• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/writeback.h>
19 #include <linux/buffer_head.h> /* sync_mapping_buffers */
20 #include <linux/fs_context.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/unicode.h>
23 #include <linux/fscrypt.h>
24 
25 #include <linux/uaccess.h>
26 
27 #include "internal.h"
28 
simple_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)29 int simple_getattr(const struct path *path, struct kstat *stat,
30 		   u32 request_mask, unsigned int query_flags)
31 {
32 	struct inode *inode = d_inode(path->dentry);
33 	generic_fillattr(inode, stat);
34 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
35 	return 0;
36 }
37 EXPORT_SYMBOL(simple_getattr);
38 
simple_statfs(struct dentry * dentry,struct kstatfs * buf)39 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
40 {
41 	buf->f_type = dentry->d_sb->s_magic;
42 	buf->f_bsize = PAGE_SIZE;
43 	buf->f_namelen = NAME_MAX;
44 	return 0;
45 }
46 EXPORT_SYMBOL(simple_statfs);
47 
48 /*
49  * Retaining negative dentries for an in-memory filesystem just wastes
50  * memory and lookup time: arrange for them to be deleted immediately.
51  */
always_delete_dentry(const struct dentry * dentry)52 int always_delete_dentry(const struct dentry *dentry)
53 {
54 	return 1;
55 }
56 EXPORT_SYMBOL(always_delete_dentry);
57 
58 const struct dentry_operations simple_dentry_operations = {
59 	.d_delete = always_delete_dentry,
60 };
61 EXPORT_SYMBOL(simple_dentry_operations);
62 
63 /*
64  * Lookup the data. This is trivial - if the dentry didn't already
65  * exist, we know it is negative.  Set d_op to delete negative dentries.
66  */
simple_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)67 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
68 {
69 	if (dentry->d_name.len > NAME_MAX)
70 		return ERR_PTR(-ENAMETOOLONG);
71 	if (!dentry->d_sb->s_d_op)
72 		d_set_d_op(dentry, &simple_dentry_operations);
73 	d_add(dentry, NULL);
74 	return NULL;
75 }
76 EXPORT_SYMBOL(simple_lookup);
77 
dcache_dir_open(struct inode * inode,struct file * file)78 int dcache_dir_open(struct inode *inode, struct file *file)
79 {
80 	file->private_data = d_alloc_cursor(file->f_path.dentry);
81 
82 	return file->private_data ? 0 : -ENOMEM;
83 }
84 EXPORT_SYMBOL(dcache_dir_open);
85 
dcache_dir_close(struct inode * inode,struct file * file)86 int dcache_dir_close(struct inode *inode, struct file *file)
87 {
88 	dput(file->private_data);
89 	return 0;
90 }
91 EXPORT_SYMBOL(dcache_dir_close);
92 
93 /* parent is locked at least shared */
94 /*
95  * Returns an element of siblings' list.
96  * We are looking for <count>th positive after <p>; if
97  * found, dentry is grabbed and returned to caller.
98  * If no such element exists, NULL is returned.
99  */
scan_positives(struct dentry * cursor,struct list_head * p,loff_t count,struct dentry * last)100 static struct dentry *scan_positives(struct dentry *cursor,
101 					struct list_head *p,
102 					loff_t count,
103 					struct dentry *last)
104 {
105 	struct dentry *dentry = cursor->d_parent, *found = NULL;
106 
107 	spin_lock(&dentry->d_lock);
108 	while ((p = p->next) != &dentry->d_subdirs) {
109 		struct dentry *d = list_entry(p, struct dentry, d_child);
110 		// we must at least skip cursors, to avoid livelocks
111 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
112 			continue;
113 		if (simple_positive(d) && !--count) {
114 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
115 			if (simple_positive(d))
116 				found = dget_dlock(d);
117 			spin_unlock(&d->d_lock);
118 			if (likely(found))
119 				break;
120 			count = 1;
121 		}
122 		if (need_resched()) {
123 			list_move(&cursor->d_child, p);
124 			p = &cursor->d_child;
125 			spin_unlock(&dentry->d_lock);
126 			cond_resched();
127 			spin_lock(&dentry->d_lock);
128 		}
129 	}
130 	spin_unlock(&dentry->d_lock);
131 	dput(last);
132 	return found;
133 }
134 
dcache_dir_lseek(struct file * file,loff_t offset,int whence)135 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
136 {
137 	struct dentry *dentry = file->f_path.dentry;
138 	switch (whence) {
139 		case 1:
140 			offset += file->f_pos;
141 			/* fall through */
142 		case 0:
143 			if (offset >= 0)
144 				break;
145 			/* fall through */
146 		default:
147 			return -EINVAL;
148 	}
149 	if (offset != file->f_pos) {
150 		struct dentry *cursor = file->private_data;
151 		struct dentry *to = NULL;
152 
153 		inode_lock_shared(dentry->d_inode);
154 
155 		if (offset > 2)
156 			to = scan_positives(cursor, &dentry->d_subdirs,
157 					    offset - 2, NULL);
158 		spin_lock(&dentry->d_lock);
159 		if (to)
160 			list_move(&cursor->d_child, &to->d_child);
161 		else
162 			list_del_init(&cursor->d_child);
163 		spin_unlock(&dentry->d_lock);
164 		dput(to);
165 
166 		file->f_pos = offset;
167 
168 		inode_unlock_shared(dentry->d_inode);
169 	}
170 	return offset;
171 }
172 EXPORT_SYMBOL(dcache_dir_lseek);
173 
174 /* Relationship between i_mode and the DT_xxx types */
dt_type(struct inode * inode)175 static inline unsigned char dt_type(struct inode *inode)
176 {
177 	return (inode->i_mode >> 12) & 15;
178 }
179 
180 /*
181  * Directory is locked and all positive dentries in it are safe, since
182  * for ramfs-type trees they can't go away without unlink() or rmdir(),
183  * both impossible due to the lock on directory.
184  */
185 
dcache_readdir(struct file * file,struct dir_context * ctx)186 int dcache_readdir(struct file *file, struct dir_context *ctx)
187 {
188 	struct dentry *dentry = file->f_path.dentry;
189 	struct dentry *cursor = file->private_data;
190 	struct list_head *anchor = &dentry->d_subdirs;
191 	struct dentry *next = NULL;
192 	struct list_head *p;
193 
194 	if (!dir_emit_dots(file, ctx))
195 		return 0;
196 
197 	if (ctx->pos == 2)
198 		p = anchor;
199 	else if (!list_empty(&cursor->d_child))
200 		p = &cursor->d_child;
201 	else
202 		return 0;
203 
204 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
205 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
206 			      d_inode(next)->i_ino, dt_type(d_inode(next))))
207 			break;
208 		ctx->pos++;
209 		p = &next->d_child;
210 	}
211 	spin_lock(&dentry->d_lock);
212 	if (next)
213 		list_move_tail(&cursor->d_child, &next->d_child);
214 	else
215 		list_del_init(&cursor->d_child);
216 	spin_unlock(&dentry->d_lock);
217 	dput(next);
218 
219 	return 0;
220 }
221 EXPORT_SYMBOL(dcache_readdir);
222 
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)223 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
224 {
225 	return -EISDIR;
226 }
227 EXPORT_SYMBOL(generic_read_dir);
228 
229 const struct file_operations simple_dir_operations = {
230 	.open		= dcache_dir_open,
231 	.release	= dcache_dir_close,
232 	.llseek		= dcache_dir_lseek,
233 	.read		= generic_read_dir,
234 	.iterate_shared	= dcache_readdir,
235 	.fsync		= noop_fsync,
236 };
237 EXPORT_SYMBOL(simple_dir_operations);
238 
239 const struct inode_operations simple_dir_inode_operations = {
240 	.lookup		= simple_lookup,
241 };
242 EXPORT_SYMBOL(simple_dir_inode_operations);
243 
244 static const struct super_operations simple_super_operations = {
245 	.statfs		= simple_statfs,
246 };
247 
pseudo_fs_fill_super(struct super_block * s,struct fs_context * fc)248 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
249 {
250 	struct pseudo_fs_context *ctx = fc->fs_private;
251 	struct inode *root;
252 
253 	s->s_maxbytes = MAX_LFS_FILESIZE;
254 	s->s_blocksize = PAGE_SIZE;
255 	s->s_blocksize_bits = PAGE_SHIFT;
256 	s->s_magic = ctx->magic;
257 	s->s_op = ctx->ops ?: &simple_super_operations;
258 	s->s_xattr = ctx->xattr;
259 	s->s_time_gran = 1;
260 	root = new_inode(s);
261 	if (!root)
262 		return -ENOMEM;
263 
264 	/*
265 	 * since this is the first inode, make it number 1. New inodes created
266 	 * after this must take care not to collide with it (by passing
267 	 * max_reserved of 1 to iunique).
268 	 */
269 	root->i_ino = 1;
270 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
271 	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
272 	s->s_root = d_make_root(root);
273 	if (!s->s_root)
274 		return -ENOMEM;
275 	s->s_d_op = ctx->dops;
276 	return 0;
277 }
278 
pseudo_fs_get_tree(struct fs_context * fc)279 static int pseudo_fs_get_tree(struct fs_context *fc)
280 {
281 	return get_tree_nodev(fc, pseudo_fs_fill_super);
282 }
283 
pseudo_fs_free(struct fs_context * fc)284 static void pseudo_fs_free(struct fs_context *fc)
285 {
286 	kfree(fc->fs_private);
287 }
288 
289 static const struct fs_context_operations pseudo_fs_context_ops = {
290 	.free		= pseudo_fs_free,
291 	.get_tree	= pseudo_fs_get_tree,
292 };
293 
294 /*
295  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
296  * will never be mountable)
297  */
init_pseudo(struct fs_context * fc,unsigned long magic)298 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
299 					unsigned long magic)
300 {
301 	struct pseudo_fs_context *ctx;
302 
303 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
304 	if (likely(ctx)) {
305 		ctx->magic = magic;
306 		fc->fs_private = ctx;
307 		fc->ops = &pseudo_fs_context_ops;
308 		fc->sb_flags |= SB_NOUSER;
309 		fc->global = true;
310 	}
311 	return ctx;
312 }
313 EXPORT_SYMBOL(init_pseudo);
314 
simple_open(struct inode * inode,struct file * file)315 int simple_open(struct inode *inode, struct file *file)
316 {
317 	if (inode->i_private)
318 		file->private_data = inode->i_private;
319 	return 0;
320 }
321 EXPORT_SYMBOL(simple_open);
322 
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)323 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
324 {
325 	struct inode *inode = d_inode(old_dentry);
326 
327 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
328 	inc_nlink(inode);
329 	ihold(inode);
330 	dget(dentry);
331 	d_instantiate(dentry, inode);
332 	return 0;
333 }
334 EXPORT_SYMBOL(simple_link);
335 
simple_empty(struct dentry * dentry)336 int simple_empty(struct dentry *dentry)
337 {
338 	struct dentry *child;
339 	int ret = 0;
340 
341 	spin_lock(&dentry->d_lock);
342 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
343 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
344 		if (simple_positive(child)) {
345 			spin_unlock(&child->d_lock);
346 			goto out;
347 		}
348 		spin_unlock(&child->d_lock);
349 	}
350 	ret = 1;
351 out:
352 	spin_unlock(&dentry->d_lock);
353 	return ret;
354 }
355 EXPORT_SYMBOL(simple_empty);
356 
simple_unlink(struct inode * dir,struct dentry * dentry)357 int simple_unlink(struct inode *dir, struct dentry *dentry)
358 {
359 	struct inode *inode = d_inode(dentry);
360 
361 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
362 	drop_nlink(inode);
363 	dput(dentry);
364 	return 0;
365 }
366 EXPORT_SYMBOL(simple_unlink);
367 
simple_rmdir(struct inode * dir,struct dentry * dentry)368 int simple_rmdir(struct inode *dir, struct dentry *dentry)
369 {
370 	if (!simple_empty(dentry))
371 		return -ENOTEMPTY;
372 
373 	drop_nlink(d_inode(dentry));
374 	simple_unlink(dir, dentry);
375 	drop_nlink(dir);
376 	return 0;
377 }
378 EXPORT_SYMBOL(simple_rmdir);
379 
simple_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)380 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
381 		  struct inode *new_dir, struct dentry *new_dentry,
382 		  unsigned int flags)
383 {
384 	struct inode *inode = d_inode(old_dentry);
385 	int they_are_dirs = d_is_dir(old_dentry);
386 
387 	if (flags & ~RENAME_NOREPLACE)
388 		return -EINVAL;
389 
390 	if (!simple_empty(new_dentry))
391 		return -ENOTEMPTY;
392 
393 	if (d_really_is_positive(new_dentry)) {
394 		simple_unlink(new_dir, new_dentry);
395 		if (they_are_dirs) {
396 			drop_nlink(d_inode(new_dentry));
397 			drop_nlink(old_dir);
398 		}
399 	} else if (they_are_dirs) {
400 		drop_nlink(old_dir);
401 		inc_nlink(new_dir);
402 	}
403 
404 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
405 		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
406 
407 	return 0;
408 }
409 EXPORT_SYMBOL(simple_rename);
410 
411 /**
412  * simple_setattr - setattr for simple filesystem
413  * @dentry: dentry
414  * @iattr: iattr structure
415  *
416  * Returns 0 on success, -error on failure.
417  *
418  * simple_setattr is a simple ->setattr implementation without a proper
419  * implementation of size changes.
420  *
421  * It can either be used for in-memory filesystems or special files
422  * on simple regular filesystems.  Anything that needs to change on-disk
423  * or wire state on size changes needs its own setattr method.
424  */
simple_setattr(struct dentry * dentry,struct iattr * iattr)425 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
426 {
427 	struct inode *inode = d_inode(dentry);
428 	int error;
429 
430 	error = setattr_prepare(dentry, iattr);
431 	if (error)
432 		return error;
433 
434 	if (iattr->ia_valid & ATTR_SIZE)
435 		truncate_setsize(inode, iattr->ia_size);
436 	setattr_copy(inode, iattr);
437 	mark_inode_dirty(inode);
438 	return 0;
439 }
440 EXPORT_SYMBOL(simple_setattr);
441 
simple_readpage(struct file * file,struct page * page)442 int simple_readpage(struct file *file, struct page *page)
443 {
444 	clear_highpage(page);
445 	flush_dcache_page(page);
446 	SetPageUptodate(page);
447 	unlock_page(page);
448 	return 0;
449 }
450 EXPORT_SYMBOL(simple_readpage);
451 
simple_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)452 int simple_write_begin(struct file *file, struct address_space *mapping,
453 			loff_t pos, unsigned len, unsigned flags,
454 			struct page **pagep, void **fsdata)
455 {
456 	struct page *page;
457 	pgoff_t index;
458 
459 	index = pos >> PAGE_SHIFT;
460 
461 	page = grab_cache_page_write_begin(mapping, index, flags);
462 	if (!page)
463 		return -ENOMEM;
464 
465 	*pagep = page;
466 
467 	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
468 		unsigned from = pos & (PAGE_SIZE - 1);
469 
470 		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
471 	}
472 	return 0;
473 }
474 EXPORT_SYMBOL(simple_write_begin);
475 
476 /**
477  * simple_write_end - .write_end helper for non-block-device FSes
478  * @file: See .write_end of address_space_operations
479  * @mapping: 		"
480  * @pos: 		"
481  * @len: 		"
482  * @copied: 		"
483  * @page: 		"
484  * @fsdata: 		"
485  *
486  * simple_write_end does the minimum needed for updating a page after writing is
487  * done. It has the same API signature as the .write_end of
488  * address_space_operations vector. So it can just be set onto .write_end for
489  * FSes that don't need any other processing. i_mutex is assumed to be held.
490  * Block based filesystems should use generic_write_end().
491  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
492  * is not called, so a filesystem that actually does store data in .write_inode
493  * should extend on what's done here with a call to mark_inode_dirty() in the
494  * case that i_size has changed.
495  *
496  * Use *ONLY* with simple_readpage()
497  */
simple_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)498 int simple_write_end(struct file *file, struct address_space *mapping,
499 			loff_t pos, unsigned len, unsigned copied,
500 			struct page *page, void *fsdata)
501 {
502 	struct inode *inode = page->mapping->host;
503 	loff_t last_pos = pos + copied;
504 
505 	/* zero the stale part of the page if we did a short copy */
506 	if (!PageUptodate(page)) {
507 		if (copied < len) {
508 			unsigned from = pos & (PAGE_SIZE - 1);
509 
510 			zero_user(page, from + copied, len - copied);
511 		}
512 		SetPageUptodate(page);
513 	}
514 	/*
515 	 * No need to use i_size_read() here, the i_size
516 	 * cannot change under us because we hold the i_mutex.
517 	 */
518 	if (last_pos > inode->i_size)
519 		i_size_write(inode, last_pos);
520 
521 	set_page_dirty(page);
522 	unlock_page(page);
523 	put_page(page);
524 
525 	return copied;
526 }
527 EXPORT_SYMBOL(simple_write_end);
528 
529 /*
530  * the inodes created here are not hashed. If you use iunique to generate
531  * unique inode values later for this filesystem, then you must take care
532  * to pass it an appropriate max_reserved value to avoid collisions.
533  */
simple_fill_super(struct super_block * s,unsigned long magic,const struct tree_descr * files)534 int simple_fill_super(struct super_block *s, unsigned long magic,
535 		      const struct tree_descr *files)
536 {
537 	struct inode *inode;
538 	struct dentry *root;
539 	struct dentry *dentry;
540 	int i;
541 
542 	s->s_blocksize = PAGE_SIZE;
543 	s->s_blocksize_bits = PAGE_SHIFT;
544 	s->s_magic = magic;
545 	s->s_op = &simple_super_operations;
546 	s->s_time_gran = 1;
547 
548 	inode = new_inode(s);
549 	if (!inode)
550 		return -ENOMEM;
551 	/*
552 	 * because the root inode is 1, the files array must not contain an
553 	 * entry at index 1
554 	 */
555 	inode->i_ino = 1;
556 	inode->i_mode = S_IFDIR | 0755;
557 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
558 	inode->i_op = &simple_dir_inode_operations;
559 	inode->i_fop = &simple_dir_operations;
560 	set_nlink(inode, 2);
561 	root = d_make_root(inode);
562 	if (!root)
563 		return -ENOMEM;
564 	for (i = 0; !files->name || files->name[0]; i++, files++) {
565 		if (!files->name)
566 			continue;
567 
568 		/* warn if it tries to conflict with the root inode */
569 		if (unlikely(i == 1))
570 			printk(KERN_WARNING "%s: %s passed in a files array"
571 				"with an index of 1!\n", __func__,
572 				s->s_type->name);
573 
574 		dentry = d_alloc_name(root, files->name);
575 		if (!dentry)
576 			goto out;
577 		inode = new_inode(s);
578 		if (!inode) {
579 			dput(dentry);
580 			goto out;
581 		}
582 		inode->i_mode = S_IFREG | files->mode;
583 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
584 		inode->i_fop = files->ops;
585 		inode->i_ino = i;
586 		d_add(dentry, inode);
587 	}
588 	s->s_root = root;
589 	return 0;
590 out:
591 	d_genocide(root);
592 	shrink_dcache_parent(root);
593 	dput(root);
594 	return -ENOMEM;
595 }
596 EXPORT_SYMBOL(simple_fill_super);
597 
598 static DEFINE_SPINLOCK(pin_fs_lock);
599 
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)600 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
601 {
602 	struct vfsmount *mnt = NULL;
603 	spin_lock(&pin_fs_lock);
604 	if (unlikely(!*mount)) {
605 		spin_unlock(&pin_fs_lock);
606 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
607 		if (IS_ERR(mnt))
608 			return PTR_ERR(mnt);
609 		spin_lock(&pin_fs_lock);
610 		if (!*mount)
611 			*mount = mnt;
612 	}
613 	mntget(*mount);
614 	++*count;
615 	spin_unlock(&pin_fs_lock);
616 	mntput(mnt);
617 	return 0;
618 }
619 EXPORT_SYMBOL(simple_pin_fs);
620 
simple_release_fs(struct vfsmount ** mount,int * count)621 void simple_release_fs(struct vfsmount **mount, int *count)
622 {
623 	struct vfsmount *mnt;
624 	spin_lock(&pin_fs_lock);
625 	mnt = *mount;
626 	if (!--*count)
627 		*mount = NULL;
628 	spin_unlock(&pin_fs_lock);
629 	mntput(mnt);
630 }
631 EXPORT_SYMBOL(simple_release_fs);
632 
633 /**
634  * simple_read_from_buffer - copy data from the buffer to user space
635  * @to: the user space buffer to read to
636  * @count: the maximum number of bytes to read
637  * @ppos: the current position in the buffer
638  * @from: the buffer to read from
639  * @available: the size of the buffer
640  *
641  * The simple_read_from_buffer() function reads up to @count bytes from the
642  * buffer @from at offset @ppos into the user space address starting at @to.
643  *
644  * On success, the number of bytes read is returned and the offset @ppos is
645  * advanced by this number, or negative value is returned on error.
646  **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)647 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
648 				const void *from, size_t available)
649 {
650 	loff_t pos = *ppos;
651 	size_t ret;
652 
653 	if (pos < 0)
654 		return -EINVAL;
655 	if (pos >= available || !count)
656 		return 0;
657 	if (count > available - pos)
658 		count = available - pos;
659 	ret = copy_to_user(to, from + pos, count);
660 	if (ret == count)
661 		return -EFAULT;
662 	count -= ret;
663 	*ppos = pos + count;
664 	return count;
665 }
666 EXPORT_SYMBOL(simple_read_from_buffer);
667 
668 /**
669  * simple_write_to_buffer - copy data from user space to the buffer
670  * @to: the buffer to write to
671  * @available: the size of the buffer
672  * @ppos: the current position in the buffer
673  * @from: the user space buffer to read from
674  * @count: the maximum number of bytes to read
675  *
676  * The simple_write_to_buffer() function reads up to @count bytes from the user
677  * space address starting at @from into the buffer @to at offset @ppos.
678  *
679  * On success, the number of bytes written is returned and the offset @ppos is
680  * advanced by this number, or negative value is returned on error.
681  **/
simple_write_to_buffer(void * to,size_t available,loff_t * ppos,const void __user * from,size_t count)682 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
683 		const void __user *from, size_t count)
684 {
685 	loff_t pos = *ppos;
686 	size_t res;
687 
688 	if (pos < 0)
689 		return -EINVAL;
690 	if (pos >= available || !count)
691 		return 0;
692 	if (count > available - pos)
693 		count = available - pos;
694 	res = copy_from_user(to + pos, from, count);
695 	if (res == count)
696 		return -EFAULT;
697 	count -= res;
698 	*ppos = pos + count;
699 	return count;
700 }
701 EXPORT_SYMBOL(simple_write_to_buffer);
702 
703 /**
704  * memory_read_from_buffer - copy data from the buffer
705  * @to: the kernel space buffer to read to
706  * @count: the maximum number of bytes to read
707  * @ppos: the current position in the buffer
708  * @from: the buffer to read from
709  * @available: the size of the buffer
710  *
711  * The memory_read_from_buffer() function reads up to @count bytes from the
712  * buffer @from at offset @ppos into the kernel space address starting at @to.
713  *
714  * On success, the number of bytes read is returned and the offset @ppos is
715  * advanced by this number, or negative value is returned on error.
716  **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)717 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
718 				const void *from, size_t available)
719 {
720 	loff_t pos = *ppos;
721 
722 	if (pos < 0)
723 		return -EINVAL;
724 	if (pos >= available)
725 		return 0;
726 	if (count > available - pos)
727 		count = available - pos;
728 	memcpy(to, from + pos, count);
729 	*ppos = pos + count;
730 
731 	return count;
732 }
733 EXPORT_SYMBOL(memory_read_from_buffer);
734 
735 /*
736  * Transaction based IO.
737  * The file expects a single write which triggers the transaction, and then
738  * possibly a read which collects the result - which is stored in a
739  * file-local buffer.
740  */
741 
simple_transaction_set(struct file * file,size_t n)742 void simple_transaction_set(struct file *file, size_t n)
743 {
744 	struct simple_transaction_argresp *ar = file->private_data;
745 
746 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
747 
748 	/*
749 	 * The barrier ensures that ar->size will really remain zero until
750 	 * ar->data is ready for reading.
751 	 */
752 	smp_mb();
753 	ar->size = n;
754 }
755 EXPORT_SYMBOL(simple_transaction_set);
756 
simple_transaction_get(struct file * file,const char __user * buf,size_t size)757 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
758 {
759 	struct simple_transaction_argresp *ar;
760 	static DEFINE_SPINLOCK(simple_transaction_lock);
761 
762 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
763 		return ERR_PTR(-EFBIG);
764 
765 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
766 	if (!ar)
767 		return ERR_PTR(-ENOMEM);
768 
769 	spin_lock(&simple_transaction_lock);
770 
771 	/* only one write allowed per open */
772 	if (file->private_data) {
773 		spin_unlock(&simple_transaction_lock);
774 		free_page((unsigned long)ar);
775 		return ERR_PTR(-EBUSY);
776 	}
777 
778 	file->private_data = ar;
779 
780 	spin_unlock(&simple_transaction_lock);
781 
782 	if (copy_from_user(ar->data, buf, size))
783 		return ERR_PTR(-EFAULT);
784 
785 	return ar->data;
786 }
787 EXPORT_SYMBOL(simple_transaction_get);
788 
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)789 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
790 {
791 	struct simple_transaction_argresp *ar = file->private_data;
792 
793 	if (!ar)
794 		return 0;
795 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
796 }
797 EXPORT_SYMBOL(simple_transaction_read);
798 
simple_transaction_release(struct inode * inode,struct file * file)799 int simple_transaction_release(struct inode *inode, struct file *file)
800 {
801 	free_page((unsigned long)file->private_data);
802 	return 0;
803 }
804 EXPORT_SYMBOL(simple_transaction_release);
805 
806 /* Simple attribute files */
807 
808 struct simple_attr {
809 	int (*get)(void *, u64 *);
810 	int (*set)(void *, u64);
811 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
812 	char set_buf[24];
813 	void *data;
814 	const char *fmt;	/* format for read operation */
815 	struct mutex mutex;	/* protects access to these buffers */
816 };
817 
818 /* simple_attr_open is called by an actual attribute open file operation
819  * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)820 int simple_attr_open(struct inode *inode, struct file *file,
821 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
822 		     const char *fmt)
823 {
824 	struct simple_attr *attr;
825 
826 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
827 	if (!attr)
828 		return -ENOMEM;
829 
830 	attr->get = get;
831 	attr->set = set;
832 	attr->data = inode->i_private;
833 	attr->fmt = fmt;
834 	mutex_init(&attr->mutex);
835 
836 	file->private_data = attr;
837 
838 	return nonseekable_open(inode, file);
839 }
840 EXPORT_SYMBOL_GPL(simple_attr_open);
841 
simple_attr_release(struct inode * inode,struct file * file)842 int simple_attr_release(struct inode *inode, struct file *file)
843 {
844 	kfree(file->private_data);
845 	return 0;
846 }
847 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
848 
849 /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)850 ssize_t simple_attr_read(struct file *file, char __user *buf,
851 			 size_t len, loff_t *ppos)
852 {
853 	struct simple_attr *attr;
854 	size_t size;
855 	ssize_t ret;
856 
857 	attr = file->private_data;
858 
859 	if (!attr->get)
860 		return -EACCES;
861 
862 	ret = mutex_lock_interruptible(&attr->mutex);
863 	if (ret)
864 		return ret;
865 
866 	if (*ppos && attr->get_buf[0]) {
867 		/* continued read */
868 		size = strlen(attr->get_buf);
869 	} else {
870 		/* first read */
871 		u64 val;
872 		ret = attr->get(attr->data, &val);
873 		if (ret)
874 			goto out;
875 
876 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
877 				 attr->fmt, (unsigned long long)val);
878 	}
879 
880 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
881 out:
882 	mutex_unlock(&attr->mutex);
883 	return ret;
884 }
885 EXPORT_SYMBOL_GPL(simple_attr_read);
886 
887 /* interpret the buffer as a number to call the set function with */
simple_attr_write_xsigned(struct file * file,const char __user * buf,size_t len,loff_t * ppos,bool is_signed)888 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
889 			  size_t len, loff_t *ppos, bool is_signed)
890 {
891 	struct simple_attr *attr;
892 	unsigned long long val;
893 	size_t size;
894 	ssize_t ret;
895 
896 	attr = file->private_data;
897 	if (!attr->set)
898 		return -EACCES;
899 
900 	ret = mutex_lock_interruptible(&attr->mutex);
901 	if (ret)
902 		return ret;
903 
904 	ret = -EFAULT;
905 	size = min(sizeof(attr->set_buf) - 1, len);
906 	if (copy_from_user(attr->set_buf, buf, size))
907 		goto out;
908 
909 	attr->set_buf[size] = '\0';
910 	if (is_signed)
911 		ret = kstrtoll(attr->set_buf, 0, &val);
912 	else
913 		ret = kstrtoull(attr->set_buf, 0, &val);
914 	if (ret)
915 		goto out;
916 	ret = attr->set(attr->data, val);
917 	if (ret == 0)
918 		ret = len; /* on success, claim we got the whole input */
919 out:
920 	mutex_unlock(&attr->mutex);
921 	return ret;
922 }
923 
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)924 ssize_t simple_attr_write(struct file *file, const char __user *buf,
925 			  size_t len, loff_t *ppos)
926 {
927 	return simple_attr_write_xsigned(file, buf, len, ppos, false);
928 }
929 EXPORT_SYMBOL_GPL(simple_attr_write);
930 
simple_attr_write_signed(struct file * file,const char __user * buf,size_t len,loff_t * ppos)931 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
932 			  size_t len, loff_t *ppos)
933 {
934 	return simple_attr_write_xsigned(file, buf, len, ppos, true);
935 }
936 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
937 
938 /**
939  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
940  * @sb:		filesystem to do the file handle conversion on
941  * @fid:	file handle to convert
942  * @fh_len:	length of the file handle in bytes
943  * @fh_type:	type of file handle
944  * @get_inode:	filesystem callback to retrieve inode
945  *
946  * This function decodes @fid as long as it has one of the well-known
947  * Linux filehandle types and calls @get_inode on it to retrieve the
948  * inode for the object specified in the file handle.
949  */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))950 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
951 		int fh_len, int fh_type, struct inode *(*get_inode)
952 			(struct super_block *sb, u64 ino, u32 gen))
953 {
954 	struct inode *inode = NULL;
955 
956 	if (fh_len < 2)
957 		return NULL;
958 
959 	switch (fh_type) {
960 	case FILEID_INO32_GEN:
961 	case FILEID_INO32_GEN_PARENT:
962 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
963 		break;
964 	}
965 
966 	return d_obtain_alias(inode);
967 }
968 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
969 
970 /**
971  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
972  * @sb:		filesystem to do the file handle conversion on
973  * @fid:	file handle to convert
974  * @fh_len:	length of the file handle in bytes
975  * @fh_type:	type of file handle
976  * @get_inode:	filesystem callback to retrieve inode
977  *
978  * This function decodes @fid as long as it has one of the well-known
979  * Linux filehandle types and calls @get_inode on it to retrieve the
980  * inode for the _parent_ object specified in the file handle if it
981  * is specified in the file handle, or NULL otherwise.
982  */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))983 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
984 		int fh_len, int fh_type, struct inode *(*get_inode)
985 			(struct super_block *sb, u64 ino, u32 gen))
986 {
987 	struct inode *inode = NULL;
988 
989 	if (fh_len <= 2)
990 		return NULL;
991 
992 	switch (fh_type) {
993 	case FILEID_INO32_GEN_PARENT:
994 		inode = get_inode(sb, fid->i32.parent_ino,
995 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
996 		break;
997 	}
998 
999 	return d_obtain_alias(inode);
1000 }
1001 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1002 
1003 /**
1004  * __generic_file_fsync - generic fsync implementation for simple filesystems
1005  *
1006  * @file:	file to synchronize
1007  * @start:	start offset in bytes
1008  * @end:	end offset in bytes (inclusive)
1009  * @datasync:	only synchronize essential metadata if true
1010  *
1011  * This is a generic implementation of the fsync method for simple
1012  * filesystems which track all non-inode metadata in the buffers list
1013  * hanging off the address_space structure.
1014  */
__generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1015 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1016 				 int datasync)
1017 {
1018 	struct inode *inode = file->f_mapping->host;
1019 	int err;
1020 	int ret;
1021 
1022 	err = file_write_and_wait_range(file, start, end);
1023 	if (err)
1024 		return err;
1025 
1026 	inode_lock(inode);
1027 	ret = sync_mapping_buffers(inode->i_mapping);
1028 	if (!(inode->i_state & I_DIRTY_ALL))
1029 		goto out;
1030 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1031 		goto out;
1032 
1033 	err = sync_inode_metadata(inode, 1);
1034 	if (ret == 0)
1035 		ret = err;
1036 
1037 out:
1038 	inode_unlock(inode);
1039 	/* check and advance again to catch errors after syncing out buffers */
1040 	err = file_check_and_advance_wb_err(file);
1041 	if (ret == 0)
1042 		ret = err;
1043 	return ret;
1044 }
1045 EXPORT_SYMBOL(__generic_file_fsync);
1046 
1047 /**
1048  * generic_file_fsync - generic fsync implementation for simple filesystems
1049  *			with flush
1050  * @file:	file to synchronize
1051  * @start:	start offset in bytes
1052  * @end:	end offset in bytes (inclusive)
1053  * @datasync:	only synchronize essential metadata if true
1054  *
1055  */
1056 
generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1057 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1058 		       int datasync)
1059 {
1060 	struct inode *inode = file->f_mapping->host;
1061 	int err;
1062 
1063 	err = __generic_file_fsync(file, start, end, datasync);
1064 	if (err)
1065 		return err;
1066 	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1067 }
1068 EXPORT_SYMBOL(generic_file_fsync);
1069 
1070 /**
1071  * generic_check_addressable - Check addressability of file system
1072  * @blocksize_bits:	log of file system block size
1073  * @num_blocks:		number of blocks in file system
1074  *
1075  * Determine whether a file system with @num_blocks blocks (and a
1076  * block size of 2**@blocksize_bits) is addressable by the sector_t
1077  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1078  */
generic_check_addressable(unsigned blocksize_bits,u64 num_blocks)1079 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1080 {
1081 	u64 last_fs_block = num_blocks - 1;
1082 	u64 last_fs_page =
1083 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1084 
1085 	if (unlikely(num_blocks == 0))
1086 		return 0;
1087 
1088 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1089 		return -EINVAL;
1090 
1091 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1092 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1093 		return -EFBIG;
1094 	}
1095 	return 0;
1096 }
1097 EXPORT_SYMBOL(generic_check_addressable);
1098 
1099 /*
1100  * No-op implementation of ->fsync for in-memory filesystems.
1101  */
noop_fsync(struct file * file,loff_t start,loff_t end,int datasync)1102 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1103 {
1104 	return 0;
1105 }
1106 EXPORT_SYMBOL(noop_fsync);
1107 
noop_set_page_dirty(struct page * page)1108 int noop_set_page_dirty(struct page *page)
1109 {
1110 	/*
1111 	 * Unlike __set_page_dirty_no_writeback that handles dirty page
1112 	 * tracking in the page object, dax does all dirty tracking in
1113 	 * the inode address_space in response to mkwrite faults. In the
1114 	 * dax case we only need to worry about potentially dirty CPU
1115 	 * caches, not dirty page cache pages to write back.
1116 	 *
1117 	 * This callback is defined to prevent fallback to
1118 	 * __set_page_dirty_buffers() in set_page_dirty().
1119 	 */
1120 	return 0;
1121 }
1122 EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1123 
noop_invalidatepage(struct page * page,unsigned int offset,unsigned int length)1124 void noop_invalidatepage(struct page *page, unsigned int offset,
1125 		unsigned int length)
1126 {
1127 	/*
1128 	 * There is no page cache to invalidate in the dax case, however
1129 	 * we need this callback defined to prevent falling back to
1130 	 * block_invalidatepage() in do_invalidatepage().
1131 	 */
1132 }
1133 EXPORT_SYMBOL_GPL(noop_invalidatepage);
1134 
noop_direct_IO(struct kiocb * iocb,struct iov_iter * iter)1135 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1136 {
1137 	/*
1138 	 * iomap based filesystems support direct I/O without need for
1139 	 * this callback. However, it still needs to be set in
1140 	 * inode->a_ops so that open/fcntl know that direct I/O is
1141 	 * generally supported.
1142 	 */
1143 	return -EINVAL;
1144 }
1145 EXPORT_SYMBOL_GPL(noop_direct_IO);
1146 
1147 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
kfree_link(void * p)1148 void kfree_link(void *p)
1149 {
1150 	kfree(p);
1151 }
1152 EXPORT_SYMBOL(kfree_link);
1153 
1154 /*
1155  * nop .set_page_dirty method so that people can use .page_mkwrite on
1156  * anon inodes.
1157  */
anon_set_page_dirty(struct page * page)1158 static int anon_set_page_dirty(struct page *page)
1159 {
1160 	return 0;
1161 };
1162 
1163 /*
1164  * A single inode exists for all anon_inode files. Contrary to pipes,
1165  * anon_inode inodes have no associated per-instance data, so we need
1166  * only allocate one of them.
1167  */
alloc_anon_inode(struct super_block * s)1168 struct inode *alloc_anon_inode(struct super_block *s)
1169 {
1170 	static const struct address_space_operations anon_aops = {
1171 		.set_page_dirty = anon_set_page_dirty,
1172 	};
1173 	struct inode *inode = new_inode_pseudo(s);
1174 
1175 	if (!inode)
1176 		return ERR_PTR(-ENOMEM);
1177 
1178 	inode->i_ino = get_next_ino();
1179 	inode->i_mapping->a_ops = &anon_aops;
1180 
1181 	/*
1182 	 * Mark the inode dirty from the very beginning,
1183 	 * that way it will never be moved to the dirty
1184 	 * list because mark_inode_dirty() will think
1185 	 * that it already _is_ on the dirty list.
1186 	 */
1187 	inode->i_state = I_DIRTY;
1188 	inode->i_mode = S_IRUSR | S_IWUSR;
1189 	inode->i_uid = current_fsuid();
1190 	inode->i_gid = current_fsgid();
1191 	inode->i_flags |= S_PRIVATE;
1192 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1193 	return inode;
1194 }
1195 EXPORT_SYMBOL(alloc_anon_inode);
1196 
1197 /**
1198  * simple_nosetlease - generic helper for prohibiting leases
1199  * @filp: file pointer
1200  * @arg: type of lease to obtain
1201  * @flp: new lease supplied for insertion
1202  * @priv: private data for lm_setup operation
1203  *
1204  * Generic helper for filesystems that do not wish to allow leases to be set.
1205  * All arguments are ignored and it just returns -EINVAL.
1206  */
1207 int
simple_nosetlease(struct file * filp,long arg,struct file_lock ** flp,void ** priv)1208 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1209 		  void **priv)
1210 {
1211 	return -EINVAL;
1212 }
1213 EXPORT_SYMBOL(simple_nosetlease);
1214 
1215 /**
1216  * simple_get_link - generic helper to get the target of "fast" symlinks
1217  * @dentry: not used here
1218  * @inode: the symlink inode
1219  * @done: not used here
1220  *
1221  * Generic helper for filesystems to use for symlink inodes where a pointer to
1222  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1223  * since as an optimization the path lookup code uses any non-NULL ->i_link
1224  * directly, without calling ->get_link().  But ->get_link() still must be set,
1225  * to mark the inode_operations as being for a symlink.
1226  *
1227  * Return: the symlink target
1228  */
simple_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1229 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1230 			    struct delayed_call *done)
1231 {
1232 	return inode->i_link;
1233 }
1234 EXPORT_SYMBOL(simple_get_link);
1235 
1236 const struct inode_operations simple_symlink_inode_operations = {
1237 	.get_link = simple_get_link,
1238 };
1239 EXPORT_SYMBOL(simple_symlink_inode_operations);
1240 
1241 /*
1242  * Operations for a permanently empty directory.
1243  */
empty_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1244 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1245 {
1246 	return ERR_PTR(-ENOENT);
1247 }
1248 
empty_dir_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1249 static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1250 			     u32 request_mask, unsigned int query_flags)
1251 {
1252 	struct inode *inode = d_inode(path->dentry);
1253 	generic_fillattr(inode, stat);
1254 	return 0;
1255 }
1256 
empty_dir_setattr(struct dentry * dentry,struct iattr * attr)1257 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1258 {
1259 	return -EPERM;
1260 }
1261 
empty_dir_listxattr(struct dentry * dentry,char * list,size_t size)1262 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1263 {
1264 	return -EOPNOTSUPP;
1265 }
1266 
1267 static const struct inode_operations empty_dir_inode_operations = {
1268 	.lookup		= empty_dir_lookup,
1269 	.permission	= generic_permission,
1270 	.setattr	= empty_dir_setattr,
1271 	.getattr	= empty_dir_getattr,
1272 	.listxattr	= empty_dir_listxattr,
1273 };
1274 
empty_dir_llseek(struct file * file,loff_t offset,int whence)1275 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1276 {
1277 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1278 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1279 }
1280 
empty_dir_readdir(struct file * file,struct dir_context * ctx)1281 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1282 {
1283 	dir_emit_dots(file, ctx);
1284 	return 0;
1285 }
1286 
1287 static const struct file_operations empty_dir_operations = {
1288 	.llseek		= empty_dir_llseek,
1289 	.read		= generic_read_dir,
1290 	.iterate_shared	= empty_dir_readdir,
1291 	.fsync		= noop_fsync,
1292 };
1293 
1294 
make_empty_dir_inode(struct inode * inode)1295 void make_empty_dir_inode(struct inode *inode)
1296 {
1297 	set_nlink(inode, 2);
1298 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1299 	inode->i_uid = GLOBAL_ROOT_UID;
1300 	inode->i_gid = GLOBAL_ROOT_GID;
1301 	inode->i_rdev = 0;
1302 	inode->i_size = 0;
1303 	inode->i_blkbits = PAGE_SHIFT;
1304 	inode->i_blocks = 0;
1305 
1306 	inode->i_op = &empty_dir_inode_operations;
1307 	inode->i_opflags &= ~IOP_XATTR;
1308 	inode->i_fop = &empty_dir_operations;
1309 }
1310 
is_empty_dir_inode(struct inode * inode)1311 bool is_empty_dir_inode(struct inode *inode)
1312 {
1313 	return (inode->i_fop == &empty_dir_operations) &&
1314 		(inode->i_op == &empty_dir_inode_operations);
1315 }
1316 
1317 #ifdef CONFIG_UNICODE
needs_casefold(const struct inode * dir)1318 bool needs_casefold(const struct inode *dir)
1319 {
1320 	return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding &&
1321 			(!IS_ENCRYPTED(dir) || fscrypt_has_encryption_key(dir));
1322 }
1323 EXPORT_SYMBOL(needs_casefold);
1324 
generic_ci_d_compare(const struct dentry * dentry,unsigned int len,const char * str,const struct qstr * name)1325 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1326 			  const char *str, const struct qstr *name)
1327 {
1328 	const struct dentry *parent = READ_ONCE(dentry->d_parent);
1329 	const struct inode *inode = READ_ONCE(parent->d_inode);
1330 	const struct super_block *sb = dentry->d_sb;
1331 	const struct unicode_map *um = sb->s_encoding;
1332 	struct qstr entry = QSTR_INIT(str, len);
1333 	char strbuf[DNAME_INLINE_LEN];
1334 	int ret;
1335 
1336 	if (!inode || !needs_casefold(inode))
1337 		goto fallback;
1338 
1339 	/*
1340 	 * If the dentry name is stored in-line, then it may be concurrently
1341 	 * modified by a rename.  If this happens, the VFS will eventually retry
1342 	 * the lookup, so it doesn't matter what ->d_compare() returns.
1343 	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1344 	 * string.  Therefore, we have to copy the name into a temporary buffer.
1345 	 */
1346 	if (len <= DNAME_INLINE_LEN - 1) {
1347 		memcpy(strbuf, str, len);
1348 		strbuf[len] = 0;
1349 		entry.name = strbuf;
1350 		/* prevent compiler from optimizing out the temporary buffer */
1351 		barrier();
1352 	}
1353 
1354 	ret = utf8_strncasecmp(um, name, &entry);
1355 	if (ret >= 0)
1356 		return ret;
1357 
1358 	if (sb_has_enc_strict_mode(sb))
1359 		return -EINVAL;
1360 fallback:
1361 	if (len != name->len)
1362 		return 1;
1363 	return !!memcmp(str, name->name, len);
1364 }
1365 EXPORT_SYMBOL(generic_ci_d_compare);
1366 
generic_ci_d_hash(const struct dentry * dentry,struct qstr * str)1367 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1368 {
1369 	const struct inode *inode = READ_ONCE(dentry->d_inode);
1370 	struct super_block *sb = dentry->d_sb;
1371 	const struct unicode_map *um = sb->s_encoding;
1372 	int ret = 0;
1373 
1374 	if (!inode || !needs_casefold(inode))
1375 		return 0;
1376 
1377 	ret = utf8_casefold_hash(um, dentry, str);
1378 	if (ret < 0)
1379 		goto err;
1380 
1381 	return 0;
1382 err:
1383 	if (sb_has_enc_strict_mode(sb))
1384 		ret = -EINVAL;
1385 	else
1386 		ret = 0;
1387 	return ret;
1388 }
1389 EXPORT_SYMBOL(generic_ci_d_hash);
1390 
1391 static const struct dentry_operations generic_ci_dentry_ops = {
1392 	.d_hash = generic_ci_d_hash,
1393 	.d_compare = generic_ci_d_compare,
1394 };
1395 #endif
1396 
1397 #ifdef CONFIG_FS_ENCRYPTION
1398 static const struct dentry_operations generic_encrypted_dentry_ops = {
1399 	.d_revalidate = fscrypt_d_revalidate,
1400 };
1401 #endif
1402 
1403 #if IS_ENABLED(CONFIG_UNICODE) && IS_ENABLED(CONFIG_FS_ENCRYPTION)
1404 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1405 	.d_hash = generic_ci_d_hash,
1406 	.d_compare = generic_ci_d_compare,
1407 	.d_revalidate = fscrypt_d_revalidate,
1408 };
1409 #endif
1410 
1411 /**
1412  * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1413  * @dir:	parent of dentry whose ops to set
1414  * @dentry:	detnry to set ops on
1415  *
1416  * This function sets the dentry ops for the given dentry to handle both
1417  * casefolding and encryption of the dentry name.
1418  */
generic_set_encrypted_ci_d_ops(struct inode * dir,struct dentry * dentry)1419 void generic_set_encrypted_ci_d_ops(struct inode *dir, struct dentry *dentry)
1420 {
1421 #ifdef CONFIG_FS_ENCRYPTION
1422 	if (dentry->d_flags & DCACHE_ENCRYPTED_NAME) {
1423 #ifdef CONFIG_UNICODE
1424 		if (dir->i_sb->s_encoding) {
1425 			d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1426 			return;
1427 		}
1428 #endif
1429 		d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1430 		return;
1431 	}
1432 #endif
1433 #ifdef CONFIG_UNICODE
1434 	if (dir->i_sb->s_encoding) {
1435 		d_set_d_op(dentry, &generic_ci_dentry_ops);
1436 		return;
1437 	}
1438 #endif
1439 }
1440 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1441