1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Implementation of the security services.
4 *
5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6 * James Morris <jmorris@redhat.com>
7 *
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 *
10 * Support for enhanced MLS infrastructure.
11 * Support for context based audit filters.
12 *
13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 *
15 * Added conditional policy language extensions
16 *
17 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 *
19 * Added support for NetLabel
20 * Added support for the policy capability bitmap
21 *
22 * Updated: Chad Sellers <csellers@tresys.com>
23 *
24 * Added validation of kernel classes and permissions
25 *
26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 *
28 * Added support for bounds domain and audit messaged on masked permissions
29 *
30 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 *
32 * Added support for runtime switching of the policy type
33 *
34 * Copyright (C) 2008, 2009 NEC Corporation
35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39 */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/mutex.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlabel.h>
52
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68
69 /* Policy capability names */
70 const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
71 "network_peer_controls",
72 "open_perms",
73 "extended_socket_class",
74 "always_check_network",
75 "cgroup_seclabel",
76 "nnp_nosuid_transition"
77 };
78
79 static struct selinux_ss selinux_ss;
80
selinux_ss_init(struct selinux_ss ** ss)81 void selinux_ss_init(struct selinux_ss **ss)
82 {
83 rwlock_init(&selinux_ss.policy_rwlock);
84 mutex_init(&selinux_ss.status_lock);
85 *ss = &selinux_ss;
86 }
87
88 /* Forward declaration. */
89 static int context_struct_to_string(struct policydb *policydb,
90 struct context *context,
91 char **scontext,
92 u32 *scontext_len);
93
94 static void context_struct_compute_av(struct policydb *policydb,
95 struct context *scontext,
96 struct context *tcontext,
97 u16 tclass,
98 struct av_decision *avd,
99 struct extended_perms *xperms);
100
selinux_set_mapping(struct policydb * pol,struct security_class_mapping * map,struct selinux_map * out_map)101 static int selinux_set_mapping(struct policydb *pol,
102 struct security_class_mapping *map,
103 struct selinux_map *out_map)
104 {
105 u16 i, j;
106 unsigned k;
107 bool print_unknown_handle = false;
108
109 /* Find number of classes in the input mapping */
110 if (!map)
111 return -EINVAL;
112 i = 0;
113 while (map[i].name)
114 i++;
115
116 /* Allocate space for the class records, plus one for class zero */
117 out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
118 if (!out_map->mapping)
119 return -ENOMEM;
120
121 /* Store the raw class and permission values */
122 j = 0;
123 while (map[j].name) {
124 struct security_class_mapping *p_in = map + (j++);
125 struct selinux_mapping *p_out = out_map->mapping + j;
126
127 /* An empty class string skips ahead */
128 if (!strcmp(p_in->name, "")) {
129 p_out->num_perms = 0;
130 continue;
131 }
132
133 p_out->value = string_to_security_class(pol, p_in->name);
134 if (!p_out->value) {
135 pr_info("SELinux: Class %s not defined in policy.\n",
136 p_in->name);
137 if (pol->reject_unknown)
138 goto err;
139 p_out->num_perms = 0;
140 print_unknown_handle = true;
141 continue;
142 }
143
144 k = 0;
145 while (p_in->perms[k]) {
146 /* An empty permission string skips ahead */
147 if (!*p_in->perms[k]) {
148 k++;
149 continue;
150 }
151 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
152 p_in->perms[k]);
153 if (!p_out->perms[k]) {
154 pr_info("SELinux: Permission %s in class %s not defined in policy.\n",
155 p_in->perms[k], p_in->name);
156 if (pol->reject_unknown)
157 goto err;
158 print_unknown_handle = true;
159 }
160
161 k++;
162 }
163 p_out->num_perms = k;
164 }
165
166 if (print_unknown_handle)
167 pr_info("SELinux: the above unknown classes and permissions will be %s\n",
168 pol->allow_unknown ? "allowed" : "denied");
169
170 out_map->size = i;
171 return 0;
172 err:
173 kfree(out_map->mapping);
174 out_map->mapping = NULL;
175 return -EINVAL;
176 }
177
178 /*
179 * Get real, policy values from mapped values
180 */
181
unmap_class(struct selinux_map * map,u16 tclass)182 static u16 unmap_class(struct selinux_map *map, u16 tclass)
183 {
184 if (tclass < map->size)
185 return map->mapping[tclass].value;
186
187 return tclass;
188 }
189
190 /*
191 * Get kernel value for class from its policy value
192 */
map_class(struct selinux_map * map,u16 pol_value)193 static u16 map_class(struct selinux_map *map, u16 pol_value)
194 {
195 u16 i;
196
197 for (i = 1; i < map->size; i++) {
198 if (map->mapping[i].value == pol_value)
199 return i;
200 }
201
202 return SECCLASS_NULL;
203 }
204
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)205 static void map_decision(struct selinux_map *map,
206 u16 tclass, struct av_decision *avd,
207 int allow_unknown)
208 {
209 if (tclass < map->size) {
210 struct selinux_mapping *mapping = &map->mapping[tclass];
211 unsigned int i, n = mapping->num_perms;
212 u32 result;
213
214 for (i = 0, result = 0; i < n; i++) {
215 if (avd->allowed & mapping->perms[i])
216 result |= 1<<i;
217 if (allow_unknown && !mapping->perms[i])
218 result |= 1<<i;
219 }
220 avd->allowed = result;
221
222 for (i = 0, result = 0; i < n; i++)
223 if (avd->auditallow & mapping->perms[i])
224 result |= 1<<i;
225 avd->auditallow = result;
226
227 for (i = 0, result = 0; i < n; i++) {
228 if (avd->auditdeny & mapping->perms[i])
229 result |= 1<<i;
230 if (!allow_unknown && !mapping->perms[i])
231 result |= 1<<i;
232 }
233 /*
234 * In case the kernel has a bug and requests a permission
235 * between num_perms and the maximum permission number, we
236 * should audit that denial
237 */
238 for (; i < (sizeof(u32)*8); i++)
239 result |= 1<<i;
240 avd->auditdeny = result;
241 }
242 }
243
security_mls_enabled(struct selinux_state * state)244 int security_mls_enabled(struct selinux_state *state)
245 {
246 struct policydb *p = &state->ss->policydb;
247
248 return p->mls_enabled;
249 }
250
251 /*
252 * Return the boolean value of a constraint expression
253 * when it is applied to the specified source and target
254 * security contexts.
255 *
256 * xcontext is a special beast... It is used by the validatetrans rules
257 * only. For these rules, scontext is the context before the transition,
258 * tcontext is the context after the transition, and xcontext is the context
259 * of the process performing the transition. All other callers of
260 * constraint_expr_eval should pass in NULL for xcontext.
261 */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)262 static int constraint_expr_eval(struct policydb *policydb,
263 struct context *scontext,
264 struct context *tcontext,
265 struct context *xcontext,
266 struct constraint_expr *cexpr)
267 {
268 u32 val1, val2;
269 struct context *c;
270 struct role_datum *r1, *r2;
271 struct mls_level *l1, *l2;
272 struct constraint_expr *e;
273 int s[CEXPR_MAXDEPTH];
274 int sp = -1;
275
276 for (e = cexpr; e; e = e->next) {
277 switch (e->expr_type) {
278 case CEXPR_NOT:
279 BUG_ON(sp < 0);
280 s[sp] = !s[sp];
281 break;
282 case CEXPR_AND:
283 BUG_ON(sp < 1);
284 sp--;
285 s[sp] &= s[sp + 1];
286 break;
287 case CEXPR_OR:
288 BUG_ON(sp < 1);
289 sp--;
290 s[sp] |= s[sp + 1];
291 break;
292 case CEXPR_ATTR:
293 if (sp == (CEXPR_MAXDEPTH - 1))
294 return 0;
295 switch (e->attr) {
296 case CEXPR_USER:
297 val1 = scontext->user;
298 val2 = tcontext->user;
299 break;
300 case CEXPR_TYPE:
301 val1 = scontext->type;
302 val2 = tcontext->type;
303 break;
304 case CEXPR_ROLE:
305 val1 = scontext->role;
306 val2 = tcontext->role;
307 r1 = policydb->role_val_to_struct[val1 - 1];
308 r2 = policydb->role_val_to_struct[val2 - 1];
309 switch (e->op) {
310 case CEXPR_DOM:
311 s[++sp] = ebitmap_get_bit(&r1->dominates,
312 val2 - 1);
313 continue;
314 case CEXPR_DOMBY:
315 s[++sp] = ebitmap_get_bit(&r2->dominates,
316 val1 - 1);
317 continue;
318 case CEXPR_INCOMP:
319 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
320 val2 - 1) &&
321 !ebitmap_get_bit(&r2->dominates,
322 val1 - 1));
323 continue;
324 default:
325 break;
326 }
327 break;
328 case CEXPR_L1L2:
329 l1 = &(scontext->range.level[0]);
330 l2 = &(tcontext->range.level[0]);
331 goto mls_ops;
332 case CEXPR_L1H2:
333 l1 = &(scontext->range.level[0]);
334 l2 = &(tcontext->range.level[1]);
335 goto mls_ops;
336 case CEXPR_H1L2:
337 l1 = &(scontext->range.level[1]);
338 l2 = &(tcontext->range.level[0]);
339 goto mls_ops;
340 case CEXPR_H1H2:
341 l1 = &(scontext->range.level[1]);
342 l2 = &(tcontext->range.level[1]);
343 goto mls_ops;
344 case CEXPR_L1H1:
345 l1 = &(scontext->range.level[0]);
346 l2 = &(scontext->range.level[1]);
347 goto mls_ops;
348 case CEXPR_L2H2:
349 l1 = &(tcontext->range.level[0]);
350 l2 = &(tcontext->range.level[1]);
351 goto mls_ops;
352 mls_ops:
353 switch (e->op) {
354 case CEXPR_EQ:
355 s[++sp] = mls_level_eq(l1, l2);
356 continue;
357 case CEXPR_NEQ:
358 s[++sp] = !mls_level_eq(l1, l2);
359 continue;
360 case CEXPR_DOM:
361 s[++sp] = mls_level_dom(l1, l2);
362 continue;
363 case CEXPR_DOMBY:
364 s[++sp] = mls_level_dom(l2, l1);
365 continue;
366 case CEXPR_INCOMP:
367 s[++sp] = mls_level_incomp(l2, l1);
368 continue;
369 default:
370 BUG();
371 return 0;
372 }
373 break;
374 default:
375 BUG();
376 return 0;
377 }
378
379 switch (e->op) {
380 case CEXPR_EQ:
381 s[++sp] = (val1 == val2);
382 break;
383 case CEXPR_NEQ:
384 s[++sp] = (val1 != val2);
385 break;
386 default:
387 BUG();
388 return 0;
389 }
390 break;
391 case CEXPR_NAMES:
392 if (sp == (CEXPR_MAXDEPTH-1))
393 return 0;
394 c = scontext;
395 if (e->attr & CEXPR_TARGET)
396 c = tcontext;
397 else if (e->attr & CEXPR_XTARGET) {
398 c = xcontext;
399 if (!c) {
400 BUG();
401 return 0;
402 }
403 }
404 if (e->attr & CEXPR_USER)
405 val1 = c->user;
406 else if (e->attr & CEXPR_ROLE)
407 val1 = c->role;
408 else if (e->attr & CEXPR_TYPE)
409 val1 = c->type;
410 else {
411 BUG();
412 return 0;
413 }
414
415 switch (e->op) {
416 case CEXPR_EQ:
417 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
418 break;
419 case CEXPR_NEQ:
420 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
421 break;
422 default:
423 BUG();
424 return 0;
425 }
426 break;
427 default:
428 BUG();
429 return 0;
430 }
431 }
432
433 BUG_ON(sp != 0);
434 return s[0];
435 }
436
437 /*
438 * security_dump_masked_av - dumps masked permissions during
439 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
440 */
dump_masked_av_helper(void * k,void * d,void * args)441 static int dump_masked_av_helper(void *k, void *d, void *args)
442 {
443 struct perm_datum *pdatum = d;
444 char **permission_names = args;
445
446 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
447
448 permission_names[pdatum->value - 1] = (char *)k;
449
450 return 0;
451 }
452
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)453 static void security_dump_masked_av(struct policydb *policydb,
454 struct context *scontext,
455 struct context *tcontext,
456 u16 tclass,
457 u32 permissions,
458 const char *reason)
459 {
460 struct common_datum *common_dat;
461 struct class_datum *tclass_dat;
462 struct audit_buffer *ab;
463 char *tclass_name;
464 char *scontext_name = NULL;
465 char *tcontext_name = NULL;
466 char *permission_names[32];
467 int index;
468 u32 length;
469 bool need_comma = false;
470
471 if (!permissions)
472 return;
473
474 tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
475 tclass_dat = policydb->class_val_to_struct[tclass - 1];
476 common_dat = tclass_dat->comdatum;
477
478 /* init permission_names */
479 if (common_dat &&
480 hashtab_map(common_dat->permissions.table,
481 dump_masked_av_helper, permission_names) < 0)
482 goto out;
483
484 if (hashtab_map(tclass_dat->permissions.table,
485 dump_masked_av_helper, permission_names) < 0)
486 goto out;
487
488 /* get scontext/tcontext in text form */
489 if (context_struct_to_string(policydb, scontext,
490 &scontext_name, &length) < 0)
491 goto out;
492
493 if (context_struct_to_string(policydb, tcontext,
494 &tcontext_name, &length) < 0)
495 goto out;
496
497 /* audit a message */
498 ab = audit_log_start(audit_context(),
499 GFP_ATOMIC, AUDIT_SELINUX_ERR);
500 if (!ab)
501 goto out;
502
503 audit_log_format(ab, "op=security_compute_av reason=%s "
504 "scontext=%s tcontext=%s tclass=%s perms=",
505 reason, scontext_name, tcontext_name, tclass_name);
506
507 for (index = 0; index < 32; index++) {
508 u32 mask = (1 << index);
509
510 if ((mask & permissions) == 0)
511 continue;
512
513 audit_log_format(ab, "%s%s",
514 need_comma ? "," : "",
515 permission_names[index]
516 ? permission_names[index] : "????");
517 need_comma = true;
518 }
519 audit_log_end(ab);
520 out:
521 /* release scontext/tcontext */
522 kfree(tcontext_name);
523 kfree(scontext_name);
524
525 return;
526 }
527
528 /*
529 * security_boundary_permission - drops violated permissions
530 * on boundary constraint.
531 */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)532 static void type_attribute_bounds_av(struct policydb *policydb,
533 struct context *scontext,
534 struct context *tcontext,
535 u16 tclass,
536 struct av_decision *avd)
537 {
538 struct context lo_scontext;
539 struct context lo_tcontext, *tcontextp = tcontext;
540 struct av_decision lo_avd;
541 struct type_datum *source;
542 struct type_datum *target;
543 u32 masked = 0;
544
545 source = policydb->type_val_to_struct[scontext->type - 1];
546 BUG_ON(!source);
547
548 if (!source->bounds)
549 return;
550
551 target = policydb->type_val_to_struct[tcontext->type - 1];
552 BUG_ON(!target);
553
554 memset(&lo_avd, 0, sizeof(lo_avd));
555
556 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
557 lo_scontext.type = source->bounds;
558
559 if (target->bounds) {
560 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
561 lo_tcontext.type = target->bounds;
562 tcontextp = &lo_tcontext;
563 }
564
565 context_struct_compute_av(policydb, &lo_scontext,
566 tcontextp,
567 tclass,
568 &lo_avd,
569 NULL);
570
571 masked = ~lo_avd.allowed & avd->allowed;
572
573 if (likely(!masked))
574 return; /* no masked permission */
575
576 /* mask violated permissions */
577 avd->allowed &= ~masked;
578
579 /* audit masked permissions */
580 security_dump_masked_av(policydb, scontext, tcontext,
581 tclass, masked, "bounds");
582 }
583
584 /*
585 * flag which drivers have permissions
586 * only looking for ioctl based extended permssions
587 */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)588 void services_compute_xperms_drivers(
589 struct extended_perms *xperms,
590 struct avtab_node *node)
591 {
592 unsigned int i;
593
594 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
595 /* if one or more driver has all permissions allowed */
596 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
597 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
598 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
599 /* if allowing permissions within a driver */
600 security_xperm_set(xperms->drivers.p,
601 node->datum.u.xperms->driver);
602 }
603
604 /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
605 if (node->key.specified & AVTAB_XPERMS_ALLOWED)
606 xperms->len = 1;
607 }
608
609 /*
610 * Compute access vectors and extended permissions based on a context
611 * structure pair for the permissions in a particular class.
612 */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)613 static void context_struct_compute_av(struct policydb *policydb,
614 struct context *scontext,
615 struct context *tcontext,
616 u16 tclass,
617 struct av_decision *avd,
618 struct extended_perms *xperms)
619 {
620 struct constraint_node *constraint;
621 struct role_allow *ra;
622 struct avtab_key avkey;
623 struct avtab_node *node;
624 struct class_datum *tclass_datum;
625 struct ebitmap *sattr, *tattr;
626 struct ebitmap_node *snode, *tnode;
627 unsigned int i, j;
628
629 avd->allowed = 0;
630 avd->auditallow = 0;
631 avd->auditdeny = 0xffffffff;
632 if (xperms) {
633 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
634 xperms->len = 0;
635 }
636
637 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
638 if (printk_ratelimit())
639 pr_warn("SELinux: Invalid class %hu\n", tclass);
640 return;
641 }
642
643 tclass_datum = policydb->class_val_to_struct[tclass - 1];
644
645 /*
646 * If a specific type enforcement rule was defined for
647 * this permission check, then use it.
648 */
649 avkey.target_class = tclass;
650 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
651 sattr = &policydb->type_attr_map_array[scontext->type - 1];
652 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
653 ebitmap_for_each_positive_bit(sattr, snode, i) {
654 ebitmap_for_each_positive_bit(tattr, tnode, j) {
655 avkey.source_type = i + 1;
656 avkey.target_type = j + 1;
657 for (node = avtab_search_node(&policydb->te_avtab,
658 &avkey);
659 node;
660 node = avtab_search_node_next(node, avkey.specified)) {
661 if (node->key.specified == AVTAB_ALLOWED)
662 avd->allowed |= node->datum.u.data;
663 else if (node->key.specified == AVTAB_AUDITALLOW)
664 avd->auditallow |= node->datum.u.data;
665 else if (node->key.specified == AVTAB_AUDITDENY)
666 avd->auditdeny &= node->datum.u.data;
667 else if (xperms && (node->key.specified & AVTAB_XPERMS))
668 services_compute_xperms_drivers(xperms, node);
669 }
670
671 /* Check conditional av table for additional permissions */
672 cond_compute_av(&policydb->te_cond_avtab, &avkey,
673 avd, xperms);
674
675 }
676 }
677
678 /*
679 * Remove any permissions prohibited by a constraint (this includes
680 * the MLS policy).
681 */
682 constraint = tclass_datum->constraints;
683 while (constraint) {
684 if ((constraint->permissions & (avd->allowed)) &&
685 !constraint_expr_eval(policydb, scontext, tcontext, NULL,
686 constraint->expr)) {
687 avd->allowed &= ~(constraint->permissions);
688 }
689 constraint = constraint->next;
690 }
691
692 /*
693 * If checking process transition permission and the
694 * role is changing, then check the (current_role, new_role)
695 * pair.
696 */
697 if (tclass == policydb->process_class &&
698 (avd->allowed & policydb->process_trans_perms) &&
699 scontext->role != tcontext->role) {
700 for (ra = policydb->role_allow; ra; ra = ra->next) {
701 if (scontext->role == ra->role &&
702 tcontext->role == ra->new_role)
703 break;
704 }
705 if (!ra)
706 avd->allowed &= ~policydb->process_trans_perms;
707 }
708
709 /*
710 * If the given source and target types have boundary
711 * constraint, lazy checks have to mask any violated
712 * permission and notice it to userspace via audit.
713 */
714 type_attribute_bounds_av(policydb, scontext, tcontext,
715 tclass, avd);
716 }
717
security_validtrans_handle_fail(struct selinux_state * state,struct context * ocontext,struct context * ncontext,struct context * tcontext,u16 tclass)718 static int security_validtrans_handle_fail(struct selinux_state *state,
719 struct context *ocontext,
720 struct context *ncontext,
721 struct context *tcontext,
722 u16 tclass)
723 {
724 struct policydb *p = &state->ss->policydb;
725 char *o = NULL, *n = NULL, *t = NULL;
726 u32 olen, nlen, tlen;
727
728 if (context_struct_to_string(p, ocontext, &o, &olen))
729 goto out;
730 if (context_struct_to_string(p, ncontext, &n, &nlen))
731 goto out;
732 if (context_struct_to_string(p, tcontext, &t, &tlen))
733 goto out;
734 audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
735 "op=security_validate_transition seresult=denied"
736 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
737 o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
738 out:
739 kfree(o);
740 kfree(n);
741 kfree(t);
742
743 if (!enforcing_enabled(state))
744 return 0;
745 return -EPERM;
746 }
747
security_compute_validatetrans(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)748 static int security_compute_validatetrans(struct selinux_state *state,
749 u32 oldsid, u32 newsid, u32 tasksid,
750 u16 orig_tclass, bool user)
751 {
752 struct policydb *policydb;
753 struct sidtab *sidtab;
754 struct context *ocontext;
755 struct context *ncontext;
756 struct context *tcontext;
757 struct class_datum *tclass_datum;
758 struct constraint_node *constraint;
759 u16 tclass;
760 int rc = 0;
761
762
763 if (!state->initialized)
764 return 0;
765
766 read_lock(&state->ss->policy_rwlock);
767
768 policydb = &state->ss->policydb;
769 sidtab = state->ss->sidtab;
770
771 if (!user)
772 tclass = unmap_class(&state->ss->map, orig_tclass);
773 else
774 tclass = orig_tclass;
775
776 if (!tclass || tclass > policydb->p_classes.nprim) {
777 rc = -EINVAL;
778 goto out;
779 }
780 tclass_datum = policydb->class_val_to_struct[tclass - 1];
781
782 ocontext = sidtab_search(sidtab, oldsid);
783 if (!ocontext) {
784 pr_err("SELinux: %s: unrecognized SID %d\n",
785 __func__, oldsid);
786 rc = -EINVAL;
787 goto out;
788 }
789
790 ncontext = sidtab_search(sidtab, newsid);
791 if (!ncontext) {
792 pr_err("SELinux: %s: unrecognized SID %d\n",
793 __func__, newsid);
794 rc = -EINVAL;
795 goto out;
796 }
797
798 tcontext = sidtab_search(sidtab, tasksid);
799 if (!tcontext) {
800 pr_err("SELinux: %s: unrecognized SID %d\n",
801 __func__, tasksid);
802 rc = -EINVAL;
803 goto out;
804 }
805
806 constraint = tclass_datum->validatetrans;
807 while (constraint) {
808 if (!constraint_expr_eval(policydb, ocontext, ncontext,
809 tcontext, constraint->expr)) {
810 if (user)
811 rc = -EPERM;
812 else
813 rc = security_validtrans_handle_fail(state,
814 ocontext,
815 ncontext,
816 tcontext,
817 tclass);
818 goto out;
819 }
820 constraint = constraint->next;
821 }
822
823 out:
824 read_unlock(&state->ss->policy_rwlock);
825 return rc;
826 }
827
security_validate_transition_user(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)828 int security_validate_transition_user(struct selinux_state *state,
829 u32 oldsid, u32 newsid, u32 tasksid,
830 u16 tclass)
831 {
832 return security_compute_validatetrans(state, oldsid, newsid, tasksid,
833 tclass, true);
834 }
835
security_validate_transition(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)836 int security_validate_transition(struct selinux_state *state,
837 u32 oldsid, u32 newsid, u32 tasksid,
838 u16 orig_tclass)
839 {
840 return security_compute_validatetrans(state, oldsid, newsid, tasksid,
841 orig_tclass, false);
842 }
843
844 /*
845 * security_bounded_transition - check whether the given
846 * transition is directed to bounded, or not.
847 * It returns 0, if @newsid is bounded by @oldsid.
848 * Otherwise, it returns error code.
849 *
850 * @oldsid : current security identifier
851 * @newsid : destinated security identifier
852 */
security_bounded_transition(struct selinux_state * state,u32 old_sid,u32 new_sid)853 int security_bounded_transition(struct selinux_state *state,
854 u32 old_sid, u32 new_sid)
855 {
856 struct policydb *policydb;
857 struct sidtab *sidtab;
858 struct context *old_context, *new_context;
859 struct type_datum *type;
860 int index;
861 int rc;
862
863 if (!state->initialized)
864 return 0;
865
866 read_lock(&state->ss->policy_rwlock);
867
868 policydb = &state->ss->policydb;
869 sidtab = state->ss->sidtab;
870
871 rc = -EINVAL;
872 old_context = sidtab_search(sidtab, old_sid);
873 if (!old_context) {
874 pr_err("SELinux: %s: unrecognized SID %u\n",
875 __func__, old_sid);
876 goto out;
877 }
878
879 rc = -EINVAL;
880 new_context = sidtab_search(sidtab, new_sid);
881 if (!new_context) {
882 pr_err("SELinux: %s: unrecognized SID %u\n",
883 __func__, new_sid);
884 goto out;
885 }
886
887 rc = 0;
888 /* type/domain unchanged */
889 if (old_context->type == new_context->type)
890 goto out;
891
892 index = new_context->type;
893 while (true) {
894 type = policydb->type_val_to_struct[index - 1];
895 BUG_ON(!type);
896
897 /* not bounded anymore */
898 rc = -EPERM;
899 if (!type->bounds)
900 break;
901
902 /* @newsid is bounded by @oldsid */
903 rc = 0;
904 if (type->bounds == old_context->type)
905 break;
906
907 index = type->bounds;
908 }
909
910 if (rc) {
911 char *old_name = NULL;
912 char *new_name = NULL;
913 u32 length;
914
915 if (!context_struct_to_string(policydb, old_context,
916 &old_name, &length) &&
917 !context_struct_to_string(policydb, new_context,
918 &new_name, &length)) {
919 audit_log(audit_context(),
920 GFP_ATOMIC, AUDIT_SELINUX_ERR,
921 "op=security_bounded_transition "
922 "seresult=denied "
923 "oldcontext=%s newcontext=%s",
924 old_name, new_name);
925 }
926 kfree(new_name);
927 kfree(old_name);
928 }
929 out:
930 read_unlock(&state->ss->policy_rwlock);
931
932 return rc;
933 }
934
avd_init(struct selinux_state * state,struct av_decision * avd)935 static void avd_init(struct selinux_state *state, struct av_decision *avd)
936 {
937 avd->allowed = 0;
938 avd->auditallow = 0;
939 avd->auditdeny = 0xffffffff;
940 avd->seqno = state->ss->latest_granting;
941 avd->flags = 0;
942 }
943
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)944 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
945 struct avtab_node *node)
946 {
947 unsigned int i;
948
949 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
950 if (xpermd->driver != node->datum.u.xperms->driver)
951 return;
952 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
953 if (!security_xperm_test(node->datum.u.xperms->perms.p,
954 xpermd->driver))
955 return;
956 } else {
957 BUG();
958 }
959
960 if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
961 xpermd->used |= XPERMS_ALLOWED;
962 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
963 memset(xpermd->allowed->p, 0xff,
964 sizeof(xpermd->allowed->p));
965 }
966 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
967 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
968 xpermd->allowed->p[i] |=
969 node->datum.u.xperms->perms.p[i];
970 }
971 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
972 xpermd->used |= XPERMS_AUDITALLOW;
973 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
974 memset(xpermd->auditallow->p, 0xff,
975 sizeof(xpermd->auditallow->p));
976 }
977 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
978 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
979 xpermd->auditallow->p[i] |=
980 node->datum.u.xperms->perms.p[i];
981 }
982 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
983 xpermd->used |= XPERMS_DONTAUDIT;
984 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
985 memset(xpermd->dontaudit->p, 0xff,
986 sizeof(xpermd->dontaudit->p));
987 }
988 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
989 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
990 xpermd->dontaudit->p[i] |=
991 node->datum.u.xperms->perms.p[i];
992 }
993 } else {
994 BUG();
995 }
996 }
997
security_compute_xperms_decision(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,struct extended_perms_decision * xpermd)998 void security_compute_xperms_decision(struct selinux_state *state,
999 u32 ssid,
1000 u32 tsid,
1001 u16 orig_tclass,
1002 u8 driver,
1003 struct extended_perms_decision *xpermd)
1004 {
1005 struct policydb *policydb;
1006 struct sidtab *sidtab;
1007 u16 tclass;
1008 struct context *scontext, *tcontext;
1009 struct avtab_key avkey;
1010 struct avtab_node *node;
1011 struct ebitmap *sattr, *tattr;
1012 struct ebitmap_node *snode, *tnode;
1013 unsigned int i, j;
1014
1015 xpermd->driver = driver;
1016 xpermd->used = 0;
1017 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1018 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1019 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1020
1021 read_lock(&state->ss->policy_rwlock);
1022 if (!state->initialized)
1023 goto allow;
1024
1025 policydb = &state->ss->policydb;
1026 sidtab = state->ss->sidtab;
1027
1028 scontext = sidtab_search(sidtab, ssid);
1029 if (!scontext) {
1030 pr_err("SELinux: %s: unrecognized SID %d\n",
1031 __func__, ssid);
1032 goto out;
1033 }
1034
1035 tcontext = sidtab_search(sidtab, tsid);
1036 if (!tcontext) {
1037 pr_err("SELinux: %s: unrecognized SID %d\n",
1038 __func__, tsid);
1039 goto out;
1040 }
1041
1042 tclass = unmap_class(&state->ss->map, orig_tclass);
1043 if (unlikely(orig_tclass && !tclass)) {
1044 if (policydb->allow_unknown)
1045 goto allow;
1046 goto out;
1047 }
1048
1049
1050 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1051 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1052 goto out;
1053 }
1054
1055 avkey.target_class = tclass;
1056 avkey.specified = AVTAB_XPERMS;
1057 sattr = &policydb->type_attr_map_array[scontext->type - 1];
1058 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1059 ebitmap_for_each_positive_bit(sattr, snode, i) {
1060 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1061 avkey.source_type = i + 1;
1062 avkey.target_type = j + 1;
1063 for (node = avtab_search_node(&policydb->te_avtab,
1064 &avkey);
1065 node;
1066 node = avtab_search_node_next(node, avkey.specified))
1067 services_compute_xperms_decision(xpermd, node);
1068
1069 cond_compute_xperms(&policydb->te_cond_avtab,
1070 &avkey, xpermd);
1071 }
1072 }
1073 out:
1074 read_unlock(&state->ss->policy_rwlock);
1075 return;
1076 allow:
1077 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1078 goto out;
1079 }
1080
1081 /**
1082 * security_compute_av - Compute access vector decisions.
1083 * @ssid: source security identifier
1084 * @tsid: target security identifier
1085 * @tclass: target security class
1086 * @avd: access vector decisions
1087 * @xperms: extended permissions
1088 *
1089 * Compute a set of access vector decisions based on the
1090 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1091 */
security_compute_av(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1092 void security_compute_av(struct selinux_state *state,
1093 u32 ssid,
1094 u32 tsid,
1095 u16 orig_tclass,
1096 struct av_decision *avd,
1097 struct extended_perms *xperms)
1098 {
1099 struct policydb *policydb;
1100 struct sidtab *sidtab;
1101 u16 tclass;
1102 struct context *scontext = NULL, *tcontext = NULL;
1103
1104 read_lock(&state->ss->policy_rwlock);
1105 avd_init(state, avd);
1106 xperms->len = 0;
1107 if (!state->initialized)
1108 goto allow;
1109
1110 policydb = &state->ss->policydb;
1111 sidtab = state->ss->sidtab;
1112
1113 scontext = sidtab_search(sidtab, ssid);
1114 if (!scontext) {
1115 pr_err("SELinux: %s: unrecognized SID %d\n",
1116 __func__, ssid);
1117 goto out;
1118 }
1119
1120 /* permissive domain? */
1121 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1122 avd->flags |= AVD_FLAGS_PERMISSIVE;
1123
1124 tcontext = sidtab_search(sidtab, tsid);
1125 if (!tcontext) {
1126 pr_err("SELinux: %s: unrecognized SID %d\n",
1127 __func__, tsid);
1128 goto out;
1129 }
1130
1131 tclass = unmap_class(&state->ss->map, orig_tclass);
1132 if (unlikely(orig_tclass && !tclass)) {
1133 if (policydb->allow_unknown)
1134 goto allow;
1135 goto out;
1136 }
1137 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1138 xperms);
1139 map_decision(&state->ss->map, orig_tclass, avd,
1140 policydb->allow_unknown);
1141 out:
1142 read_unlock(&state->ss->policy_rwlock);
1143 return;
1144 allow:
1145 avd->allowed = 0xffffffff;
1146 goto out;
1147 }
1148
security_compute_av_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1149 void security_compute_av_user(struct selinux_state *state,
1150 u32 ssid,
1151 u32 tsid,
1152 u16 tclass,
1153 struct av_decision *avd)
1154 {
1155 struct policydb *policydb;
1156 struct sidtab *sidtab;
1157 struct context *scontext = NULL, *tcontext = NULL;
1158
1159 read_lock(&state->ss->policy_rwlock);
1160 avd_init(state, avd);
1161 if (!state->initialized)
1162 goto allow;
1163
1164 policydb = &state->ss->policydb;
1165 sidtab = state->ss->sidtab;
1166
1167 scontext = sidtab_search(sidtab, ssid);
1168 if (!scontext) {
1169 pr_err("SELinux: %s: unrecognized SID %d\n",
1170 __func__, ssid);
1171 goto out;
1172 }
1173
1174 /* permissive domain? */
1175 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1176 avd->flags |= AVD_FLAGS_PERMISSIVE;
1177
1178 tcontext = sidtab_search(sidtab, tsid);
1179 if (!tcontext) {
1180 pr_err("SELinux: %s: unrecognized SID %d\n",
1181 __func__, tsid);
1182 goto out;
1183 }
1184
1185 if (unlikely(!tclass)) {
1186 if (policydb->allow_unknown)
1187 goto allow;
1188 goto out;
1189 }
1190
1191 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1192 NULL);
1193 out:
1194 read_unlock(&state->ss->policy_rwlock);
1195 return;
1196 allow:
1197 avd->allowed = 0xffffffff;
1198 goto out;
1199 }
1200
1201 /*
1202 * Write the security context string representation of
1203 * the context structure `context' into a dynamically
1204 * allocated string of the correct size. Set `*scontext'
1205 * to point to this string and set `*scontext_len' to
1206 * the length of the string.
1207 */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1208 static int context_struct_to_string(struct policydb *p,
1209 struct context *context,
1210 char **scontext, u32 *scontext_len)
1211 {
1212 char *scontextp;
1213
1214 if (scontext)
1215 *scontext = NULL;
1216 *scontext_len = 0;
1217
1218 if (context->len) {
1219 *scontext_len = context->len;
1220 if (scontext) {
1221 *scontext = kstrdup(context->str, GFP_ATOMIC);
1222 if (!(*scontext))
1223 return -ENOMEM;
1224 }
1225 return 0;
1226 }
1227
1228 /* Compute the size of the context. */
1229 *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1230 *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1231 *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1232 *scontext_len += mls_compute_context_len(p, context);
1233
1234 if (!scontext)
1235 return 0;
1236
1237 /* Allocate space for the context; caller must free this space. */
1238 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1239 if (!scontextp)
1240 return -ENOMEM;
1241 *scontext = scontextp;
1242
1243 /*
1244 * Copy the user name, role name and type name into the context.
1245 */
1246 scontextp += sprintf(scontextp, "%s:%s:%s",
1247 sym_name(p, SYM_USERS, context->user - 1),
1248 sym_name(p, SYM_ROLES, context->role - 1),
1249 sym_name(p, SYM_TYPES, context->type - 1));
1250
1251 mls_sid_to_context(p, context, &scontextp);
1252
1253 *scontextp = 0;
1254
1255 return 0;
1256 }
1257
1258 #include "initial_sid_to_string.h"
1259
security_sidtab_hash_stats(struct selinux_state * state,char * page)1260 int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1261 {
1262 int rc;
1263
1264 if (!state->initialized) {
1265 pr_err("SELinux: %s: called before initial load_policy\n",
1266 __func__);
1267 return -EINVAL;
1268 }
1269
1270 read_lock(&state->ss->policy_rwlock);
1271 rc = sidtab_hash_stats(state->ss->sidtab, page);
1272 read_unlock(&state->ss->policy_rwlock);
1273
1274 return rc;
1275 }
1276
security_get_initial_sid_context(u32 sid)1277 const char *security_get_initial_sid_context(u32 sid)
1278 {
1279 if (unlikely(sid > SECINITSID_NUM))
1280 return NULL;
1281 return initial_sid_to_string[sid];
1282 }
1283
security_sid_to_context_core(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1284 static int security_sid_to_context_core(struct selinux_state *state,
1285 u32 sid, char **scontext,
1286 u32 *scontext_len, int force,
1287 int only_invalid)
1288 {
1289 struct policydb *policydb;
1290 struct sidtab *sidtab;
1291 struct context *context;
1292 int rc = 0;
1293
1294 if (scontext)
1295 *scontext = NULL;
1296 *scontext_len = 0;
1297
1298 if (!state->initialized) {
1299 if (sid <= SECINITSID_NUM) {
1300 char *scontextp;
1301
1302 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1303 if (!scontext)
1304 goto out;
1305 scontextp = kmemdup(initial_sid_to_string[sid],
1306 *scontext_len, GFP_ATOMIC);
1307 if (!scontextp) {
1308 rc = -ENOMEM;
1309 goto out;
1310 }
1311 *scontext = scontextp;
1312 goto out;
1313 }
1314 pr_err("SELinux: %s: called before initial "
1315 "load_policy on unknown SID %d\n", __func__, sid);
1316 rc = -EINVAL;
1317 goto out;
1318 }
1319 read_lock(&state->ss->policy_rwlock);
1320 policydb = &state->ss->policydb;
1321 sidtab = state->ss->sidtab;
1322 if (force)
1323 context = sidtab_search_force(sidtab, sid);
1324 else
1325 context = sidtab_search(sidtab, sid);
1326 if (!context) {
1327 pr_err("SELinux: %s: unrecognized SID %d\n",
1328 __func__, sid);
1329 rc = -EINVAL;
1330 goto out_unlock;
1331 }
1332 if (only_invalid && !context->len)
1333 rc = 0;
1334 else
1335 rc = context_struct_to_string(policydb, context, scontext,
1336 scontext_len);
1337 out_unlock:
1338 read_unlock(&state->ss->policy_rwlock);
1339 out:
1340 return rc;
1341
1342 }
1343
1344 /**
1345 * security_sid_to_context - Obtain a context for a given SID.
1346 * @sid: security identifier, SID
1347 * @scontext: security context
1348 * @scontext_len: length in bytes
1349 *
1350 * Write the string representation of the context associated with @sid
1351 * into a dynamically allocated string of the correct size. Set @scontext
1352 * to point to this string and set @scontext_len to the length of the string.
1353 */
security_sid_to_context(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1354 int security_sid_to_context(struct selinux_state *state,
1355 u32 sid, char **scontext, u32 *scontext_len)
1356 {
1357 return security_sid_to_context_core(state, sid, scontext,
1358 scontext_len, 0, 0);
1359 }
1360
security_sid_to_context_force(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1361 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1362 char **scontext, u32 *scontext_len)
1363 {
1364 return security_sid_to_context_core(state, sid, scontext,
1365 scontext_len, 1, 0);
1366 }
1367
1368 /**
1369 * security_sid_to_context_inval - Obtain a context for a given SID if it
1370 * is invalid.
1371 * @sid: security identifier, SID
1372 * @scontext: security context
1373 * @scontext_len: length in bytes
1374 *
1375 * Write the string representation of the context associated with @sid
1376 * into a dynamically allocated string of the correct size, but only if the
1377 * context is invalid in the current policy. Set @scontext to point to
1378 * this string (or NULL if the context is valid) and set @scontext_len to
1379 * the length of the string (or 0 if the context is valid).
1380 */
security_sid_to_context_inval(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1381 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1382 char **scontext, u32 *scontext_len)
1383 {
1384 return security_sid_to_context_core(state, sid, scontext,
1385 scontext_len, 1, 1);
1386 }
1387
1388 /*
1389 * Caveat: Mutates scontext.
1390 */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1391 static int string_to_context_struct(struct policydb *pol,
1392 struct sidtab *sidtabp,
1393 char *scontext,
1394 struct context *ctx,
1395 u32 def_sid)
1396 {
1397 struct role_datum *role;
1398 struct type_datum *typdatum;
1399 struct user_datum *usrdatum;
1400 char *scontextp, *p, oldc;
1401 int rc = 0;
1402
1403 context_init(ctx);
1404
1405 /* Parse the security context. */
1406
1407 rc = -EINVAL;
1408 scontextp = (char *) scontext;
1409
1410 /* Extract the user. */
1411 p = scontextp;
1412 while (*p && *p != ':')
1413 p++;
1414
1415 if (*p == 0)
1416 goto out;
1417
1418 *p++ = 0;
1419
1420 usrdatum = hashtab_search(pol->p_users.table, scontextp);
1421 if (!usrdatum)
1422 goto out;
1423
1424 ctx->user = usrdatum->value;
1425
1426 /* Extract role. */
1427 scontextp = p;
1428 while (*p && *p != ':')
1429 p++;
1430
1431 if (*p == 0)
1432 goto out;
1433
1434 *p++ = 0;
1435
1436 role = hashtab_search(pol->p_roles.table, scontextp);
1437 if (!role)
1438 goto out;
1439 ctx->role = role->value;
1440
1441 /* Extract type. */
1442 scontextp = p;
1443 while (*p && *p != ':')
1444 p++;
1445 oldc = *p;
1446 *p++ = 0;
1447
1448 typdatum = hashtab_search(pol->p_types.table, scontextp);
1449 if (!typdatum || typdatum->attribute)
1450 goto out;
1451
1452 ctx->type = typdatum->value;
1453
1454 rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1455 if (rc)
1456 goto out;
1457
1458 /* Check the validity of the new context. */
1459 rc = -EINVAL;
1460 if (!policydb_context_isvalid(pol, ctx))
1461 goto out;
1462 rc = 0;
1463 out:
1464 if (rc)
1465 context_destroy(ctx);
1466 return rc;
1467 }
1468
context_add_hash(struct policydb * policydb,struct context * context)1469 int context_add_hash(struct policydb *policydb,
1470 struct context *context)
1471 {
1472 int rc;
1473 char *str;
1474 int len;
1475
1476 if (context->str) {
1477 context->hash = context_compute_hash(context->str);
1478 } else {
1479 rc = context_struct_to_string(policydb, context,
1480 &str, &len);
1481 if (rc)
1482 return rc;
1483 context->hash = context_compute_hash(str);
1484 kfree(str);
1485 }
1486 return 0;
1487 }
1488
context_struct_to_sid(struct selinux_state * state,struct context * context,u32 * sid)1489 static int context_struct_to_sid(struct selinux_state *state,
1490 struct context *context, u32 *sid)
1491 {
1492 int rc;
1493 struct sidtab *sidtab = state->ss->sidtab;
1494 struct policydb *policydb = &state->ss->policydb;
1495
1496 if (!context->hash) {
1497 rc = context_add_hash(policydb, context);
1498 if (rc)
1499 return rc;
1500 }
1501
1502 return sidtab_context_to_sid(sidtab, context, sid);
1503 }
1504
security_context_to_sid_core(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1505 static int security_context_to_sid_core(struct selinux_state *state,
1506 const char *scontext, u32 scontext_len,
1507 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1508 int force)
1509 {
1510 struct policydb *policydb;
1511 struct sidtab *sidtab;
1512 char *scontext2, *str = NULL;
1513 struct context context;
1514 int rc = 0;
1515
1516 /* An empty security context is never valid. */
1517 if (!scontext_len)
1518 return -EINVAL;
1519
1520 /* Copy the string to allow changes and ensure a NUL terminator */
1521 scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1522 if (!scontext2)
1523 return -ENOMEM;
1524
1525 if (!state->initialized) {
1526 int i;
1527
1528 for (i = 1; i < SECINITSID_NUM; i++) {
1529 if (!strcmp(initial_sid_to_string[i], scontext2)) {
1530 *sid = i;
1531 goto out;
1532 }
1533 }
1534 *sid = SECINITSID_KERNEL;
1535 goto out;
1536 }
1537 *sid = SECSID_NULL;
1538
1539 if (force) {
1540 /* Save another copy for storing in uninterpreted form */
1541 rc = -ENOMEM;
1542 str = kstrdup(scontext2, gfp_flags);
1543 if (!str)
1544 goto out;
1545 }
1546 read_lock(&state->ss->policy_rwlock);
1547 policydb = &state->ss->policydb;
1548 sidtab = state->ss->sidtab;
1549 rc = string_to_context_struct(policydb, sidtab, scontext2,
1550 &context, def_sid);
1551 if (rc == -EINVAL && force) {
1552 context.str = str;
1553 context.len = strlen(str) + 1;
1554 str = NULL;
1555 } else if (rc)
1556 goto out_unlock;
1557 rc = context_struct_to_sid(state, &context, sid);
1558 context_destroy(&context);
1559 out_unlock:
1560 read_unlock(&state->ss->policy_rwlock);
1561 out:
1562 kfree(scontext2);
1563 kfree(str);
1564 return rc;
1565 }
1566
1567 /**
1568 * security_context_to_sid - Obtain a SID for a given security context.
1569 * @scontext: security context
1570 * @scontext_len: length in bytes
1571 * @sid: security identifier, SID
1572 * @gfp: context for the allocation
1573 *
1574 * Obtains a SID associated with the security context that
1575 * has the string representation specified by @scontext.
1576 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1577 * memory is available, or 0 on success.
1578 */
security_context_to_sid(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1579 int security_context_to_sid(struct selinux_state *state,
1580 const char *scontext, u32 scontext_len, u32 *sid,
1581 gfp_t gfp)
1582 {
1583 return security_context_to_sid_core(state, scontext, scontext_len,
1584 sid, SECSID_NULL, gfp, 0);
1585 }
1586
security_context_str_to_sid(struct selinux_state * state,const char * scontext,u32 * sid,gfp_t gfp)1587 int security_context_str_to_sid(struct selinux_state *state,
1588 const char *scontext, u32 *sid, gfp_t gfp)
1589 {
1590 return security_context_to_sid(state, scontext, strlen(scontext),
1591 sid, gfp);
1592 }
1593
1594 /**
1595 * security_context_to_sid_default - Obtain a SID for a given security context,
1596 * falling back to specified default if needed.
1597 *
1598 * @scontext: security context
1599 * @scontext_len: length in bytes
1600 * @sid: security identifier, SID
1601 * @def_sid: default SID to assign on error
1602 *
1603 * Obtains a SID associated with the security context that
1604 * has the string representation specified by @scontext.
1605 * The default SID is passed to the MLS layer to be used to allow
1606 * kernel labeling of the MLS field if the MLS field is not present
1607 * (for upgrading to MLS without full relabel).
1608 * Implicitly forces adding of the context even if it cannot be mapped yet.
1609 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1610 * memory is available, or 0 on success.
1611 */
security_context_to_sid_default(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1612 int security_context_to_sid_default(struct selinux_state *state,
1613 const char *scontext, u32 scontext_len,
1614 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1615 {
1616 return security_context_to_sid_core(state, scontext, scontext_len,
1617 sid, def_sid, gfp_flags, 1);
1618 }
1619
security_context_to_sid_force(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid)1620 int security_context_to_sid_force(struct selinux_state *state,
1621 const char *scontext, u32 scontext_len,
1622 u32 *sid)
1623 {
1624 return security_context_to_sid_core(state, scontext, scontext_len,
1625 sid, SECSID_NULL, GFP_KERNEL, 1);
1626 }
1627
compute_sid_handle_invalid_context(struct selinux_state * state,struct context * scontext,struct context * tcontext,u16 tclass,struct context * newcontext)1628 static int compute_sid_handle_invalid_context(
1629 struct selinux_state *state,
1630 struct context *scontext,
1631 struct context *tcontext,
1632 u16 tclass,
1633 struct context *newcontext)
1634 {
1635 struct policydb *policydb = &state->ss->policydb;
1636 char *s = NULL, *t = NULL, *n = NULL;
1637 u32 slen, tlen, nlen;
1638 struct audit_buffer *ab;
1639
1640 if (context_struct_to_string(policydb, scontext, &s, &slen))
1641 goto out;
1642 if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1643 goto out;
1644 if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1645 goto out;
1646 ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1647 audit_log_format(ab,
1648 "op=security_compute_sid invalid_context=");
1649 /* no need to record the NUL with untrusted strings */
1650 audit_log_n_untrustedstring(ab, n, nlen - 1);
1651 audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1652 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1653 audit_log_end(ab);
1654 out:
1655 kfree(s);
1656 kfree(t);
1657 kfree(n);
1658 if (!enforcing_enabled(state))
1659 return 0;
1660 return -EACCES;
1661 }
1662
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1663 static void filename_compute_type(struct policydb *policydb,
1664 struct context *newcontext,
1665 u32 stype, u32 ttype, u16 tclass,
1666 const char *objname)
1667 {
1668 struct filename_trans ft;
1669 struct filename_trans_datum *otype;
1670
1671 /*
1672 * Most filename trans rules are going to live in specific directories
1673 * like /dev or /var/run. This bitmap will quickly skip rule searches
1674 * if the ttype does not contain any rules.
1675 */
1676 if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1677 return;
1678
1679 ft.stype = stype;
1680 ft.ttype = ttype;
1681 ft.tclass = tclass;
1682 ft.name = objname;
1683
1684 otype = hashtab_search(policydb->filename_trans, &ft);
1685 if (otype)
1686 newcontext->type = otype->otype;
1687 }
1688
security_compute_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u32 specified,const char * objname,u32 * out_sid,bool kern)1689 static int security_compute_sid(struct selinux_state *state,
1690 u32 ssid,
1691 u32 tsid,
1692 u16 orig_tclass,
1693 u32 specified,
1694 const char *objname,
1695 u32 *out_sid,
1696 bool kern)
1697 {
1698 struct policydb *policydb;
1699 struct sidtab *sidtab;
1700 struct class_datum *cladatum = NULL;
1701 struct context *scontext = NULL, *tcontext = NULL, newcontext;
1702 struct role_trans *roletr = NULL;
1703 struct avtab_key avkey;
1704 struct avtab_datum *avdatum;
1705 struct avtab_node *node;
1706 u16 tclass;
1707 int rc = 0;
1708 bool sock;
1709
1710 if (!state->initialized) {
1711 switch (orig_tclass) {
1712 case SECCLASS_PROCESS: /* kernel value */
1713 *out_sid = ssid;
1714 break;
1715 default:
1716 *out_sid = tsid;
1717 break;
1718 }
1719 goto out;
1720 }
1721
1722 context_init(&newcontext);
1723
1724 read_lock(&state->ss->policy_rwlock);
1725
1726 if (kern) {
1727 tclass = unmap_class(&state->ss->map, orig_tclass);
1728 sock = security_is_socket_class(orig_tclass);
1729 } else {
1730 tclass = orig_tclass;
1731 sock = security_is_socket_class(map_class(&state->ss->map,
1732 tclass));
1733 }
1734
1735 policydb = &state->ss->policydb;
1736 sidtab = state->ss->sidtab;
1737
1738 scontext = sidtab_search(sidtab, ssid);
1739 if (!scontext) {
1740 pr_err("SELinux: %s: unrecognized SID %d\n",
1741 __func__, ssid);
1742 rc = -EINVAL;
1743 goto out_unlock;
1744 }
1745 tcontext = sidtab_search(sidtab, tsid);
1746 if (!tcontext) {
1747 pr_err("SELinux: %s: unrecognized SID %d\n",
1748 __func__, tsid);
1749 rc = -EINVAL;
1750 goto out_unlock;
1751 }
1752
1753 if (tclass && tclass <= policydb->p_classes.nprim)
1754 cladatum = policydb->class_val_to_struct[tclass - 1];
1755
1756 /* Set the user identity. */
1757 switch (specified) {
1758 case AVTAB_TRANSITION:
1759 case AVTAB_CHANGE:
1760 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1761 newcontext.user = tcontext->user;
1762 } else {
1763 /* notice this gets both DEFAULT_SOURCE and unset */
1764 /* Use the process user identity. */
1765 newcontext.user = scontext->user;
1766 }
1767 break;
1768 case AVTAB_MEMBER:
1769 /* Use the related object owner. */
1770 newcontext.user = tcontext->user;
1771 break;
1772 }
1773
1774 /* Set the role to default values. */
1775 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1776 newcontext.role = scontext->role;
1777 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1778 newcontext.role = tcontext->role;
1779 } else {
1780 if ((tclass == policydb->process_class) || (sock == true))
1781 newcontext.role = scontext->role;
1782 else
1783 newcontext.role = OBJECT_R_VAL;
1784 }
1785
1786 /* Set the type to default values. */
1787 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1788 newcontext.type = scontext->type;
1789 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1790 newcontext.type = tcontext->type;
1791 } else {
1792 if ((tclass == policydb->process_class) || (sock == true)) {
1793 /* Use the type of process. */
1794 newcontext.type = scontext->type;
1795 } else {
1796 /* Use the type of the related object. */
1797 newcontext.type = tcontext->type;
1798 }
1799 }
1800
1801 /* Look for a type transition/member/change rule. */
1802 avkey.source_type = scontext->type;
1803 avkey.target_type = tcontext->type;
1804 avkey.target_class = tclass;
1805 avkey.specified = specified;
1806 avdatum = avtab_search(&policydb->te_avtab, &avkey);
1807
1808 /* If no permanent rule, also check for enabled conditional rules */
1809 if (!avdatum) {
1810 node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1811 for (; node; node = avtab_search_node_next(node, specified)) {
1812 if (node->key.specified & AVTAB_ENABLED) {
1813 avdatum = &node->datum;
1814 break;
1815 }
1816 }
1817 }
1818
1819 if (avdatum) {
1820 /* Use the type from the type transition/member/change rule. */
1821 newcontext.type = avdatum->u.data;
1822 }
1823
1824 /* if we have a objname this is a file trans check so check those rules */
1825 if (objname)
1826 filename_compute_type(policydb, &newcontext, scontext->type,
1827 tcontext->type, tclass, objname);
1828
1829 /* Check for class-specific changes. */
1830 if (specified & AVTAB_TRANSITION) {
1831 /* Look for a role transition rule. */
1832 for (roletr = policydb->role_tr; roletr;
1833 roletr = roletr->next) {
1834 if ((roletr->role == scontext->role) &&
1835 (roletr->type == tcontext->type) &&
1836 (roletr->tclass == tclass)) {
1837 /* Use the role transition rule. */
1838 newcontext.role = roletr->new_role;
1839 break;
1840 }
1841 }
1842 }
1843
1844 /* Set the MLS attributes.
1845 This is done last because it may allocate memory. */
1846 rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1847 &newcontext, sock);
1848 if (rc)
1849 goto out_unlock;
1850
1851 /* Check the validity of the context. */
1852 if (!policydb_context_isvalid(policydb, &newcontext)) {
1853 rc = compute_sid_handle_invalid_context(state, scontext,
1854 tcontext,
1855 tclass,
1856 &newcontext);
1857 if (rc)
1858 goto out_unlock;
1859 }
1860 /* Obtain the sid for the context. */
1861 rc = context_struct_to_sid(state, &newcontext, out_sid);
1862 out_unlock:
1863 read_unlock(&state->ss->policy_rwlock);
1864 context_destroy(&newcontext);
1865 out:
1866 return rc;
1867 }
1868
1869 /**
1870 * security_transition_sid - Compute the SID for a new subject/object.
1871 * @ssid: source security identifier
1872 * @tsid: target security identifier
1873 * @tclass: target security class
1874 * @out_sid: security identifier for new subject/object
1875 *
1876 * Compute a SID to use for labeling a new subject or object in the
1877 * class @tclass based on a SID pair (@ssid, @tsid).
1878 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1879 * if insufficient memory is available, or %0 if the new SID was
1880 * computed successfully.
1881 */
security_transition_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1882 int security_transition_sid(struct selinux_state *state,
1883 u32 ssid, u32 tsid, u16 tclass,
1884 const struct qstr *qstr, u32 *out_sid)
1885 {
1886 return security_compute_sid(state, ssid, tsid, tclass,
1887 AVTAB_TRANSITION,
1888 qstr ? qstr->name : NULL, out_sid, true);
1889 }
1890
security_transition_sid_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1891 int security_transition_sid_user(struct selinux_state *state,
1892 u32 ssid, u32 tsid, u16 tclass,
1893 const char *objname, u32 *out_sid)
1894 {
1895 return security_compute_sid(state, ssid, tsid, tclass,
1896 AVTAB_TRANSITION,
1897 objname, out_sid, false);
1898 }
1899
1900 /**
1901 * security_member_sid - Compute the SID for member selection.
1902 * @ssid: source security identifier
1903 * @tsid: target security identifier
1904 * @tclass: target security class
1905 * @out_sid: security identifier for selected member
1906 *
1907 * Compute a SID to use when selecting a member of a polyinstantiated
1908 * object of class @tclass based on a SID pair (@ssid, @tsid).
1909 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1910 * if insufficient memory is available, or %0 if the SID was
1911 * computed successfully.
1912 */
security_member_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1913 int security_member_sid(struct selinux_state *state,
1914 u32 ssid,
1915 u32 tsid,
1916 u16 tclass,
1917 u32 *out_sid)
1918 {
1919 return security_compute_sid(state, ssid, tsid, tclass,
1920 AVTAB_MEMBER, NULL,
1921 out_sid, false);
1922 }
1923
1924 /**
1925 * security_change_sid - Compute the SID for object relabeling.
1926 * @ssid: source security identifier
1927 * @tsid: target security identifier
1928 * @tclass: target security class
1929 * @out_sid: security identifier for selected member
1930 *
1931 * Compute a SID to use for relabeling an object of class @tclass
1932 * based on a SID pair (@ssid, @tsid).
1933 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1934 * if insufficient memory is available, or %0 if the SID was
1935 * computed successfully.
1936 */
security_change_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1937 int security_change_sid(struct selinux_state *state,
1938 u32 ssid,
1939 u32 tsid,
1940 u16 tclass,
1941 u32 *out_sid)
1942 {
1943 return security_compute_sid(state,
1944 ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1945 out_sid, false);
1946 }
1947
convert_context_handle_invalid_context(struct selinux_state * state,struct context * context)1948 static inline int convert_context_handle_invalid_context(
1949 struct selinux_state *state,
1950 struct context *context)
1951 {
1952 struct policydb *policydb = &state->ss->policydb;
1953 char *s;
1954 u32 len;
1955
1956 if (enforcing_enabled(state))
1957 return -EINVAL;
1958
1959 if (!context_struct_to_string(policydb, context, &s, &len)) {
1960 pr_warn("SELinux: Context %s would be invalid if enforcing\n",
1961 s);
1962 kfree(s);
1963 }
1964 return 0;
1965 }
1966
1967 struct convert_context_args {
1968 struct selinux_state *state;
1969 struct policydb *oldp;
1970 struct policydb *newp;
1971 };
1972
1973 /*
1974 * Convert the values in the security context
1975 * structure `oldc' from the values specified
1976 * in the policy `p->oldp' to the values specified
1977 * in the policy `p->newp', storing the new context
1978 * in `newc'. Verify that the context is valid
1979 * under the new policy.
1980 */
convert_context(struct context * oldc,struct context * newc,void * p)1981 static int convert_context(struct context *oldc, struct context *newc, void *p)
1982 {
1983 struct convert_context_args *args;
1984 struct ocontext *oc;
1985 struct role_datum *role;
1986 struct type_datum *typdatum;
1987 struct user_datum *usrdatum;
1988 char *s;
1989 u32 len;
1990 int rc;
1991
1992 args = p;
1993
1994 if (oldc->str) {
1995 s = kstrdup(oldc->str, GFP_KERNEL);
1996 if (!s)
1997 return -ENOMEM;
1998
1999 rc = string_to_context_struct(args->newp, NULL, s,
2000 newc, SECSID_NULL);
2001 if (rc == -EINVAL) {
2002 /*
2003 * Retain string representation for later mapping.
2004 *
2005 * IMPORTANT: We need to copy the contents of oldc->str
2006 * back into s again because string_to_context_struct()
2007 * may have garbled it.
2008 */
2009 memcpy(s, oldc->str, oldc->len);
2010 context_init(newc);
2011 newc->str = s;
2012 newc->len = oldc->len;
2013 newc->hash = oldc->hash;
2014 return 0;
2015 }
2016 kfree(s);
2017 if (rc) {
2018 /* Other error condition, e.g. ENOMEM. */
2019 pr_err("SELinux: Unable to map context %s, rc = %d.\n",
2020 oldc->str, -rc);
2021 return rc;
2022 }
2023 pr_info("SELinux: Context %s became valid (mapped).\n",
2024 oldc->str);
2025 return 0;
2026 }
2027
2028 context_init(newc);
2029
2030 /* Convert the user. */
2031 rc = -EINVAL;
2032 usrdatum = hashtab_search(args->newp->p_users.table,
2033 sym_name(args->oldp,
2034 SYM_USERS, oldc->user - 1));
2035 if (!usrdatum)
2036 goto bad;
2037 newc->user = usrdatum->value;
2038
2039 /* Convert the role. */
2040 rc = -EINVAL;
2041 role = hashtab_search(args->newp->p_roles.table,
2042 sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2043 if (!role)
2044 goto bad;
2045 newc->role = role->value;
2046
2047 /* Convert the type. */
2048 rc = -EINVAL;
2049 typdatum = hashtab_search(args->newp->p_types.table,
2050 sym_name(args->oldp,
2051 SYM_TYPES, oldc->type - 1));
2052 if (!typdatum)
2053 goto bad;
2054 newc->type = typdatum->value;
2055
2056 /* Convert the MLS fields if dealing with MLS policies */
2057 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2058 rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2059 if (rc)
2060 goto bad;
2061 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2062 /*
2063 * Switching between non-MLS and MLS policy:
2064 * ensure that the MLS fields of the context for all
2065 * existing entries in the sidtab are filled in with a
2066 * suitable default value, likely taken from one of the
2067 * initial SIDs.
2068 */
2069 oc = args->newp->ocontexts[OCON_ISID];
2070 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2071 oc = oc->next;
2072 rc = -EINVAL;
2073 if (!oc) {
2074 pr_err("SELinux: unable to look up"
2075 " the initial SIDs list\n");
2076 goto bad;
2077 }
2078 rc = mls_range_set(newc, &oc->context[0].range);
2079 if (rc)
2080 goto bad;
2081 }
2082
2083 /* Check the validity of the new context. */
2084 if (!policydb_context_isvalid(args->newp, newc)) {
2085 rc = convert_context_handle_invalid_context(args->state, oldc);
2086 if (rc)
2087 goto bad;
2088 }
2089
2090 rc = context_add_hash(args->newp, newc);
2091 if (rc)
2092 goto bad;
2093
2094 return 0;
2095 bad:
2096 /* Map old representation to string and save it. */
2097 rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2098 if (rc)
2099 return rc;
2100 context_destroy(newc);
2101 newc->str = s;
2102 newc->len = len;
2103 newc->hash = context_compute_hash(s);
2104 pr_info("SELinux: Context %s became invalid (unmapped).\n",
2105 newc->str);
2106 return 0;
2107 }
2108
security_load_policycaps(struct selinux_state * state)2109 static void security_load_policycaps(struct selinux_state *state)
2110 {
2111 struct policydb *p = &state->ss->policydb;
2112 unsigned int i;
2113 struct ebitmap_node *node;
2114
2115 for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2116 state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2117
2118 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2119 pr_info("SELinux: policy capability %s=%d\n",
2120 selinux_policycap_names[i],
2121 ebitmap_get_bit(&p->policycaps, i));
2122
2123 ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2124 if (i >= ARRAY_SIZE(selinux_policycap_names))
2125 pr_info("SELinux: unknown policy capability %u\n",
2126 i);
2127 }
2128
2129 state->android_netlink_route = p->android_netlink_route;
2130 state->android_netlink_getneigh = p->android_netlink_getneigh;
2131 selinux_nlmsg_init();
2132 }
2133
2134 static int security_preserve_bools(struct selinux_state *state,
2135 struct policydb *newpolicydb);
2136
2137 /**
2138 * security_load_policy - Load a security policy configuration.
2139 * @data: binary policy data
2140 * @len: length of data in bytes
2141 *
2142 * Load a new set of security policy configuration data,
2143 * validate it and convert the SID table as necessary.
2144 * This function will flush the access vector cache after
2145 * loading the new policy.
2146 */
security_load_policy(struct selinux_state * state,void * data,size_t len)2147 int security_load_policy(struct selinux_state *state, void *data, size_t len)
2148 {
2149 struct policydb *policydb;
2150 struct sidtab *oldsidtab, *newsidtab;
2151 struct policydb *oldpolicydb, *newpolicydb;
2152 struct selinux_mapping *oldmapping;
2153 struct selinux_map newmap;
2154 struct sidtab_convert_params convert_params;
2155 struct convert_context_args args;
2156 u32 seqno;
2157 int rc = 0;
2158 struct policy_file file = { data, len }, *fp = &file;
2159
2160 oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2161 if (!oldpolicydb) {
2162 rc = -ENOMEM;
2163 goto out;
2164 }
2165 newpolicydb = oldpolicydb + 1;
2166
2167 policydb = &state->ss->policydb;
2168
2169 newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2170 if (!newsidtab) {
2171 rc = -ENOMEM;
2172 goto out;
2173 }
2174
2175 if (!state->initialized) {
2176 rc = policydb_read(policydb, fp);
2177 if (rc) {
2178 kfree(newsidtab);
2179 goto out;
2180 }
2181
2182 policydb->len = len;
2183 rc = selinux_set_mapping(policydb, secclass_map,
2184 &state->ss->map);
2185 if (rc) {
2186 kfree(newsidtab);
2187 policydb_destroy(policydb);
2188 goto out;
2189 }
2190
2191 rc = policydb_load_isids(policydb, newsidtab);
2192 if (rc) {
2193 kfree(newsidtab);
2194 policydb_destroy(policydb);
2195 goto out;
2196 }
2197
2198 state->ss->sidtab = newsidtab;
2199 security_load_policycaps(state);
2200 state->initialized = 1;
2201 seqno = ++state->ss->latest_granting;
2202 selinux_complete_init();
2203 avc_ss_reset(state->avc, seqno);
2204 selnl_notify_policyload(seqno);
2205 selinux_status_update_policyload(state, seqno);
2206 selinux_netlbl_cache_invalidate();
2207 selinux_xfrm_notify_policyload();
2208 goto out;
2209 }
2210
2211 rc = policydb_read(newpolicydb, fp);
2212 if (rc) {
2213 kfree(newsidtab);
2214 goto out;
2215 }
2216
2217 newpolicydb->len = len;
2218 /* If switching between different policy types, log MLS status */
2219 if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2220 pr_info("SELinux: Disabling MLS support...\n");
2221 else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2222 pr_info("SELinux: Enabling MLS support...\n");
2223
2224 rc = policydb_load_isids(newpolicydb, newsidtab);
2225 if (rc) {
2226 pr_err("SELinux: unable to load the initial SIDs\n");
2227 policydb_destroy(newpolicydb);
2228 kfree(newsidtab);
2229 goto out;
2230 }
2231
2232 rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2233 if (rc)
2234 goto err;
2235
2236 rc = security_preserve_bools(state, newpolicydb);
2237 if (rc) {
2238 pr_err("SELinux: unable to preserve booleans\n");
2239 goto err;
2240 }
2241
2242 oldsidtab = state->ss->sidtab;
2243
2244 /*
2245 * Convert the internal representations of contexts
2246 * in the new SID table.
2247 */
2248 args.state = state;
2249 args.oldp = policydb;
2250 args.newp = newpolicydb;
2251
2252 convert_params.func = convert_context;
2253 convert_params.args = &args;
2254 convert_params.target = newsidtab;
2255
2256 rc = sidtab_convert(oldsidtab, &convert_params);
2257 if (rc) {
2258 pr_err("SELinux: unable to convert the internal"
2259 " representation of contexts in the new SID"
2260 " table\n");
2261 goto err;
2262 }
2263
2264 /* Save the old policydb and SID table to free later. */
2265 memcpy(oldpolicydb, policydb, sizeof(*policydb));
2266
2267 /* Install the new policydb and SID table. */
2268 write_lock_irq(&state->ss->policy_rwlock);
2269 memcpy(policydb, newpolicydb, sizeof(*policydb));
2270 state->ss->sidtab = newsidtab;
2271 security_load_policycaps(state);
2272 oldmapping = state->ss->map.mapping;
2273 state->ss->map.mapping = newmap.mapping;
2274 state->ss->map.size = newmap.size;
2275 seqno = ++state->ss->latest_granting;
2276 write_unlock_irq(&state->ss->policy_rwlock);
2277
2278 /* Free the old policydb and SID table. */
2279 policydb_destroy(oldpolicydb);
2280 sidtab_destroy(oldsidtab);
2281 kfree(oldsidtab);
2282 kfree(oldmapping);
2283
2284 avc_ss_reset(state->avc, seqno);
2285 selnl_notify_policyload(seqno);
2286 selinux_status_update_policyload(state, seqno);
2287 selinux_netlbl_cache_invalidate();
2288 selinux_xfrm_notify_policyload();
2289
2290 rc = 0;
2291 goto out;
2292
2293 err:
2294 kfree(newmap.mapping);
2295 sidtab_destroy(newsidtab);
2296 kfree(newsidtab);
2297 policydb_destroy(newpolicydb);
2298
2299 out:
2300 kfree(oldpolicydb);
2301 return rc;
2302 }
2303
security_policydb_len(struct selinux_state * state)2304 size_t security_policydb_len(struct selinux_state *state)
2305 {
2306 struct policydb *p = &state->ss->policydb;
2307 size_t len;
2308
2309 read_lock(&state->ss->policy_rwlock);
2310 len = p->len;
2311 read_unlock(&state->ss->policy_rwlock);
2312
2313 return len;
2314 }
2315
2316 /**
2317 * ocontext_to_sid - Helper to safely get sid for an ocontext
2318 * @sidtab: SID table
2319 * @c: ocontext structure
2320 * @index: index of the context entry (0 or 1)
2321 * @out_sid: pointer to the resulting SID value
2322 *
2323 * For all ocontexts except OCON_ISID the SID fields are populated
2324 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2325 * operation, this helper must be used to do that safely.
2326 *
2327 * WARNING: This function may return -ESTALE, indicating that the caller
2328 * must retry the operation after re-acquiring the policy pointer!
2329 */
ocontext_to_sid(struct sidtab * sidtab,struct ocontext * c,size_t index,u32 * out_sid)2330 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2331 size_t index, u32 *out_sid)
2332 {
2333 int rc;
2334 u32 sid;
2335
2336 /* Ensure the associated sidtab entry is visible to this thread. */
2337 sid = smp_load_acquire(&c->sid[index]);
2338 if (!sid) {
2339 rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2340 if (rc)
2341 return rc;
2342
2343 /*
2344 * Ensure the new sidtab entry is visible to other threads
2345 * when they see the SID.
2346 */
2347 smp_store_release(&c->sid[index], sid);
2348 }
2349 *out_sid = sid;
2350 return 0;
2351 }
2352
2353 /**
2354 * security_port_sid - Obtain the SID for a port.
2355 * @protocol: protocol number
2356 * @port: port number
2357 * @out_sid: security identifier
2358 */
security_port_sid(struct selinux_state * state,u8 protocol,u16 port,u32 * out_sid)2359 int security_port_sid(struct selinux_state *state,
2360 u8 protocol, u16 port, u32 *out_sid)
2361 {
2362 struct policydb *policydb;
2363 struct sidtab *sidtab;
2364 struct ocontext *c;
2365 int rc;
2366
2367 read_lock(&state->ss->policy_rwlock);
2368
2369 retry:
2370 rc = 0;
2371 policydb = &state->ss->policydb;
2372 sidtab = state->ss->sidtab;
2373
2374 c = policydb->ocontexts[OCON_PORT];
2375 while (c) {
2376 if (c->u.port.protocol == protocol &&
2377 c->u.port.low_port <= port &&
2378 c->u.port.high_port >= port)
2379 break;
2380 c = c->next;
2381 }
2382
2383 if (c) {
2384 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2385 if (rc == -ESTALE)
2386 goto retry;
2387 if (rc)
2388 goto out;
2389 } else {
2390 *out_sid = SECINITSID_PORT;
2391 }
2392
2393 out:
2394 read_unlock(&state->ss->policy_rwlock);
2395 return rc;
2396 }
2397
2398 /**
2399 * security_pkey_sid - Obtain the SID for a pkey.
2400 * @subnet_prefix: Subnet Prefix
2401 * @pkey_num: pkey number
2402 * @out_sid: security identifier
2403 */
security_ib_pkey_sid(struct selinux_state * state,u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2404 int security_ib_pkey_sid(struct selinux_state *state,
2405 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2406 {
2407 struct policydb *policydb;
2408 struct sidtab *sidtab;
2409 struct ocontext *c;
2410 int rc;
2411
2412 read_lock(&state->ss->policy_rwlock);
2413
2414 retry:
2415 rc = 0;
2416 policydb = &state->ss->policydb;
2417 sidtab = state->ss->sidtab;
2418
2419 c = policydb->ocontexts[OCON_IBPKEY];
2420 while (c) {
2421 if (c->u.ibpkey.low_pkey <= pkey_num &&
2422 c->u.ibpkey.high_pkey >= pkey_num &&
2423 c->u.ibpkey.subnet_prefix == subnet_prefix)
2424 break;
2425
2426 c = c->next;
2427 }
2428
2429 if (c) {
2430 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2431 if (rc == -ESTALE)
2432 goto retry;
2433 if (rc)
2434 goto out;
2435 } else
2436 *out_sid = SECINITSID_UNLABELED;
2437
2438 out:
2439 read_unlock(&state->ss->policy_rwlock);
2440 return rc;
2441 }
2442
2443 /**
2444 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2445 * @dev_name: device name
2446 * @port: port number
2447 * @out_sid: security identifier
2448 */
security_ib_endport_sid(struct selinux_state * state,const char * dev_name,u8 port_num,u32 * out_sid)2449 int security_ib_endport_sid(struct selinux_state *state,
2450 const char *dev_name, u8 port_num, u32 *out_sid)
2451 {
2452 struct policydb *policydb;
2453 struct sidtab *sidtab;
2454 struct ocontext *c;
2455 int rc;
2456
2457 read_lock(&state->ss->policy_rwlock);
2458
2459 retry:
2460 rc = 0;
2461 policydb = &state->ss->policydb;
2462 sidtab = state->ss->sidtab;
2463
2464 c = policydb->ocontexts[OCON_IBENDPORT];
2465 while (c) {
2466 if (c->u.ibendport.port == port_num &&
2467 !strncmp(c->u.ibendport.dev_name,
2468 dev_name,
2469 IB_DEVICE_NAME_MAX))
2470 break;
2471
2472 c = c->next;
2473 }
2474
2475 if (c) {
2476 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2477 if (rc == -ESTALE)
2478 goto retry;
2479 if (rc)
2480 goto out;
2481 } else
2482 *out_sid = SECINITSID_UNLABELED;
2483
2484 out:
2485 read_unlock(&state->ss->policy_rwlock);
2486 return rc;
2487 }
2488
2489 /**
2490 * security_netif_sid - Obtain the SID for a network interface.
2491 * @name: interface name
2492 * @if_sid: interface SID
2493 */
security_netif_sid(struct selinux_state * state,char * name,u32 * if_sid)2494 int security_netif_sid(struct selinux_state *state,
2495 char *name, u32 *if_sid)
2496 {
2497 struct policydb *policydb;
2498 struct sidtab *sidtab;
2499 int rc;
2500 struct ocontext *c;
2501
2502 read_lock(&state->ss->policy_rwlock);
2503
2504 retry:
2505 rc = 0;
2506 policydb = &state->ss->policydb;
2507 sidtab = state->ss->sidtab;
2508
2509 c = policydb->ocontexts[OCON_NETIF];
2510 while (c) {
2511 if (strcmp(name, c->u.name) == 0)
2512 break;
2513 c = c->next;
2514 }
2515
2516 if (c) {
2517 rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2518 if (rc == -ESTALE)
2519 goto retry;
2520 if (rc)
2521 goto out;
2522 } else
2523 *if_sid = SECINITSID_NETIF;
2524
2525 out:
2526 read_unlock(&state->ss->policy_rwlock);
2527 return rc;
2528 }
2529
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2530 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2531 {
2532 int i, fail = 0;
2533
2534 for (i = 0; i < 4; i++)
2535 if (addr[i] != (input[i] & mask[i])) {
2536 fail = 1;
2537 break;
2538 }
2539
2540 return !fail;
2541 }
2542
2543 /**
2544 * security_node_sid - Obtain the SID for a node (host).
2545 * @domain: communication domain aka address family
2546 * @addrp: address
2547 * @addrlen: address length in bytes
2548 * @out_sid: security identifier
2549 */
security_node_sid(struct selinux_state * state,u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2550 int security_node_sid(struct selinux_state *state,
2551 u16 domain,
2552 void *addrp,
2553 u32 addrlen,
2554 u32 *out_sid)
2555 {
2556 struct policydb *policydb;
2557 struct sidtab *sidtab;
2558 int rc;
2559 struct ocontext *c;
2560
2561 read_lock(&state->ss->policy_rwlock);
2562
2563 retry:
2564 policydb = &state->ss->policydb;
2565 sidtab = state->ss->sidtab;
2566
2567 switch (domain) {
2568 case AF_INET: {
2569 u32 addr;
2570
2571 rc = -EINVAL;
2572 if (addrlen != sizeof(u32))
2573 goto out;
2574
2575 addr = *((u32 *)addrp);
2576
2577 c = policydb->ocontexts[OCON_NODE];
2578 while (c) {
2579 if (c->u.node.addr == (addr & c->u.node.mask))
2580 break;
2581 c = c->next;
2582 }
2583 break;
2584 }
2585
2586 case AF_INET6:
2587 rc = -EINVAL;
2588 if (addrlen != sizeof(u64) * 2)
2589 goto out;
2590 c = policydb->ocontexts[OCON_NODE6];
2591 while (c) {
2592 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2593 c->u.node6.mask))
2594 break;
2595 c = c->next;
2596 }
2597 break;
2598
2599 default:
2600 rc = 0;
2601 *out_sid = SECINITSID_NODE;
2602 goto out;
2603 }
2604
2605 if (c) {
2606 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2607 if (rc == -ESTALE)
2608 goto retry;
2609 if (rc)
2610 goto out;
2611 } else {
2612 *out_sid = SECINITSID_NODE;
2613 }
2614
2615 rc = 0;
2616 out:
2617 read_unlock(&state->ss->policy_rwlock);
2618 return rc;
2619 }
2620
2621 #define SIDS_NEL 25
2622
2623 /**
2624 * security_get_user_sids - Obtain reachable SIDs for a user.
2625 * @fromsid: starting SID
2626 * @username: username
2627 * @sids: array of reachable SIDs for user
2628 * @nel: number of elements in @sids
2629 *
2630 * Generate the set of SIDs for legal security contexts
2631 * for a given user that can be reached by @fromsid.
2632 * Set *@sids to point to a dynamically allocated
2633 * array containing the set of SIDs. Set *@nel to the
2634 * number of elements in the array.
2635 */
2636
security_get_user_sids(struct selinux_state * state,u32 fromsid,char * username,u32 ** sids,u32 * nel)2637 int security_get_user_sids(struct selinux_state *state,
2638 u32 fromsid,
2639 char *username,
2640 u32 **sids,
2641 u32 *nel)
2642 {
2643 struct policydb *policydb;
2644 struct sidtab *sidtab;
2645 struct context *fromcon, usercon;
2646 u32 *mysids = NULL, *mysids2, sid;
2647 u32 mynel = 0, maxnel = SIDS_NEL;
2648 struct user_datum *user;
2649 struct role_datum *role;
2650 struct ebitmap_node *rnode, *tnode;
2651 int rc = 0, i, j;
2652
2653 *sids = NULL;
2654 *nel = 0;
2655
2656 if (!state->initialized)
2657 goto out;
2658
2659 read_lock(&state->ss->policy_rwlock);
2660
2661 policydb = &state->ss->policydb;
2662 sidtab = state->ss->sidtab;
2663
2664 context_init(&usercon);
2665
2666 rc = -EINVAL;
2667 fromcon = sidtab_search(sidtab, fromsid);
2668 if (!fromcon)
2669 goto out_unlock;
2670
2671 rc = -EINVAL;
2672 user = hashtab_search(policydb->p_users.table, username);
2673 if (!user)
2674 goto out_unlock;
2675
2676 usercon.user = user->value;
2677
2678 rc = -ENOMEM;
2679 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2680 if (!mysids)
2681 goto out_unlock;
2682
2683 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2684 role = policydb->role_val_to_struct[i];
2685 usercon.role = i + 1;
2686 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2687 usercon.type = j + 1;
2688 /*
2689 * The same context struct is reused here so the hash
2690 * must be reset.
2691 */
2692 usercon.hash = 0;
2693
2694 if (mls_setup_user_range(policydb, fromcon, user,
2695 &usercon))
2696 continue;
2697
2698 rc = context_struct_to_sid(state, &usercon, &sid);
2699 if (rc)
2700 goto out_unlock;
2701 if (mynel < maxnel) {
2702 mysids[mynel++] = sid;
2703 } else {
2704 rc = -ENOMEM;
2705 maxnel += SIDS_NEL;
2706 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2707 if (!mysids2)
2708 goto out_unlock;
2709 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2710 kfree(mysids);
2711 mysids = mysids2;
2712 mysids[mynel++] = sid;
2713 }
2714 }
2715 }
2716 rc = 0;
2717 out_unlock:
2718 read_unlock(&state->ss->policy_rwlock);
2719 if (rc || !mynel) {
2720 kfree(mysids);
2721 goto out;
2722 }
2723
2724 rc = -ENOMEM;
2725 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2726 if (!mysids2) {
2727 kfree(mysids);
2728 goto out;
2729 }
2730 for (i = 0, j = 0; i < mynel; i++) {
2731 struct av_decision dummy_avd;
2732 rc = avc_has_perm_noaudit(state,
2733 fromsid, mysids[i],
2734 SECCLASS_PROCESS, /* kernel value */
2735 PROCESS__TRANSITION, AVC_STRICT,
2736 &dummy_avd);
2737 if (!rc)
2738 mysids2[j++] = mysids[i];
2739 cond_resched();
2740 }
2741 rc = 0;
2742 kfree(mysids);
2743 *sids = mysids2;
2744 *nel = j;
2745 out:
2746 return rc;
2747 }
2748
2749 /**
2750 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2751 * @fstype: filesystem type
2752 * @path: path from root of mount
2753 * @sclass: file security class
2754 * @sid: SID for path
2755 *
2756 * Obtain a SID to use for a file in a filesystem that
2757 * cannot support xattr or use a fixed labeling behavior like
2758 * transition SIDs or task SIDs.
2759 *
2760 * The caller must acquire the policy_rwlock before calling this function.
2761 */
__security_genfs_sid(struct selinux_state * state,const char * fstype,char * path,u16 orig_sclass,u32 * sid)2762 static inline int __security_genfs_sid(struct selinux_state *state,
2763 const char *fstype,
2764 char *path,
2765 u16 orig_sclass,
2766 u32 *sid)
2767 {
2768 struct policydb *policydb = &state->ss->policydb;
2769 struct sidtab *sidtab = state->ss->sidtab;
2770 int len;
2771 u16 sclass;
2772 struct genfs *genfs;
2773 struct ocontext *c;
2774 int cmp = 0;
2775
2776 while (path[0] == '/' && path[1] == '/')
2777 path++;
2778
2779 sclass = unmap_class(&state->ss->map, orig_sclass);
2780 *sid = SECINITSID_UNLABELED;
2781
2782 for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2783 cmp = strcmp(fstype, genfs->fstype);
2784 if (cmp <= 0)
2785 break;
2786 }
2787
2788 if (!genfs || cmp)
2789 return -ENOENT;
2790
2791 for (c = genfs->head; c; c = c->next) {
2792 len = strlen(c->u.name);
2793 if ((!c->v.sclass || sclass == c->v.sclass) &&
2794 (strncmp(c->u.name, path, len) == 0))
2795 break;
2796 }
2797
2798 if (!c)
2799 return -ENOENT;
2800
2801 return ocontext_to_sid(sidtab, c, 0, sid);
2802 }
2803
2804 /**
2805 * security_genfs_sid - Obtain a SID for a file in a filesystem
2806 * @fstype: filesystem type
2807 * @path: path from root of mount
2808 * @sclass: file security class
2809 * @sid: SID for path
2810 *
2811 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2812 * it afterward.
2813 */
security_genfs_sid(struct selinux_state * state,const char * fstype,char * path,u16 orig_sclass,u32 * sid)2814 int security_genfs_sid(struct selinux_state *state,
2815 const char *fstype,
2816 char *path,
2817 u16 orig_sclass,
2818 u32 *sid)
2819 {
2820 int retval;
2821
2822 read_lock(&state->ss->policy_rwlock);
2823 retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2824 read_unlock(&state->ss->policy_rwlock);
2825 return retval;
2826 }
2827
2828 /**
2829 * security_fs_use - Determine how to handle labeling for a filesystem.
2830 * @sb: superblock in question
2831 */
security_fs_use(struct selinux_state * state,struct super_block * sb)2832 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2833 {
2834 struct policydb *policydb;
2835 struct sidtab *sidtab;
2836 int rc;
2837 struct ocontext *c;
2838 struct superblock_security_struct *sbsec = sb->s_security;
2839 const char *fstype = sb->s_type->name;
2840
2841 read_lock(&state->ss->policy_rwlock);
2842
2843 retry:
2844 rc = 0;
2845 policydb = &state->ss->policydb;
2846 sidtab = state->ss->sidtab;
2847
2848 c = policydb->ocontexts[OCON_FSUSE];
2849 while (c) {
2850 if (strcmp(fstype, c->u.name) == 0)
2851 break;
2852 c = c->next;
2853 }
2854
2855 if (c) {
2856 sbsec->behavior = c->v.behavior;
2857 rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2858 if (rc == -ESTALE)
2859 goto retry;
2860 if (rc)
2861 goto out;
2862 } else {
2863 rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2864 &sbsec->sid);
2865 if (rc) {
2866 sbsec->behavior = SECURITY_FS_USE_NONE;
2867 rc = 0;
2868 } else {
2869 sbsec->behavior = SECURITY_FS_USE_GENFS;
2870 }
2871 }
2872
2873 out:
2874 read_unlock(&state->ss->policy_rwlock);
2875 return rc;
2876 }
2877
security_get_bools(struct selinux_state * state,int * len,char *** names,int ** values)2878 int security_get_bools(struct selinux_state *state,
2879 int *len, char ***names, int **values)
2880 {
2881 struct policydb *policydb;
2882 int i, rc;
2883
2884 if (!state->initialized) {
2885 *len = 0;
2886 *names = NULL;
2887 *values = NULL;
2888 return 0;
2889 }
2890
2891 read_lock(&state->ss->policy_rwlock);
2892
2893 policydb = &state->ss->policydb;
2894
2895 *names = NULL;
2896 *values = NULL;
2897
2898 rc = 0;
2899 *len = policydb->p_bools.nprim;
2900 if (!*len)
2901 goto out;
2902
2903 rc = -ENOMEM;
2904 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2905 if (!*names)
2906 goto err;
2907
2908 rc = -ENOMEM;
2909 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2910 if (!*values)
2911 goto err;
2912
2913 for (i = 0; i < *len; i++) {
2914 (*values)[i] = policydb->bool_val_to_struct[i]->state;
2915
2916 rc = -ENOMEM;
2917 (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2918 GFP_ATOMIC);
2919 if (!(*names)[i])
2920 goto err;
2921 }
2922 rc = 0;
2923 out:
2924 read_unlock(&state->ss->policy_rwlock);
2925 return rc;
2926 err:
2927 if (*names) {
2928 for (i = 0; i < *len; i++)
2929 kfree((*names)[i]);
2930 kfree(*names);
2931 }
2932 kfree(*values);
2933 *len = 0;
2934 *names = NULL;
2935 *values = NULL;
2936 goto out;
2937 }
2938
2939
security_set_bools(struct selinux_state * state,int len,int * values)2940 int security_set_bools(struct selinux_state *state, int len, int *values)
2941 {
2942 struct policydb *policydb;
2943 int i, rc;
2944 int lenp, seqno = 0;
2945 struct cond_node *cur;
2946
2947 write_lock_irq(&state->ss->policy_rwlock);
2948
2949 policydb = &state->ss->policydb;
2950
2951 rc = -EFAULT;
2952 lenp = policydb->p_bools.nprim;
2953 if (len != lenp)
2954 goto out;
2955
2956 for (i = 0; i < len; i++) {
2957 if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2958 audit_log(audit_context(), GFP_ATOMIC,
2959 AUDIT_MAC_CONFIG_CHANGE,
2960 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2961 sym_name(policydb, SYM_BOOLS, i),
2962 !!values[i],
2963 policydb->bool_val_to_struct[i]->state,
2964 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2965 audit_get_sessionid(current));
2966 }
2967 if (values[i])
2968 policydb->bool_val_to_struct[i]->state = 1;
2969 else
2970 policydb->bool_val_to_struct[i]->state = 0;
2971 }
2972
2973 for (cur = policydb->cond_list; cur; cur = cur->next) {
2974 rc = evaluate_cond_node(policydb, cur);
2975 if (rc)
2976 goto out;
2977 }
2978
2979 seqno = ++state->ss->latest_granting;
2980 rc = 0;
2981 out:
2982 write_unlock_irq(&state->ss->policy_rwlock);
2983 if (!rc) {
2984 avc_ss_reset(state->avc, seqno);
2985 selnl_notify_policyload(seqno);
2986 selinux_status_update_policyload(state, seqno);
2987 selinux_xfrm_notify_policyload();
2988 }
2989 return rc;
2990 }
2991
security_get_bool_value(struct selinux_state * state,int index)2992 int security_get_bool_value(struct selinux_state *state,
2993 int index)
2994 {
2995 struct policydb *policydb;
2996 int rc;
2997 int len;
2998
2999 read_lock(&state->ss->policy_rwlock);
3000
3001 policydb = &state->ss->policydb;
3002
3003 rc = -EFAULT;
3004 len = policydb->p_bools.nprim;
3005 if (index >= len)
3006 goto out;
3007
3008 rc = policydb->bool_val_to_struct[index]->state;
3009 out:
3010 read_unlock(&state->ss->policy_rwlock);
3011 return rc;
3012 }
3013
security_preserve_bools(struct selinux_state * state,struct policydb * policydb)3014 static int security_preserve_bools(struct selinux_state *state,
3015 struct policydb *policydb)
3016 {
3017 int rc, nbools = 0, *bvalues = NULL, i;
3018 char **bnames = NULL;
3019 struct cond_bool_datum *booldatum;
3020 struct cond_node *cur;
3021
3022 rc = security_get_bools(state, &nbools, &bnames, &bvalues);
3023 if (rc)
3024 goto out;
3025 for (i = 0; i < nbools; i++) {
3026 booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
3027 if (booldatum)
3028 booldatum->state = bvalues[i];
3029 }
3030 for (cur = policydb->cond_list; cur; cur = cur->next) {
3031 rc = evaluate_cond_node(policydb, cur);
3032 if (rc)
3033 goto out;
3034 }
3035
3036 out:
3037 if (bnames) {
3038 for (i = 0; i < nbools; i++)
3039 kfree(bnames[i]);
3040 }
3041 kfree(bnames);
3042 kfree(bvalues);
3043 return rc;
3044 }
3045
3046 /*
3047 * security_sid_mls_copy() - computes a new sid based on the given
3048 * sid and the mls portion of mls_sid.
3049 */
security_sid_mls_copy(struct selinux_state * state,u32 sid,u32 mls_sid,u32 * new_sid)3050 int security_sid_mls_copy(struct selinux_state *state,
3051 u32 sid, u32 mls_sid, u32 *new_sid)
3052 {
3053 struct policydb *policydb = &state->ss->policydb;
3054 struct sidtab *sidtab = state->ss->sidtab;
3055 struct context *context1;
3056 struct context *context2;
3057 struct context newcon;
3058 char *s;
3059 u32 len;
3060 int rc;
3061
3062 rc = 0;
3063 if (!state->initialized || !policydb->mls_enabled) {
3064 *new_sid = sid;
3065 goto out;
3066 }
3067
3068 context_init(&newcon);
3069
3070 read_lock(&state->ss->policy_rwlock);
3071
3072 rc = -EINVAL;
3073 context1 = sidtab_search(sidtab, sid);
3074 if (!context1) {
3075 pr_err("SELinux: %s: unrecognized SID %d\n",
3076 __func__, sid);
3077 goto out_unlock;
3078 }
3079
3080 rc = -EINVAL;
3081 context2 = sidtab_search(sidtab, mls_sid);
3082 if (!context2) {
3083 pr_err("SELinux: %s: unrecognized SID %d\n",
3084 __func__, mls_sid);
3085 goto out_unlock;
3086 }
3087
3088 newcon.user = context1->user;
3089 newcon.role = context1->role;
3090 newcon.type = context1->type;
3091 rc = mls_context_cpy(&newcon, context2);
3092 if (rc)
3093 goto out_unlock;
3094
3095 /* Check the validity of the new context. */
3096 if (!policydb_context_isvalid(policydb, &newcon)) {
3097 rc = convert_context_handle_invalid_context(state, &newcon);
3098 if (rc) {
3099 if (!context_struct_to_string(policydb, &newcon, &s,
3100 &len)) {
3101 struct audit_buffer *ab;
3102
3103 ab = audit_log_start(audit_context(),
3104 GFP_ATOMIC,
3105 AUDIT_SELINUX_ERR);
3106 audit_log_format(ab,
3107 "op=security_sid_mls_copy invalid_context=");
3108 /* don't record NUL with untrusted strings */
3109 audit_log_n_untrustedstring(ab, s, len - 1);
3110 audit_log_end(ab);
3111 kfree(s);
3112 }
3113 goto out_unlock;
3114 }
3115 }
3116 rc = context_struct_to_sid(state, &newcon, new_sid);
3117 out_unlock:
3118 read_unlock(&state->ss->policy_rwlock);
3119 context_destroy(&newcon);
3120 out:
3121 return rc;
3122 }
3123
3124 /**
3125 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3126 * @nlbl_sid: NetLabel SID
3127 * @nlbl_type: NetLabel labeling protocol type
3128 * @xfrm_sid: XFRM SID
3129 *
3130 * Description:
3131 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3132 * resolved into a single SID it is returned via @peer_sid and the function
3133 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
3134 * returns a negative value. A table summarizing the behavior is below:
3135 *
3136 * | function return | @sid
3137 * ------------------------------+-----------------+-----------------
3138 * no peer labels | 0 | SECSID_NULL
3139 * single peer label | 0 | <peer_label>
3140 * multiple, consistent labels | 0 | <peer_label>
3141 * multiple, inconsistent labels | -<errno> | SECSID_NULL
3142 *
3143 */
security_net_peersid_resolve(struct selinux_state * state,u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3144 int security_net_peersid_resolve(struct selinux_state *state,
3145 u32 nlbl_sid, u32 nlbl_type,
3146 u32 xfrm_sid,
3147 u32 *peer_sid)
3148 {
3149 struct policydb *policydb = &state->ss->policydb;
3150 struct sidtab *sidtab = state->ss->sidtab;
3151 int rc;
3152 struct context *nlbl_ctx;
3153 struct context *xfrm_ctx;
3154
3155 *peer_sid = SECSID_NULL;
3156
3157 /* handle the common (which also happens to be the set of easy) cases
3158 * right away, these two if statements catch everything involving a
3159 * single or absent peer SID/label */
3160 if (xfrm_sid == SECSID_NULL) {
3161 *peer_sid = nlbl_sid;
3162 return 0;
3163 }
3164 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3165 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3166 * is present */
3167 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3168 *peer_sid = xfrm_sid;
3169 return 0;
3170 }
3171
3172 /*
3173 * We don't need to check initialized here since the only way both
3174 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3175 * security server was initialized and state->initialized was true.
3176 */
3177 if (!policydb->mls_enabled)
3178 return 0;
3179
3180 read_lock(&state->ss->policy_rwlock);
3181
3182 rc = -EINVAL;
3183 nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3184 if (!nlbl_ctx) {
3185 pr_err("SELinux: %s: unrecognized SID %d\n",
3186 __func__, nlbl_sid);
3187 goto out;
3188 }
3189 rc = -EINVAL;
3190 xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3191 if (!xfrm_ctx) {
3192 pr_err("SELinux: %s: unrecognized SID %d\n",
3193 __func__, xfrm_sid);
3194 goto out;
3195 }
3196 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3197 if (rc)
3198 goto out;
3199
3200 /* at present NetLabel SIDs/labels really only carry MLS
3201 * information so if the MLS portion of the NetLabel SID
3202 * matches the MLS portion of the labeled XFRM SID/label
3203 * then pass along the XFRM SID as it is the most
3204 * expressive */
3205 *peer_sid = xfrm_sid;
3206 out:
3207 read_unlock(&state->ss->policy_rwlock);
3208 return rc;
3209 }
3210
get_classes_callback(void * k,void * d,void * args)3211 static int get_classes_callback(void *k, void *d, void *args)
3212 {
3213 struct class_datum *datum = d;
3214 char *name = k, **classes = args;
3215 int value = datum->value - 1;
3216
3217 classes[value] = kstrdup(name, GFP_ATOMIC);
3218 if (!classes[value])
3219 return -ENOMEM;
3220
3221 return 0;
3222 }
3223
security_get_classes(struct selinux_state * state,char *** classes,int * nclasses)3224 int security_get_classes(struct selinux_state *state,
3225 char ***classes, int *nclasses)
3226 {
3227 struct policydb *policydb = &state->ss->policydb;
3228 int rc;
3229
3230 if (!state->initialized) {
3231 *nclasses = 0;
3232 *classes = NULL;
3233 return 0;
3234 }
3235
3236 read_lock(&state->ss->policy_rwlock);
3237
3238 rc = -ENOMEM;
3239 *nclasses = policydb->p_classes.nprim;
3240 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3241 if (!*classes)
3242 goto out;
3243
3244 rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3245 *classes);
3246 if (rc) {
3247 int i;
3248 for (i = 0; i < *nclasses; i++)
3249 kfree((*classes)[i]);
3250 kfree(*classes);
3251 }
3252
3253 out:
3254 read_unlock(&state->ss->policy_rwlock);
3255 return rc;
3256 }
3257
get_permissions_callback(void * k,void * d,void * args)3258 static int get_permissions_callback(void *k, void *d, void *args)
3259 {
3260 struct perm_datum *datum = d;
3261 char *name = k, **perms = args;
3262 int value = datum->value - 1;
3263
3264 perms[value] = kstrdup(name, GFP_ATOMIC);
3265 if (!perms[value])
3266 return -ENOMEM;
3267
3268 return 0;
3269 }
3270
security_get_permissions(struct selinux_state * state,char * class,char *** perms,int * nperms)3271 int security_get_permissions(struct selinux_state *state,
3272 char *class, char ***perms, int *nperms)
3273 {
3274 struct policydb *policydb = &state->ss->policydb;
3275 int rc, i;
3276 struct class_datum *match;
3277
3278 read_lock(&state->ss->policy_rwlock);
3279
3280 rc = -EINVAL;
3281 match = hashtab_search(policydb->p_classes.table, class);
3282 if (!match) {
3283 pr_err("SELinux: %s: unrecognized class %s\n",
3284 __func__, class);
3285 goto out;
3286 }
3287
3288 rc = -ENOMEM;
3289 *nperms = match->permissions.nprim;
3290 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3291 if (!*perms)
3292 goto out;
3293
3294 if (match->comdatum) {
3295 rc = hashtab_map(match->comdatum->permissions.table,
3296 get_permissions_callback, *perms);
3297 if (rc)
3298 goto err;
3299 }
3300
3301 rc = hashtab_map(match->permissions.table, get_permissions_callback,
3302 *perms);
3303 if (rc)
3304 goto err;
3305
3306 out:
3307 read_unlock(&state->ss->policy_rwlock);
3308 return rc;
3309
3310 err:
3311 read_unlock(&state->ss->policy_rwlock);
3312 for (i = 0; i < *nperms; i++)
3313 kfree((*perms)[i]);
3314 kfree(*perms);
3315 return rc;
3316 }
3317
security_get_reject_unknown(struct selinux_state * state)3318 int security_get_reject_unknown(struct selinux_state *state)
3319 {
3320 return state->ss->policydb.reject_unknown;
3321 }
3322
security_get_allow_unknown(struct selinux_state * state)3323 int security_get_allow_unknown(struct selinux_state *state)
3324 {
3325 return state->ss->policydb.allow_unknown;
3326 }
3327
3328 /**
3329 * security_policycap_supported - Check for a specific policy capability
3330 * @req_cap: capability
3331 *
3332 * Description:
3333 * This function queries the currently loaded policy to see if it supports the
3334 * capability specified by @req_cap. Returns true (1) if the capability is
3335 * supported, false (0) if it isn't supported.
3336 *
3337 */
security_policycap_supported(struct selinux_state * state,unsigned int req_cap)3338 int security_policycap_supported(struct selinux_state *state,
3339 unsigned int req_cap)
3340 {
3341 struct policydb *policydb = &state->ss->policydb;
3342 int rc;
3343
3344 read_lock(&state->ss->policy_rwlock);
3345 rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3346 read_unlock(&state->ss->policy_rwlock);
3347
3348 return rc;
3349 }
3350
3351 struct selinux_audit_rule {
3352 u32 au_seqno;
3353 struct context au_ctxt;
3354 };
3355
selinux_audit_rule_free(void * vrule)3356 void selinux_audit_rule_free(void *vrule)
3357 {
3358 struct selinux_audit_rule *rule = vrule;
3359
3360 if (rule) {
3361 context_destroy(&rule->au_ctxt);
3362 kfree(rule);
3363 }
3364 }
3365
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule)3366 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3367 {
3368 struct selinux_state *state = &selinux_state;
3369 struct policydb *policydb = &state->ss->policydb;
3370 struct selinux_audit_rule *tmprule;
3371 struct role_datum *roledatum;
3372 struct type_datum *typedatum;
3373 struct user_datum *userdatum;
3374 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3375 int rc = 0;
3376
3377 *rule = NULL;
3378
3379 if (!state->initialized)
3380 return -EOPNOTSUPP;
3381
3382 switch (field) {
3383 case AUDIT_SUBJ_USER:
3384 case AUDIT_SUBJ_ROLE:
3385 case AUDIT_SUBJ_TYPE:
3386 case AUDIT_OBJ_USER:
3387 case AUDIT_OBJ_ROLE:
3388 case AUDIT_OBJ_TYPE:
3389 /* only 'equals' and 'not equals' fit user, role, and type */
3390 if (op != Audit_equal && op != Audit_not_equal)
3391 return -EINVAL;
3392 break;
3393 case AUDIT_SUBJ_SEN:
3394 case AUDIT_SUBJ_CLR:
3395 case AUDIT_OBJ_LEV_LOW:
3396 case AUDIT_OBJ_LEV_HIGH:
3397 /* we do not allow a range, indicated by the presence of '-' */
3398 if (strchr(rulestr, '-'))
3399 return -EINVAL;
3400 break;
3401 default:
3402 /* only the above fields are valid */
3403 return -EINVAL;
3404 }
3405
3406 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3407 if (!tmprule)
3408 return -ENOMEM;
3409
3410 context_init(&tmprule->au_ctxt);
3411
3412 read_lock(&state->ss->policy_rwlock);
3413
3414 tmprule->au_seqno = state->ss->latest_granting;
3415
3416 switch (field) {
3417 case AUDIT_SUBJ_USER:
3418 case AUDIT_OBJ_USER:
3419 rc = -EINVAL;
3420 userdatum = hashtab_search(policydb->p_users.table, rulestr);
3421 if (!userdatum)
3422 goto out;
3423 tmprule->au_ctxt.user = userdatum->value;
3424 break;
3425 case AUDIT_SUBJ_ROLE:
3426 case AUDIT_OBJ_ROLE:
3427 rc = -EINVAL;
3428 roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3429 if (!roledatum)
3430 goto out;
3431 tmprule->au_ctxt.role = roledatum->value;
3432 break;
3433 case AUDIT_SUBJ_TYPE:
3434 case AUDIT_OBJ_TYPE:
3435 rc = -EINVAL;
3436 typedatum = hashtab_search(policydb->p_types.table, rulestr);
3437 if (!typedatum)
3438 goto out;
3439 tmprule->au_ctxt.type = typedatum->value;
3440 break;
3441 case AUDIT_SUBJ_SEN:
3442 case AUDIT_SUBJ_CLR:
3443 case AUDIT_OBJ_LEV_LOW:
3444 case AUDIT_OBJ_LEV_HIGH:
3445 rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3446 GFP_ATOMIC);
3447 if (rc)
3448 goto out;
3449 break;
3450 }
3451 rc = 0;
3452 out:
3453 read_unlock(&state->ss->policy_rwlock);
3454
3455 if (rc) {
3456 selinux_audit_rule_free(tmprule);
3457 tmprule = NULL;
3458 }
3459
3460 *rule = tmprule;
3461
3462 return rc;
3463 }
3464
3465 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3466 int selinux_audit_rule_known(struct audit_krule *rule)
3467 {
3468 int i;
3469
3470 for (i = 0; i < rule->field_count; i++) {
3471 struct audit_field *f = &rule->fields[i];
3472 switch (f->type) {
3473 case AUDIT_SUBJ_USER:
3474 case AUDIT_SUBJ_ROLE:
3475 case AUDIT_SUBJ_TYPE:
3476 case AUDIT_SUBJ_SEN:
3477 case AUDIT_SUBJ_CLR:
3478 case AUDIT_OBJ_USER:
3479 case AUDIT_OBJ_ROLE:
3480 case AUDIT_OBJ_TYPE:
3481 case AUDIT_OBJ_LEV_LOW:
3482 case AUDIT_OBJ_LEV_HIGH:
3483 return 1;
3484 }
3485 }
3486
3487 return 0;
3488 }
3489
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule)3490 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3491 {
3492 struct selinux_state *state = &selinux_state;
3493 struct context *ctxt;
3494 struct mls_level *level;
3495 struct selinux_audit_rule *rule = vrule;
3496 int match = 0;
3497
3498 if (unlikely(!rule)) {
3499 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3500 return -ENOENT;
3501 }
3502
3503 read_lock(&state->ss->policy_rwlock);
3504
3505 if (rule->au_seqno < state->ss->latest_granting) {
3506 match = -ESTALE;
3507 goto out;
3508 }
3509
3510 ctxt = sidtab_search(state->ss->sidtab, sid);
3511 if (unlikely(!ctxt)) {
3512 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3513 sid);
3514 match = -ENOENT;
3515 goto out;
3516 }
3517
3518 /* a field/op pair that is not caught here will simply fall through
3519 without a match */
3520 switch (field) {
3521 case AUDIT_SUBJ_USER:
3522 case AUDIT_OBJ_USER:
3523 switch (op) {
3524 case Audit_equal:
3525 match = (ctxt->user == rule->au_ctxt.user);
3526 break;
3527 case Audit_not_equal:
3528 match = (ctxt->user != rule->au_ctxt.user);
3529 break;
3530 }
3531 break;
3532 case AUDIT_SUBJ_ROLE:
3533 case AUDIT_OBJ_ROLE:
3534 switch (op) {
3535 case Audit_equal:
3536 match = (ctxt->role == rule->au_ctxt.role);
3537 break;
3538 case Audit_not_equal:
3539 match = (ctxt->role != rule->au_ctxt.role);
3540 break;
3541 }
3542 break;
3543 case AUDIT_SUBJ_TYPE:
3544 case AUDIT_OBJ_TYPE:
3545 switch (op) {
3546 case Audit_equal:
3547 match = (ctxt->type == rule->au_ctxt.type);
3548 break;
3549 case Audit_not_equal:
3550 match = (ctxt->type != rule->au_ctxt.type);
3551 break;
3552 }
3553 break;
3554 case AUDIT_SUBJ_SEN:
3555 case AUDIT_SUBJ_CLR:
3556 case AUDIT_OBJ_LEV_LOW:
3557 case AUDIT_OBJ_LEV_HIGH:
3558 level = ((field == AUDIT_SUBJ_SEN ||
3559 field == AUDIT_OBJ_LEV_LOW) ?
3560 &ctxt->range.level[0] : &ctxt->range.level[1]);
3561 switch (op) {
3562 case Audit_equal:
3563 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3564 level);
3565 break;
3566 case Audit_not_equal:
3567 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3568 level);
3569 break;
3570 case Audit_lt:
3571 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3572 level) &&
3573 !mls_level_eq(&rule->au_ctxt.range.level[0],
3574 level));
3575 break;
3576 case Audit_le:
3577 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3578 level);
3579 break;
3580 case Audit_gt:
3581 match = (mls_level_dom(level,
3582 &rule->au_ctxt.range.level[0]) &&
3583 !mls_level_eq(level,
3584 &rule->au_ctxt.range.level[0]));
3585 break;
3586 case Audit_ge:
3587 match = mls_level_dom(level,
3588 &rule->au_ctxt.range.level[0]);
3589 break;
3590 }
3591 }
3592
3593 out:
3594 read_unlock(&state->ss->policy_rwlock);
3595 return match;
3596 }
3597
3598 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3599
aurule_avc_callback(u32 event)3600 static int aurule_avc_callback(u32 event)
3601 {
3602 int err = 0;
3603
3604 if (event == AVC_CALLBACK_RESET && aurule_callback)
3605 err = aurule_callback();
3606 return err;
3607 }
3608
aurule_init(void)3609 static int __init aurule_init(void)
3610 {
3611 int err;
3612
3613 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3614 if (err)
3615 panic("avc_add_callback() failed, error %d\n", err);
3616
3617 return err;
3618 }
3619 __initcall(aurule_init);
3620
3621 #ifdef CONFIG_NETLABEL
3622 /**
3623 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3624 * @secattr: the NetLabel packet security attributes
3625 * @sid: the SELinux SID
3626 *
3627 * Description:
3628 * Attempt to cache the context in @ctx, which was derived from the packet in
3629 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3630 * already been initialized.
3631 *
3632 */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3633 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3634 u32 sid)
3635 {
3636 u32 *sid_cache;
3637
3638 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3639 if (sid_cache == NULL)
3640 return;
3641 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3642 if (secattr->cache == NULL) {
3643 kfree(sid_cache);
3644 return;
3645 }
3646
3647 *sid_cache = sid;
3648 secattr->cache->free = kfree;
3649 secattr->cache->data = sid_cache;
3650 secattr->flags |= NETLBL_SECATTR_CACHE;
3651 }
3652
3653 /**
3654 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3655 * @secattr: the NetLabel packet security attributes
3656 * @sid: the SELinux SID
3657 *
3658 * Description:
3659 * Convert the given NetLabel security attributes in @secattr into a
3660 * SELinux SID. If the @secattr field does not contain a full SELinux
3661 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3662 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3663 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3664 * conversion for future lookups. Returns zero on success, negative values on
3665 * failure.
3666 *
3667 */
security_netlbl_secattr_to_sid(struct selinux_state * state,struct netlbl_lsm_secattr * secattr,u32 * sid)3668 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3669 struct netlbl_lsm_secattr *secattr,
3670 u32 *sid)
3671 {
3672 struct policydb *policydb = &state->ss->policydb;
3673 struct sidtab *sidtab = state->ss->sidtab;
3674 int rc;
3675 struct context *ctx;
3676 struct context ctx_new;
3677
3678 if (!state->initialized) {
3679 *sid = SECSID_NULL;
3680 return 0;
3681 }
3682
3683 read_lock(&state->ss->policy_rwlock);
3684
3685 if (secattr->flags & NETLBL_SECATTR_CACHE)
3686 *sid = *(u32 *)secattr->cache->data;
3687 else if (secattr->flags & NETLBL_SECATTR_SECID)
3688 *sid = secattr->attr.secid;
3689 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3690 rc = -EIDRM;
3691 ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3692 if (ctx == NULL)
3693 goto out;
3694
3695 context_init(&ctx_new);
3696 ctx_new.user = ctx->user;
3697 ctx_new.role = ctx->role;
3698 ctx_new.type = ctx->type;
3699 mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3700 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3701 rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3702 if (rc)
3703 goto out;
3704 }
3705 rc = -EIDRM;
3706 if (!mls_context_isvalid(policydb, &ctx_new))
3707 goto out_free;
3708
3709 rc = context_struct_to_sid(state, &ctx_new, sid);
3710 if (rc)
3711 goto out_free;
3712
3713 security_netlbl_cache_add(secattr, *sid);
3714
3715 ebitmap_destroy(&ctx_new.range.level[0].cat);
3716 } else
3717 *sid = SECSID_NULL;
3718
3719 read_unlock(&state->ss->policy_rwlock);
3720 return 0;
3721 out_free:
3722 ebitmap_destroy(&ctx_new.range.level[0].cat);
3723 out:
3724 read_unlock(&state->ss->policy_rwlock);
3725 return rc;
3726 }
3727
3728 /**
3729 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3730 * @sid: the SELinux SID
3731 * @secattr: the NetLabel packet security attributes
3732 *
3733 * Description:
3734 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3735 * Returns zero on success, negative values on failure.
3736 *
3737 */
security_netlbl_sid_to_secattr(struct selinux_state * state,u32 sid,struct netlbl_lsm_secattr * secattr)3738 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3739 u32 sid, struct netlbl_lsm_secattr *secattr)
3740 {
3741 struct policydb *policydb = &state->ss->policydb;
3742 int rc;
3743 struct context *ctx;
3744
3745 if (!state->initialized)
3746 return 0;
3747
3748 read_lock(&state->ss->policy_rwlock);
3749
3750 rc = -ENOENT;
3751 ctx = sidtab_search(state->ss->sidtab, sid);
3752 if (ctx == NULL)
3753 goto out;
3754
3755 rc = -ENOMEM;
3756 secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3757 GFP_ATOMIC);
3758 if (secattr->domain == NULL)
3759 goto out;
3760
3761 secattr->attr.secid = sid;
3762 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3763 mls_export_netlbl_lvl(policydb, ctx, secattr);
3764 rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3765 out:
3766 read_unlock(&state->ss->policy_rwlock);
3767 return rc;
3768 }
3769 #endif /* CONFIG_NETLABEL */
3770
3771 /**
3772 * security_read_policy - read the policy.
3773 * @data: binary policy data
3774 * @len: length of data in bytes
3775 *
3776 */
security_read_policy(struct selinux_state * state,void ** data,size_t * len)3777 int security_read_policy(struct selinux_state *state,
3778 void **data, size_t *len)
3779 {
3780 struct policydb *policydb = &state->ss->policydb;
3781 int rc;
3782 struct policy_file fp;
3783
3784 if (!state->initialized)
3785 return -EINVAL;
3786
3787 *len = security_policydb_len(state);
3788
3789 *data = vmalloc_user(*len);
3790 if (!*data)
3791 return -ENOMEM;
3792
3793 fp.data = *data;
3794 fp.len = *len;
3795
3796 read_lock(&state->ss->policy_rwlock);
3797 rc = policydb_write(policydb, &fp);
3798 read_unlock(&state->ss->policy_rwlock);
3799
3800 if (rc)
3801 return rc;
3802
3803 *len = (unsigned long)fp.data - (unsigned long)*data;
3804 return 0;
3805
3806 }
3807