• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 #include "sched.h"
7 
8 #include "pelt.h"
9 
10 #include <trace/hooks/sched.h>
11 
12 int sched_rr_timeslice = RR_TIMESLICE;
13 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
14 /* More than 4 hours if BW_SHIFT equals 20. */
15 static const u64 max_rt_runtime = MAX_BW;
16 
17 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
18 
19 struct rt_bandwidth def_rt_bandwidth;
20 
sched_rt_period_timer(struct hrtimer * timer)21 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
22 {
23 	struct rt_bandwidth *rt_b =
24 		container_of(timer, struct rt_bandwidth, rt_period_timer);
25 	int idle = 0;
26 	int overrun;
27 
28 	raw_spin_lock(&rt_b->rt_runtime_lock);
29 	for (;;) {
30 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
31 		if (!overrun)
32 			break;
33 
34 		raw_spin_unlock(&rt_b->rt_runtime_lock);
35 		idle = do_sched_rt_period_timer(rt_b, overrun);
36 		raw_spin_lock(&rt_b->rt_runtime_lock);
37 	}
38 	if (idle)
39 		rt_b->rt_period_active = 0;
40 	raw_spin_unlock(&rt_b->rt_runtime_lock);
41 
42 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
43 }
44 
init_rt_bandwidth(struct rt_bandwidth * rt_b,u64 period,u64 runtime)45 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
46 {
47 	rt_b->rt_period = ns_to_ktime(period);
48 	rt_b->rt_runtime = runtime;
49 
50 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
51 
52 	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
53 		     HRTIMER_MODE_REL_HARD);
54 	rt_b->rt_period_timer.function = sched_rt_period_timer;
55 }
56 
do_start_rt_bandwidth(struct rt_bandwidth * rt_b)57 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
58 {
59 	raw_spin_lock(&rt_b->rt_runtime_lock);
60 	if (!rt_b->rt_period_active) {
61 		rt_b->rt_period_active = 1;
62 		/*
63 		 * SCHED_DEADLINE updates the bandwidth, as a run away
64 		 * RT task with a DL task could hog a CPU. But DL does
65 		 * not reset the period. If a deadline task was running
66 		 * without an RT task running, it can cause RT tasks to
67 		 * throttle when they start up. Kick the timer right away
68 		 * to update the period.
69 		 */
70 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
71 		hrtimer_start_expires(&rt_b->rt_period_timer,
72 				      HRTIMER_MODE_ABS_PINNED_HARD);
73 	}
74 	raw_spin_unlock(&rt_b->rt_runtime_lock);
75 }
76 
start_rt_bandwidth(struct rt_bandwidth * rt_b)77 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
78 {
79 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
80 		return;
81 
82 	do_start_rt_bandwidth(rt_b);
83 }
84 
init_rt_rq(struct rt_rq * rt_rq)85 void init_rt_rq(struct rt_rq *rt_rq)
86 {
87 	struct rt_prio_array *array;
88 	int i;
89 
90 	array = &rt_rq->active;
91 	for (i = 0; i < MAX_RT_PRIO; i++) {
92 		INIT_LIST_HEAD(array->queue + i);
93 		__clear_bit(i, array->bitmap);
94 	}
95 	/* delimiter for bitsearch: */
96 	__set_bit(MAX_RT_PRIO, array->bitmap);
97 
98 #if defined CONFIG_SMP
99 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
100 	rt_rq->highest_prio.next = MAX_RT_PRIO;
101 	rt_rq->rt_nr_migratory = 0;
102 	rt_rq->overloaded = 0;
103 	plist_head_init(&rt_rq->pushable_tasks);
104 #endif /* CONFIG_SMP */
105 	/* We start is dequeued state, because no RT tasks are queued */
106 	rt_rq->rt_queued = 0;
107 
108 	rt_rq->rt_time = 0;
109 	rt_rq->rt_throttled = 0;
110 	rt_rq->rt_runtime = 0;
111 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
112 }
113 
114 #ifdef CONFIG_RT_GROUP_SCHED
destroy_rt_bandwidth(struct rt_bandwidth * rt_b)115 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
116 {
117 	hrtimer_cancel(&rt_b->rt_period_timer);
118 }
119 
120 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
121 
rt_task_of(struct sched_rt_entity * rt_se)122 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
123 {
124 #ifdef CONFIG_SCHED_DEBUG
125 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
126 #endif
127 	return container_of(rt_se, struct task_struct, rt);
128 }
129 
rq_of_rt_rq(struct rt_rq * rt_rq)130 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
131 {
132 	return rt_rq->rq;
133 }
134 
rt_rq_of_se(struct sched_rt_entity * rt_se)135 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
136 {
137 	return rt_se->rt_rq;
138 }
139 
rq_of_rt_se(struct sched_rt_entity * rt_se)140 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
141 {
142 	struct rt_rq *rt_rq = rt_se->rt_rq;
143 
144 	return rt_rq->rq;
145 }
146 
free_rt_sched_group(struct task_group * tg)147 void free_rt_sched_group(struct task_group *tg)
148 {
149 	int i;
150 
151 	if (tg->rt_se)
152 		destroy_rt_bandwidth(&tg->rt_bandwidth);
153 
154 	for_each_possible_cpu(i) {
155 		if (tg->rt_rq)
156 			kfree(tg->rt_rq[i]);
157 		if (tg->rt_se)
158 			kfree(tg->rt_se[i]);
159 	}
160 
161 	kfree(tg->rt_rq);
162 	kfree(tg->rt_se);
163 }
164 
init_tg_rt_entry(struct task_group * tg,struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int cpu,struct sched_rt_entity * parent)165 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
166 		struct sched_rt_entity *rt_se, int cpu,
167 		struct sched_rt_entity *parent)
168 {
169 	struct rq *rq = cpu_rq(cpu);
170 
171 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
172 	rt_rq->rt_nr_boosted = 0;
173 	rt_rq->rq = rq;
174 	rt_rq->tg = tg;
175 
176 	tg->rt_rq[cpu] = rt_rq;
177 	tg->rt_se[cpu] = rt_se;
178 
179 	if (!rt_se)
180 		return;
181 
182 	if (!parent)
183 		rt_se->rt_rq = &rq->rt;
184 	else
185 		rt_se->rt_rq = parent->my_q;
186 
187 	rt_se->my_q = rt_rq;
188 	rt_se->parent = parent;
189 	INIT_LIST_HEAD(&rt_se->run_list);
190 }
191 
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)192 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
193 {
194 	struct rt_rq *rt_rq;
195 	struct sched_rt_entity *rt_se;
196 	int i;
197 
198 	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
199 	if (!tg->rt_rq)
200 		goto err;
201 	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
202 	if (!tg->rt_se)
203 		goto err;
204 
205 	init_rt_bandwidth(&tg->rt_bandwidth,
206 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
207 
208 	for_each_possible_cpu(i) {
209 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
210 				     GFP_KERNEL, cpu_to_node(i));
211 		if (!rt_rq)
212 			goto err;
213 
214 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
215 				     GFP_KERNEL, cpu_to_node(i));
216 		if (!rt_se)
217 			goto err_free_rq;
218 
219 		init_rt_rq(rt_rq);
220 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
221 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
222 	}
223 
224 	return 1;
225 
226 err_free_rq:
227 	kfree(rt_rq);
228 err:
229 	return 0;
230 }
231 
232 #else /* CONFIG_RT_GROUP_SCHED */
233 
234 #define rt_entity_is_task(rt_se) (1)
235 
rt_task_of(struct sched_rt_entity * rt_se)236 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
237 {
238 	return container_of(rt_se, struct task_struct, rt);
239 }
240 
rq_of_rt_rq(struct rt_rq * rt_rq)241 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
242 {
243 	return container_of(rt_rq, struct rq, rt);
244 }
245 
rq_of_rt_se(struct sched_rt_entity * rt_se)246 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
247 {
248 	struct task_struct *p = rt_task_of(rt_se);
249 
250 	return task_rq(p);
251 }
252 
rt_rq_of_se(struct sched_rt_entity * rt_se)253 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
254 {
255 	struct rq *rq = rq_of_rt_se(rt_se);
256 
257 	return &rq->rt;
258 }
259 
free_rt_sched_group(struct task_group * tg)260 void free_rt_sched_group(struct task_group *tg) { }
261 
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)262 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
263 {
264 	return 1;
265 }
266 #endif /* CONFIG_RT_GROUP_SCHED */
267 
268 #ifdef CONFIG_SMP
269 
270 static void pull_rt_task(struct rq *this_rq);
271 
need_pull_rt_task(struct rq * rq,struct task_struct * prev)272 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
273 {
274 	/* Try to pull RT tasks here if we lower this rq's prio */
275 	return rq->rt.highest_prio.curr > prev->prio;
276 }
277 
rt_overloaded(struct rq * rq)278 static inline int rt_overloaded(struct rq *rq)
279 {
280 	return atomic_read(&rq->rd->rto_count);
281 }
282 
rt_set_overload(struct rq * rq)283 static inline void rt_set_overload(struct rq *rq)
284 {
285 	if (!rq->online)
286 		return;
287 
288 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
289 	/*
290 	 * Make sure the mask is visible before we set
291 	 * the overload count. That is checked to determine
292 	 * if we should look at the mask. It would be a shame
293 	 * if we looked at the mask, but the mask was not
294 	 * updated yet.
295 	 *
296 	 * Matched by the barrier in pull_rt_task().
297 	 */
298 	smp_wmb();
299 	atomic_inc(&rq->rd->rto_count);
300 }
301 
rt_clear_overload(struct rq * rq)302 static inline void rt_clear_overload(struct rq *rq)
303 {
304 	if (!rq->online)
305 		return;
306 
307 	/* the order here really doesn't matter */
308 	atomic_dec(&rq->rd->rto_count);
309 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
310 }
311 
update_rt_migration(struct rt_rq * rt_rq)312 static void update_rt_migration(struct rt_rq *rt_rq)
313 {
314 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
315 		if (!rt_rq->overloaded) {
316 			rt_set_overload(rq_of_rt_rq(rt_rq));
317 			rt_rq->overloaded = 1;
318 		}
319 	} else if (rt_rq->overloaded) {
320 		rt_clear_overload(rq_of_rt_rq(rt_rq));
321 		rt_rq->overloaded = 0;
322 	}
323 }
324 
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)325 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
326 {
327 	struct task_struct *p;
328 
329 	if (!rt_entity_is_task(rt_se))
330 		return;
331 
332 	p = rt_task_of(rt_se);
333 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
334 
335 	rt_rq->rt_nr_total++;
336 	if (p->nr_cpus_allowed > 1)
337 		rt_rq->rt_nr_migratory++;
338 
339 	update_rt_migration(rt_rq);
340 }
341 
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)342 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
343 {
344 	struct task_struct *p;
345 
346 	if (!rt_entity_is_task(rt_se))
347 		return;
348 
349 	p = rt_task_of(rt_se);
350 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
351 
352 	rt_rq->rt_nr_total--;
353 	if (p->nr_cpus_allowed > 1)
354 		rt_rq->rt_nr_migratory--;
355 
356 	update_rt_migration(rt_rq);
357 }
358 
has_pushable_tasks(struct rq * rq)359 static inline int has_pushable_tasks(struct rq *rq)
360 {
361 	return !plist_head_empty(&rq->rt.pushable_tasks);
362 }
363 
364 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
365 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
366 
367 static void push_rt_tasks(struct rq *);
368 static void pull_rt_task(struct rq *);
369 
rt_queue_push_tasks(struct rq * rq)370 static inline void rt_queue_push_tasks(struct rq *rq)
371 {
372 	if (!has_pushable_tasks(rq))
373 		return;
374 
375 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
376 }
377 
rt_queue_pull_task(struct rq * rq)378 static inline void rt_queue_pull_task(struct rq *rq)
379 {
380 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
381 }
382 
enqueue_pushable_task(struct rq * rq,struct task_struct * p)383 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
384 {
385 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
386 	plist_node_init(&p->pushable_tasks, p->prio);
387 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
388 
389 	/* Update the highest prio pushable task */
390 	if (p->prio < rq->rt.highest_prio.next)
391 		rq->rt.highest_prio.next = p->prio;
392 }
393 
dequeue_pushable_task(struct rq * rq,struct task_struct * p)394 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
395 {
396 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
397 
398 	/* Update the new highest prio pushable task */
399 	if (has_pushable_tasks(rq)) {
400 		p = plist_first_entry(&rq->rt.pushable_tasks,
401 				      struct task_struct, pushable_tasks);
402 		rq->rt.highest_prio.next = p->prio;
403 	} else
404 		rq->rt.highest_prio.next = MAX_RT_PRIO;
405 }
406 
407 #else
408 
enqueue_pushable_task(struct rq * rq,struct task_struct * p)409 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
410 {
411 }
412 
dequeue_pushable_task(struct rq * rq,struct task_struct * p)413 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
414 {
415 }
416 
417 static inline
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)418 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
419 {
420 }
421 
422 static inline
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)423 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
424 {
425 }
426 
need_pull_rt_task(struct rq * rq,struct task_struct * prev)427 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
428 {
429 	return false;
430 }
431 
pull_rt_task(struct rq * this_rq)432 static inline void pull_rt_task(struct rq *this_rq)
433 {
434 }
435 
rt_queue_push_tasks(struct rq * rq)436 static inline void rt_queue_push_tasks(struct rq *rq)
437 {
438 }
439 #endif /* CONFIG_SMP */
440 
441 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
442 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
443 
on_rt_rq(struct sched_rt_entity * rt_se)444 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
445 {
446 	return rt_se->on_rq;
447 }
448 
449 #ifdef CONFIG_UCLAMP_TASK
450 /*
451  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
452  * settings.
453  *
454  * This check is only important for heterogeneous systems where uclamp_min value
455  * is higher than the capacity of a @cpu. For non-heterogeneous system this
456  * function will always return true.
457  *
458  * The function will return true if the capacity of the @cpu is >= the
459  * uclamp_min and false otherwise.
460  *
461  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
462  * > uclamp_max.
463  */
rt_task_fits_capacity(struct task_struct * p,int cpu)464 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
465 {
466 	unsigned int min_cap;
467 	unsigned int max_cap;
468 	unsigned int cpu_cap;
469 
470 	/* Only heterogeneous systems can benefit from this check */
471 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
472 		return true;
473 
474 	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
475 	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
476 
477 	cpu_cap = capacity_orig_of(cpu);
478 
479 	return cpu_cap >= min(min_cap, max_cap);
480 }
481 #else
rt_task_fits_capacity(struct task_struct * p,int cpu)482 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
483 {
484 	return true;
485 }
486 #endif
487 
488 #ifdef CONFIG_RT_GROUP_SCHED
489 
sched_rt_runtime(struct rt_rq * rt_rq)490 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
491 {
492 	if (!rt_rq->tg)
493 		return RUNTIME_INF;
494 
495 	return rt_rq->rt_runtime;
496 }
497 
sched_rt_period(struct rt_rq * rt_rq)498 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
499 {
500 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
501 }
502 
503 typedef struct task_group *rt_rq_iter_t;
504 
next_task_group(struct task_group * tg)505 static inline struct task_group *next_task_group(struct task_group *tg)
506 {
507 	do {
508 		tg = list_entry_rcu(tg->list.next,
509 			typeof(struct task_group), list);
510 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
511 
512 	if (&tg->list == &task_groups)
513 		tg = NULL;
514 
515 	return tg;
516 }
517 
518 #define for_each_rt_rq(rt_rq, iter, rq)					\
519 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
520 		(iter = next_task_group(iter)) &&			\
521 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
522 
523 #define for_each_sched_rt_entity(rt_se) \
524 	for (; rt_se; rt_se = rt_se->parent)
525 
group_rt_rq(struct sched_rt_entity * rt_se)526 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
527 {
528 	return rt_se->my_q;
529 }
530 
531 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
532 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
533 
sched_rt_rq_enqueue(struct rt_rq * rt_rq)534 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
535 {
536 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
537 	struct rq *rq = rq_of_rt_rq(rt_rq);
538 	struct sched_rt_entity *rt_se;
539 
540 	int cpu = cpu_of(rq);
541 
542 	rt_se = rt_rq->tg->rt_se[cpu];
543 
544 	if (rt_rq->rt_nr_running) {
545 		if (!rt_se)
546 			enqueue_top_rt_rq(rt_rq);
547 		else if (!on_rt_rq(rt_se))
548 			enqueue_rt_entity(rt_se, 0);
549 
550 		if (rt_rq->highest_prio.curr < curr->prio)
551 			resched_curr(rq);
552 	}
553 }
554 
sched_rt_rq_dequeue(struct rt_rq * rt_rq)555 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
556 {
557 	struct sched_rt_entity *rt_se;
558 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
559 
560 	rt_se = rt_rq->tg->rt_se[cpu];
561 
562 	if (!rt_se) {
563 		dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
564 		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
565 		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
566 	}
567 	else if (on_rt_rq(rt_se))
568 		dequeue_rt_entity(rt_se, 0);
569 }
570 
rt_rq_throttled(struct rt_rq * rt_rq)571 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
572 {
573 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
574 }
575 
rt_se_boosted(struct sched_rt_entity * rt_se)576 static int rt_se_boosted(struct sched_rt_entity *rt_se)
577 {
578 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
579 	struct task_struct *p;
580 
581 	if (rt_rq)
582 		return !!rt_rq->rt_nr_boosted;
583 
584 	p = rt_task_of(rt_se);
585 	return p->prio != p->normal_prio;
586 }
587 
588 #ifdef CONFIG_SMP
sched_rt_period_mask(void)589 static inline const struct cpumask *sched_rt_period_mask(void)
590 {
591 	return this_rq()->rd->span;
592 }
593 #else
sched_rt_period_mask(void)594 static inline const struct cpumask *sched_rt_period_mask(void)
595 {
596 	return cpu_online_mask;
597 }
598 #endif
599 
600 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)601 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
602 {
603 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
604 }
605 
sched_rt_bandwidth(struct rt_rq * rt_rq)606 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
607 {
608 	return &rt_rq->tg->rt_bandwidth;
609 }
610 
611 #else /* !CONFIG_RT_GROUP_SCHED */
612 
sched_rt_runtime(struct rt_rq * rt_rq)613 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
614 {
615 	return rt_rq->rt_runtime;
616 }
617 
sched_rt_period(struct rt_rq * rt_rq)618 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
619 {
620 	return ktime_to_ns(def_rt_bandwidth.rt_period);
621 }
622 
623 typedef struct rt_rq *rt_rq_iter_t;
624 
625 #define for_each_rt_rq(rt_rq, iter, rq) \
626 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
627 
628 #define for_each_sched_rt_entity(rt_se) \
629 	for (; rt_se; rt_se = NULL)
630 
group_rt_rq(struct sched_rt_entity * rt_se)631 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
632 {
633 	return NULL;
634 }
635 
sched_rt_rq_enqueue(struct rt_rq * rt_rq)636 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
637 {
638 	struct rq *rq = rq_of_rt_rq(rt_rq);
639 
640 	if (!rt_rq->rt_nr_running)
641 		return;
642 
643 	enqueue_top_rt_rq(rt_rq);
644 	resched_curr(rq);
645 }
646 
sched_rt_rq_dequeue(struct rt_rq * rt_rq)647 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
648 {
649 	dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
650 }
651 
rt_rq_throttled(struct rt_rq * rt_rq)652 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
653 {
654 	return rt_rq->rt_throttled;
655 }
656 
sched_rt_period_mask(void)657 static inline const struct cpumask *sched_rt_period_mask(void)
658 {
659 	return cpu_online_mask;
660 }
661 
662 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)663 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
664 {
665 	return &cpu_rq(cpu)->rt;
666 }
667 
sched_rt_bandwidth(struct rt_rq * rt_rq)668 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
669 {
670 	return &def_rt_bandwidth;
671 }
672 
673 #endif /* CONFIG_RT_GROUP_SCHED */
674 
sched_rt_bandwidth_account(struct rt_rq * rt_rq)675 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
676 {
677 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
678 
679 	return (hrtimer_active(&rt_b->rt_period_timer) ||
680 		rt_rq->rt_time < rt_b->rt_runtime);
681 }
682 
683 #ifdef CONFIG_SMP
684 /*
685  * We ran out of runtime, see if we can borrow some from our neighbours.
686  */
do_balance_runtime(struct rt_rq * rt_rq)687 static void do_balance_runtime(struct rt_rq *rt_rq)
688 {
689 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
690 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
691 	int i, weight;
692 	u64 rt_period;
693 
694 	weight = cpumask_weight(rd->span);
695 
696 	raw_spin_lock(&rt_b->rt_runtime_lock);
697 	rt_period = ktime_to_ns(rt_b->rt_period);
698 	for_each_cpu(i, rd->span) {
699 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
700 		s64 diff;
701 
702 		if (iter == rt_rq)
703 			continue;
704 
705 		raw_spin_lock(&iter->rt_runtime_lock);
706 		/*
707 		 * Either all rqs have inf runtime and there's nothing to steal
708 		 * or __disable_runtime() below sets a specific rq to inf to
709 		 * indicate its been disabled and disalow stealing.
710 		 */
711 		if (iter->rt_runtime == RUNTIME_INF)
712 			goto next;
713 
714 		/*
715 		 * From runqueues with spare time, take 1/n part of their
716 		 * spare time, but no more than our period.
717 		 */
718 		diff = iter->rt_runtime - iter->rt_time;
719 		if (diff > 0) {
720 			diff = div_u64((u64)diff, weight);
721 			if (rt_rq->rt_runtime + diff > rt_period)
722 				diff = rt_period - rt_rq->rt_runtime;
723 			iter->rt_runtime -= diff;
724 			rt_rq->rt_runtime += diff;
725 			if (rt_rq->rt_runtime == rt_period) {
726 				raw_spin_unlock(&iter->rt_runtime_lock);
727 				break;
728 			}
729 		}
730 next:
731 		raw_spin_unlock(&iter->rt_runtime_lock);
732 	}
733 	raw_spin_unlock(&rt_b->rt_runtime_lock);
734 }
735 
736 /*
737  * Ensure this RQ takes back all the runtime it lend to its neighbours.
738  */
__disable_runtime(struct rq * rq)739 static void __disable_runtime(struct rq *rq)
740 {
741 	struct root_domain *rd = rq->rd;
742 	rt_rq_iter_t iter;
743 	struct rt_rq *rt_rq;
744 
745 	if (unlikely(!scheduler_running))
746 		return;
747 
748 	for_each_rt_rq(rt_rq, iter, rq) {
749 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
750 		s64 want;
751 		int i;
752 
753 		raw_spin_lock(&rt_b->rt_runtime_lock);
754 		raw_spin_lock(&rt_rq->rt_runtime_lock);
755 		/*
756 		 * Either we're all inf and nobody needs to borrow, or we're
757 		 * already disabled and thus have nothing to do, or we have
758 		 * exactly the right amount of runtime to take out.
759 		 */
760 		if (rt_rq->rt_runtime == RUNTIME_INF ||
761 				rt_rq->rt_runtime == rt_b->rt_runtime)
762 			goto balanced;
763 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
764 
765 		/*
766 		 * Calculate the difference between what we started out with
767 		 * and what we current have, that's the amount of runtime
768 		 * we lend and now have to reclaim.
769 		 */
770 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
771 
772 		/*
773 		 * Greedy reclaim, take back as much as we can.
774 		 */
775 		for_each_cpu(i, rd->span) {
776 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
777 			s64 diff;
778 
779 			/*
780 			 * Can't reclaim from ourselves or disabled runqueues.
781 			 */
782 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
783 				continue;
784 
785 			raw_spin_lock(&iter->rt_runtime_lock);
786 			if (want > 0) {
787 				diff = min_t(s64, iter->rt_runtime, want);
788 				iter->rt_runtime -= diff;
789 				want -= diff;
790 			} else {
791 				iter->rt_runtime -= want;
792 				want -= want;
793 			}
794 			raw_spin_unlock(&iter->rt_runtime_lock);
795 
796 			if (!want)
797 				break;
798 		}
799 
800 		raw_spin_lock(&rt_rq->rt_runtime_lock);
801 		/*
802 		 * We cannot be left wanting - that would mean some runtime
803 		 * leaked out of the system.
804 		 */
805 		BUG_ON(want);
806 balanced:
807 		/*
808 		 * Disable all the borrow logic by pretending we have inf
809 		 * runtime - in which case borrowing doesn't make sense.
810 		 */
811 		rt_rq->rt_runtime = RUNTIME_INF;
812 		rt_rq->rt_throttled = 0;
813 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
814 		raw_spin_unlock(&rt_b->rt_runtime_lock);
815 
816 		/* Make rt_rq available for pick_next_task() */
817 		sched_rt_rq_enqueue(rt_rq);
818 	}
819 }
820 
__enable_runtime(struct rq * rq)821 static void __enable_runtime(struct rq *rq)
822 {
823 	rt_rq_iter_t iter;
824 	struct rt_rq *rt_rq;
825 
826 	if (unlikely(!scheduler_running))
827 		return;
828 
829 	/*
830 	 * Reset each runqueue's bandwidth settings
831 	 */
832 	for_each_rt_rq(rt_rq, iter, rq) {
833 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
834 
835 		raw_spin_lock(&rt_b->rt_runtime_lock);
836 		raw_spin_lock(&rt_rq->rt_runtime_lock);
837 		rt_rq->rt_runtime = rt_b->rt_runtime;
838 		rt_rq->rt_time = 0;
839 		rt_rq->rt_throttled = 0;
840 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
841 		raw_spin_unlock(&rt_b->rt_runtime_lock);
842 	}
843 }
844 
balance_runtime(struct rt_rq * rt_rq)845 static void balance_runtime(struct rt_rq *rt_rq)
846 {
847 	if (!sched_feat(RT_RUNTIME_SHARE))
848 		return;
849 
850 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
851 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
852 		do_balance_runtime(rt_rq);
853 		raw_spin_lock(&rt_rq->rt_runtime_lock);
854 	}
855 }
856 #else /* !CONFIG_SMP */
balance_runtime(struct rt_rq * rt_rq)857 static inline void balance_runtime(struct rt_rq *rt_rq) {}
858 #endif /* CONFIG_SMP */
859 
do_sched_rt_period_timer(struct rt_bandwidth * rt_b,int overrun)860 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
861 {
862 	int i, idle = 1, throttled = 0;
863 	const struct cpumask *span;
864 
865 	span = sched_rt_period_mask();
866 #ifdef CONFIG_RT_GROUP_SCHED
867 	/*
868 	 * FIXME: isolated CPUs should really leave the root task group,
869 	 * whether they are isolcpus or were isolated via cpusets, lest
870 	 * the timer run on a CPU which does not service all runqueues,
871 	 * potentially leaving other CPUs indefinitely throttled.  If
872 	 * isolation is really required, the user will turn the throttle
873 	 * off to kill the perturbations it causes anyway.  Meanwhile,
874 	 * this maintains functionality for boot and/or troubleshooting.
875 	 */
876 	if (rt_b == &root_task_group.rt_bandwidth)
877 		span = cpu_online_mask;
878 #endif
879 	for_each_cpu(i, span) {
880 		int enqueue = 0;
881 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
882 		struct rq *rq = rq_of_rt_rq(rt_rq);
883 		int skip;
884 
885 		/*
886 		 * When span == cpu_online_mask, taking each rq->lock
887 		 * can be time-consuming. Try to avoid it when possible.
888 		 */
889 		raw_spin_lock(&rt_rq->rt_runtime_lock);
890 		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
891 			rt_rq->rt_runtime = rt_b->rt_runtime;
892 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
893 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
894 		if (skip)
895 			continue;
896 
897 		raw_spin_lock(&rq->lock);
898 		update_rq_clock(rq);
899 
900 		if (rt_rq->rt_time) {
901 			u64 runtime;
902 
903 			raw_spin_lock(&rt_rq->rt_runtime_lock);
904 			if (rt_rq->rt_throttled)
905 				balance_runtime(rt_rq);
906 			runtime = rt_rq->rt_runtime;
907 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
908 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
909 				rt_rq->rt_throttled = 0;
910 				enqueue = 1;
911 
912 				/*
913 				 * When we're idle and a woken (rt) task is
914 				 * throttled check_preempt_curr() will set
915 				 * skip_update and the time between the wakeup
916 				 * and this unthrottle will get accounted as
917 				 * 'runtime'.
918 				 */
919 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
920 					rq_clock_cancel_skipupdate(rq);
921 			}
922 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
923 				idle = 0;
924 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
925 		} else if (rt_rq->rt_nr_running) {
926 			idle = 0;
927 			if (!rt_rq_throttled(rt_rq))
928 				enqueue = 1;
929 		}
930 		if (rt_rq->rt_throttled)
931 			throttled = 1;
932 
933 		if (enqueue)
934 			sched_rt_rq_enqueue(rt_rq);
935 		raw_spin_unlock(&rq->lock);
936 	}
937 
938 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
939 		return 1;
940 
941 	return idle;
942 }
943 
rt_se_prio(struct sched_rt_entity * rt_se)944 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
945 {
946 #ifdef CONFIG_RT_GROUP_SCHED
947 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
948 
949 	if (rt_rq)
950 		return rt_rq->highest_prio.curr;
951 #endif
952 
953 	return rt_task_of(rt_se)->prio;
954 }
955 
sched_rt_runtime_exceeded(struct rt_rq * rt_rq)956 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
957 {
958 	u64 runtime = sched_rt_runtime(rt_rq);
959 
960 	if (rt_rq->rt_throttled)
961 		return rt_rq_throttled(rt_rq);
962 
963 	if (runtime >= sched_rt_period(rt_rq))
964 		return 0;
965 
966 	balance_runtime(rt_rq);
967 	runtime = sched_rt_runtime(rt_rq);
968 	if (runtime == RUNTIME_INF)
969 		return 0;
970 
971 	if (rt_rq->rt_time > runtime) {
972 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
973 
974 		/*
975 		 * Don't actually throttle groups that have no runtime assigned
976 		 * but accrue some time due to boosting.
977 		 */
978 		if (likely(rt_b->rt_runtime)) {
979 			rt_rq->rt_throttled = 1;
980 			printk_deferred_once("sched: RT throttling activated\n");
981 		} else {
982 			/*
983 			 * In case we did anyway, make it go away,
984 			 * replenishment is a joke, since it will replenish us
985 			 * with exactly 0 ns.
986 			 */
987 			rt_rq->rt_time = 0;
988 		}
989 
990 		if (rt_rq_throttled(rt_rq)) {
991 			sched_rt_rq_dequeue(rt_rq);
992 			return 1;
993 		}
994 	}
995 
996 	return 0;
997 }
998 
999 /*
1000  * Update the current task's runtime statistics. Skip current tasks that
1001  * are not in our scheduling class.
1002  */
update_curr_rt(struct rq * rq)1003 static void update_curr_rt(struct rq *rq)
1004 {
1005 	struct task_struct *curr = rq->curr;
1006 	struct sched_rt_entity *rt_se = &curr->rt;
1007 	u64 delta_exec;
1008 	u64 now;
1009 
1010 	if (curr->sched_class != &rt_sched_class)
1011 		return;
1012 
1013 	now = rq_clock_task(rq);
1014 	delta_exec = now - curr->se.exec_start;
1015 	if (unlikely((s64)delta_exec <= 0))
1016 		return;
1017 
1018 	schedstat_set(curr->se.statistics.exec_max,
1019 		      max(curr->se.statistics.exec_max, delta_exec));
1020 
1021 	curr->se.sum_exec_runtime += delta_exec;
1022 	account_group_exec_runtime(curr, delta_exec);
1023 
1024 	curr->se.exec_start = now;
1025 	cgroup_account_cputime(curr, delta_exec);
1026 
1027 	if (!rt_bandwidth_enabled())
1028 		return;
1029 
1030 	for_each_sched_rt_entity(rt_se) {
1031 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1032 		int exceeded;
1033 
1034 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1035 			raw_spin_lock(&rt_rq->rt_runtime_lock);
1036 			rt_rq->rt_time += delta_exec;
1037 			exceeded = sched_rt_runtime_exceeded(rt_rq);
1038 			if (exceeded)
1039 				resched_curr(rq);
1040 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1041 			if (exceeded)
1042 				do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1043 		}
1044 	}
1045 }
1046 
1047 static void
dequeue_top_rt_rq(struct rt_rq * rt_rq,unsigned int count)1048 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1049 {
1050 	struct rq *rq = rq_of_rt_rq(rt_rq);
1051 
1052 	BUG_ON(&rq->rt != rt_rq);
1053 
1054 	if (!rt_rq->rt_queued)
1055 		return;
1056 
1057 	BUG_ON(!rq->nr_running);
1058 
1059 	sub_nr_running(rq, count);
1060 	rt_rq->rt_queued = 0;
1061 
1062 }
1063 
1064 static void
enqueue_top_rt_rq(struct rt_rq * rt_rq)1065 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1066 {
1067 	struct rq *rq = rq_of_rt_rq(rt_rq);
1068 
1069 	BUG_ON(&rq->rt != rt_rq);
1070 
1071 	if (rt_rq->rt_queued)
1072 		return;
1073 
1074 	if (rt_rq_throttled(rt_rq))
1075 		return;
1076 
1077 	if (rt_rq->rt_nr_running) {
1078 		add_nr_running(rq, rt_rq->rt_nr_running);
1079 		rt_rq->rt_queued = 1;
1080 	}
1081 
1082 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1083 	cpufreq_update_util(rq, 0);
1084 }
1085 
1086 #if defined CONFIG_SMP
1087 
1088 static void
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1089 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1090 {
1091 	struct rq *rq = rq_of_rt_rq(rt_rq);
1092 
1093 #ifdef CONFIG_RT_GROUP_SCHED
1094 	/*
1095 	 * Change rq's cpupri only if rt_rq is the top queue.
1096 	 */
1097 	if (&rq->rt != rt_rq)
1098 		return;
1099 #endif
1100 	if (rq->online && prio < prev_prio)
1101 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1102 }
1103 
1104 static void
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1105 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1106 {
1107 	struct rq *rq = rq_of_rt_rq(rt_rq);
1108 
1109 #ifdef CONFIG_RT_GROUP_SCHED
1110 	/*
1111 	 * Change rq's cpupri only if rt_rq is the top queue.
1112 	 */
1113 	if (&rq->rt != rt_rq)
1114 		return;
1115 #endif
1116 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1117 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1118 }
1119 
1120 #else /* CONFIG_SMP */
1121 
1122 static inline
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1123 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1124 static inline
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1125 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1126 
1127 #endif /* CONFIG_SMP */
1128 
1129 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1130 static void
inc_rt_prio(struct rt_rq * rt_rq,int prio)1131 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1132 {
1133 	int prev_prio = rt_rq->highest_prio.curr;
1134 
1135 	if (prio < prev_prio)
1136 		rt_rq->highest_prio.curr = prio;
1137 
1138 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1139 }
1140 
1141 static void
dec_rt_prio(struct rt_rq * rt_rq,int prio)1142 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1143 {
1144 	int prev_prio = rt_rq->highest_prio.curr;
1145 
1146 	if (rt_rq->rt_nr_running) {
1147 
1148 		WARN_ON(prio < prev_prio);
1149 
1150 		/*
1151 		 * This may have been our highest task, and therefore
1152 		 * we may have some recomputation to do
1153 		 */
1154 		if (prio == prev_prio) {
1155 			struct rt_prio_array *array = &rt_rq->active;
1156 
1157 			rt_rq->highest_prio.curr =
1158 				sched_find_first_bit(array->bitmap);
1159 		}
1160 
1161 	} else
1162 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1163 
1164 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1165 }
1166 
1167 #else
1168 
inc_rt_prio(struct rt_rq * rt_rq,int prio)1169 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
dec_rt_prio(struct rt_rq * rt_rq,int prio)1170 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1171 
1172 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1173 
1174 #ifdef CONFIG_RT_GROUP_SCHED
1175 
1176 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1177 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1178 {
1179 	if (rt_se_boosted(rt_se))
1180 		rt_rq->rt_nr_boosted++;
1181 
1182 	if (rt_rq->tg)
1183 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1184 }
1185 
1186 static void
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1187 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1188 {
1189 	if (rt_se_boosted(rt_se))
1190 		rt_rq->rt_nr_boosted--;
1191 
1192 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1193 }
1194 
1195 #else /* CONFIG_RT_GROUP_SCHED */
1196 
1197 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1198 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1199 {
1200 	start_rt_bandwidth(&def_rt_bandwidth);
1201 }
1202 
1203 static inline
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1204 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1205 
1206 #endif /* CONFIG_RT_GROUP_SCHED */
1207 
1208 static inline
rt_se_nr_running(struct sched_rt_entity * rt_se)1209 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1210 {
1211 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1212 
1213 	if (group_rq)
1214 		return group_rq->rt_nr_running;
1215 	else
1216 		return 1;
1217 }
1218 
1219 static inline
rt_se_rr_nr_running(struct sched_rt_entity * rt_se)1220 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1221 {
1222 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1223 	struct task_struct *tsk;
1224 
1225 	if (group_rq)
1226 		return group_rq->rr_nr_running;
1227 
1228 	tsk = rt_task_of(rt_se);
1229 
1230 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1231 }
1232 
1233 static inline
inc_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1234 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1235 {
1236 	int prio = rt_se_prio(rt_se);
1237 
1238 	WARN_ON(!rt_prio(prio));
1239 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1240 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1241 
1242 	inc_rt_prio(rt_rq, prio);
1243 	inc_rt_migration(rt_se, rt_rq);
1244 	inc_rt_group(rt_se, rt_rq);
1245 }
1246 
1247 static inline
dec_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1248 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1249 {
1250 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1251 	WARN_ON(!rt_rq->rt_nr_running);
1252 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1253 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1254 
1255 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1256 	dec_rt_migration(rt_se, rt_rq);
1257 	dec_rt_group(rt_se, rt_rq);
1258 }
1259 
1260 /*
1261  * Change rt_se->run_list location unless SAVE && !MOVE
1262  *
1263  * assumes ENQUEUE/DEQUEUE flags match
1264  */
move_entity(unsigned int flags)1265 static inline bool move_entity(unsigned int flags)
1266 {
1267 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1268 		return false;
1269 
1270 	return true;
1271 }
1272 
__delist_rt_entity(struct sched_rt_entity * rt_se,struct rt_prio_array * array)1273 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1274 {
1275 	list_del_init(&rt_se->run_list);
1276 
1277 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1278 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1279 
1280 	rt_se->on_list = 0;
1281 }
1282 
__enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1283 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1284 {
1285 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1286 	struct rt_prio_array *array = &rt_rq->active;
1287 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1288 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1289 
1290 	/*
1291 	 * Don't enqueue the group if its throttled, or when empty.
1292 	 * The latter is a consequence of the former when a child group
1293 	 * get throttled and the current group doesn't have any other
1294 	 * active members.
1295 	 */
1296 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1297 		if (rt_se->on_list)
1298 			__delist_rt_entity(rt_se, array);
1299 		return;
1300 	}
1301 
1302 	if (move_entity(flags)) {
1303 		WARN_ON_ONCE(rt_se->on_list);
1304 		if (flags & ENQUEUE_HEAD)
1305 			list_add(&rt_se->run_list, queue);
1306 		else
1307 			list_add_tail(&rt_se->run_list, queue);
1308 
1309 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1310 		rt_se->on_list = 1;
1311 	}
1312 	rt_se->on_rq = 1;
1313 
1314 	inc_rt_tasks(rt_se, rt_rq);
1315 }
1316 
__dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1317 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1318 {
1319 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1320 	struct rt_prio_array *array = &rt_rq->active;
1321 
1322 	if (move_entity(flags)) {
1323 		WARN_ON_ONCE(!rt_se->on_list);
1324 		__delist_rt_entity(rt_se, array);
1325 	}
1326 	rt_se->on_rq = 0;
1327 
1328 	dec_rt_tasks(rt_se, rt_rq);
1329 }
1330 
1331 /*
1332  * Because the prio of an upper entry depends on the lower
1333  * entries, we must remove entries top - down.
1334  */
dequeue_rt_stack(struct sched_rt_entity * rt_se,unsigned int flags)1335 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1336 {
1337 	struct sched_rt_entity *back = NULL;
1338 	unsigned int rt_nr_running;
1339 
1340 	for_each_sched_rt_entity(rt_se) {
1341 		rt_se->back = back;
1342 		back = rt_se;
1343 	}
1344 
1345 	rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1346 
1347 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1348 		if (on_rt_rq(rt_se))
1349 			__dequeue_rt_entity(rt_se, flags);
1350 	}
1351 
1352 	dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1353 }
1354 
enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1355 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1356 {
1357 	struct rq *rq = rq_of_rt_se(rt_se);
1358 
1359 	dequeue_rt_stack(rt_se, flags);
1360 	for_each_sched_rt_entity(rt_se)
1361 		__enqueue_rt_entity(rt_se, flags);
1362 	enqueue_top_rt_rq(&rq->rt);
1363 }
1364 
dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1365 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1366 {
1367 	struct rq *rq = rq_of_rt_se(rt_se);
1368 
1369 	dequeue_rt_stack(rt_se, flags);
1370 
1371 	for_each_sched_rt_entity(rt_se) {
1372 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1373 
1374 		if (rt_rq && rt_rq->rt_nr_running)
1375 			__enqueue_rt_entity(rt_se, flags);
1376 	}
1377 	enqueue_top_rt_rq(&rq->rt);
1378 }
1379 
1380 /*
1381  * Adding/removing a task to/from a priority array:
1382  */
1383 static void
enqueue_task_rt(struct rq * rq,struct task_struct * p,int flags)1384 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1385 {
1386 	struct sched_rt_entity *rt_se = &p->rt;
1387 
1388 	if (flags & ENQUEUE_WAKEUP)
1389 		rt_se->timeout = 0;
1390 
1391 	enqueue_rt_entity(rt_se, flags);
1392 
1393 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1394 		enqueue_pushable_task(rq, p);
1395 }
1396 
dequeue_task_rt(struct rq * rq,struct task_struct * p,int flags)1397 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1398 {
1399 	struct sched_rt_entity *rt_se = &p->rt;
1400 
1401 	update_curr_rt(rq);
1402 	dequeue_rt_entity(rt_se, flags);
1403 
1404 	dequeue_pushable_task(rq, p);
1405 }
1406 
1407 /*
1408  * Put task to the head or the end of the run list without the overhead of
1409  * dequeue followed by enqueue.
1410  */
1411 static void
requeue_rt_entity(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int head)1412 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1413 {
1414 	if (on_rt_rq(rt_se)) {
1415 		struct rt_prio_array *array = &rt_rq->active;
1416 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1417 
1418 		if (head)
1419 			list_move(&rt_se->run_list, queue);
1420 		else
1421 			list_move_tail(&rt_se->run_list, queue);
1422 	}
1423 }
1424 
requeue_task_rt(struct rq * rq,struct task_struct * p,int head)1425 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1426 {
1427 	struct sched_rt_entity *rt_se = &p->rt;
1428 	struct rt_rq *rt_rq;
1429 
1430 	for_each_sched_rt_entity(rt_se) {
1431 		rt_rq = rt_rq_of_se(rt_se);
1432 		requeue_rt_entity(rt_rq, rt_se, head);
1433 	}
1434 }
1435 
yield_task_rt(struct rq * rq)1436 static void yield_task_rt(struct rq *rq)
1437 {
1438 	requeue_task_rt(rq, rq->curr, 0);
1439 }
1440 
1441 #ifdef CONFIG_SMP
1442 static int find_lowest_rq(struct task_struct *task);
1443 
1444 static int
select_task_rq_rt(struct task_struct * p,int cpu,int sd_flag,int flags)1445 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1446 {
1447 	struct task_struct *curr;
1448 	struct rq *rq;
1449 	bool test;
1450 	int target_cpu = -1;
1451 
1452 	trace_android_rvh_select_task_rq_rt(p, cpu, sd_flag,
1453 					flags, &target_cpu);
1454 	if (target_cpu >= 0)
1455 		return target_cpu;
1456 
1457 	/* For anything but wake ups, just return the task_cpu */
1458 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1459 		goto out;
1460 
1461 	rq = cpu_rq(cpu);
1462 
1463 	rcu_read_lock();
1464 	curr = READ_ONCE(rq->curr); /* unlocked access */
1465 
1466 	/*
1467 	 * If the current task on @p's runqueue is an RT task, then
1468 	 * try to see if we can wake this RT task up on another
1469 	 * runqueue. Otherwise simply start this RT task
1470 	 * on its current runqueue.
1471 	 *
1472 	 * We want to avoid overloading runqueues. If the woken
1473 	 * task is a higher priority, then it will stay on this CPU
1474 	 * and the lower prio task should be moved to another CPU.
1475 	 * Even though this will probably make the lower prio task
1476 	 * lose its cache, we do not want to bounce a higher task
1477 	 * around just because it gave up its CPU, perhaps for a
1478 	 * lock?
1479 	 *
1480 	 * For equal prio tasks, we just let the scheduler sort it out.
1481 	 *
1482 	 * Otherwise, just let it ride on the affined RQ and the
1483 	 * post-schedule router will push the preempted task away
1484 	 *
1485 	 * This test is optimistic, if we get it wrong the load-balancer
1486 	 * will have to sort it out.
1487 	 *
1488 	 * We take into account the capacity of the CPU to ensure it fits the
1489 	 * requirement of the task - which is only important on heterogeneous
1490 	 * systems like big.LITTLE.
1491 	 */
1492 	test = curr &&
1493 	       unlikely(rt_task(curr)) &&
1494 	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1495 
1496 	if (test || !rt_task_fits_capacity(p, cpu)) {
1497 		int target = find_lowest_rq(p);
1498 
1499 		/*
1500 		 * Bail out if we were forcing a migration to find a better
1501 		 * fitting CPU but our search failed.
1502 		 */
1503 		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1504 			goto out_unlock;
1505 
1506 		/*
1507 		 * Don't bother moving it if the destination CPU is
1508 		 * not running a lower priority task.
1509 		 */
1510 		if (target != -1 &&
1511 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1512 			cpu = target;
1513 	}
1514 
1515 out_unlock:
1516 	rcu_read_unlock();
1517 
1518 out:
1519 	return cpu;
1520 }
1521 
check_preempt_equal_prio(struct rq * rq,struct task_struct * p)1522 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1523 {
1524 	/*
1525 	 * Current can't be migrated, useless to reschedule,
1526 	 * let's hope p can move out.
1527 	 */
1528 	if (rq->curr->nr_cpus_allowed == 1 ||
1529 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1530 		return;
1531 
1532 	/*
1533 	 * p is migratable, so let's not schedule it and
1534 	 * see if it is pushed or pulled somewhere else.
1535 	 */
1536 	if (p->nr_cpus_allowed != 1 &&
1537 	    cpupri_find(&rq->rd->cpupri, p, NULL))
1538 		return;
1539 
1540 	/*
1541 	 * There appear to be other CPUs that can accept
1542 	 * the current task but none can run 'p', so lets reschedule
1543 	 * to try and push the current task away:
1544 	 */
1545 	requeue_task_rt(rq, p, 1);
1546 	resched_curr(rq);
1547 }
1548 
balance_rt(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1549 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1550 {
1551 	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1552 		/*
1553 		 * This is OK, because current is on_cpu, which avoids it being
1554 		 * picked for load-balance and preemption/IRQs are still
1555 		 * disabled avoiding further scheduler activity on it and we've
1556 		 * not yet started the picking loop.
1557 		 */
1558 		rq_unpin_lock(rq, rf);
1559 		pull_rt_task(rq);
1560 		rq_repin_lock(rq, rf);
1561 	}
1562 
1563 	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1564 }
1565 #endif /* CONFIG_SMP */
1566 
1567 /*
1568  * Preempt the current task with a newly woken task if needed:
1569  */
check_preempt_curr_rt(struct rq * rq,struct task_struct * p,int flags)1570 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1571 {
1572 	if (p->prio < rq->curr->prio) {
1573 		resched_curr(rq);
1574 		return;
1575 	}
1576 
1577 #ifdef CONFIG_SMP
1578 	/*
1579 	 * If:
1580 	 *
1581 	 * - the newly woken task is of equal priority to the current task
1582 	 * - the newly woken task is non-migratable while current is migratable
1583 	 * - current will be preempted on the next reschedule
1584 	 *
1585 	 * we should check to see if current can readily move to a different
1586 	 * cpu.  If so, we will reschedule to allow the push logic to try
1587 	 * to move current somewhere else, making room for our non-migratable
1588 	 * task.
1589 	 */
1590 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1591 		check_preempt_equal_prio(rq, p);
1592 #endif
1593 }
1594 
set_next_task_rt(struct rq * rq,struct task_struct * p,bool first)1595 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1596 {
1597 	p->se.exec_start = rq_clock_task(rq);
1598 
1599 	/* The running task is never eligible for pushing */
1600 	dequeue_pushable_task(rq, p);
1601 
1602 	if (!first)
1603 		return;
1604 
1605 	/*
1606 	 * If prev task was rt, put_prev_task() has already updated the
1607 	 * utilization. We only care of the case where we start to schedule a
1608 	 * rt task
1609 	 */
1610 	if (rq->curr->sched_class != &rt_sched_class)
1611 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1612 
1613 	rt_queue_push_tasks(rq);
1614 }
1615 
pick_next_rt_entity(struct rt_rq * rt_rq)1616 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1617 {
1618 	struct rt_prio_array *array = &rt_rq->active;
1619 	struct sched_rt_entity *next = NULL;
1620 	struct list_head *queue;
1621 	int idx;
1622 
1623 	idx = sched_find_first_bit(array->bitmap);
1624 	BUG_ON(idx >= MAX_RT_PRIO);
1625 
1626 	queue = array->queue + idx;
1627 	if (SCHED_WARN_ON(list_empty(queue)))
1628 		return NULL;
1629 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1630 
1631 	return next;
1632 }
1633 
_pick_next_task_rt(struct rq * rq)1634 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1635 {
1636 	struct sched_rt_entity *rt_se;
1637 	struct rt_rq *rt_rq  = &rq->rt;
1638 
1639 	do {
1640 		rt_se = pick_next_rt_entity(rt_rq);
1641 		if (unlikely(!rt_se))
1642 			return NULL;
1643 		rt_rq = group_rt_rq(rt_se);
1644 	} while (rt_rq);
1645 
1646 	return rt_task_of(rt_se);
1647 }
1648 
1649 static struct task_struct *
pick_next_task_rt(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)1650 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1651 {
1652 	struct task_struct *p;
1653 
1654 	WARN_ON_ONCE(prev || rf);
1655 
1656 	if (!sched_rt_runnable(rq))
1657 		return NULL;
1658 
1659 	p = _pick_next_task_rt(rq);
1660 	set_next_task_rt(rq, p, true);
1661 	return p;
1662 }
1663 
put_prev_task_rt(struct rq * rq,struct task_struct * p)1664 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1665 {
1666 	update_curr_rt(rq);
1667 
1668 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1669 
1670 	/*
1671 	 * The previous task needs to be made eligible for pushing
1672 	 * if it is still active
1673 	 */
1674 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1675 		enqueue_pushable_task(rq, p);
1676 }
1677 
1678 #ifdef CONFIG_SMP
1679 
1680 /* Only try algorithms three times */
1681 #define RT_MAX_TRIES 3
1682 
pick_rt_task(struct rq * rq,struct task_struct * p,int cpu)1683 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1684 {
1685 	if (!task_running(rq, p) &&
1686 	    cpumask_test_cpu(cpu, p->cpus_ptr))
1687 		return 1;
1688 
1689 	return 0;
1690 }
1691 
1692 /*
1693  * Return the highest pushable rq's task, which is suitable to be executed
1694  * on the CPU, NULL otherwise
1695  */
pick_highest_pushable_task(struct rq * rq,int cpu)1696 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1697 {
1698 	struct plist_head *head = &rq->rt.pushable_tasks;
1699 	struct task_struct *p;
1700 
1701 	if (!has_pushable_tasks(rq))
1702 		return NULL;
1703 
1704 	plist_for_each_entry(p, head, pushable_tasks) {
1705 		if (pick_rt_task(rq, p, cpu))
1706 			return p;
1707 	}
1708 
1709 	return NULL;
1710 }
1711 
1712 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1713 
find_lowest_rq(struct task_struct * task)1714 static int find_lowest_rq(struct task_struct *task)
1715 {
1716 	struct sched_domain *sd;
1717 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1718 	int this_cpu = smp_processor_id();
1719 	int cpu      = task_cpu(task);
1720 	int ret;
1721 	int lowest_cpu = -1;
1722 
1723 	trace_android_rvh_find_lowest_rq(task, lowest_mask, &lowest_cpu);
1724 	if (lowest_cpu >= 0)
1725 		return lowest_cpu;
1726 
1727 	/* Make sure the mask is initialized first */
1728 	if (unlikely(!lowest_mask))
1729 		return -1;
1730 
1731 	if (task->nr_cpus_allowed == 1)
1732 		return -1; /* No other targets possible */
1733 
1734 	/*
1735 	 * If we're on asym system ensure we consider the different capacities
1736 	 * of the CPUs when searching for the lowest_mask.
1737 	 */
1738 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1739 
1740 		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1741 					  task, lowest_mask,
1742 					  rt_task_fits_capacity);
1743 	} else {
1744 
1745 		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1746 				  task, lowest_mask);
1747 	}
1748 
1749 	if (!ret)
1750 		return -1; /* No targets found */
1751 
1752 	/*
1753 	 * At this point we have built a mask of CPUs representing the
1754 	 * lowest priority tasks in the system.  Now we want to elect
1755 	 * the best one based on our affinity and topology.
1756 	 *
1757 	 * We prioritize the last CPU that the task executed on since
1758 	 * it is most likely cache-hot in that location.
1759 	 */
1760 	if (cpumask_test_cpu(cpu, lowest_mask))
1761 		return cpu;
1762 
1763 	/*
1764 	 * Otherwise, we consult the sched_domains span maps to figure
1765 	 * out which CPU is logically closest to our hot cache data.
1766 	 */
1767 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1768 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1769 
1770 	rcu_read_lock();
1771 	for_each_domain(cpu, sd) {
1772 		if (sd->flags & SD_WAKE_AFFINE) {
1773 			int best_cpu;
1774 
1775 			/*
1776 			 * "this_cpu" is cheaper to preempt than a
1777 			 * remote processor.
1778 			 */
1779 			if (this_cpu != -1 &&
1780 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1781 				rcu_read_unlock();
1782 				return this_cpu;
1783 			}
1784 
1785 			best_cpu = cpumask_first_and(lowest_mask,
1786 						     sched_domain_span(sd));
1787 			if (best_cpu < nr_cpu_ids) {
1788 				rcu_read_unlock();
1789 				return best_cpu;
1790 			}
1791 		}
1792 	}
1793 	rcu_read_unlock();
1794 
1795 	/*
1796 	 * And finally, if there were no matches within the domains
1797 	 * just give the caller *something* to work with from the compatible
1798 	 * locations.
1799 	 */
1800 	if (this_cpu != -1)
1801 		return this_cpu;
1802 
1803 	cpu = cpumask_any(lowest_mask);
1804 	if (cpu < nr_cpu_ids)
1805 		return cpu;
1806 
1807 	return -1;
1808 }
1809 
1810 /* Will lock the rq it finds */
find_lock_lowest_rq(struct task_struct * task,struct rq * rq)1811 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1812 {
1813 	struct rq *lowest_rq = NULL;
1814 	int tries;
1815 	int cpu;
1816 
1817 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1818 		cpu = find_lowest_rq(task);
1819 
1820 		if ((cpu == -1) || (cpu == rq->cpu))
1821 			break;
1822 
1823 		lowest_rq = cpu_rq(cpu);
1824 
1825 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1826 			/*
1827 			 * Target rq has tasks of equal or higher priority,
1828 			 * retrying does not release any lock and is unlikely
1829 			 * to yield a different result.
1830 			 */
1831 			lowest_rq = NULL;
1832 			break;
1833 		}
1834 
1835 		/* if the prio of this runqueue changed, try again */
1836 		if (double_lock_balance(rq, lowest_rq)) {
1837 			/*
1838 			 * We had to unlock the run queue. In
1839 			 * the mean time, task could have
1840 			 * migrated already or had its affinity changed.
1841 			 * Also make sure that it wasn't scheduled on its rq.
1842 			 */
1843 			if (unlikely(task_rq(task) != rq ||
1844 				     !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) ||
1845 				     task_running(rq, task) ||
1846 				     !rt_task(task) ||
1847 				     !task_on_rq_queued(task))) {
1848 
1849 				double_unlock_balance(rq, lowest_rq);
1850 				lowest_rq = NULL;
1851 				break;
1852 			}
1853 		}
1854 
1855 		/* If this rq is still suitable use it. */
1856 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1857 			break;
1858 
1859 		/* try again */
1860 		double_unlock_balance(rq, lowest_rq);
1861 		lowest_rq = NULL;
1862 	}
1863 
1864 	return lowest_rq;
1865 }
1866 
pick_next_pushable_task(struct rq * rq)1867 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1868 {
1869 	struct task_struct *p;
1870 
1871 	if (!has_pushable_tasks(rq))
1872 		return NULL;
1873 
1874 	p = plist_first_entry(&rq->rt.pushable_tasks,
1875 			      struct task_struct, pushable_tasks);
1876 
1877 	BUG_ON(rq->cpu != task_cpu(p));
1878 	BUG_ON(task_current(rq, p));
1879 	BUG_ON(p->nr_cpus_allowed <= 1);
1880 
1881 	BUG_ON(!task_on_rq_queued(p));
1882 	BUG_ON(!rt_task(p));
1883 
1884 	return p;
1885 }
1886 
1887 /*
1888  * If the current CPU has more than one RT task, see if the non
1889  * running task can migrate over to a CPU that is running a task
1890  * of lesser priority.
1891  */
push_rt_task(struct rq * rq)1892 static int push_rt_task(struct rq *rq)
1893 {
1894 	struct task_struct *next_task;
1895 	struct rq *lowest_rq;
1896 	int ret = 0;
1897 
1898 	if (!rq->rt.overloaded)
1899 		return 0;
1900 
1901 	next_task = pick_next_pushable_task(rq);
1902 	if (!next_task)
1903 		return 0;
1904 
1905 retry:
1906 	if (WARN_ON(next_task == rq->curr))
1907 		return 0;
1908 
1909 	/*
1910 	 * It's possible that the next_task slipped in of
1911 	 * higher priority than current. If that's the case
1912 	 * just reschedule current.
1913 	 */
1914 	if (unlikely(next_task->prio < rq->curr->prio)) {
1915 		resched_curr(rq);
1916 		return 0;
1917 	}
1918 
1919 	/* We might release rq lock */
1920 	get_task_struct(next_task);
1921 
1922 	/* find_lock_lowest_rq locks the rq if found */
1923 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1924 	if (!lowest_rq) {
1925 		struct task_struct *task;
1926 		/*
1927 		 * find_lock_lowest_rq releases rq->lock
1928 		 * so it is possible that next_task has migrated.
1929 		 *
1930 		 * We need to make sure that the task is still on the same
1931 		 * run-queue and is also still the next task eligible for
1932 		 * pushing.
1933 		 */
1934 		task = pick_next_pushable_task(rq);
1935 		if (task == next_task) {
1936 			/*
1937 			 * The task hasn't migrated, and is still the next
1938 			 * eligible task, but we failed to find a run-queue
1939 			 * to push it to.  Do not retry in this case, since
1940 			 * other CPUs will pull from us when ready.
1941 			 */
1942 			goto out;
1943 		}
1944 
1945 		if (!task)
1946 			/* No more tasks, just exit */
1947 			goto out;
1948 
1949 		/*
1950 		 * Something has shifted, try again.
1951 		 */
1952 		put_task_struct(next_task);
1953 		next_task = task;
1954 		goto retry;
1955 	}
1956 
1957 	deactivate_task(rq, next_task, 0);
1958 	set_task_cpu(next_task, lowest_rq->cpu);
1959 	activate_task(lowest_rq, next_task, 0);
1960 	ret = 1;
1961 
1962 	resched_curr(lowest_rq);
1963 
1964 	double_unlock_balance(rq, lowest_rq);
1965 
1966 out:
1967 	put_task_struct(next_task);
1968 
1969 	return ret;
1970 }
1971 
push_rt_tasks(struct rq * rq)1972 static void push_rt_tasks(struct rq *rq)
1973 {
1974 	/* push_rt_task will return true if it moved an RT */
1975 	while (push_rt_task(rq))
1976 		;
1977 }
1978 
1979 #ifdef HAVE_RT_PUSH_IPI
1980 
1981 /*
1982  * When a high priority task schedules out from a CPU and a lower priority
1983  * task is scheduled in, a check is made to see if there's any RT tasks
1984  * on other CPUs that are waiting to run because a higher priority RT task
1985  * is currently running on its CPU. In this case, the CPU with multiple RT
1986  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1987  * up that may be able to run one of its non-running queued RT tasks.
1988  *
1989  * All CPUs with overloaded RT tasks need to be notified as there is currently
1990  * no way to know which of these CPUs have the highest priority task waiting
1991  * to run. Instead of trying to take a spinlock on each of these CPUs,
1992  * which has shown to cause large latency when done on machines with many
1993  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1994  * RT tasks waiting to run.
1995  *
1996  * Just sending an IPI to each of the CPUs is also an issue, as on large
1997  * count CPU machines, this can cause an IPI storm on a CPU, especially
1998  * if its the only CPU with multiple RT tasks queued, and a large number
1999  * of CPUs scheduling a lower priority task at the same time.
2000  *
2001  * Each root domain has its own irq work function that can iterate over
2002  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2003  * tassk must be checked if there's one or many CPUs that are lowering
2004  * their priority, there's a single irq work iterator that will try to
2005  * push off RT tasks that are waiting to run.
2006  *
2007  * When a CPU schedules a lower priority task, it will kick off the
2008  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2009  * As it only takes the first CPU that schedules a lower priority task
2010  * to start the process, the rto_start variable is incremented and if
2011  * the atomic result is one, then that CPU will try to take the rto_lock.
2012  * This prevents high contention on the lock as the process handles all
2013  * CPUs scheduling lower priority tasks.
2014  *
2015  * All CPUs that are scheduling a lower priority task will increment the
2016  * rt_loop_next variable. This will make sure that the irq work iterator
2017  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2018  * priority task, even if the iterator is in the middle of a scan. Incrementing
2019  * the rt_loop_next will cause the iterator to perform another scan.
2020  *
2021  */
rto_next_cpu(struct root_domain * rd)2022 static int rto_next_cpu(struct root_domain *rd)
2023 {
2024 	int next;
2025 	int cpu;
2026 
2027 	/*
2028 	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2029 	 * rt_next_cpu() will simply return the first CPU found in
2030 	 * the rto_mask.
2031 	 *
2032 	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2033 	 * will return the next CPU found in the rto_mask.
2034 	 *
2035 	 * If there are no more CPUs left in the rto_mask, then a check is made
2036 	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2037 	 * the rto_lock held, but any CPU may increment the rto_loop_next
2038 	 * without any locking.
2039 	 */
2040 	for (;;) {
2041 
2042 		/* When rto_cpu is -1 this acts like cpumask_first() */
2043 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2044 
2045 		rd->rto_cpu = cpu;
2046 
2047 		if (cpu < nr_cpu_ids)
2048 			return cpu;
2049 
2050 		rd->rto_cpu = -1;
2051 
2052 		/*
2053 		 * ACQUIRE ensures we see the @rto_mask changes
2054 		 * made prior to the @next value observed.
2055 		 *
2056 		 * Matches WMB in rt_set_overload().
2057 		 */
2058 		next = atomic_read_acquire(&rd->rto_loop_next);
2059 
2060 		if (rd->rto_loop == next)
2061 			break;
2062 
2063 		rd->rto_loop = next;
2064 	}
2065 
2066 	return -1;
2067 }
2068 
rto_start_trylock(atomic_t * v)2069 static inline bool rto_start_trylock(atomic_t *v)
2070 {
2071 	return !atomic_cmpxchg_acquire(v, 0, 1);
2072 }
2073 
rto_start_unlock(atomic_t * v)2074 static inline void rto_start_unlock(atomic_t *v)
2075 {
2076 	atomic_set_release(v, 0);
2077 }
2078 
tell_cpu_to_push(struct rq * rq)2079 static void tell_cpu_to_push(struct rq *rq)
2080 {
2081 	int cpu = -1;
2082 
2083 	/* Keep the loop going if the IPI is currently active */
2084 	atomic_inc(&rq->rd->rto_loop_next);
2085 
2086 	/* Only one CPU can initiate a loop at a time */
2087 	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2088 		return;
2089 
2090 	raw_spin_lock(&rq->rd->rto_lock);
2091 
2092 	/*
2093 	 * The rto_cpu is updated under the lock, if it has a valid CPU
2094 	 * then the IPI is still running and will continue due to the
2095 	 * update to loop_next, and nothing needs to be done here.
2096 	 * Otherwise it is finishing up and an ipi needs to be sent.
2097 	 */
2098 	if (rq->rd->rto_cpu < 0)
2099 		cpu = rto_next_cpu(rq->rd);
2100 
2101 	raw_spin_unlock(&rq->rd->rto_lock);
2102 
2103 	rto_start_unlock(&rq->rd->rto_loop_start);
2104 
2105 	if (cpu >= 0) {
2106 		/* Make sure the rd does not get freed while pushing */
2107 		sched_get_rd(rq->rd);
2108 		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2109 	}
2110 }
2111 
2112 /* Called from hardirq context */
rto_push_irq_work_func(struct irq_work * work)2113 void rto_push_irq_work_func(struct irq_work *work)
2114 {
2115 	struct root_domain *rd =
2116 		container_of(work, struct root_domain, rto_push_work);
2117 	struct rq *rq;
2118 	int cpu;
2119 
2120 	rq = this_rq();
2121 
2122 	/*
2123 	 * We do not need to grab the lock to check for has_pushable_tasks.
2124 	 * When it gets updated, a check is made if a push is possible.
2125 	 */
2126 	if (has_pushable_tasks(rq)) {
2127 		raw_spin_lock(&rq->lock);
2128 		push_rt_tasks(rq);
2129 		raw_spin_unlock(&rq->lock);
2130 	}
2131 
2132 	raw_spin_lock(&rd->rto_lock);
2133 
2134 	/* Pass the IPI to the next rt overloaded queue */
2135 	cpu = rto_next_cpu(rd);
2136 
2137 	raw_spin_unlock(&rd->rto_lock);
2138 
2139 	if (cpu < 0) {
2140 		sched_put_rd(rd);
2141 		return;
2142 	}
2143 
2144 	/* Try the next RT overloaded CPU */
2145 	irq_work_queue_on(&rd->rto_push_work, cpu);
2146 }
2147 #endif /* HAVE_RT_PUSH_IPI */
2148 
pull_rt_task(struct rq * this_rq)2149 static void pull_rt_task(struct rq *this_rq)
2150 {
2151 	int this_cpu = this_rq->cpu, cpu;
2152 	bool resched = false;
2153 	struct task_struct *p;
2154 	struct rq *src_rq;
2155 	int rt_overload_count = rt_overloaded(this_rq);
2156 
2157 	if (likely(!rt_overload_count))
2158 		return;
2159 
2160 	/*
2161 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2162 	 * see overloaded we must also see the rto_mask bit.
2163 	 */
2164 	smp_rmb();
2165 
2166 	/* If we are the only overloaded CPU do nothing */
2167 	if (rt_overload_count == 1 &&
2168 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2169 		return;
2170 
2171 #ifdef HAVE_RT_PUSH_IPI
2172 	if (sched_feat(RT_PUSH_IPI)) {
2173 		tell_cpu_to_push(this_rq);
2174 		return;
2175 	}
2176 #endif
2177 
2178 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2179 		if (this_cpu == cpu)
2180 			continue;
2181 
2182 		src_rq = cpu_rq(cpu);
2183 
2184 		/*
2185 		 * Don't bother taking the src_rq->lock if the next highest
2186 		 * task is known to be lower-priority than our current task.
2187 		 * This may look racy, but if this value is about to go
2188 		 * logically higher, the src_rq will push this task away.
2189 		 * And if its going logically lower, we do not care
2190 		 */
2191 		if (src_rq->rt.highest_prio.next >=
2192 		    this_rq->rt.highest_prio.curr)
2193 			continue;
2194 
2195 		/*
2196 		 * We can potentially drop this_rq's lock in
2197 		 * double_lock_balance, and another CPU could
2198 		 * alter this_rq
2199 		 */
2200 		double_lock_balance(this_rq, src_rq);
2201 
2202 		/*
2203 		 * We can pull only a task, which is pushable
2204 		 * on its rq, and no others.
2205 		 */
2206 		p = pick_highest_pushable_task(src_rq, this_cpu);
2207 
2208 		/*
2209 		 * Do we have an RT task that preempts
2210 		 * the to-be-scheduled task?
2211 		 */
2212 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2213 			WARN_ON(p == src_rq->curr);
2214 			WARN_ON(!task_on_rq_queued(p));
2215 
2216 			/*
2217 			 * There's a chance that p is higher in priority
2218 			 * than what's currently running on its CPU.
2219 			 * This is just that p is wakeing up and hasn't
2220 			 * had a chance to schedule. We only pull
2221 			 * p if it is lower in priority than the
2222 			 * current task on the run queue
2223 			 */
2224 			if (p->prio < src_rq->curr->prio)
2225 				goto skip;
2226 
2227 			resched = true;
2228 
2229 			deactivate_task(src_rq, p, 0);
2230 			set_task_cpu(p, this_cpu);
2231 			activate_task(this_rq, p, 0);
2232 			/*
2233 			 * We continue with the search, just in
2234 			 * case there's an even higher prio task
2235 			 * in another runqueue. (low likelihood
2236 			 * but possible)
2237 			 */
2238 		}
2239 skip:
2240 		double_unlock_balance(this_rq, src_rq);
2241 	}
2242 
2243 	if (resched)
2244 		resched_curr(this_rq);
2245 }
2246 
2247 /*
2248  * If we are not running and we are not going to reschedule soon, we should
2249  * try to push tasks away now
2250  */
task_woken_rt(struct rq * rq,struct task_struct * p)2251 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2252 {
2253 	bool need_to_push = !task_running(rq, p) &&
2254 			    !test_tsk_need_resched(rq->curr) &&
2255 			    p->nr_cpus_allowed > 1 &&
2256 			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2257 			    (rq->curr->nr_cpus_allowed < 2 ||
2258 			     rq->curr->prio <= p->prio);
2259 
2260 	if (need_to_push)
2261 		push_rt_tasks(rq);
2262 }
2263 
2264 /* Assumes rq->lock is held */
rq_online_rt(struct rq * rq)2265 static void rq_online_rt(struct rq *rq)
2266 {
2267 	if (rq->rt.overloaded)
2268 		rt_set_overload(rq);
2269 
2270 	__enable_runtime(rq);
2271 
2272 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2273 }
2274 
2275 /* Assumes rq->lock is held */
rq_offline_rt(struct rq * rq)2276 static void rq_offline_rt(struct rq *rq)
2277 {
2278 	if (rq->rt.overloaded)
2279 		rt_clear_overload(rq);
2280 
2281 	__disable_runtime(rq);
2282 
2283 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2284 }
2285 
2286 /*
2287  * When switch from the rt queue, we bring ourselves to a position
2288  * that we might want to pull RT tasks from other runqueues.
2289  */
switched_from_rt(struct rq * rq,struct task_struct * p)2290 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2291 {
2292 	/*
2293 	 * If there are other RT tasks then we will reschedule
2294 	 * and the scheduling of the other RT tasks will handle
2295 	 * the balancing. But if we are the last RT task
2296 	 * we may need to handle the pulling of RT tasks
2297 	 * now.
2298 	 */
2299 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2300 		return;
2301 
2302 	rt_queue_pull_task(rq);
2303 }
2304 
init_sched_rt_class(void)2305 void __init init_sched_rt_class(void)
2306 {
2307 	unsigned int i;
2308 
2309 	for_each_possible_cpu(i) {
2310 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2311 					GFP_KERNEL, cpu_to_node(i));
2312 	}
2313 }
2314 #endif /* CONFIG_SMP */
2315 
2316 /*
2317  * When switching a task to RT, we may overload the runqueue
2318  * with RT tasks. In this case we try to push them off to
2319  * other runqueues.
2320  */
switched_to_rt(struct rq * rq,struct task_struct * p)2321 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2322 {
2323 	/*
2324 	 * If we are running, update the avg_rt tracking, as the running time
2325 	 * will now on be accounted into the latter.
2326 	 */
2327 	if (task_current(rq, p)) {
2328 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2329 		return;
2330 	}
2331 
2332 	/*
2333 	 * If we are not running we may need to preempt the current
2334 	 * running task. If that current running task is also an RT task
2335 	 * then see if we can move to another run queue.
2336 	 */
2337 	if (task_on_rq_queued(p)) {
2338 #ifdef CONFIG_SMP
2339 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2340 			rt_queue_push_tasks(rq);
2341 #endif /* CONFIG_SMP */
2342 		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2343 			resched_curr(rq);
2344 	}
2345 }
2346 
2347 /*
2348  * Priority of the task has changed. This may cause
2349  * us to initiate a push or pull.
2350  */
2351 static void
prio_changed_rt(struct rq * rq,struct task_struct * p,int oldprio)2352 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2353 {
2354 	if (!task_on_rq_queued(p))
2355 		return;
2356 
2357 	if (rq->curr == p) {
2358 #ifdef CONFIG_SMP
2359 		/*
2360 		 * If our priority decreases while running, we
2361 		 * may need to pull tasks to this runqueue.
2362 		 */
2363 		if (oldprio < p->prio)
2364 			rt_queue_pull_task(rq);
2365 
2366 		/*
2367 		 * If there's a higher priority task waiting to run
2368 		 * then reschedule.
2369 		 */
2370 		if (p->prio > rq->rt.highest_prio.curr)
2371 			resched_curr(rq);
2372 #else
2373 		/* For UP simply resched on drop of prio */
2374 		if (oldprio < p->prio)
2375 			resched_curr(rq);
2376 #endif /* CONFIG_SMP */
2377 	} else {
2378 		/*
2379 		 * This task is not running, but if it is
2380 		 * greater than the current running task
2381 		 * then reschedule.
2382 		 */
2383 		if (p->prio < rq->curr->prio)
2384 			resched_curr(rq);
2385 	}
2386 }
2387 
2388 #ifdef CONFIG_POSIX_TIMERS
watchdog(struct rq * rq,struct task_struct * p)2389 static void watchdog(struct rq *rq, struct task_struct *p)
2390 {
2391 	unsigned long soft, hard;
2392 
2393 	/* max may change after cur was read, this will be fixed next tick */
2394 	soft = task_rlimit(p, RLIMIT_RTTIME);
2395 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2396 
2397 	if (soft != RLIM_INFINITY) {
2398 		unsigned long next;
2399 
2400 		if (p->rt.watchdog_stamp != jiffies) {
2401 			p->rt.timeout++;
2402 			p->rt.watchdog_stamp = jiffies;
2403 		}
2404 
2405 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2406 		if (p->rt.timeout > next) {
2407 			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2408 						    p->se.sum_exec_runtime);
2409 		}
2410 	}
2411 }
2412 #else
watchdog(struct rq * rq,struct task_struct * p)2413 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2414 #endif
2415 
2416 /*
2417  * scheduler tick hitting a task of our scheduling class.
2418  *
2419  * NOTE: This function can be called remotely by the tick offload that
2420  * goes along full dynticks. Therefore no local assumption can be made
2421  * and everything must be accessed through the @rq and @curr passed in
2422  * parameters.
2423  */
task_tick_rt(struct rq * rq,struct task_struct * p,int queued)2424 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2425 {
2426 	struct sched_rt_entity *rt_se = &p->rt;
2427 
2428 	update_curr_rt(rq);
2429 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2430 
2431 	watchdog(rq, p);
2432 
2433 	/*
2434 	 * RR tasks need a special form of timeslice management.
2435 	 * FIFO tasks have no timeslices.
2436 	 */
2437 	if (p->policy != SCHED_RR)
2438 		return;
2439 
2440 	if (--p->rt.time_slice)
2441 		return;
2442 
2443 	p->rt.time_slice = sched_rr_timeslice;
2444 
2445 	/*
2446 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2447 	 * the only element on the queue
2448 	 */
2449 	for_each_sched_rt_entity(rt_se) {
2450 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2451 			requeue_task_rt(rq, p, 0);
2452 			resched_curr(rq);
2453 			return;
2454 		}
2455 	}
2456 }
2457 
get_rr_interval_rt(struct rq * rq,struct task_struct * task)2458 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2459 {
2460 	/*
2461 	 * Time slice is 0 for SCHED_FIFO tasks
2462 	 */
2463 	if (task->policy == SCHED_RR)
2464 		return sched_rr_timeslice;
2465 	else
2466 		return 0;
2467 }
2468 
2469 const struct sched_class rt_sched_class = {
2470 	.next			= &fair_sched_class,
2471 	.enqueue_task		= enqueue_task_rt,
2472 	.dequeue_task		= dequeue_task_rt,
2473 	.yield_task		= yield_task_rt,
2474 
2475 	.check_preempt_curr	= check_preempt_curr_rt,
2476 
2477 	.pick_next_task		= pick_next_task_rt,
2478 	.put_prev_task		= put_prev_task_rt,
2479 	.set_next_task          = set_next_task_rt,
2480 
2481 #ifdef CONFIG_SMP
2482 	.balance		= balance_rt,
2483 	.select_task_rq		= select_task_rq_rt,
2484 	.set_cpus_allowed       = set_cpus_allowed_common,
2485 	.rq_online              = rq_online_rt,
2486 	.rq_offline             = rq_offline_rt,
2487 	.task_woken		= task_woken_rt,
2488 	.switched_from		= switched_from_rt,
2489 #endif
2490 
2491 	.task_tick		= task_tick_rt,
2492 
2493 	.get_rr_interval	= get_rr_interval_rt,
2494 
2495 	.prio_changed		= prio_changed_rt,
2496 	.switched_to		= switched_to_rt,
2497 
2498 	.update_curr		= update_curr_rt,
2499 
2500 #ifdef CONFIG_UCLAMP_TASK
2501 	.uclamp_enabled		= 1,
2502 #endif
2503 };
2504 
2505 #ifdef CONFIG_RT_GROUP_SCHED
2506 /*
2507  * Ensure that the real time constraints are schedulable.
2508  */
2509 static DEFINE_MUTEX(rt_constraints_mutex);
2510 
2511 /* Must be called with tasklist_lock held */
tg_has_rt_tasks(struct task_group * tg)2512 static inline int tg_has_rt_tasks(struct task_group *tg)
2513 {
2514 	struct task_struct *g, *p;
2515 
2516 	/*
2517 	 * Autogroups do not have RT tasks; see autogroup_create().
2518 	 */
2519 	if (task_group_is_autogroup(tg))
2520 		return 0;
2521 
2522 	for_each_process_thread(g, p) {
2523 		if (rt_task(p) && task_group(p) == tg)
2524 			return 1;
2525 	}
2526 
2527 	return 0;
2528 }
2529 
2530 struct rt_schedulable_data {
2531 	struct task_group *tg;
2532 	u64 rt_period;
2533 	u64 rt_runtime;
2534 };
2535 
tg_rt_schedulable(struct task_group * tg,void * data)2536 static int tg_rt_schedulable(struct task_group *tg, void *data)
2537 {
2538 	struct rt_schedulable_data *d = data;
2539 	struct task_group *child;
2540 	unsigned long total, sum = 0;
2541 	u64 period, runtime;
2542 
2543 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2544 	runtime = tg->rt_bandwidth.rt_runtime;
2545 
2546 	if (tg == d->tg) {
2547 		period = d->rt_period;
2548 		runtime = d->rt_runtime;
2549 	}
2550 
2551 	/*
2552 	 * Cannot have more runtime than the period.
2553 	 */
2554 	if (runtime > period && runtime != RUNTIME_INF)
2555 		return -EINVAL;
2556 
2557 	/*
2558 	 * Ensure we don't starve existing RT tasks.
2559 	 */
2560 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2561 		return -EBUSY;
2562 
2563 	total = to_ratio(period, runtime);
2564 
2565 	/*
2566 	 * Nobody can have more than the global setting allows.
2567 	 */
2568 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2569 		return -EINVAL;
2570 
2571 	/*
2572 	 * The sum of our children's runtime should not exceed our own.
2573 	 */
2574 	list_for_each_entry_rcu(child, &tg->children, siblings) {
2575 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2576 		runtime = child->rt_bandwidth.rt_runtime;
2577 
2578 		if (child == d->tg) {
2579 			period = d->rt_period;
2580 			runtime = d->rt_runtime;
2581 		}
2582 
2583 		sum += to_ratio(period, runtime);
2584 	}
2585 
2586 	if (sum > total)
2587 		return -EINVAL;
2588 
2589 	return 0;
2590 }
2591 
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)2592 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2593 {
2594 	int ret;
2595 
2596 	struct rt_schedulable_data data = {
2597 		.tg = tg,
2598 		.rt_period = period,
2599 		.rt_runtime = runtime,
2600 	};
2601 
2602 	rcu_read_lock();
2603 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2604 	rcu_read_unlock();
2605 
2606 	return ret;
2607 }
2608 
tg_set_rt_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)2609 static int tg_set_rt_bandwidth(struct task_group *tg,
2610 		u64 rt_period, u64 rt_runtime)
2611 {
2612 	int i, err = 0;
2613 
2614 	/*
2615 	 * Disallowing the root group RT runtime is BAD, it would disallow the
2616 	 * kernel creating (and or operating) RT threads.
2617 	 */
2618 	if (tg == &root_task_group && rt_runtime == 0)
2619 		return -EINVAL;
2620 
2621 	/* No period doesn't make any sense. */
2622 	if (rt_period == 0)
2623 		return -EINVAL;
2624 
2625 	/*
2626 	 * Bound quota to defend quota against overflow during bandwidth shift.
2627 	 */
2628 	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2629 		return -EINVAL;
2630 
2631 	mutex_lock(&rt_constraints_mutex);
2632 	read_lock(&tasklist_lock);
2633 	err = __rt_schedulable(tg, rt_period, rt_runtime);
2634 	if (err)
2635 		goto unlock;
2636 
2637 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2638 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2639 	tg->rt_bandwidth.rt_runtime = rt_runtime;
2640 
2641 	for_each_possible_cpu(i) {
2642 		struct rt_rq *rt_rq = tg->rt_rq[i];
2643 
2644 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2645 		rt_rq->rt_runtime = rt_runtime;
2646 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2647 	}
2648 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2649 unlock:
2650 	read_unlock(&tasklist_lock);
2651 	mutex_unlock(&rt_constraints_mutex);
2652 
2653 	return err;
2654 }
2655 
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)2656 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2657 {
2658 	u64 rt_runtime, rt_period;
2659 
2660 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2661 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2662 	if (rt_runtime_us < 0)
2663 		rt_runtime = RUNTIME_INF;
2664 	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2665 		return -EINVAL;
2666 
2667 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2668 }
2669 
sched_group_rt_runtime(struct task_group * tg)2670 long sched_group_rt_runtime(struct task_group *tg)
2671 {
2672 	u64 rt_runtime_us;
2673 
2674 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2675 		return -1;
2676 
2677 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2678 	do_div(rt_runtime_us, NSEC_PER_USEC);
2679 	return rt_runtime_us;
2680 }
2681 
sched_group_set_rt_period(struct task_group * tg,u64 rt_period_us)2682 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2683 {
2684 	u64 rt_runtime, rt_period;
2685 
2686 	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2687 		return -EINVAL;
2688 
2689 	rt_period = rt_period_us * NSEC_PER_USEC;
2690 	rt_runtime = tg->rt_bandwidth.rt_runtime;
2691 
2692 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2693 }
2694 
sched_group_rt_period(struct task_group * tg)2695 long sched_group_rt_period(struct task_group *tg)
2696 {
2697 	u64 rt_period_us;
2698 
2699 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2700 	do_div(rt_period_us, NSEC_PER_USEC);
2701 	return rt_period_us;
2702 }
2703 
sched_rt_global_constraints(void)2704 static int sched_rt_global_constraints(void)
2705 {
2706 	int ret = 0;
2707 
2708 	mutex_lock(&rt_constraints_mutex);
2709 	read_lock(&tasklist_lock);
2710 	ret = __rt_schedulable(NULL, 0, 0);
2711 	read_unlock(&tasklist_lock);
2712 	mutex_unlock(&rt_constraints_mutex);
2713 
2714 	return ret;
2715 }
2716 
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)2717 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2718 {
2719 	/* Don't accept realtime tasks when there is no way for them to run */
2720 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2721 		return 0;
2722 
2723 	return 1;
2724 }
2725 
2726 #else /* !CONFIG_RT_GROUP_SCHED */
sched_rt_global_constraints(void)2727 static int sched_rt_global_constraints(void)
2728 {
2729 	unsigned long flags;
2730 	int i;
2731 
2732 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2733 	for_each_possible_cpu(i) {
2734 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2735 
2736 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2737 		rt_rq->rt_runtime = global_rt_runtime();
2738 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2739 	}
2740 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2741 
2742 	return 0;
2743 }
2744 #endif /* CONFIG_RT_GROUP_SCHED */
2745 
sched_rt_global_validate(void)2746 static int sched_rt_global_validate(void)
2747 {
2748 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2749 		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2750 		 ((u64)sysctl_sched_rt_runtime *
2751 			NSEC_PER_USEC > max_rt_runtime)))
2752 		return -EINVAL;
2753 
2754 	return 0;
2755 }
2756 
sched_rt_do_global(void)2757 static void sched_rt_do_global(void)
2758 {
2759 	unsigned long flags;
2760 
2761 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2762 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2763 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2764 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2765 }
2766 
sched_rt_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2767 int sched_rt_handler(struct ctl_table *table, int write,
2768 		void __user *buffer, size_t *lenp,
2769 		loff_t *ppos)
2770 {
2771 	int old_period, old_runtime;
2772 	static DEFINE_MUTEX(mutex);
2773 	int ret;
2774 
2775 	mutex_lock(&mutex);
2776 	old_period = sysctl_sched_rt_period;
2777 	old_runtime = sysctl_sched_rt_runtime;
2778 
2779 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2780 
2781 	if (!ret && write) {
2782 		ret = sched_rt_global_validate();
2783 		if (ret)
2784 			goto undo;
2785 
2786 		ret = sched_dl_global_validate();
2787 		if (ret)
2788 			goto undo;
2789 
2790 		ret = sched_rt_global_constraints();
2791 		if (ret)
2792 			goto undo;
2793 
2794 		sched_rt_do_global();
2795 		sched_dl_do_global();
2796 	}
2797 	if (0) {
2798 undo:
2799 		sysctl_sched_rt_period = old_period;
2800 		sysctl_sched_rt_runtime = old_runtime;
2801 	}
2802 	mutex_unlock(&mutex);
2803 
2804 	return ret;
2805 }
2806 
sched_rr_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2807 int sched_rr_handler(struct ctl_table *table, int write,
2808 		void __user *buffer, size_t *lenp,
2809 		loff_t *ppos)
2810 {
2811 	int ret;
2812 	static DEFINE_MUTEX(mutex);
2813 
2814 	mutex_lock(&mutex);
2815 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2816 	/*
2817 	 * Make sure that internally we keep jiffies.
2818 	 * Also, writing zero resets the timeslice to default:
2819 	 */
2820 	if (!ret && write) {
2821 		sched_rr_timeslice =
2822 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2823 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
2824 
2825 		if (sysctl_sched_rr_timeslice <= 0)
2826 			sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
2827 	}
2828 	mutex_unlock(&mutex);
2829 
2830 	return ret;
2831 }
2832 
2833 #ifdef CONFIG_SCHED_DEBUG
print_rt_stats(struct seq_file * m,int cpu)2834 void print_rt_stats(struct seq_file *m, int cpu)
2835 {
2836 	rt_rq_iter_t iter;
2837 	struct rt_rq *rt_rq;
2838 
2839 	rcu_read_lock();
2840 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2841 		print_rt_rq(m, cpu, rt_rq);
2842 	rcu_read_unlock();
2843 }
2844 #endif /* CONFIG_SCHED_DEBUG */
2845