1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 */
5 #include <linux/kallsyms.h>
6 #include <linux/kprobes.h>
7 #include <linux/uaccess.h>
8 #include <linux/utsname.h>
9 #include <linux/hardirq.h>
10 #include <linux/kdebug.h>
11 #include <linux/module.h>
12 #include <linux/ptrace.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/ftrace.h>
16 #include <linux/kexec.h>
17 #include <linux/bug.h>
18 #include <linux/nmi.h>
19 #include <linux/sysfs.h>
20 #include <linux/kasan.h>
21
22 #include <asm/cpu_entry_area.h>
23 #include <asm/stacktrace.h>
24 #include <asm/unwind.h>
25
26 int panic_on_unrecovered_nmi;
27 int panic_on_io_nmi;
28 static int die_counter;
29
30 static struct pt_regs exec_summary_regs;
31
in_task_stack(unsigned long * stack,struct task_struct * task,struct stack_info * info)32 bool in_task_stack(unsigned long *stack, struct task_struct *task,
33 struct stack_info *info)
34 {
35 unsigned long *begin = task_stack_page(task);
36 unsigned long *end = task_stack_page(task) + THREAD_SIZE;
37
38 if (stack < begin || stack >= end)
39 return false;
40
41 info->type = STACK_TYPE_TASK;
42 info->begin = begin;
43 info->end = end;
44 info->next_sp = NULL;
45
46 return true;
47 }
48
in_entry_stack(unsigned long * stack,struct stack_info * info)49 bool in_entry_stack(unsigned long *stack, struct stack_info *info)
50 {
51 struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
52
53 void *begin = ss;
54 void *end = ss + 1;
55
56 if ((void *)stack < begin || (void *)stack >= end)
57 return false;
58
59 info->type = STACK_TYPE_ENTRY;
60 info->begin = begin;
61 info->end = end;
62 info->next_sp = NULL;
63
64 return true;
65 }
66
printk_stack_address(unsigned long address,int reliable,char * log_lvl)67 static void printk_stack_address(unsigned long address, int reliable,
68 char *log_lvl)
69 {
70 touch_nmi_watchdog();
71 printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
72 }
73
74 /*
75 * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
76 *
77 * In case where we don't have the exact kernel image (which, if we did, we can
78 * simply disassemble and navigate to the RIP), the purpose of the bigger
79 * prologue is to have more context and to be able to correlate the code from
80 * the different toolchains better.
81 *
82 * In addition, it helps in recreating the register allocation of the failing
83 * kernel and thus make sense of the register dump.
84 *
85 * What is more, the additional complication of a variable length insn arch like
86 * x86 warrants having longer byte sequence before rIP so that the disassembler
87 * can "sync" up properly and find instruction boundaries when decoding the
88 * opcode bytes.
89 *
90 * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
91 * guesstimate in attempt to achieve all of the above.
92 */
show_opcodes(struct pt_regs * regs,const char * loglvl)93 void show_opcodes(struct pt_regs *regs, const char *loglvl)
94 {
95 #define PROLOGUE_SIZE 42
96 #define EPILOGUE_SIZE 21
97 #define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE)
98 u8 opcodes[OPCODE_BUFSIZE];
99 unsigned long prologue = regs->ip - PROLOGUE_SIZE;
100 bool bad_ip;
101
102 /*
103 * Make sure userspace isn't trying to trick us into dumping kernel
104 * memory by pointing the userspace instruction pointer at it.
105 */
106 bad_ip = user_mode(regs) &&
107 __chk_range_not_ok(prologue, OPCODE_BUFSIZE, TASK_SIZE_MAX);
108
109 if (bad_ip || probe_kernel_read(opcodes, (u8 *)prologue,
110 OPCODE_BUFSIZE)) {
111 printk("%sCode: Bad RIP value.\n", loglvl);
112 } else {
113 printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %"
114 __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes,
115 opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1);
116 }
117 }
118
show_ip(struct pt_regs * regs,const char * loglvl)119 void show_ip(struct pt_regs *regs, const char *loglvl)
120 {
121 #ifdef CONFIG_X86_32
122 printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
123 #else
124 printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
125 #endif
126 show_opcodes(regs, loglvl);
127 }
128
show_iret_regs(struct pt_regs * regs)129 void show_iret_regs(struct pt_regs *regs)
130 {
131 show_ip(regs, KERN_DEFAULT);
132 printk(KERN_DEFAULT "RSP: %04x:%016lx EFLAGS: %08lx", (int)regs->ss,
133 regs->sp, regs->flags);
134 }
135
show_regs_if_on_stack(struct stack_info * info,struct pt_regs * regs,bool partial)136 static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
137 bool partial)
138 {
139 /*
140 * These on_stack() checks aren't strictly necessary: the unwind code
141 * has already validated the 'regs' pointer. The checks are done for
142 * ordering reasons: if the registers are on the next stack, we don't
143 * want to print them out yet. Otherwise they'll be shown as part of
144 * the wrong stack. Later, when show_trace_log_lvl() switches to the
145 * next stack, this function will be called again with the same regs so
146 * they can be printed in the right context.
147 */
148 if (!partial && on_stack(info, regs, sizeof(*regs))) {
149 __show_regs(regs, SHOW_REGS_SHORT);
150
151 } else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
152 IRET_FRAME_SIZE)) {
153 /*
154 * When an interrupt or exception occurs in entry code, the
155 * full pt_regs might not have been saved yet. In that case
156 * just print the iret frame.
157 */
158 show_iret_regs(regs);
159 }
160 }
161
show_trace_log_lvl(struct task_struct * task,struct pt_regs * regs,unsigned long * stack,char * log_lvl)162 void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
163 unsigned long *stack, char *log_lvl)
164 {
165 struct unwind_state state;
166 struct stack_info stack_info = {0};
167 unsigned long visit_mask = 0;
168 int graph_idx = 0;
169 bool partial = false;
170
171 printk("%sCall Trace:\n", log_lvl);
172
173 unwind_start(&state, task, regs, stack);
174 regs = unwind_get_entry_regs(&state, &partial);
175
176 /*
177 * Iterate through the stacks, starting with the current stack pointer.
178 * Each stack has a pointer to the next one.
179 *
180 * x86-64 can have several stacks:
181 * - task stack
182 * - interrupt stack
183 * - HW exception stacks (double fault, nmi, debug, mce)
184 * - entry stack
185 *
186 * x86-32 can have up to four stacks:
187 * - task stack
188 * - softirq stack
189 * - hardirq stack
190 * - entry stack
191 */
192 for (stack = stack ?: get_stack_pointer(task, regs);
193 stack;
194 stack = stack_info.next_sp) {
195 const char *stack_name;
196
197 stack = PTR_ALIGN(stack, sizeof(long));
198
199 if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
200 /*
201 * We weren't on a valid stack. It's possible that
202 * we overflowed a valid stack into a guard page.
203 * See if the next page up is valid so that we can
204 * generate some kind of backtrace if this happens.
205 */
206 stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
207 if (get_stack_info(stack, task, &stack_info, &visit_mask))
208 break;
209 }
210
211 stack_name = stack_type_name(stack_info.type);
212 if (stack_name)
213 printk("%s <%s>\n", log_lvl, stack_name);
214
215 if (regs)
216 show_regs_if_on_stack(&stack_info, regs, partial);
217
218 /*
219 * Scan the stack, printing any text addresses we find. At the
220 * same time, follow proper stack frames with the unwinder.
221 *
222 * Addresses found during the scan which are not reported by
223 * the unwinder are considered to be additional clues which are
224 * sometimes useful for debugging and are prefixed with '?'.
225 * This also serves as a failsafe option in case the unwinder
226 * goes off in the weeds.
227 */
228 for (; stack < stack_info.end; stack++) {
229 unsigned long real_addr;
230 int reliable = 0;
231 unsigned long addr = READ_ONCE_NOCHECK(*stack);
232 unsigned long *ret_addr_p =
233 unwind_get_return_address_ptr(&state);
234
235 if (!__kernel_text_address(addr))
236 continue;
237
238 /*
239 * Don't print regs->ip again if it was already printed
240 * by show_regs_if_on_stack().
241 */
242 if (regs && stack == ®s->ip)
243 goto next;
244
245 if (stack == ret_addr_p)
246 reliable = 1;
247
248 /*
249 * When function graph tracing is enabled for a
250 * function, its return address on the stack is
251 * replaced with the address of an ftrace handler
252 * (return_to_handler). In that case, before printing
253 * the "real" address, we want to print the handler
254 * address as an "unreliable" hint that function graph
255 * tracing was involved.
256 */
257 real_addr = ftrace_graph_ret_addr(task, &graph_idx,
258 addr, stack);
259 if (real_addr != addr)
260 printk_stack_address(addr, 0, log_lvl);
261 printk_stack_address(real_addr, reliable, log_lvl);
262
263 if (!reliable)
264 continue;
265
266 next:
267 /*
268 * Get the next frame from the unwinder. No need to
269 * check for an error: if anything goes wrong, the rest
270 * of the addresses will just be printed as unreliable.
271 */
272 unwind_next_frame(&state);
273
274 /* if the frame has entry regs, print them */
275 regs = unwind_get_entry_regs(&state, &partial);
276 if (regs)
277 show_regs_if_on_stack(&stack_info, regs, partial);
278 }
279
280 if (stack_name)
281 printk("%s </%s>\n", log_lvl, stack_name);
282 }
283 }
284
show_stack(struct task_struct * task,unsigned long * sp)285 void show_stack(struct task_struct *task, unsigned long *sp)
286 {
287 task = task ? : current;
288
289 /*
290 * Stack frames below this one aren't interesting. Don't show them
291 * if we're printing for %current.
292 */
293 if (!sp && task == current)
294 sp = get_stack_pointer(current, NULL);
295
296 show_trace_log_lvl(task, NULL, sp, KERN_DEFAULT);
297 }
298
show_stack_regs(struct pt_regs * regs)299 void show_stack_regs(struct pt_regs *regs)
300 {
301 show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
302 }
303
304 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
305 static int die_owner = -1;
306 static unsigned int die_nest_count;
307
oops_begin(void)308 unsigned long oops_begin(void)
309 {
310 int cpu;
311 unsigned long flags;
312
313 oops_enter();
314
315 /* racy, but better than risking deadlock. */
316 raw_local_irq_save(flags);
317 cpu = smp_processor_id();
318 if (!arch_spin_trylock(&die_lock)) {
319 if (cpu == die_owner)
320 /* nested oops. should stop eventually */;
321 else
322 arch_spin_lock(&die_lock);
323 }
324 die_nest_count++;
325 die_owner = cpu;
326 console_verbose();
327 bust_spinlocks(1);
328 return flags;
329 }
330 NOKPROBE_SYMBOL(oops_begin);
331
332 void __noreturn rewind_stack_and_make_dead(int signr);
333
oops_end(unsigned long flags,struct pt_regs * regs,int signr)334 void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
335 {
336 if (regs && kexec_should_crash(current))
337 crash_kexec(regs);
338
339 bust_spinlocks(0);
340 die_owner = -1;
341 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
342 die_nest_count--;
343 if (!die_nest_count)
344 /* Nest count reaches zero, release the lock. */
345 arch_spin_unlock(&die_lock);
346 raw_local_irq_restore(flags);
347 oops_exit();
348
349 /* Executive summary in case the oops scrolled away */
350 __show_regs(&exec_summary_regs, SHOW_REGS_ALL);
351
352 if (!signr)
353 return;
354 if (in_interrupt())
355 panic("Fatal exception in interrupt");
356 if (panic_on_oops)
357 panic("Fatal exception");
358
359 /*
360 * We're not going to return, but we might be on an IST stack or
361 * have very little stack space left. Rewind the stack and kill
362 * the task.
363 * Before we rewind the stack, we have to tell KASAN that we're going to
364 * reuse the task stack and that existing poisons are invalid.
365 */
366 kasan_unpoison_task_stack(current);
367 rewind_stack_and_make_dead(signr);
368 }
369 NOKPROBE_SYMBOL(oops_end);
370
__die(const char * str,struct pt_regs * regs,long err)371 int __die(const char *str, struct pt_regs *regs, long err)
372 {
373 const char *pr = "";
374
375 /* Save the regs of the first oops for the executive summary later. */
376 if (!die_counter)
377 exec_summary_regs = *regs;
378
379 if (IS_ENABLED(CONFIG_PREEMPTION))
380 pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT";
381
382 printk(KERN_DEFAULT
383 "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
384 pr,
385 IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
386 debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
387 IS_ENABLED(CONFIG_KASAN) ? " KASAN" : "",
388 IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
389 (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
390
391 show_regs(regs);
392 print_modules();
393
394 if (notify_die(DIE_OOPS, str, regs, err,
395 current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
396 return 1;
397
398 return 0;
399 }
400 NOKPROBE_SYMBOL(__die);
401
402 /*
403 * This is gone through when something in the kernel has done something bad
404 * and is about to be terminated:
405 */
die(const char * str,struct pt_regs * regs,long err)406 void die(const char *str, struct pt_regs *regs, long err)
407 {
408 unsigned long flags = oops_begin();
409 int sig = SIGSEGV;
410
411 if (__die(str, regs, err))
412 sig = 0;
413 oops_end(flags, regs, sig);
414 }
415
show_regs(struct pt_regs * regs)416 void show_regs(struct pt_regs *regs)
417 {
418 show_regs_print_info(KERN_DEFAULT);
419
420 __show_regs(regs, user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL);
421
422 /*
423 * When in-kernel, we also print out the stack at the time of the fault..
424 */
425 if (!user_mode(regs))
426 show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
427 }
428