1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <linux/acpi.h>
26 #include <linux/elf-randomize.h>
27 #include <trace/events/power.h>
28 #include <linux/hw_breakpoint.h>
29 #include <asm/cpu.h>
30 #include <asm/apic.h>
31 #include <asm/syscalls.h>
32 #include <linux/uaccess.h>
33 #include <asm/mwait.h>
34 #include <asm/fpu/internal.h>
35 #include <asm/debugreg.h>
36 #include <asm/nmi.h>
37 #include <asm/tlbflush.h>
38 #include <asm/mce.h>
39 #include <asm/vm86.h>
40 #include <asm/switch_to.h>
41 #include <asm/desc.h>
42 #include <asm/prctl.h>
43 #include <asm/spec-ctrl.h>
44 #include <asm/proto.h>
45
46 #include "process.h"
47
48 /*
49 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
50 * no more per-task TSS's. The TSS size is kept cacheline-aligned
51 * so they are allowed to end up in the .data..cacheline_aligned
52 * section. Since TSS's are completely CPU-local, we want them
53 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
54 */
55 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
56 .x86_tss = {
57 /*
58 * .sp0 is only used when entering ring 0 from a lower
59 * privilege level. Since the init task never runs anything
60 * but ring 0 code, there is no need for a valid value here.
61 * Poison it.
62 */
63 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
64
65 /*
66 * .sp1 is cpu_current_top_of_stack. The init task never
67 * runs user code, but cpu_current_top_of_stack should still
68 * be well defined before the first context switch.
69 */
70 .sp1 = TOP_OF_INIT_STACK,
71
72 #ifdef CONFIG_X86_32
73 .ss0 = __KERNEL_DS,
74 .ss1 = __KERNEL_CS,
75 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
76 #endif
77 },
78 #ifdef CONFIG_X86_32
79 /*
80 * Note that the .io_bitmap member must be extra-big. This is because
81 * the CPU will access an additional byte beyond the end of the IO
82 * permission bitmap. The extra byte must be all 1 bits, and must
83 * be within the limit.
84 */
85 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
86 #endif
87 };
88 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
89
90 DEFINE_PER_CPU(bool, __tss_limit_invalid);
91 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
92
93 /*
94 * this gets called so that we can store lazy state into memory and copy the
95 * current task into the new thread.
96 */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)97 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
98 {
99 memcpy(dst, src, arch_task_struct_size);
100 #ifdef CONFIG_VM86
101 dst->thread.vm86 = NULL;
102 #endif
103
104 return fpu__copy(dst, src);
105 }
106
107 /*
108 * Free current thread data structures etc..
109 */
exit_thread(struct task_struct * tsk)110 void exit_thread(struct task_struct *tsk)
111 {
112 struct thread_struct *t = &tsk->thread;
113 unsigned long *bp = t->io_bitmap_ptr;
114 struct fpu *fpu = &t->fpu;
115
116 if (bp) {
117 struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
118
119 t->io_bitmap_ptr = NULL;
120 clear_thread_flag(TIF_IO_BITMAP);
121 /*
122 * Careful, clear this in the TSS too:
123 */
124 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
125 t->io_bitmap_max = 0;
126 put_cpu();
127 kfree(bp);
128 }
129
130 free_vm86(t);
131
132 fpu__drop(fpu);
133 }
134
flush_thread(void)135 void flush_thread(void)
136 {
137 struct task_struct *tsk = current;
138
139 flush_ptrace_hw_breakpoint(tsk);
140 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
141
142 fpu__clear(&tsk->thread.fpu);
143 }
144
disable_TSC(void)145 void disable_TSC(void)
146 {
147 preempt_disable();
148 if (!test_and_set_thread_flag(TIF_NOTSC))
149 /*
150 * Must flip the CPU state synchronously with
151 * TIF_NOTSC in the current running context.
152 */
153 cr4_set_bits(X86_CR4_TSD);
154 preempt_enable();
155 }
156
enable_TSC(void)157 static void enable_TSC(void)
158 {
159 preempt_disable();
160 if (test_and_clear_thread_flag(TIF_NOTSC))
161 /*
162 * Must flip the CPU state synchronously with
163 * TIF_NOTSC in the current running context.
164 */
165 cr4_clear_bits(X86_CR4_TSD);
166 preempt_enable();
167 }
168
get_tsc_mode(unsigned long adr)169 int get_tsc_mode(unsigned long adr)
170 {
171 unsigned int val;
172
173 if (test_thread_flag(TIF_NOTSC))
174 val = PR_TSC_SIGSEGV;
175 else
176 val = PR_TSC_ENABLE;
177
178 return put_user(val, (unsigned int __user *)adr);
179 }
180
set_tsc_mode(unsigned int val)181 int set_tsc_mode(unsigned int val)
182 {
183 if (val == PR_TSC_SIGSEGV)
184 disable_TSC();
185 else if (val == PR_TSC_ENABLE)
186 enable_TSC();
187 else
188 return -EINVAL;
189
190 return 0;
191 }
192
193 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
194
set_cpuid_faulting(bool on)195 static void set_cpuid_faulting(bool on)
196 {
197 u64 msrval;
198
199 msrval = this_cpu_read(msr_misc_features_shadow);
200 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
201 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
202 this_cpu_write(msr_misc_features_shadow, msrval);
203 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
204 }
205
disable_cpuid(void)206 static void disable_cpuid(void)
207 {
208 preempt_disable();
209 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
210 /*
211 * Must flip the CPU state synchronously with
212 * TIF_NOCPUID in the current running context.
213 */
214 set_cpuid_faulting(true);
215 }
216 preempt_enable();
217 }
218
enable_cpuid(void)219 static void enable_cpuid(void)
220 {
221 preempt_disable();
222 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
223 /*
224 * Must flip the CPU state synchronously with
225 * TIF_NOCPUID in the current running context.
226 */
227 set_cpuid_faulting(false);
228 }
229 preempt_enable();
230 }
231
get_cpuid_mode(void)232 static int get_cpuid_mode(void)
233 {
234 return !test_thread_flag(TIF_NOCPUID);
235 }
236
set_cpuid_mode(struct task_struct * task,unsigned long cpuid_enabled)237 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
238 {
239 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
240 return -ENODEV;
241
242 if (cpuid_enabled)
243 enable_cpuid();
244 else
245 disable_cpuid();
246
247 return 0;
248 }
249
250 /*
251 * Called immediately after a successful exec.
252 */
arch_setup_new_exec(void)253 void arch_setup_new_exec(void)
254 {
255 /* If cpuid was previously disabled for this task, re-enable it. */
256 if (test_thread_flag(TIF_NOCPUID))
257 enable_cpuid();
258
259 /*
260 * Don't inherit TIF_SSBD across exec boundary when
261 * PR_SPEC_DISABLE_NOEXEC is used.
262 */
263 if (test_thread_flag(TIF_SSBD) &&
264 task_spec_ssb_noexec(current)) {
265 clear_thread_flag(TIF_SSBD);
266 task_clear_spec_ssb_disable(current);
267 task_clear_spec_ssb_noexec(current);
268 speculation_ctrl_update(task_thread_info(current)->flags);
269 }
270 }
271
switch_to_bitmap(struct thread_struct * prev,struct thread_struct * next,unsigned long tifp,unsigned long tifn)272 static inline void switch_to_bitmap(struct thread_struct *prev,
273 struct thread_struct *next,
274 unsigned long tifp, unsigned long tifn)
275 {
276 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
277
278 if (tifn & _TIF_IO_BITMAP) {
279 /*
280 * Copy the relevant range of the IO bitmap.
281 * Normally this is 128 bytes or less:
282 */
283 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
284 max(prev->io_bitmap_max, next->io_bitmap_max));
285 /*
286 * Make sure that the TSS limit is correct for the CPU
287 * to notice the IO bitmap.
288 */
289 refresh_tss_limit();
290 } else if (tifp & _TIF_IO_BITMAP) {
291 /*
292 * Clear any possible leftover bits:
293 */
294 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
295 }
296 }
297
298 #ifdef CONFIG_SMP
299
300 struct ssb_state {
301 struct ssb_state *shared_state;
302 raw_spinlock_t lock;
303 unsigned int disable_state;
304 unsigned long local_state;
305 };
306
307 #define LSTATE_SSB 0
308
309 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
310
speculative_store_bypass_ht_init(void)311 void speculative_store_bypass_ht_init(void)
312 {
313 struct ssb_state *st = this_cpu_ptr(&ssb_state);
314 unsigned int this_cpu = smp_processor_id();
315 unsigned int cpu;
316
317 st->local_state = 0;
318
319 /*
320 * Shared state setup happens once on the first bringup
321 * of the CPU. It's not destroyed on CPU hotunplug.
322 */
323 if (st->shared_state)
324 return;
325
326 raw_spin_lock_init(&st->lock);
327
328 /*
329 * Go over HT siblings and check whether one of them has set up the
330 * shared state pointer already.
331 */
332 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
333 if (cpu == this_cpu)
334 continue;
335
336 if (!per_cpu(ssb_state, cpu).shared_state)
337 continue;
338
339 /* Link it to the state of the sibling: */
340 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
341 return;
342 }
343
344 /*
345 * First HT sibling to come up on the core. Link shared state of
346 * the first HT sibling to itself. The siblings on the same core
347 * which come up later will see the shared state pointer and link
348 * themself to the state of this CPU.
349 */
350 st->shared_state = st;
351 }
352
353 /*
354 * Logic is: First HT sibling enables SSBD for both siblings in the core
355 * and last sibling to disable it, disables it for the whole core. This how
356 * MSR_SPEC_CTRL works in "hardware":
357 *
358 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
359 */
amd_set_core_ssb_state(unsigned long tifn)360 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
361 {
362 struct ssb_state *st = this_cpu_ptr(&ssb_state);
363 u64 msr = x86_amd_ls_cfg_base;
364
365 if (!static_cpu_has(X86_FEATURE_ZEN)) {
366 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
367 wrmsrl(MSR_AMD64_LS_CFG, msr);
368 return;
369 }
370
371 if (tifn & _TIF_SSBD) {
372 /*
373 * Since this can race with prctl(), block reentry on the
374 * same CPU.
375 */
376 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
377 return;
378
379 msr |= x86_amd_ls_cfg_ssbd_mask;
380
381 raw_spin_lock(&st->shared_state->lock);
382 /* First sibling enables SSBD: */
383 if (!st->shared_state->disable_state)
384 wrmsrl(MSR_AMD64_LS_CFG, msr);
385 st->shared_state->disable_state++;
386 raw_spin_unlock(&st->shared_state->lock);
387 } else {
388 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
389 return;
390
391 raw_spin_lock(&st->shared_state->lock);
392 st->shared_state->disable_state--;
393 if (!st->shared_state->disable_state)
394 wrmsrl(MSR_AMD64_LS_CFG, msr);
395 raw_spin_unlock(&st->shared_state->lock);
396 }
397 }
398 #else
amd_set_core_ssb_state(unsigned long tifn)399 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
400 {
401 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
402
403 wrmsrl(MSR_AMD64_LS_CFG, msr);
404 }
405 #endif
406
amd_set_ssb_virt_state(unsigned long tifn)407 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
408 {
409 /*
410 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
411 * so ssbd_tif_to_spec_ctrl() just works.
412 */
413 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
414 }
415
416 /*
417 * Update the MSRs managing speculation control, during context switch.
418 *
419 * tifp: Previous task's thread flags
420 * tifn: Next task's thread flags
421 */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)422 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
423 unsigned long tifn)
424 {
425 unsigned long tif_diff = tifp ^ tifn;
426 u64 msr = x86_spec_ctrl_base;
427 bool updmsr = false;
428
429 lockdep_assert_irqs_disabled();
430
431 /* Handle change of TIF_SSBD depending on the mitigation method. */
432 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
433 if (tif_diff & _TIF_SSBD)
434 amd_set_ssb_virt_state(tifn);
435 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
436 if (tif_diff & _TIF_SSBD)
437 amd_set_core_ssb_state(tifn);
438 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
439 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
440 updmsr |= !!(tif_diff & _TIF_SSBD);
441 msr |= ssbd_tif_to_spec_ctrl(tifn);
442 }
443
444 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
445 if (IS_ENABLED(CONFIG_SMP) &&
446 static_branch_unlikely(&switch_to_cond_stibp)) {
447 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
448 msr |= stibp_tif_to_spec_ctrl(tifn);
449 }
450
451 if (updmsr)
452 update_spec_ctrl_cond(msr);
453 }
454
speculation_ctrl_update_tif(struct task_struct * tsk)455 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
456 {
457 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
458 if (task_spec_ssb_disable(tsk))
459 set_tsk_thread_flag(tsk, TIF_SSBD);
460 else
461 clear_tsk_thread_flag(tsk, TIF_SSBD);
462
463 if (task_spec_ib_disable(tsk))
464 set_tsk_thread_flag(tsk, TIF_SPEC_IB);
465 else
466 clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
467 }
468 /* Return the updated threadinfo flags*/
469 return task_thread_info(tsk)->flags;
470 }
471
speculation_ctrl_update(unsigned long tif)472 void speculation_ctrl_update(unsigned long tif)
473 {
474 unsigned long flags;
475
476 /* Forced update. Make sure all relevant TIF flags are different */
477 local_irq_save(flags);
478 __speculation_ctrl_update(~tif, tif);
479 local_irq_restore(flags);
480 }
481
482 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)483 void speculation_ctrl_update_current(void)
484 {
485 preempt_disable();
486 speculation_ctrl_update(speculation_ctrl_update_tif(current));
487 preempt_enable();
488 }
489
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)490 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
491 {
492 struct thread_struct *prev, *next;
493 unsigned long tifp, tifn;
494
495 prev = &prev_p->thread;
496 next = &next_p->thread;
497
498 tifn = READ_ONCE(task_thread_info(next_p)->flags);
499 tifp = READ_ONCE(task_thread_info(prev_p)->flags);
500 switch_to_bitmap(prev, next, tifp, tifn);
501
502 propagate_user_return_notify(prev_p, next_p);
503
504 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
505 arch_has_block_step()) {
506 unsigned long debugctl, msk;
507
508 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
509 debugctl &= ~DEBUGCTLMSR_BTF;
510 msk = tifn & _TIF_BLOCKSTEP;
511 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
512 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
513 }
514
515 if ((tifp ^ tifn) & _TIF_NOTSC)
516 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
517
518 if ((tifp ^ tifn) & _TIF_NOCPUID)
519 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
520
521 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
522 __speculation_ctrl_update(tifp, tifn);
523 } else {
524 speculation_ctrl_update_tif(prev_p);
525 tifn = speculation_ctrl_update_tif(next_p);
526
527 /* Enforce MSR update to ensure consistent state */
528 __speculation_ctrl_update(~tifn, tifn);
529 }
530 }
531
532 /*
533 * Idle related variables and functions
534 */
535 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
536 EXPORT_SYMBOL(boot_option_idle_override);
537
538 static void (*x86_idle)(void);
539
540 #ifndef CONFIG_SMP
play_dead(void)541 static inline void play_dead(void)
542 {
543 BUG();
544 }
545 #endif
546
arch_cpu_idle_enter(void)547 void arch_cpu_idle_enter(void)
548 {
549 tsc_verify_tsc_adjust(false);
550 local_touch_nmi();
551 }
552
arch_cpu_idle_dead(void)553 void arch_cpu_idle_dead(void)
554 {
555 play_dead();
556 }
557
558 /*
559 * Called from the generic idle code.
560 */
arch_cpu_idle(void)561 void arch_cpu_idle(void)
562 {
563 x86_idle();
564 }
565
566 /*
567 * We use this if we don't have any better idle routine..
568 */
default_idle(void)569 void __cpuidle default_idle(void)
570 {
571 trace_cpu_idle_rcuidle(1, smp_processor_id());
572 safe_halt();
573 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
574 }
575 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
576 EXPORT_SYMBOL(default_idle);
577 #endif
578
579 #ifdef CONFIG_XEN
xen_set_default_idle(void)580 bool xen_set_default_idle(void)
581 {
582 bool ret = !!x86_idle;
583
584 x86_idle = default_idle;
585
586 return ret;
587 }
588 #endif
589
stop_this_cpu(void * dummy)590 void stop_this_cpu(void *dummy)
591 {
592 local_irq_disable();
593 /*
594 * Remove this CPU:
595 */
596 set_cpu_online(smp_processor_id(), false);
597 disable_local_APIC();
598 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
599
600 /*
601 * Use wbinvd on processors that support SME. This provides support
602 * for performing a successful kexec when going from SME inactive
603 * to SME active (or vice-versa). The cache must be cleared so that
604 * if there are entries with the same physical address, both with and
605 * without the encryption bit, they don't race each other when flushed
606 * and potentially end up with the wrong entry being committed to
607 * memory.
608 */
609 if (boot_cpu_has(X86_FEATURE_SME))
610 native_wbinvd();
611 for (;;) {
612 /*
613 * Use native_halt() so that memory contents don't change
614 * (stack usage and variables) after possibly issuing the
615 * native_wbinvd() above.
616 */
617 native_halt();
618 }
619 }
620
621 /*
622 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
623 * states (local apic timer and TSC stop).
624 */
amd_e400_idle(void)625 static void amd_e400_idle(void)
626 {
627 /*
628 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
629 * gets set after static_cpu_has() places have been converted via
630 * alternatives.
631 */
632 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
633 default_idle();
634 return;
635 }
636
637 tick_broadcast_enter();
638
639 default_idle();
640
641 /*
642 * The switch back from broadcast mode needs to be called with
643 * interrupts disabled.
644 */
645 local_irq_disable();
646 tick_broadcast_exit();
647 local_irq_enable();
648 }
649
650 /*
651 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
652 * We can't rely on cpuidle installing MWAIT, because it will not load
653 * on systems that support only C1 -- so the boot default must be MWAIT.
654 *
655 * Some AMD machines are the opposite, they depend on using HALT.
656 *
657 * So for default C1, which is used during boot until cpuidle loads,
658 * use MWAIT-C1 on Intel HW that has it, else use HALT.
659 */
prefer_mwait_c1_over_halt(const struct cpuinfo_x86 * c)660 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
661 {
662 /* User has disallowed the use of MWAIT. Fallback to HALT */
663 if (boot_option_idle_override == IDLE_NOMWAIT)
664 return 0;
665
666 if (c->x86_vendor != X86_VENDOR_INTEL)
667 return 0;
668
669 if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
670 return 0;
671
672 return 1;
673 }
674
675 /*
676 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
677 * with interrupts enabled and no flags, which is backwards compatible with the
678 * original MWAIT implementation.
679 */
mwait_idle(void)680 static __cpuidle void mwait_idle(void)
681 {
682 if (!current_set_polling_and_test()) {
683 trace_cpu_idle_rcuidle(1, smp_processor_id());
684 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
685 mb(); /* quirk */
686 clflush((void *)¤t_thread_info()->flags);
687 mb(); /* quirk */
688 }
689
690 __monitor((void *)¤t_thread_info()->flags, 0, 0);
691 if (!need_resched())
692 __sti_mwait(0, 0);
693 else
694 local_irq_enable();
695 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
696 } else {
697 local_irq_enable();
698 }
699 __current_clr_polling();
700 }
701
select_idle_routine(const struct cpuinfo_x86 * c)702 void select_idle_routine(const struct cpuinfo_x86 *c)
703 {
704 #ifdef CONFIG_SMP
705 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
706 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
707 #endif
708 if (x86_idle || boot_option_idle_override == IDLE_POLL)
709 return;
710
711 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
712 pr_info("using AMD E400 aware idle routine\n");
713 x86_idle = amd_e400_idle;
714 } else if (prefer_mwait_c1_over_halt(c)) {
715 pr_info("using mwait in idle threads\n");
716 x86_idle = mwait_idle;
717 } else
718 x86_idle = default_idle;
719 }
720
amd_e400_c1e_apic_setup(void)721 void amd_e400_c1e_apic_setup(void)
722 {
723 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
724 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
725 local_irq_disable();
726 tick_broadcast_force();
727 local_irq_enable();
728 }
729 }
730
arch_post_acpi_subsys_init(void)731 void __init arch_post_acpi_subsys_init(void)
732 {
733 u32 lo, hi;
734
735 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
736 return;
737
738 /*
739 * AMD E400 detection needs to happen after ACPI has been enabled. If
740 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
741 * MSR_K8_INT_PENDING_MSG.
742 */
743 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
744 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
745 return;
746
747 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
748
749 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
750 mark_tsc_unstable("TSC halt in AMD C1E");
751 pr_info("System has AMD C1E enabled\n");
752 }
753
idle_setup(char * str)754 static int __init idle_setup(char *str)
755 {
756 if (!str)
757 return -EINVAL;
758
759 if (!strcmp(str, "poll")) {
760 pr_info("using polling idle threads\n");
761 boot_option_idle_override = IDLE_POLL;
762 cpu_idle_poll_ctrl(true);
763 } else if (!strcmp(str, "halt")) {
764 /*
765 * When the boot option of idle=halt is added, halt is
766 * forced to be used for CPU idle. In such case CPU C2/C3
767 * won't be used again.
768 * To continue to load the CPU idle driver, don't touch
769 * the boot_option_idle_override.
770 */
771 x86_idle = default_idle;
772 boot_option_idle_override = IDLE_HALT;
773 } else if (!strcmp(str, "nomwait")) {
774 /*
775 * If the boot option of "idle=nomwait" is added,
776 * it means that mwait will be disabled for CPU C1/C2/C3
777 * states.
778 */
779 boot_option_idle_override = IDLE_NOMWAIT;
780 } else
781 return -1;
782
783 return 0;
784 }
785 early_param("idle", idle_setup);
786
arch_align_stack(unsigned long sp)787 unsigned long arch_align_stack(unsigned long sp)
788 {
789 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
790 sp -= get_random_int() % 8192;
791 return sp & ~0xf;
792 }
793
arch_randomize_brk(struct mm_struct * mm)794 unsigned long arch_randomize_brk(struct mm_struct *mm)
795 {
796 return randomize_page(mm->brk, 0x02000000);
797 }
798
799 /*
800 * Called from fs/proc with a reference on @p to find the function
801 * which called into schedule(). This needs to be done carefully
802 * because the task might wake up and we might look at a stack
803 * changing under us.
804 */
get_wchan(struct task_struct * p)805 unsigned long get_wchan(struct task_struct *p)
806 {
807 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
808 int count = 0;
809
810 if (p == current || p->state == TASK_RUNNING)
811 return 0;
812
813 if (!try_get_task_stack(p))
814 return 0;
815
816 start = (unsigned long)task_stack_page(p);
817 if (!start)
818 goto out;
819
820 /*
821 * Layout of the stack page:
822 *
823 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
824 * PADDING
825 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
826 * stack
827 * ----------- bottom = start
828 *
829 * The tasks stack pointer points at the location where the
830 * framepointer is stored. The data on the stack is:
831 * ... IP FP ... IP FP
832 *
833 * We need to read FP and IP, so we need to adjust the upper
834 * bound by another unsigned long.
835 */
836 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
837 top -= 2 * sizeof(unsigned long);
838 bottom = start;
839
840 sp = READ_ONCE(p->thread.sp);
841 if (sp < bottom || sp > top)
842 goto out;
843
844 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
845 do {
846 if (fp < bottom || fp > top)
847 goto out;
848 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
849 if (!in_sched_functions(ip)) {
850 ret = ip;
851 goto out;
852 }
853 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
854 } while (count++ < 16 && p->state != TASK_RUNNING);
855
856 out:
857 put_task_stack(p);
858 return ret;
859 }
860
do_arch_prctl_common(struct task_struct * task,int option,unsigned long cpuid_enabled)861 long do_arch_prctl_common(struct task_struct *task, int option,
862 unsigned long cpuid_enabled)
863 {
864 switch (option) {
865 case ARCH_GET_CPUID:
866 return get_cpuid_mode();
867 case ARCH_SET_CPUID:
868 return set_cpuid_mode(task, cpuid_enabled);
869 }
870
871 return -EINVAL;
872 }
873