• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9 
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17 
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37 
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_subdirs
55  *   - childrens' d_child and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76 
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78 
79 EXPORT_SYMBOL(rename_lock);
80 
81 static struct kmem_cache *dentry_cache __read_mostly;
82 
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 
88 /*
89  * This is the single most critical data structure when it comes
90  * to the dcache: the hashtable for lookups. Somebody should try
91  * to make this good - I've just made it work.
92  *
93  * This hash-function tries to avoid losing too many bits of hash
94  * information, yet avoid using a prime hash-size or similar.
95  */
96 
97 static unsigned int d_hash_shift __read_mostly;
98 
99 static struct hlist_bl_head *dentry_hashtable __read_mostly;
100 
d_hash(unsigned int hash)101 static inline struct hlist_bl_head *d_hash(unsigned int hash)
102 {
103 	return dentry_hashtable + (hash >> d_hash_shift);
104 }
105 
106 #define IN_LOOKUP_SHIFT 10
107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
108 
in_lookup_hash(const struct dentry * parent,unsigned int hash)109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
110 					unsigned int hash)
111 {
112 	hash += (unsigned long) parent / L1_CACHE_BYTES;
113 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
114 }
115 
116 
117 /* Statistics gathering. */
118 struct dentry_stat_t dentry_stat = {
119 	.age_limit = 45,
120 };
121 
122 static DEFINE_PER_CPU(long, nr_dentry);
123 static DEFINE_PER_CPU(long, nr_dentry_unused);
124 static DEFINE_PER_CPU(long, nr_dentry_negative);
125 
126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
127 
128 /*
129  * Here we resort to our own counters instead of using generic per-cpu counters
130  * for consistency with what the vfs inode code does. We are expected to harvest
131  * better code and performance by having our own specialized counters.
132  *
133  * Please note that the loop is done over all possible CPUs, not over all online
134  * CPUs. The reason for this is that we don't want to play games with CPUs going
135  * on and off. If one of them goes off, we will just keep their counters.
136  *
137  * glommer: See cffbc8a for details, and if you ever intend to change this,
138  * please update all vfs counters to match.
139  */
get_nr_dentry(void)140 static long get_nr_dentry(void)
141 {
142 	int i;
143 	long sum = 0;
144 	for_each_possible_cpu(i)
145 		sum += per_cpu(nr_dentry, i);
146 	return sum < 0 ? 0 : sum;
147 }
148 
get_nr_dentry_unused(void)149 static long get_nr_dentry_unused(void)
150 {
151 	int i;
152 	long sum = 0;
153 	for_each_possible_cpu(i)
154 		sum += per_cpu(nr_dentry_unused, i);
155 	return sum < 0 ? 0 : sum;
156 }
157 
get_nr_dentry_negative(void)158 static long get_nr_dentry_negative(void)
159 {
160 	int i;
161 	long sum = 0;
162 
163 	for_each_possible_cpu(i)
164 		sum += per_cpu(nr_dentry_negative, i);
165 	return sum < 0 ? 0 : sum;
166 }
167 
proc_nr_dentry(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)168 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
169 		   size_t *lenp, loff_t *ppos)
170 {
171 	dentry_stat.nr_dentry = get_nr_dentry();
172 	dentry_stat.nr_unused = get_nr_dentry_unused();
173 	dentry_stat.nr_negative = get_nr_dentry_negative();
174 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
175 }
176 #endif
177 
178 /*
179  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
180  * The strings are both count bytes long, and count is non-zero.
181  */
182 #ifdef CONFIG_DCACHE_WORD_ACCESS
183 
184 #include <asm/word-at-a-time.h>
185 /*
186  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
187  * aligned allocation for this particular component. We don't
188  * strictly need the load_unaligned_zeropad() safety, but it
189  * doesn't hurt either.
190  *
191  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
192  * need the careful unaligned handling.
193  */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
195 {
196 	unsigned long a,b,mask;
197 
198 	for (;;) {
199 		a = read_word_at_a_time(cs);
200 		b = load_unaligned_zeropad(ct);
201 		if (tcount < sizeof(unsigned long))
202 			break;
203 		if (unlikely(a != b))
204 			return 1;
205 		cs += sizeof(unsigned long);
206 		ct += sizeof(unsigned long);
207 		tcount -= sizeof(unsigned long);
208 		if (!tcount)
209 			return 0;
210 	}
211 	mask = bytemask_from_count(tcount);
212 	return unlikely(!!((a ^ b) & mask));
213 }
214 
215 #else
216 
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
218 {
219 	do {
220 		if (*cs != *ct)
221 			return 1;
222 		cs++;
223 		ct++;
224 		tcount--;
225 	} while (tcount);
226 	return 0;
227 }
228 
229 #endif
230 
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
232 {
233 	/*
234 	 * Be careful about RCU walk racing with rename:
235 	 * use 'READ_ONCE' to fetch the name pointer.
236 	 *
237 	 * NOTE! Even if a rename will mean that the length
238 	 * was not loaded atomically, we don't care. The
239 	 * RCU walk will check the sequence count eventually,
240 	 * and catch it. And we won't overrun the buffer,
241 	 * because we're reading the name pointer atomically,
242 	 * and a dentry name is guaranteed to be properly
243 	 * terminated with a NUL byte.
244 	 *
245 	 * End result: even if 'len' is wrong, we'll exit
246 	 * early because the data cannot match (there can
247 	 * be no NUL in the ct/tcount data)
248 	 */
249 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
250 
251 	return dentry_string_cmp(cs, ct, tcount);
252 }
253 
254 struct external_name {
255 	union {
256 		atomic_t count;
257 		struct rcu_head head;
258 	} u;
259 	unsigned char name[];
260 };
261 
external_name(struct dentry * dentry)262 static inline struct external_name *external_name(struct dentry *dentry)
263 {
264 	return container_of(dentry->d_name.name, struct external_name, name[0]);
265 }
266 
__d_free(struct rcu_head * head)267 static void __d_free(struct rcu_head *head)
268 {
269 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
270 
271 	kmem_cache_free(dentry_cache, dentry);
272 }
273 
__d_free_external(struct rcu_head * head)274 static void __d_free_external(struct rcu_head *head)
275 {
276 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
277 	kfree(external_name(dentry));
278 	kmem_cache_free(dentry_cache, dentry);
279 }
280 
dname_external(const struct dentry * dentry)281 static inline int dname_external(const struct dentry *dentry)
282 {
283 	return dentry->d_name.name != dentry->d_iname;
284 }
285 
take_dentry_name_snapshot(struct name_snapshot * name,struct dentry * dentry)286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288 	spin_lock(&dentry->d_lock);
289 	name->name = dentry->d_name;
290 	if (unlikely(dname_external(dentry))) {
291 		atomic_inc(&external_name(dentry)->u.count);
292 	} else {
293 		memcpy(name->inline_name, dentry->d_iname,
294 		       dentry->d_name.len + 1);
295 		name->name.name = name->inline_name;
296 	}
297 	spin_unlock(&dentry->d_lock);
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300 
release_dentry_name_snapshot(struct name_snapshot * name)301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303 	if (unlikely(name->name.name != name->inline_name)) {
304 		struct external_name *p;
305 		p = container_of(name->name.name, struct external_name, name[0]);
306 		if (unlikely(atomic_dec_and_test(&p->u.count)))
307 			kfree_rcu(p, u.head);
308 	}
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311 
__d_set_inode_and_type(struct dentry * dentry,struct inode * inode,unsigned type_flags)312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313 					  struct inode *inode,
314 					  unsigned type_flags)
315 {
316 	unsigned flags;
317 
318 	dentry->d_inode = inode;
319 	flags = READ_ONCE(dentry->d_flags);
320 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321 	flags |= type_flags;
322 	WRITE_ONCE(dentry->d_flags, flags);
323 }
324 
__d_clear_type_and_inode(struct dentry * dentry)325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327 	unsigned flags = READ_ONCE(dentry->d_flags);
328 
329 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330 	WRITE_ONCE(dentry->d_flags, flags);
331 	dentry->d_inode = NULL;
332 	if (dentry->d_flags & DCACHE_LRU_LIST)
333 		this_cpu_inc(nr_dentry_negative);
334 }
335 
dentry_free(struct dentry * dentry)336 static void dentry_free(struct dentry *dentry)
337 {
338 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339 	if (unlikely(dname_external(dentry))) {
340 		struct external_name *p = external_name(dentry);
341 		if (likely(atomic_dec_and_test(&p->u.count))) {
342 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343 			return;
344 		}
345 	}
346 	/* if dentry was never visible to RCU, immediate free is OK */
347 	if (dentry->d_flags & DCACHE_NORCU)
348 		__d_free(&dentry->d_u.d_rcu);
349 	else
350 		call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352 
353 /*
354  * Release the dentry's inode, using the filesystem
355  * d_iput() operation if defined.
356  */
dentry_unlink_inode(struct dentry * dentry)357 static void dentry_unlink_inode(struct dentry * dentry)
358 	__releases(dentry->d_lock)
359 	__releases(dentry->d_inode->i_lock)
360 {
361 	struct inode *inode = dentry->d_inode;
362 
363 	raw_write_seqcount_begin(&dentry->d_seq);
364 	__d_clear_type_and_inode(dentry);
365 	hlist_del_init(&dentry->d_u.d_alias);
366 	raw_write_seqcount_end(&dentry->d_seq);
367 	spin_unlock(&dentry->d_lock);
368 	spin_unlock(&inode->i_lock);
369 	if (!inode->i_nlink)
370 		fsnotify_inoderemove(inode);
371 	if (dentry->d_op && dentry->d_op->d_iput)
372 		dentry->d_op->d_iput(dentry, inode);
373 	else
374 		iput(inode);
375 }
376 
377 /*
378  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379  * is in use - which includes both the "real" per-superblock
380  * LRU list _and_ the DCACHE_SHRINK_LIST use.
381  *
382  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383  * on the shrink list (ie not on the superblock LRU list).
384  *
385  * The per-cpu "nr_dentry_unused" counters are updated with
386  * the DCACHE_LRU_LIST bit.
387  *
388  * The per-cpu "nr_dentry_negative" counters are only updated
389  * when deleted from or added to the per-superblock LRU list, not
390  * from/to the shrink list. That is to avoid an unneeded dec/inc
391  * pair when moving from LRU to shrink list in select_collect().
392  *
393  * These helper functions make sure we always follow the
394  * rules. d_lock must be held by the caller.
395  */
396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
d_lru_add(struct dentry * dentry)397 static void d_lru_add(struct dentry *dentry)
398 {
399 	D_FLAG_VERIFY(dentry, 0);
400 	dentry->d_flags |= DCACHE_LRU_LIST;
401 	this_cpu_inc(nr_dentry_unused);
402 	if (d_is_negative(dentry))
403 		this_cpu_inc(nr_dentry_negative);
404 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406 
d_lru_del(struct dentry * dentry)407 static void d_lru_del(struct dentry *dentry)
408 {
409 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 	dentry->d_flags &= ~DCACHE_LRU_LIST;
411 	this_cpu_dec(nr_dentry_unused);
412 	if (d_is_negative(dentry))
413 		this_cpu_dec(nr_dentry_negative);
414 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416 
d_shrink_del(struct dentry * dentry)417 static void d_shrink_del(struct dentry *dentry)
418 {
419 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 	list_del_init(&dentry->d_lru);
421 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 	this_cpu_dec(nr_dentry_unused);
423 }
424 
d_shrink_add(struct dentry * dentry,struct list_head * list)425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427 	D_FLAG_VERIFY(dentry, 0);
428 	list_add(&dentry->d_lru, list);
429 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430 	this_cpu_inc(nr_dentry_unused);
431 }
432 
433 /*
434  * These can only be called under the global LRU lock, ie during the
435  * callback for freeing the LRU list. "isolate" removes it from the
436  * LRU lists entirely, while shrink_move moves it to the indicated
437  * private list.
438  */
d_lru_isolate(struct list_lru_one * lru,struct dentry * dentry)439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 	dentry->d_flags &= ~DCACHE_LRU_LIST;
443 	this_cpu_dec(nr_dentry_unused);
444 	if (d_is_negative(dentry))
445 		this_cpu_dec(nr_dentry_negative);
446 	list_lru_isolate(lru, &dentry->d_lru);
447 }
448 
d_lru_shrink_move(struct list_lru_one * lru,struct dentry * dentry,struct list_head * list)449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
450 			      struct list_head *list)
451 {
452 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
453 	dentry->d_flags |= DCACHE_SHRINK_LIST;
454 	if (d_is_negative(dentry))
455 		this_cpu_dec(nr_dentry_negative);
456 	list_lru_isolate_move(lru, &dentry->d_lru, list);
457 }
458 
459 /**
460  * d_drop - drop a dentry
461  * @dentry: dentry to drop
462  *
463  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
464  * be found through a VFS lookup any more. Note that this is different from
465  * deleting the dentry - d_delete will try to mark the dentry negative if
466  * possible, giving a successful _negative_ lookup, while d_drop will
467  * just make the cache lookup fail.
468  *
469  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
470  * reason (NFS timeouts or autofs deletes).
471  *
472  * __d_drop requires dentry->d_lock
473  * ___d_drop doesn't mark dentry as "unhashed"
474  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
475  */
___d_drop(struct dentry * dentry)476 static void ___d_drop(struct dentry *dentry)
477 {
478 	struct hlist_bl_head *b;
479 	/*
480 	 * Hashed dentries are normally on the dentry hashtable,
481 	 * with the exception of those newly allocated by
482 	 * d_obtain_root, which are always IS_ROOT:
483 	 */
484 	if (unlikely(IS_ROOT(dentry)))
485 		b = &dentry->d_sb->s_roots;
486 	else
487 		b = d_hash(dentry->d_name.hash);
488 
489 	hlist_bl_lock(b);
490 	__hlist_bl_del(&dentry->d_hash);
491 	hlist_bl_unlock(b);
492 }
493 
__d_drop(struct dentry * dentry)494 void __d_drop(struct dentry *dentry)
495 {
496 	if (!d_unhashed(dentry)) {
497 		___d_drop(dentry);
498 		dentry->d_hash.pprev = NULL;
499 		write_seqcount_invalidate(&dentry->d_seq);
500 	}
501 }
502 EXPORT_SYMBOL(__d_drop);
503 
d_drop(struct dentry * dentry)504 void d_drop(struct dentry *dentry)
505 {
506 	spin_lock(&dentry->d_lock);
507 	__d_drop(dentry);
508 	spin_unlock(&dentry->d_lock);
509 }
510 EXPORT_SYMBOL(d_drop);
511 
dentry_unlist(struct dentry * dentry,struct dentry * parent)512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
513 {
514 	struct dentry *next;
515 	/*
516 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
517 	 * attached to the dentry tree
518 	 */
519 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
520 	if (unlikely(list_empty(&dentry->d_child)))
521 		return;
522 	__list_del_entry(&dentry->d_child);
523 	/*
524 	 * Cursors can move around the list of children.  While we'd been
525 	 * a normal list member, it didn't matter - ->d_child.next would've
526 	 * been updated.  However, from now on it won't be and for the
527 	 * things like d_walk() it might end up with a nasty surprise.
528 	 * Normally d_walk() doesn't care about cursors moving around -
529 	 * ->d_lock on parent prevents that and since a cursor has no children
530 	 * of its own, we get through it without ever unlocking the parent.
531 	 * There is one exception, though - if we ascend from a child that
532 	 * gets killed as soon as we unlock it, the next sibling is found
533 	 * using the value left in its ->d_child.next.  And if _that_
534 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
535 	 * before d_walk() regains parent->d_lock, we'll end up skipping
536 	 * everything the cursor had been moved past.
537 	 *
538 	 * Solution: make sure that the pointer left behind in ->d_child.next
539 	 * points to something that won't be moving around.  I.e. skip the
540 	 * cursors.
541 	 */
542 	while (dentry->d_child.next != &parent->d_subdirs) {
543 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
544 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
545 			break;
546 		dentry->d_child.next = next->d_child.next;
547 	}
548 }
549 
__dentry_kill(struct dentry * dentry)550 static void __dentry_kill(struct dentry *dentry)
551 {
552 	struct dentry *parent = NULL;
553 	bool can_free = true;
554 	if (!IS_ROOT(dentry))
555 		parent = dentry->d_parent;
556 
557 	/*
558 	 * The dentry is now unrecoverably dead to the world.
559 	 */
560 	lockref_mark_dead(&dentry->d_lockref);
561 
562 	/*
563 	 * inform the fs via d_prune that this dentry is about to be
564 	 * unhashed and destroyed.
565 	 */
566 	if (dentry->d_flags & DCACHE_OP_PRUNE)
567 		dentry->d_op->d_prune(dentry);
568 
569 	if (dentry->d_flags & DCACHE_LRU_LIST) {
570 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
571 			d_lru_del(dentry);
572 	}
573 	/* if it was on the hash then remove it */
574 	__d_drop(dentry);
575 	dentry_unlist(dentry, parent);
576 	if (parent)
577 		spin_unlock(&parent->d_lock);
578 	if (dentry->d_inode)
579 		dentry_unlink_inode(dentry);
580 	else
581 		spin_unlock(&dentry->d_lock);
582 	this_cpu_dec(nr_dentry);
583 	if (dentry->d_op && dentry->d_op->d_release)
584 		dentry->d_op->d_release(dentry);
585 
586 	spin_lock(&dentry->d_lock);
587 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
588 		dentry->d_flags |= DCACHE_MAY_FREE;
589 		can_free = false;
590 	}
591 	spin_unlock(&dentry->d_lock);
592 	if (likely(can_free))
593 		dentry_free(dentry);
594 	cond_resched();
595 }
596 
__lock_parent(struct dentry * dentry)597 static struct dentry *__lock_parent(struct dentry *dentry)
598 {
599 	struct dentry *parent;
600 	rcu_read_lock();
601 	spin_unlock(&dentry->d_lock);
602 again:
603 	parent = READ_ONCE(dentry->d_parent);
604 	spin_lock(&parent->d_lock);
605 	/*
606 	 * We can't blindly lock dentry until we are sure
607 	 * that we won't violate the locking order.
608 	 * Any changes of dentry->d_parent must have
609 	 * been done with parent->d_lock held, so
610 	 * spin_lock() above is enough of a barrier
611 	 * for checking if it's still our child.
612 	 */
613 	if (unlikely(parent != dentry->d_parent)) {
614 		spin_unlock(&parent->d_lock);
615 		goto again;
616 	}
617 	rcu_read_unlock();
618 	if (parent != dentry)
619 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
620 	else
621 		parent = NULL;
622 	return parent;
623 }
624 
lock_parent(struct dentry * dentry)625 static inline struct dentry *lock_parent(struct dentry *dentry)
626 {
627 	struct dentry *parent = dentry->d_parent;
628 	if (IS_ROOT(dentry))
629 		return NULL;
630 	if (likely(spin_trylock(&parent->d_lock)))
631 		return parent;
632 	return __lock_parent(dentry);
633 }
634 
retain_dentry(struct dentry * dentry)635 static inline bool retain_dentry(struct dentry *dentry)
636 {
637 	WARN_ON(d_in_lookup(dentry));
638 
639 	/* Unreachable? Get rid of it */
640 	if (unlikely(d_unhashed(dentry)))
641 		return false;
642 
643 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
644 		return false;
645 
646 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
647 		if (dentry->d_op->d_delete(dentry))
648 			return false;
649 	}
650 	/* retain; LRU fodder */
651 	dentry->d_lockref.count--;
652 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
653 		d_lru_add(dentry);
654 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
655 		dentry->d_flags |= DCACHE_REFERENCED;
656 	return true;
657 }
658 
659 /*
660  * Finish off a dentry we've decided to kill.
661  * dentry->d_lock must be held, returns with it unlocked.
662  * Returns dentry requiring refcount drop, or NULL if we're done.
663  */
dentry_kill(struct dentry * dentry)664 static struct dentry *dentry_kill(struct dentry *dentry)
665 	__releases(dentry->d_lock)
666 {
667 	struct inode *inode = dentry->d_inode;
668 	struct dentry *parent = NULL;
669 
670 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
671 		goto slow_positive;
672 
673 	if (!IS_ROOT(dentry)) {
674 		parent = dentry->d_parent;
675 		if (unlikely(!spin_trylock(&parent->d_lock))) {
676 			parent = __lock_parent(dentry);
677 			if (likely(inode || !dentry->d_inode))
678 				goto got_locks;
679 			/* negative that became positive */
680 			if (parent)
681 				spin_unlock(&parent->d_lock);
682 			inode = dentry->d_inode;
683 			goto slow_positive;
684 		}
685 	}
686 	__dentry_kill(dentry);
687 	return parent;
688 
689 slow_positive:
690 	spin_unlock(&dentry->d_lock);
691 	spin_lock(&inode->i_lock);
692 	spin_lock(&dentry->d_lock);
693 	parent = lock_parent(dentry);
694 got_locks:
695 	if (unlikely(dentry->d_lockref.count != 1)) {
696 		dentry->d_lockref.count--;
697 	} else if (likely(!retain_dentry(dentry))) {
698 		__dentry_kill(dentry);
699 		return parent;
700 	}
701 	/* we are keeping it, after all */
702 	if (inode)
703 		spin_unlock(&inode->i_lock);
704 	if (parent)
705 		spin_unlock(&parent->d_lock);
706 	spin_unlock(&dentry->d_lock);
707 	return NULL;
708 }
709 
710 /*
711  * Try to do a lockless dput(), and return whether that was successful.
712  *
713  * If unsuccessful, we return false, having already taken the dentry lock.
714  *
715  * The caller needs to hold the RCU read lock, so that the dentry is
716  * guaranteed to stay around even if the refcount goes down to zero!
717  */
fast_dput(struct dentry * dentry)718 static inline bool fast_dput(struct dentry *dentry)
719 {
720 	int ret;
721 	unsigned int d_flags;
722 
723 	/*
724 	 * If we have a d_op->d_delete() operation, we sould not
725 	 * let the dentry count go to zero, so use "put_or_lock".
726 	 */
727 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
728 		return lockref_put_or_lock(&dentry->d_lockref);
729 
730 	/*
731 	 * .. otherwise, we can try to just decrement the
732 	 * lockref optimistically.
733 	 */
734 	ret = lockref_put_return(&dentry->d_lockref);
735 
736 	/*
737 	 * If the lockref_put_return() failed due to the lock being held
738 	 * by somebody else, the fast path has failed. We will need to
739 	 * get the lock, and then check the count again.
740 	 */
741 	if (unlikely(ret < 0)) {
742 		spin_lock(&dentry->d_lock);
743 		if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
744 			spin_unlock(&dentry->d_lock);
745 			return true;
746 		}
747 		dentry->d_lockref.count--;
748 		goto locked;
749 	}
750 
751 	/*
752 	 * If we weren't the last ref, we're done.
753 	 */
754 	if (ret)
755 		return true;
756 
757 	/*
758 	 * Careful, careful. The reference count went down
759 	 * to zero, but we don't hold the dentry lock, so
760 	 * somebody else could get it again, and do another
761 	 * dput(), and we need to not race with that.
762 	 *
763 	 * However, there is a very special and common case
764 	 * where we don't care, because there is nothing to
765 	 * do: the dentry is still hashed, it does not have
766 	 * a 'delete' op, and it's referenced and already on
767 	 * the LRU list.
768 	 *
769 	 * NOTE! Since we aren't locked, these values are
770 	 * not "stable". However, it is sufficient that at
771 	 * some point after we dropped the reference the
772 	 * dentry was hashed and the flags had the proper
773 	 * value. Other dentry users may have re-gotten
774 	 * a reference to the dentry and change that, but
775 	 * our work is done - we can leave the dentry
776 	 * around with a zero refcount.
777 	 */
778 	smp_rmb();
779 	d_flags = READ_ONCE(dentry->d_flags);
780 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
781 
782 	/* Nothing to do? Dropping the reference was all we needed? */
783 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
784 		return true;
785 
786 	/*
787 	 * Not the fast normal case? Get the lock. We've already decremented
788 	 * the refcount, but we'll need to re-check the situation after
789 	 * getting the lock.
790 	 */
791 	spin_lock(&dentry->d_lock);
792 
793 	/*
794 	 * Did somebody else grab a reference to it in the meantime, and
795 	 * we're no longer the last user after all? Alternatively, somebody
796 	 * else could have killed it and marked it dead. Either way, we
797 	 * don't need to do anything else.
798 	 */
799 locked:
800 	if (dentry->d_lockref.count) {
801 		spin_unlock(&dentry->d_lock);
802 		return true;
803 	}
804 
805 	/*
806 	 * Re-get the reference we optimistically dropped. We hold the
807 	 * lock, and we just tested that it was zero, so we can just
808 	 * set it to 1.
809 	 */
810 	dentry->d_lockref.count = 1;
811 	return false;
812 }
813 
814 
815 /*
816  * This is dput
817  *
818  * This is complicated by the fact that we do not want to put
819  * dentries that are no longer on any hash chain on the unused
820  * list: we'd much rather just get rid of them immediately.
821  *
822  * However, that implies that we have to traverse the dentry
823  * tree upwards to the parents which might _also_ now be
824  * scheduled for deletion (it may have been only waiting for
825  * its last child to go away).
826  *
827  * This tail recursion is done by hand as we don't want to depend
828  * on the compiler to always get this right (gcc generally doesn't).
829  * Real recursion would eat up our stack space.
830  */
831 
832 /*
833  * dput - release a dentry
834  * @dentry: dentry to release
835  *
836  * Release a dentry. This will drop the usage count and if appropriate
837  * call the dentry unlink method as well as removing it from the queues and
838  * releasing its resources. If the parent dentries were scheduled for release
839  * they too may now get deleted.
840  */
dput(struct dentry * dentry)841 void dput(struct dentry *dentry)
842 {
843 	while (dentry) {
844 		might_sleep();
845 
846 		rcu_read_lock();
847 		if (likely(fast_dput(dentry))) {
848 			rcu_read_unlock();
849 			return;
850 		}
851 
852 		/* Slow case: now with the dentry lock held */
853 		rcu_read_unlock();
854 
855 		if (likely(retain_dentry(dentry))) {
856 			spin_unlock(&dentry->d_lock);
857 			return;
858 		}
859 
860 		dentry = dentry_kill(dentry);
861 	}
862 }
863 EXPORT_SYMBOL(dput);
864 
__dput_to_list(struct dentry * dentry,struct list_head * list)865 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
866 __must_hold(&dentry->d_lock)
867 {
868 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
869 		/* let the owner of the list it's on deal with it */
870 		--dentry->d_lockref.count;
871 	} else {
872 		if (dentry->d_flags & DCACHE_LRU_LIST)
873 			d_lru_del(dentry);
874 		if (!--dentry->d_lockref.count)
875 			d_shrink_add(dentry, list);
876 	}
877 }
878 
dput_to_list(struct dentry * dentry,struct list_head * list)879 void dput_to_list(struct dentry *dentry, struct list_head *list)
880 {
881 	rcu_read_lock();
882 	if (likely(fast_dput(dentry))) {
883 		rcu_read_unlock();
884 		return;
885 	}
886 	rcu_read_unlock();
887 	if (!retain_dentry(dentry))
888 		__dput_to_list(dentry, list);
889 	spin_unlock(&dentry->d_lock);
890 }
891 
892 /* This must be called with d_lock held */
__dget_dlock(struct dentry * dentry)893 static inline void __dget_dlock(struct dentry *dentry)
894 {
895 	dentry->d_lockref.count++;
896 }
897 
__dget(struct dentry * dentry)898 static inline void __dget(struct dentry *dentry)
899 {
900 	lockref_get(&dentry->d_lockref);
901 }
902 
dget_parent(struct dentry * dentry)903 struct dentry *dget_parent(struct dentry *dentry)
904 {
905 	int gotref;
906 	struct dentry *ret;
907 	unsigned seq;
908 
909 	/*
910 	 * Do optimistic parent lookup without any
911 	 * locking.
912 	 */
913 	rcu_read_lock();
914 	seq = raw_seqcount_begin(&dentry->d_seq);
915 	ret = READ_ONCE(dentry->d_parent);
916 	gotref = lockref_get_not_zero(&ret->d_lockref);
917 	rcu_read_unlock();
918 	if (likely(gotref)) {
919 		if (!read_seqcount_retry(&dentry->d_seq, seq))
920 			return ret;
921 		dput(ret);
922 	}
923 
924 repeat:
925 	/*
926 	 * Don't need rcu_dereference because we re-check it was correct under
927 	 * the lock.
928 	 */
929 	rcu_read_lock();
930 	ret = dentry->d_parent;
931 	spin_lock(&ret->d_lock);
932 	if (unlikely(ret != dentry->d_parent)) {
933 		spin_unlock(&ret->d_lock);
934 		rcu_read_unlock();
935 		goto repeat;
936 	}
937 	rcu_read_unlock();
938 	BUG_ON(!ret->d_lockref.count);
939 	ret->d_lockref.count++;
940 	spin_unlock(&ret->d_lock);
941 	return ret;
942 }
943 EXPORT_SYMBOL(dget_parent);
944 
__d_find_any_alias(struct inode * inode)945 static struct dentry * __d_find_any_alias(struct inode *inode)
946 {
947 	struct dentry *alias;
948 
949 	if (hlist_empty(&inode->i_dentry))
950 		return NULL;
951 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
952 	__dget(alias);
953 	return alias;
954 }
955 
956 /**
957  * d_find_any_alias - find any alias for a given inode
958  * @inode: inode to find an alias for
959  *
960  * If any aliases exist for the given inode, take and return a
961  * reference for one of them.  If no aliases exist, return %NULL.
962  */
d_find_any_alias(struct inode * inode)963 struct dentry *d_find_any_alias(struct inode *inode)
964 {
965 	struct dentry *de;
966 
967 	spin_lock(&inode->i_lock);
968 	de = __d_find_any_alias(inode);
969 	spin_unlock(&inode->i_lock);
970 	return de;
971 }
972 EXPORT_SYMBOL(d_find_any_alias);
973 
974 /**
975  * d_find_alias - grab a hashed alias of inode
976  * @inode: inode in question
977  *
978  * If inode has a hashed alias, or is a directory and has any alias,
979  * acquire the reference to alias and return it. Otherwise return NULL.
980  * Notice that if inode is a directory there can be only one alias and
981  * it can be unhashed only if it has no children, or if it is the root
982  * of a filesystem, or if the directory was renamed and d_revalidate
983  * was the first vfs operation to notice.
984  *
985  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
986  * any other hashed alias over that one.
987  */
__d_find_alias(struct inode * inode)988 static struct dentry *__d_find_alias(struct inode *inode)
989 {
990 	struct dentry *alias;
991 
992 	if (S_ISDIR(inode->i_mode))
993 		return __d_find_any_alias(inode);
994 
995 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
996 		spin_lock(&alias->d_lock);
997  		if (!d_unhashed(alias)) {
998 			__dget_dlock(alias);
999 			spin_unlock(&alias->d_lock);
1000 			return alias;
1001 		}
1002 		spin_unlock(&alias->d_lock);
1003 	}
1004 	return NULL;
1005 }
1006 
d_find_alias(struct inode * inode)1007 struct dentry *d_find_alias(struct inode *inode)
1008 {
1009 	struct dentry *de = NULL;
1010 
1011 	if (!hlist_empty(&inode->i_dentry)) {
1012 		spin_lock(&inode->i_lock);
1013 		de = __d_find_alias(inode);
1014 		spin_unlock(&inode->i_lock);
1015 	}
1016 	return de;
1017 }
1018 EXPORT_SYMBOL(d_find_alias);
1019 
1020 /*
1021  *	Try to kill dentries associated with this inode.
1022  * WARNING: you must own a reference to inode.
1023  */
d_prune_aliases(struct inode * inode)1024 void d_prune_aliases(struct inode *inode)
1025 {
1026 	struct dentry *dentry;
1027 restart:
1028 	spin_lock(&inode->i_lock);
1029 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1030 		spin_lock(&dentry->d_lock);
1031 		if (!dentry->d_lockref.count) {
1032 			struct dentry *parent = lock_parent(dentry);
1033 			if (likely(!dentry->d_lockref.count)) {
1034 				__dentry_kill(dentry);
1035 				dput(parent);
1036 				goto restart;
1037 			}
1038 			if (parent)
1039 				spin_unlock(&parent->d_lock);
1040 		}
1041 		spin_unlock(&dentry->d_lock);
1042 	}
1043 	spin_unlock(&inode->i_lock);
1044 }
1045 EXPORT_SYMBOL(d_prune_aliases);
1046 
1047 /*
1048  * Lock a dentry from shrink list.
1049  * Called under rcu_read_lock() and dentry->d_lock; the former
1050  * guarantees that nothing we access will be freed under us.
1051  * Note that dentry is *not* protected from concurrent dentry_kill(),
1052  * d_delete(), etc.
1053  *
1054  * Return false if dentry has been disrupted or grabbed, leaving
1055  * the caller to kick it off-list.  Otherwise, return true and have
1056  * that dentry's inode and parent both locked.
1057  */
shrink_lock_dentry(struct dentry * dentry)1058 static bool shrink_lock_dentry(struct dentry *dentry)
1059 {
1060 	struct inode *inode;
1061 	struct dentry *parent;
1062 
1063 	if (dentry->d_lockref.count)
1064 		return false;
1065 
1066 	inode = dentry->d_inode;
1067 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1068 		spin_unlock(&dentry->d_lock);
1069 		spin_lock(&inode->i_lock);
1070 		spin_lock(&dentry->d_lock);
1071 		if (unlikely(dentry->d_lockref.count))
1072 			goto out;
1073 		/* changed inode means that somebody had grabbed it */
1074 		if (unlikely(inode != dentry->d_inode))
1075 			goto out;
1076 	}
1077 
1078 	parent = dentry->d_parent;
1079 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1080 		return true;
1081 
1082 	spin_unlock(&dentry->d_lock);
1083 	spin_lock(&parent->d_lock);
1084 	if (unlikely(parent != dentry->d_parent)) {
1085 		spin_unlock(&parent->d_lock);
1086 		spin_lock(&dentry->d_lock);
1087 		goto out;
1088 	}
1089 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1090 	if (likely(!dentry->d_lockref.count))
1091 		return true;
1092 	spin_unlock(&parent->d_lock);
1093 out:
1094 	if (inode)
1095 		spin_unlock(&inode->i_lock);
1096 	return false;
1097 }
1098 
shrink_dentry_list(struct list_head * list)1099 void shrink_dentry_list(struct list_head *list)
1100 {
1101 	while (!list_empty(list)) {
1102 		struct dentry *dentry, *parent;
1103 
1104 		dentry = list_entry(list->prev, struct dentry, d_lru);
1105 		spin_lock(&dentry->d_lock);
1106 		rcu_read_lock();
1107 		if (!shrink_lock_dentry(dentry)) {
1108 			bool can_free = false;
1109 			rcu_read_unlock();
1110 			d_shrink_del(dentry);
1111 			if (dentry->d_lockref.count < 0)
1112 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1113 			spin_unlock(&dentry->d_lock);
1114 			if (can_free)
1115 				dentry_free(dentry);
1116 			continue;
1117 		}
1118 		rcu_read_unlock();
1119 		d_shrink_del(dentry);
1120 		parent = dentry->d_parent;
1121 		if (parent != dentry)
1122 			__dput_to_list(parent, list);
1123 		__dentry_kill(dentry);
1124 	}
1125 }
1126 
dentry_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1127 static enum lru_status dentry_lru_isolate(struct list_head *item,
1128 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1129 {
1130 	struct list_head *freeable = arg;
1131 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1132 
1133 
1134 	/*
1135 	 * we are inverting the lru lock/dentry->d_lock here,
1136 	 * so use a trylock. If we fail to get the lock, just skip
1137 	 * it
1138 	 */
1139 	if (!spin_trylock(&dentry->d_lock))
1140 		return LRU_SKIP;
1141 
1142 	/*
1143 	 * Referenced dentries are still in use. If they have active
1144 	 * counts, just remove them from the LRU. Otherwise give them
1145 	 * another pass through the LRU.
1146 	 */
1147 	if (dentry->d_lockref.count) {
1148 		d_lru_isolate(lru, dentry);
1149 		spin_unlock(&dentry->d_lock);
1150 		return LRU_REMOVED;
1151 	}
1152 
1153 	if (dentry->d_flags & DCACHE_REFERENCED) {
1154 		dentry->d_flags &= ~DCACHE_REFERENCED;
1155 		spin_unlock(&dentry->d_lock);
1156 
1157 		/*
1158 		 * The list move itself will be made by the common LRU code. At
1159 		 * this point, we've dropped the dentry->d_lock but keep the
1160 		 * lru lock. This is safe to do, since every list movement is
1161 		 * protected by the lru lock even if both locks are held.
1162 		 *
1163 		 * This is guaranteed by the fact that all LRU management
1164 		 * functions are intermediated by the LRU API calls like
1165 		 * list_lru_add and list_lru_del. List movement in this file
1166 		 * only ever occur through this functions or through callbacks
1167 		 * like this one, that are called from the LRU API.
1168 		 *
1169 		 * The only exceptions to this are functions like
1170 		 * shrink_dentry_list, and code that first checks for the
1171 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1172 		 * operating only with stack provided lists after they are
1173 		 * properly isolated from the main list.  It is thus, always a
1174 		 * local access.
1175 		 */
1176 		return LRU_ROTATE;
1177 	}
1178 
1179 	d_lru_shrink_move(lru, dentry, freeable);
1180 	spin_unlock(&dentry->d_lock);
1181 
1182 	return LRU_REMOVED;
1183 }
1184 
1185 /**
1186  * prune_dcache_sb - shrink the dcache
1187  * @sb: superblock
1188  * @sc: shrink control, passed to list_lru_shrink_walk()
1189  *
1190  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1191  * is done when we need more memory and called from the superblock shrinker
1192  * function.
1193  *
1194  * This function may fail to free any resources if all the dentries are in
1195  * use.
1196  */
prune_dcache_sb(struct super_block * sb,struct shrink_control * sc)1197 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1198 {
1199 	LIST_HEAD(dispose);
1200 	long freed;
1201 
1202 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1203 				     dentry_lru_isolate, &dispose);
1204 	shrink_dentry_list(&dispose);
1205 	return freed;
1206 }
1207 
dentry_lru_isolate_shrink(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1208 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1209 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1210 {
1211 	struct list_head *freeable = arg;
1212 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1213 
1214 	/*
1215 	 * we are inverting the lru lock/dentry->d_lock here,
1216 	 * so use a trylock. If we fail to get the lock, just skip
1217 	 * it
1218 	 */
1219 	if (!spin_trylock(&dentry->d_lock))
1220 		return LRU_SKIP;
1221 
1222 	d_lru_shrink_move(lru, dentry, freeable);
1223 	spin_unlock(&dentry->d_lock);
1224 
1225 	return LRU_REMOVED;
1226 }
1227 
1228 
1229 /**
1230  * shrink_dcache_sb - shrink dcache for a superblock
1231  * @sb: superblock
1232  *
1233  * Shrink the dcache for the specified super block. This is used to free
1234  * the dcache before unmounting a file system.
1235  */
shrink_dcache_sb(struct super_block * sb)1236 void shrink_dcache_sb(struct super_block *sb)
1237 {
1238 	do {
1239 		LIST_HEAD(dispose);
1240 
1241 		list_lru_walk(&sb->s_dentry_lru,
1242 			dentry_lru_isolate_shrink, &dispose, 1024);
1243 		shrink_dentry_list(&dispose);
1244 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1245 }
1246 EXPORT_SYMBOL(shrink_dcache_sb);
1247 
1248 /**
1249  * enum d_walk_ret - action to talke during tree walk
1250  * @D_WALK_CONTINUE:	contrinue walk
1251  * @D_WALK_QUIT:	quit walk
1252  * @D_WALK_NORETRY:	quit when retry is needed
1253  * @D_WALK_SKIP:	skip this dentry and its children
1254  */
1255 enum d_walk_ret {
1256 	D_WALK_CONTINUE,
1257 	D_WALK_QUIT,
1258 	D_WALK_NORETRY,
1259 	D_WALK_SKIP,
1260 };
1261 
1262 /**
1263  * d_walk - walk the dentry tree
1264  * @parent:	start of walk
1265  * @data:	data passed to @enter() and @finish()
1266  * @enter:	callback when first entering the dentry
1267  *
1268  * The @enter() callbacks are called with d_lock held.
1269  */
d_walk(struct dentry * parent,void * data,enum d_walk_ret (* enter)(void *,struct dentry *))1270 static void d_walk(struct dentry *parent, void *data,
1271 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1272 {
1273 	struct dentry *this_parent;
1274 	struct list_head *next;
1275 	unsigned seq = 0;
1276 	enum d_walk_ret ret;
1277 	bool retry = true;
1278 
1279 again:
1280 	read_seqbegin_or_lock(&rename_lock, &seq);
1281 	this_parent = parent;
1282 	spin_lock(&this_parent->d_lock);
1283 
1284 	ret = enter(data, this_parent);
1285 	switch (ret) {
1286 	case D_WALK_CONTINUE:
1287 		break;
1288 	case D_WALK_QUIT:
1289 	case D_WALK_SKIP:
1290 		goto out_unlock;
1291 	case D_WALK_NORETRY:
1292 		retry = false;
1293 		break;
1294 	}
1295 repeat:
1296 	next = this_parent->d_subdirs.next;
1297 resume:
1298 	while (next != &this_parent->d_subdirs) {
1299 		struct list_head *tmp = next;
1300 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1301 		next = tmp->next;
1302 
1303 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1304 			continue;
1305 
1306 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1307 
1308 		ret = enter(data, dentry);
1309 		switch (ret) {
1310 		case D_WALK_CONTINUE:
1311 			break;
1312 		case D_WALK_QUIT:
1313 			spin_unlock(&dentry->d_lock);
1314 			goto out_unlock;
1315 		case D_WALK_NORETRY:
1316 			retry = false;
1317 			break;
1318 		case D_WALK_SKIP:
1319 			spin_unlock(&dentry->d_lock);
1320 			continue;
1321 		}
1322 
1323 		if (!list_empty(&dentry->d_subdirs)) {
1324 			spin_unlock(&this_parent->d_lock);
1325 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1326 			this_parent = dentry;
1327 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1328 			goto repeat;
1329 		}
1330 		spin_unlock(&dentry->d_lock);
1331 	}
1332 	/*
1333 	 * All done at this level ... ascend and resume the search.
1334 	 */
1335 	rcu_read_lock();
1336 ascend:
1337 	if (this_parent != parent) {
1338 		struct dentry *child = this_parent;
1339 		this_parent = child->d_parent;
1340 
1341 		spin_unlock(&child->d_lock);
1342 		spin_lock(&this_parent->d_lock);
1343 
1344 		/* might go back up the wrong parent if we have had a rename. */
1345 		if (need_seqretry(&rename_lock, seq))
1346 			goto rename_retry;
1347 		/* go into the first sibling still alive */
1348 		do {
1349 			next = child->d_child.next;
1350 			if (next == &this_parent->d_subdirs)
1351 				goto ascend;
1352 			child = list_entry(next, struct dentry, d_child);
1353 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1354 		rcu_read_unlock();
1355 		goto resume;
1356 	}
1357 	if (need_seqretry(&rename_lock, seq))
1358 		goto rename_retry;
1359 	rcu_read_unlock();
1360 
1361 out_unlock:
1362 	spin_unlock(&this_parent->d_lock);
1363 	done_seqretry(&rename_lock, seq);
1364 	return;
1365 
1366 rename_retry:
1367 	spin_unlock(&this_parent->d_lock);
1368 	rcu_read_unlock();
1369 	BUG_ON(seq & 1);
1370 	if (!retry)
1371 		return;
1372 	seq = 1;
1373 	goto again;
1374 }
1375 
1376 struct check_mount {
1377 	struct vfsmount *mnt;
1378 	unsigned int mounted;
1379 };
1380 
path_check_mount(void * data,struct dentry * dentry)1381 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1382 {
1383 	struct check_mount *info = data;
1384 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1385 
1386 	if (likely(!d_mountpoint(dentry)))
1387 		return D_WALK_CONTINUE;
1388 	if (__path_is_mountpoint(&path)) {
1389 		info->mounted = 1;
1390 		return D_WALK_QUIT;
1391 	}
1392 	return D_WALK_CONTINUE;
1393 }
1394 
1395 /**
1396  * path_has_submounts - check for mounts over a dentry in the
1397  *                      current namespace.
1398  * @parent: path to check.
1399  *
1400  * Return true if the parent or its subdirectories contain
1401  * a mount point in the current namespace.
1402  */
path_has_submounts(const struct path * parent)1403 int path_has_submounts(const struct path *parent)
1404 {
1405 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1406 
1407 	read_seqlock_excl(&mount_lock);
1408 	d_walk(parent->dentry, &data, path_check_mount);
1409 	read_sequnlock_excl(&mount_lock);
1410 
1411 	return data.mounted;
1412 }
1413 EXPORT_SYMBOL(path_has_submounts);
1414 
1415 /*
1416  * Called by mount code to set a mountpoint and check if the mountpoint is
1417  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1418  * subtree can become unreachable).
1419  *
1420  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1421  * this reason take rename_lock and d_lock on dentry and ancestors.
1422  */
d_set_mounted(struct dentry * dentry)1423 int d_set_mounted(struct dentry *dentry)
1424 {
1425 	struct dentry *p;
1426 	int ret = -ENOENT;
1427 	write_seqlock(&rename_lock);
1428 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1429 		/* Need exclusion wrt. d_invalidate() */
1430 		spin_lock(&p->d_lock);
1431 		if (unlikely(d_unhashed(p))) {
1432 			spin_unlock(&p->d_lock);
1433 			goto out;
1434 		}
1435 		spin_unlock(&p->d_lock);
1436 	}
1437 	spin_lock(&dentry->d_lock);
1438 	if (!d_unlinked(dentry)) {
1439 		ret = -EBUSY;
1440 		if (!d_mountpoint(dentry)) {
1441 			dentry->d_flags |= DCACHE_MOUNTED;
1442 			ret = 0;
1443 		}
1444 	}
1445  	spin_unlock(&dentry->d_lock);
1446 out:
1447 	write_sequnlock(&rename_lock);
1448 	return ret;
1449 }
1450 
1451 /*
1452  * Search the dentry child list of the specified parent,
1453  * and move any unused dentries to the end of the unused
1454  * list for prune_dcache(). We descend to the next level
1455  * whenever the d_subdirs list is non-empty and continue
1456  * searching.
1457  *
1458  * It returns zero iff there are no unused children,
1459  * otherwise  it returns the number of children moved to
1460  * the end of the unused list. This may not be the total
1461  * number of unused children, because select_parent can
1462  * drop the lock and return early due to latency
1463  * constraints.
1464  */
1465 
1466 struct select_data {
1467 	struct dentry *start;
1468 	union {
1469 		long found;
1470 		struct dentry *victim;
1471 	};
1472 	struct list_head dispose;
1473 };
1474 
select_collect(void * _data,struct dentry * dentry)1475 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1476 {
1477 	struct select_data *data = _data;
1478 	enum d_walk_ret ret = D_WALK_CONTINUE;
1479 
1480 	if (data->start == dentry)
1481 		goto out;
1482 
1483 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1484 		data->found++;
1485 	} else {
1486 		if (dentry->d_flags & DCACHE_LRU_LIST)
1487 			d_lru_del(dentry);
1488 		if (!dentry->d_lockref.count) {
1489 			d_shrink_add(dentry, &data->dispose);
1490 			data->found++;
1491 		}
1492 	}
1493 	/*
1494 	 * We can return to the caller if we have found some (this
1495 	 * ensures forward progress). We'll be coming back to find
1496 	 * the rest.
1497 	 */
1498 	if (!list_empty(&data->dispose))
1499 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1500 out:
1501 	return ret;
1502 }
1503 
select_collect2(void * _data,struct dentry * dentry)1504 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1505 {
1506 	struct select_data *data = _data;
1507 	enum d_walk_ret ret = D_WALK_CONTINUE;
1508 
1509 	if (data->start == dentry)
1510 		goto out;
1511 
1512 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1513 		if (!dentry->d_lockref.count) {
1514 			rcu_read_lock();
1515 			data->victim = dentry;
1516 			return D_WALK_QUIT;
1517 		}
1518 	} else {
1519 		if (dentry->d_flags & DCACHE_LRU_LIST)
1520 			d_lru_del(dentry);
1521 		if (!dentry->d_lockref.count)
1522 			d_shrink_add(dentry, &data->dispose);
1523 	}
1524 	/*
1525 	 * We can return to the caller if we have found some (this
1526 	 * ensures forward progress). We'll be coming back to find
1527 	 * the rest.
1528 	 */
1529 	if (!list_empty(&data->dispose))
1530 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1531 out:
1532 	return ret;
1533 }
1534 
1535 /**
1536  * shrink_dcache_parent - prune dcache
1537  * @parent: parent of entries to prune
1538  *
1539  * Prune the dcache to remove unused children of the parent dentry.
1540  */
shrink_dcache_parent(struct dentry * parent)1541 void shrink_dcache_parent(struct dentry *parent)
1542 {
1543 	for (;;) {
1544 		struct select_data data = {.start = parent};
1545 
1546 		INIT_LIST_HEAD(&data.dispose);
1547 		d_walk(parent, &data, select_collect);
1548 
1549 		if (!list_empty(&data.dispose)) {
1550 			shrink_dentry_list(&data.dispose);
1551 			continue;
1552 		}
1553 
1554 		cond_resched();
1555 		if (!data.found)
1556 			break;
1557 		data.victim = NULL;
1558 		d_walk(parent, &data, select_collect2);
1559 		if (data.victim) {
1560 			struct dentry *parent;
1561 			spin_lock(&data.victim->d_lock);
1562 			if (!shrink_lock_dentry(data.victim)) {
1563 				spin_unlock(&data.victim->d_lock);
1564 				rcu_read_unlock();
1565 			} else {
1566 				rcu_read_unlock();
1567 				parent = data.victim->d_parent;
1568 				if (parent != data.victim)
1569 					__dput_to_list(parent, &data.dispose);
1570 				__dentry_kill(data.victim);
1571 			}
1572 		}
1573 		if (!list_empty(&data.dispose))
1574 			shrink_dentry_list(&data.dispose);
1575 	}
1576 }
1577 EXPORT_SYMBOL(shrink_dcache_parent);
1578 
umount_check(void * _data,struct dentry * dentry)1579 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1580 {
1581 	/* it has busy descendents; complain about those instead */
1582 	if (!list_empty(&dentry->d_subdirs))
1583 		return D_WALK_CONTINUE;
1584 
1585 	/* root with refcount 1 is fine */
1586 	if (dentry == _data && dentry->d_lockref.count == 1)
1587 		return D_WALK_CONTINUE;
1588 
1589 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1590 			" still in use (%d) [unmount of %s %s]\n",
1591 		       dentry,
1592 		       dentry->d_inode ?
1593 		       dentry->d_inode->i_ino : 0UL,
1594 		       dentry,
1595 		       dentry->d_lockref.count,
1596 		       dentry->d_sb->s_type->name,
1597 		       dentry->d_sb->s_id);
1598 	WARN_ON(1);
1599 	return D_WALK_CONTINUE;
1600 }
1601 
do_one_tree(struct dentry * dentry)1602 static void do_one_tree(struct dentry *dentry)
1603 {
1604 	shrink_dcache_parent(dentry);
1605 	d_walk(dentry, dentry, umount_check);
1606 	d_drop(dentry);
1607 	dput(dentry);
1608 }
1609 
1610 /*
1611  * destroy the dentries attached to a superblock on unmounting
1612  */
shrink_dcache_for_umount(struct super_block * sb)1613 void shrink_dcache_for_umount(struct super_block *sb)
1614 {
1615 	struct dentry *dentry;
1616 
1617 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1618 
1619 	dentry = sb->s_root;
1620 	sb->s_root = NULL;
1621 	do_one_tree(dentry);
1622 
1623 	while (!hlist_bl_empty(&sb->s_roots)) {
1624 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1625 		do_one_tree(dentry);
1626 	}
1627 }
1628 
find_submount(void * _data,struct dentry * dentry)1629 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1630 {
1631 	struct dentry **victim = _data;
1632 	if (d_mountpoint(dentry)) {
1633 		__dget_dlock(dentry);
1634 		*victim = dentry;
1635 		return D_WALK_QUIT;
1636 	}
1637 	return D_WALK_CONTINUE;
1638 }
1639 
1640 /**
1641  * d_invalidate - detach submounts, prune dcache, and drop
1642  * @dentry: dentry to invalidate (aka detach, prune and drop)
1643  */
d_invalidate(struct dentry * dentry)1644 void d_invalidate(struct dentry *dentry)
1645 {
1646 	bool had_submounts = false;
1647 	spin_lock(&dentry->d_lock);
1648 	if (d_unhashed(dentry)) {
1649 		spin_unlock(&dentry->d_lock);
1650 		return;
1651 	}
1652 	__d_drop(dentry);
1653 	spin_unlock(&dentry->d_lock);
1654 
1655 	/* Negative dentries can be dropped without further checks */
1656 	if (!dentry->d_inode)
1657 		return;
1658 
1659 	shrink_dcache_parent(dentry);
1660 	for (;;) {
1661 		struct dentry *victim = NULL;
1662 		d_walk(dentry, &victim, find_submount);
1663 		if (!victim) {
1664 			if (had_submounts)
1665 				shrink_dcache_parent(dentry);
1666 			return;
1667 		}
1668 		had_submounts = true;
1669 		detach_mounts(victim);
1670 		dput(victim);
1671 	}
1672 }
1673 EXPORT_SYMBOL(d_invalidate);
1674 
1675 /**
1676  * __d_alloc	-	allocate a dcache entry
1677  * @sb: filesystem it will belong to
1678  * @name: qstr of the name
1679  *
1680  * Allocates a dentry. It returns %NULL if there is insufficient memory
1681  * available. On a success the dentry is returned. The name passed in is
1682  * copied and the copy passed in may be reused after this call.
1683  */
1684 
__d_alloc(struct super_block * sb,const struct qstr * name)1685 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1686 {
1687 	struct dentry *dentry;
1688 	char *dname;
1689 	int err;
1690 
1691 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1692 	if (!dentry)
1693 		return NULL;
1694 
1695 	/*
1696 	 * We guarantee that the inline name is always NUL-terminated.
1697 	 * This way the memcpy() done by the name switching in rename
1698 	 * will still always have a NUL at the end, even if we might
1699 	 * be overwriting an internal NUL character
1700 	 */
1701 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1702 	if (unlikely(!name)) {
1703 		name = &slash_name;
1704 		dname = dentry->d_iname;
1705 	} else if (name->len > DNAME_INLINE_LEN-1) {
1706 		size_t size = offsetof(struct external_name, name[1]);
1707 		struct external_name *p = kmalloc(size + name->len,
1708 						  GFP_KERNEL_ACCOUNT |
1709 						  __GFP_RECLAIMABLE);
1710 		if (!p) {
1711 			kmem_cache_free(dentry_cache, dentry);
1712 			return NULL;
1713 		}
1714 		atomic_set(&p->u.count, 1);
1715 		dname = p->name;
1716 	} else  {
1717 		dname = dentry->d_iname;
1718 	}
1719 
1720 	dentry->d_name.len = name->len;
1721 	dentry->d_name.hash = name->hash;
1722 	memcpy(dname, name->name, name->len);
1723 	dname[name->len] = 0;
1724 
1725 	/* Make sure we always see the terminating NUL character */
1726 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1727 
1728 	dentry->d_lockref.count = 1;
1729 	dentry->d_flags = 0;
1730 	spin_lock_init(&dentry->d_lock);
1731 	seqcount_init(&dentry->d_seq);
1732 	dentry->d_inode = NULL;
1733 	dentry->d_parent = dentry;
1734 	dentry->d_sb = sb;
1735 	dentry->d_op = NULL;
1736 	dentry->d_fsdata = NULL;
1737 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1738 	INIT_LIST_HEAD(&dentry->d_lru);
1739 	INIT_LIST_HEAD(&dentry->d_subdirs);
1740 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1741 	INIT_LIST_HEAD(&dentry->d_child);
1742 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1743 
1744 	if (dentry->d_op && dentry->d_op->d_init) {
1745 		err = dentry->d_op->d_init(dentry);
1746 		if (err) {
1747 			if (dname_external(dentry))
1748 				kfree(external_name(dentry));
1749 			kmem_cache_free(dentry_cache, dentry);
1750 			return NULL;
1751 		}
1752 	}
1753 
1754 	this_cpu_inc(nr_dentry);
1755 
1756 	return dentry;
1757 }
1758 
1759 /**
1760  * d_alloc	-	allocate a dcache entry
1761  * @parent: parent of entry to allocate
1762  * @name: qstr of the name
1763  *
1764  * Allocates a dentry. It returns %NULL if there is insufficient memory
1765  * available. On a success the dentry is returned. The name passed in is
1766  * copied and the copy passed in may be reused after this call.
1767  */
d_alloc(struct dentry * parent,const struct qstr * name)1768 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1769 {
1770 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1771 	if (!dentry)
1772 		return NULL;
1773 	spin_lock(&parent->d_lock);
1774 	/*
1775 	 * don't need child lock because it is not subject
1776 	 * to concurrency here
1777 	 */
1778 	__dget_dlock(parent);
1779 	dentry->d_parent = parent;
1780 	list_add(&dentry->d_child, &parent->d_subdirs);
1781 	spin_unlock(&parent->d_lock);
1782 
1783 	return dentry;
1784 }
1785 EXPORT_SYMBOL(d_alloc);
1786 
d_alloc_anon(struct super_block * sb)1787 struct dentry *d_alloc_anon(struct super_block *sb)
1788 {
1789 	return __d_alloc(sb, NULL);
1790 }
1791 EXPORT_SYMBOL(d_alloc_anon);
1792 
d_alloc_cursor(struct dentry * parent)1793 struct dentry *d_alloc_cursor(struct dentry * parent)
1794 {
1795 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1796 	if (dentry) {
1797 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1798 		dentry->d_parent = dget(parent);
1799 	}
1800 	return dentry;
1801 }
1802 
1803 /**
1804  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1805  * @sb: the superblock
1806  * @name: qstr of the name
1807  *
1808  * For a filesystem that just pins its dentries in memory and never
1809  * performs lookups at all, return an unhashed IS_ROOT dentry.
1810  * This is used for pipes, sockets et.al. - the stuff that should
1811  * never be anyone's children or parents.  Unlike all other
1812  * dentries, these will not have RCU delay between dropping the
1813  * last reference and freeing them.
1814  *
1815  * The only user is alloc_file_pseudo() and that's what should
1816  * be considered a public interface.  Don't use directly.
1817  */
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1818 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1819 {
1820 	struct dentry *dentry = __d_alloc(sb, name);
1821 	if (likely(dentry))
1822 		dentry->d_flags |= DCACHE_NORCU;
1823 	return dentry;
1824 }
1825 
d_alloc_name(struct dentry * parent,const char * name)1826 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1827 {
1828 	struct qstr q;
1829 
1830 	q.name = name;
1831 	q.hash_len = hashlen_string(parent, name);
1832 	return d_alloc(parent, &q);
1833 }
1834 EXPORT_SYMBOL(d_alloc_name);
1835 
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1836 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1837 {
1838 	WARN_ON_ONCE(dentry->d_op);
1839 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1840 				DCACHE_OP_COMPARE	|
1841 				DCACHE_OP_REVALIDATE	|
1842 				DCACHE_OP_WEAK_REVALIDATE	|
1843 				DCACHE_OP_DELETE	|
1844 				DCACHE_OP_REAL));
1845 	dentry->d_op = op;
1846 	if (!op)
1847 		return;
1848 	if (op->d_hash)
1849 		dentry->d_flags |= DCACHE_OP_HASH;
1850 	if (op->d_compare)
1851 		dentry->d_flags |= DCACHE_OP_COMPARE;
1852 	if (op->d_revalidate)
1853 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1854 	if (op->d_weak_revalidate)
1855 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1856 	if (op->d_delete)
1857 		dentry->d_flags |= DCACHE_OP_DELETE;
1858 	if (op->d_prune)
1859 		dentry->d_flags |= DCACHE_OP_PRUNE;
1860 	if (op->d_real)
1861 		dentry->d_flags |= DCACHE_OP_REAL;
1862 
1863 }
1864 EXPORT_SYMBOL(d_set_d_op);
1865 
1866 
1867 /*
1868  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1869  * @dentry - The dentry to mark
1870  *
1871  * Mark a dentry as falling through to the lower layer (as set with
1872  * d_pin_lower()).  This flag may be recorded on the medium.
1873  */
d_set_fallthru(struct dentry * dentry)1874 void d_set_fallthru(struct dentry *dentry)
1875 {
1876 	spin_lock(&dentry->d_lock);
1877 	dentry->d_flags |= DCACHE_FALLTHRU;
1878 	spin_unlock(&dentry->d_lock);
1879 }
1880 EXPORT_SYMBOL(d_set_fallthru);
1881 
d_flags_for_inode(struct inode * inode)1882 static unsigned d_flags_for_inode(struct inode *inode)
1883 {
1884 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1885 
1886 	if (!inode)
1887 		return DCACHE_MISS_TYPE;
1888 
1889 	if (S_ISDIR(inode->i_mode)) {
1890 		add_flags = DCACHE_DIRECTORY_TYPE;
1891 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1892 			if (unlikely(!inode->i_op->lookup))
1893 				add_flags = DCACHE_AUTODIR_TYPE;
1894 			else
1895 				inode->i_opflags |= IOP_LOOKUP;
1896 		}
1897 		goto type_determined;
1898 	}
1899 
1900 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1901 		if (unlikely(inode->i_op->get_link)) {
1902 			add_flags = DCACHE_SYMLINK_TYPE;
1903 			goto type_determined;
1904 		}
1905 		inode->i_opflags |= IOP_NOFOLLOW;
1906 	}
1907 
1908 	if (unlikely(!S_ISREG(inode->i_mode)))
1909 		add_flags = DCACHE_SPECIAL_TYPE;
1910 
1911 type_determined:
1912 	if (unlikely(IS_AUTOMOUNT(inode)))
1913 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1914 	return add_flags;
1915 }
1916 
__d_instantiate(struct dentry * dentry,struct inode * inode)1917 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1918 {
1919 	unsigned add_flags = d_flags_for_inode(inode);
1920 	WARN_ON(d_in_lookup(dentry));
1921 
1922 	spin_lock(&dentry->d_lock);
1923 	/*
1924 	 * Decrement negative dentry count if it was in the LRU list.
1925 	 */
1926 	if (dentry->d_flags & DCACHE_LRU_LIST)
1927 		this_cpu_dec(nr_dentry_negative);
1928 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1929 	raw_write_seqcount_begin(&dentry->d_seq);
1930 	__d_set_inode_and_type(dentry, inode, add_flags);
1931 	raw_write_seqcount_end(&dentry->d_seq);
1932 	fsnotify_update_flags(dentry);
1933 	spin_unlock(&dentry->d_lock);
1934 }
1935 
1936 /**
1937  * d_instantiate - fill in inode information for a dentry
1938  * @entry: dentry to complete
1939  * @inode: inode to attach to this dentry
1940  *
1941  * Fill in inode information in the entry.
1942  *
1943  * This turns negative dentries into productive full members
1944  * of society.
1945  *
1946  * NOTE! This assumes that the inode count has been incremented
1947  * (or otherwise set) by the caller to indicate that it is now
1948  * in use by the dcache.
1949  */
1950 
d_instantiate(struct dentry * entry,struct inode * inode)1951 void d_instantiate(struct dentry *entry, struct inode * inode)
1952 {
1953 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1954 	if (inode) {
1955 		security_d_instantiate(entry, inode);
1956 		spin_lock(&inode->i_lock);
1957 		__d_instantiate(entry, inode);
1958 		spin_unlock(&inode->i_lock);
1959 	}
1960 }
1961 EXPORT_SYMBOL(d_instantiate);
1962 
1963 /*
1964  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1965  * with lockdep-related part of unlock_new_inode() done before
1966  * anything else.  Use that instead of open-coding d_instantiate()/
1967  * unlock_new_inode() combinations.
1968  */
d_instantiate_new(struct dentry * entry,struct inode * inode)1969 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1970 {
1971 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1972 	BUG_ON(!inode);
1973 	lockdep_annotate_inode_mutex_key(inode);
1974 	security_d_instantiate(entry, inode);
1975 	spin_lock(&inode->i_lock);
1976 	__d_instantiate(entry, inode);
1977 	WARN_ON(!(inode->i_state & I_NEW));
1978 	inode->i_state &= ~I_NEW & ~I_CREATING;
1979 	smp_mb();
1980 	wake_up_bit(&inode->i_state, __I_NEW);
1981 	spin_unlock(&inode->i_lock);
1982 }
1983 EXPORT_SYMBOL(d_instantiate_new);
1984 
d_make_root(struct inode * root_inode)1985 struct dentry *d_make_root(struct inode *root_inode)
1986 {
1987 	struct dentry *res = NULL;
1988 
1989 	if (root_inode) {
1990 		res = d_alloc_anon(root_inode->i_sb);
1991 		if (res)
1992 			d_instantiate(res, root_inode);
1993 		else
1994 			iput(root_inode);
1995 	}
1996 	return res;
1997 }
1998 EXPORT_SYMBOL(d_make_root);
1999 
__d_instantiate_anon(struct dentry * dentry,struct inode * inode,bool disconnected)2000 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2001 					   struct inode *inode,
2002 					   bool disconnected)
2003 {
2004 	struct dentry *res;
2005 	unsigned add_flags;
2006 
2007 	security_d_instantiate(dentry, inode);
2008 	spin_lock(&inode->i_lock);
2009 	res = __d_find_any_alias(inode);
2010 	if (res) {
2011 		spin_unlock(&inode->i_lock);
2012 		dput(dentry);
2013 		goto out_iput;
2014 	}
2015 
2016 	/* attach a disconnected dentry */
2017 	add_flags = d_flags_for_inode(inode);
2018 
2019 	if (disconnected)
2020 		add_flags |= DCACHE_DISCONNECTED;
2021 
2022 	spin_lock(&dentry->d_lock);
2023 	__d_set_inode_and_type(dentry, inode, add_flags);
2024 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2025 	if (!disconnected) {
2026 		hlist_bl_lock(&dentry->d_sb->s_roots);
2027 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2028 		hlist_bl_unlock(&dentry->d_sb->s_roots);
2029 	}
2030 	spin_unlock(&dentry->d_lock);
2031 	spin_unlock(&inode->i_lock);
2032 
2033 	return dentry;
2034 
2035  out_iput:
2036 	iput(inode);
2037 	return res;
2038 }
2039 
d_instantiate_anon(struct dentry * dentry,struct inode * inode)2040 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2041 {
2042 	return __d_instantiate_anon(dentry, inode, true);
2043 }
2044 EXPORT_SYMBOL(d_instantiate_anon);
2045 
__d_obtain_alias(struct inode * inode,bool disconnected)2046 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2047 {
2048 	struct dentry *tmp;
2049 	struct dentry *res;
2050 
2051 	if (!inode)
2052 		return ERR_PTR(-ESTALE);
2053 	if (IS_ERR(inode))
2054 		return ERR_CAST(inode);
2055 
2056 	res = d_find_any_alias(inode);
2057 	if (res)
2058 		goto out_iput;
2059 
2060 	tmp = d_alloc_anon(inode->i_sb);
2061 	if (!tmp) {
2062 		res = ERR_PTR(-ENOMEM);
2063 		goto out_iput;
2064 	}
2065 
2066 	return __d_instantiate_anon(tmp, inode, disconnected);
2067 
2068 out_iput:
2069 	iput(inode);
2070 	return res;
2071 }
2072 
2073 /**
2074  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2075  * @inode: inode to allocate the dentry for
2076  *
2077  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2078  * similar open by handle operations.  The returned dentry may be anonymous,
2079  * or may have a full name (if the inode was already in the cache).
2080  *
2081  * When called on a directory inode, we must ensure that the inode only ever
2082  * has one dentry.  If a dentry is found, that is returned instead of
2083  * allocating a new one.
2084  *
2085  * On successful return, the reference to the inode has been transferred
2086  * to the dentry.  In case of an error the reference on the inode is released.
2087  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2088  * be passed in and the error will be propagated to the return value,
2089  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2090  */
d_obtain_alias(struct inode * inode)2091 struct dentry *d_obtain_alias(struct inode *inode)
2092 {
2093 	return __d_obtain_alias(inode, true);
2094 }
2095 EXPORT_SYMBOL(d_obtain_alias);
2096 
2097 /**
2098  * d_obtain_root - find or allocate a dentry for a given inode
2099  * @inode: inode to allocate the dentry for
2100  *
2101  * Obtain an IS_ROOT dentry for the root of a filesystem.
2102  *
2103  * We must ensure that directory inodes only ever have one dentry.  If a
2104  * dentry is found, that is returned instead of allocating a new one.
2105  *
2106  * On successful return, the reference to the inode has been transferred
2107  * to the dentry.  In case of an error the reference on the inode is
2108  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2109  * error will be propagate to the return value, with a %NULL @inode
2110  * replaced by ERR_PTR(-ESTALE).
2111  */
d_obtain_root(struct inode * inode)2112 struct dentry *d_obtain_root(struct inode *inode)
2113 {
2114 	return __d_obtain_alias(inode, false);
2115 }
2116 EXPORT_SYMBOL(d_obtain_root);
2117 
2118 /**
2119  * d_add_ci - lookup or allocate new dentry with case-exact name
2120  * @inode:  the inode case-insensitive lookup has found
2121  * @dentry: the negative dentry that was passed to the parent's lookup func
2122  * @name:   the case-exact name to be associated with the returned dentry
2123  *
2124  * This is to avoid filling the dcache with case-insensitive names to the
2125  * same inode, only the actual correct case is stored in the dcache for
2126  * case-insensitive filesystems.
2127  *
2128  * For a case-insensitive lookup match and if the the case-exact dentry
2129  * already exists in in the dcache, use it and return it.
2130  *
2131  * If no entry exists with the exact case name, allocate new dentry with
2132  * the exact case, and return the spliced entry.
2133  */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)2134 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2135 			struct qstr *name)
2136 {
2137 	struct dentry *found, *res;
2138 
2139 	/*
2140 	 * First check if a dentry matching the name already exists,
2141 	 * if not go ahead and create it now.
2142 	 */
2143 	found = d_hash_and_lookup(dentry->d_parent, name);
2144 	if (found) {
2145 		iput(inode);
2146 		return found;
2147 	}
2148 	if (d_in_lookup(dentry)) {
2149 		found = d_alloc_parallel(dentry->d_parent, name,
2150 					dentry->d_wait);
2151 		if (IS_ERR(found) || !d_in_lookup(found)) {
2152 			iput(inode);
2153 			return found;
2154 		}
2155 	} else {
2156 		found = d_alloc(dentry->d_parent, name);
2157 		if (!found) {
2158 			iput(inode);
2159 			return ERR_PTR(-ENOMEM);
2160 		}
2161 	}
2162 	res = d_splice_alias(inode, found);
2163 	if (res) {
2164 		dput(found);
2165 		return res;
2166 	}
2167 	return found;
2168 }
2169 EXPORT_SYMBOL(d_add_ci);
2170 
2171 
d_same_name(const struct dentry * dentry,const struct dentry * parent,const struct qstr * name)2172 static inline bool d_same_name(const struct dentry *dentry,
2173 				const struct dentry *parent,
2174 				const struct qstr *name)
2175 {
2176 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2177 		if (dentry->d_name.len != name->len)
2178 			return false;
2179 		return dentry_cmp(dentry, name->name, name->len) == 0;
2180 	}
2181 	return parent->d_op->d_compare(dentry,
2182 				       dentry->d_name.len, dentry->d_name.name,
2183 				       name) == 0;
2184 }
2185 
2186 /**
2187  * __d_lookup_rcu - search for a dentry (racy, store-free)
2188  * @parent: parent dentry
2189  * @name: qstr of name we wish to find
2190  * @seqp: returns d_seq value at the point where the dentry was found
2191  * Returns: dentry, or NULL
2192  *
2193  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2194  * resolution (store-free path walking) design described in
2195  * Documentation/filesystems/path-lookup.txt.
2196  *
2197  * This is not to be used outside core vfs.
2198  *
2199  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2200  * held, and rcu_read_lock held. The returned dentry must not be stored into
2201  * without taking d_lock and checking d_seq sequence count against @seq
2202  * returned here.
2203  *
2204  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2205  * function.
2206  *
2207  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2208  * the returned dentry, so long as its parent's seqlock is checked after the
2209  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2210  * is formed, giving integrity down the path walk.
2211  *
2212  * NOTE! The caller *has* to check the resulting dentry against the sequence
2213  * number we've returned before using any of the resulting dentry state!
2214  */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2215 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2216 				const struct qstr *name,
2217 				unsigned *seqp)
2218 {
2219 	u64 hashlen = name->hash_len;
2220 	const unsigned char *str = name->name;
2221 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2222 	struct hlist_bl_node *node;
2223 	struct dentry *dentry;
2224 
2225 	/*
2226 	 * Note: There is significant duplication with __d_lookup_rcu which is
2227 	 * required to prevent single threaded performance regressions
2228 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2229 	 * Keep the two functions in sync.
2230 	 */
2231 
2232 	/*
2233 	 * The hash list is protected using RCU.
2234 	 *
2235 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2236 	 * races with d_move().
2237 	 *
2238 	 * It is possible that concurrent renames can mess up our list
2239 	 * walk here and result in missing our dentry, resulting in the
2240 	 * false-negative result. d_lookup() protects against concurrent
2241 	 * renames using rename_lock seqlock.
2242 	 *
2243 	 * See Documentation/filesystems/path-lookup.txt for more details.
2244 	 */
2245 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2246 		unsigned seq;
2247 
2248 seqretry:
2249 		/*
2250 		 * The dentry sequence count protects us from concurrent
2251 		 * renames, and thus protects parent and name fields.
2252 		 *
2253 		 * The caller must perform a seqcount check in order
2254 		 * to do anything useful with the returned dentry.
2255 		 *
2256 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2257 		 * we don't wait for the sequence count to stabilize if it
2258 		 * is in the middle of a sequence change. If we do the slow
2259 		 * dentry compare, we will do seqretries until it is stable,
2260 		 * and if we end up with a successful lookup, we actually
2261 		 * want to exit RCU lookup anyway.
2262 		 *
2263 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2264 		 * we are still guaranteed NUL-termination of ->d_name.name.
2265 		 */
2266 		seq = raw_seqcount_begin(&dentry->d_seq);
2267 		if (dentry->d_parent != parent)
2268 			continue;
2269 		if (d_unhashed(dentry))
2270 			continue;
2271 
2272 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2273 			int tlen;
2274 			const char *tname;
2275 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2276 				continue;
2277 			tlen = dentry->d_name.len;
2278 			tname = dentry->d_name.name;
2279 			/* we want a consistent (name,len) pair */
2280 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2281 				cpu_relax();
2282 				goto seqretry;
2283 			}
2284 			if (parent->d_op->d_compare(dentry,
2285 						    tlen, tname, name) != 0)
2286 				continue;
2287 		} else {
2288 			if (dentry->d_name.hash_len != hashlen)
2289 				continue;
2290 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2291 				continue;
2292 		}
2293 		*seqp = seq;
2294 		return dentry;
2295 	}
2296 	return NULL;
2297 }
2298 
2299 /**
2300  * d_lookup - search for a dentry
2301  * @parent: parent dentry
2302  * @name: qstr of name we wish to find
2303  * Returns: dentry, or NULL
2304  *
2305  * d_lookup searches the children of the parent dentry for the name in
2306  * question. If the dentry is found its reference count is incremented and the
2307  * dentry is returned. The caller must use dput to free the entry when it has
2308  * finished using it. %NULL is returned if the dentry does not exist.
2309  */
d_lookup(const struct dentry * parent,const struct qstr * name)2310 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2311 {
2312 	struct dentry *dentry;
2313 	unsigned seq;
2314 
2315 	do {
2316 		seq = read_seqbegin(&rename_lock);
2317 		dentry = __d_lookup(parent, name);
2318 		if (dentry)
2319 			break;
2320 	} while (read_seqretry(&rename_lock, seq));
2321 	return dentry;
2322 }
2323 EXPORT_SYMBOL(d_lookup);
2324 
2325 /**
2326  * __d_lookup - search for a dentry (racy)
2327  * @parent: parent dentry
2328  * @name: qstr of name we wish to find
2329  * Returns: dentry, or NULL
2330  *
2331  * __d_lookup is like d_lookup, however it may (rarely) return a
2332  * false-negative result due to unrelated rename activity.
2333  *
2334  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2335  * however it must be used carefully, eg. with a following d_lookup in
2336  * the case of failure.
2337  *
2338  * __d_lookup callers must be commented.
2339  */
__d_lookup(const struct dentry * parent,const struct qstr * name)2340 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2341 {
2342 	unsigned int hash = name->hash;
2343 	struct hlist_bl_head *b = d_hash(hash);
2344 	struct hlist_bl_node *node;
2345 	struct dentry *found = NULL;
2346 	struct dentry *dentry;
2347 
2348 	/*
2349 	 * Note: There is significant duplication with __d_lookup_rcu which is
2350 	 * required to prevent single threaded performance regressions
2351 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2352 	 * Keep the two functions in sync.
2353 	 */
2354 
2355 	/*
2356 	 * The hash list is protected using RCU.
2357 	 *
2358 	 * Take d_lock when comparing a candidate dentry, to avoid races
2359 	 * with d_move().
2360 	 *
2361 	 * It is possible that concurrent renames can mess up our list
2362 	 * walk here and result in missing our dentry, resulting in the
2363 	 * false-negative result. d_lookup() protects against concurrent
2364 	 * renames using rename_lock seqlock.
2365 	 *
2366 	 * See Documentation/filesystems/path-lookup.txt for more details.
2367 	 */
2368 	rcu_read_lock();
2369 
2370 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2371 
2372 		if (dentry->d_name.hash != hash)
2373 			continue;
2374 
2375 		spin_lock(&dentry->d_lock);
2376 		if (dentry->d_parent != parent)
2377 			goto next;
2378 		if (d_unhashed(dentry))
2379 			goto next;
2380 
2381 		if (!d_same_name(dentry, parent, name))
2382 			goto next;
2383 
2384 		dentry->d_lockref.count++;
2385 		found = dentry;
2386 		spin_unlock(&dentry->d_lock);
2387 		break;
2388 next:
2389 		spin_unlock(&dentry->d_lock);
2390  	}
2391  	rcu_read_unlock();
2392 
2393  	return found;
2394 }
2395 
2396 /**
2397  * d_hash_and_lookup - hash the qstr then search for a dentry
2398  * @dir: Directory to search in
2399  * @name: qstr of name we wish to find
2400  *
2401  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2402  */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)2403 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2404 {
2405 	/*
2406 	 * Check for a fs-specific hash function. Note that we must
2407 	 * calculate the standard hash first, as the d_op->d_hash()
2408 	 * routine may choose to leave the hash value unchanged.
2409 	 */
2410 	name->hash = full_name_hash(dir, name->name, name->len);
2411 	if (dir->d_flags & DCACHE_OP_HASH) {
2412 		int err = dir->d_op->d_hash(dir, name);
2413 		if (unlikely(err < 0))
2414 			return ERR_PTR(err);
2415 	}
2416 	return d_lookup(dir, name);
2417 }
2418 EXPORT_SYMBOL(d_hash_and_lookup);
2419 
2420 /*
2421  * When a file is deleted, we have two options:
2422  * - turn this dentry into a negative dentry
2423  * - unhash this dentry and free it.
2424  *
2425  * Usually, we want to just turn this into
2426  * a negative dentry, but if anybody else is
2427  * currently using the dentry or the inode
2428  * we can't do that and we fall back on removing
2429  * it from the hash queues and waiting for
2430  * it to be deleted later when it has no users
2431  */
2432 
2433 /**
2434  * d_delete - delete a dentry
2435  * @dentry: The dentry to delete
2436  *
2437  * Turn the dentry into a negative dentry if possible, otherwise
2438  * remove it from the hash queues so it can be deleted later
2439  */
2440 
d_delete(struct dentry * dentry)2441 void d_delete(struct dentry * dentry)
2442 {
2443 	struct inode *inode = dentry->d_inode;
2444 
2445 	spin_lock(&inode->i_lock);
2446 	spin_lock(&dentry->d_lock);
2447 	/*
2448 	 * Are we the only user?
2449 	 */
2450 	if (dentry->d_lockref.count == 1) {
2451 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2452 		dentry_unlink_inode(dentry);
2453 	} else {
2454 		__d_drop(dentry);
2455 		spin_unlock(&dentry->d_lock);
2456 		spin_unlock(&inode->i_lock);
2457 	}
2458 }
2459 EXPORT_SYMBOL(d_delete);
2460 
__d_rehash(struct dentry * entry)2461 static void __d_rehash(struct dentry *entry)
2462 {
2463 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2464 
2465 	hlist_bl_lock(b);
2466 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2467 	hlist_bl_unlock(b);
2468 }
2469 
2470 /**
2471  * d_rehash	- add an entry back to the hash
2472  * @entry: dentry to add to the hash
2473  *
2474  * Adds a dentry to the hash according to its name.
2475  */
2476 
d_rehash(struct dentry * entry)2477 void d_rehash(struct dentry * entry)
2478 {
2479 	spin_lock(&entry->d_lock);
2480 	__d_rehash(entry);
2481 	spin_unlock(&entry->d_lock);
2482 }
2483 EXPORT_SYMBOL(d_rehash);
2484 
start_dir_add(struct inode * dir)2485 static inline unsigned start_dir_add(struct inode *dir)
2486 {
2487 
2488 	for (;;) {
2489 		unsigned n = dir->i_dir_seq;
2490 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2491 			return n;
2492 		cpu_relax();
2493 	}
2494 }
2495 
end_dir_add(struct inode * dir,unsigned n)2496 static inline void end_dir_add(struct inode *dir, unsigned n)
2497 {
2498 	smp_store_release(&dir->i_dir_seq, n + 2);
2499 }
2500 
d_wait_lookup(struct dentry * dentry)2501 static void d_wait_lookup(struct dentry *dentry)
2502 {
2503 	if (d_in_lookup(dentry)) {
2504 		DECLARE_WAITQUEUE(wait, current);
2505 		add_wait_queue(dentry->d_wait, &wait);
2506 		do {
2507 			set_current_state(TASK_UNINTERRUPTIBLE);
2508 			spin_unlock(&dentry->d_lock);
2509 			schedule();
2510 			spin_lock(&dentry->d_lock);
2511 		} while (d_in_lookup(dentry));
2512 	}
2513 }
2514 
d_alloc_parallel(struct dentry * parent,const struct qstr * name,wait_queue_head_t * wq)2515 struct dentry *d_alloc_parallel(struct dentry *parent,
2516 				const struct qstr *name,
2517 				wait_queue_head_t *wq)
2518 {
2519 	unsigned int hash = name->hash;
2520 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2521 	struct hlist_bl_node *node;
2522 	struct dentry *new = d_alloc(parent, name);
2523 	struct dentry *dentry;
2524 	unsigned seq, r_seq, d_seq;
2525 
2526 	if (unlikely(!new))
2527 		return ERR_PTR(-ENOMEM);
2528 
2529 retry:
2530 	rcu_read_lock();
2531 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2532 	r_seq = read_seqbegin(&rename_lock);
2533 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2534 	if (unlikely(dentry)) {
2535 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2536 			rcu_read_unlock();
2537 			goto retry;
2538 		}
2539 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2540 			rcu_read_unlock();
2541 			dput(dentry);
2542 			goto retry;
2543 		}
2544 		rcu_read_unlock();
2545 		dput(new);
2546 		return dentry;
2547 	}
2548 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2549 		rcu_read_unlock();
2550 		goto retry;
2551 	}
2552 
2553 	if (unlikely(seq & 1)) {
2554 		rcu_read_unlock();
2555 		goto retry;
2556 	}
2557 
2558 	hlist_bl_lock(b);
2559 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2560 		hlist_bl_unlock(b);
2561 		rcu_read_unlock();
2562 		goto retry;
2563 	}
2564 	/*
2565 	 * No changes for the parent since the beginning of d_lookup().
2566 	 * Since all removals from the chain happen with hlist_bl_lock(),
2567 	 * any potential in-lookup matches are going to stay here until
2568 	 * we unlock the chain.  All fields are stable in everything
2569 	 * we encounter.
2570 	 */
2571 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2572 		if (dentry->d_name.hash != hash)
2573 			continue;
2574 		if (dentry->d_parent != parent)
2575 			continue;
2576 		if (!d_same_name(dentry, parent, name))
2577 			continue;
2578 		hlist_bl_unlock(b);
2579 		/* now we can try to grab a reference */
2580 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2581 			rcu_read_unlock();
2582 			goto retry;
2583 		}
2584 
2585 		rcu_read_unlock();
2586 		/*
2587 		 * somebody is likely to be still doing lookup for it;
2588 		 * wait for them to finish
2589 		 */
2590 		spin_lock(&dentry->d_lock);
2591 		d_wait_lookup(dentry);
2592 		/*
2593 		 * it's not in-lookup anymore; in principle we should repeat
2594 		 * everything from dcache lookup, but it's likely to be what
2595 		 * d_lookup() would've found anyway.  If it is, just return it;
2596 		 * otherwise we really have to repeat the whole thing.
2597 		 */
2598 		if (unlikely(dentry->d_name.hash != hash))
2599 			goto mismatch;
2600 		if (unlikely(dentry->d_parent != parent))
2601 			goto mismatch;
2602 		if (unlikely(d_unhashed(dentry)))
2603 			goto mismatch;
2604 		if (unlikely(!d_same_name(dentry, parent, name)))
2605 			goto mismatch;
2606 		/* OK, it *is* a hashed match; return it */
2607 		spin_unlock(&dentry->d_lock);
2608 		dput(new);
2609 		return dentry;
2610 	}
2611 	rcu_read_unlock();
2612 	/* we can't take ->d_lock here; it's OK, though. */
2613 	new->d_flags |= DCACHE_PAR_LOOKUP;
2614 	new->d_wait = wq;
2615 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2616 	hlist_bl_unlock(b);
2617 	return new;
2618 mismatch:
2619 	spin_unlock(&dentry->d_lock);
2620 	dput(dentry);
2621 	goto retry;
2622 }
2623 EXPORT_SYMBOL(d_alloc_parallel);
2624 
__d_lookup_done(struct dentry * dentry)2625 void __d_lookup_done(struct dentry *dentry)
2626 {
2627 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2628 						 dentry->d_name.hash);
2629 	hlist_bl_lock(b);
2630 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2631 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2632 	wake_up_all(dentry->d_wait);
2633 	dentry->d_wait = NULL;
2634 	hlist_bl_unlock(b);
2635 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2636 	INIT_LIST_HEAD(&dentry->d_lru);
2637 }
2638 EXPORT_SYMBOL(__d_lookup_done);
2639 
2640 /* inode->i_lock held if inode is non-NULL */
2641 
__d_add(struct dentry * dentry,struct inode * inode)2642 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2643 {
2644 	struct inode *dir = NULL;
2645 	unsigned n;
2646 	spin_lock(&dentry->d_lock);
2647 	if (unlikely(d_in_lookup(dentry))) {
2648 		dir = dentry->d_parent->d_inode;
2649 		n = start_dir_add(dir);
2650 		__d_lookup_done(dentry);
2651 	}
2652 	if (inode) {
2653 		unsigned add_flags = d_flags_for_inode(inode);
2654 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2655 		raw_write_seqcount_begin(&dentry->d_seq);
2656 		__d_set_inode_and_type(dentry, inode, add_flags);
2657 		raw_write_seqcount_end(&dentry->d_seq);
2658 		fsnotify_update_flags(dentry);
2659 	}
2660 	__d_rehash(dentry);
2661 	if (dir)
2662 		end_dir_add(dir, n);
2663 	spin_unlock(&dentry->d_lock);
2664 	if (inode)
2665 		spin_unlock(&inode->i_lock);
2666 }
2667 
2668 /**
2669  * d_add - add dentry to hash queues
2670  * @entry: dentry to add
2671  * @inode: The inode to attach to this dentry
2672  *
2673  * This adds the entry to the hash queues and initializes @inode.
2674  * The entry was actually filled in earlier during d_alloc().
2675  */
2676 
d_add(struct dentry * entry,struct inode * inode)2677 void d_add(struct dentry *entry, struct inode *inode)
2678 {
2679 	if (inode) {
2680 		security_d_instantiate(entry, inode);
2681 		spin_lock(&inode->i_lock);
2682 	}
2683 	__d_add(entry, inode);
2684 }
2685 EXPORT_SYMBOL(d_add);
2686 
2687 /**
2688  * d_exact_alias - find and hash an exact unhashed alias
2689  * @entry: dentry to add
2690  * @inode: The inode to go with this dentry
2691  *
2692  * If an unhashed dentry with the same name/parent and desired
2693  * inode already exists, hash and return it.  Otherwise, return
2694  * NULL.
2695  *
2696  * Parent directory should be locked.
2697  */
d_exact_alias(struct dentry * entry,struct inode * inode)2698 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2699 {
2700 	struct dentry *alias;
2701 	unsigned int hash = entry->d_name.hash;
2702 
2703 	spin_lock(&inode->i_lock);
2704 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2705 		/*
2706 		 * Don't need alias->d_lock here, because aliases with
2707 		 * d_parent == entry->d_parent are not subject to name or
2708 		 * parent changes, because the parent inode i_mutex is held.
2709 		 */
2710 		if (alias->d_name.hash != hash)
2711 			continue;
2712 		if (alias->d_parent != entry->d_parent)
2713 			continue;
2714 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2715 			continue;
2716 		spin_lock(&alias->d_lock);
2717 		if (!d_unhashed(alias)) {
2718 			spin_unlock(&alias->d_lock);
2719 			alias = NULL;
2720 		} else {
2721 			__dget_dlock(alias);
2722 			__d_rehash(alias);
2723 			spin_unlock(&alias->d_lock);
2724 		}
2725 		spin_unlock(&inode->i_lock);
2726 		return alias;
2727 	}
2728 	spin_unlock(&inode->i_lock);
2729 	return NULL;
2730 }
2731 EXPORT_SYMBOL(d_exact_alias);
2732 
swap_names(struct dentry * dentry,struct dentry * target)2733 static void swap_names(struct dentry *dentry, struct dentry *target)
2734 {
2735 	if (unlikely(dname_external(target))) {
2736 		if (unlikely(dname_external(dentry))) {
2737 			/*
2738 			 * Both external: swap the pointers
2739 			 */
2740 			swap(target->d_name.name, dentry->d_name.name);
2741 		} else {
2742 			/*
2743 			 * dentry:internal, target:external.  Steal target's
2744 			 * storage and make target internal.
2745 			 */
2746 			memcpy(target->d_iname, dentry->d_name.name,
2747 					dentry->d_name.len + 1);
2748 			dentry->d_name.name = target->d_name.name;
2749 			target->d_name.name = target->d_iname;
2750 		}
2751 	} else {
2752 		if (unlikely(dname_external(dentry))) {
2753 			/*
2754 			 * dentry:external, target:internal.  Give dentry's
2755 			 * storage to target and make dentry internal
2756 			 */
2757 			memcpy(dentry->d_iname, target->d_name.name,
2758 					target->d_name.len + 1);
2759 			target->d_name.name = dentry->d_name.name;
2760 			dentry->d_name.name = dentry->d_iname;
2761 		} else {
2762 			/*
2763 			 * Both are internal.
2764 			 */
2765 			unsigned int i;
2766 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2767 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2768 				swap(((long *) &dentry->d_iname)[i],
2769 				     ((long *) &target->d_iname)[i]);
2770 			}
2771 		}
2772 	}
2773 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2774 }
2775 
copy_name(struct dentry * dentry,struct dentry * target)2776 static void copy_name(struct dentry *dentry, struct dentry *target)
2777 {
2778 	struct external_name *old_name = NULL;
2779 	if (unlikely(dname_external(dentry)))
2780 		old_name = external_name(dentry);
2781 	if (unlikely(dname_external(target))) {
2782 		atomic_inc(&external_name(target)->u.count);
2783 		dentry->d_name = target->d_name;
2784 	} else {
2785 		memcpy(dentry->d_iname, target->d_name.name,
2786 				target->d_name.len + 1);
2787 		dentry->d_name.name = dentry->d_iname;
2788 		dentry->d_name.hash_len = target->d_name.hash_len;
2789 	}
2790 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2791 		kfree_rcu(old_name, u.head);
2792 }
2793 
2794 /*
2795  * __d_move - move a dentry
2796  * @dentry: entry to move
2797  * @target: new dentry
2798  * @exchange: exchange the two dentries
2799  *
2800  * Update the dcache to reflect the move of a file name. Negative
2801  * dcache entries should not be moved in this way. Caller must hold
2802  * rename_lock, the i_mutex of the source and target directories,
2803  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2804  */
__d_move(struct dentry * dentry,struct dentry * target,bool exchange)2805 static void __d_move(struct dentry *dentry, struct dentry *target,
2806 		     bool exchange)
2807 {
2808 	struct dentry *old_parent, *p;
2809 	struct inode *dir = NULL;
2810 	unsigned n;
2811 
2812 	WARN_ON(!dentry->d_inode);
2813 	if (WARN_ON(dentry == target))
2814 		return;
2815 
2816 	BUG_ON(d_ancestor(target, dentry));
2817 	old_parent = dentry->d_parent;
2818 	p = d_ancestor(old_parent, target);
2819 	if (IS_ROOT(dentry)) {
2820 		BUG_ON(p);
2821 		spin_lock(&target->d_parent->d_lock);
2822 	} else if (!p) {
2823 		/* target is not a descendent of dentry->d_parent */
2824 		spin_lock(&target->d_parent->d_lock);
2825 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2826 	} else {
2827 		BUG_ON(p == dentry);
2828 		spin_lock(&old_parent->d_lock);
2829 		if (p != target)
2830 			spin_lock_nested(&target->d_parent->d_lock,
2831 					DENTRY_D_LOCK_NESTED);
2832 	}
2833 	spin_lock_nested(&dentry->d_lock, 2);
2834 	spin_lock_nested(&target->d_lock, 3);
2835 
2836 	if (unlikely(d_in_lookup(target))) {
2837 		dir = target->d_parent->d_inode;
2838 		n = start_dir_add(dir);
2839 		__d_lookup_done(target);
2840 	}
2841 
2842 	write_seqcount_begin(&dentry->d_seq);
2843 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2844 
2845 	/* unhash both */
2846 	if (!d_unhashed(dentry))
2847 		___d_drop(dentry);
2848 	if (!d_unhashed(target))
2849 		___d_drop(target);
2850 
2851 	/* ... and switch them in the tree */
2852 	dentry->d_parent = target->d_parent;
2853 	if (!exchange) {
2854 		copy_name(dentry, target);
2855 		target->d_hash.pprev = NULL;
2856 		dentry->d_parent->d_lockref.count++;
2857 		if (dentry != old_parent) /* wasn't IS_ROOT */
2858 			WARN_ON(!--old_parent->d_lockref.count);
2859 	} else {
2860 		target->d_parent = old_parent;
2861 		swap_names(dentry, target);
2862 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2863 		__d_rehash(target);
2864 		fsnotify_update_flags(target);
2865 	}
2866 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2867 	__d_rehash(dentry);
2868 	fsnotify_update_flags(dentry);
2869 	fscrypt_handle_d_move(dentry);
2870 
2871 	write_seqcount_end(&target->d_seq);
2872 	write_seqcount_end(&dentry->d_seq);
2873 
2874 	if (dir)
2875 		end_dir_add(dir, n);
2876 
2877 	if (dentry->d_parent != old_parent)
2878 		spin_unlock(&dentry->d_parent->d_lock);
2879 	if (dentry != old_parent)
2880 		spin_unlock(&old_parent->d_lock);
2881 	spin_unlock(&target->d_lock);
2882 	spin_unlock(&dentry->d_lock);
2883 }
2884 
2885 /*
2886  * d_move - move a dentry
2887  * @dentry: entry to move
2888  * @target: new dentry
2889  *
2890  * Update the dcache to reflect the move of a file name. Negative
2891  * dcache entries should not be moved in this way. See the locking
2892  * requirements for __d_move.
2893  */
d_move(struct dentry * dentry,struct dentry * target)2894 void d_move(struct dentry *dentry, struct dentry *target)
2895 {
2896 	write_seqlock(&rename_lock);
2897 	__d_move(dentry, target, false);
2898 	write_sequnlock(&rename_lock);
2899 }
2900 EXPORT_SYMBOL(d_move);
2901 
2902 /*
2903  * d_exchange - exchange two dentries
2904  * @dentry1: first dentry
2905  * @dentry2: second dentry
2906  */
d_exchange(struct dentry * dentry1,struct dentry * dentry2)2907 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2908 {
2909 	write_seqlock(&rename_lock);
2910 
2911 	WARN_ON(!dentry1->d_inode);
2912 	WARN_ON(!dentry2->d_inode);
2913 	WARN_ON(IS_ROOT(dentry1));
2914 	WARN_ON(IS_ROOT(dentry2));
2915 
2916 	__d_move(dentry1, dentry2, true);
2917 
2918 	write_sequnlock(&rename_lock);
2919 }
2920 
2921 /**
2922  * d_ancestor - search for an ancestor
2923  * @p1: ancestor dentry
2924  * @p2: child dentry
2925  *
2926  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2927  * an ancestor of p2, else NULL.
2928  */
d_ancestor(struct dentry * p1,struct dentry * p2)2929 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2930 {
2931 	struct dentry *p;
2932 
2933 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2934 		if (p->d_parent == p1)
2935 			return p;
2936 	}
2937 	return NULL;
2938 }
2939 
2940 /*
2941  * This helper attempts to cope with remotely renamed directories
2942  *
2943  * It assumes that the caller is already holding
2944  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2945  *
2946  * Note: If ever the locking in lock_rename() changes, then please
2947  * remember to update this too...
2948  */
__d_unalias(struct inode * inode,struct dentry * dentry,struct dentry * alias)2949 static int __d_unalias(struct inode *inode,
2950 		struct dentry *dentry, struct dentry *alias)
2951 {
2952 	struct mutex *m1 = NULL;
2953 	struct rw_semaphore *m2 = NULL;
2954 	int ret = -ESTALE;
2955 
2956 	/* If alias and dentry share a parent, then no extra locks required */
2957 	if (alias->d_parent == dentry->d_parent)
2958 		goto out_unalias;
2959 
2960 	/* See lock_rename() */
2961 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2962 		goto out_err;
2963 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2964 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2965 		goto out_err;
2966 	m2 = &alias->d_parent->d_inode->i_rwsem;
2967 out_unalias:
2968 	__d_move(alias, dentry, false);
2969 	ret = 0;
2970 out_err:
2971 	if (m2)
2972 		up_read(m2);
2973 	if (m1)
2974 		mutex_unlock(m1);
2975 	return ret;
2976 }
2977 
2978 /**
2979  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2980  * @inode:  the inode which may have a disconnected dentry
2981  * @dentry: a negative dentry which we want to point to the inode.
2982  *
2983  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2984  * place of the given dentry and return it, else simply d_add the inode
2985  * to the dentry and return NULL.
2986  *
2987  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2988  * we should error out: directories can't have multiple aliases.
2989  *
2990  * This is needed in the lookup routine of any filesystem that is exportable
2991  * (via knfsd) so that we can build dcache paths to directories effectively.
2992  *
2993  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2994  * is returned.  This matches the expected return value of ->lookup.
2995  *
2996  * Cluster filesystems may call this function with a negative, hashed dentry.
2997  * In that case, we know that the inode will be a regular file, and also this
2998  * will only occur during atomic_open. So we need to check for the dentry
2999  * being already hashed only in the final case.
3000  */
d_splice_alias(struct inode * inode,struct dentry * dentry)3001 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3002 {
3003 	if (IS_ERR(inode))
3004 		return ERR_CAST(inode);
3005 
3006 	BUG_ON(!d_unhashed(dentry));
3007 
3008 	if (!inode)
3009 		goto out;
3010 
3011 	security_d_instantiate(dentry, inode);
3012 	spin_lock(&inode->i_lock);
3013 	if (S_ISDIR(inode->i_mode)) {
3014 		struct dentry *new = __d_find_any_alias(inode);
3015 		if (unlikely(new)) {
3016 			/* The reference to new ensures it remains an alias */
3017 			spin_unlock(&inode->i_lock);
3018 			write_seqlock(&rename_lock);
3019 			if (unlikely(d_ancestor(new, dentry))) {
3020 				write_sequnlock(&rename_lock);
3021 				dput(new);
3022 				new = ERR_PTR(-ELOOP);
3023 				pr_warn_ratelimited(
3024 					"VFS: Lookup of '%s' in %s %s"
3025 					" would have caused loop\n",
3026 					dentry->d_name.name,
3027 					inode->i_sb->s_type->name,
3028 					inode->i_sb->s_id);
3029 			} else if (!IS_ROOT(new)) {
3030 				struct dentry *old_parent = dget(new->d_parent);
3031 				int err = __d_unalias(inode, dentry, new);
3032 				write_sequnlock(&rename_lock);
3033 				if (err) {
3034 					dput(new);
3035 					new = ERR_PTR(err);
3036 				}
3037 				dput(old_parent);
3038 			} else {
3039 				__d_move(new, dentry, false);
3040 				write_sequnlock(&rename_lock);
3041 			}
3042 			iput(inode);
3043 			return new;
3044 		}
3045 	}
3046 out:
3047 	__d_add(dentry, inode);
3048 	return NULL;
3049 }
3050 EXPORT_SYMBOL(d_splice_alias);
3051 
3052 /*
3053  * Test whether new_dentry is a subdirectory of old_dentry.
3054  *
3055  * Trivially implemented using the dcache structure
3056  */
3057 
3058 /**
3059  * is_subdir - is new dentry a subdirectory of old_dentry
3060  * @new_dentry: new dentry
3061  * @old_dentry: old dentry
3062  *
3063  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3064  * Returns false otherwise.
3065  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3066  */
3067 
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)3068 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3069 {
3070 	bool result;
3071 	unsigned seq;
3072 
3073 	if (new_dentry == old_dentry)
3074 		return true;
3075 
3076 	do {
3077 		/* for restarting inner loop in case of seq retry */
3078 		seq = read_seqbegin(&rename_lock);
3079 		/*
3080 		 * Need rcu_readlock to protect against the d_parent trashing
3081 		 * due to d_move
3082 		 */
3083 		rcu_read_lock();
3084 		if (d_ancestor(old_dentry, new_dentry))
3085 			result = true;
3086 		else
3087 			result = false;
3088 		rcu_read_unlock();
3089 	} while (read_seqretry(&rename_lock, seq));
3090 
3091 	return result;
3092 }
3093 EXPORT_SYMBOL(is_subdir);
3094 
d_genocide_kill(void * data,struct dentry * dentry)3095 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3096 {
3097 	struct dentry *root = data;
3098 	if (dentry != root) {
3099 		if (d_unhashed(dentry) || !dentry->d_inode)
3100 			return D_WALK_SKIP;
3101 
3102 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3103 			dentry->d_flags |= DCACHE_GENOCIDE;
3104 			dentry->d_lockref.count--;
3105 		}
3106 	}
3107 	return D_WALK_CONTINUE;
3108 }
3109 
d_genocide(struct dentry * parent)3110 void d_genocide(struct dentry *parent)
3111 {
3112 	d_walk(parent, parent, d_genocide_kill);
3113 }
3114 
3115 EXPORT_SYMBOL(d_genocide);
3116 
d_tmpfile(struct dentry * dentry,struct inode * inode)3117 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3118 {
3119 	inode_dec_link_count(inode);
3120 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3121 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3122 		!d_unlinked(dentry));
3123 	spin_lock(&dentry->d_parent->d_lock);
3124 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3125 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3126 				(unsigned long long)inode->i_ino);
3127 	spin_unlock(&dentry->d_lock);
3128 	spin_unlock(&dentry->d_parent->d_lock);
3129 	d_instantiate(dentry, inode);
3130 }
3131 EXPORT_SYMBOL(d_tmpfile);
3132 
3133 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3134 static int __init set_dhash_entries(char *str)
3135 {
3136 	if (!str)
3137 		return 0;
3138 	dhash_entries = simple_strtoul(str, &str, 0);
3139 	return 1;
3140 }
3141 __setup("dhash_entries=", set_dhash_entries);
3142 
dcache_init_early(void)3143 static void __init dcache_init_early(void)
3144 {
3145 	/* If hashes are distributed across NUMA nodes, defer
3146 	 * hash allocation until vmalloc space is available.
3147 	 */
3148 	if (hashdist)
3149 		return;
3150 
3151 	dentry_hashtable =
3152 		alloc_large_system_hash("Dentry cache",
3153 					sizeof(struct hlist_bl_head),
3154 					dhash_entries,
3155 					13,
3156 					HASH_EARLY | HASH_ZERO,
3157 					&d_hash_shift,
3158 					NULL,
3159 					0,
3160 					0);
3161 	d_hash_shift = 32 - d_hash_shift;
3162 }
3163 
dcache_init(void)3164 static void __init dcache_init(void)
3165 {
3166 	/*
3167 	 * A constructor could be added for stable state like the lists,
3168 	 * but it is probably not worth it because of the cache nature
3169 	 * of the dcache.
3170 	 */
3171 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3172 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3173 		d_iname);
3174 
3175 	/* Hash may have been set up in dcache_init_early */
3176 	if (!hashdist)
3177 		return;
3178 
3179 	dentry_hashtable =
3180 		alloc_large_system_hash("Dentry cache",
3181 					sizeof(struct hlist_bl_head),
3182 					dhash_entries,
3183 					13,
3184 					HASH_ZERO,
3185 					&d_hash_shift,
3186 					NULL,
3187 					0,
3188 					0);
3189 	d_hash_shift = 32 - d_hash_shift;
3190 }
3191 
3192 /* SLAB cache for __getname() consumers */
3193 struct kmem_cache *names_cachep __read_mostly;
3194 EXPORT_SYMBOL(names_cachep);
3195 
vfs_caches_init_early(void)3196 void __init vfs_caches_init_early(void)
3197 {
3198 	int i;
3199 
3200 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3201 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3202 
3203 	dcache_init_early();
3204 	inode_init_early();
3205 }
3206 
vfs_caches_init(void)3207 void __init vfs_caches_init(void)
3208 {
3209 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3210 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3211 
3212 	dcache_init();
3213 	inode_init();
3214 	files_init();
3215 	files_maxfiles_init();
3216 	mnt_init();
3217 	bdev_cache_init();
3218 	chrdev_init();
3219 }
3220