• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the security services.
4  *
5  * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *	Support for context based audit filters.
12  *
13  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14  *
15  *	Added conditional policy language extensions
16  *
17  * Updated: Hewlett-Packard <paul@paul-moore.com>
18  *
19  *      Added support for NetLabel
20  *      Added support for the policy capability bitmap
21  *
22  * Updated: Chad Sellers <csellers@tresys.com>
23  *
24  *  Added validation of kernel classes and permissions
25  *
26  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27  *
28  *  Added support for bounds domain and audit messaged on masked permissions
29  *
30  * Updated: Guido Trentalancia <guido@trentalancia.com>
31  *
32  *  Added support for runtime switching of the policy type
33  *
34  * Copyright (C) 2008, 2009 NEC Corporation
35  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39  */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/mutex.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlabel.h>
52 
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68 
69 /* Policy capability names */
70 const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
71 	"network_peer_controls",
72 	"open_perms",
73 	"extended_socket_class",
74 	"always_check_network",
75 	"cgroup_seclabel",
76 	"nnp_nosuid_transition"
77 };
78 
79 static struct selinux_ss selinux_ss;
80 
selinux_ss_init(struct selinux_ss ** ss)81 void selinux_ss_init(struct selinux_ss **ss)
82 {
83 	rwlock_init(&selinux_ss.policy_rwlock);
84 	mutex_init(&selinux_ss.status_lock);
85 	*ss = &selinux_ss;
86 }
87 
88 /* Forward declaration. */
89 static int context_struct_to_string(struct policydb *policydb,
90 				    struct context *context,
91 				    char **scontext,
92 				    u32 *scontext_len);
93 
94 static void context_struct_compute_av(struct policydb *policydb,
95 				      struct context *scontext,
96 				      struct context *tcontext,
97 				      u16 tclass,
98 				      struct av_decision *avd,
99 				      struct extended_perms *xperms);
100 
selinux_set_mapping(struct policydb * pol,struct security_class_mapping * map,struct selinux_map * out_map)101 static int selinux_set_mapping(struct policydb *pol,
102 			       struct security_class_mapping *map,
103 			       struct selinux_map *out_map)
104 {
105 	u16 i, j;
106 	unsigned k;
107 	bool print_unknown_handle = false;
108 
109 	/* Find number of classes in the input mapping */
110 	if (!map)
111 		return -EINVAL;
112 	i = 0;
113 	while (map[i].name)
114 		i++;
115 
116 	/* Allocate space for the class records, plus one for class zero */
117 	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
118 	if (!out_map->mapping)
119 		return -ENOMEM;
120 
121 	/* Store the raw class and permission values */
122 	j = 0;
123 	while (map[j].name) {
124 		struct security_class_mapping *p_in = map + (j++);
125 		struct selinux_mapping *p_out = out_map->mapping + j;
126 
127 		/* An empty class string skips ahead */
128 		if (!strcmp(p_in->name, "")) {
129 			p_out->num_perms = 0;
130 			continue;
131 		}
132 
133 		p_out->value = string_to_security_class(pol, p_in->name);
134 		if (!p_out->value) {
135 			pr_info("SELinux:  Class %s not defined in policy.\n",
136 			       p_in->name);
137 			if (pol->reject_unknown)
138 				goto err;
139 			p_out->num_perms = 0;
140 			print_unknown_handle = true;
141 			continue;
142 		}
143 
144 		k = 0;
145 		while (p_in->perms[k]) {
146 			/* An empty permission string skips ahead */
147 			if (!*p_in->perms[k]) {
148 				k++;
149 				continue;
150 			}
151 			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
152 							    p_in->perms[k]);
153 			if (!p_out->perms[k]) {
154 				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
155 				       p_in->perms[k], p_in->name);
156 				if (pol->reject_unknown)
157 					goto err;
158 				print_unknown_handle = true;
159 			}
160 
161 			k++;
162 		}
163 		p_out->num_perms = k;
164 	}
165 
166 	if (print_unknown_handle)
167 		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
168 		       pol->allow_unknown ? "allowed" : "denied");
169 
170 	out_map->size = i;
171 	return 0;
172 err:
173 	kfree(out_map->mapping);
174 	out_map->mapping = NULL;
175 	return -EINVAL;
176 }
177 
178 /*
179  * Get real, policy values from mapped values
180  */
181 
unmap_class(struct selinux_map * map,u16 tclass)182 static u16 unmap_class(struct selinux_map *map, u16 tclass)
183 {
184 	if (tclass < map->size)
185 		return map->mapping[tclass].value;
186 
187 	return tclass;
188 }
189 
190 /*
191  * Get kernel value for class from its policy value
192  */
map_class(struct selinux_map * map,u16 pol_value)193 static u16 map_class(struct selinux_map *map, u16 pol_value)
194 {
195 	u16 i;
196 
197 	for (i = 1; i < map->size; i++) {
198 		if (map->mapping[i].value == pol_value)
199 			return i;
200 	}
201 
202 	return SECCLASS_NULL;
203 }
204 
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)205 static void map_decision(struct selinux_map *map,
206 			 u16 tclass, struct av_decision *avd,
207 			 int allow_unknown)
208 {
209 	if (tclass < map->size) {
210 		struct selinux_mapping *mapping = &map->mapping[tclass];
211 		unsigned int i, n = mapping->num_perms;
212 		u32 result;
213 
214 		for (i = 0, result = 0; i < n; i++) {
215 			if (avd->allowed & mapping->perms[i])
216 				result |= 1<<i;
217 			if (allow_unknown && !mapping->perms[i])
218 				result |= 1<<i;
219 		}
220 		avd->allowed = result;
221 
222 		for (i = 0, result = 0; i < n; i++)
223 			if (avd->auditallow & mapping->perms[i])
224 				result |= 1<<i;
225 		avd->auditallow = result;
226 
227 		for (i = 0, result = 0; i < n; i++) {
228 			if (avd->auditdeny & mapping->perms[i])
229 				result |= 1<<i;
230 			if (!allow_unknown && !mapping->perms[i])
231 				result |= 1<<i;
232 		}
233 		/*
234 		 * In case the kernel has a bug and requests a permission
235 		 * between num_perms and the maximum permission number, we
236 		 * should audit that denial
237 		 */
238 		for (; i < (sizeof(u32)*8); i++)
239 			result |= 1<<i;
240 		avd->auditdeny = result;
241 	}
242 }
243 
security_mls_enabled(struct selinux_state * state)244 int security_mls_enabled(struct selinux_state *state)
245 {
246 	struct policydb *p = &state->ss->policydb;
247 
248 	return p->mls_enabled;
249 }
250 
251 /*
252  * Return the boolean value of a constraint expression
253  * when it is applied to the specified source and target
254  * security contexts.
255  *
256  * xcontext is a special beast...  It is used by the validatetrans rules
257  * only.  For these rules, scontext is the context before the transition,
258  * tcontext is the context after the transition, and xcontext is the context
259  * of the process performing the transition.  All other callers of
260  * constraint_expr_eval should pass in NULL for xcontext.
261  */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)262 static int constraint_expr_eval(struct policydb *policydb,
263 				struct context *scontext,
264 				struct context *tcontext,
265 				struct context *xcontext,
266 				struct constraint_expr *cexpr)
267 {
268 	u32 val1, val2;
269 	struct context *c;
270 	struct role_datum *r1, *r2;
271 	struct mls_level *l1, *l2;
272 	struct constraint_expr *e;
273 	int s[CEXPR_MAXDEPTH];
274 	int sp = -1;
275 
276 	for (e = cexpr; e; e = e->next) {
277 		switch (e->expr_type) {
278 		case CEXPR_NOT:
279 			BUG_ON(sp < 0);
280 			s[sp] = !s[sp];
281 			break;
282 		case CEXPR_AND:
283 			BUG_ON(sp < 1);
284 			sp--;
285 			s[sp] &= s[sp + 1];
286 			break;
287 		case CEXPR_OR:
288 			BUG_ON(sp < 1);
289 			sp--;
290 			s[sp] |= s[sp + 1];
291 			break;
292 		case CEXPR_ATTR:
293 			if (sp == (CEXPR_MAXDEPTH - 1))
294 				return 0;
295 			switch (e->attr) {
296 			case CEXPR_USER:
297 				val1 = scontext->user;
298 				val2 = tcontext->user;
299 				break;
300 			case CEXPR_TYPE:
301 				val1 = scontext->type;
302 				val2 = tcontext->type;
303 				break;
304 			case CEXPR_ROLE:
305 				val1 = scontext->role;
306 				val2 = tcontext->role;
307 				r1 = policydb->role_val_to_struct[val1 - 1];
308 				r2 = policydb->role_val_to_struct[val2 - 1];
309 				switch (e->op) {
310 				case CEXPR_DOM:
311 					s[++sp] = ebitmap_get_bit(&r1->dominates,
312 								  val2 - 1);
313 					continue;
314 				case CEXPR_DOMBY:
315 					s[++sp] = ebitmap_get_bit(&r2->dominates,
316 								  val1 - 1);
317 					continue;
318 				case CEXPR_INCOMP:
319 					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
320 								    val2 - 1) &&
321 						   !ebitmap_get_bit(&r2->dominates,
322 								    val1 - 1));
323 					continue;
324 				default:
325 					break;
326 				}
327 				break;
328 			case CEXPR_L1L2:
329 				l1 = &(scontext->range.level[0]);
330 				l2 = &(tcontext->range.level[0]);
331 				goto mls_ops;
332 			case CEXPR_L1H2:
333 				l1 = &(scontext->range.level[0]);
334 				l2 = &(tcontext->range.level[1]);
335 				goto mls_ops;
336 			case CEXPR_H1L2:
337 				l1 = &(scontext->range.level[1]);
338 				l2 = &(tcontext->range.level[0]);
339 				goto mls_ops;
340 			case CEXPR_H1H2:
341 				l1 = &(scontext->range.level[1]);
342 				l2 = &(tcontext->range.level[1]);
343 				goto mls_ops;
344 			case CEXPR_L1H1:
345 				l1 = &(scontext->range.level[0]);
346 				l2 = &(scontext->range.level[1]);
347 				goto mls_ops;
348 			case CEXPR_L2H2:
349 				l1 = &(tcontext->range.level[0]);
350 				l2 = &(tcontext->range.level[1]);
351 				goto mls_ops;
352 mls_ops:
353 			switch (e->op) {
354 			case CEXPR_EQ:
355 				s[++sp] = mls_level_eq(l1, l2);
356 				continue;
357 			case CEXPR_NEQ:
358 				s[++sp] = !mls_level_eq(l1, l2);
359 				continue;
360 			case CEXPR_DOM:
361 				s[++sp] = mls_level_dom(l1, l2);
362 				continue;
363 			case CEXPR_DOMBY:
364 				s[++sp] = mls_level_dom(l2, l1);
365 				continue;
366 			case CEXPR_INCOMP:
367 				s[++sp] = mls_level_incomp(l2, l1);
368 				continue;
369 			default:
370 				BUG();
371 				return 0;
372 			}
373 			break;
374 			default:
375 				BUG();
376 				return 0;
377 			}
378 
379 			switch (e->op) {
380 			case CEXPR_EQ:
381 				s[++sp] = (val1 == val2);
382 				break;
383 			case CEXPR_NEQ:
384 				s[++sp] = (val1 != val2);
385 				break;
386 			default:
387 				BUG();
388 				return 0;
389 			}
390 			break;
391 		case CEXPR_NAMES:
392 			if (sp == (CEXPR_MAXDEPTH-1))
393 				return 0;
394 			c = scontext;
395 			if (e->attr & CEXPR_TARGET)
396 				c = tcontext;
397 			else if (e->attr & CEXPR_XTARGET) {
398 				c = xcontext;
399 				if (!c) {
400 					BUG();
401 					return 0;
402 				}
403 			}
404 			if (e->attr & CEXPR_USER)
405 				val1 = c->user;
406 			else if (e->attr & CEXPR_ROLE)
407 				val1 = c->role;
408 			else if (e->attr & CEXPR_TYPE)
409 				val1 = c->type;
410 			else {
411 				BUG();
412 				return 0;
413 			}
414 
415 			switch (e->op) {
416 			case CEXPR_EQ:
417 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
418 				break;
419 			case CEXPR_NEQ:
420 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
421 				break;
422 			default:
423 				BUG();
424 				return 0;
425 			}
426 			break;
427 		default:
428 			BUG();
429 			return 0;
430 		}
431 	}
432 
433 	BUG_ON(sp != 0);
434 	return s[0];
435 }
436 
437 /*
438  * security_dump_masked_av - dumps masked permissions during
439  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
440  */
dump_masked_av_helper(void * k,void * d,void * args)441 static int dump_masked_av_helper(void *k, void *d, void *args)
442 {
443 	struct perm_datum *pdatum = d;
444 	char **permission_names = args;
445 
446 	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
447 
448 	permission_names[pdatum->value - 1] = (char *)k;
449 
450 	return 0;
451 }
452 
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)453 static void security_dump_masked_av(struct policydb *policydb,
454 				    struct context *scontext,
455 				    struct context *tcontext,
456 				    u16 tclass,
457 				    u32 permissions,
458 				    const char *reason)
459 {
460 	struct common_datum *common_dat;
461 	struct class_datum *tclass_dat;
462 	struct audit_buffer *ab;
463 	char *tclass_name;
464 	char *scontext_name = NULL;
465 	char *tcontext_name = NULL;
466 	char *permission_names[32];
467 	int index;
468 	u32 length;
469 	bool need_comma = false;
470 
471 	if (!permissions)
472 		return;
473 
474 	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
475 	tclass_dat = policydb->class_val_to_struct[tclass - 1];
476 	common_dat = tclass_dat->comdatum;
477 
478 	/* init permission_names */
479 	if (common_dat &&
480 	    hashtab_map(common_dat->permissions.table,
481 			dump_masked_av_helper, permission_names) < 0)
482 		goto out;
483 
484 	if (hashtab_map(tclass_dat->permissions.table,
485 			dump_masked_av_helper, permission_names) < 0)
486 		goto out;
487 
488 	/* get scontext/tcontext in text form */
489 	if (context_struct_to_string(policydb, scontext,
490 				     &scontext_name, &length) < 0)
491 		goto out;
492 
493 	if (context_struct_to_string(policydb, tcontext,
494 				     &tcontext_name, &length) < 0)
495 		goto out;
496 
497 	/* audit a message */
498 	ab = audit_log_start(audit_context(),
499 			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
500 	if (!ab)
501 		goto out;
502 
503 	audit_log_format(ab, "op=security_compute_av reason=%s "
504 			 "scontext=%s tcontext=%s tclass=%s perms=",
505 			 reason, scontext_name, tcontext_name, tclass_name);
506 
507 	for (index = 0; index < 32; index++) {
508 		u32 mask = (1 << index);
509 
510 		if ((mask & permissions) == 0)
511 			continue;
512 
513 		audit_log_format(ab, "%s%s",
514 				 need_comma ? "," : "",
515 				 permission_names[index]
516 				 ? permission_names[index] : "????");
517 		need_comma = true;
518 	}
519 	audit_log_end(ab);
520 out:
521 	/* release scontext/tcontext */
522 	kfree(tcontext_name);
523 	kfree(scontext_name);
524 
525 	return;
526 }
527 
528 /*
529  * security_boundary_permission - drops violated permissions
530  * on boundary constraint.
531  */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)532 static void type_attribute_bounds_av(struct policydb *policydb,
533 				     struct context *scontext,
534 				     struct context *tcontext,
535 				     u16 tclass,
536 				     struct av_decision *avd)
537 {
538 	struct context lo_scontext;
539 	struct context lo_tcontext, *tcontextp = tcontext;
540 	struct av_decision lo_avd;
541 	struct type_datum *source;
542 	struct type_datum *target;
543 	u32 masked = 0;
544 
545 	source = policydb->type_val_to_struct[scontext->type - 1];
546 	BUG_ON(!source);
547 
548 	if (!source->bounds)
549 		return;
550 
551 	target = policydb->type_val_to_struct[tcontext->type - 1];
552 	BUG_ON(!target);
553 
554 	memset(&lo_avd, 0, sizeof(lo_avd));
555 
556 	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
557 	lo_scontext.type = source->bounds;
558 
559 	if (target->bounds) {
560 		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
561 		lo_tcontext.type = target->bounds;
562 		tcontextp = &lo_tcontext;
563 	}
564 
565 	context_struct_compute_av(policydb, &lo_scontext,
566 				  tcontextp,
567 				  tclass,
568 				  &lo_avd,
569 				  NULL);
570 
571 	masked = ~lo_avd.allowed & avd->allowed;
572 
573 	if (likely(!masked))
574 		return;		/* no masked permission */
575 
576 	/* mask violated permissions */
577 	avd->allowed &= ~masked;
578 
579 	/* audit masked permissions */
580 	security_dump_masked_av(policydb, scontext, tcontext,
581 				tclass, masked, "bounds");
582 }
583 
584 /*
585  * flag which drivers have permissions
586  * only looking for ioctl based extended permssions
587  */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)588 void services_compute_xperms_drivers(
589 		struct extended_perms *xperms,
590 		struct avtab_node *node)
591 {
592 	unsigned int i;
593 
594 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
595 		/* if one or more driver has all permissions allowed */
596 		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
597 			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
598 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
599 		/* if allowing permissions within a driver */
600 		security_xperm_set(xperms->drivers.p,
601 					node->datum.u.xperms->driver);
602 	}
603 
604 	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
605 	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
606 		xperms->len = 1;
607 }
608 
609 /*
610  * Compute access vectors and extended permissions based on a context
611  * structure pair for the permissions in a particular class.
612  */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)613 static void context_struct_compute_av(struct policydb *policydb,
614 				      struct context *scontext,
615 				      struct context *tcontext,
616 				      u16 tclass,
617 				      struct av_decision *avd,
618 				      struct extended_perms *xperms)
619 {
620 	struct constraint_node *constraint;
621 	struct role_allow *ra;
622 	struct avtab_key avkey;
623 	struct avtab_node *node;
624 	struct class_datum *tclass_datum;
625 	struct ebitmap *sattr, *tattr;
626 	struct ebitmap_node *snode, *tnode;
627 	unsigned int i, j;
628 
629 	avd->allowed = 0;
630 	avd->auditallow = 0;
631 	avd->auditdeny = 0xffffffff;
632 	if (xperms) {
633 		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
634 		xperms->len = 0;
635 	}
636 
637 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
638 		if (printk_ratelimit())
639 			pr_warn("SELinux:  Invalid class %hu\n", tclass);
640 		return;
641 	}
642 
643 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
644 
645 	/*
646 	 * If a specific type enforcement rule was defined for
647 	 * this permission check, then use it.
648 	 */
649 	avkey.target_class = tclass;
650 	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
651 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
652 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
653 	ebitmap_for_each_positive_bit(sattr, snode, i) {
654 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
655 			avkey.source_type = i + 1;
656 			avkey.target_type = j + 1;
657 			for (node = avtab_search_node(&policydb->te_avtab,
658 						      &avkey);
659 			     node;
660 			     node = avtab_search_node_next(node, avkey.specified)) {
661 				if (node->key.specified == AVTAB_ALLOWED)
662 					avd->allowed |= node->datum.u.data;
663 				else if (node->key.specified == AVTAB_AUDITALLOW)
664 					avd->auditallow |= node->datum.u.data;
665 				else if (node->key.specified == AVTAB_AUDITDENY)
666 					avd->auditdeny &= node->datum.u.data;
667 				else if (xperms && (node->key.specified & AVTAB_XPERMS))
668 					services_compute_xperms_drivers(xperms, node);
669 			}
670 
671 			/* Check conditional av table for additional permissions */
672 			cond_compute_av(&policydb->te_cond_avtab, &avkey,
673 					avd, xperms);
674 
675 		}
676 	}
677 
678 	/*
679 	 * Remove any permissions prohibited by a constraint (this includes
680 	 * the MLS policy).
681 	 */
682 	constraint = tclass_datum->constraints;
683 	while (constraint) {
684 		if ((constraint->permissions & (avd->allowed)) &&
685 		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
686 					  constraint->expr)) {
687 			avd->allowed &= ~(constraint->permissions);
688 		}
689 		constraint = constraint->next;
690 	}
691 
692 	/*
693 	 * If checking process transition permission and the
694 	 * role is changing, then check the (current_role, new_role)
695 	 * pair.
696 	 */
697 	if (tclass == policydb->process_class &&
698 	    (avd->allowed & policydb->process_trans_perms) &&
699 	    scontext->role != tcontext->role) {
700 		for (ra = policydb->role_allow; ra; ra = ra->next) {
701 			if (scontext->role == ra->role &&
702 			    tcontext->role == ra->new_role)
703 				break;
704 		}
705 		if (!ra)
706 			avd->allowed &= ~policydb->process_trans_perms;
707 	}
708 
709 	/*
710 	 * If the given source and target types have boundary
711 	 * constraint, lazy checks have to mask any violated
712 	 * permission and notice it to userspace via audit.
713 	 */
714 	type_attribute_bounds_av(policydb, scontext, tcontext,
715 				 tclass, avd);
716 }
717 
security_validtrans_handle_fail(struct selinux_state * state,struct context * ocontext,struct context * ncontext,struct context * tcontext,u16 tclass)718 static int security_validtrans_handle_fail(struct selinux_state *state,
719 					   struct context *ocontext,
720 					   struct context *ncontext,
721 					   struct context *tcontext,
722 					   u16 tclass)
723 {
724 	struct policydb *p = &state->ss->policydb;
725 	char *o = NULL, *n = NULL, *t = NULL;
726 	u32 olen, nlen, tlen;
727 
728 	if (context_struct_to_string(p, ocontext, &o, &olen))
729 		goto out;
730 	if (context_struct_to_string(p, ncontext, &n, &nlen))
731 		goto out;
732 	if (context_struct_to_string(p, tcontext, &t, &tlen))
733 		goto out;
734 	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
735 		  "op=security_validate_transition seresult=denied"
736 		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
737 		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
738 out:
739 	kfree(o);
740 	kfree(n);
741 	kfree(t);
742 
743 	if (!enforcing_enabled(state))
744 		return 0;
745 	return -EPERM;
746 }
747 
security_compute_validatetrans(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)748 static int security_compute_validatetrans(struct selinux_state *state,
749 					  u32 oldsid, u32 newsid, u32 tasksid,
750 					  u16 orig_tclass, bool user)
751 {
752 	struct policydb *policydb;
753 	struct sidtab *sidtab;
754 	struct context *ocontext;
755 	struct context *ncontext;
756 	struct context *tcontext;
757 	struct class_datum *tclass_datum;
758 	struct constraint_node *constraint;
759 	u16 tclass;
760 	int rc = 0;
761 
762 
763 	if (!state->initialized)
764 		return 0;
765 
766 	read_lock(&state->ss->policy_rwlock);
767 
768 	policydb = &state->ss->policydb;
769 	sidtab = state->ss->sidtab;
770 
771 	if (!user)
772 		tclass = unmap_class(&state->ss->map, orig_tclass);
773 	else
774 		tclass = orig_tclass;
775 
776 	if (!tclass || tclass > policydb->p_classes.nprim) {
777 		rc = -EINVAL;
778 		goto out;
779 	}
780 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
781 
782 	ocontext = sidtab_search(sidtab, oldsid);
783 	if (!ocontext) {
784 		pr_err("SELinux: %s:  unrecognized SID %d\n",
785 			__func__, oldsid);
786 		rc = -EINVAL;
787 		goto out;
788 	}
789 
790 	ncontext = sidtab_search(sidtab, newsid);
791 	if (!ncontext) {
792 		pr_err("SELinux: %s:  unrecognized SID %d\n",
793 			__func__, newsid);
794 		rc = -EINVAL;
795 		goto out;
796 	}
797 
798 	tcontext = sidtab_search(sidtab, tasksid);
799 	if (!tcontext) {
800 		pr_err("SELinux: %s:  unrecognized SID %d\n",
801 			__func__, tasksid);
802 		rc = -EINVAL;
803 		goto out;
804 	}
805 
806 	constraint = tclass_datum->validatetrans;
807 	while (constraint) {
808 		if (!constraint_expr_eval(policydb, ocontext, ncontext,
809 					  tcontext, constraint->expr)) {
810 			if (user)
811 				rc = -EPERM;
812 			else
813 				rc = security_validtrans_handle_fail(state,
814 								     ocontext,
815 								     ncontext,
816 								     tcontext,
817 								     tclass);
818 			goto out;
819 		}
820 		constraint = constraint->next;
821 	}
822 
823 out:
824 	read_unlock(&state->ss->policy_rwlock);
825 	return rc;
826 }
827 
security_validate_transition_user(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)828 int security_validate_transition_user(struct selinux_state *state,
829 				      u32 oldsid, u32 newsid, u32 tasksid,
830 				      u16 tclass)
831 {
832 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
833 					      tclass, true);
834 }
835 
security_validate_transition(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)836 int security_validate_transition(struct selinux_state *state,
837 				 u32 oldsid, u32 newsid, u32 tasksid,
838 				 u16 orig_tclass)
839 {
840 	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
841 					      orig_tclass, false);
842 }
843 
844 /*
845  * security_bounded_transition - check whether the given
846  * transition is directed to bounded, or not.
847  * It returns 0, if @newsid is bounded by @oldsid.
848  * Otherwise, it returns error code.
849  *
850  * @oldsid : current security identifier
851  * @newsid : destinated security identifier
852  */
security_bounded_transition(struct selinux_state * state,u32 old_sid,u32 new_sid)853 int security_bounded_transition(struct selinux_state *state,
854 				u32 old_sid, u32 new_sid)
855 {
856 	struct policydb *policydb;
857 	struct sidtab *sidtab;
858 	struct context *old_context, *new_context;
859 	struct type_datum *type;
860 	int index;
861 	int rc;
862 
863 	if (!state->initialized)
864 		return 0;
865 
866 	read_lock(&state->ss->policy_rwlock);
867 
868 	policydb = &state->ss->policydb;
869 	sidtab = state->ss->sidtab;
870 
871 	rc = -EINVAL;
872 	old_context = sidtab_search(sidtab, old_sid);
873 	if (!old_context) {
874 		pr_err("SELinux: %s: unrecognized SID %u\n",
875 		       __func__, old_sid);
876 		goto out;
877 	}
878 
879 	rc = -EINVAL;
880 	new_context = sidtab_search(sidtab, new_sid);
881 	if (!new_context) {
882 		pr_err("SELinux: %s: unrecognized SID %u\n",
883 		       __func__, new_sid);
884 		goto out;
885 	}
886 
887 	rc = 0;
888 	/* type/domain unchanged */
889 	if (old_context->type == new_context->type)
890 		goto out;
891 
892 	index = new_context->type;
893 	while (true) {
894 		type = policydb->type_val_to_struct[index - 1];
895 		BUG_ON(!type);
896 
897 		/* not bounded anymore */
898 		rc = -EPERM;
899 		if (!type->bounds)
900 			break;
901 
902 		/* @newsid is bounded by @oldsid */
903 		rc = 0;
904 		if (type->bounds == old_context->type)
905 			break;
906 
907 		index = type->bounds;
908 	}
909 
910 	if (rc) {
911 		char *old_name = NULL;
912 		char *new_name = NULL;
913 		u32 length;
914 
915 		if (!context_struct_to_string(policydb, old_context,
916 					      &old_name, &length) &&
917 		    !context_struct_to_string(policydb, new_context,
918 					      &new_name, &length)) {
919 			audit_log(audit_context(),
920 				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
921 				  "op=security_bounded_transition "
922 				  "seresult=denied "
923 				  "oldcontext=%s newcontext=%s",
924 				  old_name, new_name);
925 		}
926 		kfree(new_name);
927 		kfree(old_name);
928 	}
929 out:
930 	read_unlock(&state->ss->policy_rwlock);
931 
932 	return rc;
933 }
934 
avd_init(struct selinux_state * state,struct av_decision * avd)935 static void avd_init(struct selinux_state *state, struct av_decision *avd)
936 {
937 	avd->allowed = 0;
938 	avd->auditallow = 0;
939 	avd->auditdeny = 0xffffffff;
940 	avd->seqno = state->ss->latest_granting;
941 	avd->flags = 0;
942 }
943 
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)944 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
945 					struct avtab_node *node)
946 {
947 	unsigned int i;
948 
949 	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
950 		if (xpermd->driver != node->datum.u.xperms->driver)
951 			return;
952 	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
953 		if (!security_xperm_test(node->datum.u.xperms->perms.p,
954 					xpermd->driver))
955 			return;
956 	} else {
957 		BUG();
958 	}
959 
960 	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
961 		xpermd->used |= XPERMS_ALLOWED;
962 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
963 			memset(xpermd->allowed->p, 0xff,
964 					sizeof(xpermd->allowed->p));
965 		}
966 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
967 			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
968 				xpermd->allowed->p[i] |=
969 					node->datum.u.xperms->perms.p[i];
970 		}
971 	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
972 		xpermd->used |= XPERMS_AUDITALLOW;
973 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
974 			memset(xpermd->auditallow->p, 0xff,
975 					sizeof(xpermd->auditallow->p));
976 		}
977 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
978 			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
979 				xpermd->auditallow->p[i] |=
980 					node->datum.u.xperms->perms.p[i];
981 		}
982 	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
983 		xpermd->used |= XPERMS_DONTAUDIT;
984 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
985 			memset(xpermd->dontaudit->p, 0xff,
986 					sizeof(xpermd->dontaudit->p));
987 		}
988 		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
989 			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
990 				xpermd->dontaudit->p[i] |=
991 					node->datum.u.xperms->perms.p[i];
992 		}
993 	} else {
994 		BUG();
995 	}
996 }
997 
security_compute_xperms_decision(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,struct extended_perms_decision * xpermd)998 void security_compute_xperms_decision(struct selinux_state *state,
999 				      u32 ssid,
1000 				      u32 tsid,
1001 				      u16 orig_tclass,
1002 				      u8 driver,
1003 				      struct extended_perms_decision *xpermd)
1004 {
1005 	struct policydb *policydb;
1006 	struct sidtab *sidtab;
1007 	u16 tclass;
1008 	struct context *scontext, *tcontext;
1009 	struct avtab_key avkey;
1010 	struct avtab_node *node;
1011 	struct ebitmap *sattr, *tattr;
1012 	struct ebitmap_node *snode, *tnode;
1013 	unsigned int i, j;
1014 
1015 	xpermd->driver = driver;
1016 	xpermd->used = 0;
1017 	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1018 	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1019 	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1020 
1021 	read_lock(&state->ss->policy_rwlock);
1022 	if (!state->initialized)
1023 		goto allow;
1024 
1025 	policydb = &state->ss->policydb;
1026 	sidtab = state->ss->sidtab;
1027 
1028 	scontext = sidtab_search(sidtab, ssid);
1029 	if (!scontext) {
1030 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1031 		       __func__, ssid);
1032 		goto out;
1033 	}
1034 
1035 	tcontext = sidtab_search(sidtab, tsid);
1036 	if (!tcontext) {
1037 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1038 		       __func__, tsid);
1039 		goto out;
1040 	}
1041 
1042 	tclass = unmap_class(&state->ss->map, orig_tclass);
1043 	if (unlikely(orig_tclass && !tclass)) {
1044 		if (policydb->allow_unknown)
1045 			goto allow;
1046 		goto out;
1047 	}
1048 
1049 
1050 	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1051 		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1052 		goto out;
1053 	}
1054 
1055 	avkey.target_class = tclass;
1056 	avkey.specified = AVTAB_XPERMS;
1057 	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1058 	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1059 	ebitmap_for_each_positive_bit(sattr, snode, i) {
1060 		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1061 			avkey.source_type = i + 1;
1062 			avkey.target_type = j + 1;
1063 			for (node = avtab_search_node(&policydb->te_avtab,
1064 						      &avkey);
1065 			     node;
1066 			     node = avtab_search_node_next(node, avkey.specified))
1067 				services_compute_xperms_decision(xpermd, node);
1068 
1069 			cond_compute_xperms(&policydb->te_cond_avtab,
1070 						&avkey, xpermd);
1071 		}
1072 	}
1073 out:
1074 	read_unlock(&state->ss->policy_rwlock);
1075 	return;
1076 allow:
1077 	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1078 	goto out;
1079 }
1080 
1081 /**
1082  * security_compute_av - Compute access vector decisions.
1083  * @ssid: source security identifier
1084  * @tsid: target security identifier
1085  * @tclass: target security class
1086  * @avd: access vector decisions
1087  * @xperms: extended permissions
1088  *
1089  * Compute a set of access vector decisions based on the
1090  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1091  */
security_compute_av(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1092 void security_compute_av(struct selinux_state *state,
1093 			 u32 ssid,
1094 			 u32 tsid,
1095 			 u16 orig_tclass,
1096 			 struct av_decision *avd,
1097 			 struct extended_perms *xperms)
1098 {
1099 	struct policydb *policydb;
1100 	struct sidtab *sidtab;
1101 	u16 tclass;
1102 	struct context *scontext = NULL, *tcontext = NULL;
1103 
1104 	read_lock(&state->ss->policy_rwlock);
1105 	avd_init(state, avd);
1106 	xperms->len = 0;
1107 	if (!state->initialized)
1108 		goto allow;
1109 
1110 	policydb = &state->ss->policydb;
1111 	sidtab = state->ss->sidtab;
1112 
1113 	scontext = sidtab_search(sidtab, ssid);
1114 	if (!scontext) {
1115 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1116 		       __func__, ssid);
1117 		goto out;
1118 	}
1119 
1120 	/* permissive domain? */
1121 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1122 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1123 
1124 	tcontext = sidtab_search(sidtab, tsid);
1125 	if (!tcontext) {
1126 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1127 		       __func__, tsid);
1128 		goto out;
1129 	}
1130 
1131 	tclass = unmap_class(&state->ss->map, orig_tclass);
1132 	if (unlikely(orig_tclass && !tclass)) {
1133 		if (policydb->allow_unknown)
1134 			goto allow;
1135 		goto out;
1136 	}
1137 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1138 				  xperms);
1139 	map_decision(&state->ss->map, orig_tclass, avd,
1140 		     policydb->allow_unknown);
1141 out:
1142 	read_unlock(&state->ss->policy_rwlock);
1143 	return;
1144 allow:
1145 	avd->allowed = 0xffffffff;
1146 	goto out;
1147 }
1148 
security_compute_av_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1149 void security_compute_av_user(struct selinux_state *state,
1150 			      u32 ssid,
1151 			      u32 tsid,
1152 			      u16 tclass,
1153 			      struct av_decision *avd)
1154 {
1155 	struct policydb *policydb;
1156 	struct sidtab *sidtab;
1157 	struct context *scontext = NULL, *tcontext = NULL;
1158 
1159 	read_lock(&state->ss->policy_rwlock);
1160 	avd_init(state, avd);
1161 	if (!state->initialized)
1162 		goto allow;
1163 
1164 	policydb = &state->ss->policydb;
1165 	sidtab = state->ss->sidtab;
1166 
1167 	scontext = sidtab_search(sidtab, ssid);
1168 	if (!scontext) {
1169 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1170 		       __func__, ssid);
1171 		goto out;
1172 	}
1173 
1174 	/* permissive domain? */
1175 	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1176 		avd->flags |= AVD_FLAGS_PERMISSIVE;
1177 
1178 	tcontext = sidtab_search(sidtab, tsid);
1179 	if (!tcontext) {
1180 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1181 		       __func__, tsid);
1182 		goto out;
1183 	}
1184 
1185 	if (unlikely(!tclass)) {
1186 		if (policydb->allow_unknown)
1187 			goto allow;
1188 		goto out;
1189 	}
1190 
1191 	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1192 				  NULL);
1193  out:
1194 	read_unlock(&state->ss->policy_rwlock);
1195 	return;
1196 allow:
1197 	avd->allowed = 0xffffffff;
1198 	goto out;
1199 }
1200 
1201 /*
1202  * Write the security context string representation of
1203  * the context structure `context' into a dynamically
1204  * allocated string of the correct size.  Set `*scontext'
1205  * to point to this string and set `*scontext_len' to
1206  * the length of the string.
1207  */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1208 static int context_struct_to_string(struct policydb *p,
1209 				    struct context *context,
1210 				    char **scontext, u32 *scontext_len)
1211 {
1212 	char *scontextp;
1213 
1214 	if (scontext)
1215 		*scontext = NULL;
1216 	*scontext_len = 0;
1217 
1218 	if (context->len) {
1219 		*scontext_len = context->len;
1220 		if (scontext) {
1221 			*scontext = kstrdup(context->str, GFP_ATOMIC);
1222 			if (!(*scontext))
1223 				return -ENOMEM;
1224 		}
1225 		return 0;
1226 	}
1227 
1228 	/* Compute the size of the context. */
1229 	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1230 	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1231 	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1232 	*scontext_len += mls_compute_context_len(p, context);
1233 
1234 	if (!scontext)
1235 		return 0;
1236 
1237 	/* Allocate space for the context; caller must free this space. */
1238 	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1239 	if (!scontextp)
1240 		return -ENOMEM;
1241 	*scontext = scontextp;
1242 
1243 	/*
1244 	 * Copy the user name, role name and type name into the context.
1245 	 */
1246 	scontextp += sprintf(scontextp, "%s:%s:%s",
1247 		sym_name(p, SYM_USERS, context->user - 1),
1248 		sym_name(p, SYM_ROLES, context->role - 1),
1249 		sym_name(p, SYM_TYPES, context->type - 1));
1250 
1251 	mls_sid_to_context(p, context, &scontextp);
1252 
1253 	*scontextp = 0;
1254 
1255 	return 0;
1256 }
1257 
1258 #include "initial_sid_to_string.h"
1259 
security_sidtab_hash_stats(struct selinux_state * state,char * page)1260 int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1261 {
1262 	int rc;
1263 
1264 	if (!state->initialized) {
1265 		pr_err("SELinux: %s:  called before initial load_policy\n",
1266 		       __func__);
1267 		return -EINVAL;
1268 	}
1269 
1270 	read_lock(&state->ss->policy_rwlock);
1271 	rc = sidtab_hash_stats(state->ss->sidtab, page);
1272 	read_unlock(&state->ss->policy_rwlock);
1273 
1274 	return rc;
1275 }
1276 
security_get_initial_sid_context(u32 sid)1277 const char *security_get_initial_sid_context(u32 sid)
1278 {
1279 	if (unlikely(sid > SECINITSID_NUM))
1280 		return NULL;
1281 	return initial_sid_to_string[sid];
1282 }
1283 
security_sid_to_context_core(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1284 static int security_sid_to_context_core(struct selinux_state *state,
1285 					u32 sid, char **scontext,
1286 					u32 *scontext_len, int force,
1287 					int only_invalid)
1288 {
1289 	struct policydb *policydb;
1290 	struct sidtab *sidtab;
1291 	struct context *context;
1292 	int rc = 0;
1293 
1294 	if (scontext)
1295 		*scontext = NULL;
1296 	*scontext_len  = 0;
1297 
1298 	if (!state->initialized) {
1299 		if (sid <= SECINITSID_NUM) {
1300 			char *scontextp;
1301 
1302 			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1303 			if (!scontext)
1304 				goto out;
1305 			scontextp = kmemdup(initial_sid_to_string[sid],
1306 					    *scontext_len, GFP_ATOMIC);
1307 			if (!scontextp) {
1308 				rc = -ENOMEM;
1309 				goto out;
1310 			}
1311 			*scontext = scontextp;
1312 			goto out;
1313 		}
1314 		pr_err("SELinux: %s:  called before initial "
1315 		       "load_policy on unknown SID %d\n", __func__, sid);
1316 		rc = -EINVAL;
1317 		goto out;
1318 	}
1319 	read_lock(&state->ss->policy_rwlock);
1320 	policydb = &state->ss->policydb;
1321 	sidtab = state->ss->sidtab;
1322 	if (force)
1323 		context = sidtab_search_force(sidtab, sid);
1324 	else
1325 		context = sidtab_search(sidtab, sid);
1326 	if (!context) {
1327 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1328 			__func__, sid);
1329 		rc = -EINVAL;
1330 		goto out_unlock;
1331 	}
1332 	if (only_invalid && !context->len)
1333 		rc = 0;
1334 	else
1335 		rc = context_struct_to_string(policydb, context, scontext,
1336 					      scontext_len);
1337 out_unlock:
1338 	read_unlock(&state->ss->policy_rwlock);
1339 out:
1340 	return rc;
1341 
1342 }
1343 
1344 /**
1345  * security_sid_to_context - Obtain a context for a given SID.
1346  * @sid: security identifier, SID
1347  * @scontext: security context
1348  * @scontext_len: length in bytes
1349  *
1350  * Write the string representation of the context associated with @sid
1351  * into a dynamically allocated string of the correct size.  Set @scontext
1352  * to point to this string and set @scontext_len to the length of the string.
1353  */
security_sid_to_context(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1354 int security_sid_to_context(struct selinux_state *state,
1355 			    u32 sid, char **scontext, u32 *scontext_len)
1356 {
1357 	return security_sid_to_context_core(state, sid, scontext,
1358 					    scontext_len, 0, 0);
1359 }
1360 
security_sid_to_context_force(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1361 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1362 				  char **scontext, u32 *scontext_len)
1363 {
1364 	return security_sid_to_context_core(state, sid, scontext,
1365 					    scontext_len, 1, 0);
1366 }
1367 
1368 /**
1369  * security_sid_to_context_inval - Obtain a context for a given SID if it
1370  *                                 is invalid.
1371  * @sid: security identifier, SID
1372  * @scontext: security context
1373  * @scontext_len: length in bytes
1374  *
1375  * Write the string representation of the context associated with @sid
1376  * into a dynamically allocated string of the correct size, but only if the
1377  * context is invalid in the current policy.  Set @scontext to point to
1378  * this string (or NULL if the context is valid) and set @scontext_len to
1379  * the length of the string (or 0 if the context is valid).
1380  */
security_sid_to_context_inval(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1381 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1382 				  char **scontext, u32 *scontext_len)
1383 {
1384 	return security_sid_to_context_core(state, sid, scontext,
1385 					    scontext_len, 1, 1);
1386 }
1387 
1388 /*
1389  * Caveat:  Mutates scontext.
1390  */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1391 static int string_to_context_struct(struct policydb *pol,
1392 				    struct sidtab *sidtabp,
1393 				    char *scontext,
1394 				    struct context *ctx,
1395 				    u32 def_sid)
1396 {
1397 	struct role_datum *role;
1398 	struct type_datum *typdatum;
1399 	struct user_datum *usrdatum;
1400 	char *scontextp, *p, oldc;
1401 	int rc = 0;
1402 
1403 	context_init(ctx);
1404 
1405 	/* Parse the security context. */
1406 
1407 	rc = -EINVAL;
1408 	scontextp = (char *) scontext;
1409 
1410 	/* Extract the user. */
1411 	p = scontextp;
1412 	while (*p && *p != ':')
1413 		p++;
1414 
1415 	if (*p == 0)
1416 		goto out;
1417 
1418 	*p++ = 0;
1419 
1420 	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1421 	if (!usrdatum)
1422 		goto out;
1423 
1424 	ctx->user = usrdatum->value;
1425 
1426 	/* Extract role. */
1427 	scontextp = p;
1428 	while (*p && *p != ':')
1429 		p++;
1430 
1431 	if (*p == 0)
1432 		goto out;
1433 
1434 	*p++ = 0;
1435 
1436 	role = hashtab_search(pol->p_roles.table, scontextp);
1437 	if (!role)
1438 		goto out;
1439 	ctx->role = role->value;
1440 
1441 	/* Extract type. */
1442 	scontextp = p;
1443 	while (*p && *p != ':')
1444 		p++;
1445 	oldc = *p;
1446 	*p++ = 0;
1447 
1448 	typdatum = hashtab_search(pol->p_types.table, scontextp);
1449 	if (!typdatum || typdatum->attribute)
1450 		goto out;
1451 
1452 	ctx->type = typdatum->value;
1453 
1454 	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1455 	if (rc)
1456 		goto out;
1457 
1458 	/* Check the validity of the new context. */
1459 	rc = -EINVAL;
1460 	if (!policydb_context_isvalid(pol, ctx))
1461 		goto out;
1462 	rc = 0;
1463 out:
1464 	if (rc)
1465 		context_destroy(ctx);
1466 	return rc;
1467 }
1468 
context_add_hash(struct policydb * policydb,struct context * context)1469 int context_add_hash(struct policydb *policydb,
1470 		     struct context *context)
1471 {
1472 	int rc;
1473 	char *str;
1474 	int len;
1475 
1476 	if (context->str) {
1477 		context->hash = context_compute_hash(context->str);
1478 	} else {
1479 		rc = context_struct_to_string(policydb, context,
1480 					      &str, &len);
1481 		if (rc)
1482 			return rc;
1483 		context->hash = context_compute_hash(str);
1484 		kfree(str);
1485 	}
1486 	return 0;
1487 }
1488 
context_struct_to_sid(struct selinux_state * state,struct context * context,u32 * sid)1489 static int context_struct_to_sid(struct selinux_state *state,
1490 				 struct context *context, u32 *sid)
1491 {
1492 	int rc;
1493 	struct sidtab *sidtab = state->ss->sidtab;
1494 	struct policydb *policydb = &state->ss->policydb;
1495 
1496 	if (!context->hash) {
1497 		rc = context_add_hash(policydb, context);
1498 		if (rc)
1499 			return rc;
1500 	}
1501 
1502 	return sidtab_context_to_sid(sidtab, context, sid);
1503 }
1504 
security_context_to_sid_core(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1505 static int security_context_to_sid_core(struct selinux_state *state,
1506 					const char *scontext, u32 scontext_len,
1507 					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1508 					int force)
1509 {
1510 	struct policydb *policydb;
1511 	struct sidtab *sidtab;
1512 	char *scontext2, *str = NULL;
1513 	struct context context;
1514 	int rc = 0;
1515 
1516 	/* An empty security context is never valid. */
1517 	if (!scontext_len)
1518 		return -EINVAL;
1519 
1520 	/* Copy the string to allow changes and ensure a NUL terminator */
1521 	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1522 	if (!scontext2)
1523 		return -ENOMEM;
1524 
1525 	if (!state->initialized) {
1526 		int i;
1527 
1528 		for (i = 1; i < SECINITSID_NUM; i++) {
1529 			if (!strcmp(initial_sid_to_string[i], scontext2)) {
1530 				*sid = i;
1531 				goto out;
1532 			}
1533 		}
1534 		*sid = SECINITSID_KERNEL;
1535 		goto out;
1536 	}
1537 	*sid = SECSID_NULL;
1538 
1539 	if (force) {
1540 		/* Save another copy for storing in uninterpreted form */
1541 		rc = -ENOMEM;
1542 		str = kstrdup(scontext2, gfp_flags);
1543 		if (!str)
1544 			goto out;
1545 	}
1546 	read_lock(&state->ss->policy_rwlock);
1547 	policydb = &state->ss->policydb;
1548 	sidtab = state->ss->sidtab;
1549 	rc = string_to_context_struct(policydb, sidtab, scontext2,
1550 				      &context, def_sid);
1551 	if (rc == -EINVAL && force) {
1552 		context.str = str;
1553 		context.len = strlen(str) + 1;
1554 		str = NULL;
1555 	} else if (rc)
1556 		goto out_unlock;
1557 	rc = context_struct_to_sid(state, &context, sid);
1558 	context_destroy(&context);
1559 out_unlock:
1560 	read_unlock(&state->ss->policy_rwlock);
1561 out:
1562 	kfree(scontext2);
1563 	kfree(str);
1564 	return rc;
1565 }
1566 
1567 /**
1568  * security_context_to_sid - Obtain a SID for a given security context.
1569  * @scontext: security context
1570  * @scontext_len: length in bytes
1571  * @sid: security identifier, SID
1572  * @gfp: context for the allocation
1573  *
1574  * Obtains a SID associated with the security context that
1575  * has the string representation specified by @scontext.
1576  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1577  * memory is available, or 0 on success.
1578  */
security_context_to_sid(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1579 int security_context_to_sid(struct selinux_state *state,
1580 			    const char *scontext, u32 scontext_len, u32 *sid,
1581 			    gfp_t gfp)
1582 {
1583 	return security_context_to_sid_core(state, scontext, scontext_len,
1584 					    sid, SECSID_NULL, gfp, 0);
1585 }
1586 
security_context_str_to_sid(struct selinux_state * state,const char * scontext,u32 * sid,gfp_t gfp)1587 int security_context_str_to_sid(struct selinux_state *state,
1588 				const char *scontext, u32 *sid, gfp_t gfp)
1589 {
1590 	return security_context_to_sid(state, scontext, strlen(scontext),
1591 				       sid, gfp);
1592 }
1593 
1594 /**
1595  * security_context_to_sid_default - Obtain a SID for a given security context,
1596  * falling back to specified default if needed.
1597  *
1598  * @scontext: security context
1599  * @scontext_len: length in bytes
1600  * @sid: security identifier, SID
1601  * @def_sid: default SID to assign on error
1602  *
1603  * Obtains a SID associated with the security context that
1604  * has the string representation specified by @scontext.
1605  * The default SID is passed to the MLS layer to be used to allow
1606  * kernel labeling of the MLS field if the MLS field is not present
1607  * (for upgrading to MLS without full relabel).
1608  * Implicitly forces adding of the context even if it cannot be mapped yet.
1609  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1610  * memory is available, or 0 on success.
1611  */
security_context_to_sid_default(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1612 int security_context_to_sid_default(struct selinux_state *state,
1613 				    const char *scontext, u32 scontext_len,
1614 				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1615 {
1616 	return security_context_to_sid_core(state, scontext, scontext_len,
1617 					    sid, def_sid, gfp_flags, 1);
1618 }
1619 
security_context_to_sid_force(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid)1620 int security_context_to_sid_force(struct selinux_state *state,
1621 				  const char *scontext, u32 scontext_len,
1622 				  u32 *sid)
1623 {
1624 	return security_context_to_sid_core(state, scontext, scontext_len,
1625 					    sid, SECSID_NULL, GFP_KERNEL, 1);
1626 }
1627 
compute_sid_handle_invalid_context(struct selinux_state * state,struct context * scontext,struct context * tcontext,u16 tclass,struct context * newcontext)1628 static int compute_sid_handle_invalid_context(
1629 	struct selinux_state *state,
1630 	struct context *scontext,
1631 	struct context *tcontext,
1632 	u16 tclass,
1633 	struct context *newcontext)
1634 {
1635 	struct policydb *policydb = &state->ss->policydb;
1636 	char *s = NULL, *t = NULL, *n = NULL;
1637 	u32 slen, tlen, nlen;
1638 	struct audit_buffer *ab;
1639 
1640 	if (context_struct_to_string(policydb, scontext, &s, &slen))
1641 		goto out;
1642 	if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1643 		goto out;
1644 	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1645 		goto out;
1646 	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1647 	audit_log_format(ab,
1648 			 "op=security_compute_sid invalid_context=");
1649 	/* no need to record the NUL with untrusted strings */
1650 	audit_log_n_untrustedstring(ab, n, nlen - 1);
1651 	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1652 			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1653 	audit_log_end(ab);
1654 out:
1655 	kfree(s);
1656 	kfree(t);
1657 	kfree(n);
1658 	if (!enforcing_enabled(state))
1659 		return 0;
1660 	return -EACCES;
1661 }
1662 
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1663 static void filename_compute_type(struct policydb *policydb,
1664 				  struct context *newcontext,
1665 				  u32 stype, u32 ttype, u16 tclass,
1666 				  const char *objname)
1667 {
1668 	struct filename_trans ft;
1669 	struct filename_trans_datum *otype;
1670 
1671 	/*
1672 	 * Most filename trans rules are going to live in specific directories
1673 	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1674 	 * if the ttype does not contain any rules.
1675 	 */
1676 	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1677 		return;
1678 
1679 	ft.stype = stype;
1680 	ft.ttype = ttype;
1681 	ft.tclass = tclass;
1682 	ft.name = objname;
1683 
1684 	otype = hashtab_search(policydb->filename_trans, &ft);
1685 	if (otype)
1686 		newcontext->type = otype->otype;
1687 }
1688 
security_compute_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u32 specified,const char * objname,u32 * out_sid,bool kern)1689 static int security_compute_sid(struct selinux_state *state,
1690 				u32 ssid,
1691 				u32 tsid,
1692 				u16 orig_tclass,
1693 				u32 specified,
1694 				const char *objname,
1695 				u32 *out_sid,
1696 				bool kern)
1697 {
1698 	struct policydb *policydb;
1699 	struct sidtab *sidtab;
1700 	struct class_datum *cladatum = NULL;
1701 	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1702 	struct role_trans *roletr = NULL;
1703 	struct avtab_key avkey;
1704 	struct avtab_datum *avdatum;
1705 	struct avtab_node *node;
1706 	u16 tclass;
1707 	int rc = 0;
1708 	bool sock;
1709 
1710 	if (!state->initialized) {
1711 		switch (orig_tclass) {
1712 		case SECCLASS_PROCESS: /* kernel value */
1713 			*out_sid = ssid;
1714 			break;
1715 		default:
1716 			*out_sid = tsid;
1717 			break;
1718 		}
1719 		goto out;
1720 	}
1721 
1722 	context_init(&newcontext);
1723 
1724 	read_lock(&state->ss->policy_rwlock);
1725 
1726 	if (kern) {
1727 		tclass = unmap_class(&state->ss->map, orig_tclass);
1728 		sock = security_is_socket_class(orig_tclass);
1729 	} else {
1730 		tclass = orig_tclass;
1731 		sock = security_is_socket_class(map_class(&state->ss->map,
1732 							  tclass));
1733 	}
1734 
1735 	policydb = &state->ss->policydb;
1736 	sidtab = state->ss->sidtab;
1737 
1738 	scontext = sidtab_search(sidtab, ssid);
1739 	if (!scontext) {
1740 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1741 		       __func__, ssid);
1742 		rc = -EINVAL;
1743 		goto out_unlock;
1744 	}
1745 	tcontext = sidtab_search(sidtab, tsid);
1746 	if (!tcontext) {
1747 		pr_err("SELinux: %s:  unrecognized SID %d\n",
1748 		       __func__, tsid);
1749 		rc = -EINVAL;
1750 		goto out_unlock;
1751 	}
1752 
1753 	if (tclass && tclass <= policydb->p_classes.nprim)
1754 		cladatum = policydb->class_val_to_struct[tclass - 1];
1755 
1756 	/* Set the user identity. */
1757 	switch (specified) {
1758 	case AVTAB_TRANSITION:
1759 	case AVTAB_CHANGE:
1760 		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1761 			newcontext.user = tcontext->user;
1762 		} else {
1763 			/* notice this gets both DEFAULT_SOURCE and unset */
1764 			/* Use the process user identity. */
1765 			newcontext.user = scontext->user;
1766 		}
1767 		break;
1768 	case AVTAB_MEMBER:
1769 		/* Use the related object owner. */
1770 		newcontext.user = tcontext->user;
1771 		break;
1772 	}
1773 
1774 	/* Set the role to default values. */
1775 	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1776 		newcontext.role = scontext->role;
1777 	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1778 		newcontext.role = tcontext->role;
1779 	} else {
1780 		if ((tclass == policydb->process_class) || (sock == true))
1781 			newcontext.role = scontext->role;
1782 		else
1783 			newcontext.role = OBJECT_R_VAL;
1784 	}
1785 
1786 	/* Set the type to default values. */
1787 	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1788 		newcontext.type = scontext->type;
1789 	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1790 		newcontext.type = tcontext->type;
1791 	} else {
1792 		if ((tclass == policydb->process_class) || (sock == true)) {
1793 			/* Use the type of process. */
1794 			newcontext.type = scontext->type;
1795 		} else {
1796 			/* Use the type of the related object. */
1797 			newcontext.type = tcontext->type;
1798 		}
1799 	}
1800 
1801 	/* Look for a type transition/member/change rule. */
1802 	avkey.source_type = scontext->type;
1803 	avkey.target_type = tcontext->type;
1804 	avkey.target_class = tclass;
1805 	avkey.specified = specified;
1806 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1807 
1808 	/* If no permanent rule, also check for enabled conditional rules */
1809 	if (!avdatum) {
1810 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1811 		for (; node; node = avtab_search_node_next(node, specified)) {
1812 			if (node->key.specified & AVTAB_ENABLED) {
1813 				avdatum = &node->datum;
1814 				break;
1815 			}
1816 		}
1817 	}
1818 
1819 	if (avdatum) {
1820 		/* Use the type from the type transition/member/change rule. */
1821 		newcontext.type = avdatum->u.data;
1822 	}
1823 
1824 	/* if we have a objname this is a file trans check so check those rules */
1825 	if (objname)
1826 		filename_compute_type(policydb, &newcontext, scontext->type,
1827 				      tcontext->type, tclass, objname);
1828 
1829 	/* Check for class-specific changes. */
1830 	if (specified & AVTAB_TRANSITION) {
1831 		/* Look for a role transition rule. */
1832 		for (roletr = policydb->role_tr; roletr;
1833 		     roletr = roletr->next) {
1834 			if ((roletr->role == scontext->role) &&
1835 			    (roletr->type == tcontext->type) &&
1836 			    (roletr->tclass == tclass)) {
1837 				/* Use the role transition rule. */
1838 				newcontext.role = roletr->new_role;
1839 				break;
1840 			}
1841 		}
1842 	}
1843 
1844 	/* Set the MLS attributes.
1845 	   This is done last because it may allocate memory. */
1846 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1847 			     &newcontext, sock);
1848 	if (rc)
1849 		goto out_unlock;
1850 
1851 	/* Check the validity of the context. */
1852 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1853 		rc = compute_sid_handle_invalid_context(state, scontext,
1854 							tcontext,
1855 							tclass,
1856 							&newcontext);
1857 		if (rc)
1858 			goto out_unlock;
1859 	}
1860 	/* Obtain the sid for the context. */
1861 	rc = context_struct_to_sid(state, &newcontext, out_sid);
1862 out_unlock:
1863 	read_unlock(&state->ss->policy_rwlock);
1864 	context_destroy(&newcontext);
1865 out:
1866 	return rc;
1867 }
1868 
1869 /**
1870  * security_transition_sid - Compute the SID for a new subject/object.
1871  * @ssid: source security identifier
1872  * @tsid: target security identifier
1873  * @tclass: target security class
1874  * @out_sid: security identifier for new subject/object
1875  *
1876  * Compute a SID to use for labeling a new subject or object in the
1877  * class @tclass based on a SID pair (@ssid, @tsid).
1878  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1879  * if insufficient memory is available, or %0 if the new SID was
1880  * computed successfully.
1881  */
security_transition_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1882 int security_transition_sid(struct selinux_state *state,
1883 			    u32 ssid, u32 tsid, u16 tclass,
1884 			    const struct qstr *qstr, u32 *out_sid)
1885 {
1886 	return security_compute_sid(state, ssid, tsid, tclass,
1887 				    AVTAB_TRANSITION,
1888 				    qstr ? qstr->name : NULL, out_sid, true);
1889 }
1890 
security_transition_sid_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1891 int security_transition_sid_user(struct selinux_state *state,
1892 				 u32 ssid, u32 tsid, u16 tclass,
1893 				 const char *objname, u32 *out_sid)
1894 {
1895 	return security_compute_sid(state, ssid, tsid, tclass,
1896 				    AVTAB_TRANSITION,
1897 				    objname, out_sid, false);
1898 }
1899 
1900 /**
1901  * security_member_sid - Compute the SID for member selection.
1902  * @ssid: source security identifier
1903  * @tsid: target security identifier
1904  * @tclass: target security class
1905  * @out_sid: security identifier for selected member
1906  *
1907  * Compute a SID to use when selecting a member of a polyinstantiated
1908  * object of class @tclass based on a SID pair (@ssid, @tsid).
1909  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1910  * if insufficient memory is available, or %0 if the SID was
1911  * computed successfully.
1912  */
security_member_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1913 int security_member_sid(struct selinux_state *state,
1914 			u32 ssid,
1915 			u32 tsid,
1916 			u16 tclass,
1917 			u32 *out_sid)
1918 {
1919 	return security_compute_sid(state, ssid, tsid, tclass,
1920 				    AVTAB_MEMBER, NULL,
1921 				    out_sid, false);
1922 }
1923 
1924 /**
1925  * security_change_sid - Compute the SID for object relabeling.
1926  * @ssid: source security identifier
1927  * @tsid: target security identifier
1928  * @tclass: target security class
1929  * @out_sid: security identifier for selected member
1930  *
1931  * Compute a SID to use for relabeling an object of class @tclass
1932  * based on a SID pair (@ssid, @tsid).
1933  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1934  * if insufficient memory is available, or %0 if the SID was
1935  * computed successfully.
1936  */
security_change_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1937 int security_change_sid(struct selinux_state *state,
1938 			u32 ssid,
1939 			u32 tsid,
1940 			u16 tclass,
1941 			u32 *out_sid)
1942 {
1943 	return security_compute_sid(state,
1944 				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1945 				    out_sid, false);
1946 }
1947 
convert_context_handle_invalid_context(struct selinux_state * state,struct context * context)1948 static inline int convert_context_handle_invalid_context(
1949 	struct selinux_state *state,
1950 	struct context *context)
1951 {
1952 	struct policydb *policydb = &state->ss->policydb;
1953 	char *s;
1954 	u32 len;
1955 
1956 	if (enforcing_enabled(state))
1957 		return -EINVAL;
1958 
1959 	if (!context_struct_to_string(policydb, context, &s, &len)) {
1960 		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1961 			s);
1962 		kfree(s);
1963 	}
1964 	return 0;
1965 }
1966 
1967 struct convert_context_args {
1968 	struct selinux_state *state;
1969 	struct policydb *oldp;
1970 	struct policydb *newp;
1971 };
1972 
1973 /*
1974  * Convert the values in the security context
1975  * structure `oldc' from the values specified
1976  * in the policy `p->oldp' to the values specified
1977  * in the policy `p->newp', storing the new context
1978  * in `newc'.  Verify that the context is valid
1979  * under the new policy.
1980  */
convert_context(struct context * oldc,struct context * newc,void * p)1981 static int convert_context(struct context *oldc, struct context *newc, void *p)
1982 {
1983 	struct convert_context_args *args;
1984 	struct ocontext *oc;
1985 	struct role_datum *role;
1986 	struct type_datum *typdatum;
1987 	struct user_datum *usrdatum;
1988 	char *s;
1989 	u32 len;
1990 	int rc;
1991 
1992 	args = p;
1993 
1994 	if (oldc->str) {
1995 		s = kstrdup(oldc->str, GFP_KERNEL);
1996 		if (!s)
1997 			return -ENOMEM;
1998 
1999 		rc = string_to_context_struct(args->newp, NULL, s,
2000 					      newc, SECSID_NULL);
2001 		if (rc == -EINVAL) {
2002 			/*
2003 			 * Retain string representation for later mapping.
2004 			 *
2005 			 * IMPORTANT: We need to copy the contents of oldc->str
2006 			 * back into s again because string_to_context_struct()
2007 			 * may have garbled it.
2008 			 */
2009 			memcpy(s, oldc->str, oldc->len);
2010 			context_init(newc);
2011 			newc->str = s;
2012 			newc->len = oldc->len;
2013 			newc->hash = oldc->hash;
2014 			return 0;
2015 		}
2016 		kfree(s);
2017 		if (rc) {
2018 			/* Other error condition, e.g. ENOMEM. */
2019 			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2020 			       oldc->str, -rc);
2021 			return rc;
2022 		}
2023 		pr_info("SELinux:  Context %s became valid (mapped).\n",
2024 			oldc->str);
2025 		return 0;
2026 	}
2027 
2028 	context_init(newc);
2029 
2030 	/* Convert the user. */
2031 	rc = -EINVAL;
2032 	usrdatum = hashtab_search(args->newp->p_users.table,
2033 				  sym_name(args->oldp,
2034 					   SYM_USERS, oldc->user - 1));
2035 	if (!usrdatum)
2036 		goto bad;
2037 	newc->user = usrdatum->value;
2038 
2039 	/* Convert the role. */
2040 	rc = -EINVAL;
2041 	role = hashtab_search(args->newp->p_roles.table,
2042 			      sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2043 	if (!role)
2044 		goto bad;
2045 	newc->role = role->value;
2046 
2047 	/* Convert the type. */
2048 	rc = -EINVAL;
2049 	typdatum = hashtab_search(args->newp->p_types.table,
2050 				  sym_name(args->oldp,
2051 					   SYM_TYPES, oldc->type - 1));
2052 	if (!typdatum)
2053 		goto bad;
2054 	newc->type = typdatum->value;
2055 
2056 	/* Convert the MLS fields if dealing with MLS policies */
2057 	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2058 		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2059 		if (rc)
2060 			goto bad;
2061 	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2062 		/*
2063 		 * Switching between non-MLS and MLS policy:
2064 		 * ensure that the MLS fields of the context for all
2065 		 * existing entries in the sidtab are filled in with a
2066 		 * suitable default value, likely taken from one of the
2067 		 * initial SIDs.
2068 		 */
2069 		oc = args->newp->ocontexts[OCON_ISID];
2070 		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2071 			oc = oc->next;
2072 		rc = -EINVAL;
2073 		if (!oc) {
2074 			pr_err("SELinux:  unable to look up"
2075 				" the initial SIDs list\n");
2076 			goto bad;
2077 		}
2078 		rc = mls_range_set(newc, &oc->context[0].range);
2079 		if (rc)
2080 			goto bad;
2081 	}
2082 
2083 	/* Check the validity of the new context. */
2084 	if (!policydb_context_isvalid(args->newp, newc)) {
2085 		rc = convert_context_handle_invalid_context(args->state, oldc);
2086 		if (rc)
2087 			goto bad;
2088 	}
2089 
2090 	rc = context_add_hash(args->newp, newc);
2091 	if (rc)
2092 		goto bad;
2093 
2094 	return 0;
2095 bad:
2096 	/* Map old representation to string and save it. */
2097 	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2098 	if (rc)
2099 		return rc;
2100 	context_destroy(newc);
2101 	newc->str = s;
2102 	newc->len = len;
2103 	newc->hash = context_compute_hash(s);
2104 	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2105 		newc->str);
2106 	return 0;
2107 }
2108 
security_load_policycaps(struct selinux_state * state)2109 static void security_load_policycaps(struct selinux_state *state)
2110 {
2111 	struct policydb *p = &state->ss->policydb;
2112 	unsigned int i;
2113 	struct ebitmap_node *node;
2114 
2115 	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2116 		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2117 
2118 	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2119 		pr_info("SELinux:  policy capability %s=%d\n",
2120 			selinux_policycap_names[i],
2121 			ebitmap_get_bit(&p->policycaps, i));
2122 
2123 	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2124 		if (i >= ARRAY_SIZE(selinux_policycap_names))
2125 			pr_info("SELinux:  unknown policy capability %u\n",
2126 				i);
2127 	}
2128 
2129 	state->android_netlink_route = p->android_netlink_route;
2130 	state->android_netlink_getneigh = p->android_netlink_getneigh;
2131 	selinux_nlmsg_init();
2132 }
2133 
2134 static int security_preserve_bools(struct selinux_state *state,
2135 				   struct policydb *newpolicydb);
2136 
2137 /**
2138  * security_load_policy - Load a security policy configuration.
2139  * @data: binary policy data
2140  * @len: length of data in bytes
2141  *
2142  * Load a new set of security policy configuration data,
2143  * validate it and convert the SID table as necessary.
2144  * This function will flush the access vector cache after
2145  * loading the new policy.
2146  */
security_load_policy(struct selinux_state * state,void * data,size_t len)2147 int security_load_policy(struct selinux_state *state, void *data, size_t len)
2148 {
2149 	struct policydb *policydb;
2150 	struct sidtab *oldsidtab, *newsidtab;
2151 	struct policydb *oldpolicydb, *newpolicydb;
2152 	struct selinux_mapping *oldmapping;
2153 	struct selinux_map newmap;
2154 	struct sidtab_convert_params convert_params;
2155 	struct convert_context_args args;
2156 	u32 seqno;
2157 	int rc = 0;
2158 	struct policy_file file = { data, len }, *fp = &file;
2159 
2160 	oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2161 	if (!oldpolicydb) {
2162 		rc = -ENOMEM;
2163 		goto out;
2164 	}
2165 	newpolicydb = oldpolicydb + 1;
2166 
2167 	policydb = &state->ss->policydb;
2168 
2169 	newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2170 	if (!newsidtab) {
2171 		rc = -ENOMEM;
2172 		goto out;
2173 	}
2174 
2175 	if (!state->initialized) {
2176 		rc = policydb_read(policydb, fp);
2177 		if (rc) {
2178 			kfree(newsidtab);
2179 			goto out;
2180 		}
2181 
2182 		policydb->len = len;
2183 		rc = selinux_set_mapping(policydb, secclass_map,
2184 					 &state->ss->map);
2185 		if (rc) {
2186 			kfree(newsidtab);
2187 			policydb_destroy(policydb);
2188 			goto out;
2189 		}
2190 
2191 		rc = policydb_load_isids(policydb, newsidtab);
2192 		if (rc) {
2193 			kfree(newsidtab);
2194 			policydb_destroy(policydb);
2195 			goto out;
2196 		}
2197 
2198 		state->ss->sidtab = newsidtab;
2199 		security_load_policycaps(state);
2200 		state->initialized = 1;
2201 		seqno = ++state->ss->latest_granting;
2202 		selinux_complete_init();
2203 		avc_ss_reset(state->avc, seqno);
2204 		selnl_notify_policyload(seqno);
2205 		selinux_status_update_policyload(state, seqno);
2206 		selinux_netlbl_cache_invalidate();
2207 		selinux_xfrm_notify_policyload();
2208 		goto out;
2209 	}
2210 
2211 	rc = policydb_read(newpolicydb, fp);
2212 	if (rc) {
2213 		kfree(newsidtab);
2214 		goto out;
2215 	}
2216 
2217 	newpolicydb->len = len;
2218 	/* If switching between different policy types, log MLS status */
2219 	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2220 		pr_info("SELinux: Disabling MLS support...\n");
2221 	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2222 		pr_info("SELinux: Enabling MLS support...\n");
2223 
2224 	rc = policydb_load_isids(newpolicydb, newsidtab);
2225 	if (rc) {
2226 		pr_err("SELinux:  unable to load the initial SIDs\n");
2227 		policydb_destroy(newpolicydb);
2228 		kfree(newsidtab);
2229 		goto out;
2230 	}
2231 
2232 	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2233 	if (rc)
2234 		goto err;
2235 
2236 	rc = security_preserve_bools(state, newpolicydb);
2237 	if (rc) {
2238 		pr_err("SELinux:  unable to preserve booleans\n");
2239 		goto err;
2240 	}
2241 
2242 	oldsidtab = state->ss->sidtab;
2243 
2244 	/*
2245 	 * Convert the internal representations of contexts
2246 	 * in the new SID table.
2247 	 */
2248 	args.state = state;
2249 	args.oldp = policydb;
2250 	args.newp = newpolicydb;
2251 
2252 	convert_params.func = convert_context;
2253 	convert_params.args = &args;
2254 	convert_params.target = newsidtab;
2255 
2256 	rc = sidtab_convert(oldsidtab, &convert_params);
2257 	if (rc) {
2258 		pr_err("SELinux:  unable to convert the internal"
2259 			" representation of contexts in the new SID"
2260 			" table\n");
2261 		goto err;
2262 	}
2263 
2264 	/* Save the old policydb and SID table to free later. */
2265 	memcpy(oldpolicydb, policydb, sizeof(*policydb));
2266 
2267 	/* Install the new policydb and SID table. */
2268 	write_lock_irq(&state->ss->policy_rwlock);
2269 	memcpy(policydb, newpolicydb, sizeof(*policydb));
2270 	state->ss->sidtab = newsidtab;
2271 	security_load_policycaps(state);
2272 	oldmapping = state->ss->map.mapping;
2273 	state->ss->map.mapping = newmap.mapping;
2274 	state->ss->map.size = newmap.size;
2275 	seqno = ++state->ss->latest_granting;
2276 	write_unlock_irq(&state->ss->policy_rwlock);
2277 
2278 	/* Free the old policydb and SID table. */
2279 	policydb_destroy(oldpolicydb);
2280 	sidtab_destroy(oldsidtab);
2281 	kfree(oldsidtab);
2282 	kfree(oldmapping);
2283 
2284 	avc_ss_reset(state->avc, seqno);
2285 	selnl_notify_policyload(seqno);
2286 	selinux_status_update_policyload(state, seqno);
2287 	selinux_netlbl_cache_invalidate();
2288 	selinux_xfrm_notify_policyload();
2289 
2290 	rc = 0;
2291 	goto out;
2292 
2293 err:
2294 	kfree(newmap.mapping);
2295 	sidtab_destroy(newsidtab);
2296 	kfree(newsidtab);
2297 	policydb_destroy(newpolicydb);
2298 
2299 out:
2300 	kfree(oldpolicydb);
2301 	return rc;
2302 }
2303 
security_policydb_len(struct selinux_state * state)2304 size_t security_policydb_len(struct selinux_state *state)
2305 {
2306 	struct policydb *p = &state->ss->policydb;
2307 	size_t len;
2308 
2309 	read_lock(&state->ss->policy_rwlock);
2310 	len = p->len;
2311 	read_unlock(&state->ss->policy_rwlock);
2312 
2313 	return len;
2314 }
2315 
2316 /**
2317  * ocontext_to_sid - Helper to safely get sid for an ocontext
2318  * @sidtab: SID table
2319  * @c: ocontext structure
2320  * @index: index of the context entry (0 or 1)
2321  * @out_sid: pointer to the resulting SID value
2322  *
2323  * For all ocontexts except OCON_ISID the SID fields are populated
2324  * on-demand when needed. Since updating the SID value is an SMP-sensitive
2325  * operation, this helper must be used to do that safely.
2326  *
2327  * WARNING: This function may return -ESTALE, indicating that the caller
2328  * must retry the operation after re-acquiring the policy pointer!
2329  */
ocontext_to_sid(struct sidtab * sidtab,struct ocontext * c,size_t index,u32 * out_sid)2330 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2331 			   size_t index, u32 *out_sid)
2332 {
2333 	int rc;
2334 	u32 sid;
2335 
2336 	/* Ensure the associated sidtab entry is visible to this thread. */
2337 	sid = smp_load_acquire(&c->sid[index]);
2338 	if (!sid) {
2339 		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2340 		if (rc)
2341 			return rc;
2342 
2343 		/*
2344 		 * Ensure the new sidtab entry is visible to other threads
2345 		 * when they see the SID.
2346 		 */
2347 		smp_store_release(&c->sid[index], sid);
2348 	}
2349 	*out_sid = sid;
2350 	return 0;
2351 }
2352 
2353 /**
2354  * security_port_sid - Obtain the SID for a port.
2355  * @protocol: protocol number
2356  * @port: port number
2357  * @out_sid: security identifier
2358  */
security_port_sid(struct selinux_state * state,u8 protocol,u16 port,u32 * out_sid)2359 int security_port_sid(struct selinux_state *state,
2360 		      u8 protocol, u16 port, u32 *out_sid)
2361 {
2362 	struct policydb *policydb;
2363 	struct sidtab *sidtab;
2364 	struct ocontext *c;
2365 	int rc;
2366 
2367 	read_lock(&state->ss->policy_rwlock);
2368 
2369 retry:
2370 	rc = 0;
2371 	policydb = &state->ss->policydb;
2372 	sidtab = state->ss->sidtab;
2373 
2374 	c = policydb->ocontexts[OCON_PORT];
2375 	while (c) {
2376 		if (c->u.port.protocol == protocol &&
2377 		    c->u.port.low_port <= port &&
2378 		    c->u.port.high_port >= port)
2379 			break;
2380 		c = c->next;
2381 	}
2382 
2383 	if (c) {
2384 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2385 		if (rc == -ESTALE)
2386 			goto retry;
2387 		if (rc)
2388 			goto out;
2389 	} else {
2390 		*out_sid = SECINITSID_PORT;
2391 	}
2392 
2393 out:
2394 	read_unlock(&state->ss->policy_rwlock);
2395 	return rc;
2396 }
2397 
2398 /**
2399  * security_pkey_sid - Obtain the SID for a pkey.
2400  * @subnet_prefix: Subnet Prefix
2401  * @pkey_num: pkey number
2402  * @out_sid: security identifier
2403  */
security_ib_pkey_sid(struct selinux_state * state,u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2404 int security_ib_pkey_sid(struct selinux_state *state,
2405 			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2406 {
2407 	struct policydb *policydb;
2408 	struct sidtab *sidtab;
2409 	struct ocontext *c;
2410 	int rc;
2411 
2412 	read_lock(&state->ss->policy_rwlock);
2413 
2414 retry:
2415 	rc = 0;
2416 	policydb = &state->ss->policydb;
2417 	sidtab = state->ss->sidtab;
2418 
2419 	c = policydb->ocontexts[OCON_IBPKEY];
2420 	while (c) {
2421 		if (c->u.ibpkey.low_pkey <= pkey_num &&
2422 		    c->u.ibpkey.high_pkey >= pkey_num &&
2423 		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2424 			break;
2425 
2426 		c = c->next;
2427 	}
2428 
2429 	if (c) {
2430 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2431 		if (rc == -ESTALE)
2432 			goto retry;
2433 		if (rc)
2434 			goto out;
2435 	} else
2436 		*out_sid = SECINITSID_UNLABELED;
2437 
2438 out:
2439 	read_unlock(&state->ss->policy_rwlock);
2440 	return rc;
2441 }
2442 
2443 /**
2444  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2445  * @dev_name: device name
2446  * @port: port number
2447  * @out_sid: security identifier
2448  */
security_ib_endport_sid(struct selinux_state * state,const char * dev_name,u8 port_num,u32 * out_sid)2449 int security_ib_endport_sid(struct selinux_state *state,
2450 			    const char *dev_name, u8 port_num, u32 *out_sid)
2451 {
2452 	struct policydb *policydb;
2453 	struct sidtab *sidtab;
2454 	struct ocontext *c;
2455 	int rc;
2456 
2457 	read_lock(&state->ss->policy_rwlock);
2458 
2459 retry:
2460 	rc = 0;
2461 	policydb = &state->ss->policydb;
2462 	sidtab = state->ss->sidtab;
2463 
2464 	c = policydb->ocontexts[OCON_IBENDPORT];
2465 	while (c) {
2466 		if (c->u.ibendport.port == port_num &&
2467 		    !strncmp(c->u.ibendport.dev_name,
2468 			     dev_name,
2469 			     IB_DEVICE_NAME_MAX))
2470 			break;
2471 
2472 		c = c->next;
2473 	}
2474 
2475 	if (c) {
2476 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2477 		if (rc == -ESTALE)
2478 			goto retry;
2479 		if (rc)
2480 			goto out;
2481 	} else
2482 		*out_sid = SECINITSID_UNLABELED;
2483 
2484 out:
2485 	read_unlock(&state->ss->policy_rwlock);
2486 	return rc;
2487 }
2488 
2489 /**
2490  * security_netif_sid - Obtain the SID for a network interface.
2491  * @name: interface name
2492  * @if_sid: interface SID
2493  */
security_netif_sid(struct selinux_state * state,char * name,u32 * if_sid)2494 int security_netif_sid(struct selinux_state *state,
2495 		       char *name, u32 *if_sid)
2496 {
2497 	struct policydb *policydb;
2498 	struct sidtab *sidtab;
2499 	int rc;
2500 	struct ocontext *c;
2501 
2502 	read_lock(&state->ss->policy_rwlock);
2503 
2504 retry:
2505 	rc = 0;
2506 	policydb = &state->ss->policydb;
2507 	sidtab = state->ss->sidtab;
2508 
2509 	c = policydb->ocontexts[OCON_NETIF];
2510 	while (c) {
2511 		if (strcmp(name, c->u.name) == 0)
2512 			break;
2513 		c = c->next;
2514 	}
2515 
2516 	if (c) {
2517 		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2518 		if (rc == -ESTALE)
2519 			goto retry;
2520 		if (rc)
2521 			goto out;
2522 	} else
2523 		*if_sid = SECINITSID_NETIF;
2524 
2525 out:
2526 	read_unlock(&state->ss->policy_rwlock);
2527 	return rc;
2528 }
2529 
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2530 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2531 {
2532 	int i, fail = 0;
2533 
2534 	for (i = 0; i < 4; i++)
2535 		if (addr[i] != (input[i] & mask[i])) {
2536 			fail = 1;
2537 			break;
2538 		}
2539 
2540 	return !fail;
2541 }
2542 
2543 /**
2544  * security_node_sid - Obtain the SID for a node (host).
2545  * @domain: communication domain aka address family
2546  * @addrp: address
2547  * @addrlen: address length in bytes
2548  * @out_sid: security identifier
2549  */
security_node_sid(struct selinux_state * state,u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2550 int security_node_sid(struct selinux_state *state,
2551 		      u16 domain,
2552 		      void *addrp,
2553 		      u32 addrlen,
2554 		      u32 *out_sid)
2555 {
2556 	struct policydb *policydb;
2557 	struct sidtab *sidtab;
2558 	int rc;
2559 	struct ocontext *c;
2560 
2561 	read_lock(&state->ss->policy_rwlock);
2562 
2563 retry:
2564 	policydb = &state->ss->policydb;
2565 	sidtab = state->ss->sidtab;
2566 
2567 	switch (domain) {
2568 	case AF_INET: {
2569 		u32 addr;
2570 
2571 		rc = -EINVAL;
2572 		if (addrlen != sizeof(u32))
2573 			goto out;
2574 
2575 		addr = *((u32 *)addrp);
2576 
2577 		c = policydb->ocontexts[OCON_NODE];
2578 		while (c) {
2579 			if (c->u.node.addr == (addr & c->u.node.mask))
2580 				break;
2581 			c = c->next;
2582 		}
2583 		break;
2584 	}
2585 
2586 	case AF_INET6:
2587 		rc = -EINVAL;
2588 		if (addrlen != sizeof(u64) * 2)
2589 			goto out;
2590 		c = policydb->ocontexts[OCON_NODE6];
2591 		while (c) {
2592 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2593 						c->u.node6.mask))
2594 				break;
2595 			c = c->next;
2596 		}
2597 		break;
2598 
2599 	default:
2600 		rc = 0;
2601 		*out_sid = SECINITSID_NODE;
2602 		goto out;
2603 	}
2604 
2605 	if (c) {
2606 		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2607 		if (rc == -ESTALE)
2608 			goto retry;
2609 		if (rc)
2610 			goto out;
2611 	} else {
2612 		*out_sid = SECINITSID_NODE;
2613 	}
2614 
2615 	rc = 0;
2616 out:
2617 	read_unlock(&state->ss->policy_rwlock);
2618 	return rc;
2619 }
2620 
2621 #define SIDS_NEL 25
2622 
2623 /**
2624  * security_get_user_sids - Obtain reachable SIDs for a user.
2625  * @fromsid: starting SID
2626  * @username: username
2627  * @sids: array of reachable SIDs for user
2628  * @nel: number of elements in @sids
2629  *
2630  * Generate the set of SIDs for legal security contexts
2631  * for a given user that can be reached by @fromsid.
2632  * Set *@sids to point to a dynamically allocated
2633  * array containing the set of SIDs.  Set *@nel to the
2634  * number of elements in the array.
2635  */
2636 
security_get_user_sids(struct selinux_state * state,u32 fromsid,char * username,u32 ** sids,u32 * nel)2637 int security_get_user_sids(struct selinux_state *state,
2638 			   u32 fromsid,
2639 			   char *username,
2640 			   u32 **sids,
2641 			   u32 *nel)
2642 {
2643 	struct policydb *policydb;
2644 	struct sidtab *sidtab;
2645 	struct context *fromcon, usercon;
2646 	u32 *mysids = NULL, *mysids2, sid;
2647 	u32 mynel = 0, maxnel = SIDS_NEL;
2648 	struct user_datum *user;
2649 	struct role_datum *role;
2650 	struct ebitmap_node *rnode, *tnode;
2651 	int rc = 0, i, j;
2652 
2653 	*sids = NULL;
2654 	*nel = 0;
2655 
2656 	if (!state->initialized)
2657 		goto out;
2658 
2659 	read_lock(&state->ss->policy_rwlock);
2660 
2661 	policydb = &state->ss->policydb;
2662 	sidtab = state->ss->sidtab;
2663 
2664 	context_init(&usercon);
2665 
2666 	rc = -EINVAL;
2667 	fromcon = sidtab_search(sidtab, fromsid);
2668 	if (!fromcon)
2669 		goto out_unlock;
2670 
2671 	rc = -EINVAL;
2672 	user = hashtab_search(policydb->p_users.table, username);
2673 	if (!user)
2674 		goto out_unlock;
2675 
2676 	usercon.user = user->value;
2677 
2678 	rc = -ENOMEM;
2679 	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2680 	if (!mysids)
2681 		goto out_unlock;
2682 
2683 	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2684 		role = policydb->role_val_to_struct[i];
2685 		usercon.role = i + 1;
2686 		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2687 			usercon.type = j + 1;
2688 			/*
2689 			 * The same context struct is reused here so the hash
2690 			 * must be reset.
2691 			 */
2692 			usercon.hash = 0;
2693 
2694 			if (mls_setup_user_range(policydb, fromcon, user,
2695 						 &usercon))
2696 				continue;
2697 
2698 			rc = context_struct_to_sid(state, &usercon, &sid);
2699 			if (rc)
2700 				goto out_unlock;
2701 			if (mynel < maxnel) {
2702 				mysids[mynel++] = sid;
2703 			} else {
2704 				rc = -ENOMEM;
2705 				maxnel += SIDS_NEL;
2706 				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2707 				if (!mysids2)
2708 					goto out_unlock;
2709 				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2710 				kfree(mysids);
2711 				mysids = mysids2;
2712 				mysids[mynel++] = sid;
2713 			}
2714 		}
2715 	}
2716 	rc = 0;
2717 out_unlock:
2718 	read_unlock(&state->ss->policy_rwlock);
2719 	if (rc || !mynel) {
2720 		kfree(mysids);
2721 		goto out;
2722 	}
2723 
2724 	rc = -ENOMEM;
2725 	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2726 	if (!mysids2) {
2727 		kfree(mysids);
2728 		goto out;
2729 	}
2730 	for (i = 0, j = 0; i < mynel; i++) {
2731 		struct av_decision dummy_avd;
2732 		rc = avc_has_perm_noaudit(state,
2733 					  fromsid, mysids[i],
2734 					  SECCLASS_PROCESS, /* kernel value */
2735 					  PROCESS__TRANSITION, AVC_STRICT,
2736 					  &dummy_avd);
2737 		if (!rc)
2738 			mysids2[j++] = mysids[i];
2739 		cond_resched();
2740 	}
2741 	rc = 0;
2742 	kfree(mysids);
2743 	*sids = mysids2;
2744 	*nel = j;
2745 out:
2746 	return rc;
2747 }
2748 
2749 /**
2750  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2751  * @fstype: filesystem type
2752  * @path: path from root of mount
2753  * @sclass: file security class
2754  * @sid: SID for path
2755  *
2756  * Obtain a SID to use for a file in a filesystem that
2757  * cannot support xattr or use a fixed labeling behavior like
2758  * transition SIDs or task SIDs.
2759  *
2760  * The caller must acquire the policy_rwlock before calling this function.
2761  */
__security_genfs_sid(struct selinux_state * state,const char * fstype,char * path,u16 orig_sclass,u32 * sid)2762 static inline int __security_genfs_sid(struct selinux_state *state,
2763 				       const char *fstype,
2764 				       char *path,
2765 				       u16 orig_sclass,
2766 				       u32 *sid)
2767 {
2768 	struct policydb *policydb = &state->ss->policydb;
2769 	struct sidtab *sidtab = state->ss->sidtab;
2770 	int len;
2771 	u16 sclass;
2772 	struct genfs *genfs;
2773 	struct ocontext *c;
2774 	int cmp = 0;
2775 
2776 	while (path[0] == '/' && path[1] == '/')
2777 		path++;
2778 
2779 	sclass = unmap_class(&state->ss->map, orig_sclass);
2780 	*sid = SECINITSID_UNLABELED;
2781 
2782 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2783 		cmp = strcmp(fstype, genfs->fstype);
2784 		if (cmp <= 0)
2785 			break;
2786 	}
2787 
2788 	if (!genfs || cmp)
2789 		return -ENOENT;
2790 
2791 	for (c = genfs->head; c; c = c->next) {
2792 		len = strlen(c->u.name);
2793 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2794 		    (strncmp(c->u.name, path, len) == 0))
2795 			break;
2796 	}
2797 
2798 	if (!c)
2799 		return -ENOENT;
2800 
2801 	return ocontext_to_sid(sidtab, c, 0, sid);
2802 }
2803 
2804 /**
2805  * security_genfs_sid - Obtain a SID for a file in a filesystem
2806  * @fstype: filesystem type
2807  * @path: path from root of mount
2808  * @sclass: file security class
2809  * @sid: SID for path
2810  *
2811  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2812  * it afterward.
2813  */
security_genfs_sid(struct selinux_state * state,const char * fstype,char * path,u16 orig_sclass,u32 * sid)2814 int security_genfs_sid(struct selinux_state *state,
2815 		       const char *fstype,
2816 		       char *path,
2817 		       u16 orig_sclass,
2818 		       u32 *sid)
2819 {
2820 	int retval;
2821 
2822 	read_lock(&state->ss->policy_rwlock);
2823 	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2824 	read_unlock(&state->ss->policy_rwlock);
2825 	return retval;
2826 }
2827 
2828 /**
2829  * security_fs_use - Determine how to handle labeling for a filesystem.
2830  * @sb: superblock in question
2831  */
security_fs_use(struct selinux_state * state,struct super_block * sb)2832 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2833 {
2834 	struct policydb *policydb;
2835 	struct sidtab *sidtab;
2836 	int rc;
2837 	struct ocontext *c;
2838 	struct superblock_security_struct *sbsec = sb->s_security;
2839 	const char *fstype = sb->s_type->name;
2840 
2841 	read_lock(&state->ss->policy_rwlock);
2842 
2843 retry:
2844 	rc = 0;
2845 	policydb = &state->ss->policydb;
2846 	sidtab = state->ss->sidtab;
2847 
2848 	c = policydb->ocontexts[OCON_FSUSE];
2849 	while (c) {
2850 		if (strcmp(fstype, c->u.name) == 0)
2851 			break;
2852 		c = c->next;
2853 	}
2854 
2855 	if (c) {
2856 		sbsec->behavior = c->v.behavior;
2857 		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2858 		if (rc == -ESTALE)
2859 			goto retry;
2860 		if (rc)
2861 			goto out;
2862 	} else {
2863 		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2864 					  &sbsec->sid);
2865 		if (rc) {
2866 			sbsec->behavior = SECURITY_FS_USE_NONE;
2867 			rc = 0;
2868 		} else {
2869 			sbsec->behavior = SECURITY_FS_USE_GENFS;
2870 		}
2871 	}
2872 
2873 out:
2874 	read_unlock(&state->ss->policy_rwlock);
2875 	return rc;
2876 }
2877 
security_get_bools(struct selinux_state * state,int * len,char *** names,int ** values)2878 int security_get_bools(struct selinux_state *state,
2879 		       int *len, char ***names, int **values)
2880 {
2881 	struct policydb *policydb;
2882 	int i, rc;
2883 
2884 	if (!state->initialized) {
2885 		*len = 0;
2886 		*names = NULL;
2887 		*values = NULL;
2888 		return 0;
2889 	}
2890 
2891 	read_lock(&state->ss->policy_rwlock);
2892 
2893 	policydb = &state->ss->policydb;
2894 
2895 	*names = NULL;
2896 	*values = NULL;
2897 
2898 	rc = 0;
2899 	*len = policydb->p_bools.nprim;
2900 	if (!*len)
2901 		goto out;
2902 
2903 	rc = -ENOMEM;
2904 	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2905 	if (!*names)
2906 		goto err;
2907 
2908 	rc = -ENOMEM;
2909 	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2910 	if (!*values)
2911 		goto err;
2912 
2913 	for (i = 0; i < *len; i++) {
2914 		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2915 
2916 		rc = -ENOMEM;
2917 		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2918 				      GFP_ATOMIC);
2919 		if (!(*names)[i])
2920 			goto err;
2921 	}
2922 	rc = 0;
2923 out:
2924 	read_unlock(&state->ss->policy_rwlock);
2925 	return rc;
2926 err:
2927 	if (*names) {
2928 		for (i = 0; i < *len; i++)
2929 			kfree((*names)[i]);
2930 		kfree(*names);
2931 	}
2932 	kfree(*values);
2933 	*len = 0;
2934 	*names = NULL;
2935 	*values = NULL;
2936 	goto out;
2937 }
2938 
2939 
security_set_bools(struct selinux_state * state,int len,int * values)2940 int security_set_bools(struct selinux_state *state, int len, int *values)
2941 {
2942 	struct policydb *policydb;
2943 	int i, rc;
2944 	int lenp, seqno = 0;
2945 	struct cond_node *cur;
2946 
2947 	write_lock_irq(&state->ss->policy_rwlock);
2948 
2949 	policydb = &state->ss->policydb;
2950 
2951 	rc = -EFAULT;
2952 	lenp = policydb->p_bools.nprim;
2953 	if (len != lenp)
2954 		goto out;
2955 
2956 	for (i = 0; i < len; i++) {
2957 		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2958 			audit_log(audit_context(), GFP_ATOMIC,
2959 				AUDIT_MAC_CONFIG_CHANGE,
2960 				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2961 				sym_name(policydb, SYM_BOOLS, i),
2962 				!!values[i],
2963 				policydb->bool_val_to_struct[i]->state,
2964 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2965 				audit_get_sessionid(current));
2966 		}
2967 		if (values[i])
2968 			policydb->bool_val_to_struct[i]->state = 1;
2969 		else
2970 			policydb->bool_val_to_struct[i]->state = 0;
2971 	}
2972 
2973 	for (cur = policydb->cond_list; cur; cur = cur->next) {
2974 		rc = evaluate_cond_node(policydb, cur);
2975 		if (rc)
2976 			goto out;
2977 	}
2978 
2979 	seqno = ++state->ss->latest_granting;
2980 	rc = 0;
2981 out:
2982 	write_unlock_irq(&state->ss->policy_rwlock);
2983 	if (!rc) {
2984 		avc_ss_reset(state->avc, seqno);
2985 		selnl_notify_policyload(seqno);
2986 		selinux_status_update_policyload(state, seqno);
2987 		selinux_xfrm_notify_policyload();
2988 	}
2989 	return rc;
2990 }
2991 
security_get_bool_value(struct selinux_state * state,int index)2992 int security_get_bool_value(struct selinux_state *state,
2993 			    int index)
2994 {
2995 	struct policydb *policydb;
2996 	int rc;
2997 	int len;
2998 
2999 	read_lock(&state->ss->policy_rwlock);
3000 
3001 	policydb = &state->ss->policydb;
3002 
3003 	rc = -EFAULT;
3004 	len = policydb->p_bools.nprim;
3005 	if (index >= len)
3006 		goto out;
3007 
3008 	rc = policydb->bool_val_to_struct[index]->state;
3009 out:
3010 	read_unlock(&state->ss->policy_rwlock);
3011 	return rc;
3012 }
3013 
security_preserve_bools(struct selinux_state * state,struct policydb * policydb)3014 static int security_preserve_bools(struct selinux_state *state,
3015 				   struct policydb *policydb)
3016 {
3017 	int rc, nbools = 0, *bvalues = NULL, i;
3018 	char **bnames = NULL;
3019 	struct cond_bool_datum *booldatum;
3020 	struct cond_node *cur;
3021 
3022 	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
3023 	if (rc)
3024 		goto out;
3025 	for (i = 0; i < nbools; i++) {
3026 		booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
3027 		if (booldatum)
3028 			booldatum->state = bvalues[i];
3029 	}
3030 	for (cur = policydb->cond_list; cur; cur = cur->next) {
3031 		rc = evaluate_cond_node(policydb, cur);
3032 		if (rc)
3033 			goto out;
3034 	}
3035 
3036 out:
3037 	if (bnames) {
3038 		for (i = 0; i < nbools; i++)
3039 			kfree(bnames[i]);
3040 	}
3041 	kfree(bnames);
3042 	kfree(bvalues);
3043 	return rc;
3044 }
3045 
3046 /*
3047  * security_sid_mls_copy() - computes a new sid based on the given
3048  * sid and the mls portion of mls_sid.
3049  */
security_sid_mls_copy(struct selinux_state * state,u32 sid,u32 mls_sid,u32 * new_sid)3050 int security_sid_mls_copy(struct selinux_state *state,
3051 			  u32 sid, u32 mls_sid, u32 *new_sid)
3052 {
3053 	struct policydb *policydb = &state->ss->policydb;
3054 	struct sidtab *sidtab = state->ss->sidtab;
3055 	struct context *context1;
3056 	struct context *context2;
3057 	struct context newcon;
3058 	char *s;
3059 	u32 len;
3060 	int rc;
3061 
3062 	rc = 0;
3063 	if (!state->initialized || !policydb->mls_enabled) {
3064 		*new_sid = sid;
3065 		goto out;
3066 	}
3067 
3068 	context_init(&newcon);
3069 
3070 	read_lock(&state->ss->policy_rwlock);
3071 
3072 	rc = -EINVAL;
3073 	context1 = sidtab_search(sidtab, sid);
3074 	if (!context1) {
3075 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3076 			__func__, sid);
3077 		goto out_unlock;
3078 	}
3079 
3080 	rc = -EINVAL;
3081 	context2 = sidtab_search(sidtab, mls_sid);
3082 	if (!context2) {
3083 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3084 			__func__, mls_sid);
3085 		goto out_unlock;
3086 	}
3087 
3088 	newcon.user = context1->user;
3089 	newcon.role = context1->role;
3090 	newcon.type = context1->type;
3091 	rc = mls_context_cpy(&newcon, context2);
3092 	if (rc)
3093 		goto out_unlock;
3094 
3095 	/* Check the validity of the new context. */
3096 	if (!policydb_context_isvalid(policydb, &newcon)) {
3097 		rc = convert_context_handle_invalid_context(state, &newcon);
3098 		if (rc) {
3099 			if (!context_struct_to_string(policydb, &newcon, &s,
3100 						      &len)) {
3101 				struct audit_buffer *ab;
3102 
3103 				ab = audit_log_start(audit_context(),
3104 						     GFP_ATOMIC,
3105 						     AUDIT_SELINUX_ERR);
3106 				audit_log_format(ab,
3107 						 "op=security_sid_mls_copy invalid_context=");
3108 				/* don't record NUL with untrusted strings */
3109 				audit_log_n_untrustedstring(ab, s, len - 1);
3110 				audit_log_end(ab);
3111 				kfree(s);
3112 			}
3113 			goto out_unlock;
3114 		}
3115 	}
3116 	rc = context_struct_to_sid(state, &newcon, new_sid);
3117 out_unlock:
3118 	read_unlock(&state->ss->policy_rwlock);
3119 	context_destroy(&newcon);
3120 out:
3121 	return rc;
3122 }
3123 
3124 /**
3125  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3126  * @nlbl_sid: NetLabel SID
3127  * @nlbl_type: NetLabel labeling protocol type
3128  * @xfrm_sid: XFRM SID
3129  *
3130  * Description:
3131  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3132  * resolved into a single SID it is returned via @peer_sid and the function
3133  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3134  * returns a negative value.  A table summarizing the behavior is below:
3135  *
3136  *                                 | function return |      @sid
3137  *   ------------------------------+-----------------+-----------------
3138  *   no peer labels                |        0        |    SECSID_NULL
3139  *   single peer label             |        0        |    <peer_label>
3140  *   multiple, consistent labels   |        0        |    <peer_label>
3141  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3142  *
3143  */
security_net_peersid_resolve(struct selinux_state * state,u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3144 int security_net_peersid_resolve(struct selinux_state *state,
3145 				 u32 nlbl_sid, u32 nlbl_type,
3146 				 u32 xfrm_sid,
3147 				 u32 *peer_sid)
3148 {
3149 	struct policydb *policydb = &state->ss->policydb;
3150 	struct sidtab *sidtab = state->ss->sidtab;
3151 	int rc;
3152 	struct context *nlbl_ctx;
3153 	struct context *xfrm_ctx;
3154 
3155 	*peer_sid = SECSID_NULL;
3156 
3157 	/* handle the common (which also happens to be the set of easy) cases
3158 	 * right away, these two if statements catch everything involving a
3159 	 * single or absent peer SID/label */
3160 	if (xfrm_sid == SECSID_NULL) {
3161 		*peer_sid = nlbl_sid;
3162 		return 0;
3163 	}
3164 	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3165 	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3166 	 * is present */
3167 	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3168 		*peer_sid = xfrm_sid;
3169 		return 0;
3170 	}
3171 
3172 	/*
3173 	 * We don't need to check initialized here since the only way both
3174 	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3175 	 * security server was initialized and state->initialized was true.
3176 	 */
3177 	if (!policydb->mls_enabled)
3178 		return 0;
3179 
3180 	read_lock(&state->ss->policy_rwlock);
3181 
3182 	rc = -EINVAL;
3183 	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3184 	if (!nlbl_ctx) {
3185 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3186 		       __func__, nlbl_sid);
3187 		goto out;
3188 	}
3189 	rc = -EINVAL;
3190 	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3191 	if (!xfrm_ctx) {
3192 		pr_err("SELinux: %s:  unrecognized SID %d\n",
3193 		       __func__, xfrm_sid);
3194 		goto out;
3195 	}
3196 	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3197 	if (rc)
3198 		goto out;
3199 
3200 	/* at present NetLabel SIDs/labels really only carry MLS
3201 	 * information so if the MLS portion of the NetLabel SID
3202 	 * matches the MLS portion of the labeled XFRM SID/label
3203 	 * then pass along the XFRM SID as it is the most
3204 	 * expressive */
3205 	*peer_sid = xfrm_sid;
3206 out:
3207 	read_unlock(&state->ss->policy_rwlock);
3208 	return rc;
3209 }
3210 
get_classes_callback(void * k,void * d,void * args)3211 static int get_classes_callback(void *k, void *d, void *args)
3212 {
3213 	struct class_datum *datum = d;
3214 	char *name = k, **classes = args;
3215 	int value = datum->value - 1;
3216 
3217 	classes[value] = kstrdup(name, GFP_ATOMIC);
3218 	if (!classes[value])
3219 		return -ENOMEM;
3220 
3221 	return 0;
3222 }
3223 
security_get_classes(struct selinux_state * state,char *** classes,int * nclasses)3224 int security_get_classes(struct selinux_state *state,
3225 			 char ***classes, int *nclasses)
3226 {
3227 	struct policydb *policydb = &state->ss->policydb;
3228 	int rc;
3229 
3230 	if (!state->initialized) {
3231 		*nclasses = 0;
3232 		*classes = NULL;
3233 		return 0;
3234 	}
3235 
3236 	read_lock(&state->ss->policy_rwlock);
3237 
3238 	rc = -ENOMEM;
3239 	*nclasses = policydb->p_classes.nprim;
3240 	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3241 	if (!*classes)
3242 		goto out;
3243 
3244 	rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3245 			*classes);
3246 	if (rc) {
3247 		int i;
3248 		for (i = 0; i < *nclasses; i++)
3249 			kfree((*classes)[i]);
3250 		kfree(*classes);
3251 	}
3252 
3253 out:
3254 	read_unlock(&state->ss->policy_rwlock);
3255 	return rc;
3256 }
3257 
get_permissions_callback(void * k,void * d,void * args)3258 static int get_permissions_callback(void *k, void *d, void *args)
3259 {
3260 	struct perm_datum *datum = d;
3261 	char *name = k, **perms = args;
3262 	int value = datum->value - 1;
3263 
3264 	perms[value] = kstrdup(name, GFP_ATOMIC);
3265 	if (!perms[value])
3266 		return -ENOMEM;
3267 
3268 	return 0;
3269 }
3270 
security_get_permissions(struct selinux_state * state,char * class,char *** perms,int * nperms)3271 int security_get_permissions(struct selinux_state *state,
3272 			     char *class, char ***perms, int *nperms)
3273 {
3274 	struct policydb *policydb = &state->ss->policydb;
3275 	int rc, i;
3276 	struct class_datum *match;
3277 
3278 	read_lock(&state->ss->policy_rwlock);
3279 
3280 	rc = -EINVAL;
3281 	match = hashtab_search(policydb->p_classes.table, class);
3282 	if (!match) {
3283 		pr_err("SELinux: %s:  unrecognized class %s\n",
3284 			__func__, class);
3285 		goto out;
3286 	}
3287 
3288 	rc = -ENOMEM;
3289 	*nperms = match->permissions.nprim;
3290 	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3291 	if (!*perms)
3292 		goto out;
3293 
3294 	if (match->comdatum) {
3295 		rc = hashtab_map(match->comdatum->permissions.table,
3296 				get_permissions_callback, *perms);
3297 		if (rc)
3298 			goto err;
3299 	}
3300 
3301 	rc = hashtab_map(match->permissions.table, get_permissions_callback,
3302 			*perms);
3303 	if (rc)
3304 		goto err;
3305 
3306 out:
3307 	read_unlock(&state->ss->policy_rwlock);
3308 	return rc;
3309 
3310 err:
3311 	read_unlock(&state->ss->policy_rwlock);
3312 	for (i = 0; i < *nperms; i++)
3313 		kfree((*perms)[i]);
3314 	kfree(*perms);
3315 	return rc;
3316 }
3317 
security_get_reject_unknown(struct selinux_state * state)3318 int security_get_reject_unknown(struct selinux_state *state)
3319 {
3320 	return state->ss->policydb.reject_unknown;
3321 }
3322 
security_get_allow_unknown(struct selinux_state * state)3323 int security_get_allow_unknown(struct selinux_state *state)
3324 {
3325 	return state->ss->policydb.allow_unknown;
3326 }
3327 
3328 /**
3329  * security_policycap_supported - Check for a specific policy capability
3330  * @req_cap: capability
3331  *
3332  * Description:
3333  * This function queries the currently loaded policy to see if it supports the
3334  * capability specified by @req_cap.  Returns true (1) if the capability is
3335  * supported, false (0) if it isn't supported.
3336  *
3337  */
security_policycap_supported(struct selinux_state * state,unsigned int req_cap)3338 int security_policycap_supported(struct selinux_state *state,
3339 				 unsigned int req_cap)
3340 {
3341 	struct policydb *policydb = &state->ss->policydb;
3342 	int rc;
3343 
3344 	read_lock(&state->ss->policy_rwlock);
3345 	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3346 	read_unlock(&state->ss->policy_rwlock);
3347 
3348 	return rc;
3349 }
3350 
3351 struct selinux_audit_rule {
3352 	u32 au_seqno;
3353 	struct context au_ctxt;
3354 };
3355 
selinux_audit_rule_free(void * vrule)3356 void selinux_audit_rule_free(void *vrule)
3357 {
3358 	struct selinux_audit_rule *rule = vrule;
3359 
3360 	if (rule) {
3361 		context_destroy(&rule->au_ctxt);
3362 		kfree(rule);
3363 	}
3364 }
3365 
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule)3366 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3367 {
3368 	struct selinux_state *state = &selinux_state;
3369 	struct policydb *policydb = &state->ss->policydb;
3370 	struct selinux_audit_rule *tmprule;
3371 	struct role_datum *roledatum;
3372 	struct type_datum *typedatum;
3373 	struct user_datum *userdatum;
3374 	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3375 	int rc = 0;
3376 
3377 	*rule = NULL;
3378 
3379 	if (!state->initialized)
3380 		return -EOPNOTSUPP;
3381 
3382 	switch (field) {
3383 	case AUDIT_SUBJ_USER:
3384 	case AUDIT_SUBJ_ROLE:
3385 	case AUDIT_SUBJ_TYPE:
3386 	case AUDIT_OBJ_USER:
3387 	case AUDIT_OBJ_ROLE:
3388 	case AUDIT_OBJ_TYPE:
3389 		/* only 'equals' and 'not equals' fit user, role, and type */
3390 		if (op != Audit_equal && op != Audit_not_equal)
3391 			return -EINVAL;
3392 		break;
3393 	case AUDIT_SUBJ_SEN:
3394 	case AUDIT_SUBJ_CLR:
3395 	case AUDIT_OBJ_LEV_LOW:
3396 	case AUDIT_OBJ_LEV_HIGH:
3397 		/* we do not allow a range, indicated by the presence of '-' */
3398 		if (strchr(rulestr, '-'))
3399 			return -EINVAL;
3400 		break;
3401 	default:
3402 		/* only the above fields are valid */
3403 		return -EINVAL;
3404 	}
3405 
3406 	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3407 	if (!tmprule)
3408 		return -ENOMEM;
3409 
3410 	context_init(&tmprule->au_ctxt);
3411 
3412 	read_lock(&state->ss->policy_rwlock);
3413 
3414 	tmprule->au_seqno = state->ss->latest_granting;
3415 
3416 	switch (field) {
3417 	case AUDIT_SUBJ_USER:
3418 	case AUDIT_OBJ_USER:
3419 		rc = -EINVAL;
3420 		userdatum = hashtab_search(policydb->p_users.table, rulestr);
3421 		if (!userdatum)
3422 			goto out;
3423 		tmprule->au_ctxt.user = userdatum->value;
3424 		break;
3425 	case AUDIT_SUBJ_ROLE:
3426 	case AUDIT_OBJ_ROLE:
3427 		rc = -EINVAL;
3428 		roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3429 		if (!roledatum)
3430 			goto out;
3431 		tmprule->au_ctxt.role = roledatum->value;
3432 		break;
3433 	case AUDIT_SUBJ_TYPE:
3434 	case AUDIT_OBJ_TYPE:
3435 		rc = -EINVAL;
3436 		typedatum = hashtab_search(policydb->p_types.table, rulestr);
3437 		if (!typedatum)
3438 			goto out;
3439 		tmprule->au_ctxt.type = typedatum->value;
3440 		break;
3441 	case AUDIT_SUBJ_SEN:
3442 	case AUDIT_SUBJ_CLR:
3443 	case AUDIT_OBJ_LEV_LOW:
3444 	case AUDIT_OBJ_LEV_HIGH:
3445 		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3446 				     GFP_ATOMIC);
3447 		if (rc)
3448 			goto out;
3449 		break;
3450 	}
3451 	rc = 0;
3452 out:
3453 	read_unlock(&state->ss->policy_rwlock);
3454 
3455 	if (rc) {
3456 		selinux_audit_rule_free(tmprule);
3457 		tmprule = NULL;
3458 	}
3459 
3460 	*rule = tmprule;
3461 
3462 	return rc;
3463 }
3464 
3465 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3466 int selinux_audit_rule_known(struct audit_krule *rule)
3467 {
3468 	int i;
3469 
3470 	for (i = 0; i < rule->field_count; i++) {
3471 		struct audit_field *f = &rule->fields[i];
3472 		switch (f->type) {
3473 		case AUDIT_SUBJ_USER:
3474 		case AUDIT_SUBJ_ROLE:
3475 		case AUDIT_SUBJ_TYPE:
3476 		case AUDIT_SUBJ_SEN:
3477 		case AUDIT_SUBJ_CLR:
3478 		case AUDIT_OBJ_USER:
3479 		case AUDIT_OBJ_ROLE:
3480 		case AUDIT_OBJ_TYPE:
3481 		case AUDIT_OBJ_LEV_LOW:
3482 		case AUDIT_OBJ_LEV_HIGH:
3483 			return 1;
3484 		}
3485 	}
3486 
3487 	return 0;
3488 }
3489 
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule)3490 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3491 {
3492 	struct selinux_state *state = &selinux_state;
3493 	struct context *ctxt;
3494 	struct mls_level *level;
3495 	struct selinux_audit_rule *rule = vrule;
3496 	int match = 0;
3497 
3498 	if (unlikely(!rule)) {
3499 		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3500 		return -ENOENT;
3501 	}
3502 
3503 	read_lock(&state->ss->policy_rwlock);
3504 
3505 	if (rule->au_seqno < state->ss->latest_granting) {
3506 		match = -ESTALE;
3507 		goto out;
3508 	}
3509 
3510 	ctxt = sidtab_search(state->ss->sidtab, sid);
3511 	if (unlikely(!ctxt)) {
3512 		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3513 			  sid);
3514 		match = -ENOENT;
3515 		goto out;
3516 	}
3517 
3518 	/* a field/op pair that is not caught here will simply fall through
3519 	   without a match */
3520 	switch (field) {
3521 	case AUDIT_SUBJ_USER:
3522 	case AUDIT_OBJ_USER:
3523 		switch (op) {
3524 		case Audit_equal:
3525 			match = (ctxt->user == rule->au_ctxt.user);
3526 			break;
3527 		case Audit_not_equal:
3528 			match = (ctxt->user != rule->au_ctxt.user);
3529 			break;
3530 		}
3531 		break;
3532 	case AUDIT_SUBJ_ROLE:
3533 	case AUDIT_OBJ_ROLE:
3534 		switch (op) {
3535 		case Audit_equal:
3536 			match = (ctxt->role == rule->au_ctxt.role);
3537 			break;
3538 		case Audit_not_equal:
3539 			match = (ctxt->role != rule->au_ctxt.role);
3540 			break;
3541 		}
3542 		break;
3543 	case AUDIT_SUBJ_TYPE:
3544 	case AUDIT_OBJ_TYPE:
3545 		switch (op) {
3546 		case Audit_equal:
3547 			match = (ctxt->type == rule->au_ctxt.type);
3548 			break;
3549 		case Audit_not_equal:
3550 			match = (ctxt->type != rule->au_ctxt.type);
3551 			break;
3552 		}
3553 		break;
3554 	case AUDIT_SUBJ_SEN:
3555 	case AUDIT_SUBJ_CLR:
3556 	case AUDIT_OBJ_LEV_LOW:
3557 	case AUDIT_OBJ_LEV_HIGH:
3558 		level = ((field == AUDIT_SUBJ_SEN ||
3559 			  field == AUDIT_OBJ_LEV_LOW) ?
3560 			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3561 		switch (op) {
3562 		case Audit_equal:
3563 			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3564 					     level);
3565 			break;
3566 		case Audit_not_equal:
3567 			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3568 					      level);
3569 			break;
3570 		case Audit_lt:
3571 			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3572 					       level) &&
3573 				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3574 					       level));
3575 			break;
3576 		case Audit_le:
3577 			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3578 					      level);
3579 			break;
3580 		case Audit_gt:
3581 			match = (mls_level_dom(level,
3582 					      &rule->au_ctxt.range.level[0]) &&
3583 				 !mls_level_eq(level,
3584 					       &rule->au_ctxt.range.level[0]));
3585 			break;
3586 		case Audit_ge:
3587 			match = mls_level_dom(level,
3588 					      &rule->au_ctxt.range.level[0]);
3589 			break;
3590 		}
3591 	}
3592 
3593 out:
3594 	read_unlock(&state->ss->policy_rwlock);
3595 	return match;
3596 }
3597 
3598 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3599 
aurule_avc_callback(u32 event)3600 static int aurule_avc_callback(u32 event)
3601 {
3602 	int err = 0;
3603 
3604 	if (event == AVC_CALLBACK_RESET && aurule_callback)
3605 		err = aurule_callback();
3606 	return err;
3607 }
3608 
aurule_init(void)3609 static int __init aurule_init(void)
3610 {
3611 	int err;
3612 
3613 	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3614 	if (err)
3615 		panic("avc_add_callback() failed, error %d\n", err);
3616 
3617 	return err;
3618 }
3619 __initcall(aurule_init);
3620 
3621 #ifdef CONFIG_NETLABEL
3622 /**
3623  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3624  * @secattr: the NetLabel packet security attributes
3625  * @sid: the SELinux SID
3626  *
3627  * Description:
3628  * Attempt to cache the context in @ctx, which was derived from the packet in
3629  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3630  * already been initialized.
3631  *
3632  */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3633 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3634 				      u32 sid)
3635 {
3636 	u32 *sid_cache;
3637 
3638 	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3639 	if (sid_cache == NULL)
3640 		return;
3641 	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3642 	if (secattr->cache == NULL) {
3643 		kfree(sid_cache);
3644 		return;
3645 	}
3646 
3647 	*sid_cache = sid;
3648 	secattr->cache->free = kfree;
3649 	secattr->cache->data = sid_cache;
3650 	secattr->flags |= NETLBL_SECATTR_CACHE;
3651 }
3652 
3653 /**
3654  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3655  * @secattr: the NetLabel packet security attributes
3656  * @sid: the SELinux SID
3657  *
3658  * Description:
3659  * Convert the given NetLabel security attributes in @secattr into a
3660  * SELinux SID.  If the @secattr field does not contain a full SELinux
3661  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3662  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3663  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3664  * conversion for future lookups.  Returns zero on success, negative values on
3665  * failure.
3666  *
3667  */
security_netlbl_secattr_to_sid(struct selinux_state * state,struct netlbl_lsm_secattr * secattr,u32 * sid)3668 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3669 				   struct netlbl_lsm_secattr *secattr,
3670 				   u32 *sid)
3671 {
3672 	struct policydb *policydb = &state->ss->policydb;
3673 	struct sidtab *sidtab = state->ss->sidtab;
3674 	int rc;
3675 	struct context *ctx;
3676 	struct context ctx_new;
3677 
3678 	if (!state->initialized) {
3679 		*sid = SECSID_NULL;
3680 		return 0;
3681 	}
3682 
3683 	read_lock(&state->ss->policy_rwlock);
3684 
3685 	if (secattr->flags & NETLBL_SECATTR_CACHE)
3686 		*sid = *(u32 *)secattr->cache->data;
3687 	else if (secattr->flags & NETLBL_SECATTR_SECID)
3688 		*sid = secattr->attr.secid;
3689 	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3690 		rc = -EIDRM;
3691 		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3692 		if (ctx == NULL)
3693 			goto out;
3694 
3695 		context_init(&ctx_new);
3696 		ctx_new.user = ctx->user;
3697 		ctx_new.role = ctx->role;
3698 		ctx_new.type = ctx->type;
3699 		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3700 		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3701 			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3702 			if (rc)
3703 				goto out;
3704 		}
3705 		rc = -EIDRM;
3706 		if (!mls_context_isvalid(policydb, &ctx_new))
3707 			goto out_free;
3708 
3709 		rc = context_struct_to_sid(state, &ctx_new, sid);
3710 		if (rc)
3711 			goto out_free;
3712 
3713 		security_netlbl_cache_add(secattr, *sid);
3714 
3715 		ebitmap_destroy(&ctx_new.range.level[0].cat);
3716 	} else
3717 		*sid = SECSID_NULL;
3718 
3719 	read_unlock(&state->ss->policy_rwlock);
3720 	return 0;
3721 out_free:
3722 	ebitmap_destroy(&ctx_new.range.level[0].cat);
3723 out:
3724 	read_unlock(&state->ss->policy_rwlock);
3725 	return rc;
3726 }
3727 
3728 /**
3729  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3730  * @sid: the SELinux SID
3731  * @secattr: the NetLabel packet security attributes
3732  *
3733  * Description:
3734  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3735  * Returns zero on success, negative values on failure.
3736  *
3737  */
security_netlbl_sid_to_secattr(struct selinux_state * state,u32 sid,struct netlbl_lsm_secattr * secattr)3738 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3739 				   u32 sid, struct netlbl_lsm_secattr *secattr)
3740 {
3741 	struct policydb *policydb = &state->ss->policydb;
3742 	int rc;
3743 	struct context *ctx;
3744 
3745 	if (!state->initialized)
3746 		return 0;
3747 
3748 	read_lock(&state->ss->policy_rwlock);
3749 
3750 	rc = -ENOENT;
3751 	ctx = sidtab_search(state->ss->sidtab, sid);
3752 	if (ctx == NULL)
3753 		goto out;
3754 
3755 	rc = -ENOMEM;
3756 	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3757 				  GFP_ATOMIC);
3758 	if (secattr->domain == NULL)
3759 		goto out;
3760 
3761 	secattr->attr.secid = sid;
3762 	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3763 	mls_export_netlbl_lvl(policydb, ctx, secattr);
3764 	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3765 out:
3766 	read_unlock(&state->ss->policy_rwlock);
3767 	return rc;
3768 }
3769 #endif /* CONFIG_NETLABEL */
3770 
3771 /**
3772  * security_read_policy - read the policy.
3773  * @data: binary policy data
3774  * @len: length of data in bytes
3775  *
3776  */
security_read_policy(struct selinux_state * state,void ** data,size_t * len)3777 int security_read_policy(struct selinux_state *state,
3778 			 void **data, size_t *len)
3779 {
3780 	struct policydb *policydb = &state->ss->policydb;
3781 	int rc;
3782 	struct policy_file fp;
3783 
3784 	if (!state->initialized)
3785 		return -EINVAL;
3786 
3787 	*len = security_policydb_len(state);
3788 
3789 	*data = vmalloc_user(*len);
3790 	if (!*data)
3791 		return -ENOMEM;
3792 
3793 	fp.data = *data;
3794 	fp.len = *len;
3795 
3796 	read_lock(&state->ss->policy_rwlock);
3797 	rc = policydb_write(policydb, &fp);
3798 	read_unlock(&state->ss->policy_rwlock);
3799 
3800 	if (rc)
3801 		return rc;
3802 
3803 	*len = (unsigned long)fp.data - (unsigned long)*data;
3804 	return 0;
3805 
3806 }
3807