• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 
25 #include <asm/pgtable.h>
26 #include "internal.h"
27 
28 /*
29  * swapper_space is a fiction, retained to simplify the path through
30  * vmscan's shrink_page_list.
31  */
32 static const struct address_space_operations swap_aops = {
33 	.writepage	= swap_writepage,
34 	.set_page_dirty	= swap_set_page_dirty,
35 #ifdef CONFIG_MIGRATION
36 	.migratepage	= migrate_page,
37 #endif
38 };
39 
40 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
42 static bool enable_vma_readahead __read_mostly = true;
43 
44 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
45 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
46 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
47 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
48 
49 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
50 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
51 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
52 
53 #define SWAP_RA_VAL(addr, win, hits)				\
54 	(((addr) & PAGE_MASK) |					\
55 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
56 	 ((hits) & SWAP_RA_HITS_MASK))
57 
58 /* Initial readahead hits is 4 to start up with a small window */
59 #define GET_SWAP_RA_VAL(vma)					\
60 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
61 
62 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
63 #define ADD_CACHE_INFO(x, nr)	do { swap_cache_info.x += (nr); } while (0)
64 
65 static struct {
66 	unsigned long add_total;
67 	unsigned long del_total;
68 	unsigned long find_success;
69 	unsigned long find_total;
70 } swap_cache_info;
71 
total_swapcache_pages(void)72 unsigned long total_swapcache_pages(void)
73 {
74 	unsigned int i, j, nr;
75 	unsigned long ret = 0;
76 	struct address_space *spaces;
77 	struct swap_info_struct *si;
78 
79 	for (i = 0; i < MAX_SWAPFILES; i++) {
80 		swp_entry_t entry = swp_entry(i, 1);
81 
82 		/* Avoid get_swap_device() to warn for bad swap entry */
83 		if (!swp_swap_info(entry))
84 			continue;
85 		/* Prevent swapoff to free swapper_spaces */
86 		si = get_swap_device(entry);
87 		if (!si)
88 			continue;
89 		nr = nr_swapper_spaces[i];
90 		spaces = swapper_spaces[i];
91 		for (j = 0; j < nr; j++)
92 			ret += spaces[j].nrpages;
93 		put_swap_device(si);
94 	}
95 	return ret;
96 }
97 
98 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
99 
show_swap_cache_info(void)100 void show_swap_cache_info(void)
101 {
102 	printk("%lu pages in swap cache\n", total_swapcache_pages());
103 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
104 		swap_cache_info.add_total, swap_cache_info.del_total,
105 		swap_cache_info.find_success, swap_cache_info.find_total);
106 	printk("Free swap  = %ldkB\n",
107 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
108 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
109 }
110 
111 /*
112  * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
113  * but sets SwapCache flag and private instead of mapping and index.
114  */
add_to_swap_cache(struct page * page,swp_entry_t entry,gfp_t gfp)115 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp)
116 {
117 	struct address_space *address_space = swap_address_space(entry);
118 	pgoff_t idx = swp_offset(entry);
119 	XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
120 	unsigned long i, nr = compound_nr(page);
121 
122 	VM_BUG_ON_PAGE(!PageLocked(page), page);
123 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
124 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
125 
126 	page_ref_add(page, nr);
127 	SetPageSwapCache(page);
128 
129 	do {
130 		xas_lock_irq(&xas);
131 		xas_create_range(&xas);
132 		if (xas_error(&xas))
133 			goto unlock;
134 		for (i = 0; i < nr; i++) {
135 			VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
136 			set_page_private(page + i, entry.val + i);
137 			xas_store(&xas, page);
138 			xas_next(&xas);
139 		}
140 		address_space->nrpages += nr;
141 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
142 		ADD_CACHE_INFO(add_total, nr);
143 unlock:
144 		xas_unlock_irq(&xas);
145 	} while (xas_nomem(&xas, gfp));
146 
147 	if (!xas_error(&xas))
148 		return 0;
149 
150 	ClearPageSwapCache(page);
151 	page_ref_sub(page, nr);
152 	return xas_error(&xas);
153 }
154 
155 /*
156  * This must be called only on pages that have
157  * been verified to be in the swap cache.
158  */
__delete_from_swap_cache(struct page * page,swp_entry_t entry)159 void __delete_from_swap_cache(struct page *page, swp_entry_t entry)
160 {
161 	struct address_space *address_space = swap_address_space(entry);
162 	int i, nr = hpage_nr_pages(page);
163 	pgoff_t idx = swp_offset(entry);
164 	XA_STATE(xas, &address_space->i_pages, idx);
165 
166 	VM_BUG_ON_PAGE(!PageLocked(page), page);
167 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
168 	VM_BUG_ON_PAGE(PageWriteback(page), page);
169 
170 	for (i = 0; i < nr; i++) {
171 		void *entry = xas_store(&xas, NULL);
172 		VM_BUG_ON_PAGE(entry != page, entry);
173 		set_page_private(page + i, 0);
174 		xas_next(&xas);
175 	}
176 	ClearPageSwapCache(page);
177 	address_space->nrpages -= nr;
178 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
179 	ADD_CACHE_INFO(del_total, nr);
180 }
181 
182 /**
183  * add_to_swap - allocate swap space for a page
184  * @page: page we want to move to swap
185  *
186  * Allocate swap space for the page and add the page to the
187  * swap cache.  Caller needs to hold the page lock.
188  */
add_to_swap(struct page * page)189 int add_to_swap(struct page *page)
190 {
191 	swp_entry_t entry;
192 	int err;
193 
194 	VM_BUG_ON_PAGE(!PageLocked(page), page);
195 	VM_BUG_ON_PAGE(!PageUptodate(page), page);
196 
197 	entry = get_swap_page(page);
198 	if (!entry.val)
199 		return 0;
200 
201 	/*
202 	 * XArray node allocations from PF_MEMALLOC contexts could
203 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
204 	 * stops emergency reserves from being allocated.
205 	 *
206 	 * TODO: this could cause a theoretical memory reclaim
207 	 * deadlock in the swap out path.
208 	 */
209 	/*
210 	 * Add it to the swap cache.
211 	 */
212 	err = add_to_swap_cache(page, entry,
213 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
214 	if (err)
215 		/*
216 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
217 		 * clear SWAP_HAS_CACHE flag.
218 		 */
219 		goto fail;
220 	/*
221 	 * Normally the page will be dirtied in unmap because its pte should be
222 	 * dirty. A special case is MADV_FREE page. The page'e pte could have
223 	 * dirty bit cleared but the page's SwapBacked bit is still set because
224 	 * clearing the dirty bit and SwapBacked bit has no lock protected. For
225 	 * such page, unmap will not set dirty bit for it, so page reclaim will
226 	 * not write the page out. This can cause data corruption when the page
227 	 * is swap in later. Always setting the dirty bit for the page solves
228 	 * the problem.
229 	 */
230 	set_page_dirty(page);
231 
232 	return 1;
233 
234 fail:
235 	put_swap_page(page, entry);
236 	return 0;
237 }
238 
239 /*
240  * This must be called only on pages that have
241  * been verified to be in the swap cache and locked.
242  * It will never put the page into the free list,
243  * the caller has a reference on the page.
244  */
delete_from_swap_cache(struct page * page)245 void delete_from_swap_cache(struct page *page)
246 {
247 	swp_entry_t entry = { .val = page_private(page) };
248 	struct address_space *address_space = swap_address_space(entry);
249 
250 	xa_lock_irq(&address_space->i_pages);
251 	__delete_from_swap_cache(page, entry);
252 	xa_unlock_irq(&address_space->i_pages);
253 
254 	put_swap_page(page, entry);
255 	page_ref_sub(page, hpage_nr_pages(page));
256 }
257 
258 /*
259  * If we are the only user, then try to free up the swap cache.
260  *
261  * Its ok to check for PageSwapCache without the page lock
262  * here because we are going to recheck again inside
263  * try_to_free_swap() _with_ the lock.
264  * 					- Marcelo
265  */
free_swap_cache(struct page * page)266 static inline void free_swap_cache(struct page *page)
267 {
268 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
269 		try_to_free_swap(page);
270 		unlock_page(page);
271 	}
272 }
273 
274 /*
275  * Perform a free_page(), also freeing any swap cache associated with
276  * this page if it is the last user of the page.
277  */
free_page_and_swap_cache(struct page * page)278 void free_page_and_swap_cache(struct page *page)
279 {
280 	free_swap_cache(page);
281 	if (!is_huge_zero_page(page))
282 		put_page(page);
283 }
284 
285 /*
286  * Passed an array of pages, drop them all from swapcache and then release
287  * them.  They are removed from the LRU and freed if this is their last use.
288  */
free_pages_and_swap_cache(struct page ** pages,int nr)289 void free_pages_and_swap_cache(struct page **pages, int nr)
290 {
291 	struct page **pagep = pages;
292 	int i;
293 
294 	lru_add_drain();
295 	for (i = 0; i < nr; i++)
296 		free_swap_cache(pagep[i]);
297 	release_pages(pagep, nr);
298 }
299 
swap_use_vma_readahead(void)300 static inline bool swap_use_vma_readahead(void)
301 {
302 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
303 }
304 
305 /*
306  * Lookup a swap entry in the swap cache. A found page will be returned
307  * unlocked and with its refcount incremented - we rely on the kernel
308  * lock getting page table operations atomic even if we drop the page
309  * lock before returning.
310  */
lookup_swap_cache(swp_entry_t entry,struct vm_area_struct * vma,unsigned long addr)311 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
312 			       unsigned long addr)
313 {
314 	struct page *page;
315 	struct swap_info_struct *si;
316 
317 	si = get_swap_device(entry);
318 	if (!si)
319 		return NULL;
320 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
321 	put_swap_device(si);
322 
323 	INC_CACHE_INFO(find_total);
324 	if (page) {
325 		bool vma_ra = swap_use_vma_readahead();
326 		bool readahead;
327 
328 		INC_CACHE_INFO(find_success);
329 		/*
330 		 * At the moment, we don't support PG_readahead for anon THP
331 		 * so let's bail out rather than confusing the readahead stat.
332 		 */
333 		if (unlikely(PageTransCompound(page)))
334 			return page;
335 
336 		readahead = TestClearPageReadahead(page);
337 		if (vma && vma_ra) {
338 			unsigned long ra_val;
339 			int win, hits;
340 
341 			ra_val = GET_SWAP_RA_VAL(vma);
342 			win = SWAP_RA_WIN(ra_val);
343 			hits = SWAP_RA_HITS(ra_val);
344 			if (readahead)
345 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
346 			atomic_long_set(&vma->swap_readahead_info,
347 					SWAP_RA_VAL(addr, win, hits));
348 		}
349 
350 		if (readahead) {
351 			count_vm_event(SWAP_RA_HIT);
352 			if (!vma || !vma_ra)
353 				atomic_inc(&swapin_readahead_hits);
354 		}
355 	}
356 
357 	return page;
358 }
359 
__read_swap_cache_async(swp_entry_t entry,gfp_t gfp_mask,struct vm_area_struct * vma,unsigned long addr,bool * new_page_allocated)360 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
361 			struct vm_area_struct *vma, unsigned long addr,
362 			bool *new_page_allocated)
363 {
364 	struct page *found_page = NULL, *new_page = NULL;
365 	struct swap_info_struct *si;
366 	int err;
367 	*new_page_allocated = false;
368 
369 	do {
370 		/*
371 		 * First check the swap cache.  Since this is normally
372 		 * called after lookup_swap_cache() failed, re-calling
373 		 * that would confuse statistics.
374 		 */
375 		si = get_swap_device(entry);
376 		if (!si)
377 			break;
378 		found_page = find_get_page(swap_address_space(entry),
379 					   swp_offset(entry));
380 		put_swap_device(si);
381 		if (found_page)
382 			break;
383 
384 		/*
385 		 * Just skip read ahead for unused swap slot.
386 		 * During swap_off when swap_slot_cache is disabled,
387 		 * we have to handle the race between putting
388 		 * swap entry in swap cache and marking swap slot
389 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
390 		 * else swap_off will be aborted if we return NULL.
391 		 */
392 		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
393 			break;
394 
395 		/*
396 		 * Get a new page to read into from swap.
397 		 */
398 		if (!new_page) {
399 			new_page = alloc_page_vma(gfp_mask, vma, addr);
400 			if (!new_page)
401 				break;		/* Out of memory */
402 		}
403 
404 		/*
405 		 * Swap entry may have been freed since our caller observed it.
406 		 */
407 		err = swapcache_prepare(entry);
408 		if (err == -EEXIST) {
409 			/*
410 			 * We might race against get_swap_page() and stumble
411 			 * across a SWAP_HAS_CACHE swap_map entry whose page
412 			 * has not been brought into the swapcache yet.
413 			 */
414 			cond_resched();
415 			continue;
416 		} else if (err)		/* swp entry is obsolete ? */
417 			break;
418 
419 		/* May fail (-ENOMEM) if XArray node allocation failed. */
420 		__SetPageLocked(new_page);
421 		__SetPageSwapBacked(new_page);
422 		err = add_to_swap_cache(new_page, entry,
423 					gfp_mask & GFP_RECLAIM_MASK);
424 		if (likely(!err)) {
425 			/* Initiate read into locked page */
426 			SetPageWorkingset(new_page);
427 			lru_cache_add_anon(new_page);
428 			*new_page_allocated = true;
429 			return new_page;
430 		}
431 		__ClearPageLocked(new_page);
432 		/*
433 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
434 		 * clear SWAP_HAS_CACHE flag.
435 		 */
436 		put_swap_page(new_page, entry);
437 	} while (err != -ENOMEM);
438 
439 	if (new_page)
440 		put_page(new_page);
441 	return found_page;
442 }
443 
444 /*
445  * Locate a page of swap in physical memory, reserving swap cache space
446  * and reading the disk if it is not already cached.
447  * A failure return means that either the page allocation failed or that
448  * the swap entry is no longer in use.
449  */
read_swap_cache_async(swp_entry_t entry,gfp_t gfp_mask,struct vm_area_struct * vma,unsigned long addr,bool do_poll)450 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
451 		struct vm_area_struct *vma, unsigned long addr, bool do_poll)
452 {
453 	bool page_was_allocated;
454 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
455 			vma, addr, &page_was_allocated);
456 
457 	if (page_was_allocated)
458 		swap_readpage(retpage, do_poll);
459 
460 	return retpage;
461 }
462 
__swapin_nr_pages(unsigned long prev_offset,unsigned long offset,int hits,int max_pages,int prev_win)463 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
464 				      unsigned long offset,
465 				      int hits,
466 				      int max_pages,
467 				      int prev_win)
468 {
469 	unsigned int pages, last_ra;
470 
471 	/*
472 	 * This heuristic has been found to work well on both sequential and
473 	 * random loads, swapping to hard disk or to SSD: please don't ask
474 	 * what the "+ 2" means, it just happens to work well, that's all.
475 	 */
476 	pages = hits + 2;
477 	if (pages == 2) {
478 		/*
479 		 * We can have no readahead hits to judge by: but must not get
480 		 * stuck here forever, so check for an adjacent offset instead
481 		 * (and don't even bother to check whether swap type is same).
482 		 */
483 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
484 			pages = 1;
485 	} else {
486 		unsigned int roundup = 4;
487 		while (roundup < pages)
488 			roundup <<= 1;
489 		pages = roundup;
490 	}
491 
492 	if (pages > max_pages)
493 		pages = max_pages;
494 
495 	/* Don't shrink readahead too fast */
496 	last_ra = prev_win / 2;
497 	if (pages < last_ra)
498 		pages = last_ra;
499 
500 	return pages;
501 }
502 
swapin_nr_pages(unsigned long offset)503 static unsigned long swapin_nr_pages(unsigned long offset)
504 {
505 	static unsigned long prev_offset;
506 	unsigned int hits, pages, max_pages;
507 	static atomic_t last_readahead_pages;
508 
509 	max_pages = 1 << READ_ONCE(page_cluster);
510 	if (max_pages <= 1)
511 		return 1;
512 
513 	hits = atomic_xchg(&swapin_readahead_hits, 0);
514 	pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
515 				  max_pages,
516 				  atomic_read(&last_readahead_pages));
517 	if (!hits)
518 		WRITE_ONCE(prev_offset, offset);
519 	atomic_set(&last_readahead_pages, pages);
520 
521 	return pages;
522 }
523 
524 /**
525  * swap_cluster_readahead - swap in pages in hope we need them soon
526  * @entry: swap entry of this memory
527  * @gfp_mask: memory allocation flags
528  * @vmf: fault information
529  *
530  * Returns the struct page for entry and addr, after queueing swapin.
531  *
532  * Primitive swap readahead code. We simply read an aligned block of
533  * (1 << page_cluster) entries in the swap area. This method is chosen
534  * because it doesn't cost us any seek time.  We also make sure to queue
535  * the 'original' request together with the readahead ones...
536  *
537  * This has been extended to use the NUMA policies from the mm triggering
538  * the readahead.
539  *
540  * Caller must hold read mmap_sem if vmf->vma is not NULL.
541  */
swap_cluster_readahead(swp_entry_t entry,gfp_t gfp_mask,struct vm_fault * vmf)542 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
543 				struct vm_fault *vmf)
544 {
545 	struct page *page;
546 	unsigned long entry_offset = swp_offset(entry);
547 	unsigned long offset = entry_offset;
548 	unsigned long start_offset, end_offset;
549 	unsigned long mask;
550 	struct swap_info_struct *si = swp_swap_info(entry);
551 	struct blk_plug plug;
552 	bool do_poll = true, page_allocated;
553 	struct vm_area_struct *vma = vmf->vma;
554 	unsigned long addr = vmf->address;
555 
556 	mask = swapin_nr_pages(offset) - 1;
557 	if (!mask)
558 		goto skip;
559 
560 	/* Test swap type to make sure the dereference is safe */
561 	if (likely(si->flags & (SWP_BLKDEV | SWP_FS))) {
562 		struct inode *inode = si->swap_file->f_mapping->host;
563 		if (inode_read_congested(inode))
564 			goto skip;
565 	}
566 
567 	do_poll = false;
568 	/* Read a page_cluster sized and aligned cluster around offset. */
569 	start_offset = offset & ~mask;
570 	end_offset = offset | mask;
571 	if (!start_offset)	/* First page is swap header. */
572 		start_offset++;
573 	if (end_offset >= si->max)
574 		end_offset = si->max - 1;
575 
576 	blk_start_plug(&plug);
577 	for (offset = start_offset; offset <= end_offset ; offset++) {
578 		/* Ok, do the async read-ahead now */
579 		page = __read_swap_cache_async(
580 			swp_entry(swp_type(entry), offset),
581 			gfp_mask, vma, addr, &page_allocated);
582 		if (!page)
583 			continue;
584 		if (page_allocated) {
585 			swap_readpage(page, false);
586 			if (offset != entry_offset) {
587 				SetPageReadahead(page);
588 				count_vm_event(SWAP_RA);
589 			}
590 		}
591 		put_page(page);
592 	}
593 	blk_finish_plug(&plug);
594 
595 	lru_add_drain();	/* Push any new pages onto the LRU now */
596 skip:
597 	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
598 }
599 
init_swap_address_space(unsigned int type,unsigned long nr_pages)600 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
601 {
602 	struct address_space *spaces, *space;
603 	unsigned int i, nr;
604 
605 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
606 	spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
607 	if (!spaces)
608 		return -ENOMEM;
609 	for (i = 0; i < nr; i++) {
610 		space = spaces + i;
611 		xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
612 		atomic_set(&space->i_mmap_writable, 0);
613 		space->a_ops = &swap_aops;
614 		/* swap cache doesn't use writeback related tags */
615 		mapping_set_no_writeback_tags(space);
616 	}
617 	nr_swapper_spaces[type] = nr;
618 	swapper_spaces[type] = spaces;
619 
620 	return 0;
621 }
622 
exit_swap_address_space(unsigned int type)623 void exit_swap_address_space(unsigned int type)
624 {
625 	kvfree(swapper_spaces[type]);
626 	nr_swapper_spaces[type] = 0;
627 	swapper_spaces[type] = NULL;
628 }
629 
swap_ra_clamp_pfn(struct vm_area_struct * vma,unsigned long faddr,unsigned long lpfn,unsigned long rpfn,unsigned long * start,unsigned long * end)630 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
631 				     unsigned long faddr,
632 				     unsigned long lpfn,
633 				     unsigned long rpfn,
634 				     unsigned long *start,
635 				     unsigned long *end)
636 {
637 	*start = max3(lpfn, PFN_DOWN(vma->vm_start),
638 		      PFN_DOWN(faddr & PMD_MASK));
639 	*end = min3(rpfn, PFN_DOWN(vma->vm_end),
640 		    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
641 }
642 
swap_ra_info(struct vm_fault * vmf,struct vma_swap_readahead * ra_info)643 static void swap_ra_info(struct vm_fault *vmf,
644 			struct vma_swap_readahead *ra_info)
645 {
646 	struct vm_area_struct *vma = vmf->vma;
647 	unsigned long ra_val;
648 	swp_entry_t entry;
649 	unsigned long faddr, pfn, fpfn;
650 	unsigned long start, end;
651 	pte_t *pte, *orig_pte;
652 	unsigned int max_win, hits, prev_win, win, left;
653 #ifndef CONFIG_64BIT
654 	pte_t *tpte;
655 #endif
656 
657 	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
658 			     SWAP_RA_ORDER_CEILING);
659 	if (max_win == 1) {
660 		ra_info->win = 1;
661 		return;
662 	}
663 
664 	faddr = vmf->address;
665 	orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
666 	entry = pte_to_swp_entry(*pte);
667 	if ((unlikely(non_swap_entry(entry)))) {
668 		pte_unmap(orig_pte);
669 		return;
670 	}
671 
672 	fpfn = PFN_DOWN(faddr);
673 	ra_val = GET_SWAP_RA_VAL(vma);
674 	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
675 	prev_win = SWAP_RA_WIN(ra_val);
676 	hits = SWAP_RA_HITS(ra_val);
677 	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
678 					       max_win, prev_win);
679 	atomic_long_set(&vma->swap_readahead_info,
680 			SWAP_RA_VAL(faddr, win, 0));
681 
682 	if (win == 1) {
683 		pte_unmap(orig_pte);
684 		return;
685 	}
686 
687 	/* Copy the PTEs because the page table may be unmapped */
688 	if (fpfn == pfn + 1)
689 		swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
690 	else if (pfn == fpfn + 1)
691 		swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
692 				  &start, &end);
693 	else {
694 		left = (win - 1) / 2;
695 		swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
696 				  &start, &end);
697 	}
698 	ra_info->nr_pte = end - start;
699 	ra_info->offset = fpfn - start;
700 	pte -= ra_info->offset;
701 #ifdef CONFIG_64BIT
702 	ra_info->ptes = pte;
703 #else
704 	tpte = ra_info->ptes;
705 	for (pfn = start; pfn != end; pfn++)
706 		*tpte++ = *pte++;
707 #endif
708 	pte_unmap(orig_pte);
709 }
710 
711 /**
712  * swap_vma_readahead - swap in pages in hope we need them soon
713  * @entry: swap entry of this memory
714  * @gfp_mask: memory allocation flags
715  * @vmf: fault information
716  *
717  * Returns the struct page for entry and addr, after queueing swapin.
718  *
719  * Primitive swap readahead code. We simply read in a few pages whoes
720  * virtual addresses are around the fault address in the same vma.
721  *
722  * Caller must hold read mmap_sem if vmf->vma is not NULL.
723  *
724  */
swap_vma_readahead(swp_entry_t fentry,gfp_t gfp_mask,struct vm_fault * vmf)725 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
726 				       struct vm_fault *vmf)
727 {
728 	struct blk_plug plug;
729 	struct vm_area_struct *vma = vmf->vma;
730 	struct page *page;
731 	pte_t *pte, pentry;
732 	swp_entry_t entry;
733 	unsigned int i;
734 	bool page_allocated;
735 	struct vma_swap_readahead ra_info = {0,};
736 
737 	swap_ra_info(vmf, &ra_info);
738 	if (ra_info.win == 1)
739 		goto skip;
740 
741 	blk_start_plug(&plug);
742 	for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
743 	     i++, pte++) {
744 		pentry = *pte;
745 		if (pte_none(pentry))
746 			continue;
747 		if (pte_present(pentry))
748 			continue;
749 		entry = pte_to_swp_entry(pentry);
750 		if (unlikely(non_swap_entry(entry)))
751 			continue;
752 		page = __read_swap_cache_async(entry, gfp_mask, vma,
753 					       vmf->address, &page_allocated);
754 		if (!page)
755 			continue;
756 		if (page_allocated) {
757 			swap_readpage(page, false);
758 			if (i != ra_info.offset) {
759 				SetPageReadahead(page);
760 				count_vm_event(SWAP_RA);
761 			}
762 		}
763 		put_page(page);
764 	}
765 	blk_finish_plug(&plug);
766 	lru_add_drain();
767 skip:
768 	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
769 				     ra_info.win == 1);
770 }
771 
772 /**
773  * swapin_readahead - swap in pages in hope we need them soon
774  * @entry: swap entry of this memory
775  * @gfp_mask: memory allocation flags
776  * @vmf: fault information
777  *
778  * Returns the struct page for entry and addr, after queueing swapin.
779  *
780  * It's a main entry function for swap readahead. By the configuration,
781  * it will read ahead blocks by cluster-based(ie, physical disk based)
782  * or vma-based(ie, virtual address based on faulty address) readahead.
783  */
swapin_readahead(swp_entry_t entry,gfp_t gfp_mask,struct vm_fault * vmf)784 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
785 				struct vm_fault *vmf)
786 {
787 	return swap_use_vma_readahead() ?
788 			swap_vma_readahead(entry, gfp_mask, vmf) :
789 			swap_cluster_readahead(entry, gfp_mask, vmf);
790 }
791 
792 #ifdef CONFIG_SYSFS
vma_ra_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)793 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
794 				     struct kobj_attribute *attr, char *buf)
795 {
796 	return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false");
797 }
vma_ra_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)798 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
799 				      struct kobj_attribute *attr,
800 				      const char *buf, size_t count)
801 {
802 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
803 		enable_vma_readahead = true;
804 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
805 		enable_vma_readahead = false;
806 	else
807 		return -EINVAL;
808 
809 	return count;
810 }
811 static struct kobj_attribute vma_ra_enabled_attr =
812 	__ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
813 	       vma_ra_enabled_store);
814 
815 static struct attribute *swap_attrs[] = {
816 	&vma_ra_enabled_attr.attr,
817 	NULL,
818 };
819 
820 static struct attribute_group swap_attr_group = {
821 	.attrs = swap_attrs,
822 };
823 
swap_init_sysfs(void)824 static int __init swap_init_sysfs(void)
825 {
826 	int err;
827 	struct kobject *swap_kobj;
828 
829 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
830 	if (!swap_kobj) {
831 		pr_err("failed to create swap kobject\n");
832 		return -ENOMEM;
833 	}
834 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
835 	if (err) {
836 		pr_err("failed to register swap group\n");
837 		goto delete_obj;
838 	}
839 	return 0;
840 
841 delete_obj:
842 	kobject_put(swap_kobj);
843 	return err;
844 }
845 subsys_initcall(swap_init_sysfs);
846 #endif
847