))
5674 return -EINVAL;
5675
5676 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
5677 return -ENOMEM;
5678
5679 ret = sched_getaffinity(pid, mask);
5680 if (ret == 0) {
5681 unsigned int retlen = min(len, cpumask_size());
5682
5683 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
5684 ret = -EFAULT;
5685 else
5686 ret = retlen;
5687 }
5688 free_cpumask_var(mask);
5689
5690 return ret;
5691 }
5692
5693 /**
5694 * sys_sched_yield - yield the current processor to other threads.
5695 *
5696 * This function yields the current CPU to other tasks. If there are no
5697 * other threads running on this CPU then this function will return.
5698 *
5699 * Return: 0.
5700 */
do_sched_yield(void)5701 static void do_sched_yield(void)
5702 {
5703 struct rq_flags rf;
5704 struct rq *rq;
5705
5706 rq = this_rq_lock_irq(&rf);
5707
5708 schedstat_inc(rq->yld_count);
5709 current->sched_class->yield_task(rq);
5710
5711 preempt_disable();
5712 rq_unlock_irq(rq, &rf);
5713 sched_preempt_enable_no_resched();
5714
5715 schedule();
5716 }
5717
SYSCALL_DEFINE0(sched_yield)5718 SYSCALL_DEFINE0(sched_yield)
5719 {
5720 do_sched_yield();
5721 return 0;
5722 }
5723
5724 #ifndef CONFIG_PREEMPTION
_cond_resched(void)5725 int __sched _cond_resched(void)
5726 {
5727 if (should_resched(0)) {
5728 preempt_schedule_common();
5729 return 1;
5730 }
5731 rcu_all_qs();
5732 return 0;
5733 }
5734 EXPORT_SYMBOL(_cond_resched);
5735 #endif
5736
5737 /*
5738 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5739 * call schedule, and on return reacquire the lock.
5740 *
5741 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5742 * operations here to prevent schedule() from being called twice (once via
5743 * spin_unlock(), once by hand).
5744 */
__cond_resched_lock(spinlock_t * lock)5745 int __cond_resched_lock(spinlock_t *lock)
5746 {
5747 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5748 int ret = 0;
5749
5750 lockdep_assert_held(lock);
5751
5752 if (spin_needbreak(lock) || resched) {
5753 spin_unlock(lock);
5754 if (resched)
5755 preempt_schedule_common();
5756 else
5757 cpu_relax();
5758 ret = 1;
5759 spin_lock(lock);
5760 }
5761 return ret;
5762 }
5763 EXPORT_SYMBOL(__cond_resched_lock);
5764
5765 /**
5766 * yield - yield the current processor to other threads.
5767 *
5768 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5769 *
5770 * The scheduler is at all times free to pick the calling task as the most
5771 * eligible task to run, if removing the yield() call from your code breaks
5772 * it, its already broken.
5773 *
5774 * Typical broken usage is:
5775 *
5776 * while (!event)
5777 * yield();
5778 *
5779 * where one assumes that yield() will let 'the other' process run that will
5780 * make event true. If the current task is a SCHED_FIFO task that will never
5781 * happen. Never use yield() as a progress guarantee!!
5782 *
5783 * If you want to use yield() to wait for something, use wait_event().
5784 * If you want to use yield() to be 'nice' for others, use cond_resched().
5785 * If you still want to use yield(), do not!
5786 */
yield(void)5787 void __sched yield(void)
5788 {
5789 set_current_state(TASK_RUNNING);
5790 do_sched_yield();
5791 }
5792 EXPORT_SYMBOL(yield);
5793
5794 /**
5795 * yield_to - yield the current processor to another thread in
5796 * your thread group, or accelerate that thread toward the
5797 * processor it's on.
5798 * @p: target task
5799 * @preempt: whether task preemption is allowed or not
5800 *
5801 * It's the caller's job to ensure that the target task struct
5802 * can't go away on us before we can do any checks.
5803 *
5804 * Return:
5805 * true (>0) if we indeed boosted the target task.
5806 * false (0) if we failed to boost the target.
5807 * -ESRCH if there's no task to yield to.
5808 */
yield_to(struct task_struct * p,bool preempt)5809 int __sched yield_to(struct task_struct *p, bool preempt)
5810 {
5811 struct task_struct *curr = current;
5812 struct rq *rq, *p_rq;
5813 unsigned long flags;
5814 int yielded = 0;
5815
5816 local_irq_save(flags);
5817 rq = this_rq();
5818
5819 again:
5820 p_rq = task_rq(p);
5821 /*
5822 * If we're the only runnable task on the rq and target rq also
5823 * has only one task, there's absolutely no point in yielding.
5824 */
5825 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5826 yielded = -ESRCH;
5827 goto out_irq;
5828 }
5829
5830 double_rq_lock(rq, p_rq);
5831 if (task_rq(p) != p_rq) {
5832 double_rq_unlock(rq, p_rq);
5833 goto again;
5834 }
5835
5836 if (!curr->sched_class->yield_to_task)
5837 goto out_unlock;
5838
5839 if (curr->sched_class != p->sched_class)
5840 goto out_unlock;
5841
5842 if (task_running(p_rq, p) || p->state)
5843 goto out_unlock;
5844
5845 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5846 if (yielded) {
5847 schedstat_inc(rq->yld_count);
5848 /*
5849 * Make p's CPU reschedule; pick_next_entity takes care of
5850 * fairness.
5851 */
5852 if (preempt && rq != p_rq)
5853 resched_curr(p_rq);
5854 }
5855
5856 out_unlock:
5857 double_rq_unlock(rq, p_rq);
5858 out_irq:
5859 local_irq_restore(flags);
5860
5861 if (yielded > 0)
5862 schedule();
5863
5864 return yielded;
5865 }
5866 EXPORT_SYMBOL_GPL(yield_to);
5867
io_schedule_prepare(void)5868 int io_schedule_prepare(void)
5869 {
5870 int old_iowait = current->in_iowait;
5871
5872 current->in_iowait = 1;
5873 blk_schedule_flush_plug(current);
5874
5875 return old_iowait;
5876 }
5877
io_schedule_finish(int token)5878 void io_schedule_finish(int token)
5879 {
5880 current->in_iowait = token;
5881 }
5882
5883 /*
5884 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5885 * that process accounting knows that this is a task in IO wait state.
5886 */
io_schedule_timeout(long timeout)5887 long __sched io_schedule_timeout(long timeout)
5888 {
5889 int token;
5890 long ret;
5891
5892 token = io_schedule_prepare();
5893 ret = schedule_timeout(timeout);
5894 io_schedule_finish(token);
5895
5896 return ret;
5897 }
5898 EXPORT_SYMBOL(io_schedule_timeout);
5899
io_schedule(void)5900 void __sched io_schedule(void)
5901 {
5902 int token;
5903
5904 token = io_schedule_prepare();
5905 schedule();
5906 io_schedule_finish(token);
5907 }
5908 EXPORT_SYMBOL(io_schedule);
5909
5910 /**
5911 * sys_sched_get_priority_max - return maximum RT priority.
5912 * @policy: scheduling class.
5913 *
5914 * Return: On success, this syscall returns the maximum
5915 * rt_priority that can be used by a given scheduling class.
5916 * On failure, a negative error code is returned.
5917 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)5918 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5919 {
5920 int ret = -EINVAL;
5921
5922 switch (policy) {
5923 case SCHED_FIFO:
5924 case SCHED_RR:
5925 ret = MAX_USER_RT_PRIO-1;
5926 break;
5927 case SCHED_DEADLINE:
5928 case SCHED_NORMAL:
5929 case SCHED_BATCH:
5930 case SCHED_IDLE:
5931 ret = 0;
5932 break;
5933 }
5934 return ret;
5935 }
5936
5937 /**
5938 * sys_sched_get_priority_min - return minimum RT priority.
5939 * @policy: scheduling class.
5940 *
5941 * Return: On success, this syscall returns the minimum
5942 * rt_priority that can be used by a given scheduling class.
5943 * On failure, a negative error code is returned.
5944 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)5945 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5946 {
5947 int ret = -EINVAL;
5948
5949 switch (policy) {
5950 case SCHED_FIFO:
5951 case SCHED_RR:
5952 ret = 1;
5953 break;
5954 case SCHED_DEADLINE:
5955 case SCHED_NORMAL:
5956 case SCHED_BATCH:
5957 case SCHED_IDLE:
5958 ret = 0;
5959 }
5960 return ret;
5961 }
5962
sched_rr_get_interval(pid_t pid,struct timespec64 * t)5963 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5964 {
5965 struct task_struct *p;
5966 unsigned int time_slice;
5967 struct rq_flags rf;
5968 struct rq *rq;
5969 int retval;
5970
5971 if (pid < 0)
5972 return -EINVAL;
5973
5974 retval = -ESRCH;
5975 rcu_read_lock();
5976 p = find_process_by_pid(pid);
5977 if (!p)
5978 goto out_unlock;
5979
5980 retval = security_task_getscheduler(p);
5981 if (retval)
5982 goto out_unlock;
5983
5984 rq = task_rq_lock(p, &rf);
5985 time_slice = 0;
5986 if (p->sched_class->get_rr_interval)
5987 time_slice = p->sched_class->get_rr_interval(rq, p);
5988 task_rq_unlock(rq, p, &rf);
5989
5990 rcu_read_unlock();
5991 jiffies_to_timespec64(time_slice, t);
5992 return 0;
5993
5994 out_unlock:
5995 rcu_read_unlock();
5996 return retval;
5997 }
5998
5999 /**
6000 * sys_sched_rr_get_interval - return the default timeslice of a process.
6001 * @pid: pid of the process.
6002 * @interval: userspace pointer to the timeslice value.
6003 *
6004 * this syscall writes the default timeslice value of a given process
6005 * into the user-space timespec buffer. A value of '0' means infinity.
6006 *
6007 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6008 * an error code.
6009 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)6010 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6011 struct __kernel_timespec __user *, interval)
6012 {
6013 struct timespec64 t;
6014 int retval = sched_rr_get_interval(pid, &t);
6015
6016 if (retval == 0)
6017 retval = put_timespec64(&t, interval);
6018
6019 return retval;
6020 }
6021
6022 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)6023 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6024 struct old_timespec32 __user *, interval)
6025 {
6026 struct timespec64 t;
6027 int retval = sched_rr_get_interval(pid, &t);
6028
6029 if (retval == 0)
6030 retval = put_old_timespec32(&t, interval);
6031 return retval;
6032 }
6033 #endif
6034
sched_show_task(struct task_struct * p)6035 void sched_show_task(struct task_struct *p)
6036 {
6037 unsigned long free = 0;
6038 int ppid;
6039
6040 if (!try_get_task_stack(p))
6041 return;
6042
6043 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
6044
6045 if (p->state == TASK_RUNNING)
6046 printk(KERN_CONT " running task ");
6047 #ifdef CONFIG_DEBUG_STACK_USAGE
6048 free = stack_not_used(p);
6049 #endif
6050 ppid = 0;
6051 rcu_read_lock();
6052 if (pid_alive(p))
6053 ppid = task_pid_nr(rcu_dereference(p->real_parent));
6054 rcu_read_unlock();
6055 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6056 task_pid_nr(p), ppid,
6057 (unsigned long)task_thread_info(p)->flags);
6058
6059 print_worker_info(KERN_INFO, p);
6060 trace_android_vh_sched_show_task(p);
6061 show_stack(p, NULL);
6062 put_task_stack(p);
6063 }
6064 EXPORT_SYMBOL_GPL(sched_show_task);
6065
6066 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)6067 state_filter_match(unsigned long state_filter, struct task_struct *p)
6068 {
6069 /* no filter, everything matches */
6070 if (!state_filter)
6071 return true;
6072
6073 /* filter, but doesn't match */
6074 if (!(p->state & state_filter))
6075 return false;
6076
6077 /*
6078 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6079 * TASK_KILLABLE).
6080 */
6081 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6082 return false;
6083
6084 return true;
6085 }
6086
6087
show_state_filter(unsigned long state_filter)6088 void show_state_filter(unsigned long state_filter)
6089 {
6090 struct task_struct *g, *p;
6091
6092 #if BITS_PER_LONG == 32
6093 printk(KERN_INFO
6094 " task PC stack pid father\n");
6095 #else
6096 printk(KERN_INFO
6097 " task PC stack pid father\n");
6098 #endif
6099 rcu_read_lock();
6100 for_each_process_thread(g, p) {
6101 /*
6102 * reset the NMI-timeout, listing all files on a slow
6103 * console might take a lot of time:
6104 * Also, reset softlockup watchdogs on all CPUs, because
6105 * another CPU might be blocked waiting for us to process
6106 * an IPI.
6107 */
6108 touch_nmi_watchdog();
6109 touch_all_softlockup_watchdogs();
6110 if (state_filter_match(state_filter, p))
6111 sched_show_task(p);
6112 }
6113
6114 #ifdef CONFIG_SCHED_DEBUG
6115 if (!state_filter)
6116 sysrq_sched_debug_show();
6117 #endif
6118 rcu_read_unlock();
6119 /*
6120 * Only show locks if all tasks are dumped:
6121 */
6122 if (!state_filter)
6123 debug_show_all_locks();
6124 }
6125
6126 /**
6127 * init_idle - set up an idle thread for a given CPU
6128 * @idle: task in question
6129 * @cpu: CPU the idle task belongs to
6130 *
6131 * NOTE: this function does not set the idle thread's NEED_RESCHED
6132 * flag, to make booting more robust.
6133 */
init_idle(struct task_struct * idle,int cpu)6134 void init_idle(struct task_struct *idle, int cpu)
6135 {
6136 struct rq *rq = cpu_rq(cpu);
6137 unsigned long flags;
6138
6139 __sched_fork(0, idle);
6140
6141 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6142 raw_spin_lock(&rq->lock);
6143
6144 idle->state = TASK_RUNNING;
6145 idle->se.exec_start = sched_clock();
6146 idle->flags |= PF_IDLE;
6147
6148 scs_task_reset(idle);
6149 kasan_unpoison_task_stack(idle);
6150
6151 #ifdef CONFIG_SMP
6152 /*
6153 * Its possible that init_idle() gets called multiple times on a task,
6154 * in that case do_set_cpus_allowed() will not do the right thing.
6155 *
6156 * And since this is boot we can forgo the serialization.
6157 */
6158 set_cpus_allowed_common(idle, cpumask_of(cpu));
6159 #endif
6160 /*
6161 * We're having a chicken and egg problem, even though we are
6162 * holding rq->lock, the CPU isn't yet set to this CPU so the
6163 * lockdep check in task_group() will fail.
6164 *
6165 * Similar case to sched_fork(). / Alternatively we could
6166 * use task_rq_lock() here and obtain the other rq->lock.
6167 *
6168 * Silence PROVE_RCU
6169 */
6170 rcu_read_lock();
6171 __set_task_cpu(idle, cpu);
6172 rcu_read_unlock();
6173
6174 rq->idle = idle;
6175 rcu_assign_pointer(rq->curr, idle);
6176 idle->on_rq = TASK_ON_RQ_QUEUED;
6177 #ifdef CONFIG_SMP
6178 idle->on_cpu = 1;
6179 #endif
6180 raw_spin_unlock(&rq->lock);
6181 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6182
6183 /* Set the preempt count _outside_ the spinlocks! */
6184 init_idle_preempt_count(idle, cpu);
6185
6186 /*
6187 * The idle tasks have their own, simple scheduling class:
6188 */
6189 idle->sched_class = &idle_sched_class;
6190 ftrace_graph_init_idle_task(idle, cpu);
6191 vtime_init_idle(idle, cpu);
6192 #ifdef CONFIG_SMP
6193 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6194 #endif
6195 }
6196
6197 #ifdef CONFIG_SMP
6198
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)6199 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6200 const struct cpumask *trial)
6201 {
6202 int ret = 1;
6203
6204 if (!cpumask_weight(cur))
6205 return ret;
6206
6207 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6208
6209 return ret;
6210 }
6211
task_can_attach(struct task_struct * p,const struct cpumask * cs_cpus_allowed)6212 int task_can_attach(struct task_struct *p,
6213 const struct cpumask *cs_cpus_allowed)
6214 {
6215 int ret = 0;
6216
6217 /*
6218 * Kthreads which disallow setaffinity shouldn't be moved
6219 * to a new cpuset; we don't want to change their CPU
6220 * affinity and isolating such threads by their set of
6221 * allowed nodes is unnecessary. Thus, cpusets are not
6222 * applicable for such threads. This prevents checking for
6223 * success of set_cpus_allowed_ptr() on all attached tasks
6224 * before cpus_mask may be changed.
6225 */
6226 if (p->flags & PF_NO_SETAFFINITY) {
6227 ret = -EINVAL;
6228 goto out;
6229 }
6230
6231 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6232 cs_cpus_allowed))
6233 ret = dl_task_can_attach(p, cs_cpus_allowed);
6234
6235 out:
6236 return ret;
6237 }
6238
6239 bool sched_smp_initialized __read_mostly;
6240
6241 #ifdef CONFIG_NUMA_BALANCING
6242 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)6243 int migrate_task_to(struct task_struct *p, int target_cpu)
6244 {
6245 struct migration_arg arg = { p, target_cpu };
6246 int curr_cpu = task_cpu(p);
6247
6248 if (curr_cpu == target_cpu)
6249 return 0;
6250
6251 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6252 return -EINVAL;
6253
6254 /* TODO: This is not properly updating schedstats */
6255
6256 trace_sched_move_numa(p, curr_cpu, target_cpu);
6257 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6258 }
6259
6260 /*
6261 * Requeue a task on a given node and accurately track the number of NUMA
6262 * tasks on the runqueues
6263 */
sched_setnuma(struct task_struct * p,int nid)6264 void sched_setnuma(struct task_struct *p, int nid)
6265 {
6266 bool queued, running;
6267 struct rq_flags rf;
6268 struct rq *rq;
6269
6270 rq = task_rq_lock(p, &rf);
6271 queued = task_on_rq_queued(p);
6272 running = task_current(rq, p);
6273
6274 if (queued)
6275 dequeue_task(rq, p, DEQUEUE_SAVE);
6276 if (running)
6277 put_prev_task(rq, p);
6278
6279 p->numa_preferred_nid = nid;
6280
6281 if (queued)
6282 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6283 if (running)
6284 set_next_task(rq, p);
6285 task_rq_unlock(rq, p, &rf);
6286 }
6287 #endif /* CONFIG_NUMA_BALANCING */
6288
6289 #ifdef CONFIG_HOTPLUG_CPU
6290 /*
6291 * Ensure that the idle task is using init_mm right before its CPU goes
6292 * offline.
6293 */
idle_task_exit(void)6294 void idle_task_exit(void)
6295 {
6296 struct mm_struct *mm = current->active_mm;
6297
6298 BUG_ON(cpu_online(smp_processor_id()));
6299 BUG_ON(current != this_rq()->idle);
6300
6301 if (mm != &init_mm) {
6302 switch_mm(mm, &init_mm, current);
6303 finish_arch_post_lock_switch();
6304 }
6305
6306 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6307 }
6308
6309 /*
6310 * Since this CPU is going 'away' for a while, fold any nr_active delta
6311 * we might have. Assumes we're called after migrate_tasks() so that the
6312 * nr_active count is stable. We need to take the teardown thread which
6313 * is calling this into account, so we hand in adjust = 1 to the load
6314 * calculation.
6315 *
6316 * Also see the comment "Global load-average calculations".
6317 */
calc_load_migrate(struct rq * rq)6318 static void calc_load_migrate(struct rq *rq)
6319 {
6320 long delta = calc_load_fold_active(rq, 1);
6321 if (delta)
6322 atomic_long_add(delta, &calc_load_tasks);
6323 }
6324
__pick_migrate_task(struct rq * rq)6325 static struct task_struct *__pick_migrate_task(struct rq *rq)
6326 {
6327 const struct sched_class *class;
6328 struct task_struct *next;
6329
6330 for_each_class(class) {
6331 next = class->pick_next_task(rq, NULL, NULL);
6332 if (next) {
6333 next->sched_class->put_prev_task(rq, next);
6334 return next;
6335 }
6336 }
6337
6338 /* The idle class should always have a runnable task */
6339 BUG();
6340 }
6341
6342 /*
6343 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6344 * try_to_wake_up()->select_task_rq().
6345 *
6346 * Called with rq->lock held even though we'er in stop_machine() and
6347 * there's no concurrency possible, we hold the required locks anyway
6348 * because of lock validation efforts.
6349 */
migrate_tasks(struct rq * dead_rq,struct rq_flags * rf)6350 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6351 {
6352 struct rq *rq = dead_rq;
6353 struct task_struct *next, *stop = rq->stop;
6354 struct rq_flags orf = *rf;
6355 int dest_cpu;
6356
6357 /*
6358 * Fudge the rq selection such that the below task selection loop
6359 * doesn't get stuck on the currently eligible stop task.
6360 *
6361 * We're currently inside stop_machine() and the rq is either stuck
6362 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6363 * either way we should never end up calling schedule() until we're
6364 * done here.
6365 */
6366 rq->stop = NULL;
6367
6368 /*
6369 * put_prev_task() and pick_next_task() sched
6370 * class method both need to have an up-to-date
6371 * value of rq->clock[_task]
6372 */
6373 update_rq_clock(rq);
6374
6375 for (;;) {
6376 /*
6377 * There's this thread running, bail when that's the only
6378 * remaining thread:
6379 */
6380 if (rq->nr_running == 1)
6381 break;
6382
6383 next = __pick_migrate_task(rq);
6384
6385 /*
6386 * Rules for changing task_struct::cpus_mask are holding
6387 * both pi_lock and rq->lock, such that holding either
6388 * stabilizes the mask.
6389 *
6390 * Drop rq->lock is not quite as disastrous as it usually is
6391 * because !cpu_active at this point, which means load-balance
6392 * will not interfere. Also, stop-machine.
6393 */
6394 rq_unlock(rq, rf);
6395 raw_spin_lock(&next->pi_lock);
6396 rq_relock(rq, rf);
6397
6398 /*
6399 * Since we're inside stop-machine, _nothing_ should have
6400 * changed the task, WARN if weird stuff happened, because in
6401 * that case the above rq->lock drop is a fail too.
6402 */
6403 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6404 raw_spin_unlock(&next->pi_lock);
6405 continue;
6406 }
6407
6408 /* Find suitable destination for @next, with force if needed. */
6409 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6410 rq = __migrate_task(rq, rf, next, dest_cpu);
6411 if (rq != dead_rq) {
6412 rq_unlock(rq, rf);
6413 rq = dead_rq;
6414 *rf = orf;
6415 rq_relock(rq, rf);
6416 }
6417 raw_spin_unlock(&next->pi_lock);
6418 }
6419
6420 rq->stop = stop;
6421 }
6422 #endif /* CONFIG_HOTPLUG_CPU */
6423
set_rq_online(struct rq * rq)6424 void set_rq_online(struct rq *rq)
6425 {
6426 if (!rq->online) {
6427 const struct sched_class *class;
6428
6429 cpumask_set_cpu(rq->cpu, rq->rd->online);
6430 rq->online = 1;
6431
6432 for_each_class(class) {
6433 if (class->rq_online)
6434 class->rq_online(rq);
6435 }
6436 }
6437 }
6438
set_rq_offline(struct rq * rq)6439 void set_rq_offline(struct rq *rq)
6440 {
6441 if (rq->online) {
6442 const struct sched_class *class;
6443
6444 for_each_class(class) {
6445 if (class->rq_offline)
6446 class->rq_offline(rq);
6447 }
6448
6449 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6450 rq->online = 0;
6451 }
6452 }
6453
6454 /*
6455 * used to mark begin/end of suspend/resume:
6456 */
6457 static int num_cpus_frozen;
6458
6459 /*
6460 * Update cpusets according to cpu_active mask. If cpusets are
6461 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6462 * around partition_sched_domains().
6463 *
6464 * If we come here as part of a suspend/resume, don't touch cpusets because we
6465 * want to restore it back to its original state upon resume anyway.
6466 */
cpuset_cpu_active(void)6467 static void cpuset_cpu_active(void)
6468 {
6469 if (cpuhp_tasks_frozen) {
6470 /*
6471 * num_cpus_frozen tracks how many CPUs are involved in suspend
6472 * resume sequence. As long as this is not the last online
6473 * operation in the resume sequence, just build a single sched
6474 * domain, ignoring cpusets.
6475 */
6476 partition_sched_domains(1, NULL, NULL);
6477 if (--num_cpus_frozen)
6478 return;
6479 /*
6480 * This is the last CPU online operation. So fall through and
6481 * restore the original sched domains by considering the
6482 * cpuset configurations.
6483 */
6484 cpuset_force_rebuild();
6485 }
6486 cpuset_update_active_cpus();
6487 }
6488
cpuset_cpu_inactive(unsigned int cpu)6489 static int cpuset_cpu_inactive(unsigned int cpu)
6490 {
6491 if (!cpuhp_tasks_frozen) {
6492 if (dl_cpu_busy(cpu))
6493 return -EBUSY;
6494 cpuset_update_active_cpus();
6495 } else {
6496 num_cpus_frozen++;
6497 partition_sched_domains(1, NULL, NULL);
6498 }
6499 return 0;
6500 }
6501
sched_cpu_activate(unsigned int cpu)6502 int sched_cpu_activate(unsigned int cpu)
6503 {
6504 struct rq *rq = cpu_rq(cpu);
6505 struct rq_flags rf;
6506
6507 #ifdef CONFIG_SCHED_SMT
6508 /*
6509 * When going up, increment the number of cores with SMT present.
6510 */
6511 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6512 static_branch_inc_cpuslocked(&sched_smt_present);
6513 #endif
6514 set_cpu_active(cpu, true);
6515
6516 if (sched_smp_initialized) {
6517 sched_domains_numa_masks_set(cpu);
6518 cpuset_cpu_active();
6519 }
6520
6521 /*
6522 * Put the rq online, if not already. This happens:
6523 *
6524 * 1) In the early boot process, because we build the real domains
6525 * after all CPUs have been brought up.
6526 *
6527 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6528 * domains.
6529 */
6530 rq_lock_irqsave(rq, &rf);
6531 if (rq->rd) {
6532 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6533 set_rq_online(rq);
6534 }
6535 rq_unlock_irqrestore(rq, &rf);
6536
6537 return 0;
6538 }
6539
sched_cpu_deactivate(unsigned int cpu)6540 int sched_cpu_deactivate(unsigned int cpu)
6541 {
6542 int ret;
6543
6544 set_cpu_active(cpu, false);
6545 /*
6546 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6547 * users of this state to go away such that all new such users will
6548 * observe it.
6549 *
6550 * Do sync before park smpboot threads to take care the rcu boost case.
6551 */
6552 synchronize_rcu();
6553
6554 #ifdef CONFIG_SCHED_SMT
6555 /*
6556 * When going down, decrement the number of cores with SMT present.
6557 */
6558 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6559 static_branch_dec_cpuslocked(&sched_smt_present);
6560 #endif
6561
6562 if (!sched_smp_initialized)
6563 return 0;
6564
6565 ret = cpuset_cpu_inactive(cpu);
6566 if (ret) {
6567 set_cpu_active(cpu, true);
6568 return ret;
6569 }
6570 sched_domains_numa_masks_clear(cpu);
6571 return 0;
6572 }
6573
sched_rq_cpu_starting(unsigned int cpu)6574 static void sched_rq_cpu_starting(unsigned int cpu)
6575 {
6576 struct rq *rq = cpu_rq(cpu);
6577
6578 rq->calc_load_update = calc_load_update;
6579 update_max_interval();
6580 }
6581
sched_cpu_starting(unsigned int cpu)6582 int sched_cpu_starting(unsigned int cpu)
6583 {
6584 sched_rq_cpu_starting(cpu);
6585 sched_tick_start(cpu);
6586 return 0;
6587 }
6588
6589 #ifdef CONFIG_HOTPLUG_CPU
sched_cpu_dying(unsigned int cpu)6590 int sched_cpu_dying(unsigned int cpu)
6591 {
6592 struct rq *rq = cpu_rq(cpu);
6593 struct rq_flags rf;
6594
6595 /* Handle pending wakeups and then migrate everything off */
6596 sched_ttwu_pending();
6597 sched_tick_stop(cpu);
6598
6599 rq_lock_irqsave(rq, &rf);
6600 if (rq->rd) {
6601 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6602 set_rq_offline(rq);
6603 }
6604 migrate_tasks(rq, &rf);
6605 BUG_ON(rq->nr_running != 1);
6606 rq_unlock_irqrestore(rq, &rf);
6607
6608 calc_load_migrate(rq);
6609 update_max_interval();
6610 nohz_balance_exit_idle(rq);
6611 hrtick_clear(rq);
6612 return 0;
6613 }
6614 #endif
6615
sched_init_smp(void)6616 void __init sched_init_smp(void)
6617 {
6618 sched_init_numa();
6619
6620 /*
6621 * There's no userspace yet to cause hotplug operations; hence all the
6622 * CPU masks are stable and all blatant races in the below code cannot
6623 * happen.
6624 */
6625 mutex_lock(&sched_domains_mutex);
6626 sched_init_domains(cpu_active_mask);
6627 mutex_unlock(&sched_domains_mutex);
6628
6629 /* Move init over to a non-isolated CPU */
6630 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6631 BUG();
6632 sched_init_granularity();
6633
6634 init_sched_rt_class();
6635 init_sched_dl_class();
6636
6637 sched_smp_initialized = true;
6638 }
6639
migration_init(void)6640 static int __init migration_init(void)
6641 {
6642 sched_cpu_starting(smp_processor_id());
6643 return 0;
6644 }
6645 early_initcall(migration_init);
6646
6647 #else
sched_init_smp(void)6648 void __init sched_init_smp(void)
6649 {
6650 sched_init_granularity();
6651 }
6652 #endif /* CONFIG_SMP */
6653
in_sched_functions(unsigned long addr)6654 int in_sched_functions(unsigned long addr)
6655 {
6656 return in_lock_functions(addr) ||
6657 (addr >= (unsigned long)__sched_text_start
6658 && addr < (unsigned long)__sched_text_end);
6659 }
6660
6661 #ifdef CONFIG_CGROUP_SCHED
6662 /*
6663 * Default task group.
6664 * Every task in system belongs to this group at bootup.
6665 */
6666 struct task_group root_task_group;
6667 LIST_HEAD(task_groups);
6668
6669 /* Cacheline aligned slab cache for task_group */
6670 static struct kmem_cache *task_group_cache __read_mostly;
6671 #endif
6672
6673 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6674 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6675
sched_init(void)6676 void __init sched_init(void)
6677 {
6678 unsigned long ptr = 0;
6679 int i;
6680
6681 wait_bit_init();
6682
6683 #ifdef CONFIG_FAIR_GROUP_SCHED
6684 ptr += 2 * nr_cpu_ids * sizeof(void **);
6685 #endif
6686 #ifdef CONFIG_RT_GROUP_SCHED
6687 ptr += 2 * nr_cpu_ids * sizeof(void **);
6688 #endif
6689 if (ptr) {
6690 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6691
6692 #ifdef CONFIG_FAIR_GROUP_SCHED
6693 root_task_group.se = (struct sched_entity **)ptr;
6694 ptr += nr_cpu_ids * sizeof(void **);
6695
6696 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6697 ptr += nr_cpu_ids * sizeof(void **);
6698
6699 #endif /* CONFIG_FAIR_GROUP_SCHED */
6700 #ifdef CONFIG_RT_GROUP_SCHED
6701 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6702 ptr += nr_cpu_ids * sizeof(void **);
6703
6704 root_task_group.rt_rq = (struct rt_rq **)ptr;
6705 ptr += nr_cpu_ids * sizeof(void **);
6706
6707 #endif /* CONFIG_RT_GROUP_SCHED */
6708 }
6709 #ifdef CONFIG_CPUMASK_OFFSTACK
6710 for_each_possible_cpu(i) {
6711 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6712 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6713 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6714 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6715 }
6716 #endif /* CONFIG_CPUMASK_OFFSTACK */
6717
6718 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6719 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6720
6721 #ifdef CONFIG_SMP
6722 init_defrootdomain();
6723 #endif
6724
6725 #ifdef CONFIG_RT_GROUP_SCHED
6726 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6727 global_rt_period(), global_rt_runtime());
6728 #endif /* CONFIG_RT_GROUP_SCHED */
6729
6730 #ifdef CONFIG_CGROUP_SCHED
6731 task_group_cache = KMEM_CACHE(task_group, 0);
6732
6733 list_add(&root_task_group.list, &task_groups);
6734 INIT_LIST_HEAD(&root_task_group.children);
6735 INIT_LIST_HEAD(&root_task_group.siblings);
6736 autogroup_init(&init_task);
6737 #endif /* CONFIG_CGROUP_SCHED */
6738
6739 for_each_possible_cpu(i) {
6740 struct rq *rq;
6741
6742 rq = cpu_rq(i);
6743 raw_spin_lock_init(&rq->lock);
6744 rq->nr_running = 0;
6745 rq->calc_load_active = 0;
6746 rq->calc_load_update = jiffies + LOAD_FREQ;
6747 init_cfs_rq(&rq->cfs);
6748 init_rt_rq(&rq->rt);
6749 init_dl_rq(&rq->dl);
6750 #ifdef CONFIG_FAIR_GROUP_SCHED
6751 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6752 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6753 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6754 /*
6755 * How much CPU bandwidth does root_task_group get?
6756 *
6757 * In case of task-groups formed thr' the cgroup filesystem, it
6758 * gets 100% of the CPU resources in the system. This overall
6759 * system CPU resource is divided among the tasks of
6760 * root_task_group and its child task-groups in a fair manner,
6761 * based on each entity's (task or task-group's) weight
6762 * (se->load.weight).
6763 *
6764 * In other words, if root_task_group has 10 tasks of weight
6765 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6766 * then A0's share of the CPU resource is:
6767 *
6768 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6769 *
6770 * We achieve this by letting root_task_group's tasks sit
6771 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6772 */
6773 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6774 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6775 #endif /* CONFIG_FAIR_GROUP_SCHED */
6776
6777 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6778 #ifdef CONFIG_RT_GROUP_SCHED
6779 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6780 #endif
6781 #ifdef CONFIG_SMP
6782 rq->sd = NULL;
6783 rq->rd = NULL;
6784 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6785 rq->balance_callback = NULL;
6786 rq->active_balance = 0;
6787 rq->next_balance = jiffies;
6788 rq->push_cpu = 0;
6789 rq->cpu = i;
6790 rq->online = 0;
6791 rq->idle_stamp = 0;
6792 rq->avg_idle = 2*sysctl_sched_migration_cost;
6793 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6794
6795 INIT_LIST_HEAD(&rq->cfs_tasks);
6796
6797 rq_attach_root(rq, &def_root_domain);
6798 #ifdef CONFIG_NO_HZ_COMMON
6799 rq->last_load_update_tick = jiffies;
6800 rq->last_blocked_load_update_tick = jiffies;
6801 atomic_set(&rq->nohz_flags, 0);
6802 #endif
6803 #endif /* CONFIG_SMP */
6804 hrtick_rq_init(rq);
6805 atomic_set(&rq->nr_iowait, 0);
6806 }
6807
6808 set_load_weight(&init_task, false);
6809
6810 /*
6811 * The boot idle thread does lazy MMU switching as well:
6812 */
6813 mmgrab(&init_mm);
6814 enter_lazy_tlb(&init_mm, current);
6815
6816 /*
6817 * Make us the idle thread. Technically, schedule() should not be
6818 * called from this thread, however somewhere below it might be,
6819 * but because we are the idle thread, we just pick up running again
6820 * when this runqueue becomes "idle".
6821 */
6822 init_idle(current, smp_processor_id());
6823
6824 calc_load_update = jiffies + LOAD_FREQ;
6825
6826 #ifdef CONFIG_SMP
6827 idle_thread_set_boot_cpu();
6828 #endif
6829 init_sched_fair_class();
6830
6831 init_schedstats();
6832
6833 psi_init();
6834
6835 init_uclamp();
6836
6837 scheduler_running = 1;
6838 }
6839
6840 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
preempt_count_equals(int preempt_offset)6841 static inline int preempt_count_equals(int preempt_offset)
6842 {
6843 int nested = preempt_count() + rcu_preempt_depth();
6844
6845 return (nested == preempt_offset);
6846 }
6847
__might_sleep(const char * file,int line,int preempt_offset)6848 void __might_sleep(const char *file, int line, int preempt_offset)
6849 {
6850 /*
6851 * Blocking primitives will set (and therefore destroy) current->state,
6852 * since we will exit with TASK_RUNNING make sure we enter with it,
6853 * otherwise we will destroy state.
6854 */
6855 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6856 "do not call blocking ops when !TASK_RUNNING; "
6857 "state=%lx set at [<%p>] %pS\n",
6858 current->state,
6859 (void *)current->task_state_change,
6860 (void *)current->task_state_change);
6861
6862 ___might_sleep(file, line, preempt_offset);
6863 }
6864 EXPORT_SYMBOL(__might_sleep);
6865
___might_sleep(const char * file,int line,int preempt_offset)6866 void ___might_sleep(const char *file, int line, int preempt_offset)
6867 {
6868 /* Ratelimiting timestamp: */
6869 static unsigned long prev_jiffy;
6870
6871 unsigned long preempt_disable_ip;
6872
6873 /* WARN_ON_ONCE() by default, no rate limit required: */
6874 rcu_sleep_check();
6875
6876 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6877 !is_idle_task(current) && !current->non_block_count) ||
6878 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6879 oops_in_progress)
6880 return;
6881
6882 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6883 return;
6884 prev_jiffy = jiffies;
6885
6886 /* Save this before calling printk(), since that will clobber it: */
6887 preempt_disable_ip = get_preempt_disable_ip(current);
6888
6889 printk(KERN_ERR
6890 "BUG: sleeping function called from invalid context at %s:%d\n",
6891 file, line);
6892 printk(KERN_ERR
6893 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6894 in_atomic(), irqs_disabled(), current->non_block_count,
6895 current->pid, current->comm);
6896
6897 if (task_stack_end_corrupted(current))
6898 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6899
6900 debug_show_held_locks(current);
6901 if (irqs_disabled())
6902 print_irqtrace_events(current);
6903 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6904 && !preempt_count_equals(preempt_offset)) {
6905 pr_err("Preemption disabled at:");
6906 print_ip_sym(preempt_disable_ip);
6907 pr_cont("\n");
6908 }
6909 dump_stack();
6910 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6911 }
6912 EXPORT_SYMBOL(___might_sleep);
6913
__cant_sleep(const char * file,int line,int preempt_offset)6914 void __cant_sleep(const char *file, int line, int preempt_offset)
6915 {
6916 static unsigned long prev_jiffy;
6917
6918 if (irqs_disabled())
6919 return;
6920
6921 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6922 return;
6923
6924 if (preempt_count() > preempt_offset)
6925 return;
6926
6927 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6928 return;
6929 prev_jiffy = jiffies;
6930
6931 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6932 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6933 in_atomic(), irqs_disabled(),
6934 current->pid, current->comm);
6935
6936 debug_show_held_locks(current);
6937 dump_stack();
6938 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6939 }
6940 EXPORT_SYMBOL_GPL(__cant_sleep);
6941 #endif
6942
6943 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)6944 void normalize_rt_tasks(void)
6945 {
6946 struct task_struct *g, *p;
6947 struct sched_attr attr = {
6948 .sched_policy = SCHED_NORMAL,
6949 };
6950
6951 read_lock(&tasklist_lock);
6952 for_each_process_thread(g, p) {
6953 /*
6954 * Only normalize user tasks:
6955 */
6956 if (p->flags & PF_KTHREAD)
6957 continue;
6958
6959 p->se.exec_start = 0;
6960 schedstat_set(p->se.statistics.wait_start, 0);
6961 schedstat_set(p->se.statistics.sleep_start, 0);
6962 schedstat_set(p->se.statistics.block_start, 0);
6963
6964 if (!dl_task(p) && !rt_task(p)) {
6965 /*
6966 * Renice negative nice level userspace
6967 * tasks back to 0:
6968 */
6969 if (task_nice(p) < 0)
6970 set_user_nice(p, 0);
6971 continue;
6972 }
6973
6974 __sched_setscheduler(p, &attr, false, false);
6975 }
6976 read_unlock(&tasklist_lock);
6977 }
6978
6979 #endif /* CONFIG_MAGIC_SYSRQ */
6980
6981 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6982 /*
6983 * These functions are only useful for the IA64 MCA handling, or kdb.
6984 *
6985 * They can only be called when the whole system has been
6986 * stopped - every CPU needs to be quiescent, and no scheduling
6987 * activity can take place. Using them for anything else would
6988 * be a serious bug, and as a result, they aren't even visible
6989 * under any other configuration.
6990 */
6991
6992 /**
6993 * curr_task - return the current task for a given CPU.
6994 * @cpu: the processor in question.
6995 *
6996 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6997 *
6998 * Return: The current task for @cpu.
6999 */
curr_task(int cpu)7000 struct task_struct *curr_task(int cpu)
7001 {
7002 return cpu_curr(cpu);
7003 }
7004
7005 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7006
7007 #ifdef CONFIG_IA64
7008 /**
7009 * ia64_set_curr_task - set the current task for a given CPU.
7010 * @cpu: the processor in question.
7011 * @p: the task pointer to set.
7012 *
7013 * Description: This function must only be used when non-maskable interrupts
7014 * are serviced on a separate stack. It allows the architecture to switch the
7015 * notion of the current task on a CPU in a non-blocking manner. This function
7016 * must be called with all CPU's synchronized, and interrupts disabled, the
7017 * and caller must save the original value of the current task (see
7018 * curr_task() above) and restore that value before reenabling interrupts and
7019 * re-starting the system.
7020 *
7021 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7022 */
ia64_set_curr_task(int cpu,struct task_struct * p)7023 void ia64_set_curr_task(int cpu, struct task_struct *p)
7024 {
7025 cpu_curr(cpu) = p;
7026 }
7027
7028 #endif
7029
7030 #ifdef CONFIG_CGROUP_SCHED
7031 /* task_group_lock serializes the addition/removal of task groups */
7032 static DEFINE_SPINLOCK(task_group_lock);
7033
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)7034 static inline void alloc_uclamp_sched_group(struct task_group *tg,
7035 struct task_group *parent)
7036 {
7037 #ifdef CONFIG_UCLAMP_TASK_GROUP
7038 enum uclamp_id clamp_id;
7039
7040 for_each_clamp_id(clamp_id) {
7041 uclamp_se_set(&tg->uclamp_req[clamp_id],
7042 uclamp_none(clamp_id), false);
7043 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
7044 }
7045 #endif
7046 }
7047
sched_free_group(struct task_group * tg)7048 static void sched_free_group(struct task_group *tg)
7049 {
7050 free_fair_sched_group(tg);
7051 free_rt_sched_group(tg);
7052 autogroup_free(tg);
7053 kmem_cache_free(task_group_cache, tg);
7054 }
7055
7056 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)7057 struct task_group *sched_create_group(struct task_group *parent)
7058 {
7059 struct task_group *tg;
7060
7061 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7062 if (!tg)
7063 return ERR_PTR(-ENOMEM);
7064
7065 if (!alloc_fair_sched_group(tg, parent))
7066 goto err;
7067
7068 if (!alloc_rt_sched_group(tg, parent))
7069 goto err;
7070
7071 alloc_uclamp_sched_group(tg, parent);
7072
7073 return tg;
7074
7075 err:
7076 sched_free_group(tg);
7077 return ERR_PTR(-ENOMEM);
7078 }
7079
sched_online_group(struct task_group * tg,struct task_group * parent)7080 void sched_online_group(struct task_group *tg, struct task_group *parent)
7081 {
7082 unsigned long flags;
7083
7084 spin_lock_irqsave(&task_group_lock, flags);
7085 list_add_rcu(&tg->list, &task_groups);
7086
7087 /* Root should already exist: */
7088 WARN_ON(!parent);
7089
7090 tg->parent = parent;
7091 INIT_LIST_HEAD(&tg->children);
7092 list_add_rcu(&tg->siblings, &parent->children);
7093 spin_unlock_irqrestore(&task_group_lock, flags);
7094
7095 online_fair_sched_group(tg);
7096 }
7097
7098 /* rcu callback to free various structures associated with a task group */
sched_free_group_rcu(struct rcu_head * rhp)7099 static void sched_free_group_rcu(struct rcu_head *rhp)
7100 {
7101 /* Now it should be safe to free those cfs_rqs: */
7102 sched_free_group(container_of(rhp, struct task_group, rcu));
7103 }
7104
sched_destroy_group(struct task_group * tg)7105 void sched_destroy_group(struct task_group *tg)
7106 {
7107 /* Wait for possible concurrent references to cfs_rqs complete: */
7108 call_rcu(&tg->rcu, sched_free_group_rcu);
7109 }
7110
sched_offline_group(struct task_group * tg)7111 void sched_offline_group(struct task_group *tg)
7112 {
7113 unsigned long flags;
7114
7115 /* End participation in shares distribution: */
7116 unregister_fair_sched_group(tg);
7117
7118 spin_lock_irqsave(&task_group_lock, flags);
7119 list_del_rcu(&tg->list);
7120 list_del_rcu(&tg->siblings);
7121 spin_unlock_irqrestore(&task_group_lock, flags);
7122 }
7123
sched_change_group(struct task_struct * tsk,int type)7124 static void sched_change_group(struct task_struct *tsk, int type)
7125 {
7126 struct task_group *tg;
7127
7128 /*
7129 * All callers are synchronized by task_rq_lock(); we do not use RCU
7130 * which is pointless here. Thus, we pass "true" to task_css_check()
7131 * to prevent lockdep warnings.
7132 */
7133 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7134 struct task_group, css);
7135 tg = autogroup_task_group(tsk, tg);
7136 tsk->sched_task_group = tg;
7137
7138 #ifdef CONFIG_FAIR_GROUP_SCHED
7139 if (tsk->sched_class->task_change_group)
7140 tsk->sched_class->task_change_group(tsk, type);
7141 else
7142 #endif
7143 set_task_rq(tsk, task_cpu(tsk));
7144 }
7145
7146 /*
7147 * Change task's runqueue when it moves between groups.
7148 *
7149 * The caller of this function should have put the task in its new group by
7150 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7151 * its new group.
7152 */
sched_move_task(struct task_struct * tsk)7153 void sched_move_task(struct task_struct *tsk)
7154 {
7155 int queued, running, queue_flags =
7156 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7157 struct rq_flags rf;
7158 struct rq *rq;
7159
7160 rq = task_rq_lock(tsk, &rf);
7161 update_rq_clock(rq);
7162
7163 running = task_current(rq, tsk);
7164 queued = task_on_rq_queued(tsk);
7165
7166 if (queued)
7167 dequeue_task(rq, tsk, queue_flags);
7168 if (running)
7169 put_prev_task(rq, tsk);
7170
7171 sched_change_group(tsk, TASK_MOVE_GROUP);
7172
7173 if (queued)
7174 enqueue_task(rq, tsk, queue_flags);
7175 if (running) {
7176 set_next_task(rq, tsk);
7177 /*
7178 * After changing group, the running task may have joined a
7179 * throttled one but it's still the running task. Trigger a
7180 * resched to make sure that task can still run.
7181 */
7182 resched_curr(rq);
7183 }
7184
7185 task_rq_unlock(rq, tsk, &rf);
7186 }
7187
css_tg(struct cgroup_subsys_state * css)7188 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7189 {
7190 return css ? container_of(css, struct task_group, css) : NULL;
7191 }
7192
7193 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)7194 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7195 {
7196 struct task_group *parent = css_tg(parent_css);
7197 struct task_group *tg;
7198
7199 if (!parent) {
7200 /* This is early initialization for the top cgroup */
7201 return &root_task_group.css;
7202 }
7203
7204 tg = sched_create_group(parent);
7205 if (IS_ERR(tg))
7206 return ERR_PTR(-ENOMEM);
7207
7208 return &tg->css;
7209 }
7210
7211 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)7212 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7213 {
7214 struct task_group *tg = css_tg(css);
7215 struct task_group *parent = css_tg(css->parent);
7216
7217 if (parent)
7218 sched_online_group(tg, parent);
7219
7220 #ifdef CONFIG_UCLAMP_TASK_GROUP
7221 /* Propagate the effective uclamp value for the new group */
7222 mutex_lock(&uclamp_mutex);
7223 rcu_read_lock();
7224 cpu_util_update_eff(css);
7225 rcu_read_unlock();
7226 mutex_unlock(&uclamp_mutex);
7227 #endif
7228
7229 return 0;
7230 }
7231
cpu_cgroup_css_released(struct cgroup_subsys_state * css)7232 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7233 {
7234 struct task_group *tg = css_tg(css);
7235
7236 sched_offline_group(tg);
7237 }
7238
cpu_cgroup_css_free(struct cgroup_subsys_state * css)7239 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7240 {
7241 struct task_group *tg = css_tg(css);
7242
7243 /*
7244 * Relies on the RCU grace period between css_released() and this.
7245 */
7246 sched_free_group(tg);
7247 }
7248
7249 /*
7250 * This is called before wake_up_new_task(), therefore we really only
7251 * have to set its group bits, all the other stuff does not apply.
7252 */
cpu_cgroup_fork(struct task_struct * task)7253 static void cpu_cgroup_fork(struct task_struct *task)
7254 {
7255 struct rq_flags rf;
7256 struct rq *rq;
7257
7258 rq = task_rq_lock(task, &rf);
7259
7260 update_rq_clock(rq);
7261 sched_change_group(task, TASK_SET_GROUP);
7262
7263 task_rq_unlock(rq, task, &rf);
7264 }
7265
cpu_cgroup_can_attach(struct cgroup_taskset * tset)7266 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7267 {
7268 struct task_struct *task;
7269 struct cgroup_subsys_state *css;
7270 int ret = 0;
7271
7272 cgroup_taskset_for_each(task, css, tset) {
7273 #ifdef CONFIG_RT_GROUP_SCHED
7274 if (!sched_rt_can_attach(css_tg(css), task))
7275 return -EINVAL;
7276 #endif
7277 /*
7278 * Serialize against wake_up_new_task() such that if its
7279 * running, we're sure to observe its full state.
7280 */
7281 raw_spin_lock_irq(&task->pi_lock);
7282 /*
7283 * Avoid calling sched_move_task() before wake_up_new_task()
7284 * has happened. This would lead to problems with PELT, due to
7285 * move wanting to detach+attach while we're not attached yet.
7286 */
7287 if (task->state == TASK_NEW)
7288 ret = -EINVAL;
7289 raw_spin_unlock_irq(&task->pi_lock);
7290
7291 if (ret)
7292 break;
7293 }
7294 return ret;
7295 }
7296
cpu_cgroup_attach(struct cgroup_taskset * tset)7297 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7298 {
7299 struct task_struct *task;
7300 struct cgroup_subsys_state *css;
7301
7302 cgroup_taskset_for_each(task, css, tset)
7303 sched_move_task(task);
7304 }
7305
7306 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)7307 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7308 {
7309 struct cgroup_subsys_state *top_css = css;
7310 struct uclamp_se *uc_parent = NULL;
7311 struct uclamp_se *uc_se = NULL;
7312 unsigned int eff[UCLAMP_CNT];
7313 enum uclamp_id clamp_id;
7314 unsigned int clamps;
7315
7316 lockdep_assert_held(&uclamp_mutex);
7317 SCHED_WARN_ON(!rcu_read_lock_held());
7318
7319 css_for_each_descendant_pre(css, top_css) {
7320 uc_parent = css_tg(css)->parent
7321 ? css_tg(css)->parent->uclamp : NULL;
7322
7323 for_each_clamp_id(clamp_id) {
7324 /* Assume effective clamps matches requested clamps */
7325 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7326 /* Cap effective clamps with parent's effective clamps */
7327 if (uc_parent &&
7328 eff[clamp_id] > uc_parent[clamp_id].value) {
7329 eff[clamp_id] = uc_parent[clamp_id].value;
7330 }
7331 }
7332 /* Ensure protection is always capped by limit */
7333 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7334
7335 /* Propagate most restrictive effective clamps */
7336 clamps = 0x0;
7337 uc_se = css_tg(css)->uclamp;
7338 for_each_clamp_id(clamp_id) {
7339 if (eff[clamp_id] == uc_se[clamp_id].value)
7340 continue;
7341 uc_se[clamp_id].value = eff[clamp_id];
7342 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7343 clamps |= (0x1 << clamp_id);
7344 }
7345 if (!clamps) {
7346 css = css_rightmost_descendant(css);
7347 continue;
7348 }
7349
7350 /* Immediately update descendants RUNNABLE tasks */
7351 uclamp_update_active_tasks(css);
7352 }
7353 }
7354
7355 /*
7356 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7357 * C expression. Since there is no way to convert a macro argument (N) into a
7358 * character constant, use two levels of macros.
7359 */
7360 #define _POW10(exp) ((unsigned int)1e##exp)
7361 #define POW10(exp) _POW10(exp)
7362
7363 struct uclamp_request {
7364 #define UCLAMP_PERCENT_SHIFT 2
7365 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7366 s64 percent;
7367 u64 util;
7368 int ret;
7369 };
7370
7371 static inline struct uclamp_request
capacity_from_percent(char * buf)7372 capacity_from_percent(char *buf)
7373 {
7374 struct uclamp_request req = {
7375 .percent = UCLAMP_PERCENT_SCALE,
7376 .util = SCHED_CAPACITY_SCALE,
7377 .ret = 0,
7378 };
7379
7380 buf = strim(buf);
7381 if (strcmp(buf, "max")) {
7382 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7383 &req.percent);
7384 if (req.ret)
7385 return req;
7386 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7387 req.ret = -ERANGE;
7388 return req;
7389 }
7390
7391 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7392 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7393 }
7394
7395 return req;
7396 }
7397
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)7398 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7399 size_t nbytes, loff_t off,
7400 enum uclamp_id clamp_id)
7401 {
7402 struct uclamp_request req;
7403 struct task_group *tg;
7404
7405 req = capacity_from_percent(buf);
7406 if (req.ret)
7407 return req.ret;
7408
7409 static_branch_enable(&sched_uclamp_used);
7410
7411 mutex_lock(&uclamp_mutex);
7412 rcu_read_lock();
7413
7414 tg = css_tg(of_css(of));
7415 if (tg->uclamp_req[clamp_id].value != req.util)
7416 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7417
7418 /*
7419 * Because of not recoverable conversion rounding we keep track of the
7420 * exact requested value
7421 */
7422 tg->uclamp_pct[clamp_id] = req.percent;
7423
7424 /* Update effective clamps to track the most restrictive value */
7425 cpu_util_update_eff(of_css(of));
7426
7427 rcu_read_unlock();
7428 mutex_unlock(&uclamp_mutex);
7429
7430 return nbytes;
7431 }
7432
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7433 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7434 char *buf, size_t nbytes,
7435 loff_t off)
7436 {
7437 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7438 }
7439
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7440 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7441 char *buf, size_t nbytes,
7442 loff_t off)
7443 {
7444 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7445 }
7446
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)7447 static inline void cpu_uclamp_print(struct seq_file *sf,
7448 enum uclamp_id clamp_id)
7449 {
7450 struct task_group *tg;
7451 u64 util_clamp;
7452 u64 percent;
7453 u32 rem;
7454
7455 rcu_read_lock();
7456 tg = css_tg(seq_css(sf));
7457 util_clamp = tg->uclamp_req[clamp_id].value;
7458 rcu_read_unlock();
7459
7460 if (util_clamp == SCHED_CAPACITY_SCALE) {
7461 seq_puts(sf, "max\n");
7462 return;
7463 }
7464
7465 percent = tg->uclamp_pct[clamp_id];
7466 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7467 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7468 }
7469
cpu_uclamp_min_show(struct seq_file * sf,void * v)7470 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7471 {
7472 cpu_uclamp_print(sf, UCLAMP_MIN);
7473 return 0;
7474 }
7475
cpu_uclamp_max_show(struct seq_file * sf,void * v)7476 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7477 {
7478 cpu_uclamp_print(sf, UCLAMP_MAX);
7479 return 0;
7480 }
7481
cpu_uclamp_ls_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 ls)7482 static int cpu_uclamp_ls_write_u64(struct cgroup_subsys_state *css,
7483 struct cftype *cftype, u64 ls)
7484 {
7485 struct task_group *tg;
7486
7487 if (ls > 1)
7488 return -EINVAL;
7489 tg = css_tg(css);
7490 tg->latency_sensitive = (unsigned int) ls;
7491
7492 return 0;
7493 }
7494
cpu_uclamp_ls_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)7495 static u64 cpu_uclamp_ls_read_u64(struct cgroup_subsys_state *css,
7496 struct cftype *cft)
7497 {
7498 struct task_group *tg = css_tg(css);
7499
7500 return (u64) tg->latency_sensitive;
7501 }
7502 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7503
7504 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)7505 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7506 struct cftype *cftype, u64 shareval)
7507 {
7508 if (shareval > scale_load_down(ULONG_MAX))
7509 shareval = MAX_SHARES;
7510 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7511 }
7512
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)7513 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7514 struct cftype *cft)
7515 {
7516 struct task_group *tg = css_tg(css);
7517
7518 return (u64) scale_load_down(tg->shares);
7519 }
7520
7521 #ifdef CONFIG_CFS_BANDWIDTH
7522 static DEFINE_MUTEX(cfs_constraints_mutex);
7523
7524 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7525 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7526 /* More than 203 days if BW_SHIFT equals 20. */
7527 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
7528
7529 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7530
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota)7531 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7532 {
7533 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7534 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7535
7536 if (tg == &root_task_group)
7537 return -EINVAL;
7538
7539 /*
7540 * Ensure we have at some amount of bandwidth every period. This is
7541 * to prevent reaching a state of large arrears when throttled via
7542 * entity_tick() resulting in prolonged exit starvation.
7543 */
7544 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7545 return -EINVAL;
7546
7547 /*
7548 * Likewise, bound things on the otherside by preventing insane quota
7549 * periods. This also allows us to normalize in computing quota
7550 * feasibility.
7551 */
7552 if (period > max_cfs_quota_period)
7553 return -EINVAL;
7554
7555 /*
7556 * Bound quota to defend quota against overflow during bandwidth shift.
7557 */
7558 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7559 return -EINVAL;
7560
7561 /*
7562 * Prevent race between setting of cfs_rq->runtime_enabled and
7563 * unthrottle_offline_cfs_rqs().
7564 */
7565 get_online_cpus();
7566 mutex_lock(&cfs_constraints_mutex);
7567 ret = __cfs_schedulable(tg, period, quota);
7568 if (ret)
7569 goto out_unlock;
7570
7571 runtime_enabled = quota != RUNTIME_INF;
7572 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7573 /*
7574 * If we need to toggle cfs_bandwidth_used, off->on must occur
7575 * before making related changes, and on->off must occur afterwards
7576 */
7577 if (runtime_enabled && !runtime_was_enabled)
7578 cfs_bandwidth_usage_inc();
7579 raw_spin_lock_irq(&cfs_b->lock);
7580 cfs_b->period = ns_to_ktime(period);
7581 cfs_b->quota = quota;
7582
7583 __refill_cfs_bandwidth_runtime(cfs_b);
7584
7585 /* Restart the period timer (if active) to handle new period expiry: */
7586 if (runtime_enabled)
7587 start_cfs_bandwidth(cfs_b);
7588
7589 raw_spin_unlock_irq(&cfs_b->lock);
7590
7591 for_each_online_cpu(i) {
7592 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7593 struct rq *rq = cfs_rq->rq;
7594 struct rq_flags rf;
7595
7596 rq_lock_irq(rq, &rf);
7597 cfs_rq->runtime_enabled = runtime_enabled;
7598 cfs_rq->runtime_remaining = 0;
7599
7600 if (cfs_rq->throttled)
7601 unthrottle_cfs_rq(cfs_rq);
7602 rq_unlock_irq(rq, &rf);
7603 }
7604 if (runtime_was_enabled && !runtime_enabled)
7605 cfs_bandwidth_usage_dec();
7606 out_unlock:
7607 mutex_unlock(&cfs_constraints_mutex);
7608 put_online_cpus();
7609
7610 return ret;
7611 }
7612
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)7613 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7614 {
7615 u64 quota, period;
7616
7617 period = ktime_to_ns(tg->cfs_bandwidth.period);
7618 if (cfs_quota_us < 0)
7619 quota = RUNTIME_INF;
7620 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7621 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7622 else
7623 return -EINVAL;
7624
7625 return tg_set_cfs_bandwidth(tg, period, quota);
7626 }
7627
tg_get_cfs_quota(struct task_group * tg)7628 static long tg_get_cfs_quota(struct task_group *tg)
7629 {
7630 u64 quota_us;
7631
7632 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7633 return -1;
7634
7635 quota_us = tg->cfs_bandwidth.quota;
7636 do_div(quota_us, NSEC_PER_USEC);
7637
7638 return quota_us;
7639 }
7640
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)7641 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7642 {
7643 u64 quota, period;
7644
7645 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7646 return -EINVAL;
7647
7648 period = (u64)cfs_period_us * NSEC_PER_USEC;
7649 quota = tg->cfs_bandwidth.quota;
7650
7651 return tg_set_cfs_bandwidth(tg, period, quota);
7652 }
7653
tg_get_cfs_period(struct task_group * tg)7654 static long tg_get_cfs_period(struct task_group *tg)
7655 {
7656 u64 cfs_period_us;
7657
7658 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7659 do_div(cfs_period_us, NSEC_PER_USEC);
7660
7661 return cfs_period_us;
7662 }
7663
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)7664 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7665 struct cftype *cft)
7666 {
7667 return tg_get_cfs_quota(css_tg(css));
7668 }
7669
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)7670 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7671 struct cftype *cftype, s64 cfs_quota_us)
7672 {
7673 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7674 }
7675
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)7676 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7677 struct cftype *cft)
7678 {
7679 return tg_get_cfs_period(css_tg(css));
7680 }
7681
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)7682 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7683 struct cftype *cftype, u64 cfs_period_us)
7684 {
7685 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7686 }
7687
7688 struct cfs_schedulable_data {
7689 struct task_group *tg;
7690 u64 period, quota;
7691 };
7692
7693 /*
7694 * normalize group quota/period to be quota/max_period
7695 * note: units are usecs
7696 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)7697 static u64 normalize_cfs_quota(struct task_group *tg,
7698 struct cfs_schedulable_data *d)
7699 {
7700 u64 quota, period;
7701
7702 if (tg == d->tg) {
7703 period = d->period;
7704 quota = d->quota;
7705 } else {
7706 period = tg_get_cfs_period(tg);
7707 quota = tg_get_cfs_quota(tg);
7708 }
7709
7710 /* note: these should typically be equivalent */
7711 if (quota == RUNTIME_INF || quota == -1)
7712 return RUNTIME_INF;
7713
7714 return to_ratio(period, quota);
7715 }
7716
tg_cfs_schedulable_down(struct task_group * tg,void * data)7717 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7718 {
7719 struct cfs_schedulable_data *d = data;
7720 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7721 s64 quota = 0, parent_quota = -1;
7722
7723 if (!tg->parent) {
7724 quota = RUNTIME_INF;
7725 } else {
7726 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7727
7728 quota = normalize_cfs_quota(tg, d);
7729 parent_quota = parent_b->hierarchical_quota;
7730
7731 /*
7732 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7733 * always take the min. On cgroup1, only inherit when no
7734 * limit is set:
7735 */
7736 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7737 quota = min(quota, parent_quota);
7738 } else {
7739 if (quota == RUNTIME_INF)
7740 quota = parent_quota;
7741 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7742 return -EINVAL;
7743 }
7744 }
7745 cfs_b->hierarchical_quota = quota;
7746
7747 return 0;
7748 }
7749
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)7750 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7751 {
7752 int ret;
7753 struct cfs_schedulable_data data = {
7754 .tg = tg,
7755 .period = period,
7756 .quota = quota,
7757 };
7758
7759 if (quota != RUNTIME_INF) {
7760 do_div(data.period, NSEC_PER_USEC);
7761 do_div(data.quota, NSEC_PER_USEC);
7762 }
7763
7764 rcu_read_lock();
7765 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7766 rcu_read_unlock();
7767
7768 return ret;
7769 }
7770
cpu_cfs_stat_show(struct seq_file * sf,void * v)7771 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7772 {
7773 struct task_group *tg = css_tg(seq_css(sf));
7774 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7775
7776 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7777 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7778 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7779
7780 if (schedstat_enabled() && tg != &root_task_group) {
7781 u64 ws = 0;
7782 int i;
7783
7784 for_each_possible_cpu(i)
7785 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7786
7787 seq_printf(sf, "wait_sum %llu\n", ws);
7788 }
7789
7790 return 0;
7791 }
7792 #endif /* CONFIG_CFS_BANDWIDTH */
7793 #endif /* CONFIG_FAIR_GROUP_SCHED */
7794
7795 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)7796 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7797 struct cftype *cft, s64 val)
7798 {
7799 return sched_group_set_rt_runtime(css_tg(css), val);
7800 }
7801
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)7802 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7803 struct cftype *cft)
7804 {
7805 return sched_group_rt_runtime(css_tg(css));
7806 }
7807
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)7808 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7809 struct cftype *cftype, u64 rt_period_us)
7810 {
7811 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7812 }
7813
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)7814 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7815 struct cftype *cft)
7816 {
7817 return sched_group_rt_period(css_tg(css));
7818 }
7819 #endif /* CONFIG_RT_GROUP_SCHED */
7820
7821 static struct cftype cpu_legacy_files[] = {
7822 #ifdef CONFIG_FAIR_GROUP_SCHED
7823 {
7824 .name = "shares",
7825 .read_u64 = cpu_shares_read_u64,
7826 .write_u64 = cpu_shares_write_u64,
7827 },
7828 #endif
7829 #ifdef CONFIG_CFS_BANDWIDTH
7830 {
7831 .name = "cfs_quota_us",
7832 .read_s64 = cpu_cfs_quota_read_s64,
7833 .write_s64 = cpu_cfs_quota_write_s64,
7834 },
7835 {
7836 .name = "cfs_period_us",
7837 .read_u64 = cpu_cfs_period_read_u64,
7838 .write_u64 = cpu_cfs_period_write_u64,
7839 },
7840 {
7841 .name = "stat",
7842 .seq_show = cpu_cfs_stat_show,
7843 },
7844 #endif
7845 #ifdef CONFIG_RT_GROUP_SCHED
7846 {
7847 .name = "rt_runtime_us",
7848 .read_s64 = cpu_rt_runtime_read,
7849 .write_s64 = cpu_rt_runtime_write,
7850 },
7851 {
7852 .name = "rt_period_us",
7853 .read_u64 = cpu_rt_period_read_uint,
7854 .write_u64 = cpu_rt_period_write_uint,
7855 },
7856 #endif
7857 #ifdef CONFIG_UCLAMP_TASK_GROUP
7858 {
7859 .name = "uclamp.min",
7860 .flags = CFTYPE_NOT_ON_ROOT,
7861 .seq_show = cpu_uclamp_min_show,
7862 .write = cpu_uclamp_min_write,
7863 },
7864 {
7865 .name = "uclamp.max",
7866 .flags = CFTYPE_NOT_ON_ROOT,
7867 .seq_show = cpu_uclamp_max_show,
7868 .write = cpu_uclamp_max_write,
7869 },
7870 {
7871 .name = "uclamp.latency_sensitive",
7872 .flags = CFTYPE_NOT_ON_ROOT,
7873 .read_u64 = cpu_uclamp_ls_read_u64,
7874 .write_u64 = cpu_uclamp_ls_write_u64,
7875 },
7876 #endif
7877 { } /* Terminate */
7878 };
7879
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)7880 static int cpu_extra_stat_show(struct seq_file *sf,
7881 struct cgroup_subsys_state *css)
7882 {
7883 #ifdef CONFIG_CFS_BANDWIDTH
7884 {
7885 struct task_group *tg = css_tg(css);
7886 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7887 u64 throttled_usec;
7888
7889 throttled_usec = cfs_b->throttled_time;
7890 do_div(throttled_usec, NSEC_PER_USEC);
7891
7892 seq_printf(sf, "nr_periods %d\n"
7893 "nr_throttled %d\n"
7894 "throttled_usec %llu\n",
7895 cfs_b->nr_periods, cfs_b->nr_throttled,
7896 throttled_usec);
7897 }
7898 #endif
7899 return 0;
7900 }
7901
7902 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)7903 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7904 struct cftype *cft)
7905 {
7906 struct task_group *tg = css_tg(css);
7907 u64 weight = scale_load_down(tg->shares);
7908
7909 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7910 }
7911
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)7912 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7913 struct cftype *cft, u64 weight)
7914 {
7915 /*
7916 * cgroup weight knobs should use the common MIN, DFL and MAX
7917 * values which are 1, 100 and 10000 respectively. While it loses
7918 * a bit of range on both ends, it maps pretty well onto the shares
7919 * value used by scheduler and the round-trip conversions preserve
7920 * the original value over the entire range.
7921 */
7922 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7923 return -ERANGE;
7924
7925 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7926
7927 return sched_group_set_shares(css_tg(css), scale_load(weight));
7928 }
7929
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)7930 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7931 struct cftype *cft)
7932 {
7933 unsigned long weight = scale_load_down(css_tg(css)->shares);
7934 int last_delta = INT_MAX;
7935 int prio, delta;
7936
7937 /* find the closest nice value to the current weight */
7938 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7939 delta = abs(sched_prio_to_weight[prio] - weight);
7940 if (delta >= last_delta)
7941 break;
7942 last_delta = delta;
7943 }
7944
7945 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7946 }
7947
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)7948 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7949 struct cftype *cft, s64 nice)
7950 {
7951 unsigned long weight;
7952 int idx;
7953
7954 if (nice < MIN_NICE || nice > MAX_NICE)
7955 return -ERANGE;
7956
7957 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7958 idx = array_index_nospec(idx, 40);
7959 weight = sched_prio_to_weight[idx];
7960
7961 return sched_group_set_shares(css_tg(css), scale_load(weight));
7962 }
7963 #endif
7964
cpu_period_quota_print(struct seq_file * sf,long period,long quota)7965 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7966 long period, long quota)
7967 {
7968 if (quota < 0)
7969 seq_puts(sf, "max");
7970 else
7971 seq_printf(sf, "%ld", quota);
7972
7973 seq_printf(sf, " %ld\n", period);
7974 }
7975
7976 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)7977 static int __maybe_unused cpu_period_quota_parse(char *buf,
7978 u64 *periodp, u64 *quotap)
7979 {
7980 char tok[21]; /* U64_MAX */
7981
7982 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7983 return -EINVAL;
7984
7985 *periodp *= NSEC_PER_USEC;
7986
7987 if (sscanf(tok, "%llu", quotap))
7988 *quotap *= NSEC_PER_USEC;
7989 else if (!strcmp(tok, "max"))
7990 *quotap = RUNTIME_INF;
7991 else
7992 return -EINVAL;
7993
7994 return 0;
7995 }
7996
7997 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)7998 static int cpu_max_show(struct seq_file *sf, void *v)
7999 {
8000 struct task_group *tg = css_tg(seq_css(sf));
8001
8002 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
8003 return 0;
8004 }
8005
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)8006 static ssize_t cpu_max_write(struct kernfs_open_file *of,
8007 char *buf, size_t nbytes, loff_t off)
8008 {
8009 struct task_group *tg = css_tg(of_css(of));
8010 u64 period = tg_get_cfs_period(tg);
8011 u64 quota;
8012 int ret;
8013
8014 ret = cpu_period_quota_parse(buf, &period, "a);
8015 if (!ret)
8016 ret = tg_set_cfs_bandwidth(tg, period, quota);
8017 return ret ?: nbytes;
8018 }
8019 #endif
8020
8021 static struct cftype cpu_files[] = {
8022 #ifdef CONFIG_FAIR_GROUP_SCHED
8023 {
8024 .name = "weight",
8025 .flags = CFTYPE_NOT_ON_ROOT,
8026 .read_u64 = cpu_weight_read_u64,
8027 .write_u64 = cpu_weight_write_u64,
8028 },
8029 {
8030 .name = "weight.nice",
8031 .flags = CFTYPE_NOT_ON_ROOT,
8032 .read_s64 = cpu_weight_nice_read_s64,
8033 .write_s64 = cpu_weight_nice_write_s64,
8034 },
8035 #endif
8036 #ifdef CONFIG_CFS_BANDWIDTH
8037 {
8038 .name = "max",
8039 .flags = CFTYPE_NOT_ON_ROOT,
8040 .seq_show = cpu_max_show,
8041 .write = cpu_max_write,
8042 },
8043 #endif
8044 #ifdef CONFIG_UCLAMP_TASK_GROUP
8045 {
8046 .name = "uclamp.min",
8047 .flags = CFTYPE_NOT_ON_ROOT,
8048 .seq_show = cpu_uclamp_min_show,
8049 .write = cpu_uclamp_min_write,
8050 },
8051 {
8052 .name = "uclamp.max",
8053 .flags = CFTYPE_NOT_ON_ROOT,
8054 .seq_show = cpu_uclamp_max_show,
8055 .write = cpu_uclamp_max_write,
8056 },
8057 {
8058 .name = "uclamp.latency_sensitive",
8059 .flags = CFTYPE_NOT_ON_ROOT,
8060 .read_u64 = cpu_uclamp_ls_read_u64,
8061 .write_u64 = cpu_uclamp_ls_write_u64,
8062 },
8063 #endif
8064 { } /* terminate */
8065 };
8066
8067 struct cgroup_subsys cpu_cgrp_subsys = {
8068 .css_alloc = cpu_cgroup_css_alloc,
8069 .css_online = cpu_cgroup_css_online,
8070 .css_released = cpu_cgroup_css_released,
8071 .css_free = cpu_cgroup_css_free,
8072 .css_extra_stat_show = cpu_extra_stat_show,
8073 .fork = cpu_cgroup_fork,
8074 .can_attach = cpu_cgroup_can_attach,
8075 .attach = cpu_cgroup_attach,
8076 .legacy_cftypes = cpu_legacy_files,
8077 .dfl_cftypes = cpu_files,
8078 .early_init = true,
8079 .threaded = true,
8080 };
8081
8082 #endif /* CONFIG_CGROUP_SCHED */
8083
dump_cpu_task(int cpu)8084 void dump_cpu_task(int cpu)
8085 {
8086 pr_info("Task dump for CPU %d:\n", cpu);
8087 sched_show_task(cpu_curr(cpu));
8088 }
8089
8090 /*
8091 * Nice levels are multiplicative, with a gentle 10% change for every
8092 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8093 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8094 * that remained on nice 0.
8095 *
8096 * The "10% effect" is relative and cumulative: from _any_ nice level,
8097 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8098 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8099 * If a task goes up by ~10% and another task goes down by ~10% then
8100 * the relative distance between them is ~25%.)
8101 */
8102 const int sched_prio_to_weight[40] = {
8103 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8104 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8105 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8106 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8107 /* 0 */ 1024, 820, 655, 526, 423,
8108 /* 5 */ 335, 272, 215, 172, 137,
8109 /* 10 */ 110, 87, 70, 56, 45,
8110 /* 15 */ 36, 29, 23, 18, 15,
8111 };
8112
8113 /*
8114 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8115 *
8116 * In cases where the weight does not change often, we can use the
8117 * precalculated inverse to speed up arithmetics by turning divisions
8118 * into multiplications:
8119 */
8120 const u32 sched_prio_to_wmult[40] = {
8121 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8122 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8123 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8124 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8125 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8126 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8127 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8128 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8129 };
8130
8131 #undef CREATE_TRACE_POINTS
8132