1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6 #include "sched.h"
7
8 #include "pelt.h"
9
10 #include <trace/hooks/sched.h>
11
12 int sched_rr_timeslice = RR_TIMESLICE;
13 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
14 /* More than 4 hours if BW_SHIFT equals 20. */
15 static const u64 max_rt_runtime = MAX_BW;
16
17 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
18
19 struct rt_bandwidth def_rt_bandwidth;
20
sched_rt_period_timer(struct hrtimer * timer)21 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
22 {
23 struct rt_bandwidth *rt_b =
24 container_of(timer, struct rt_bandwidth, rt_period_timer);
25 int idle = 0;
26 int overrun;
27
28 raw_spin_lock(&rt_b->rt_runtime_lock);
29 for (;;) {
30 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
31 if (!overrun)
32 break;
33
34 raw_spin_unlock(&rt_b->rt_runtime_lock);
35 idle = do_sched_rt_period_timer(rt_b, overrun);
36 raw_spin_lock(&rt_b->rt_runtime_lock);
37 }
38 if (idle)
39 rt_b->rt_period_active = 0;
40 raw_spin_unlock(&rt_b->rt_runtime_lock);
41
42 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
43 }
44
init_rt_bandwidth(struct rt_bandwidth * rt_b,u64 period,u64 runtime)45 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
46 {
47 rt_b->rt_period = ns_to_ktime(period);
48 rt_b->rt_runtime = runtime;
49
50 raw_spin_lock_init(&rt_b->rt_runtime_lock);
51
52 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
53 HRTIMER_MODE_REL_HARD);
54 rt_b->rt_period_timer.function = sched_rt_period_timer;
55 }
56
do_start_rt_bandwidth(struct rt_bandwidth * rt_b)57 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
58 {
59 raw_spin_lock(&rt_b->rt_runtime_lock);
60 if (!rt_b->rt_period_active) {
61 rt_b->rt_period_active = 1;
62 /*
63 * SCHED_DEADLINE updates the bandwidth, as a run away
64 * RT task with a DL task could hog a CPU. But DL does
65 * not reset the period. If a deadline task was running
66 * without an RT task running, it can cause RT tasks to
67 * throttle when they start up. Kick the timer right away
68 * to update the period.
69 */
70 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
71 hrtimer_start_expires(&rt_b->rt_period_timer,
72 HRTIMER_MODE_ABS_PINNED_HARD);
73 }
74 raw_spin_unlock(&rt_b->rt_runtime_lock);
75 }
76
start_rt_bandwidth(struct rt_bandwidth * rt_b)77 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
78 {
79 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
80 return;
81
82 do_start_rt_bandwidth(rt_b);
83 }
84
init_rt_rq(struct rt_rq * rt_rq)85 void init_rt_rq(struct rt_rq *rt_rq)
86 {
87 struct rt_prio_array *array;
88 int i;
89
90 array = &rt_rq->active;
91 for (i = 0; i < MAX_RT_PRIO; i++) {
92 INIT_LIST_HEAD(array->queue + i);
93 __clear_bit(i, array->bitmap);
94 }
95 /* delimiter for bitsearch: */
96 __set_bit(MAX_RT_PRIO, array->bitmap);
97
98 #if defined CONFIG_SMP
99 rt_rq->highest_prio.curr = MAX_RT_PRIO;
100 rt_rq->highest_prio.next = MAX_RT_PRIO;
101 rt_rq->rt_nr_migratory = 0;
102 rt_rq->overloaded = 0;
103 plist_head_init(&rt_rq->pushable_tasks);
104 #endif /* CONFIG_SMP */
105 /* We start is dequeued state, because no RT tasks are queued */
106 rt_rq->rt_queued = 0;
107
108 rt_rq->rt_time = 0;
109 rt_rq->rt_throttled = 0;
110 rt_rq->rt_runtime = 0;
111 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
112 }
113
114 #ifdef CONFIG_RT_GROUP_SCHED
destroy_rt_bandwidth(struct rt_bandwidth * rt_b)115 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
116 {
117 hrtimer_cancel(&rt_b->rt_period_timer);
118 }
119
120 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
121
rt_task_of(struct sched_rt_entity * rt_se)122 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
123 {
124 #ifdef CONFIG_SCHED_DEBUG
125 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
126 #endif
127 return container_of(rt_se, struct task_struct, rt);
128 }
129
rq_of_rt_rq(struct rt_rq * rt_rq)130 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
131 {
132 return rt_rq->rq;
133 }
134
rt_rq_of_se(struct sched_rt_entity * rt_se)135 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
136 {
137 return rt_se->rt_rq;
138 }
139
rq_of_rt_se(struct sched_rt_entity * rt_se)140 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
141 {
142 struct rt_rq *rt_rq = rt_se->rt_rq;
143
144 return rt_rq->rq;
145 }
146
free_rt_sched_group(struct task_group * tg)147 void free_rt_sched_group(struct task_group *tg)
148 {
149 int i;
150
151 if (tg->rt_se)
152 destroy_rt_bandwidth(&tg->rt_bandwidth);
153
154 for_each_possible_cpu(i) {
155 if (tg->rt_rq)
156 kfree(tg->rt_rq[i]);
157 if (tg->rt_se)
158 kfree(tg->rt_se[i]);
159 }
160
161 kfree(tg->rt_rq);
162 kfree(tg->rt_se);
163 }
164
init_tg_rt_entry(struct task_group * tg,struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int cpu,struct sched_rt_entity * parent)165 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
166 struct sched_rt_entity *rt_se, int cpu,
167 struct sched_rt_entity *parent)
168 {
169 struct rq *rq = cpu_rq(cpu);
170
171 rt_rq->highest_prio.curr = MAX_RT_PRIO;
172 rt_rq->rt_nr_boosted = 0;
173 rt_rq->rq = rq;
174 rt_rq->tg = tg;
175
176 tg->rt_rq[cpu] = rt_rq;
177 tg->rt_se[cpu] = rt_se;
178
179 if (!rt_se)
180 return;
181
182 if (!parent)
183 rt_se->rt_rq = &rq->rt;
184 else
185 rt_se->rt_rq = parent->my_q;
186
187 rt_se->my_q = rt_rq;
188 rt_se->parent = parent;
189 INIT_LIST_HEAD(&rt_se->run_list);
190 }
191
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)192 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
193 {
194 struct rt_rq *rt_rq;
195 struct sched_rt_entity *rt_se;
196 int i;
197
198 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
199 if (!tg->rt_rq)
200 goto err;
201 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
202 if (!tg->rt_se)
203 goto err;
204
205 init_rt_bandwidth(&tg->rt_bandwidth,
206 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
207
208 for_each_possible_cpu(i) {
209 rt_rq = kzalloc_node(sizeof(struct rt_rq),
210 GFP_KERNEL, cpu_to_node(i));
211 if (!rt_rq)
212 goto err;
213
214 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
215 GFP_KERNEL, cpu_to_node(i));
216 if (!rt_se)
217 goto err_free_rq;
218
219 init_rt_rq(rt_rq);
220 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
221 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
222 }
223
224 return 1;
225
226 err_free_rq:
227 kfree(rt_rq);
228 err:
229 return 0;
230 }
231
232 #else /* CONFIG_RT_GROUP_SCHED */
233
234 #define rt_entity_is_task(rt_se) (1)
235
rt_task_of(struct sched_rt_entity * rt_se)236 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
237 {
238 return container_of(rt_se, struct task_struct, rt);
239 }
240
rq_of_rt_rq(struct rt_rq * rt_rq)241 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
242 {
243 return container_of(rt_rq, struct rq, rt);
244 }
245
rq_of_rt_se(struct sched_rt_entity * rt_se)246 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
247 {
248 struct task_struct *p = rt_task_of(rt_se);
249
250 return task_rq(p);
251 }
252
rt_rq_of_se(struct sched_rt_entity * rt_se)253 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
254 {
255 struct rq *rq = rq_of_rt_se(rt_se);
256
257 return &rq->rt;
258 }
259
free_rt_sched_group(struct task_group * tg)260 void free_rt_sched_group(struct task_group *tg) { }
261
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)262 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
263 {
264 return 1;
265 }
266 #endif /* CONFIG_RT_GROUP_SCHED */
267
268 #ifdef CONFIG_SMP
269
270 static void pull_rt_task(struct rq *this_rq);
271
need_pull_rt_task(struct rq * rq,struct task_struct * prev)272 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
273 {
274 /* Try to pull RT tasks here if we lower this rq's prio */
275 return rq->rt.highest_prio.curr > prev->prio;
276 }
277
rt_overloaded(struct rq * rq)278 static inline int rt_overloaded(struct rq *rq)
279 {
280 return atomic_read(&rq->rd->rto_count);
281 }
282
rt_set_overload(struct rq * rq)283 static inline void rt_set_overload(struct rq *rq)
284 {
285 if (!rq->online)
286 return;
287
288 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
289 /*
290 * Make sure the mask is visible before we set
291 * the overload count. That is checked to determine
292 * if we should look at the mask. It would be a shame
293 * if we looked at the mask, but the mask was not
294 * updated yet.
295 *
296 * Matched by the barrier in pull_rt_task().
297 */
298 smp_wmb();
299 atomic_inc(&rq->rd->rto_count);
300 }
301
rt_clear_overload(struct rq * rq)302 static inline void rt_clear_overload(struct rq *rq)
303 {
304 if (!rq->online)
305 return;
306
307 /* the order here really doesn't matter */
308 atomic_dec(&rq->rd->rto_count);
309 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
310 }
311
update_rt_migration(struct rt_rq * rt_rq)312 static void update_rt_migration(struct rt_rq *rt_rq)
313 {
314 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
315 if (!rt_rq->overloaded) {
316 rt_set_overload(rq_of_rt_rq(rt_rq));
317 rt_rq->overloaded = 1;
318 }
319 } else if (rt_rq->overloaded) {
320 rt_clear_overload(rq_of_rt_rq(rt_rq));
321 rt_rq->overloaded = 0;
322 }
323 }
324
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)325 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
326 {
327 struct task_struct *p;
328
329 if (!rt_entity_is_task(rt_se))
330 return;
331
332 p = rt_task_of(rt_se);
333 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
334
335 rt_rq->rt_nr_total++;
336 if (p->nr_cpus_allowed > 1)
337 rt_rq->rt_nr_migratory++;
338
339 update_rt_migration(rt_rq);
340 }
341
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)342 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
343 {
344 struct task_struct *p;
345
346 if (!rt_entity_is_task(rt_se))
347 return;
348
349 p = rt_task_of(rt_se);
350 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
351
352 rt_rq->rt_nr_total--;
353 if (p->nr_cpus_allowed > 1)
354 rt_rq->rt_nr_migratory--;
355
356 update_rt_migration(rt_rq);
357 }
358
has_pushable_tasks(struct rq * rq)359 static inline int has_pushable_tasks(struct rq *rq)
360 {
361 return !plist_head_empty(&rq->rt.pushable_tasks);
362 }
363
364 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
365 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
366
367 static void push_rt_tasks(struct rq *);
368 static void pull_rt_task(struct rq *);
369
rt_queue_push_tasks(struct rq * rq)370 static inline void rt_queue_push_tasks(struct rq *rq)
371 {
372 if (!has_pushable_tasks(rq))
373 return;
374
375 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
376 }
377
rt_queue_pull_task(struct rq * rq)378 static inline void rt_queue_pull_task(struct rq *rq)
379 {
380 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
381 }
382
enqueue_pushable_task(struct rq * rq,struct task_struct * p)383 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
384 {
385 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
386 plist_node_init(&p->pushable_tasks, p->prio);
387 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
388
389 /* Update the highest prio pushable task */
390 if (p->prio < rq->rt.highest_prio.next)
391 rq->rt.highest_prio.next = p->prio;
392 }
393
dequeue_pushable_task(struct rq * rq,struct task_struct * p)394 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
395 {
396 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
397
398 /* Update the new highest prio pushable task */
399 if (has_pushable_tasks(rq)) {
400 p = plist_first_entry(&rq->rt.pushable_tasks,
401 struct task_struct, pushable_tasks);
402 rq->rt.highest_prio.next = p->prio;
403 } else
404 rq->rt.highest_prio.next = MAX_RT_PRIO;
405 }
406
407 #else
408
enqueue_pushable_task(struct rq * rq,struct task_struct * p)409 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
410 {
411 }
412
dequeue_pushable_task(struct rq * rq,struct task_struct * p)413 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
414 {
415 }
416
417 static inline
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)418 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
419 {
420 }
421
422 static inline
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)423 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
424 {
425 }
426
need_pull_rt_task(struct rq * rq,struct task_struct * prev)427 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
428 {
429 return false;
430 }
431
pull_rt_task(struct rq * this_rq)432 static inline void pull_rt_task(struct rq *this_rq)
433 {
434 }
435
rt_queue_push_tasks(struct rq * rq)436 static inline void rt_queue_push_tasks(struct rq *rq)
437 {
438 }
439 #endif /* CONFIG_SMP */
440
441 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
442 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
443
on_rt_rq(struct sched_rt_entity * rt_se)444 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
445 {
446 return rt_se->on_rq;
447 }
448
449 #ifdef CONFIG_UCLAMP_TASK
450 /*
451 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
452 * settings.
453 *
454 * This check is only important for heterogeneous systems where uclamp_min value
455 * is higher than the capacity of a @cpu. For non-heterogeneous system this
456 * function will always return true.
457 *
458 * The function will return true if the capacity of the @cpu is >= the
459 * uclamp_min and false otherwise.
460 *
461 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
462 * > uclamp_max.
463 */
rt_task_fits_capacity(struct task_struct * p,int cpu)464 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
465 {
466 unsigned int min_cap;
467 unsigned int max_cap;
468 unsigned int cpu_cap;
469
470 /* Only heterogeneous systems can benefit from this check */
471 if (!static_branch_unlikely(&sched_asym_cpucapacity))
472 return true;
473
474 min_cap = uclamp_eff_value(p, UCLAMP_MIN);
475 max_cap = uclamp_eff_value(p, UCLAMP_MAX);
476
477 cpu_cap = capacity_orig_of(cpu);
478
479 return cpu_cap >= min(min_cap, max_cap);
480 }
481 #else
rt_task_fits_capacity(struct task_struct * p,int cpu)482 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
483 {
484 return true;
485 }
486 #endif
487
488 #ifdef CONFIG_RT_GROUP_SCHED
489
sched_rt_runtime(struct rt_rq * rt_rq)490 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
491 {
492 if (!rt_rq->tg)
493 return RUNTIME_INF;
494
495 return rt_rq->rt_runtime;
496 }
497
sched_rt_period(struct rt_rq * rt_rq)498 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
499 {
500 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
501 }
502
503 typedef struct task_group *rt_rq_iter_t;
504
next_task_group(struct task_group * tg)505 static inline struct task_group *next_task_group(struct task_group *tg)
506 {
507 do {
508 tg = list_entry_rcu(tg->list.next,
509 typeof(struct task_group), list);
510 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
511
512 if (&tg->list == &task_groups)
513 tg = NULL;
514
515 return tg;
516 }
517
518 #define for_each_rt_rq(rt_rq, iter, rq) \
519 for (iter = container_of(&task_groups, typeof(*iter), list); \
520 (iter = next_task_group(iter)) && \
521 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
522
523 #define for_each_sched_rt_entity(rt_se) \
524 for (; rt_se; rt_se = rt_se->parent)
525
group_rt_rq(struct sched_rt_entity * rt_se)526 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
527 {
528 return rt_se->my_q;
529 }
530
531 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
532 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
533
sched_rt_rq_enqueue(struct rt_rq * rt_rq)534 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
535 {
536 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
537 struct rq *rq = rq_of_rt_rq(rt_rq);
538 struct sched_rt_entity *rt_se;
539
540 int cpu = cpu_of(rq);
541
542 rt_se = rt_rq->tg->rt_se[cpu];
543
544 if (rt_rq->rt_nr_running) {
545 if (!rt_se)
546 enqueue_top_rt_rq(rt_rq);
547 else if (!on_rt_rq(rt_se))
548 enqueue_rt_entity(rt_se, 0);
549
550 if (rt_rq->highest_prio.curr < curr->prio)
551 resched_curr(rq);
552 }
553 }
554
sched_rt_rq_dequeue(struct rt_rq * rt_rq)555 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
556 {
557 struct sched_rt_entity *rt_se;
558 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
559
560 rt_se = rt_rq->tg->rt_se[cpu];
561
562 if (!rt_se) {
563 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
564 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
565 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
566 }
567 else if (on_rt_rq(rt_se))
568 dequeue_rt_entity(rt_se, 0);
569 }
570
rt_rq_throttled(struct rt_rq * rt_rq)571 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
572 {
573 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
574 }
575
rt_se_boosted(struct sched_rt_entity * rt_se)576 static int rt_se_boosted(struct sched_rt_entity *rt_se)
577 {
578 struct rt_rq *rt_rq = group_rt_rq(rt_se);
579 struct task_struct *p;
580
581 if (rt_rq)
582 return !!rt_rq->rt_nr_boosted;
583
584 p = rt_task_of(rt_se);
585 return p->prio != p->normal_prio;
586 }
587
588 #ifdef CONFIG_SMP
sched_rt_period_mask(void)589 static inline const struct cpumask *sched_rt_period_mask(void)
590 {
591 return this_rq()->rd->span;
592 }
593 #else
sched_rt_period_mask(void)594 static inline const struct cpumask *sched_rt_period_mask(void)
595 {
596 return cpu_online_mask;
597 }
598 #endif
599
600 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)601 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
602 {
603 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
604 }
605
sched_rt_bandwidth(struct rt_rq * rt_rq)606 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
607 {
608 return &rt_rq->tg->rt_bandwidth;
609 }
610
611 #else /* !CONFIG_RT_GROUP_SCHED */
612
sched_rt_runtime(struct rt_rq * rt_rq)613 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
614 {
615 return rt_rq->rt_runtime;
616 }
617
sched_rt_period(struct rt_rq * rt_rq)618 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
619 {
620 return ktime_to_ns(def_rt_bandwidth.rt_period);
621 }
622
623 typedef struct rt_rq *rt_rq_iter_t;
624
625 #define for_each_rt_rq(rt_rq, iter, rq) \
626 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
627
628 #define for_each_sched_rt_entity(rt_se) \
629 for (; rt_se; rt_se = NULL)
630
group_rt_rq(struct sched_rt_entity * rt_se)631 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
632 {
633 return NULL;
634 }
635
sched_rt_rq_enqueue(struct rt_rq * rt_rq)636 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
637 {
638 struct rq *rq = rq_of_rt_rq(rt_rq);
639
640 if (!rt_rq->rt_nr_running)
641 return;
642
643 enqueue_top_rt_rq(rt_rq);
644 resched_curr(rq);
645 }
646
sched_rt_rq_dequeue(struct rt_rq * rt_rq)647 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
648 {
649 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
650 }
651
rt_rq_throttled(struct rt_rq * rt_rq)652 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
653 {
654 return rt_rq->rt_throttled;
655 }
656
sched_rt_period_mask(void)657 static inline const struct cpumask *sched_rt_period_mask(void)
658 {
659 return cpu_online_mask;
660 }
661
662 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)663 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
664 {
665 return &cpu_rq(cpu)->rt;
666 }
667
sched_rt_bandwidth(struct rt_rq * rt_rq)668 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
669 {
670 return &def_rt_bandwidth;
671 }
672
673 #endif /* CONFIG_RT_GROUP_SCHED */
674
sched_rt_bandwidth_account(struct rt_rq * rt_rq)675 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
676 {
677 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
678
679 return (hrtimer_active(&rt_b->rt_period_timer) ||
680 rt_rq->rt_time < rt_b->rt_runtime);
681 }
682
683 #ifdef CONFIG_SMP
684 /*
685 * We ran out of runtime, see if we can borrow some from our neighbours.
686 */
do_balance_runtime(struct rt_rq * rt_rq)687 static void do_balance_runtime(struct rt_rq *rt_rq)
688 {
689 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
690 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
691 int i, weight;
692 u64 rt_period;
693
694 weight = cpumask_weight(rd->span);
695
696 raw_spin_lock(&rt_b->rt_runtime_lock);
697 rt_period = ktime_to_ns(rt_b->rt_period);
698 for_each_cpu(i, rd->span) {
699 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
700 s64 diff;
701
702 if (iter == rt_rq)
703 continue;
704
705 raw_spin_lock(&iter->rt_runtime_lock);
706 /*
707 * Either all rqs have inf runtime and there's nothing to steal
708 * or __disable_runtime() below sets a specific rq to inf to
709 * indicate its been disabled and disalow stealing.
710 */
711 if (iter->rt_runtime == RUNTIME_INF)
712 goto next;
713
714 /*
715 * From runqueues with spare time, take 1/n part of their
716 * spare time, but no more than our period.
717 */
718 diff = iter->rt_runtime - iter->rt_time;
719 if (diff > 0) {
720 diff = div_u64((u64)diff, weight);
721 if (rt_rq->rt_runtime + diff > rt_period)
722 diff = rt_period - rt_rq->rt_runtime;
723 iter->rt_runtime -= diff;
724 rt_rq->rt_runtime += diff;
725 if (rt_rq->rt_runtime == rt_period) {
726 raw_spin_unlock(&iter->rt_runtime_lock);
727 break;
728 }
729 }
730 next:
731 raw_spin_unlock(&iter->rt_runtime_lock);
732 }
733 raw_spin_unlock(&rt_b->rt_runtime_lock);
734 }
735
736 /*
737 * Ensure this RQ takes back all the runtime it lend to its neighbours.
738 */
__disable_runtime(struct rq * rq)739 static void __disable_runtime(struct rq *rq)
740 {
741 struct root_domain *rd = rq->rd;
742 rt_rq_iter_t iter;
743 struct rt_rq *rt_rq;
744
745 if (unlikely(!scheduler_running))
746 return;
747
748 for_each_rt_rq(rt_rq, iter, rq) {
749 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
750 s64 want;
751 int i;
752
753 raw_spin_lock(&rt_b->rt_runtime_lock);
754 raw_spin_lock(&rt_rq->rt_runtime_lock);
755 /*
756 * Either we're all inf and nobody needs to borrow, or we're
757 * already disabled and thus have nothing to do, or we have
758 * exactly the right amount of runtime to take out.
759 */
760 if (rt_rq->rt_runtime == RUNTIME_INF ||
761 rt_rq->rt_runtime == rt_b->rt_runtime)
762 goto balanced;
763 raw_spin_unlock(&rt_rq->rt_runtime_lock);
764
765 /*
766 * Calculate the difference between what we started out with
767 * and what we current have, that's the amount of runtime
768 * we lend and now have to reclaim.
769 */
770 want = rt_b->rt_runtime - rt_rq->rt_runtime;
771
772 /*
773 * Greedy reclaim, take back as much as we can.
774 */
775 for_each_cpu(i, rd->span) {
776 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
777 s64 diff;
778
779 /*
780 * Can't reclaim from ourselves or disabled runqueues.
781 */
782 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
783 continue;
784
785 raw_spin_lock(&iter->rt_runtime_lock);
786 if (want > 0) {
787 diff = min_t(s64, iter->rt_runtime, want);
788 iter->rt_runtime -= diff;
789 want -= diff;
790 } else {
791 iter->rt_runtime -= want;
792 want -= want;
793 }
794 raw_spin_unlock(&iter->rt_runtime_lock);
795
796 if (!want)
797 break;
798 }
799
800 raw_spin_lock(&rt_rq->rt_runtime_lock);
801 /*
802 * We cannot be left wanting - that would mean some runtime
803 * leaked out of the system.
804 */
805 BUG_ON(want);
806 balanced:
807 /*
808 * Disable all the borrow logic by pretending we have inf
809 * runtime - in which case borrowing doesn't make sense.
810 */
811 rt_rq->rt_runtime = RUNTIME_INF;
812 rt_rq->rt_throttled = 0;
813 raw_spin_unlock(&rt_rq->rt_runtime_lock);
814 raw_spin_unlock(&rt_b->rt_runtime_lock);
815
816 /* Make rt_rq available for pick_next_task() */
817 sched_rt_rq_enqueue(rt_rq);
818 }
819 }
820
__enable_runtime(struct rq * rq)821 static void __enable_runtime(struct rq *rq)
822 {
823 rt_rq_iter_t iter;
824 struct rt_rq *rt_rq;
825
826 if (unlikely(!scheduler_running))
827 return;
828
829 /*
830 * Reset each runqueue's bandwidth settings
831 */
832 for_each_rt_rq(rt_rq, iter, rq) {
833 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
834
835 raw_spin_lock(&rt_b->rt_runtime_lock);
836 raw_spin_lock(&rt_rq->rt_runtime_lock);
837 rt_rq->rt_runtime = rt_b->rt_runtime;
838 rt_rq->rt_time = 0;
839 rt_rq->rt_throttled = 0;
840 raw_spin_unlock(&rt_rq->rt_runtime_lock);
841 raw_spin_unlock(&rt_b->rt_runtime_lock);
842 }
843 }
844
balance_runtime(struct rt_rq * rt_rq)845 static void balance_runtime(struct rt_rq *rt_rq)
846 {
847 if (!sched_feat(RT_RUNTIME_SHARE))
848 return;
849
850 if (rt_rq->rt_time > rt_rq->rt_runtime) {
851 raw_spin_unlock(&rt_rq->rt_runtime_lock);
852 do_balance_runtime(rt_rq);
853 raw_spin_lock(&rt_rq->rt_runtime_lock);
854 }
855 }
856 #else /* !CONFIG_SMP */
balance_runtime(struct rt_rq * rt_rq)857 static inline void balance_runtime(struct rt_rq *rt_rq) {}
858 #endif /* CONFIG_SMP */
859
do_sched_rt_period_timer(struct rt_bandwidth * rt_b,int overrun)860 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
861 {
862 int i, idle = 1, throttled = 0;
863 const struct cpumask *span;
864
865 span = sched_rt_period_mask();
866 #ifdef CONFIG_RT_GROUP_SCHED
867 /*
868 * FIXME: isolated CPUs should really leave the root task group,
869 * whether they are isolcpus or were isolated via cpusets, lest
870 * the timer run on a CPU which does not service all runqueues,
871 * potentially leaving other CPUs indefinitely throttled. If
872 * isolation is really required, the user will turn the throttle
873 * off to kill the perturbations it causes anyway. Meanwhile,
874 * this maintains functionality for boot and/or troubleshooting.
875 */
876 if (rt_b == &root_task_group.rt_bandwidth)
877 span = cpu_online_mask;
878 #endif
879 for_each_cpu(i, span) {
880 int enqueue = 0;
881 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
882 struct rq *rq = rq_of_rt_rq(rt_rq);
883 int skip;
884
885 /*
886 * When span == cpu_online_mask, taking each rq->lock
887 * can be time-consuming. Try to avoid it when possible.
888 */
889 raw_spin_lock(&rt_rq->rt_runtime_lock);
890 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
891 rt_rq->rt_runtime = rt_b->rt_runtime;
892 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
893 raw_spin_unlock(&rt_rq->rt_runtime_lock);
894 if (skip)
895 continue;
896
897 raw_spin_lock(&rq->lock);
898 update_rq_clock(rq);
899
900 if (rt_rq->rt_time) {
901 u64 runtime;
902
903 raw_spin_lock(&rt_rq->rt_runtime_lock);
904 if (rt_rq->rt_throttled)
905 balance_runtime(rt_rq);
906 runtime = rt_rq->rt_runtime;
907 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
908 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
909 rt_rq->rt_throttled = 0;
910 enqueue = 1;
911
912 /*
913 * When we're idle and a woken (rt) task is
914 * throttled check_preempt_curr() will set
915 * skip_update and the time between the wakeup
916 * and this unthrottle will get accounted as
917 * 'runtime'.
918 */
919 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
920 rq_clock_cancel_skipupdate(rq);
921 }
922 if (rt_rq->rt_time || rt_rq->rt_nr_running)
923 idle = 0;
924 raw_spin_unlock(&rt_rq->rt_runtime_lock);
925 } else if (rt_rq->rt_nr_running) {
926 idle = 0;
927 if (!rt_rq_throttled(rt_rq))
928 enqueue = 1;
929 }
930 if (rt_rq->rt_throttled)
931 throttled = 1;
932
933 if (enqueue)
934 sched_rt_rq_enqueue(rt_rq);
935 raw_spin_unlock(&rq->lock);
936 }
937
938 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
939 return 1;
940
941 return idle;
942 }
943
rt_se_prio(struct sched_rt_entity * rt_se)944 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
945 {
946 #ifdef CONFIG_RT_GROUP_SCHED
947 struct rt_rq *rt_rq = group_rt_rq(rt_se);
948
949 if (rt_rq)
950 return rt_rq->highest_prio.curr;
951 #endif
952
953 return rt_task_of(rt_se)->prio;
954 }
955
sched_rt_runtime_exceeded(struct rt_rq * rt_rq)956 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
957 {
958 u64 runtime = sched_rt_runtime(rt_rq);
959
960 if (rt_rq->rt_throttled)
961 return rt_rq_throttled(rt_rq);
962
963 if (runtime >= sched_rt_period(rt_rq))
964 return 0;
965
966 balance_runtime(rt_rq);
967 runtime = sched_rt_runtime(rt_rq);
968 if (runtime == RUNTIME_INF)
969 return 0;
970
971 if (rt_rq->rt_time > runtime) {
972 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
973
974 /*
975 * Don't actually throttle groups that have no runtime assigned
976 * but accrue some time due to boosting.
977 */
978 if (likely(rt_b->rt_runtime)) {
979 rt_rq->rt_throttled = 1;
980 printk_deferred_once("sched: RT throttling activated\n");
981 } else {
982 /*
983 * In case we did anyway, make it go away,
984 * replenishment is a joke, since it will replenish us
985 * with exactly 0 ns.
986 */
987 rt_rq->rt_time = 0;
988 }
989
990 if (rt_rq_throttled(rt_rq)) {
991 sched_rt_rq_dequeue(rt_rq);
992 return 1;
993 }
994 }
995
996 return 0;
997 }
998
999 /*
1000 * Update the current task's runtime statistics. Skip current tasks that
1001 * are not in our scheduling class.
1002 */
update_curr_rt(struct rq * rq)1003 static void update_curr_rt(struct rq *rq)
1004 {
1005 struct task_struct *curr = rq->curr;
1006 struct sched_rt_entity *rt_se = &curr->rt;
1007 u64 delta_exec;
1008 u64 now;
1009
1010 if (curr->sched_class != &rt_sched_class)
1011 return;
1012
1013 now = rq_clock_task(rq);
1014 delta_exec = now - curr->se.exec_start;
1015 if (unlikely((s64)delta_exec <= 0))
1016 return;
1017
1018 schedstat_set(curr->se.statistics.exec_max,
1019 max(curr->se.statistics.exec_max, delta_exec));
1020
1021 curr->se.sum_exec_runtime += delta_exec;
1022 account_group_exec_runtime(curr, delta_exec);
1023
1024 curr->se.exec_start = now;
1025 cgroup_account_cputime(curr, delta_exec);
1026
1027 if (!rt_bandwidth_enabled())
1028 return;
1029
1030 for_each_sched_rt_entity(rt_se) {
1031 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1032 int exceeded;
1033
1034 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1035 raw_spin_lock(&rt_rq->rt_runtime_lock);
1036 rt_rq->rt_time += delta_exec;
1037 exceeded = sched_rt_runtime_exceeded(rt_rq);
1038 if (exceeded)
1039 resched_curr(rq);
1040 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1041 if (exceeded)
1042 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1043 }
1044 }
1045 }
1046
1047 static void
dequeue_top_rt_rq(struct rt_rq * rt_rq,unsigned int count)1048 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1049 {
1050 struct rq *rq = rq_of_rt_rq(rt_rq);
1051
1052 BUG_ON(&rq->rt != rt_rq);
1053
1054 if (!rt_rq->rt_queued)
1055 return;
1056
1057 BUG_ON(!rq->nr_running);
1058
1059 sub_nr_running(rq, count);
1060 rt_rq->rt_queued = 0;
1061
1062 }
1063
1064 static void
enqueue_top_rt_rq(struct rt_rq * rt_rq)1065 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1066 {
1067 struct rq *rq = rq_of_rt_rq(rt_rq);
1068
1069 BUG_ON(&rq->rt != rt_rq);
1070
1071 if (rt_rq->rt_queued)
1072 return;
1073
1074 if (rt_rq_throttled(rt_rq))
1075 return;
1076
1077 if (rt_rq->rt_nr_running) {
1078 add_nr_running(rq, rt_rq->rt_nr_running);
1079 rt_rq->rt_queued = 1;
1080 }
1081
1082 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1083 cpufreq_update_util(rq, 0);
1084 }
1085
1086 #if defined CONFIG_SMP
1087
1088 static void
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1089 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1090 {
1091 struct rq *rq = rq_of_rt_rq(rt_rq);
1092
1093 #ifdef CONFIG_RT_GROUP_SCHED
1094 /*
1095 * Change rq's cpupri only if rt_rq is the top queue.
1096 */
1097 if (&rq->rt != rt_rq)
1098 return;
1099 #endif
1100 if (rq->online && prio < prev_prio)
1101 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1102 }
1103
1104 static void
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1105 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1106 {
1107 struct rq *rq = rq_of_rt_rq(rt_rq);
1108
1109 #ifdef CONFIG_RT_GROUP_SCHED
1110 /*
1111 * Change rq's cpupri only if rt_rq is the top queue.
1112 */
1113 if (&rq->rt != rt_rq)
1114 return;
1115 #endif
1116 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1117 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1118 }
1119
1120 #else /* CONFIG_SMP */
1121
1122 static inline
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1123 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1124 static inline
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1125 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1126
1127 #endif /* CONFIG_SMP */
1128
1129 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1130 static void
inc_rt_prio(struct rt_rq * rt_rq,int prio)1131 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1132 {
1133 int prev_prio = rt_rq->highest_prio.curr;
1134
1135 if (prio < prev_prio)
1136 rt_rq->highest_prio.curr = prio;
1137
1138 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1139 }
1140
1141 static void
dec_rt_prio(struct rt_rq * rt_rq,int prio)1142 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1143 {
1144 int prev_prio = rt_rq->highest_prio.curr;
1145
1146 if (rt_rq->rt_nr_running) {
1147
1148 WARN_ON(prio < prev_prio);
1149
1150 /*
1151 * This may have been our highest task, and therefore
1152 * we may have some recomputation to do
1153 */
1154 if (prio == prev_prio) {
1155 struct rt_prio_array *array = &rt_rq->active;
1156
1157 rt_rq->highest_prio.curr =
1158 sched_find_first_bit(array->bitmap);
1159 }
1160
1161 } else
1162 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1163
1164 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1165 }
1166
1167 #else
1168
inc_rt_prio(struct rt_rq * rt_rq,int prio)1169 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
dec_rt_prio(struct rt_rq * rt_rq,int prio)1170 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1171
1172 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1173
1174 #ifdef CONFIG_RT_GROUP_SCHED
1175
1176 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1177 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1178 {
1179 if (rt_se_boosted(rt_se))
1180 rt_rq->rt_nr_boosted++;
1181
1182 if (rt_rq->tg)
1183 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1184 }
1185
1186 static void
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1187 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1188 {
1189 if (rt_se_boosted(rt_se))
1190 rt_rq->rt_nr_boosted--;
1191
1192 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1193 }
1194
1195 #else /* CONFIG_RT_GROUP_SCHED */
1196
1197 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1198 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1199 {
1200 start_rt_bandwidth(&def_rt_bandwidth);
1201 }
1202
1203 static inline
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1204 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1205
1206 #endif /* CONFIG_RT_GROUP_SCHED */
1207
1208 static inline
rt_se_nr_running(struct sched_rt_entity * rt_se)1209 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1210 {
1211 struct rt_rq *group_rq = group_rt_rq(rt_se);
1212
1213 if (group_rq)
1214 return group_rq->rt_nr_running;
1215 else
1216 return 1;
1217 }
1218
1219 static inline
rt_se_rr_nr_running(struct sched_rt_entity * rt_se)1220 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1221 {
1222 struct rt_rq *group_rq = group_rt_rq(rt_se);
1223 struct task_struct *tsk;
1224
1225 if (group_rq)
1226 return group_rq->rr_nr_running;
1227
1228 tsk = rt_task_of(rt_se);
1229
1230 return (tsk->policy == SCHED_RR) ? 1 : 0;
1231 }
1232
1233 static inline
inc_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1234 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1235 {
1236 int prio = rt_se_prio(rt_se);
1237
1238 WARN_ON(!rt_prio(prio));
1239 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1240 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1241
1242 inc_rt_prio(rt_rq, prio);
1243 inc_rt_migration(rt_se, rt_rq);
1244 inc_rt_group(rt_se, rt_rq);
1245 }
1246
1247 static inline
dec_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1248 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1249 {
1250 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1251 WARN_ON(!rt_rq->rt_nr_running);
1252 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1253 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1254
1255 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1256 dec_rt_migration(rt_se, rt_rq);
1257 dec_rt_group(rt_se, rt_rq);
1258 }
1259
1260 /*
1261 * Change rt_se->run_list location unless SAVE && !MOVE
1262 *
1263 * assumes ENQUEUE/DEQUEUE flags match
1264 */
move_entity(unsigned int flags)1265 static inline bool move_entity(unsigned int flags)
1266 {
1267 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1268 return false;
1269
1270 return true;
1271 }
1272
__delist_rt_entity(struct sched_rt_entity * rt_se,struct rt_prio_array * array)1273 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1274 {
1275 list_del_init(&rt_se->run_list);
1276
1277 if (list_empty(array->queue + rt_se_prio(rt_se)))
1278 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1279
1280 rt_se->on_list = 0;
1281 }
1282
__enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1283 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1284 {
1285 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1286 struct rt_prio_array *array = &rt_rq->active;
1287 struct rt_rq *group_rq = group_rt_rq(rt_se);
1288 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1289
1290 /*
1291 * Don't enqueue the group if its throttled, or when empty.
1292 * The latter is a consequence of the former when a child group
1293 * get throttled and the current group doesn't have any other
1294 * active members.
1295 */
1296 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1297 if (rt_se->on_list)
1298 __delist_rt_entity(rt_se, array);
1299 return;
1300 }
1301
1302 if (move_entity(flags)) {
1303 WARN_ON_ONCE(rt_se->on_list);
1304 if (flags & ENQUEUE_HEAD)
1305 list_add(&rt_se->run_list, queue);
1306 else
1307 list_add_tail(&rt_se->run_list, queue);
1308
1309 __set_bit(rt_se_prio(rt_se), array->bitmap);
1310 rt_se->on_list = 1;
1311 }
1312 rt_se->on_rq = 1;
1313
1314 inc_rt_tasks(rt_se, rt_rq);
1315 }
1316
__dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1317 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1318 {
1319 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1320 struct rt_prio_array *array = &rt_rq->active;
1321
1322 if (move_entity(flags)) {
1323 WARN_ON_ONCE(!rt_se->on_list);
1324 __delist_rt_entity(rt_se, array);
1325 }
1326 rt_se->on_rq = 0;
1327
1328 dec_rt_tasks(rt_se, rt_rq);
1329 }
1330
1331 /*
1332 * Because the prio of an upper entry depends on the lower
1333 * entries, we must remove entries top - down.
1334 */
dequeue_rt_stack(struct sched_rt_entity * rt_se,unsigned int flags)1335 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1336 {
1337 struct sched_rt_entity *back = NULL;
1338 unsigned int rt_nr_running;
1339
1340 for_each_sched_rt_entity(rt_se) {
1341 rt_se->back = back;
1342 back = rt_se;
1343 }
1344
1345 rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1346
1347 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1348 if (on_rt_rq(rt_se))
1349 __dequeue_rt_entity(rt_se, flags);
1350 }
1351
1352 dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1353 }
1354
enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1355 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1356 {
1357 struct rq *rq = rq_of_rt_se(rt_se);
1358
1359 dequeue_rt_stack(rt_se, flags);
1360 for_each_sched_rt_entity(rt_se)
1361 __enqueue_rt_entity(rt_se, flags);
1362 enqueue_top_rt_rq(&rq->rt);
1363 }
1364
dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1365 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1366 {
1367 struct rq *rq = rq_of_rt_se(rt_se);
1368
1369 dequeue_rt_stack(rt_se, flags);
1370
1371 for_each_sched_rt_entity(rt_se) {
1372 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1373
1374 if (rt_rq && rt_rq->rt_nr_running)
1375 __enqueue_rt_entity(rt_se, flags);
1376 }
1377 enqueue_top_rt_rq(&rq->rt);
1378 }
1379
1380 /*
1381 * Adding/removing a task to/from a priority array:
1382 */
1383 static void
enqueue_task_rt(struct rq * rq,struct task_struct * p,int flags)1384 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1385 {
1386 struct sched_rt_entity *rt_se = &p->rt;
1387
1388 if (flags & ENQUEUE_WAKEUP)
1389 rt_se->timeout = 0;
1390
1391 enqueue_rt_entity(rt_se, flags);
1392
1393 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1394 enqueue_pushable_task(rq, p);
1395 }
1396
dequeue_task_rt(struct rq * rq,struct task_struct * p,int flags)1397 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1398 {
1399 struct sched_rt_entity *rt_se = &p->rt;
1400
1401 update_curr_rt(rq);
1402 dequeue_rt_entity(rt_se, flags);
1403
1404 dequeue_pushable_task(rq, p);
1405 }
1406
1407 /*
1408 * Put task to the head or the end of the run list without the overhead of
1409 * dequeue followed by enqueue.
1410 */
1411 static void
requeue_rt_entity(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int head)1412 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1413 {
1414 if (on_rt_rq(rt_se)) {
1415 struct rt_prio_array *array = &rt_rq->active;
1416 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1417
1418 if (head)
1419 list_move(&rt_se->run_list, queue);
1420 else
1421 list_move_tail(&rt_se->run_list, queue);
1422 }
1423 }
1424
requeue_task_rt(struct rq * rq,struct task_struct * p,int head)1425 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1426 {
1427 struct sched_rt_entity *rt_se = &p->rt;
1428 struct rt_rq *rt_rq;
1429
1430 for_each_sched_rt_entity(rt_se) {
1431 rt_rq = rt_rq_of_se(rt_se);
1432 requeue_rt_entity(rt_rq, rt_se, head);
1433 }
1434 }
1435
yield_task_rt(struct rq * rq)1436 static void yield_task_rt(struct rq *rq)
1437 {
1438 requeue_task_rt(rq, rq->curr, 0);
1439 }
1440
1441 #ifdef CONFIG_SMP
1442 static int find_lowest_rq(struct task_struct *task);
1443
1444 static int
select_task_rq_rt(struct task_struct * p,int cpu,int sd_flag,int flags)1445 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1446 {
1447 struct task_struct *curr;
1448 struct rq *rq;
1449 bool test;
1450 int target_cpu = -1;
1451
1452 trace_android_rvh_select_task_rq_rt(p, cpu, sd_flag,
1453 flags, &target_cpu);
1454 if (target_cpu >= 0)
1455 return target_cpu;
1456
1457 /* For anything but wake ups, just return the task_cpu */
1458 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1459 goto out;
1460
1461 rq = cpu_rq(cpu);
1462
1463 rcu_read_lock();
1464 curr = READ_ONCE(rq->curr); /* unlocked access */
1465
1466 /*
1467 * If the current task on @p's runqueue is an RT task, then
1468 * try to see if we can wake this RT task up on another
1469 * runqueue. Otherwise simply start this RT task
1470 * on its current runqueue.
1471 *
1472 * We want to avoid overloading runqueues. If the woken
1473 * task is a higher priority, then it will stay on this CPU
1474 * and the lower prio task should be moved to another CPU.
1475 * Even though this will probably make the lower prio task
1476 * lose its cache, we do not want to bounce a higher task
1477 * around just because it gave up its CPU, perhaps for a
1478 * lock?
1479 *
1480 * For equal prio tasks, we just let the scheduler sort it out.
1481 *
1482 * Otherwise, just let it ride on the affined RQ and the
1483 * post-schedule router will push the preempted task away
1484 *
1485 * This test is optimistic, if we get it wrong the load-balancer
1486 * will have to sort it out.
1487 *
1488 * We take into account the capacity of the CPU to ensure it fits the
1489 * requirement of the task - which is only important on heterogeneous
1490 * systems like big.LITTLE.
1491 */
1492 test = curr &&
1493 unlikely(rt_task(curr)) &&
1494 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1495
1496 if (test || !rt_task_fits_capacity(p, cpu)) {
1497 int target = find_lowest_rq(p);
1498
1499 /*
1500 * Bail out if we were forcing a migration to find a better
1501 * fitting CPU but our search failed.
1502 */
1503 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1504 goto out_unlock;
1505
1506 /*
1507 * Don't bother moving it if the destination CPU is
1508 * not running a lower priority task.
1509 */
1510 if (target != -1 &&
1511 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1512 cpu = target;
1513 }
1514
1515 out_unlock:
1516 rcu_read_unlock();
1517
1518 out:
1519 return cpu;
1520 }
1521
check_preempt_equal_prio(struct rq * rq,struct task_struct * p)1522 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1523 {
1524 /*
1525 * Current can't be migrated, useless to reschedule,
1526 * let's hope p can move out.
1527 */
1528 if (rq->curr->nr_cpus_allowed == 1 ||
1529 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1530 return;
1531
1532 /*
1533 * p is migratable, so let's not schedule it and
1534 * see if it is pushed or pulled somewhere else.
1535 */
1536 if (p->nr_cpus_allowed != 1 &&
1537 cpupri_find(&rq->rd->cpupri, p, NULL))
1538 return;
1539
1540 /*
1541 * There appear to be other CPUs that can accept
1542 * the current task but none can run 'p', so lets reschedule
1543 * to try and push the current task away:
1544 */
1545 requeue_task_rt(rq, p, 1);
1546 resched_curr(rq);
1547 }
1548
balance_rt(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1549 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1550 {
1551 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1552 /*
1553 * This is OK, because current is on_cpu, which avoids it being
1554 * picked for load-balance and preemption/IRQs are still
1555 * disabled avoiding further scheduler activity on it and we've
1556 * not yet started the picking loop.
1557 */
1558 rq_unpin_lock(rq, rf);
1559 pull_rt_task(rq);
1560 rq_repin_lock(rq, rf);
1561 }
1562
1563 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1564 }
1565 #endif /* CONFIG_SMP */
1566
1567 /*
1568 * Preempt the current task with a newly woken task if needed:
1569 */
check_preempt_curr_rt(struct rq * rq,struct task_struct * p,int flags)1570 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1571 {
1572 if (p->prio < rq->curr->prio) {
1573 resched_curr(rq);
1574 return;
1575 }
1576
1577 #ifdef CONFIG_SMP
1578 /*
1579 * If:
1580 *
1581 * - the newly woken task is of equal priority to the current task
1582 * - the newly woken task is non-migratable while current is migratable
1583 * - current will be preempted on the next reschedule
1584 *
1585 * we should check to see if current can readily move to a different
1586 * cpu. If so, we will reschedule to allow the push logic to try
1587 * to move current somewhere else, making room for our non-migratable
1588 * task.
1589 */
1590 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1591 check_preempt_equal_prio(rq, p);
1592 #endif
1593 }
1594
set_next_task_rt(struct rq * rq,struct task_struct * p,bool first)1595 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1596 {
1597 p->se.exec_start = rq_clock_task(rq);
1598
1599 /* The running task is never eligible for pushing */
1600 dequeue_pushable_task(rq, p);
1601
1602 if (!first)
1603 return;
1604
1605 /*
1606 * If prev task was rt, put_prev_task() has already updated the
1607 * utilization. We only care of the case where we start to schedule a
1608 * rt task
1609 */
1610 if (rq->curr->sched_class != &rt_sched_class)
1611 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1612
1613 rt_queue_push_tasks(rq);
1614 }
1615
pick_next_rt_entity(struct rt_rq * rt_rq)1616 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1617 {
1618 struct rt_prio_array *array = &rt_rq->active;
1619 struct sched_rt_entity *next = NULL;
1620 struct list_head *queue;
1621 int idx;
1622
1623 idx = sched_find_first_bit(array->bitmap);
1624 BUG_ON(idx >= MAX_RT_PRIO);
1625
1626 queue = array->queue + idx;
1627 if (SCHED_WARN_ON(list_empty(queue)))
1628 return NULL;
1629 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1630
1631 return next;
1632 }
1633
_pick_next_task_rt(struct rq * rq)1634 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1635 {
1636 struct sched_rt_entity *rt_se;
1637 struct rt_rq *rt_rq = &rq->rt;
1638
1639 do {
1640 rt_se = pick_next_rt_entity(rt_rq);
1641 if (unlikely(!rt_se))
1642 return NULL;
1643 rt_rq = group_rt_rq(rt_se);
1644 } while (rt_rq);
1645
1646 return rt_task_of(rt_se);
1647 }
1648
1649 static struct task_struct *
pick_next_task_rt(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)1650 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1651 {
1652 struct task_struct *p;
1653
1654 WARN_ON_ONCE(prev || rf);
1655
1656 if (!sched_rt_runnable(rq))
1657 return NULL;
1658
1659 p = _pick_next_task_rt(rq);
1660 set_next_task_rt(rq, p, true);
1661 return p;
1662 }
1663
put_prev_task_rt(struct rq * rq,struct task_struct * p)1664 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1665 {
1666 update_curr_rt(rq);
1667
1668 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1669
1670 /*
1671 * The previous task needs to be made eligible for pushing
1672 * if it is still active
1673 */
1674 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1675 enqueue_pushable_task(rq, p);
1676 }
1677
1678 #ifdef CONFIG_SMP
1679
1680 /* Only try algorithms three times */
1681 #define RT_MAX_TRIES 3
1682
pick_rt_task(struct rq * rq,struct task_struct * p,int cpu)1683 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1684 {
1685 if (!task_running(rq, p) &&
1686 cpumask_test_cpu(cpu, p->cpus_ptr))
1687 return 1;
1688
1689 return 0;
1690 }
1691
1692 /*
1693 * Return the highest pushable rq's task, which is suitable to be executed
1694 * on the CPU, NULL otherwise
1695 */
pick_highest_pushable_task(struct rq * rq,int cpu)1696 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1697 {
1698 struct plist_head *head = &rq->rt.pushable_tasks;
1699 struct task_struct *p;
1700
1701 if (!has_pushable_tasks(rq))
1702 return NULL;
1703
1704 plist_for_each_entry(p, head, pushable_tasks) {
1705 if (pick_rt_task(rq, p, cpu))
1706 return p;
1707 }
1708
1709 return NULL;
1710 }
1711
1712 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1713
find_lowest_rq(struct task_struct * task)1714 static int find_lowest_rq(struct task_struct *task)
1715 {
1716 struct sched_domain *sd;
1717 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1718 int this_cpu = smp_processor_id();
1719 int cpu = task_cpu(task);
1720 int ret;
1721 int lowest_cpu = -1;
1722
1723 trace_android_rvh_find_lowest_rq(task, lowest_mask, &lowest_cpu);
1724 if (lowest_cpu >= 0)
1725 return lowest_cpu;
1726
1727 /* Make sure the mask is initialized first */
1728 if (unlikely(!lowest_mask))
1729 return -1;
1730
1731 if (task->nr_cpus_allowed == 1)
1732 return -1; /* No other targets possible */
1733
1734 /*
1735 * If we're on asym system ensure we consider the different capacities
1736 * of the CPUs when searching for the lowest_mask.
1737 */
1738 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1739
1740 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1741 task, lowest_mask,
1742 rt_task_fits_capacity);
1743 } else {
1744
1745 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1746 task, lowest_mask);
1747 }
1748
1749 if (!ret)
1750 return -1; /* No targets found */
1751
1752 /*
1753 * At this point we have built a mask of CPUs representing the
1754 * lowest priority tasks in the system. Now we want to elect
1755 * the best one based on our affinity and topology.
1756 *
1757 * We prioritize the last CPU that the task executed on since
1758 * it is most likely cache-hot in that location.
1759 */
1760 if (cpumask_test_cpu(cpu, lowest_mask))
1761 return cpu;
1762
1763 /*
1764 * Otherwise, we consult the sched_domains span maps to figure
1765 * out which CPU is logically closest to our hot cache data.
1766 */
1767 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1768 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1769
1770 rcu_read_lock();
1771 for_each_domain(cpu, sd) {
1772 if (sd->flags & SD_WAKE_AFFINE) {
1773 int best_cpu;
1774
1775 /*
1776 * "this_cpu" is cheaper to preempt than a
1777 * remote processor.
1778 */
1779 if (this_cpu != -1 &&
1780 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1781 rcu_read_unlock();
1782 return this_cpu;
1783 }
1784
1785 best_cpu = cpumask_first_and(lowest_mask,
1786 sched_domain_span(sd));
1787 if (best_cpu < nr_cpu_ids) {
1788 rcu_read_unlock();
1789 return best_cpu;
1790 }
1791 }
1792 }
1793 rcu_read_unlock();
1794
1795 /*
1796 * And finally, if there were no matches within the domains
1797 * just give the caller *something* to work with from the compatible
1798 * locations.
1799 */
1800 if (this_cpu != -1)
1801 return this_cpu;
1802
1803 cpu = cpumask_any(lowest_mask);
1804 if (cpu < nr_cpu_ids)
1805 return cpu;
1806
1807 return -1;
1808 }
1809
1810 /* Will lock the rq it finds */
find_lock_lowest_rq(struct task_struct * task,struct rq * rq)1811 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1812 {
1813 struct rq *lowest_rq = NULL;
1814 int tries;
1815 int cpu;
1816
1817 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1818 cpu = find_lowest_rq(task);
1819
1820 if ((cpu == -1) || (cpu == rq->cpu))
1821 break;
1822
1823 lowest_rq = cpu_rq(cpu);
1824
1825 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1826 /*
1827 * Target rq has tasks of equal or higher priority,
1828 * retrying does not release any lock and is unlikely
1829 * to yield a different result.
1830 */
1831 lowest_rq = NULL;
1832 break;
1833 }
1834
1835 /* if the prio of this runqueue changed, try again */
1836 if (double_lock_balance(rq, lowest_rq)) {
1837 /*
1838 * We had to unlock the run queue. In
1839 * the mean time, task could have
1840 * migrated already or had its affinity changed.
1841 * Also make sure that it wasn't scheduled on its rq.
1842 */
1843 if (unlikely(task_rq(task) != rq ||
1844 !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) ||
1845 task_running(rq, task) ||
1846 !rt_task(task) ||
1847 !task_on_rq_queued(task))) {
1848
1849 double_unlock_balance(rq, lowest_rq);
1850 lowest_rq = NULL;
1851 break;
1852 }
1853 }
1854
1855 /* If this rq is still suitable use it. */
1856 if (lowest_rq->rt.highest_prio.curr > task->prio)
1857 break;
1858
1859 /* try again */
1860 double_unlock_balance(rq, lowest_rq);
1861 lowest_rq = NULL;
1862 }
1863
1864 return lowest_rq;
1865 }
1866
pick_next_pushable_task(struct rq * rq)1867 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1868 {
1869 struct task_struct *p;
1870
1871 if (!has_pushable_tasks(rq))
1872 return NULL;
1873
1874 p = plist_first_entry(&rq->rt.pushable_tasks,
1875 struct task_struct, pushable_tasks);
1876
1877 BUG_ON(rq->cpu != task_cpu(p));
1878 BUG_ON(task_current(rq, p));
1879 BUG_ON(p->nr_cpus_allowed <= 1);
1880
1881 BUG_ON(!task_on_rq_queued(p));
1882 BUG_ON(!rt_task(p));
1883
1884 return p;
1885 }
1886
1887 /*
1888 * If the current CPU has more than one RT task, see if the non
1889 * running task can migrate over to a CPU that is running a task
1890 * of lesser priority.
1891 */
push_rt_task(struct rq * rq)1892 static int push_rt_task(struct rq *rq)
1893 {
1894 struct task_struct *next_task;
1895 struct rq *lowest_rq;
1896 int ret = 0;
1897
1898 if (!rq->rt.overloaded)
1899 return 0;
1900
1901 next_task = pick_next_pushable_task(rq);
1902 if (!next_task)
1903 return 0;
1904
1905 retry:
1906 if (WARN_ON(next_task == rq->curr))
1907 return 0;
1908
1909 /*
1910 * It's possible that the next_task slipped in of
1911 * higher priority than current. If that's the case
1912 * just reschedule current.
1913 */
1914 if (unlikely(next_task->prio < rq->curr->prio)) {
1915 resched_curr(rq);
1916 return 0;
1917 }
1918
1919 /* We might release rq lock */
1920 get_task_struct(next_task);
1921
1922 /* find_lock_lowest_rq locks the rq if found */
1923 lowest_rq = find_lock_lowest_rq(next_task, rq);
1924 if (!lowest_rq) {
1925 struct task_struct *task;
1926 /*
1927 * find_lock_lowest_rq releases rq->lock
1928 * so it is possible that next_task has migrated.
1929 *
1930 * We need to make sure that the task is still on the same
1931 * run-queue and is also still the next task eligible for
1932 * pushing.
1933 */
1934 task = pick_next_pushable_task(rq);
1935 if (task == next_task) {
1936 /*
1937 * The task hasn't migrated, and is still the next
1938 * eligible task, but we failed to find a run-queue
1939 * to push it to. Do not retry in this case, since
1940 * other CPUs will pull from us when ready.
1941 */
1942 goto out;
1943 }
1944
1945 if (!task)
1946 /* No more tasks, just exit */
1947 goto out;
1948
1949 /*
1950 * Something has shifted, try again.
1951 */
1952 put_task_struct(next_task);
1953 next_task = task;
1954 goto retry;
1955 }
1956
1957 deactivate_task(rq, next_task, 0);
1958 set_task_cpu(next_task, lowest_rq->cpu);
1959 activate_task(lowest_rq, next_task, 0);
1960 ret = 1;
1961
1962 resched_curr(lowest_rq);
1963
1964 double_unlock_balance(rq, lowest_rq);
1965
1966 out:
1967 put_task_struct(next_task);
1968
1969 return ret;
1970 }
1971
push_rt_tasks(struct rq * rq)1972 static void push_rt_tasks(struct rq *rq)
1973 {
1974 /* push_rt_task will return true if it moved an RT */
1975 while (push_rt_task(rq))
1976 ;
1977 }
1978
1979 #ifdef HAVE_RT_PUSH_IPI
1980
1981 /*
1982 * When a high priority task schedules out from a CPU and a lower priority
1983 * task is scheduled in, a check is made to see if there's any RT tasks
1984 * on other CPUs that are waiting to run because a higher priority RT task
1985 * is currently running on its CPU. In this case, the CPU with multiple RT
1986 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1987 * up that may be able to run one of its non-running queued RT tasks.
1988 *
1989 * All CPUs with overloaded RT tasks need to be notified as there is currently
1990 * no way to know which of these CPUs have the highest priority task waiting
1991 * to run. Instead of trying to take a spinlock on each of these CPUs,
1992 * which has shown to cause large latency when done on machines with many
1993 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1994 * RT tasks waiting to run.
1995 *
1996 * Just sending an IPI to each of the CPUs is also an issue, as on large
1997 * count CPU machines, this can cause an IPI storm on a CPU, especially
1998 * if its the only CPU with multiple RT tasks queued, and a large number
1999 * of CPUs scheduling a lower priority task at the same time.
2000 *
2001 * Each root domain has its own irq work function that can iterate over
2002 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2003 * tassk must be checked if there's one or many CPUs that are lowering
2004 * their priority, there's a single irq work iterator that will try to
2005 * push off RT tasks that are waiting to run.
2006 *
2007 * When a CPU schedules a lower priority task, it will kick off the
2008 * irq work iterator that will jump to each CPU with overloaded RT tasks.
2009 * As it only takes the first CPU that schedules a lower priority task
2010 * to start the process, the rto_start variable is incremented and if
2011 * the atomic result is one, then that CPU will try to take the rto_lock.
2012 * This prevents high contention on the lock as the process handles all
2013 * CPUs scheduling lower priority tasks.
2014 *
2015 * All CPUs that are scheduling a lower priority task will increment the
2016 * rt_loop_next variable. This will make sure that the irq work iterator
2017 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2018 * priority task, even if the iterator is in the middle of a scan. Incrementing
2019 * the rt_loop_next will cause the iterator to perform another scan.
2020 *
2021 */
rto_next_cpu(struct root_domain * rd)2022 static int rto_next_cpu(struct root_domain *rd)
2023 {
2024 int next;
2025 int cpu;
2026
2027 /*
2028 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2029 * rt_next_cpu() will simply return the first CPU found in
2030 * the rto_mask.
2031 *
2032 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2033 * will return the next CPU found in the rto_mask.
2034 *
2035 * If there are no more CPUs left in the rto_mask, then a check is made
2036 * against rto_loop and rto_loop_next. rto_loop is only updated with
2037 * the rto_lock held, but any CPU may increment the rto_loop_next
2038 * without any locking.
2039 */
2040 for (;;) {
2041
2042 /* When rto_cpu is -1 this acts like cpumask_first() */
2043 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2044
2045 rd->rto_cpu = cpu;
2046
2047 if (cpu < nr_cpu_ids)
2048 return cpu;
2049
2050 rd->rto_cpu = -1;
2051
2052 /*
2053 * ACQUIRE ensures we see the @rto_mask changes
2054 * made prior to the @next value observed.
2055 *
2056 * Matches WMB in rt_set_overload().
2057 */
2058 next = atomic_read_acquire(&rd->rto_loop_next);
2059
2060 if (rd->rto_loop == next)
2061 break;
2062
2063 rd->rto_loop = next;
2064 }
2065
2066 return -1;
2067 }
2068
rto_start_trylock(atomic_t * v)2069 static inline bool rto_start_trylock(atomic_t *v)
2070 {
2071 return !atomic_cmpxchg_acquire(v, 0, 1);
2072 }
2073
rto_start_unlock(atomic_t * v)2074 static inline void rto_start_unlock(atomic_t *v)
2075 {
2076 atomic_set_release(v, 0);
2077 }
2078
tell_cpu_to_push(struct rq * rq)2079 static void tell_cpu_to_push(struct rq *rq)
2080 {
2081 int cpu = -1;
2082
2083 /* Keep the loop going if the IPI is currently active */
2084 atomic_inc(&rq->rd->rto_loop_next);
2085
2086 /* Only one CPU can initiate a loop at a time */
2087 if (!rto_start_trylock(&rq->rd->rto_loop_start))
2088 return;
2089
2090 raw_spin_lock(&rq->rd->rto_lock);
2091
2092 /*
2093 * The rto_cpu is updated under the lock, if it has a valid CPU
2094 * then the IPI is still running and will continue due to the
2095 * update to loop_next, and nothing needs to be done here.
2096 * Otherwise it is finishing up and an ipi needs to be sent.
2097 */
2098 if (rq->rd->rto_cpu < 0)
2099 cpu = rto_next_cpu(rq->rd);
2100
2101 raw_spin_unlock(&rq->rd->rto_lock);
2102
2103 rto_start_unlock(&rq->rd->rto_loop_start);
2104
2105 if (cpu >= 0) {
2106 /* Make sure the rd does not get freed while pushing */
2107 sched_get_rd(rq->rd);
2108 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2109 }
2110 }
2111
2112 /* Called from hardirq context */
rto_push_irq_work_func(struct irq_work * work)2113 void rto_push_irq_work_func(struct irq_work *work)
2114 {
2115 struct root_domain *rd =
2116 container_of(work, struct root_domain, rto_push_work);
2117 struct rq *rq;
2118 int cpu;
2119
2120 rq = this_rq();
2121
2122 /*
2123 * We do not need to grab the lock to check for has_pushable_tasks.
2124 * When it gets updated, a check is made if a push is possible.
2125 */
2126 if (has_pushable_tasks(rq)) {
2127 raw_spin_lock(&rq->lock);
2128 push_rt_tasks(rq);
2129 raw_spin_unlock(&rq->lock);
2130 }
2131
2132 raw_spin_lock(&rd->rto_lock);
2133
2134 /* Pass the IPI to the next rt overloaded queue */
2135 cpu = rto_next_cpu(rd);
2136
2137 raw_spin_unlock(&rd->rto_lock);
2138
2139 if (cpu < 0) {
2140 sched_put_rd(rd);
2141 return;
2142 }
2143
2144 /* Try the next RT overloaded CPU */
2145 irq_work_queue_on(&rd->rto_push_work, cpu);
2146 }
2147 #endif /* HAVE_RT_PUSH_IPI */
2148
pull_rt_task(struct rq * this_rq)2149 static void pull_rt_task(struct rq *this_rq)
2150 {
2151 int this_cpu = this_rq->cpu, cpu;
2152 bool resched = false;
2153 struct task_struct *p;
2154 struct rq *src_rq;
2155 int rt_overload_count = rt_overloaded(this_rq);
2156
2157 if (likely(!rt_overload_count))
2158 return;
2159
2160 /*
2161 * Match the barrier from rt_set_overloaded; this guarantees that if we
2162 * see overloaded we must also see the rto_mask bit.
2163 */
2164 smp_rmb();
2165
2166 /* If we are the only overloaded CPU do nothing */
2167 if (rt_overload_count == 1 &&
2168 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2169 return;
2170
2171 #ifdef HAVE_RT_PUSH_IPI
2172 if (sched_feat(RT_PUSH_IPI)) {
2173 tell_cpu_to_push(this_rq);
2174 return;
2175 }
2176 #endif
2177
2178 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2179 if (this_cpu == cpu)
2180 continue;
2181
2182 src_rq = cpu_rq(cpu);
2183
2184 /*
2185 * Don't bother taking the src_rq->lock if the next highest
2186 * task is known to be lower-priority than our current task.
2187 * This may look racy, but if this value is about to go
2188 * logically higher, the src_rq will push this task away.
2189 * And if its going logically lower, we do not care
2190 */
2191 if (src_rq->rt.highest_prio.next >=
2192 this_rq->rt.highest_prio.curr)
2193 continue;
2194
2195 /*
2196 * We can potentially drop this_rq's lock in
2197 * double_lock_balance, and another CPU could
2198 * alter this_rq
2199 */
2200 double_lock_balance(this_rq, src_rq);
2201
2202 /*
2203 * We can pull only a task, which is pushable
2204 * on its rq, and no others.
2205 */
2206 p = pick_highest_pushable_task(src_rq, this_cpu);
2207
2208 /*
2209 * Do we have an RT task that preempts
2210 * the to-be-scheduled task?
2211 */
2212 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2213 WARN_ON(p == src_rq->curr);
2214 WARN_ON(!task_on_rq_queued(p));
2215
2216 /*
2217 * There's a chance that p is higher in priority
2218 * than what's currently running on its CPU.
2219 * This is just that p is wakeing up and hasn't
2220 * had a chance to schedule. We only pull
2221 * p if it is lower in priority than the
2222 * current task on the run queue
2223 */
2224 if (p->prio < src_rq->curr->prio)
2225 goto skip;
2226
2227 resched = true;
2228
2229 deactivate_task(src_rq, p, 0);
2230 set_task_cpu(p, this_cpu);
2231 activate_task(this_rq, p, 0);
2232 /*
2233 * We continue with the search, just in
2234 * case there's an even higher prio task
2235 * in another runqueue. (low likelihood
2236 * but possible)
2237 */
2238 }
2239 skip:
2240 double_unlock_balance(this_rq, src_rq);
2241 }
2242
2243 if (resched)
2244 resched_curr(this_rq);
2245 }
2246
2247 /*
2248 * If we are not running and we are not going to reschedule soon, we should
2249 * try to push tasks away now
2250 */
task_woken_rt(struct rq * rq,struct task_struct * p)2251 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2252 {
2253 bool need_to_push = !task_running(rq, p) &&
2254 !test_tsk_need_resched(rq->curr) &&
2255 p->nr_cpus_allowed > 1 &&
2256 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2257 (rq->curr->nr_cpus_allowed < 2 ||
2258 rq->curr->prio <= p->prio);
2259
2260 if (need_to_push)
2261 push_rt_tasks(rq);
2262 }
2263
2264 /* Assumes rq->lock is held */
rq_online_rt(struct rq * rq)2265 static void rq_online_rt(struct rq *rq)
2266 {
2267 if (rq->rt.overloaded)
2268 rt_set_overload(rq);
2269
2270 __enable_runtime(rq);
2271
2272 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2273 }
2274
2275 /* Assumes rq->lock is held */
rq_offline_rt(struct rq * rq)2276 static void rq_offline_rt(struct rq *rq)
2277 {
2278 if (rq->rt.overloaded)
2279 rt_clear_overload(rq);
2280
2281 __disable_runtime(rq);
2282
2283 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2284 }
2285
2286 /*
2287 * When switch from the rt queue, we bring ourselves to a position
2288 * that we might want to pull RT tasks from other runqueues.
2289 */
switched_from_rt(struct rq * rq,struct task_struct * p)2290 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2291 {
2292 /*
2293 * If there are other RT tasks then we will reschedule
2294 * and the scheduling of the other RT tasks will handle
2295 * the balancing. But if we are the last RT task
2296 * we may need to handle the pulling of RT tasks
2297 * now.
2298 */
2299 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2300 return;
2301
2302 rt_queue_pull_task(rq);
2303 }
2304
init_sched_rt_class(void)2305 void __init init_sched_rt_class(void)
2306 {
2307 unsigned int i;
2308
2309 for_each_possible_cpu(i) {
2310 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2311 GFP_KERNEL, cpu_to_node(i));
2312 }
2313 }
2314 #endif /* CONFIG_SMP */
2315
2316 /*
2317 * When switching a task to RT, we may overload the runqueue
2318 * with RT tasks. In this case we try to push them off to
2319 * other runqueues.
2320 */
switched_to_rt(struct rq * rq,struct task_struct * p)2321 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2322 {
2323 /*
2324 * If we are running, update the avg_rt tracking, as the running time
2325 * will now on be accounted into the latter.
2326 */
2327 if (task_current(rq, p)) {
2328 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2329 return;
2330 }
2331
2332 /*
2333 * If we are not running we may need to preempt the current
2334 * running task. If that current running task is also an RT task
2335 * then see if we can move to another run queue.
2336 */
2337 if (task_on_rq_queued(p)) {
2338 #ifdef CONFIG_SMP
2339 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2340 rt_queue_push_tasks(rq);
2341 #endif /* CONFIG_SMP */
2342 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2343 resched_curr(rq);
2344 }
2345 }
2346
2347 /*
2348 * Priority of the task has changed. This may cause
2349 * us to initiate a push or pull.
2350 */
2351 static void
prio_changed_rt(struct rq * rq,struct task_struct * p,int oldprio)2352 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2353 {
2354 if (!task_on_rq_queued(p))
2355 return;
2356
2357 if (rq->curr == p) {
2358 #ifdef CONFIG_SMP
2359 /*
2360 * If our priority decreases while running, we
2361 * may need to pull tasks to this runqueue.
2362 */
2363 if (oldprio < p->prio)
2364 rt_queue_pull_task(rq);
2365
2366 /*
2367 * If there's a higher priority task waiting to run
2368 * then reschedule.
2369 */
2370 if (p->prio > rq->rt.highest_prio.curr)
2371 resched_curr(rq);
2372 #else
2373 /* For UP simply resched on drop of prio */
2374 if (oldprio < p->prio)
2375 resched_curr(rq);
2376 #endif /* CONFIG_SMP */
2377 } else {
2378 /*
2379 * This task is not running, but if it is
2380 * greater than the current running task
2381 * then reschedule.
2382 */
2383 if (p->prio < rq->curr->prio)
2384 resched_curr(rq);
2385 }
2386 }
2387
2388 #ifdef CONFIG_POSIX_TIMERS
watchdog(struct rq * rq,struct task_struct * p)2389 static void watchdog(struct rq *rq, struct task_struct *p)
2390 {
2391 unsigned long soft, hard;
2392
2393 /* max may change after cur was read, this will be fixed next tick */
2394 soft = task_rlimit(p, RLIMIT_RTTIME);
2395 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2396
2397 if (soft != RLIM_INFINITY) {
2398 unsigned long next;
2399
2400 if (p->rt.watchdog_stamp != jiffies) {
2401 p->rt.timeout++;
2402 p->rt.watchdog_stamp = jiffies;
2403 }
2404
2405 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2406 if (p->rt.timeout > next) {
2407 posix_cputimers_rt_watchdog(&p->posix_cputimers,
2408 p->se.sum_exec_runtime);
2409 }
2410 }
2411 }
2412 #else
watchdog(struct rq * rq,struct task_struct * p)2413 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2414 #endif
2415
2416 /*
2417 * scheduler tick hitting a task of our scheduling class.
2418 *
2419 * NOTE: This function can be called remotely by the tick offload that
2420 * goes along full dynticks. Therefore no local assumption can be made
2421 * and everything must be accessed through the @rq and @curr passed in
2422 * parameters.
2423 */
task_tick_rt(struct rq * rq,struct task_struct * p,int queued)2424 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2425 {
2426 struct sched_rt_entity *rt_se = &p->rt;
2427
2428 update_curr_rt(rq);
2429 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2430
2431 watchdog(rq, p);
2432
2433 /*
2434 * RR tasks need a special form of timeslice management.
2435 * FIFO tasks have no timeslices.
2436 */
2437 if (p->policy != SCHED_RR)
2438 return;
2439
2440 if (--p->rt.time_slice)
2441 return;
2442
2443 p->rt.time_slice = sched_rr_timeslice;
2444
2445 /*
2446 * Requeue to the end of queue if we (and all of our ancestors) are not
2447 * the only element on the queue
2448 */
2449 for_each_sched_rt_entity(rt_se) {
2450 if (rt_se->run_list.prev != rt_se->run_list.next) {
2451 requeue_task_rt(rq, p, 0);
2452 resched_curr(rq);
2453 return;
2454 }
2455 }
2456 }
2457
get_rr_interval_rt(struct rq * rq,struct task_struct * task)2458 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2459 {
2460 /*
2461 * Time slice is 0 for SCHED_FIFO tasks
2462 */
2463 if (task->policy == SCHED_RR)
2464 return sched_rr_timeslice;
2465 else
2466 return 0;
2467 }
2468
2469 const struct sched_class rt_sched_class = {
2470 .next = &fair_sched_class,
2471 .enqueue_task = enqueue_task_rt,
2472 .dequeue_task = dequeue_task_rt,
2473 .yield_task = yield_task_rt,
2474
2475 .check_preempt_curr = check_preempt_curr_rt,
2476
2477 .pick_next_task = pick_next_task_rt,
2478 .put_prev_task = put_prev_task_rt,
2479 .set_next_task = set_next_task_rt,
2480
2481 #ifdef CONFIG_SMP
2482 .balance = balance_rt,
2483 .select_task_rq = select_task_rq_rt,
2484 .set_cpus_allowed = set_cpus_allowed_common,
2485 .rq_online = rq_online_rt,
2486 .rq_offline = rq_offline_rt,
2487 .task_woken = task_woken_rt,
2488 .switched_from = switched_from_rt,
2489 #endif
2490
2491 .task_tick = task_tick_rt,
2492
2493 .get_rr_interval = get_rr_interval_rt,
2494
2495 .prio_changed = prio_changed_rt,
2496 .switched_to = switched_to_rt,
2497
2498 .update_curr = update_curr_rt,
2499
2500 #ifdef CONFIG_UCLAMP_TASK
2501 .uclamp_enabled = 1,
2502 #endif
2503 };
2504
2505 #ifdef CONFIG_RT_GROUP_SCHED
2506 /*
2507 * Ensure that the real time constraints are schedulable.
2508 */
2509 static DEFINE_MUTEX(rt_constraints_mutex);
2510
2511 /* Must be called with tasklist_lock held */
tg_has_rt_tasks(struct task_group * tg)2512 static inline int tg_has_rt_tasks(struct task_group *tg)
2513 {
2514 struct task_struct *g, *p;
2515
2516 /*
2517 * Autogroups do not have RT tasks; see autogroup_create().
2518 */
2519 if (task_group_is_autogroup(tg))
2520 return 0;
2521
2522 for_each_process_thread(g, p) {
2523 if (rt_task(p) && task_group(p) == tg)
2524 return 1;
2525 }
2526
2527 return 0;
2528 }
2529
2530 struct rt_schedulable_data {
2531 struct task_group *tg;
2532 u64 rt_period;
2533 u64 rt_runtime;
2534 };
2535
tg_rt_schedulable(struct task_group * tg,void * data)2536 static int tg_rt_schedulable(struct task_group *tg, void *data)
2537 {
2538 struct rt_schedulable_data *d = data;
2539 struct task_group *child;
2540 unsigned long total, sum = 0;
2541 u64 period, runtime;
2542
2543 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2544 runtime = tg->rt_bandwidth.rt_runtime;
2545
2546 if (tg == d->tg) {
2547 period = d->rt_period;
2548 runtime = d->rt_runtime;
2549 }
2550
2551 /*
2552 * Cannot have more runtime than the period.
2553 */
2554 if (runtime > period && runtime != RUNTIME_INF)
2555 return -EINVAL;
2556
2557 /*
2558 * Ensure we don't starve existing RT tasks.
2559 */
2560 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2561 return -EBUSY;
2562
2563 total = to_ratio(period, runtime);
2564
2565 /*
2566 * Nobody can have more than the global setting allows.
2567 */
2568 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2569 return -EINVAL;
2570
2571 /*
2572 * The sum of our children's runtime should not exceed our own.
2573 */
2574 list_for_each_entry_rcu(child, &tg->children, siblings) {
2575 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2576 runtime = child->rt_bandwidth.rt_runtime;
2577
2578 if (child == d->tg) {
2579 period = d->rt_period;
2580 runtime = d->rt_runtime;
2581 }
2582
2583 sum += to_ratio(period, runtime);
2584 }
2585
2586 if (sum > total)
2587 return -EINVAL;
2588
2589 return 0;
2590 }
2591
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)2592 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2593 {
2594 int ret;
2595
2596 struct rt_schedulable_data data = {
2597 .tg = tg,
2598 .rt_period = period,
2599 .rt_runtime = runtime,
2600 };
2601
2602 rcu_read_lock();
2603 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2604 rcu_read_unlock();
2605
2606 return ret;
2607 }
2608
tg_set_rt_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)2609 static int tg_set_rt_bandwidth(struct task_group *tg,
2610 u64 rt_period, u64 rt_runtime)
2611 {
2612 int i, err = 0;
2613
2614 /*
2615 * Disallowing the root group RT runtime is BAD, it would disallow the
2616 * kernel creating (and or operating) RT threads.
2617 */
2618 if (tg == &root_task_group && rt_runtime == 0)
2619 return -EINVAL;
2620
2621 /* No period doesn't make any sense. */
2622 if (rt_period == 0)
2623 return -EINVAL;
2624
2625 /*
2626 * Bound quota to defend quota against overflow during bandwidth shift.
2627 */
2628 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2629 return -EINVAL;
2630
2631 mutex_lock(&rt_constraints_mutex);
2632 read_lock(&tasklist_lock);
2633 err = __rt_schedulable(tg, rt_period, rt_runtime);
2634 if (err)
2635 goto unlock;
2636
2637 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2638 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2639 tg->rt_bandwidth.rt_runtime = rt_runtime;
2640
2641 for_each_possible_cpu(i) {
2642 struct rt_rq *rt_rq = tg->rt_rq[i];
2643
2644 raw_spin_lock(&rt_rq->rt_runtime_lock);
2645 rt_rq->rt_runtime = rt_runtime;
2646 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2647 }
2648 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2649 unlock:
2650 read_unlock(&tasklist_lock);
2651 mutex_unlock(&rt_constraints_mutex);
2652
2653 return err;
2654 }
2655
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)2656 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2657 {
2658 u64 rt_runtime, rt_period;
2659
2660 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2661 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2662 if (rt_runtime_us < 0)
2663 rt_runtime = RUNTIME_INF;
2664 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2665 return -EINVAL;
2666
2667 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2668 }
2669
sched_group_rt_runtime(struct task_group * tg)2670 long sched_group_rt_runtime(struct task_group *tg)
2671 {
2672 u64 rt_runtime_us;
2673
2674 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2675 return -1;
2676
2677 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2678 do_div(rt_runtime_us, NSEC_PER_USEC);
2679 return rt_runtime_us;
2680 }
2681
sched_group_set_rt_period(struct task_group * tg,u64 rt_period_us)2682 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2683 {
2684 u64 rt_runtime, rt_period;
2685
2686 if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2687 return -EINVAL;
2688
2689 rt_period = rt_period_us * NSEC_PER_USEC;
2690 rt_runtime = tg->rt_bandwidth.rt_runtime;
2691
2692 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2693 }
2694
sched_group_rt_period(struct task_group * tg)2695 long sched_group_rt_period(struct task_group *tg)
2696 {
2697 u64 rt_period_us;
2698
2699 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2700 do_div(rt_period_us, NSEC_PER_USEC);
2701 return rt_period_us;
2702 }
2703
sched_rt_global_constraints(void)2704 static int sched_rt_global_constraints(void)
2705 {
2706 int ret = 0;
2707
2708 mutex_lock(&rt_constraints_mutex);
2709 read_lock(&tasklist_lock);
2710 ret = __rt_schedulable(NULL, 0, 0);
2711 read_unlock(&tasklist_lock);
2712 mutex_unlock(&rt_constraints_mutex);
2713
2714 return ret;
2715 }
2716
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)2717 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2718 {
2719 /* Don't accept realtime tasks when there is no way for them to run */
2720 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2721 return 0;
2722
2723 return 1;
2724 }
2725
2726 #else /* !CONFIG_RT_GROUP_SCHED */
sched_rt_global_constraints(void)2727 static int sched_rt_global_constraints(void)
2728 {
2729 unsigned long flags;
2730 int i;
2731
2732 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2733 for_each_possible_cpu(i) {
2734 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2735
2736 raw_spin_lock(&rt_rq->rt_runtime_lock);
2737 rt_rq->rt_runtime = global_rt_runtime();
2738 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2739 }
2740 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2741
2742 return 0;
2743 }
2744 #endif /* CONFIG_RT_GROUP_SCHED */
2745
sched_rt_global_validate(void)2746 static int sched_rt_global_validate(void)
2747 {
2748 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2749 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2750 ((u64)sysctl_sched_rt_runtime *
2751 NSEC_PER_USEC > max_rt_runtime)))
2752 return -EINVAL;
2753
2754 return 0;
2755 }
2756
sched_rt_do_global(void)2757 static void sched_rt_do_global(void)
2758 {
2759 unsigned long flags;
2760
2761 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2762 def_rt_bandwidth.rt_runtime = global_rt_runtime();
2763 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2764 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2765 }
2766
sched_rt_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2767 int sched_rt_handler(struct ctl_table *table, int write,
2768 void __user *buffer, size_t *lenp,
2769 loff_t *ppos)
2770 {
2771 int old_period, old_runtime;
2772 static DEFINE_MUTEX(mutex);
2773 int ret;
2774
2775 mutex_lock(&mutex);
2776 old_period = sysctl_sched_rt_period;
2777 old_runtime = sysctl_sched_rt_runtime;
2778
2779 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2780
2781 if (!ret && write) {
2782 ret = sched_rt_global_validate();
2783 if (ret)
2784 goto undo;
2785
2786 ret = sched_dl_global_validate();
2787 if (ret)
2788 goto undo;
2789
2790 ret = sched_rt_global_constraints();
2791 if (ret)
2792 goto undo;
2793
2794 sched_rt_do_global();
2795 sched_dl_do_global();
2796 }
2797 if (0) {
2798 undo:
2799 sysctl_sched_rt_period = old_period;
2800 sysctl_sched_rt_runtime = old_runtime;
2801 }
2802 mutex_unlock(&mutex);
2803
2804 return ret;
2805 }
2806
sched_rr_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2807 int sched_rr_handler(struct ctl_table *table, int write,
2808 void __user *buffer, size_t *lenp,
2809 loff_t *ppos)
2810 {
2811 int ret;
2812 static DEFINE_MUTEX(mutex);
2813
2814 mutex_lock(&mutex);
2815 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2816 /*
2817 * Make sure that internally we keep jiffies.
2818 * Also, writing zero resets the timeslice to default:
2819 */
2820 if (!ret && write) {
2821 sched_rr_timeslice =
2822 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2823 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2824
2825 if (sysctl_sched_rr_timeslice <= 0)
2826 sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
2827 }
2828 mutex_unlock(&mutex);
2829
2830 return ret;
2831 }
2832
2833 #ifdef CONFIG_SCHED_DEBUG
print_rt_stats(struct seq_file * m,int cpu)2834 void print_rt_stats(struct seq_file *m, int cpu)
2835 {
2836 rt_rq_iter_t iter;
2837 struct rt_rq *rt_rq;
2838
2839 rcu_read_lock();
2840 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2841 print_rt_rq(m, cpu, rt_rq);
2842 rcu_read_unlock();
2843 }
2844 #endif /* CONFIG_SCHED_DEBUG */
2845