1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18 #include "sched.h"
19 #include "pelt.h"
20
21 struct dl_bandwidth def_dl_bandwidth;
22
dl_task_of(struct sched_dl_entity * dl_se)23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 return container_of(dl_se, struct task_struct, dl);
26 }
27
rq_of_dl_rq(struct dl_rq * dl_rq)28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 return container_of(dl_rq, struct rq, dl);
31 }
32
dl_rq_of_se(struct sched_dl_entity * dl_se)33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39 }
40
on_dl_rq(struct sched_dl_entity * dl_se)41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45
46 #ifdef CONFIG_SMP
dl_bw_of(int i)47 static inline struct dl_bw *dl_bw_of(int i)
48 {
49 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
50 "sched RCU must be held");
51 return &cpu_rq(i)->rd->dl_bw;
52 }
53
dl_bw_cpus(int i)54 static inline int dl_bw_cpus(int i)
55 {
56 struct root_domain *rd = cpu_rq(i)->rd;
57 int cpus = 0;
58
59 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
60 "sched RCU must be held");
61 for_each_cpu_and(i, rd->span, cpu_active_mask)
62 cpus++;
63
64 return cpus;
65 }
66 #else
dl_bw_of(int i)67 static inline struct dl_bw *dl_bw_of(int i)
68 {
69 return &cpu_rq(i)->dl.dl_bw;
70 }
71
dl_bw_cpus(int i)72 static inline int dl_bw_cpus(int i)
73 {
74 return 1;
75 }
76 #endif
77
78 static inline
__add_running_bw(u64 dl_bw,struct dl_rq * dl_rq)79 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
80 {
81 u64 old = dl_rq->running_bw;
82
83 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
84 dl_rq->running_bw += dl_bw;
85 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
86 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
87 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
88 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
89 }
90
91 static inline
__sub_running_bw(u64 dl_bw,struct dl_rq * dl_rq)92 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
93 {
94 u64 old = dl_rq->running_bw;
95
96 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
97 dl_rq->running_bw -= dl_bw;
98 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
99 if (dl_rq->running_bw > old)
100 dl_rq->running_bw = 0;
101 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
102 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
103 }
104
105 static inline
__add_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)106 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
107 {
108 u64 old = dl_rq->this_bw;
109
110 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
111 dl_rq->this_bw += dl_bw;
112 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
113 }
114
115 static inline
__sub_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)116 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
117 {
118 u64 old = dl_rq->this_bw;
119
120 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
121 dl_rq->this_bw -= dl_bw;
122 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
123 if (dl_rq->this_bw > old)
124 dl_rq->this_bw = 0;
125 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
126 }
127
128 static inline
add_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)129 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
130 {
131 if (!dl_entity_is_special(dl_se))
132 __add_rq_bw(dl_se->dl_bw, dl_rq);
133 }
134
135 static inline
sub_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)136 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
137 {
138 if (!dl_entity_is_special(dl_se))
139 __sub_rq_bw(dl_se->dl_bw, dl_rq);
140 }
141
142 static inline
add_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)143 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144 {
145 if (!dl_entity_is_special(dl_se))
146 __add_running_bw(dl_se->dl_bw, dl_rq);
147 }
148
149 static inline
sub_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)150 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
151 {
152 if (!dl_entity_is_special(dl_se))
153 __sub_running_bw(dl_se->dl_bw, dl_rq);
154 }
155
dl_change_utilization(struct task_struct * p,u64 new_bw)156 void dl_change_utilization(struct task_struct *p, u64 new_bw)
157 {
158 struct rq *rq;
159
160 BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
161
162 if (task_on_rq_queued(p))
163 return;
164
165 rq = task_rq(p);
166 if (p->dl.dl_non_contending) {
167 sub_running_bw(&p->dl, &rq->dl);
168 p->dl.dl_non_contending = 0;
169 /*
170 * If the timer handler is currently running and the
171 * timer cannot be cancelled, inactive_task_timer()
172 * will see that dl_not_contending is not set, and
173 * will not touch the rq's active utilization,
174 * so we are still safe.
175 */
176 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
177 put_task_struct(p);
178 }
179 __sub_rq_bw(p->dl.dl_bw, &rq->dl);
180 __add_rq_bw(new_bw, &rq->dl);
181 }
182
183 /*
184 * The utilization of a task cannot be immediately removed from
185 * the rq active utilization (running_bw) when the task blocks.
186 * Instead, we have to wait for the so called "0-lag time".
187 *
188 * If a task blocks before the "0-lag time", a timer (the inactive
189 * timer) is armed, and running_bw is decreased when the timer
190 * fires.
191 *
192 * If the task wakes up again before the inactive timer fires,
193 * the timer is cancelled, whereas if the task wakes up after the
194 * inactive timer fired (and running_bw has been decreased) the
195 * task's utilization has to be added to running_bw again.
196 * A flag in the deadline scheduling entity (dl_non_contending)
197 * is used to avoid race conditions between the inactive timer handler
198 * and task wakeups.
199 *
200 * The following diagram shows how running_bw is updated. A task is
201 * "ACTIVE" when its utilization contributes to running_bw; an
202 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
203 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
204 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
205 * time already passed, which does not contribute to running_bw anymore.
206 * +------------------+
207 * wakeup | ACTIVE |
208 * +------------------>+ contending |
209 * | add_running_bw | |
210 * | +----+------+------+
211 * | | ^
212 * | dequeue | |
213 * +--------+-------+ | |
214 * | | t >= 0-lag | | wakeup
215 * | INACTIVE |<---------------+ |
216 * | | sub_running_bw | |
217 * +--------+-------+ | |
218 * ^ | |
219 * | t < 0-lag | |
220 * | | |
221 * | V |
222 * | +----+------+------+
223 * | sub_running_bw | ACTIVE |
224 * +-------------------+ |
225 * inactive timer | non contending |
226 * fired +------------------+
227 *
228 * The task_non_contending() function is invoked when a task
229 * blocks, and checks if the 0-lag time already passed or
230 * not (in the first case, it directly updates running_bw;
231 * in the second case, it arms the inactive timer).
232 *
233 * The task_contending() function is invoked when a task wakes
234 * up, and checks if the task is still in the "ACTIVE non contending"
235 * state or not (in the second case, it updates running_bw).
236 */
task_non_contending(struct task_struct * p)237 static void task_non_contending(struct task_struct *p)
238 {
239 struct sched_dl_entity *dl_se = &p->dl;
240 struct hrtimer *timer = &dl_se->inactive_timer;
241 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
242 struct rq *rq = rq_of_dl_rq(dl_rq);
243 s64 zerolag_time;
244
245 /*
246 * If this is a non-deadline task that has been boosted,
247 * do nothing
248 */
249 if (dl_se->dl_runtime == 0)
250 return;
251
252 if (dl_entity_is_special(dl_se))
253 return;
254
255 WARN_ON(dl_se->dl_non_contending);
256
257 zerolag_time = dl_se->deadline -
258 div64_long((dl_se->runtime * dl_se->dl_period),
259 dl_se->dl_runtime);
260
261 /*
262 * Using relative times instead of the absolute "0-lag time"
263 * allows to simplify the code
264 */
265 zerolag_time -= rq_clock(rq);
266
267 /*
268 * If the "0-lag time" already passed, decrease the active
269 * utilization now, instead of starting a timer
270 */
271 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
272 if (dl_task(p))
273 sub_running_bw(dl_se, dl_rq);
274 if (!dl_task(p) || p->state == TASK_DEAD) {
275 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
276
277 if (p->state == TASK_DEAD)
278 sub_rq_bw(&p->dl, &rq->dl);
279 raw_spin_lock(&dl_b->lock);
280 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
281 __dl_clear_params(p);
282 raw_spin_unlock(&dl_b->lock);
283 }
284
285 return;
286 }
287
288 dl_se->dl_non_contending = 1;
289 get_task_struct(p);
290 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
291 }
292
task_contending(struct sched_dl_entity * dl_se,int flags)293 static void task_contending(struct sched_dl_entity *dl_se, int flags)
294 {
295 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
296
297 /*
298 * If this is a non-deadline task that has been boosted,
299 * do nothing
300 */
301 if (dl_se->dl_runtime == 0)
302 return;
303
304 if (flags & ENQUEUE_MIGRATED)
305 add_rq_bw(dl_se, dl_rq);
306
307 if (dl_se->dl_non_contending) {
308 dl_se->dl_non_contending = 0;
309 /*
310 * If the timer handler is currently running and the
311 * timer cannot be cancelled, inactive_task_timer()
312 * will see that dl_not_contending is not set, and
313 * will not touch the rq's active utilization,
314 * so we are still safe.
315 */
316 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
317 put_task_struct(dl_task_of(dl_se));
318 } else {
319 /*
320 * Since "dl_non_contending" is not set, the
321 * task's utilization has already been removed from
322 * active utilization (either when the task blocked,
323 * when the "inactive timer" fired).
324 * So, add it back.
325 */
326 add_running_bw(dl_se, dl_rq);
327 }
328 }
329
is_leftmost(struct task_struct * p,struct dl_rq * dl_rq)330 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
331 {
332 struct sched_dl_entity *dl_se = &p->dl;
333
334 return dl_rq->root.rb_leftmost == &dl_se->rb_node;
335 }
336
init_dl_bandwidth(struct dl_bandwidth * dl_b,u64 period,u64 runtime)337 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
338 {
339 raw_spin_lock_init(&dl_b->dl_runtime_lock);
340 dl_b->dl_period = period;
341 dl_b->dl_runtime = runtime;
342 }
343
init_dl_bw(struct dl_bw * dl_b)344 void init_dl_bw(struct dl_bw *dl_b)
345 {
346 raw_spin_lock_init(&dl_b->lock);
347 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
348 if (global_rt_runtime() == RUNTIME_INF)
349 dl_b->bw = -1;
350 else
351 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
352 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
353 dl_b->total_bw = 0;
354 }
355
init_dl_rq(struct dl_rq * dl_rq)356 void init_dl_rq(struct dl_rq *dl_rq)
357 {
358 dl_rq->root = RB_ROOT_CACHED;
359
360 #ifdef CONFIG_SMP
361 /* zero means no -deadline tasks */
362 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
363
364 dl_rq->dl_nr_migratory = 0;
365 dl_rq->overloaded = 0;
366 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
367 #else
368 init_dl_bw(&dl_rq->dl_bw);
369 #endif
370
371 dl_rq->running_bw = 0;
372 dl_rq->this_bw = 0;
373 init_dl_rq_bw_ratio(dl_rq);
374 }
375
376 #ifdef CONFIG_SMP
377
dl_overloaded(struct rq * rq)378 static inline int dl_overloaded(struct rq *rq)
379 {
380 return atomic_read(&rq->rd->dlo_count);
381 }
382
dl_set_overload(struct rq * rq)383 static inline void dl_set_overload(struct rq *rq)
384 {
385 if (!rq->online)
386 return;
387
388 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
389 /*
390 * Must be visible before the overload count is
391 * set (as in sched_rt.c).
392 *
393 * Matched by the barrier in pull_dl_task().
394 */
395 smp_wmb();
396 atomic_inc(&rq->rd->dlo_count);
397 }
398
dl_clear_overload(struct rq * rq)399 static inline void dl_clear_overload(struct rq *rq)
400 {
401 if (!rq->online)
402 return;
403
404 atomic_dec(&rq->rd->dlo_count);
405 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
406 }
407
update_dl_migration(struct dl_rq * dl_rq)408 static void update_dl_migration(struct dl_rq *dl_rq)
409 {
410 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
411 if (!dl_rq->overloaded) {
412 dl_set_overload(rq_of_dl_rq(dl_rq));
413 dl_rq->overloaded = 1;
414 }
415 } else if (dl_rq->overloaded) {
416 dl_clear_overload(rq_of_dl_rq(dl_rq));
417 dl_rq->overloaded = 0;
418 }
419 }
420
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)421 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
422 {
423 struct task_struct *p = dl_task_of(dl_se);
424
425 if (p->nr_cpus_allowed > 1)
426 dl_rq->dl_nr_migratory++;
427
428 update_dl_migration(dl_rq);
429 }
430
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)431 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
432 {
433 struct task_struct *p = dl_task_of(dl_se);
434
435 if (p->nr_cpus_allowed > 1)
436 dl_rq->dl_nr_migratory--;
437
438 update_dl_migration(dl_rq);
439 }
440
441 /*
442 * The list of pushable -deadline task is not a plist, like in
443 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
444 */
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)445 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
446 {
447 struct dl_rq *dl_rq = &rq->dl;
448 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
449 struct rb_node *parent = NULL;
450 struct task_struct *entry;
451 bool leftmost = true;
452
453 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
454
455 while (*link) {
456 parent = *link;
457 entry = rb_entry(parent, struct task_struct,
458 pushable_dl_tasks);
459 if (dl_entity_preempt(&p->dl, &entry->dl))
460 link = &parent->rb_left;
461 else {
462 link = &parent->rb_right;
463 leftmost = false;
464 }
465 }
466
467 if (leftmost)
468 dl_rq->earliest_dl.next = p->dl.deadline;
469
470 rb_link_node(&p->pushable_dl_tasks, parent, link);
471 rb_insert_color_cached(&p->pushable_dl_tasks,
472 &dl_rq->pushable_dl_tasks_root, leftmost);
473 }
474
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)475 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
476 {
477 struct dl_rq *dl_rq = &rq->dl;
478
479 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
480 return;
481
482 if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
483 struct rb_node *next_node;
484
485 next_node = rb_next(&p->pushable_dl_tasks);
486 if (next_node) {
487 dl_rq->earliest_dl.next = rb_entry(next_node,
488 struct task_struct, pushable_dl_tasks)->dl.deadline;
489 }
490 }
491
492 rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
493 RB_CLEAR_NODE(&p->pushable_dl_tasks);
494 }
495
has_pushable_dl_tasks(struct rq * rq)496 static inline int has_pushable_dl_tasks(struct rq *rq)
497 {
498 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
499 }
500
501 static int push_dl_task(struct rq *rq);
502
need_pull_dl_task(struct rq * rq,struct task_struct * prev)503 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
504 {
505 return dl_task(prev);
506 }
507
508 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
509 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
510
511 static void push_dl_tasks(struct rq *);
512 static void pull_dl_task(struct rq *);
513
deadline_queue_push_tasks(struct rq * rq)514 static inline void deadline_queue_push_tasks(struct rq *rq)
515 {
516 if (!has_pushable_dl_tasks(rq))
517 return;
518
519 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
520 }
521
deadline_queue_pull_task(struct rq * rq)522 static inline void deadline_queue_pull_task(struct rq *rq)
523 {
524 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
525 }
526
527 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
528
dl_task_offline_migration(struct rq * rq,struct task_struct * p)529 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
530 {
531 struct rq *later_rq = NULL;
532 struct dl_bw *dl_b;
533
534 later_rq = find_lock_later_rq(p, rq);
535 if (!later_rq) {
536 int cpu;
537
538 /*
539 * If we cannot preempt any rq, fall back to pick any
540 * online CPU:
541 */
542 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
543 if (cpu >= nr_cpu_ids) {
544 /*
545 * Failed to find any suitable CPU.
546 * The task will never come back!
547 */
548 BUG_ON(dl_bandwidth_enabled());
549
550 /*
551 * If admission control is disabled we
552 * try a little harder to let the task
553 * run.
554 */
555 cpu = cpumask_any(cpu_active_mask);
556 }
557 later_rq = cpu_rq(cpu);
558 double_lock_balance(rq, later_rq);
559 }
560
561 if (p->dl.dl_non_contending || p->dl.dl_throttled) {
562 /*
563 * Inactive timer is armed (or callback is running, but
564 * waiting for us to release rq locks). In any case, when it
565 * will fire (or continue), it will see running_bw of this
566 * task migrated to later_rq (and correctly handle it).
567 */
568 sub_running_bw(&p->dl, &rq->dl);
569 sub_rq_bw(&p->dl, &rq->dl);
570
571 add_rq_bw(&p->dl, &later_rq->dl);
572 add_running_bw(&p->dl, &later_rq->dl);
573 } else {
574 sub_rq_bw(&p->dl, &rq->dl);
575 add_rq_bw(&p->dl, &later_rq->dl);
576 }
577
578 /*
579 * And we finally need to fixup root_domain(s) bandwidth accounting,
580 * since p is still hanging out in the old (now moved to default) root
581 * domain.
582 */
583 dl_b = &rq->rd->dl_bw;
584 raw_spin_lock(&dl_b->lock);
585 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
586 raw_spin_unlock(&dl_b->lock);
587
588 dl_b = &later_rq->rd->dl_bw;
589 raw_spin_lock(&dl_b->lock);
590 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
591 raw_spin_unlock(&dl_b->lock);
592
593 set_task_cpu(p, later_rq->cpu);
594 double_unlock_balance(later_rq, rq);
595
596 return later_rq;
597 }
598
599 #else
600
601 static inline
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)602 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
603 {
604 }
605
606 static inline
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)607 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
608 {
609 }
610
611 static inline
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)612 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
613 {
614 }
615
616 static inline
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)617 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
618 {
619 }
620
need_pull_dl_task(struct rq * rq,struct task_struct * prev)621 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
622 {
623 return false;
624 }
625
pull_dl_task(struct rq * rq)626 static inline void pull_dl_task(struct rq *rq)
627 {
628 }
629
deadline_queue_push_tasks(struct rq * rq)630 static inline void deadline_queue_push_tasks(struct rq *rq)
631 {
632 }
633
deadline_queue_pull_task(struct rq * rq)634 static inline void deadline_queue_pull_task(struct rq *rq)
635 {
636 }
637 #endif /* CONFIG_SMP */
638
639 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
640 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
641 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
642
643 /*
644 * We are being explicitly informed that a new instance is starting,
645 * and this means that:
646 * - the absolute deadline of the entity has to be placed at
647 * current time + relative deadline;
648 * - the runtime of the entity has to be set to the maximum value.
649 *
650 * The capability of specifying such event is useful whenever a -deadline
651 * entity wants to (try to!) synchronize its behaviour with the scheduler's
652 * one, and to (try to!) reconcile itself with its own scheduling
653 * parameters.
654 */
setup_new_dl_entity(struct sched_dl_entity * dl_se)655 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
656 {
657 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
658 struct rq *rq = rq_of_dl_rq(dl_rq);
659
660 WARN_ON(dl_se->dl_boosted);
661 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
662
663 /*
664 * We are racing with the deadline timer. So, do nothing because
665 * the deadline timer handler will take care of properly recharging
666 * the runtime and postponing the deadline
667 */
668 if (dl_se->dl_throttled)
669 return;
670
671 /*
672 * We use the regular wall clock time to set deadlines in the
673 * future; in fact, we must consider execution overheads (time
674 * spent on hardirq context, etc.).
675 */
676 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
677 dl_se->runtime = dl_se->dl_runtime;
678 }
679
680 /*
681 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
682 * possibility of a entity lasting more than what it declared, and thus
683 * exhausting its runtime.
684 *
685 * Here we are interested in making runtime overrun possible, but we do
686 * not want a entity which is misbehaving to affect the scheduling of all
687 * other entities.
688 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
689 * is used, in order to confine each entity within its own bandwidth.
690 *
691 * This function deals exactly with that, and ensures that when the runtime
692 * of a entity is replenished, its deadline is also postponed. That ensures
693 * the overrunning entity can't interfere with other entity in the system and
694 * can't make them miss their deadlines. Reasons why this kind of overruns
695 * could happen are, typically, a entity voluntarily trying to overcome its
696 * runtime, or it just underestimated it during sched_setattr().
697 */
replenish_dl_entity(struct sched_dl_entity * dl_se,struct sched_dl_entity * pi_se)698 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
699 struct sched_dl_entity *pi_se)
700 {
701 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
702 struct rq *rq = rq_of_dl_rq(dl_rq);
703
704 BUG_ON(pi_se->dl_runtime <= 0);
705
706 /*
707 * This could be the case for a !-dl task that is boosted.
708 * Just go with full inherited parameters.
709 */
710 if (dl_se->dl_deadline == 0) {
711 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
712 dl_se->runtime = pi_se->dl_runtime;
713 }
714
715 if (dl_se->dl_yielded && dl_se->runtime > 0)
716 dl_se->runtime = 0;
717
718 /*
719 * We keep moving the deadline away until we get some
720 * available runtime for the entity. This ensures correct
721 * handling of situations where the runtime overrun is
722 * arbitrary large.
723 */
724 while (dl_se->runtime <= 0) {
725 dl_se->deadline += pi_se->dl_period;
726 dl_se->runtime += pi_se->dl_runtime;
727 }
728
729 /*
730 * At this point, the deadline really should be "in
731 * the future" with respect to rq->clock. If it's
732 * not, we are, for some reason, lagging too much!
733 * Anyway, after having warn userspace abut that,
734 * we still try to keep the things running by
735 * resetting the deadline and the budget of the
736 * entity.
737 */
738 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
739 printk_deferred_once("sched: DL replenish lagged too much\n");
740 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
741 dl_se->runtime = pi_se->dl_runtime;
742 }
743
744 if (dl_se->dl_yielded)
745 dl_se->dl_yielded = 0;
746 if (dl_se->dl_throttled)
747 dl_se->dl_throttled = 0;
748 }
749
750 /*
751 * Here we check if --at time t-- an entity (which is probably being
752 * [re]activated or, in general, enqueued) can use its remaining runtime
753 * and its current deadline _without_ exceeding the bandwidth it is
754 * assigned (function returns true if it can't). We are in fact applying
755 * one of the CBS rules: when a task wakes up, if the residual runtime
756 * over residual deadline fits within the allocated bandwidth, then we
757 * can keep the current (absolute) deadline and residual budget without
758 * disrupting the schedulability of the system. Otherwise, we should
759 * refill the runtime and set the deadline a period in the future,
760 * because keeping the current (absolute) deadline of the task would
761 * result in breaking guarantees promised to other tasks (refer to
762 * Documentation/scheduler/sched-deadline.rst for more information).
763 *
764 * This function returns true if:
765 *
766 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
767 *
768 * IOW we can't recycle current parameters.
769 *
770 * Notice that the bandwidth check is done against the deadline. For
771 * task with deadline equal to period this is the same of using
772 * dl_period instead of dl_deadline in the equation above.
773 */
dl_entity_overflow(struct sched_dl_entity * dl_se,struct sched_dl_entity * pi_se,u64 t)774 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
775 struct sched_dl_entity *pi_se, u64 t)
776 {
777 u64 left, right;
778
779 /*
780 * left and right are the two sides of the equation above,
781 * after a bit of shuffling to use multiplications instead
782 * of divisions.
783 *
784 * Note that none of the time values involved in the two
785 * multiplications are absolute: dl_deadline and dl_runtime
786 * are the relative deadline and the maximum runtime of each
787 * instance, runtime is the runtime left for the last instance
788 * and (deadline - t), since t is rq->clock, is the time left
789 * to the (absolute) deadline. Even if overflowing the u64 type
790 * is very unlikely to occur in both cases, here we scale down
791 * as we want to avoid that risk at all. Scaling down by 10
792 * means that we reduce granularity to 1us. We are fine with it,
793 * since this is only a true/false check and, anyway, thinking
794 * of anything below microseconds resolution is actually fiction
795 * (but still we want to give the user that illusion >;).
796 */
797 left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
798 right = ((dl_se->deadline - t) >> DL_SCALE) *
799 (pi_se->dl_runtime >> DL_SCALE);
800
801 return dl_time_before(right, left);
802 }
803
804 /*
805 * Revised wakeup rule [1]: For self-suspending tasks, rather then
806 * re-initializing task's runtime and deadline, the revised wakeup
807 * rule adjusts the task's runtime to avoid the task to overrun its
808 * density.
809 *
810 * Reasoning: a task may overrun the density if:
811 * runtime / (deadline - t) > dl_runtime / dl_deadline
812 *
813 * Therefore, runtime can be adjusted to:
814 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
815 *
816 * In such way that runtime will be equal to the maximum density
817 * the task can use without breaking any rule.
818 *
819 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
820 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
821 */
822 static void
update_dl_revised_wakeup(struct sched_dl_entity * dl_se,struct rq * rq)823 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
824 {
825 u64 laxity = dl_se->deadline - rq_clock(rq);
826
827 /*
828 * If the task has deadline < period, and the deadline is in the past,
829 * it should already be throttled before this check.
830 *
831 * See update_dl_entity() comments for further details.
832 */
833 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
834
835 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
836 }
837
838 /*
839 * Regarding the deadline, a task with implicit deadline has a relative
840 * deadline == relative period. A task with constrained deadline has a
841 * relative deadline <= relative period.
842 *
843 * We support constrained deadline tasks. However, there are some restrictions
844 * applied only for tasks which do not have an implicit deadline. See
845 * update_dl_entity() to know more about such restrictions.
846 *
847 * The dl_is_implicit() returns true if the task has an implicit deadline.
848 */
dl_is_implicit(struct sched_dl_entity * dl_se)849 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
850 {
851 return dl_se->dl_deadline == dl_se->dl_period;
852 }
853
854 /*
855 * When a deadline entity is placed in the runqueue, its runtime and deadline
856 * might need to be updated. This is done by a CBS wake up rule. There are two
857 * different rules: 1) the original CBS; and 2) the Revisited CBS.
858 *
859 * When the task is starting a new period, the Original CBS is used. In this
860 * case, the runtime is replenished and a new absolute deadline is set.
861 *
862 * When a task is queued before the begin of the next period, using the
863 * remaining runtime and deadline could make the entity to overflow, see
864 * dl_entity_overflow() to find more about runtime overflow. When such case
865 * is detected, the runtime and deadline need to be updated.
866 *
867 * If the task has an implicit deadline, i.e., deadline == period, the Original
868 * CBS is applied. the runtime is replenished and a new absolute deadline is
869 * set, as in the previous cases.
870 *
871 * However, the Original CBS does not work properly for tasks with
872 * deadline < period, which are said to have a constrained deadline. By
873 * applying the Original CBS, a constrained deadline task would be able to run
874 * runtime/deadline in a period. With deadline < period, the task would
875 * overrun the runtime/period allowed bandwidth, breaking the admission test.
876 *
877 * In order to prevent this misbehave, the Revisited CBS is used for
878 * constrained deadline tasks when a runtime overflow is detected. In the
879 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
880 * the remaining runtime of the task is reduced to avoid runtime overflow.
881 * Please refer to the comments update_dl_revised_wakeup() function to find
882 * more about the Revised CBS rule.
883 */
update_dl_entity(struct sched_dl_entity * dl_se,struct sched_dl_entity * pi_se)884 static void update_dl_entity(struct sched_dl_entity *dl_se,
885 struct sched_dl_entity *pi_se)
886 {
887 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
888 struct rq *rq = rq_of_dl_rq(dl_rq);
889
890 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
891 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
892
893 if (unlikely(!dl_is_implicit(dl_se) &&
894 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
895 !dl_se->dl_boosted)){
896 update_dl_revised_wakeup(dl_se, rq);
897 return;
898 }
899
900 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
901 dl_se->runtime = pi_se->dl_runtime;
902 }
903 }
904
dl_next_period(struct sched_dl_entity * dl_se)905 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
906 {
907 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
908 }
909
910 /*
911 * If the entity depleted all its runtime, and if we want it to sleep
912 * while waiting for some new execution time to become available, we
913 * set the bandwidth replenishment timer to the replenishment instant
914 * and try to activate it.
915 *
916 * Notice that it is important for the caller to know if the timer
917 * actually started or not (i.e., the replenishment instant is in
918 * the future or in the past).
919 */
start_dl_timer(struct task_struct * p)920 static int start_dl_timer(struct task_struct *p)
921 {
922 struct sched_dl_entity *dl_se = &p->dl;
923 struct hrtimer *timer = &dl_se->dl_timer;
924 struct rq *rq = task_rq(p);
925 ktime_t now, act;
926 s64 delta;
927
928 lockdep_assert_held(&rq->lock);
929
930 /*
931 * We want the timer to fire at the deadline, but considering
932 * that it is actually coming from rq->clock and not from
933 * hrtimer's time base reading.
934 */
935 act = ns_to_ktime(dl_next_period(dl_se));
936 now = hrtimer_cb_get_time(timer);
937 delta = ktime_to_ns(now) - rq_clock(rq);
938 act = ktime_add_ns(act, delta);
939
940 /*
941 * If the expiry time already passed, e.g., because the value
942 * chosen as the deadline is too small, don't even try to
943 * start the timer in the past!
944 */
945 if (ktime_us_delta(act, now) < 0)
946 return 0;
947
948 /*
949 * !enqueued will guarantee another callback; even if one is already in
950 * progress. This ensures a balanced {get,put}_task_struct().
951 *
952 * The race against __run_timer() clearing the enqueued state is
953 * harmless because we're holding task_rq()->lock, therefore the timer
954 * expiring after we've done the check will wait on its task_rq_lock()
955 * and observe our state.
956 */
957 if (!hrtimer_is_queued(timer)) {
958 get_task_struct(p);
959 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
960 }
961
962 return 1;
963 }
964
965 /*
966 * This is the bandwidth enforcement timer callback. If here, we know
967 * a task is not on its dl_rq, since the fact that the timer was running
968 * means the task is throttled and needs a runtime replenishment.
969 *
970 * However, what we actually do depends on the fact the task is active,
971 * (it is on its rq) or has been removed from there by a call to
972 * dequeue_task_dl(). In the former case we must issue the runtime
973 * replenishment and add the task back to the dl_rq; in the latter, we just
974 * do nothing but clearing dl_throttled, so that runtime and deadline
975 * updating (and the queueing back to dl_rq) will be done by the
976 * next call to enqueue_task_dl().
977 */
dl_task_timer(struct hrtimer * timer)978 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
979 {
980 struct sched_dl_entity *dl_se = container_of(timer,
981 struct sched_dl_entity,
982 dl_timer);
983 struct task_struct *p = dl_task_of(dl_se);
984 struct rq_flags rf;
985 struct rq *rq;
986
987 rq = task_rq_lock(p, &rf);
988
989 /*
990 * The task might have changed its scheduling policy to something
991 * different than SCHED_DEADLINE (through switched_from_dl()).
992 */
993 if (!dl_task(p))
994 goto unlock;
995
996 /*
997 * The task might have been boosted by someone else and might be in the
998 * boosting/deboosting path, its not throttled.
999 */
1000 if (dl_se->dl_boosted)
1001 goto unlock;
1002
1003 /*
1004 * Spurious timer due to start_dl_timer() race; or we already received
1005 * a replenishment from rt_mutex_setprio().
1006 */
1007 if (!dl_se->dl_throttled)
1008 goto unlock;
1009
1010 sched_clock_tick();
1011 update_rq_clock(rq);
1012
1013 /*
1014 * If the throttle happened during sched-out; like:
1015 *
1016 * schedule()
1017 * deactivate_task()
1018 * dequeue_task_dl()
1019 * update_curr_dl()
1020 * start_dl_timer()
1021 * __dequeue_task_dl()
1022 * prev->on_rq = 0;
1023 *
1024 * We can be both throttled and !queued. Replenish the counter
1025 * but do not enqueue -- wait for our wakeup to do that.
1026 */
1027 if (!task_on_rq_queued(p)) {
1028 replenish_dl_entity(dl_se, dl_se);
1029 goto unlock;
1030 }
1031
1032 #ifdef CONFIG_SMP
1033 if (unlikely(!rq->online)) {
1034 /*
1035 * If the runqueue is no longer available, migrate the
1036 * task elsewhere. This necessarily changes rq.
1037 */
1038 lockdep_unpin_lock(&rq->lock, rf.cookie);
1039 rq = dl_task_offline_migration(rq, p);
1040 rf.cookie = lockdep_pin_lock(&rq->lock);
1041 update_rq_clock(rq);
1042
1043 /*
1044 * Now that the task has been migrated to the new RQ and we
1045 * have that locked, proceed as normal and enqueue the task
1046 * there.
1047 */
1048 }
1049 #endif
1050
1051 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1052 if (dl_task(rq->curr))
1053 check_preempt_curr_dl(rq, p, 0);
1054 else
1055 resched_curr(rq);
1056
1057 #ifdef CONFIG_SMP
1058 /*
1059 * Queueing this task back might have overloaded rq, check if we need
1060 * to kick someone away.
1061 */
1062 if (has_pushable_dl_tasks(rq)) {
1063 /*
1064 * Nothing relies on rq->lock after this, so its safe to drop
1065 * rq->lock.
1066 */
1067 rq_unpin_lock(rq, &rf);
1068 push_dl_task(rq);
1069 rq_repin_lock(rq, &rf);
1070 }
1071 #endif
1072
1073 unlock:
1074 task_rq_unlock(rq, p, &rf);
1075
1076 /*
1077 * This can free the task_struct, including this hrtimer, do not touch
1078 * anything related to that after this.
1079 */
1080 put_task_struct(p);
1081
1082 return HRTIMER_NORESTART;
1083 }
1084
init_dl_task_timer(struct sched_dl_entity * dl_se)1085 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1086 {
1087 struct hrtimer *timer = &dl_se->dl_timer;
1088
1089 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1090 timer->function = dl_task_timer;
1091 }
1092
1093 /*
1094 * During the activation, CBS checks if it can reuse the current task's
1095 * runtime and period. If the deadline of the task is in the past, CBS
1096 * cannot use the runtime, and so it replenishes the task. This rule
1097 * works fine for implicit deadline tasks (deadline == period), and the
1098 * CBS was designed for implicit deadline tasks. However, a task with
1099 * constrained deadline (deadine < period) might be awakened after the
1100 * deadline, but before the next period. In this case, replenishing the
1101 * task would allow it to run for runtime / deadline. As in this case
1102 * deadline < period, CBS enables a task to run for more than the
1103 * runtime / period. In a very loaded system, this can cause a domino
1104 * effect, making other tasks miss their deadlines.
1105 *
1106 * To avoid this problem, in the activation of a constrained deadline
1107 * task after the deadline but before the next period, throttle the
1108 * task and set the replenishing timer to the begin of the next period,
1109 * unless it is boosted.
1110 */
dl_check_constrained_dl(struct sched_dl_entity * dl_se)1111 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1112 {
1113 struct task_struct *p = dl_task_of(dl_se);
1114 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1115
1116 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1117 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1118 if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1119 return;
1120 dl_se->dl_throttled = 1;
1121 if (dl_se->runtime > 0)
1122 dl_se->runtime = 0;
1123 }
1124 }
1125
1126 static
dl_runtime_exceeded(struct sched_dl_entity * dl_se)1127 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1128 {
1129 return (dl_se->runtime <= 0);
1130 }
1131
1132 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1133
1134 /*
1135 * This function implements the GRUB accounting rule:
1136 * according to the GRUB reclaiming algorithm, the runtime is
1137 * not decreased as "dq = -dt", but as
1138 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1139 * where u is the utilization of the task, Umax is the maximum reclaimable
1140 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1141 * as the difference between the "total runqueue utilization" and the
1142 * runqueue active utilization, and Uextra is the (per runqueue) extra
1143 * reclaimable utilization.
1144 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1145 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1146 * BW_SHIFT.
1147 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1148 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1149 * Since delta is a 64 bit variable, to have an overflow its value
1150 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1151 * So, overflow is not an issue here.
1152 */
grub_reclaim(u64 delta,struct rq * rq,struct sched_dl_entity * dl_se)1153 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1154 {
1155 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1156 u64 u_act;
1157 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1158
1159 /*
1160 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1161 * we compare u_inact + rq->dl.extra_bw with
1162 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1163 * u_inact + rq->dl.extra_bw can be larger than
1164 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1165 * leading to wrong results)
1166 */
1167 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1168 u_act = u_act_min;
1169 else
1170 u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1171
1172 return (delta * u_act) >> BW_SHIFT;
1173 }
1174
1175 /*
1176 * Update the current task's runtime statistics (provided it is still
1177 * a -deadline task and has not been removed from the dl_rq).
1178 */
update_curr_dl(struct rq * rq)1179 static void update_curr_dl(struct rq *rq)
1180 {
1181 struct task_struct *curr = rq->curr;
1182 struct sched_dl_entity *dl_se = &curr->dl;
1183 u64 delta_exec, scaled_delta_exec;
1184 int cpu = cpu_of(rq);
1185 u64 now;
1186
1187 if (!dl_task(curr) || !on_dl_rq(dl_se))
1188 return;
1189
1190 /*
1191 * Consumed budget is computed considering the time as
1192 * observed by schedulable tasks (excluding time spent
1193 * in hardirq context, etc.). Deadlines are instead
1194 * computed using hard walltime. This seems to be the more
1195 * natural solution, but the full ramifications of this
1196 * approach need further study.
1197 */
1198 now = rq_clock_task(rq);
1199 delta_exec = now - curr->se.exec_start;
1200 if (unlikely((s64)delta_exec <= 0)) {
1201 if (unlikely(dl_se->dl_yielded))
1202 goto throttle;
1203 return;
1204 }
1205
1206 schedstat_set(curr->se.statistics.exec_max,
1207 max(curr->se.statistics.exec_max, delta_exec));
1208
1209 curr->se.sum_exec_runtime += delta_exec;
1210 account_group_exec_runtime(curr, delta_exec);
1211
1212 curr->se.exec_start = now;
1213 cgroup_account_cputime(curr, delta_exec);
1214
1215 if (dl_entity_is_special(dl_se))
1216 return;
1217
1218 /*
1219 * For tasks that participate in GRUB, we implement GRUB-PA: the
1220 * spare reclaimed bandwidth is used to clock down frequency.
1221 *
1222 * For the others, we still need to scale reservation parameters
1223 * according to current frequency and CPU maximum capacity.
1224 */
1225 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1226 scaled_delta_exec = grub_reclaim(delta_exec,
1227 rq,
1228 &curr->dl);
1229 } else {
1230 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1231 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1232
1233 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1234 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1235 }
1236
1237 dl_se->runtime -= scaled_delta_exec;
1238
1239 throttle:
1240 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1241 dl_se->dl_throttled = 1;
1242
1243 /* If requested, inform the user about runtime overruns. */
1244 if (dl_runtime_exceeded(dl_se) &&
1245 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1246 dl_se->dl_overrun = 1;
1247
1248 __dequeue_task_dl(rq, curr, 0);
1249 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1250 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1251
1252 if (!is_leftmost(curr, &rq->dl))
1253 resched_curr(rq);
1254 }
1255
1256 /*
1257 * Because -- for now -- we share the rt bandwidth, we need to
1258 * account our runtime there too, otherwise actual rt tasks
1259 * would be able to exceed the shared quota.
1260 *
1261 * Account to the root rt group for now.
1262 *
1263 * The solution we're working towards is having the RT groups scheduled
1264 * using deadline servers -- however there's a few nasties to figure
1265 * out before that can happen.
1266 */
1267 if (rt_bandwidth_enabled()) {
1268 struct rt_rq *rt_rq = &rq->rt;
1269
1270 raw_spin_lock(&rt_rq->rt_runtime_lock);
1271 /*
1272 * We'll let actual RT tasks worry about the overflow here, we
1273 * have our own CBS to keep us inline; only account when RT
1274 * bandwidth is relevant.
1275 */
1276 if (sched_rt_bandwidth_account(rt_rq))
1277 rt_rq->rt_time += delta_exec;
1278 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1279 }
1280 }
1281
inactive_task_timer(struct hrtimer * timer)1282 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1283 {
1284 struct sched_dl_entity *dl_se = container_of(timer,
1285 struct sched_dl_entity,
1286 inactive_timer);
1287 struct task_struct *p = dl_task_of(dl_se);
1288 struct rq_flags rf;
1289 struct rq *rq;
1290
1291 rq = task_rq_lock(p, &rf);
1292
1293 sched_clock_tick();
1294 update_rq_clock(rq);
1295
1296 if (!dl_task(p) || p->state == TASK_DEAD) {
1297 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1298
1299 if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1300 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1301 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1302 dl_se->dl_non_contending = 0;
1303 }
1304
1305 raw_spin_lock(&dl_b->lock);
1306 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1307 raw_spin_unlock(&dl_b->lock);
1308 __dl_clear_params(p);
1309
1310 goto unlock;
1311 }
1312 if (dl_se->dl_non_contending == 0)
1313 goto unlock;
1314
1315 sub_running_bw(dl_se, &rq->dl);
1316 dl_se->dl_non_contending = 0;
1317 unlock:
1318 task_rq_unlock(rq, p, &rf);
1319 put_task_struct(p);
1320
1321 return HRTIMER_NORESTART;
1322 }
1323
init_dl_inactive_task_timer(struct sched_dl_entity * dl_se)1324 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1325 {
1326 struct hrtimer *timer = &dl_se->inactive_timer;
1327
1328 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1329 timer->function = inactive_task_timer;
1330 }
1331
1332 #ifdef CONFIG_SMP
1333
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1334 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1335 {
1336 struct rq *rq = rq_of_dl_rq(dl_rq);
1337
1338 if (dl_rq->earliest_dl.curr == 0 ||
1339 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1340 dl_rq->earliest_dl.curr = deadline;
1341 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1342 }
1343 }
1344
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1345 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1346 {
1347 struct rq *rq = rq_of_dl_rq(dl_rq);
1348
1349 /*
1350 * Since we may have removed our earliest (and/or next earliest)
1351 * task we must recompute them.
1352 */
1353 if (!dl_rq->dl_nr_running) {
1354 dl_rq->earliest_dl.curr = 0;
1355 dl_rq->earliest_dl.next = 0;
1356 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1357 } else {
1358 struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1359 struct sched_dl_entity *entry;
1360
1361 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1362 dl_rq->earliest_dl.curr = entry->deadline;
1363 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1364 }
1365 }
1366
1367 #else
1368
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1369 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1370 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1371
1372 #endif /* CONFIG_SMP */
1373
1374 static inline
inc_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1375 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1376 {
1377 int prio = dl_task_of(dl_se)->prio;
1378 u64 deadline = dl_se->deadline;
1379
1380 WARN_ON(!dl_prio(prio));
1381 dl_rq->dl_nr_running++;
1382 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1383
1384 inc_dl_deadline(dl_rq, deadline);
1385 inc_dl_migration(dl_se, dl_rq);
1386 }
1387
1388 static inline
dec_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1389 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1390 {
1391 int prio = dl_task_of(dl_se)->prio;
1392
1393 WARN_ON(!dl_prio(prio));
1394 WARN_ON(!dl_rq->dl_nr_running);
1395 dl_rq->dl_nr_running--;
1396 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1397
1398 dec_dl_deadline(dl_rq, dl_se->deadline);
1399 dec_dl_migration(dl_se, dl_rq);
1400 }
1401
__enqueue_dl_entity(struct sched_dl_entity * dl_se)1402 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1403 {
1404 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1405 struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1406 struct rb_node *parent = NULL;
1407 struct sched_dl_entity *entry;
1408 int leftmost = 1;
1409
1410 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1411
1412 while (*link) {
1413 parent = *link;
1414 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1415 if (dl_time_before(dl_se->deadline, entry->deadline))
1416 link = &parent->rb_left;
1417 else {
1418 link = &parent->rb_right;
1419 leftmost = 0;
1420 }
1421 }
1422
1423 rb_link_node(&dl_se->rb_node, parent, link);
1424 rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1425
1426 inc_dl_tasks(dl_se, dl_rq);
1427 }
1428
__dequeue_dl_entity(struct sched_dl_entity * dl_se)1429 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1430 {
1431 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1432
1433 if (RB_EMPTY_NODE(&dl_se->rb_node))
1434 return;
1435
1436 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1437 RB_CLEAR_NODE(&dl_se->rb_node);
1438
1439 dec_dl_tasks(dl_se, dl_rq);
1440 }
1441
1442 static void
enqueue_dl_entity(struct sched_dl_entity * dl_se,struct sched_dl_entity * pi_se,int flags)1443 enqueue_dl_entity(struct sched_dl_entity *dl_se,
1444 struct sched_dl_entity *pi_se, int flags)
1445 {
1446 BUG_ON(on_dl_rq(dl_se));
1447
1448 /*
1449 * If this is a wakeup or a new instance, the scheduling
1450 * parameters of the task might need updating. Otherwise,
1451 * we want a replenishment of its runtime.
1452 */
1453 if (flags & ENQUEUE_WAKEUP) {
1454 task_contending(dl_se, flags);
1455 update_dl_entity(dl_se, pi_se);
1456 } else if (flags & ENQUEUE_REPLENISH) {
1457 replenish_dl_entity(dl_se, pi_se);
1458 } else if ((flags & ENQUEUE_RESTORE) &&
1459 dl_time_before(dl_se->deadline,
1460 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1461 setup_new_dl_entity(dl_se);
1462 }
1463
1464 __enqueue_dl_entity(dl_se);
1465 }
1466
dequeue_dl_entity(struct sched_dl_entity * dl_se)1467 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1468 {
1469 __dequeue_dl_entity(dl_se);
1470 }
1471
enqueue_task_dl(struct rq * rq,struct task_struct * p,int flags)1472 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1473 {
1474 struct task_struct *pi_task = rt_mutex_get_top_task(p);
1475 struct sched_dl_entity *pi_se = &p->dl;
1476
1477 /*
1478 * Use the scheduling parameters of the top pi-waiter task if:
1479 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1480 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1481 * smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1482 * boosted due to a SCHED_DEADLINE pi-waiter).
1483 * Otherwise we keep our runtime and deadline.
1484 */
1485 if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1486 pi_se = &pi_task->dl;
1487 /*
1488 * Because of delays in the detection of the overrun of a
1489 * thread's runtime, it might be the case that a thread
1490 * goes to sleep in a rt mutex with negative runtime. As
1491 * a consequence, the thread will be throttled.
1492 *
1493 * While waiting for the mutex, this thread can also be
1494 * boosted via PI, resulting in a thread that is throttled
1495 * and boosted at the same time.
1496 *
1497 * In this case, the boost overrides the throttle.
1498 */
1499 if (p->dl.dl_throttled) {
1500 /*
1501 * The replenish timer needs to be canceled. No
1502 * problem if it fires concurrently: boosted threads
1503 * are ignored in dl_task_timer().
1504 */
1505 hrtimer_try_to_cancel(&p->dl.dl_timer);
1506 p->dl.dl_throttled = 0;
1507 }
1508 } else if (!dl_prio(p->normal_prio)) {
1509 /*
1510 * Special case in which we have a !SCHED_DEADLINE task that is going
1511 * to be deboosted, but exceeds its runtime while doing so. No point in
1512 * replenishing it, as it's going to return back to its original
1513 * scheduling class after this. If it has been throttled, we need to
1514 * clear the flag, otherwise the task may wake up as throttled after
1515 * being boosted again with no means to replenish the runtime and clear
1516 * the throttle.
1517 */
1518 p->dl.dl_throttled = 0;
1519 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1520 return;
1521 }
1522
1523 /*
1524 * Check if a constrained deadline task was activated
1525 * after the deadline but before the next period.
1526 * If that is the case, the task will be throttled and
1527 * the replenishment timer will be set to the next period.
1528 */
1529 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1530 dl_check_constrained_dl(&p->dl);
1531
1532 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1533 add_rq_bw(&p->dl, &rq->dl);
1534 add_running_bw(&p->dl, &rq->dl);
1535 }
1536
1537 /*
1538 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1539 * its budget it needs a replenishment and, since it now is on
1540 * its rq, the bandwidth timer callback (which clearly has not
1541 * run yet) will take care of this.
1542 * However, the active utilization does not depend on the fact
1543 * that the task is on the runqueue or not (but depends on the
1544 * task's state - in GRUB parlance, "inactive" vs "active contending").
1545 * In other words, even if a task is throttled its utilization must
1546 * be counted in the active utilization; hence, we need to call
1547 * add_running_bw().
1548 */
1549 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1550 if (flags & ENQUEUE_WAKEUP)
1551 task_contending(&p->dl, flags);
1552
1553 return;
1554 }
1555
1556 enqueue_dl_entity(&p->dl, pi_se, flags);
1557
1558 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1559 enqueue_pushable_dl_task(rq, p);
1560 }
1561
__dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)1562 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1563 {
1564 dequeue_dl_entity(&p->dl);
1565 dequeue_pushable_dl_task(rq, p);
1566 }
1567
dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)1568 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1569 {
1570 update_curr_dl(rq);
1571 __dequeue_task_dl(rq, p, flags);
1572
1573 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1574 sub_running_bw(&p->dl, &rq->dl);
1575 sub_rq_bw(&p->dl, &rq->dl);
1576 }
1577
1578 /*
1579 * This check allows to start the inactive timer (or to immediately
1580 * decrease the active utilization, if needed) in two cases:
1581 * when the task blocks and when it is terminating
1582 * (p->state == TASK_DEAD). We can handle the two cases in the same
1583 * way, because from GRUB's point of view the same thing is happening
1584 * (the task moves from "active contending" to "active non contending"
1585 * or "inactive")
1586 */
1587 if (flags & DEQUEUE_SLEEP)
1588 task_non_contending(p);
1589 }
1590
1591 /*
1592 * Yield task semantic for -deadline tasks is:
1593 *
1594 * get off from the CPU until our next instance, with
1595 * a new runtime. This is of little use now, since we
1596 * don't have a bandwidth reclaiming mechanism. Anyway,
1597 * bandwidth reclaiming is planned for the future, and
1598 * yield_task_dl will indicate that some spare budget
1599 * is available for other task instances to use it.
1600 */
yield_task_dl(struct rq * rq)1601 static void yield_task_dl(struct rq *rq)
1602 {
1603 /*
1604 * We make the task go to sleep until its current deadline by
1605 * forcing its runtime to zero. This way, update_curr_dl() stops
1606 * it and the bandwidth timer will wake it up and will give it
1607 * new scheduling parameters (thanks to dl_yielded=1).
1608 */
1609 rq->curr->dl.dl_yielded = 1;
1610
1611 update_rq_clock(rq);
1612 update_curr_dl(rq);
1613 /*
1614 * Tell update_rq_clock() that we've just updated,
1615 * so we don't do microscopic update in schedule()
1616 * and double the fastpath cost.
1617 */
1618 rq_clock_skip_update(rq);
1619 }
1620
1621 #ifdef CONFIG_SMP
1622
1623 static int find_later_rq(struct task_struct *task);
1624
1625 static int
select_task_rq_dl(struct task_struct * p,int cpu,int sd_flag,int flags)1626 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1627 {
1628 struct task_struct *curr;
1629 struct rq *rq;
1630
1631 if (sd_flag != SD_BALANCE_WAKE)
1632 goto out;
1633
1634 rq = cpu_rq(cpu);
1635
1636 rcu_read_lock();
1637 curr = READ_ONCE(rq->curr); /* unlocked access */
1638
1639 /*
1640 * If we are dealing with a -deadline task, we must
1641 * decide where to wake it up.
1642 * If it has a later deadline and the current task
1643 * on this rq can't move (provided the waking task
1644 * can!) we prefer to send it somewhere else. On the
1645 * other hand, if it has a shorter deadline, we
1646 * try to make it stay here, it might be important.
1647 */
1648 if (unlikely(dl_task(curr)) &&
1649 (curr->nr_cpus_allowed < 2 ||
1650 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1651 (p->nr_cpus_allowed > 1)) {
1652 int target = find_later_rq(p);
1653
1654 if (target != -1 &&
1655 (dl_time_before(p->dl.deadline,
1656 cpu_rq(target)->dl.earliest_dl.curr) ||
1657 (cpu_rq(target)->dl.dl_nr_running == 0)))
1658 cpu = target;
1659 }
1660 rcu_read_unlock();
1661
1662 out:
1663 return cpu;
1664 }
1665
migrate_task_rq_dl(struct task_struct * p,int new_cpu __maybe_unused)1666 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1667 {
1668 struct rq *rq;
1669
1670 if (p->state != TASK_WAKING)
1671 return;
1672
1673 rq = task_rq(p);
1674 /*
1675 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1676 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1677 * rq->lock is not... So, lock it
1678 */
1679 raw_spin_lock(&rq->lock);
1680 if (p->dl.dl_non_contending) {
1681 update_rq_clock(rq);
1682 sub_running_bw(&p->dl, &rq->dl);
1683 p->dl.dl_non_contending = 0;
1684 /*
1685 * If the timer handler is currently running and the
1686 * timer cannot be cancelled, inactive_task_timer()
1687 * will see that dl_not_contending is not set, and
1688 * will not touch the rq's active utilization,
1689 * so we are still safe.
1690 */
1691 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1692 put_task_struct(p);
1693 }
1694 sub_rq_bw(&p->dl, &rq->dl);
1695 raw_spin_unlock(&rq->lock);
1696 }
1697
check_preempt_equal_dl(struct rq * rq,struct task_struct * p)1698 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1699 {
1700 /*
1701 * Current can't be migrated, useless to reschedule,
1702 * let's hope p can move out.
1703 */
1704 if (rq->curr->nr_cpus_allowed == 1 ||
1705 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1706 return;
1707
1708 /*
1709 * p is migratable, so let's not schedule it and
1710 * see if it is pushed or pulled somewhere else.
1711 */
1712 if (p->nr_cpus_allowed != 1 &&
1713 cpudl_find(&rq->rd->cpudl, p, NULL))
1714 return;
1715
1716 resched_curr(rq);
1717 }
1718
balance_dl(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1719 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1720 {
1721 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1722 /*
1723 * This is OK, because current is on_cpu, which avoids it being
1724 * picked for load-balance and preemption/IRQs are still
1725 * disabled avoiding further scheduler activity on it and we've
1726 * not yet started the picking loop.
1727 */
1728 rq_unpin_lock(rq, rf);
1729 pull_dl_task(rq);
1730 rq_repin_lock(rq, rf);
1731 }
1732
1733 return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1734 }
1735 #endif /* CONFIG_SMP */
1736
1737 /*
1738 * Only called when both the current and waking task are -deadline
1739 * tasks.
1740 */
check_preempt_curr_dl(struct rq * rq,struct task_struct * p,int flags)1741 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1742 int flags)
1743 {
1744 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1745 resched_curr(rq);
1746 return;
1747 }
1748
1749 #ifdef CONFIG_SMP
1750 /*
1751 * In the unlikely case current and p have the same deadline
1752 * let us try to decide what's the best thing to do...
1753 */
1754 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1755 !test_tsk_need_resched(rq->curr))
1756 check_preempt_equal_dl(rq, p);
1757 #endif /* CONFIG_SMP */
1758 }
1759
1760 #ifdef CONFIG_SCHED_HRTICK
start_hrtick_dl(struct rq * rq,struct task_struct * p)1761 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1762 {
1763 hrtick_start(rq, p->dl.runtime);
1764 }
1765 #else /* !CONFIG_SCHED_HRTICK */
start_hrtick_dl(struct rq * rq,struct task_struct * p)1766 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1767 {
1768 }
1769 #endif
1770
set_next_task_dl(struct rq * rq,struct task_struct * p,bool first)1771 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1772 {
1773 p->se.exec_start = rq_clock_task(rq);
1774
1775 /* You can't push away the running task */
1776 dequeue_pushable_dl_task(rq, p);
1777
1778 if (!first)
1779 return;
1780
1781 if (hrtick_enabled(rq))
1782 start_hrtick_dl(rq, p);
1783
1784 if (rq->curr->sched_class != &dl_sched_class)
1785 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1786
1787 deadline_queue_push_tasks(rq);
1788 }
1789
pick_next_dl_entity(struct dl_rq * dl_rq)1790 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
1791 {
1792 struct rb_node *left = rb_first_cached(&dl_rq->root);
1793
1794 if (!left)
1795 return NULL;
1796
1797 return rb_entry(left, struct sched_dl_entity, rb_node);
1798 }
1799
1800 static struct task_struct *
pick_next_task_dl(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)1801 pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1802 {
1803 struct sched_dl_entity *dl_se;
1804 struct dl_rq *dl_rq = &rq->dl;
1805 struct task_struct *p;
1806
1807 WARN_ON_ONCE(prev || rf);
1808
1809 if (!sched_dl_runnable(rq))
1810 return NULL;
1811
1812 dl_se = pick_next_dl_entity(dl_rq);
1813 BUG_ON(!dl_se);
1814 p = dl_task_of(dl_se);
1815 set_next_task_dl(rq, p, true);
1816 return p;
1817 }
1818
put_prev_task_dl(struct rq * rq,struct task_struct * p)1819 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1820 {
1821 update_curr_dl(rq);
1822
1823 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1824 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1825 enqueue_pushable_dl_task(rq, p);
1826 }
1827
1828 /*
1829 * scheduler tick hitting a task of our scheduling class.
1830 *
1831 * NOTE: This function can be called remotely by the tick offload that
1832 * goes along full dynticks. Therefore no local assumption can be made
1833 * and everything must be accessed through the @rq and @curr passed in
1834 * parameters.
1835 */
task_tick_dl(struct rq * rq,struct task_struct * p,int queued)1836 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1837 {
1838 update_curr_dl(rq);
1839
1840 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1841 /*
1842 * Even when we have runtime, update_curr_dl() might have resulted in us
1843 * not being the leftmost task anymore. In that case NEED_RESCHED will
1844 * be set and schedule() will start a new hrtick for the next task.
1845 */
1846 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1847 is_leftmost(p, &rq->dl))
1848 start_hrtick_dl(rq, p);
1849 }
1850
task_fork_dl(struct task_struct * p)1851 static void task_fork_dl(struct task_struct *p)
1852 {
1853 /*
1854 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1855 * sched_fork()
1856 */
1857 }
1858
1859 #ifdef CONFIG_SMP
1860
1861 /* Only try algorithms three times */
1862 #define DL_MAX_TRIES 3
1863
pick_dl_task(struct rq * rq,struct task_struct * p,int cpu)1864 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1865 {
1866 if (!task_running(rq, p) &&
1867 cpumask_test_cpu(cpu, p->cpus_ptr))
1868 return 1;
1869 return 0;
1870 }
1871
1872 /*
1873 * Return the earliest pushable rq's task, which is suitable to be executed
1874 * on the CPU, NULL otherwise:
1875 */
pick_earliest_pushable_dl_task(struct rq * rq,int cpu)1876 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1877 {
1878 struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1879 struct task_struct *p = NULL;
1880
1881 if (!has_pushable_dl_tasks(rq))
1882 return NULL;
1883
1884 next_node:
1885 if (next_node) {
1886 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1887
1888 if (pick_dl_task(rq, p, cpu))
1889 return p;
1890
1891 next_node = rb_next(next_node);
1892 goto next_node;
1893 }
1894
1895 return NULL;
1896 }
1897
1898 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1899
find_later_rq(struct task_struct * task)1900 static int find_later_rq(struct task_struct *task)
1901 {
1902 struct sched_domain *sd;
1903 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1904 int this_cpu = smp_processor_id();
1905 int cpu = task_cpu(task);
1906
1907 /* Make sure the mask is initialized first */
1908 if (unlikely(!later_mask))
1909 return -1;
1910
1911 if (task->nr_cpus_allowed == 1)
1912 return -1;
1913
1914 /*
1915 * We have to consider system topology and task affinity
1916 * first, then we can look for a suitable CPU.
1917 */
1918 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1919 return -1;
1920
1921 /*
1922 * If we are here, some targets have been found, including
1923 * the most suitable which is, among the runqueues where the
1924 * current tasks have later deadlines than the task's one, the
1925 * rq with the latest possible one.
1926 *
1927 * Now we check how well this matches with task's
1928 * affinity and system topology.
1929 *
1930 * The last CPU where the task run is our first
1931 * guess, since it is most likely cache-hot there.
1932 */
1933 if (cpumask_test_cpu(cpu, later_mask))
1934 return cpu;
1935 /*
1936 * Check if this_cpu is to be skipped (i.e., it is
1937 * not in the mask) or not.
1938 */
1939 if (!cpumask_test_cpu(this_cpu, later_mask))
1940 this_cpu = -1;
1941
1942 rcu_read_lock();
1943 for_each_domain(cpu, sd) {
1944 if (sd->flags & SD_WAKE_AFFINE) {
1945 int best_cpu;
1946
1947 /*
1948 * If possible, preempting this_cpu is
1949 * cheaper than migrating.
1950 */
1951 if (this_cpu != -1 &&
1952 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1953 rcu_read_unlock();
1954 return this_cpu;
1955 }
1956
1957 best_cpu = cpumask_first_and(later_mask,
1958 sched_domain_span(sd));
1959 /*
1960 * Last chance: if a CPU being in both later_mask
1961 * and current sd span is valid, that becomes our
1962 * choice. Of course, the latest possible CPU is
1963 * already under consideration through later_mask.
1964 */
1965 if (best_cpu < nr_cpu_ids) {
1966 rcu_read_unlock();
1967 return best_cpu;
1968 }
1969 }
1970 }
1971 rcu_read_unlock();
1972
1973 /*
1974 * At this point, all our guesses failed, we just return
1975 * 'something', and let the caller sort the things out.
1976 */
1977 if (this_cpu != -1)
1978 return this_cpu;
1979
1980 cpu = cpumask_any(later_mask);
1981 if (cpu < nr_cpu_ids)
1982 return cpu;
1983
1984 return -1;
1985 }
1986
1987 /* Locks the rq it finds */
find_lock_later_rq(struct task_struct * task,struct rq * rq)1988 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1989 {
1990 struct rq *later_rq = NULL;
1991 int tries;
1992 int cpu;
1993
1994 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1995 cpu = find_later_rq(task);
1996
1997 if ((cpu == -1) || (cpu == rq->cpu))
1998 break;
1999
2000 later_rq = cpu_rq(cpu);
2001
2002 if (later_rq->dl.dl_nr_running &&
2003 !dl_time_before(task->dl.deadline,
2004 later_rq->dl.earliest_dl.curr)) {
2005 /*
2006 * Target rq has tasks of equal or earlier deadline,
2007 * retrying does not release any lock and is unlikely
2008 * to yield a different result.
2009 */
2010 later_rq = NULL;
2011 break;
2012 }
2013
2014 /* Retry if something changed. */
2015 if (double_lock_balance(rq, later_rq)) {
2016 if (unlikely(task_rq(task) != rq ||
2017 !cpumask_test_cpu(later_rq->cpu, task->cpus_ptr) ||
2018 task_running(rq, task) ||
2019 !dl_task(task) ||
2020 !task_on_rq_queued(task))) {
2021 double_unlock_balance(rq, later_rq);
2022 later_rq = NULL;
2023 break;
2024 }
2025 }
2026
2027 /*
2028 * If the rq we found has no -deadline task, or
2029 * its earliest one has a later deadline than our
2030 * task, the rq is a good one.
2031 */
2032 if (!later_rq->dl.dl_nr_running ||
2033 dl_time_before(task->dl.deadline,
2034 later_rq->dl.earliest_dl.curr))
2035 break;
2036
2037 /* Otherwise we try again. */
2038 double_unlock_balance(rq, later_rq);
2039 later_rq = NULL;
2040 }
2041
2042 return later_rq;
2043 }
2044
pick_next_pushable_dl_task(struct rq * rq)2045 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2046 {
2047 struct task_struct *p;
2048
2049 if (!has_pushable_dl_tasks(rq))
2050 return NULL;
2051
2052 p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2053 struct task_struct, pushable_dl_tasks);
2054
2055 BUG_ON(rq->cpu != task_cpu(p));
2056 BUG_ON(task_current(rq, p));
2057 BUG_ON(p->nr_cpus_allowed <= 1);
2058
2059 BUG_ON(!task_on_rq_queued(p));
2060 BUG_ON(!dl_task(p));
2061
2062 return p;
2063 }
2064
2065 /*
2066 * See if the non running -deadline tasks on this rq
2067 * can be sent to some other CPU where they can preempt
2068 * and start executing.
2069 */
push_dl_task(struct rq * rq)2070 static int push_dl_task(struct rq *rq)
2071 {
2072 struct task_struct *next_task;
2073 struct rq *later_rq;
2074 int ret = 0;
2075
2076 if (!rq->dl.overloaded)
2077 return 0;
2078
2079 next_task = pick_next_pushable_dl_task(rq);
2080 if (!next_task)
2081 return 0;
2082
2083 retry:
2084 if (WARN_ON(next_task == rq->curr))
2085 return 0;
2086
2087 /*
2088 * If next_task preempts rq->curr, and rq->curr
2089 * can move away, it makes sense to just reschedule
2090 * without going further in pushing next_task.
2091 */
2092 if (dl_task(rq->curr) &&
2093 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2094 rq->curr->nr_cpus_allowed > 1) {
2095 resched_curr(rq);
2096 return 0;
2097 }
2098
2099 /* We might release rq lock */
2100 get_task_struct(next_task);
2101
2102 /* Will lock the rq it'll find */
2103 later_rq = find_lock_later_rq(next_task, rq);
2104 if (!later_rq) {
2105 struct task_struct *task;
2106
2107 /*
2108 * We must check all this again, since
2109 * find_lock_later_rq releases rq->lock and it is
2110 * then possible that next_task has migrated.
2111 */
2112 task = pick_next_pushable_dl_task(rq);
2113 if (task == next_task) {
2114 /*
2115 * The task is still there. We don't try
2116 * again, some other CPU will pull it when ready.
2117 */
2118 goto out;
2119 }
2120
2121 if (!task)
2122 /* No more tasks */
2123 goto out;
2124
2125 put_task_struct(next_task);
2126 next_task = task;
2127 goto retry;
2128 }
2129
2130 deactivate_task(rq, next_task, 0);
2131 set_task_cpu(next_task, later_rq->cpu);
2132
2133 /*
2134 * Update the later_rq clock here, because the clock is used
2135 * by the cpufreq_update_util() inside __add_running_bw().
2136 */
2137 update_rq_clock(later_rq);
2138 activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2139 ret = 1;
2140
2141 resched_curr(later_rq);
2142
2143 double_unlock_balance(rq, later_rq);
2144
2145 out:
2146 put_task_struct(next_task);
2147
2148 return ret;
2149 }
2150
push_dl_tasks(struct rq * rq)2151 static void push_dl_tasks(struct rq *rq)
2152 {
2153 /* push_dl_task() will return true if it moved a -deadline task */
2154 while (push_dl_task(rq))
2155 ;
2156 }
2157
pull_dl_task(struct rq * this_rq)2158 static void pull_dl_task(struct rq *this_rq)
2159 {
2160 int this_cpu = this_rq->cpu, cpu;
2161 struct task_struct *p;
2162 bool resched = false;
2163 struct rq *src_rq;
2164 u64 dmin = LONG_MAX;
2165
2166 if (likely(!dl_overloaded(this_rq)))
2167 return;
2168
2169 /*
2170 * Match the barrier from dl_set_overloaded; this guarantees that if we
2171 * see overloaded we must also see the dlo_mask bit.
2172 */
2173 smp_rmb();
2174
2175 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2176 if (this_cpu == cpu)
2177 continue;
2178
2179 src_rq = cpu_rq(cpu);
2180
2181 /*
2182 * It looks racy, abd it is! However, as in sched_rt.c,
2183 * we are fine with this.
2184 */
2185 if (this_rq->dl.dl_nr_running &&
2186 dl_time_before(this_rq->dl.earliest_dl.curr,
2187 src_rq->dl.earliest_dl.next))
2188 continue;
2189
2190 /* Might drop this_rq->lock */
2191 double_lock_balance(this_rq, src_rq);
2192
2193 /*
2194 * If there are no more pullable tasks on the
2195 * rq, we're done with it.
2196 */
2197 if (src_rq->dl.dl_nr_running <= 1)
2198 goto skip;
2199
2200 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2201
2202 /*
2203 * We found a task to be pulled if:
2204 * - it preempts our current (if there's one),
2205 * - it will preempt the last one we pulled (if any).
2206 */
2207 if (p && dl_time_before(p->dl.deadline, dmin) &&
2208 (!this_rq->dl.dl_nr_running ||
2209 dl_time_before(p->dl.deadline,
2210 this_rq->dl.earliest_dl.curr))) {
2211 WARN_ON(p == src_rq->curr);
2212 WARN_ON(!task_on_rq_queued(p));
2213
2214 /*
2215 * Then we pull iff p has actually an earlier
2216 * deadline than the current task of its runqueue.
2217 */
2218 if (dl_time_before(p->dl.deadline,
2219 src_rq->curr->dl.deadline))
2220 goto skip;
2221
2222 resched = true;
2223
2224 deactivate_task(src_rq, p, 0);
2225 set_task_cpu(p, this_cpu);
2226 activate_task(this_rq, p, 0);
2227 dmin = p->dl.deadline;
2228
2229 /* Is there any other task even earlier? */
2230 }
2231 skip:
2232 double_unlock_balance(this_rq, src_rq);
2233 }
2234
2235 if (resched)
2236 resched_curr(this_rq);
2237 }
2238
2239 /*
2240 * Since the task is not running and a reschedule is not going to happen
2241 * anytime soon on its runqueue, we try pushing it away now.
2242 */
task_woken_dl(struct rq * rq,struct task_struct * p)2243 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2244 {
2245 if (!task_running(rq, p) &&
2246 !test_tsk_need_resched(rq->curr) &&
2247 p->nr_cpus_allowed > 1 &&
2248 dl_task(rq->curr) &&
2249 (rq->curr->nr_cpus_allowed < 2 ||
2250 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2251 push_dl_tasks(rq);
2252 }
2253 }
2254
set_cpus_allowed_dl(struct task_struct * p,const struct cpumask * new_mask)2255 static void set_cpus_allowed_dl(struct task_struct *p,
2256 const struct cpumask *new_mask)
2257 {
2258 struct root_domain *src_rd;
2259 struct rq *rq;
2260
2261 BUG_ON(!dl_task(p));
2262
2263 rq = task_rq(p);
2264 src_rd = rq->rd;
2265 /*
2266 * Migrating a SCHED_DEADLINE task between exclusive
2267 * cpusets (different root_domains) entails a bandwidth
2268 * update. We already made space for us in the destination
2269 * domain (see cpuset_can_attach()).
2270 */
2271 if (!cpumask_intersects(src_rd->span, new_mask)) {
2272 struct dl_bw *src_dl_b;
2273
2274 src_dl_b = dl_bw_of(cpu_of(rq));
2275 /*
2276 * We now free resources of the root_domain we are migrating
2277 * off. In the worst case, sched_setattr() may temporary fail
2278 * until we complete the update.
2279 */
2280 raw_spin_lock(&src_dl_b->lock);
2281 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2282 raw_spin_unlock(&src_dl_b->lock);
2283 }
2284
2285 set_cpus_allowed_common(p, new_mask);
2286 }
2287
2288 /* Assumes rq->lock is held */
rq_online_dl(struct rq * rq)2289 static void rq_online_dl(struct rq *rq)
2290 {
2291 if (rq->dl.overloaded)
2292 dl_set_overload(rq);
2293
2294 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2295 if (rq->dl.dl_nr_running > 0)
2296 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2297 }
2298
2299 /* Assumes rq->lock is held */
rq_offline_dl(struct rq * rq)2300 static void rq_offline_dl(struct rq *rq)
2301 {
2302 if (rq->dl.overloaded)
2303 dl_clear_overload(rq);
2304
2305 cpudl_clear(&rq->rd->cpudl, rq->cpu);
2306 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2307 }
2308
init_sched_dl_class(void)2309 void __init init_sched_dl_class(void)
2310 {
2311 unsigned int i;
2312
2313 for_each_possible_cpu(i)
2314 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2315 GFP_KERNEL, cpu_to_node(i));
2316 }
2317
dl_add_task_root_domain(struct task_struct * p)2318 void dl_add_task_root_domain(struct task_struct *p)
2319 {
2320 struct rq_flags rf;
2321 struct rq *rq;
2322 struct dl_bw *dl_b;
2323
2324 rq = task_rq_lock(p, &rf);
2325 if (!dl_task(p))
2326 goto unlock;
2327
2328 dl_b = &rq->rd->dl_bw;
2329 raw_spin_lock(&dl_b->lock);
2330
2331 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2332
2333 raw_spin_unlock(&dl_b->lock);
2334
2335 unlock:
2336 task_rq_unlock(rq, p, &rf);
2337 }
2338
dl_clear_root_domain(struct root_domain * rd)2339 void dl_clear_root_domain(struct root_domain *rd)
2340 {
2341 unsigned long flags;
2342
2343 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2344 rd->dl_bw.total_bw = 0;
2345 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2346 }
2347
2348 #endif /* CONFIG_SMP */
2349
switched_from_dl(struct rq * rq,struct task_struct * p)2350 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2351 {
2352 /*
2353 * task_non_contending() can start the "inactive timer" (if the 0-lag
2354 * time is in the future). If the task switches back to dl before
2355 * the "inactive timer" fires, it can continue to consume its current
2356 * runtime using its current deadline. If it stays outside of
2357 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2358 * will reset the task parameters.
2359 */
2360 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2361 task_non_contending(p);
2362
2363 if (!task_on_rq_queued(p)) {
2364 /*
2365 * Inactive timer is armed. However, p is leaving DEADLINE and
2366 * might migrate away from this rq while continuing to run on
2367 * some other class. We need to remove its contribution from
2368 * this rq running_bw now, or sub_rq_bw (below) will complain.
2369 */
2370 if (p->dl.dl_non_contending)
2371 sub_running_bw(&p->dl, &rq->dl);
2372 sub_rq_bw(&p->dl, &rq->dl);
2373 }
2374
2375 /*
2376 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2377 * at the 0-lag time, because the task could have been migrated
2378 * while SCHED_OTHER in the meanwhile.
2379 */
2380 if (p->dl.dl_non_contending)
2381 p->dl.dl_non_contending = 0;
2382
2383 /*
2384 * Since this might be the only -deadline task on the rq,
2385 * this is the right place to try to pull some other one
2386 * from an overloaded CPU, if any.
2387 */
2388 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2389 return;
2390
2391 deadline_queue_pull_task(rq);
2392 }
2393
2394 /*
2395 * When switching to -deadline, we may overload the rq, then
2396 * we try to push someone off, if possible.
2397 */
switched_to_dl(struct rq * rq,struct task_struct * p)2398 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2399 {
2400 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2401 put_task_struct(p);
2402
2403 /* If p is not queued we will update its parameters at next wakeup. */
2404 if (!task_on_rq_queued(p)) {
2405 add_rq_bw(&p->dl, &rq->dl);
2406
2407 return;
2408 }
2409
2410 if (rq->curr != p) {
2411 #ifdef CONFIG_SMP
2412 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2413 deadline_queue_push_tasks(rq);
2414 #endif
2415 if (dl_task(rq->curr))
2416 check_preempt_curr_dl(rq, p, 0);
2417 else
2418 resched_curr(rq);
2419 } else {
2420 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2421 }
2422 }
2423
2424 /*
2425 * If the scheduling parameters of a -deadline task changed,
2426 * a push or pull operation might be needed.
2427 */
prio_changed_dl(struct rq * rq,struct task_struct * p,int oldprio)2428 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2429 int oldprio)
2430 {
2431 if (task_on_rq_queued(p) || rq->curr == p) {
2432 #ifdef CONFIG_SMP
2433 /*
2434 * This might be too much, but unfortunately
2435 * we don't have the old deadline value, and
2436 * we can't argue if the task is increasing
2437 * or lowering its prio, so...
2438 */
2439 if (!rq->dl.overloaded)
2440 deadline_queue_pull_task(rq);
2441
2442 /*
2443 * If we now have a earlier deadline task than p,
2444 * then reschedule, provided p is still on this
2445 * runqueue.
2446 */
2447 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2448 resched_curr(rq);
2449 #else
2450 /*
2451 * Again, we don't know if p has a earlier
2452 * or later deadline, so let's blindly set a
2453 * (maybe not needed) rescheduling point.
2454 */
2455 resched_curr(rq);
2456 #endif /* CONFIG_SMP */
2457 }
2458 }
2459
2460 const struct sched_class dl_sched_class = {
2461 .next = &rt_sched_class,
2462 .enqueue_task = enqueue_task_dl,
2463 .dequeue_task = dequeue_task_dl,
2464 .yield_task = yield_task_dl,
2465
2466 .check_preempt_curr = check_preempt_curr_dl,
2467
2468 .pick_next_task = pick_next_task_dl,
2469 .put_prev_task = put_prev_task_dl,
2470 .set_next_task = set_next_task_dl,
2471
2472 #ifdef CONFIG_SMP
2473 .balance = balance_dl,
2474 .select_task_rq = select_task_rq_dl,
2475 .migrate_task_rq = migrate_task_rq_dl,
2476 .set_cpus_allowed = set_cpus_allowed_dl,
2477 .rq_online = rq_online_dl,
2478 .rq_offline = rq_offline_dl,
2479 .task_woken = task_woken_dl,
2480 #endif
2481
2482 .task_tick = task_tick_dl,
2483 .task_fork = task_fork_dl,
2484
2485 .prio_changed = prio_changed_dl,
2486 .switched_from = switched_from_dl,
2487 .switched_to = switched_to_dl,
2488
2489 .update_curr = update_curr_dl,
2490 };
2491
sched_dl_global_validate(void)2492 int sched_dl_global_validate(void)
2493 {
2494 u64 runtime = global_rt_runtime();
2495 u64 period = global_rt_period();
2496 u64 new_bw = to_ratio(period, runtime);
2497 struct dl_bw *dl_b;
2498 int cpu, cpus, ret = 0;
2499 unsigned long flags;
2500
2501 /*
2502 * Here we want to check the bandwidth not being set to some
2503 * value smaller than the currently allocated bandwidth in
2504 * any of the root_domains.
2505 *
2506 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2507 * cycling on root_domains... Discussion on different/better
2508 * solutions is welcome!
2509 */
2510 for_each_possible_cpu(cpu) {
2511 rcu_read_lock_sched();
2512 dl_b = dl_bw_of(cpu);
2513 cpus = dl_bw_cpus(cpu);
2514
2515 raw_spin_lock_irqsave(&dl_b->lock, flags);
2516 if (new_bw * cpus < dl_b->total_bw)
2517 ret = -EBUSY;
2518 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2519
2520 rcu_read_unlock_sched();
2521
2522 if (ret)
2523 break;
2524 }
2525
2526 return ret;
2527 }
2528
init_dl_rq_bw_ratio(struct dl_rq * dl_rq)2529 void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2530 {
2531 if (global_rt_runtime() == RUNTIME_INF) {
2532 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2533 dl_rq->extra_bw = 1 << BW_SHIFT;
2534 } else {
2535 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2536 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2537 dl_rq->extra_bw = to_ratio(global_rt_period(),
2538 global_rt_runtime());
2539 }
2540 }
2541
sched_dl_do_global(void)2542 void sched_dl_do_global(void)
2543 {
2544 u64 new_bw = -1;
2545 struct dl_bw *dl_b;
2546 int cpu;
2547 unsigned long flags;
2548
2549 def_dl_bandwidth.dl_period = global_rt_period();
2550 def_dl_bandwidth.dl_runtime = global_rt_runtime();
2551
2552 if (global_rt_runtime() != RUNTIME_INF)
2553 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2554
2555 /*
2556 * FIXME: As above...
2557 */
2558 for_each_possible_cpu(cpu) {
2559 rcu_read_lock_sched();
2560 dl_b = dl_bw_of(cpu);
2561
2562 raw_spin_lock_irqsave(&dl_b->lock, flags);
2563 dl_b->bw = new_bw;
2564 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2565
2566 rcu_read_unlock_sched();
2567 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2568 }
2569 }
2570
2571 /*
2572 * We must be sure that accepting a new task (or allowing changing the
2573 * parameters of an existing one) is consistent with the bandwidth
2574 * constraints. If yes, this function also accordingly updates the currently
2575 * allocated bandwidth to reflect the new situation.
2576 *
2577 * This function is called while holding p's rq->lock.
2578 */
sched_dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)2579 int sched_dl_overflow(struct task_struct *p, int policy,
2580 const struct sched_attr *attr)
2581 {
2582 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2583 u64 period = attr->sched_period ?: attr->sched_deadline;
2584 u64 runtime = attr->sched_runtime;
2585 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2586 int cpus, err = -1;
2587
2588 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2589 return 0;
2590
2591 /* !deadline task may carry old deadline bandwidth */
2592 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2593 return 0;
2594
2595 /*
2596 * Either if a task, enters, leave, or stays -deadline but changes
2597 * its parameters, we may need to update accordingly the total
2598 * allocated bandwidth of the container.
2599 */
2600 raw_spin_lock(&dl_b->lock);
2601 cpus = dl_bw_cpus(task_cpu(p));
2602 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2603 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2604 if (hrtimer_active(&p->dl.inactive_timer))
2605 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2606 __dl_add(dl_b, new_bw, cpus);
2607 err = 0;
2608 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2609 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2610 /*
2611 * XXX this is slightly incorrect: when the task
2612 * utilization decreases, we should delay the total
2613 * utilization change until the task's 0-lag point.
2614 * But this would require to set the task's "inactive
2615 * timer" when the task is not inactive.
2616 */
2617 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2618 __dl_add(dl_b, new_bw, cpus);
2619 dl_change_utilization(p, new_bw);
2620 err = 0;
2621 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2622 /*
2623 * Do not decrease the total deadline utilization here,
2624 * switched_from_dl() will take care to do it at the correct
2625 * (0-lag) time.
2626 */
2627 err = 0;
2628 }
2629 raw_spin_unlock(&dl_b->lock);
2630
2631 return err;
2632 }
2633
2634 /*
2635 * This function initializes the sched_dl_entity of a newly becoming
2636 * SCHED_DEADLINE task.
2637 *
2638 * Only the static values are considered here, the actual runtime and the
2639 * absolute deadline will be properly calculated when the task is enqueued
2640 * for the first time with its new policy.
2641 */
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)2642 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2643 {
2644 struct sched_dl_entity *dl_se = &p->dl;
2645
2646 dl_se->dl_runtime = attr->sched_runtime;
2647 dl_se->dl_deadline = attr->sched_deadline;
2648 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2649 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
2650 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2651 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2652 }
2653
__getparam_dl(struct task_struct * p,struct sched_attr * attr)2654 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2655 {
2656 struct sched_dl_entity *dl_se = &p->dl;
2657
2658 attr->sched_priority = p->rt_priority;
2659 attr->sched_runtime = dl_se->dl_runtime;
2660 attr->sched_deadline = dl_se->dl_deadline;
2661 attr->sched_period = dl_se->dl_period;
2662 attr->sched_flags &= ~SCHED_DL_FLAGS;
2663 attr->sched_flags |= dl_se->flags;
2664 }
2665
2666 /*
2667 * This function validates the new parameters of a -deadline task.
2668 * We ask for the deadline not being zero, and greater or equal
2669 * than the runtime, as well as the period of being zero or
2670 * greater than deadline. Furthermore, we have to be sure that
2671 * user parameters are above the internal resolution of 1us (we
2672 * check sched_runtime only since it is always the smaller one) and
2673 * below 2^63 ns (we have to check both sched_deadline and
2674 * sched_period, as the latter can be zero).
2675 */
__checkparam_dl(const struct sched_attr * attr)2676 bool __checkparam_dl(const struct sched_attr *attr)
2677 {
2678 /* special dl tasks don't actually use any parameter */
2679 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2680 return true;
2681
2682 /* deadline != 0 */
2683 if (attr->sched_deadline == 0)
2684 return false;
2685
2686 /*
2687 * Since we truncate DL_SCALE bits, make sure we're at least
2688 * that big.
2689 */
2690 if (attr->sched_runtime < (1ULL << DL_SCALE))
2691 return false;
2692
2693 /*
2694 * Since we use the MSB for wrap-around and sign issues, make
2695 * sure it's not set (mind that period can be equal to zero).
2696 */
2697 if (attr->sched_deadline & (1ULL << 63) ||
2698 attr->sched_period & (1ULL << 63))
2699 return false;
2700
2701 /* runtime <= deadline <= period (if period != 0) */
2702 if ((attr->sched_period != 0 &&
2703 attr->sched_period < attr->sched_deadline) ||
2704 attr->sched_deadline < attr->sched_runtime)
2705 return false;
2706
2707 return true;
2708 }
2709
2710 /*
2711 * This function clears the sched_dl_entity static params.
2712 */
__dl_clear_params(struct task_struct * p)2713 void __dl_clear_params(struct task_struct *p)
2714 {
2715 struct sched_dl_entity *dl_se = &p->dl;
2716
2717 dl_se->dl_runtime = 0;
2718 dl_se->dl_deadline = 0;
2719 dl_se->dl_period = 0;
2720 dl_se->flags = 0;
2721 dl_se->dl_bw = 0;
2722 dl_se->dl_density = 0;
2723
2724 dl_se->dl_boosted = 0;
2725 dl_se->dl_throttled = 0;
2726 dl_se->dl_yielded = 0;
2727 dl_se->dl_non_contending = 0;
2728 dl_se->dl_overrun = 0;
2729 }
2730
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)2731 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2732 {
2733 struct sched_dl_entity *dl_se = &p->dl;
2734
2735 if (dl_se->dl_runtime != attr->sched_runtime ||
2736 dl_se->dl_deadline != attr->sched_deadline ||
2737 dl_se->dl_period != attr->sched_period ||
2738 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
2739 return true;
2740
2741 return false;
2742 }
2743
2744 #ifdef CONFIG_SMP
dl_task_can_attach(struct task_struct * p,const struct cpumask * cs_cpus_allowed)2745 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2746 {
2747 unsigned int dest_cpu;
2748 struct dl_bw *dl_b;
2749 bool overflow;
2750 int cpus, ret;
2751 unsigned long flags;
2752
2753 dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2754
2755 rcu_read_lock_sched();
2756 dl_b = dl_bw_of(dest_cpu);
2757 raw_spin_lock_irqsave(&dl_b->lock, flags);
2758 cpus = dl_bw_cpus(dest_cpu);
2759 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
2760 if (overflow) {
2761 ret = -EBUSY;
2762 } else {
2763 /*
2764 * We reserve space for this task in the destination
2765 * root_domain, as we can't fail after this point.
2766 * We will free resources in the source root_domain
2767 * later on (see set_cpus_allowed_dl()).
2768 */
2769 __dl_add(dl_b, p->dl.dl_bw, cpus);
2770 ret = 0;
2771 }
2772 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2773 rcu_read_unlock_sched();
2774
2775 return ret;
2776 }
2777
dl_cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)2778 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2779 const struct cpumask *trial)
2780 {
2781 int ret = 1, trial_cpus;
2782 struct dl_bw *cur_dl_b;
2783 unsigned long flags;
2784
2785 rcu_read_lock_sched();
2786 cur_dl_b = dl_bw_of(cpumask_any(cur));
2787 trial_cpus = cpumask_weight(trial);
2788
2789 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2790 if (cur_dl_b->bw != -1 &&
2791 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2792 ret = 0;
2793 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2794 rcu_read_unlock_sched();
2795
2796 return ret;
2797 }
2798
dl_cpu_busy(unsigned int cpu)2799 bool dl_cpu_busy(unsigned int cpu)
2800 {
2801 unsigned long flags;
2802 struct dl_bw *dl_b;
2803 bool overflow;
2804 int cpus;
2805
2806 rcu_read_lock_sched();
2807 dl_b = dl_bw_of(cpu);
2808 raw_spin_lock_irqsave(&dl_b->lock, flags);
2809 cpus = dl_bw_cpus(cpu);
2810 overflow = __dl_overflow(dl_b, cpus, 0, 0);
2811 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2812 rcu_read_unlock_sched();
2813
2814 return overflow;
2815 }
2816 #endif
2817
2818 #ifdef CONFIG_SCHED_DEBUG
print_dl_stats(struct seq_file * m,int cpu)2819 void print_dl_stats(struct seq_file *m, int cpu)
2820 {
2821 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2822 }
2823 #endif /* CONFIG_SCHED_DEBUG */
2824