1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31 /*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71
72 #include <linux/uaccess.h>
73 #include <trace/events/skb.h>
74 #include <linux/highmem.h>
75 #include <linux/capability.h>
76 #include <linux/user_namespace.h>
77 #include <linux/indirect_call_wrapper.h>
78 #include <trace/hooks/net.h>
79
80 #include "datagram.h"
81
82 struct kmem_cache *skbuff_head_cache __ro_after_init;
83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
84 #ifdef CONFIG_SKB_EXTENSIONS
85 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
86 #endif
87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
88 EXPORT_SYMBOL(sysctl_max_skb_frags);
89
90 /**
91 * skb_panic - private function for out-of-line support
92 * @skb: buffer
93 * @sz: size
94 * @addr: address
95 * @msg: skb_over_panic or skb_under_panic
96 *
97 * Out-of-line support for skb_put() and skb_push().
98 * Called via the wrapper skb_over_panic() or skb_under_panic().
99 * Keep out of line to prevent kernel bloat.
100 * __builtin_return_address is not used because it is not always reliable.
101 */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
103 const char msg[])
104 {
105 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
106 msg, addr, skb->len, sz, skb->head, skb->data,
107 (unsigned long)skb->tail, (unsigned long)skb->end,
108 skb->dev ? skb->dev->name : "<NULL>");
109 BUG();
110 }
111
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 skb_panic(skb, sz, addr, __func__);
115 }
116
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
118 {
119 skb_panic(skb, sz, addr, __func__);
120 }
121
122 /*
123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
124 * the caller if emergency pfmemalloc reserves are being used. If it is and
125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
126 * may be used. Otherwise, the packet data may be discarded until enough
127 * memory is free
128 */
129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
130 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
131
__kmalloc_reserve(size_t size,gfp_t flags,int node,unsigned long ip,bool * pfmemalloc)132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
133 unsigned long ip, bool *pfmemalloc)
134 {
135 void *obj;
136 bool ret_pfmemalloc = false;
137
138 /*
139 * Try a regular allocation, when that fails and we're not entitled
140 * to the reserves, fail.
141 */
142 obj = kmalloc_node_track_caller(size,
143 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
144 node);
145 if (obj || !(gfp_pfmemalloc_allowed(flags)))
146 goto out;
147
148 /* Try again but now we are using pfmemalloc reserves */
149 ret_pfmemalloc = true;
150 obj = kmalloc_node_track_caller(size, flags, node);
151
152 out:
153 if (pfmemalloc)
154 *pfmemalloc = ret_pfmemalloc;
155
156 return obj;
157 }
158
159 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
160 * 'private' fields and also do memory statistics to find all the
161 * [BEEP] leaks.
162 *
163 */
164
165 /**
166 * __alloc_skb - allocate a network buffer
167 * @size: size to allocate
168 * @gfp_mask: allocation mask
169 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
170 * instead of head cache and allocate a cloned (child) skb.
171 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
172 * allocations in case the data is required for writeback
173 * @node: numa node to allocate memory on
174 *
175 * Allocate a new &sk_buff. The returned buffer has no headroom and a
176 * tail room of at least size bytes. The object has a reference count
177 * of one. The return is the buffer. On a failure the return is %NULL.
178 *
179 * Buffers may only be allocated from interrupts using a @gfp_mask of
180 * %GFP_ATOMIC.
181 */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
183 int flags, int node)
184 {
185 struct kmem_cache *cache;
186 struct skb_shared_info *shinfo;
187 struct sk_buff *skb;
188 u8 *data;
189 bool pfmemalloc;
190
191 cache = (flags & SKB_ALLOC_FCLONE)
192 ? skbuff_fclone_cache : skbuff_head_cache;
193
194 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
195 gfp_mask |= __GFP_MEMALLOC;
196
197 /* Get the HEAD */
198 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
199 if (!skb)
200 goto out;
201 prefetchw(skb);
202
203 /* We do our best to align skb_shared_info on a separate cache
204 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
205 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
206 * Both skb->head and skb_shared_info are cache line aligned.
207 */
208 size = SKB_DATA_ALIGN(size);
209 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
210 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
211 if (!data)
212 goto nodata;
213 /* kmalloc(size) might give us more room than requested.
214 * Put skb_shared_info exactly at the end of allocated zone,
215 * to allow max possible filling before reallocation.
216 */
217 size = SKB_WITH_OVERHEAD(ksize(data));
218 prefetchw(data + size);
219
220 /*
221 * Only clear those fields we need to clear, not those that we will
222 * actually initialise below. Hence, don't put any more fields after
223 * the tail pointer in struct sk_buff!
224 */
225 memset(skb, 0, offsetof(struct sk_buff, tail));
226 /* Account for allocated memory : skb + skb->head */
227 skb->truesize = SKB_TRUESIZE(size);
228 skb->pfmemalloc = pfmemalloc;
229 refcount_set(&skb->users, 1);
230 skb->head = data;
231 skb->data = data;
232 skb_reset_tail_pointer(skb);
233 skb->end = skb->tail + size;
234 skb->mac_header = (typeof(skb->mac_header))~0U;
235 skb->transport_header = (typeof(skb->transport_header))~0U;
236
237 /* make sure we initialize shinfo sequentially */
238 shinfo = skb_shinfo(skb);
239 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
240 atomic_set(&shinfo->dataref, 1);
241
242 if (flags & SKB_ALLOC_FCLONE) {
243 struct sk_buff_fclones *fclones;
244
245 fclones = container_of(skb, struct sk_buff_fclones, skb1);
246
247 skb->fclone = SKB_FCLONE_ORIG;
248 refcount_set(&fclones->fclone_ref, 1);
249
250 fclones->skb2.fclone = SKB_FCLONE_CLONE;
251 }
252 out:
253 return skb;
254 nodata:
255 kmem_cache_free(cache, skb);
256 skb = NULL;
257 goto out;
258 }
259 EXPORT_SYMBOL(__alloc_skb);
260
261 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)262 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
263 void *data, unsigned int frag_size)
264 {
265 struct skb_shared_info *shinfo;
266 unsigned int size = frag_size ? : ksize(data);
267
268 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
269
270 /* Assumes caller memset cleared SKB */
271 skb->truesize = SKB_TRUESIZE(size);
272 refcount_set(&skb->users, 1);
273 skb->head = data;
274 skb->data = data;
275 skb_reset_tail_pointer(skb);
276 skb->end = skb->tail + size;
277 skb->mac_header = (typeof(skb->mac_header))~0U;
278 skb->transport_header = (typeof(skb->transport_header))~0U;
279
280 /* make sure we initialize shinfo sequentially */
281 shinfo = skb_shinfo(skb);
282 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
283 atomic_set(&shinfo->dataref, 1);
284
285 return skb;
286 }
287
288 /**
289 * __build_skb - build a network buffer
290 * @data: data buffer provided by caller
291 * @frag_size: size of data, or 0 if head was kmalloced
292 *
293 * Allocate a new &sk_buff. Caller provides space holding head and
294 * skb_shared_info. @data must have been allocated by kmalloc() only if
295 * @frag_size is 0, otherwise data should come from the page allocator
296 * or vmalloc()
297 * The return is the new skb buffer.
298 * On a failure the return is %NULL, and @data is not freed.
299 * Notes :
300 * Before IO, driver allocates only data buffer where NIC put incoming frame
301 * Driver should add room at head (NET_SKB_PAD) and
302 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
303 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
304 * before giving packet to stack.
305 * RX rings only contains data buffers, not full skbs.
306 */
__build_skb(void * data,unsigned int frag_size)307 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
308 {
309 struct sk_buff *skb;
310
311 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
312 if (unlikely(!skb))
313 return NULL;
314
315 memset(skb, 0, offsetof(struct sk_buff, tail));
316
317 return __build_skb_around(skb, data, frag_size);
318 }
319
320 /* build_skb() is wrapper over __build_skb(), that specifically
321 * takes care of skb->head and skb->pfmemalloc
322 * This means that if @frag_size is not zero, then @data must be backed
323 * by a page fragment, not kmalloc() or vmalloc()
324 */
build_skb(void * data,unsigned int frag_size)325 struct sk_buff *build_skb(void *data, unsigned int frag_size)
326 {
327 struct sk_buff *skb = __build_skb(data, frag_size);
328
329 if (skb && frag_size) {
330 skb->head_frag = 1;
331 if (page_is_pfmemalloc(virt_to_head_page(data)))
332 skb->pfmemalloc = 1;
333 }
334 return skb;
335 }
336 EXPORT_SYMBOL(build_skb);
337
338 /**
339 * build_skb_around - build a network buffer around provided skb
340 * @skb: sk_buff provide by caller, must be memset cleared
341 * @data: data buffer provided by caller
342 * @frag_size: size of data, or 0 if head was kmalloced
343 */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)344 struct sk_buff *build_skb_around(struct sk_buff *skb,
345 void *data, unsigned int frag_size)
346 {
347 if (unlikely(!skb))
348 return NULL;
349
350 skb = __build_skb_around(skb, data, frag_size);
351
352 if (skb && frag_size) {
353 skb->head_frag = 1;
354 if (page_is_pfmemalloc(virt_to_head_page(data)))
355 skb->pfmemalloc = 1;
356 }
357 return skb;
358 }
359 EXPORT_SYMBOL(build_skb_around);
360
361 #define NAPI_SKB_CACHE_SIZE 64
362
363 struct napi_alloc_cache {
364 struct page_frag_cache page;
365 unsigned int skb_count;
366 void *skb_cache[NAPI_SKB_CACHE_SIZE];
367 };
368
369 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
370 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
371
__napi_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)372 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
373 {
374 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
375
376 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
377 }
378
napi_alloc_frag(unsigned int fragsz)379 void *napi_alloc_frag(unsigned int fragsz)
380 {
381 fragsz = SKB_DATA_ALIGN(fragsz);
382
383 return __napi_alloc_frag(fragsz, GFP_ATOMIC);
384 }
385 EXPORT_SYMBOL(napi_alloc_frag);
386
387 /**
388 * netdev_alloc_frag - allocate a page fragment
389 * @fragsz: fragment size
390 *
391 * Allocates a frag from a page for receive buffer.
392 * Uses GFP_ATOMIC allocations.
393 */
netdev_alloc_frag(unsigned int fragsz)394 void *netdev_alloc_frag(unsigned int fragsz)
395 {
396 struct page_frag_cache *nc;
397 void *data;
398
399 fragsz = SKB_DATA_ALIGN(fragsz);
400 if (in_irq() || irqs_disabled()) {
401 nc = this_cpu_ptr(&netdev_alloc_cache);
402 data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
403 } else {
404 local_bh_disable();
405 data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
406 local_bh_enable();
407 }
408 return data;
409 }
410 EXPORT_SYMBOL(netdev_alloc_frag);
411
412 /**
413 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
414 * @dev: network device to receive on
415 * @len: length to allocate
416 * @gfp_mask: get_free_pages mask, passed to alloc_skb
417 *
418 * Allocate a new &sk_buff and assign it a usage count of one. The
419 * buffer has NET_SKB_PAD headroom built in. Users should allocate
420 * the headroom they think they need without accounting for the
421 * built in space. The built in space is used for optimisations.
422 *
423 * %NULL is returned if there is no free memory.
424 */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)425 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
426 gfp_t gfp_mask)
427 {
428 struct page_frag_cache *nc;
429 struct sk_buff *skb;
430 bool pfmemalloc;
431 void *data;
432
433 len += NET_SKB_PAD;
434
435 /* If requested length is either too small or too big,
436 * we use kmalloc() for skb->head allocation.
437 */
438 if (len <= SKB_WITH_OVERHEAD(1024) ||
439 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
440 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
441 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
442 if (!skb)
443 goto skb_fail;
444 goto skb_success;
445 }
446
447 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
448 len = SKB_DATA_ALIGN(len);
449
450 if (sk_memalloc_socks())
451 gfp_mask |= __GFP_MEMALLOC;
452
453 if (in_irq() || irqs_disabled()) {
454 nc = this_cpu_ptr(&netdev_alloc_cache);
455 data = page_frag_alloc(nc, len, gfp_mask);
456 pfmemalloc = nc->pfmemalloc;
457 } else {
458 local_bh_disable();
459 nc = this_cpu_ptr(&napi_alloc_cache.page);
460 data = page_frag_alloc(nc, len, gfp_mask);
461 pfmemalloc = nc->pfmemalloc;
462 local_bh_enable();
463 }
464
465 if (unlikely(!data))
466 return NULL;
467
468 skb = __build_skb(data, len);
469 if (unlikely(!skb)) {
470 skb_free_frag(data);
471 return NULL;
472 }
473
474 /* use OR instead of assignment to avoid clearing of bits in mask */
475 if (pfmemalloc)
476 skb->pfmemalloc = 1;
477 skb->head_frag = 1;
478
479 skb_success:
480 skb_reserve(skb, NET_SKB_PAD);
481 skb->dev = dev;
482
483 skb_fail:
484 return skb;
485 }
486 EXPORT_SYMBOL(__netdev_alloc_skb);
487
488 /**
489 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
490 * @napi: napi instance this buffer was allocated for
491 * @len: length to allocate
492 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
493 *
494 * Allocate a new sk_buff for use in NAPI receive. This buffer will
495 * attempt to allocate the head from a special reserved region used
496 * only for NAPI Rx allocation. By doing this we can save several
497 * CPU cycles by avoiding having to disable and re-enable IRQs.
498 *
499 * %NULL is returned if there is no free memory.
500 */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)501 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
502 gfp_t gfp_mask)
503 {
504 struct napi_alloc_cache *nc;
505 struct sk_buff *skb;
506 void *data;
507
508 len += NET_SKB_PAD + NET_IP_ALIGN;
509
510 /* If requested length is either too small or too big,
511 * we use kmalloc() for skb->head allocation.
512 */
513 if (len <= SKB_WITH_OVERHEAD(1024) ||
514 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
515 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
516 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
517 if (!skb)
518 goto skb_fail;
519 goto skb_success;
520 }
521
522 nc = this_cpu_ptr(&napi_alloc_cache);
523 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
524 len = SKB_DATA_ALIGN(len);
525
526 if (sk_memalloc_socks())
527 gfp_mask |= __GFP_MEMALLOC;
528
529 data = page_frag_alloc(&nc->page, len, gfp_mask);
530 if (unlikely(!data))
531 return NULL;
532
533 skb = __build_skb(data, len);
534 if (unlikely(!skb)) {
535 skb_free_frag(data);
536 return NULL;
537 }
538
539 /* use OR instead of assignment to avoid clearing of bits in mask */
540 if (nc->page.pfmemalloc)
541 skb->pfmemalloc = 1;
542 skb->head_frag = 1;
543
544 skb_success:
545 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
546 skb->dev = napi->dev;
547
548 skb_fail:
549 return skb;
550 }
551 EXPORT_SYMBOL(__napi_alloc_skb);
552
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)553 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
554 int size, unsigned int truesize)
555 {
556 skb_fill_page_desc(skb, i, page, off, size);
557 skb->len += size;
558 skb->data_len += size;
559 skb->truesize += truesize;
560 }
561 EXPORT_SYMBOL(skb_add_rx_frag);
562
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)563 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
564 unsigned int truesize)
565 {
566 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
567
568 skb_frag_size_add(frag, size);
569 skb->len += size;
570 skb->data_len += size;
571 skb->truesize += truesize;
572 }
573 EXPORT_SYMBOL(skb_coalesce_rx_frag);
574
skb_drop_list(struct sk_buff ** listp)575 static void skb_drop_list(struct sk_buff **listp)
576 {
577 kfree_skb_list(*listp);
578 *listp = NULL;
579 }
580
skb_drop_fraglist(struct sk_buff * skb)581 static inline void skb_drop_fraglist(struct sk_buff *skb)
582 {
583 skb_drop_list(&skb_shinfo(skb)->frag_list);
584 }
585
skb_clone_fraglist(struct sk_buff * skb)586 static void skb_clone_fraglist(struct sk_buff *skb)
587 {
588 struct sk_buff *list;
589
590 skb_walk_frags(skb, list)
591 skb_get(list);
592 }
593
skb_free_head(struct sk_buff * skb)594 static void skb_free_head(struct sk_buff *skb)
595 {
596 unsigned char *head = skb->head;
597
598 if (skb->head_frag)
599 skb_free_frag(head);
600 else
601 kfree(head);
602 }
603
skb_release_data(struct sk_buff * skb)604 static void skb_release_data(struct sk_buff *skb)
605 {
606 struct skb_shared_info *shinfo = skb_shinfo(skb);
607 int i;
608
609 if (skb->cloned &&
610 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
611 &shinfo->dataref))
612 return;
613
614 for (i = 0; i < shinfo->nr_frags; i++)
615 __skb_frag_unref(&shinfo->frags[i]);
616
617 if (shinfo->frag_list)
618 kfree_skb_list(shinfo->frag_list);
619
620 skb_zcopy_clear(skb, true);
621 skb_free_head(skb);
622 }
623
624 /*
625 * Free an skbuff by memory without cleaning the state.
626 */
kfree_skbmem(struct sk_buff * skb)627 static void kfree_skbmem(struct sk_buff *skb)
628 {
629 struct sk_buff_fclones *fclones;
630
631 switch (skb->fclone) {
632 case SKB_FCLONE_UNAVAILABLE:
633 kmem_cache_free(skbuff_head_cache, skb);
634 return;
635
636 case SKB_FCLONE_ORIG:
637 fclones = container_of(skb, struct sk_buff_fclones, skb1);
638
639 /* We usually free the clone (TX completion) before original skb
640 * This test would have no chance to be true for the clone,
641 * while here, branch prediction will be good.
642 */
643 if (refcount_read(&fclones->fclone_ref) == 1)
644 goto fastpath;
645 break;
646
647 default: /* SKB_FCLONE_CLONE */
648 fclones = container_of(skb, struct sk_buff_fclones, skb2);
649 break;
650 }
651 if (!refcount_dec_and_test(&fclones->fclone_ref))
652 return;
653 fastpath:
654 kmem_cache_free(skbuff_fclone_cache, fclones);
655 }
656
skb_release_head_state(struct sk_buff * skb)657 void skb_release_head_state(struct sk_buff *skb)
658 {
659 skb_dst_drop(skb);
660 if (skb->destructor) {
661 WARN_ON(in_irq());
662 skb->destructor(skb);
663 }
664 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
665 nf_conntrack_put(skb_nfct(skb));
666 #endif
667 skb_ext_put(skb);
668 }
669
670 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)671 static void skb_release_all(struct sk_buff *skb)
672 {
673 skb_release_head_state(skb);
674 if (likely(skb->head))
675 skb_release_data(skb);
676 }
677
678 /**
679 * __kfree_skb - private function
680 * @skb: buffer
681 *
682 * Free an sk_buff. Release anything attached to the buffer.
683 * Clean the state. This is an internal helper function. Users should
684 * always call kfree_skb
685 */
686
__kfree_skb(struct sk_buff * skb)687 void __kfree_skb(struct sk_buff *skb)
688 {
689 skb_release_all(skb);
690 kfree_skbmem(skb);
691 }
692 EXPORT_SYMBOL(__kfree_skb);
693
694 /**
695 * kfree_skb - free an sk_buff
696 * @skb: buffer to free
697 *
698 * Drop a reference to the buffer and free it if the usage count has
699 * hit zero.
700 */
kfree_skb(struct sk_buff * skb)701 void kfree_skb(struct sk_buff *skb)
702 {
703 if (!skb_unref(skb))
704 return;
705
706 trace_android_vh_kfree_skb(skb);
707 trace_kfree_skb(skb, __builtin_return_address(0));
708 __kfree_skb(skb);
709 }
710 EXPORT_SYMBOL(kfree_skb);
711
kfree_skb_list(struct sk_buff * segs)712 void kfree_skb_list(struct sk_buff *segs)
713 {
714 while (segs) {
715 struct sk_buff *next = segs->next;
716
717 kfree_skb(segs);
718 segs = next;
719 }
720 }
721 EXPORT_SYMBOL(kfree_skb_list);
722
723 /* Dump skb information and contents.
724 *
725 * Must only be called from net_ratelimit()-ed paths.
726 *
727 * Dumps up to can_dump_full whole packets if full_pkt, headers otherwise.
728 */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)729 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
730 {
731 static atomic_t can_dump_full = ATOMIC_INIT(5);
732 struct skb_shared_info *sh = skb_shinfo(skb);
733 struct net_device *dev = skb->dev;
734 struct sock *sk = skb->sk;
735 struct sk_buff *list_skb;
736 bool has_mac, has_trans;
737 int headroom, tailroom;
738 int i, len, seg_len;
739
740 if (full_pkt)
741 full_pkt = atomic_dec_if_positive(&can_dump_full) >= 0;
742
743 if (full_pkt)
744 len = skb->len;
745 else
746 len = min_t(int, skb->len, MAX_HEADER + 128);
747
748 headroom = skb_headroom(skb);
749 tailroom = skb_tailroom(skb);
750
751 has_mac = skb_mac_header_was_set(skb);
752 has_trans = skb_transport_header_was_set(skb);
753
754 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
755 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
756 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
757 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
758 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
759 level, skb->len, headroom, skb_headlen(skb), tailroom,
760 has_mac ? skb->mac_header : -1,
761 has_mac ? skb_mac_header_len(skb) : -1,
762 skb->network_header,
763 has_trans ? skb_network_header_len(skb) : -1,
764 has_trans ? skb->transport_header : -1,
765 sh->tx_flags, sh->nr_frags,
766 sh->gso_size, sh->gso_type, sh->gso_segs,
767 skb->csum, skb->ip_summed, skb->csum_complete_sw,
768 skb->csum_valid, skb->csum_level,
769 skb->hash, skb->sw_hash, skb->l4_hash,
770 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
771
772 if (dev)
773 printk("%sdev name=%s feat=%pNF\n",
774 level, dev->name, &dev->features);
775 if (sk)
776 printk("%ssk family=%hu type=%u proto=%u\n",
777 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
778
779 if (full_pkt && headroom)
780 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
781 16, 1, skb->head, headroom, false);
782
783 seg_len = min_t(int, skb_headlen(skb), len);
784 if (seg_len)
785 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
786 16, 1, skb->data, seg_len, false);
787 len -= seg_len;
788
789 if (full_pkt && tailroom)
790 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
791 16, 1, skb_tail_pointer(skb), tailroom, false);
792
793 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
794 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
795 u32 p_off, p_len, copied;
796 struct page *p;
797 u8 *vaddr;
798
799 skb_frag_foreach_page(frag, skb_frag_off(frag),
800 skb_frag_size(frag), p, p_off, p_len,
801 copied) {
802 seg_len = min_t(int, p_len, len);
803 vaddr = kmap_atomic(p);
804 print_hex_dump(level, "skb frag: ",
805 DUMP_PREFIX_OFFSET,
806 16, 1, vaddr + p_off, seg_len, false);
807 kunmap_atomic(vaddr);
808 len -= seg_len;
809 if (!len)
810 break;
811 }
812 }
813
814 if (full_pkt && skb_has_frag_list(skb)) {
815 printk("skb fraglist:\n");
816 skb_walk_frags(skb, list_skb)
817 skb_dump(level, list_skb, true);
818 }
819 }
820 EXPORT_SYMBOL(skb_dump);
821
822 /**
823 * skb_tx_error - report an sk_buff xmit error
824 * @skb: buffer that triggered an error
825 *
826 * Report xmit error if a device callback is tracking this skb.
827 * skb must be freed afterwards.
828 */
skb_tx_error(struct sk_buff * skb)829 void skb_tx_error(struct sk_buff *skb)
830 {
831 skb_zcopy_clear(skb, true);
832 }
833 EXPORT_SYMBOL(skb_tx_error);
834
835 /**
836 * consume_skb - free an skbuff
837 * @skb: buffer to free
838 *
839 * Drop a ref to the buffer and free it if the usage count has hit zero
840 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
841 * is being dropped after a failure and notes that
842 */
consume_skb(struct sk_buff * skb)843 void consume_skb(struct sk_buff *skb)
844 {
845 if (!skb_unref(skb))
846 return;
847
848 trace_consume_skb(skb);
849 __kfree_skb(skb);
850 }
851 EXPORT_SYMBOL(consume_skb);
852
853 /**
854 * consume_stateless_skb - free an skbuff, assuming it is stateless
855 * @skb: buffer to free
856 *
857 * Alike consume_skb(), but this variant assumes that this is the last
858 * skb reference and all the head states have been already dropped
859 */
__consume_stateless_skb(struct sk_buff * skb)860 void __consume_stateless_skb(struct sk_buff *skb)
861 {
862 trace_consume_skb(skb);
863 skb_release_data(skb);
864 kfree_skbmem(skb);
865 }
866
__kfree_skb_flush(void)867 void __kfree_skb_flush(void)
868 {
869 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
870
871 /* flush skb_cache if containing objects */
872 if (nc->skb_count) {
873 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
874 nc->skb_cache);
875 nc->skb_count = 0;
876 }
877 }
878
_kfree_skb_defer(struct sk_buff * skb)879 static inline void _kfree_skb_defer(struct sk_buff *skb)
880 {
881 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
882
883 /* drop skb->head and call any destructors for packet */
884 skb_release_all(skb);
885
886 /* record skb to CPU local list */
887 nc->skb_cache[nc->skb_count++] = skb;
888
889 #ifdef CONFIG_SLUB
890 /* SLUB writes into objects when freeing */
891 prefetchw(skb);
892 #endif
893
894 /* flush skb_cache if it is filled */
895 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
896 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
897 nc->skb_cache);
898 nc->skb_count = 0;
899 }
900 }
__kfree_skb_defer(struct sk_buff * skb)901 void __kfree_skb_defer(struct sk_buff *skb)
902 {
903 _kfree_skb_defer(skb);
904 }
905
napi_consume_skb(struct sk_buff * skb,int budget)906 void napi_consume_skb(struct sk_buff *skb, int budget)
907 {
908 if (unlikely(!skb))
909 return;
910
911 /* Zero budget indicate non-NAPI context called us, like netpoll */
912 if (unlikely(!budget)) {
913 dev_consume_skb_any(skb);
914 return;
915 }
916
917 if (!skb_unref(skb))
918 return;
919
920 /* if reaching here SKB is ready to free */
921 trace_consume_skb(skb);
922
923 /* if SKB is a clone, don't handle this case */
924 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
925 __kfree_skb(skb);
926 return;
927 }
928
929 _kfree_skb_defer(skb);
930 }
931 EXPORT_SYMBOL(napi_consume_skb);
932
933 /* Make sure a field is enclosed inside headers_start/headers_end section */
934 #define CHECK_SKB_FIELD(field) \
935 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
936 offsetof(struct sk_buff, headers_start)); \
937 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
938 offsetof(struct sk_buff, headers_end)); \
939
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)940 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
941 {
942 new->tstamp = old->tstamp;
943 /* We do not copy old->sk */
944 new->dev = old->dev;
945 memcpy(new->cb, old->cb, sizeof(old->cb));
946 skb_dst_copy(new, old);
947 __skb_ext_copy(new, old);
948 __nf_copy(new, old, false);
949
950 /* Note : this field could be in headers_start/headers_end section
951 * It is not yet because we do not want to have a 16 bit hole
952 */
953 new->queue_mapping = old->queue_mapping;
954
955 memcpy(&new->headers_start, &old->headers_start,
956 offsetof(struct sk_buff, headers_end) -
957 offsetof(struct sk_buff, headers_start));
958 CHECK_SKB_FIELD(protocol);
959 CHECK_SKB_FIELD(csum);
960 CHECK_SKB_FIELD(hash);
961 CHECK_SKB_FIELD(priority);
962 CHECK_SKB_FIELD(skb_iif);
963 CHECK_SKB_FIELD(vlan_proto);
964 CHECK_SKB_FIELD(vlan_tci);
965 CHECK_SKB_FIELD(transport_header);
966 CHECK_SKB_FIELD(network_header);
967 CHECK_SKB_FIELD(mac_header);
968 CHECK_SKB_FIELD(inner_protocol);
969 CHECK_SKB_FIELD(inner_transport_header);
970 CHECK_SKB_FIELD(inner_network_header);
971 CHECK_SKB_FIELD(inner_mac_header);
972 CHECK_SKB_FIELD(mark);
973 #ifdef CONFIG_NETWORK_SECMARK
974 CHECK_SKB_FIELD(secmark);
975 #endif
976 #ifdef CONFIG_NET_RX_BUSY_POLL
977 CHECK_SKB_FIELD(napi_id);
978 #endif
979 #ifdef CONFIG_XPS
980 CHECK_SKB_FIELD(sender_cpu);
981 #endif
982 #ifdef CONFIG_NET_SCHED
983 CHECK_SKB_FIELD(tc_index);
984 #endif
985 /* ANDROID:
986 * Due to attempts to keep the ABI stable for struct sk_buff, the new
987 * fields were incorrectly added _AFTER_ the headers_end field, which
988 * requires that we manually copy the fields here from the old to the
989 * new one.
990 * Be sure to add any new field that is added in the
991 * ANDROID_KABI_REPLACE() macros below here as well.
992 */
993 new->scm_io_uring = old->scm_io_uring;
994 }
995
996 /*
997 * You should not add any new code to this function. Add it to
998 * __copy_skb_header above instead.
999 */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)1000 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1001 {
1002 #define C(x) n->x = skb->x
1003
1004 n->next = n->prev = NULL;
1005 n->sk = NULL;
1006 __copy_skb_header(n, skb);
1007
1008 C(len);
1009 C(data_len);
1010 C(mac_len);
1011 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1012 n->cloned = 1;
1013 n->nohdr = 0;
1014 n->peeked = 0;
1015 C(pfmemalloc);
1016 n->destructor = NULL;
1017 C(tail);
1018 C(end);
1019 C(head);
1020 C(head_frag);
1021 C(data);
1022 C(truesize);
1023 refcount_set(&n->users, 1);
1024
1025 atomic_inc(&(skb_shinfo(skb)->dataref));
1026 skb->cloned = 1;
1027
1028 return n;
1029 #undef C
1030 }
1031
1032 /**
1033 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1034 * @first: first sk_buff of the msg
1035 */
alloc_skb_for_msg(struct sk_buff * first)1036 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1037 {
1038 struct sk_buff *n;
1039
1040 n = alloc_skb(0, GFP_ATOMIC);
1041 if (!n)
1042 return NULL;
1043
1044 n->len = first->len;
1045 n->data_len = first->len;
1046 n->truesize = first->truesize;
1047
1048 skb_shinfo(n)->frag_list = first;
1049
1050 __copy_skb_header(n, first);
1051 n->destructor = NULL;
1052
1053 return n;
1054 }
1055 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1056
1057 /**
1058 * skb_morph - morph one skb into another
1059 * @dst: the skb to receive the contents
1060 * @src: the skb to supply the contents
1061 *
1062 * This is identical to skb_clone except that the target skb is
1063 * supplied by the user.
1064 *
1065 * The target skb is returned upon exit.
1066 */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1067 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1068 {
1069 skb_release_all(dst);
1070 return __skb_clone(dst, src);
1071 }
1072 EXPORT_SYMBOL_GPL(skb_morph);
1073
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1074 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1075 {
1076 unsigned long max_pg, num_pg, new_pg, old_pg;
1077 struct user_struct *user;
1078
1079 if (capable(CAP_IPC_LOCK) || !size)
1080 return 0;
1081
1082 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1083 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1084 user = mmp->user ? : current_user();
1085
1086 do {
1087 old_pg = atomic_long_read(&user->locked_vm);
1088 new_pg = old_pg + num_pg;
1089 if (new_pg > max_pg)
1090 return -ENOBUFS;
1091 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1092 old_pg);
1093
1094 if (!mmp->user) {
1095 mmp->user = get_uid(user);
1096 mmp->num_pg = num_pg;
1097 } else {
1098 mmp->num_pg += num_pg;
1099 }
1100
1101 return 0;
1102 }
1103 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1104
mm_unaccount_pinned_pages(struct mmpin * mmp)1105 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1106 {
1107 if (mmp->user) {
1108 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1109 free_uid(mmp->user);
1110 }
1111 }
1112 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1113
sock_zerocopy_alloc(struct sock * sk,size_t size)1114 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1115 {
1116 struct ubuf_info *uarg;
1117 struct sk_buff *skb;
1118
1119 WARN_ON_ONCE(!in_task());
1120
1121 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1122 if (!skb)
1123 return NULL;
1124
1125 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1126 uarg = (void *)skb->cb;
1127 uarg->mmp.user = NULL;
1128
1129 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1130 kfree_skb(skb);
1131 return NULL;
1132 }
1133
1134 uarg->callback = sock_zerocopy_callback;
1135 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1136 uarg->len = 1;
1137 uarg->bytelen = size;
1138 uarg->zerocopy = 1;
1139 refcount_set(&uarg->refcnt, 1);
1140 sock_hold(sk);
1141
1142 return uarg;
1143 }
1144 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1145
skb_from_uarg(struct ubuf_info * uarg)1146 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1147 {
1148 return container_of((void *)uarg, struct sk_buff, cb);
1149 }
1150
sock_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1151 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1152 struct ubuf_info *uarg)
1153 {
1154 if (uarg) {
1155 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1156 u32 bytelen, next;
1157
1158 /* realloc only when socket is locked (TCP, UDP cork),
1159 * so uarg->len and sk_zckey access is serialized
1160 */
1161 if (!sock_owned_by_user(sk)) {
1162 WARN_ON_ONCE(1);
1163 return NULL;
1164 }
1165
1166 bytelen = uarg->bytelen + size;
1167 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1168 /* TCP can create new skb to attach new uarg */
1169 if (sk->sk_type == SOCK_STREAM)
1170 goto new_alloc;
1171 return NULL;
1172 }
1173
1174 next = (u32)atomic_read(&sk->sk_zckey);
1175 if ((u32)(uarg->id + uarg->len) == next) {
1176 if (mm_account_pinned_pages(&uarg->mmp, size))
1177 return NULL;
1178 uarg->len++;
1179 uarg->bytelen = bytelen;
1180 atomic_set(&sk->sk_zckey, ++next);
1181
1182 /* no extra ref when appending to datagram (MSG_MORE) */
1183 if (sk->sk_type == SOCK_STREAM)
1184 sock_zerocopy_get(uarg);
1185
1186 return uarg;
1187 }
1188 }
1189
1190 new_alloc:
1191 return sock_zerocopy_alloc(sk, size);
1192 }
1193 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1194
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1195 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1196 {
1197 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1198 u32 old_lo, old_hi;
1199 u64 sum_len;
1200
1201 old_lo = serr->ee.ee_info;
1202 old_hi = serr->ee.ee_data;
1203 sum_len = old_hi - old_lo + 1ULL + len;
1204
1205 if (sum_len >= (1ULL << 32))
1206 return false;
1207
1208 if (lo != old_hi + 1)
1209 return false;
1210
1211 serr->ee.ee_data += len;
1212 return true;
1213 }
1214
sock_zerocopy_callback(struct ubuf_info * uarg,bool success)1215 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1216 {
1217 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1218 struct sock_exterr_skb *serr;
1219 struct sock *sk = skb->sk;
1220 struct sk_buff_head *q;
1221 unsigned long flags;
1222 u32 lo, hi;
1223 u16 len;
1224
1225 mm_unaccount_pinned_pages(&uarg->mmp);
1226
1227 /* if !len, there was only 1 call, and it was aborted
1228 * so do not queue a completion notification
1229 */
1230 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1231 goto release;
1232
1233 len = uarg->len;
1234 lo = uarg->id;
1235 hi = uarg->id + len - 1;
1236
1237 serr = SKB_EXT_ERR(skb);
1238 memset(serr, 0, sizeof(*serr));
1239 serr->ee.ee_errno = 0;
1240 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1241 serr->ee.ee_data = hi;
1242 serr->ee.ee_info = lo;
1243 if (!success)
1244 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1245
1246 q = &sk->sk_error_queue;
1247 spin_lock_irqsave(&q->lock, flags);
1248 tail = skb_peek_tail(q);
1249 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1250 !skb_zerocopy_notify_extend(tail, lo, len)) {
1251 __skb_queue_tail(q, skb);
1252 skb = NULL;
1253 }
1254 spin_unlock_irqrestore(&q->lock, flags);
1255
1256 sk->sk_error_report(sk);
1257
1258 release:
1259 consume_skb(skb);
1260 sock_put(sk);
1261 }
1262 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1263
sock_zerocopy_put(struct ubuf_info * uarg)1264 void sock_zerocopy_put(struct ubuf_info *uarg)
1265 {
1266 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1267 if (uarg->callback)
1268 uarg->callback(uarg, uarg->zerocopy);
1269 else
1270 consume_skb(skb_from_uarg(uarg));
1271 }
1272 }
1273 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1274
sock_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1275 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1276 {
1277 if (uarg) {
1278 struct sock *sk = skb_from_uarg(uarg)->sk;
1279
1280 atomic_dec(&sk->sk_zckey);
1281 uarg->len--;
1282
1283 if (have_uref)
1284 sock_zerocopy_put(uarg);
1285 }
1286 }
1287 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1288
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1289 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1290 {
1291 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1292 }
1293 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1294
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1295 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1296 struct msghdr *msg, int len,
1297 struct ubuf_info *uarg)
1298 {
1299 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1300 struct iov_iter orig_iter = msg->msg_iter;
1301 int err, orig_len = skb->len;
1302
1303 /* An skb can only point to one uarg. This edge case happens when
1304 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1305 */
1306 if (orig_uarg && uarg != orig_uarg)
1307 return -EEXIST;
1308
1309 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1310 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1311 struct sock *save_sk = skb->sk;
1312
1313 /* Streams do not free skb on error. Reset to prev state. */
1314 msg->msg_iter = orig_iter;
1315 skb->sk = sk;
1316 ___pskb_trim(skb, orig_len);
1317 skb->sk = save_sk;
1318 return err;
1319 }
1320
1321 skb_zcopy_set(skb, uarg, NULL);
1322 return skb->len - orig_len;
1323 }
1324 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1325
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1326 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1327 gfp_t gfp_mask)
1328 {
1329 if (skb_zcopy(orig)) {
1330 if (skb_zcopy(nskb)) {
1331 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1332 if (!gfp_mask) {
1333 WARN_ON_ONCE(1);
1334 return -ENOMEM;
1335 }
1336 if (skb_uarg(nskb) == skb_uarg(orig))
1337 return 0;
1338 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1339 return -EIO;
1340 }
1341 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1342 }
1343 return 0;
1344 }
1345
1346 /**
1347 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1348 * @skb: the skb to modify
1349 * @gfp_mask: allocation priority
1350 *
1351 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1352 * It will copy all frags into kernel and drop the reference
1353 * to userspace pages.
1354 *
1355 * If this function is called from an interrupt gfp_mask() must be
1356 * %GFP_ATOMIC.
1357 *
1358 * Returns 0 on success or a negative error code on failure
1359 * to allocate kernel memory to copy to.
1360 */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1361 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1362 {
1363 int num_frags = skb_shinfo(skb)->nr_frags;
1364 struct page *page, *head = NULL;
1365 int i, new_frags;
1366 u32 d_off;
1367
1368 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1369 return -EINVAL;
1370
1371 if (!num_frags)
1372 goto release;
1373
1374 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1375 for (i = 0; i < new_frags; i++) {
1376 page = alloc_page(gfp_mask);
1377 if (!page) {
1378 while (head) {
1379 struct page *next = (struct page *)page_private(head);
1380 put_page(head);
1381 head = next;
1382 }
1383 return -ENOMEM;
1384 }
1385 set_page_private(page, (unsigned long)head);
1386 head = page;
1387 }
1388
1389 page = head;
1390 d_off = 0;
1391 for (i = 0; i < num_frags; i++) {
1392 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1393 u32 p_off, p_len, copied;
1394 struct page *p;
1395 u8 *vaddr;
1396
1397 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1398 p, p_off, p_len, copied) {
1399 u32 copy, done = 0;
1400 vaddr = kmap_atomic(p);
1401
1402 while (done < p_len) {
1403 if (d_off == PAGE_SIZE) {
1404 d_off = 0;
1405 page = (struct page *)page_private(page);
1406 }
1407 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1408 memcpy(page_address(page) + d_off,
1409 vaddr + p_off + done, copy);
1410 done += copy;
1411 d_off += copy;
1412 }
1413 kunmap_atomic(vaddr);
1414 }
1415 }
1416
1417 /* skb frags release userspace buffers */
1418 for (i = 0; i < num_frags; i++)
1419 skb_frag_unref(skb, i);
1420
1421 /* skb frags point to kernel buffers */
1422 for (i = 0; i < new_frags - 1; i++) {
1423 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1424 head = (struct page *)page_private(head);
1425 }
1426 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1427 skb_shinfo(skb)->nr_frags = new_frags;
1428
1429 release:
1430 skb_zcopy_clear(skb, false);
1431 return 0;
1432 }
1433 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1434
1435 /**
1436 * skb_clone - duplicate an sk_buff
1437 * @skb: buffer to clone
1438 * @gfp_mask: allocation priority
1439 *
1440 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1441 * copies share the same packet data but not structure. The new
1442 * buffer has a reference count of 1. If the allocation fails the
1443 * function returns %NULL otherwise the new buffer is returned.
1444 *
1445 * If this function is called from an interrupt gfp_mask() must be
1446 * %GFP_ATOMIC.
1447 */
1448
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1449 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1450 {
1451 struct sk_buff_fclones *fclones = container_of(skb,
1452 struct sk_buff_fclones,
1453 skb1);
1454 struct sk_buff *n;
1455
1456 if (skb_orphan_frags(skb, gfp_mask))
1457 return NULL;
1458
1459 if (skb->fclone == SKB_FCLONE_ORIG &&
1460 refcount_read(&fclones->fclone_ref) == 1) {
1461 n = &fclones->skb2;
1462 refcount_set(&fclones->fclone_ref, 2);
1463 } else {
1464 if (skb_pfmemalloc(skb))
1465 gfp_mask |= __GFP_MEMALLOC;
1466
1467 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1468 if (!n)
1469 return NULL;
1470
1471 n->fclone = SKB_FCLONE_UNAVAILABLE;
1472 }
1473
1474 return __skb_clone(n, skb);
1475 }
1476 EXPORT_SYMBOL(skb_clone);
1477
skb_headers_offset_update(struct sk_buff * skb,int off)1478 void skb_headers_offset_update(struct sk_buff *skb, int off)
1479 {
1480 /* Only adjust this if it actually is csum_start rather than csum */
1481 if (skb->ip_summed == CHECKSUM_PARTIAL)
1482 skb->csum_start += off;
1483 /* {transport,network,mac}_header and tail are relative to skb->head */
1484 skb->transport_header += off;
1485 skb->network_header += off;
1486 if (skb_mac_header_was_set(skb))
1487 skb->mac_header += off;
1488 skb->inner_transport_header += off;
1489 skb->inner_network_header += off;
1490 skb->inner_mac_header += off;
1491 }
1492 EXPORT_SYMBOL(skb_headers_offset_update);
1493
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)1494 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1495 {
1496 __copy_skb_header(new, old);
1497
1498 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1499 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1500 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1501 }
1502 EXPORT_SYMBOL(skb_copy_header);
1503
skb_alloc_rx_flag(const struct sk_buff * skb)1504 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1505 {
1506 if (skb_pfmemalloc(skb))
1507 return SKB_ALLOC_RX;
1508 return 0;
1509 }
1510
1511 /**
1512 * skb_copy - create private copy of an sk_buff
1513 * @skb: buffer to copy
1514 * @gfp_mask: allocation priority
1515 *
1516 * Make a copy of both an &sk_buff and its data. This is used when the
1517 * caller wishes to modify the data and needs a private copy of the
1518 * data to alter. Returns %NULL on failure or the pointer to the buffer
1519 * on success. The returned buffer has a reference count of 1.
1520 *
1521 * As by-product this function converts non-linear &sk_buff to linear
1522 * one, so that &sk_buff becomes completely private and caller is allowed
1523 * to modify all the data of returned buffer. This means that this
1524 * function is not recommended for use in circumstances when only
1525 * header is going to be modified. Use pskb_copy() instead.
1526 */
1527
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1528 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1529 {
1530 int headerlen = skb_headroom(skb);
1531 unsigned int size = skb_end_offset(skb) + skb->data_len;
1532 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1533 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1534
1535 if (!n)
1536 return NULL;
1537
1538 /* Set the data pointer */
1539 skb_reserve(n, headerlen);
1540 /* Set the tail pointer and length */
1541 skb_put(n, skb->len);
1542
1543 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1544
1545 skb_copy_header(n, skb);
1546 return n;
1547 }
1548 EXPORT_SYMBOL(skb_copy);
1549
1550 /**
1551 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1552 * @skb: buffer to copy
1553 * @headroom: headroom of new skb
1554 * @gfp_mask: allocation priority
1555 * @fclone: if true allocate the copy of the skb from the fclone
1556 * cache instead of the head cache; it is recommended to set this
1557 * to true for the cases where the copy will likely be cloned
1558 *
1559 * Make a copy of both an &sk_buff and part of its data, located
1560 * in header. Fragmented data remain shared. This is used when
1561 * the caller wishes to modify only header of &sk_buff and needs
1562 * private copy of the header to alter. Returns %NULL on failure
1563 * or the pointer to the buffer on success.
1564 * The returned buffer has a reference count of 1.
1565 */
1566
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1567 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1568 gfp_t gfp_mask, bool fclone)
1569 {
1570 unsigned int size = skb_headlen(skb) + headroom;
1571 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1572 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1573
1574 if (!n)
1575 goto out;
1576
1577 /* Set the data pointer */
1578 skb_reserve(n, headroom);
1579 /* Set the tail pointer and length */
1580 skb_put(n, skb_headlen(skb));
1581 /* Copy the bytes */
1582 skb_copy_from_linear_data(skb, n->data, n->len);
1583
1584 n->truesize += skb->data_len;
1585 n->data_len = skb->data_len;
1586 n->len = skb->len;
1587
1588 if (skb_shinfo(skb)->nr_frags) {
1589 int i;
1590
1591 if (skb_orphan_frags(skb, gfp_mask) ||
1592 skb_zerocopy_clone(n, skb, gfp_mask)) {
1593 kfree_skb(n);
1594 n = NULL;
1595 goto out;
1596 }
1597 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1598 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1599 skb_frag_ref(skb, i);
1600 }
1601 skb_shinfo(n)->nr_frags = i;
1602 }
1603
1604 if (skb_has_frag_list(skb)) {
1605 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1606 skb_clone_fraglist(n);
1607 }
1608
1609 skb_copy_header(n, skb);
1610 out:
1611 return n;
1612 }
1613 EXPORT_SYMBOL(__pskb_copy_fclone);
1614
1615 /**
1616 * pskb_expand_head - reallocate header of &sk_buff
1617 * @skb: buffer to reallocate
1618 * @nhead: room to add at head
1619 * @ntail: room to add at tail
1620 * @gfp_mask: allocation priority
1621 *
1622 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1623 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1624 * reference count of 1. Returns zero in the case of success or error,
1625 * if expansion failed. In the last case, &sk_buff is not changed.
1626 *
1627 * All the pointers pointing into skb header may change and must be
1628 * reloaded after call to this function.
1629 */
1630
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1631 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1632 gfp_t gfp_mask)
1633 {
1634 int i, osize = skb_end_offset(skb);
1635 int size = osize + nhead + ntail;
1636 long off;
1637 u8 *data;
1638
1639 BUG_ON(nhead < 0);
1640
1641 BUG_ON(skb_shared(skb));
1642
1643 size = SKB_DATA_ALIGN(size);
1644
1645 if (skb_pfmemalloc(skb))
1646 gfp_mask |= __GFP_MEMALLOC;
1647 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1648 gfp_mask, NUMA_NO_NODE, NULL);
1649 if (!data)
1650 goto nodata;
1651 size = SKB_WITH_OVERHEAD(ksize(data));
1652
1653 /* Copy only real data... and, alas, header. This should be
1654 * optimized for the cases when header is void.
1655 */
1656 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1657
1658 memcpy((struct skb_shared_info *)(data + size),
1659 skb_shinfo(skb),
1660 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1661
1662 /*
1663 * if shinfo is shared we must drop the old head gracefully, but if it
1664 * is not we can just drop the old head and let the existing refcount
1665 * be since all we did is relocate the values
1666 */
1667 if (skb_cloned(skb)) {
1668 if (skb_orphan_frags(skb, gfp_mask))
1669 goto nofrags;
1670 if (skb_zcopy(skb))
1671 refcount_inc(&skb_uarg(skb)->refcnt);
1672 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1673 skb_frag_ref(skb, i);
1674
1675 if (skb_has_frag_list(skb))
1676 skb_clone_fraglist(skb);
1677
1678 skb_release_data(skb);
1679 } else {
1680 skb_free_head(skb);
1681 }
1682 off = (data + nhead) - skb->head;
1683
1684 skb->head = data;
1685 skb->head_frag = 0;
1686 skb->data += off;
1687 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1688 skb->end = size;
1689 off = nhead;
1690 #else
1691 skb->end = skb->head + size;
1692 #endif
1693 skb->tail += off;
1694 skb_headers_offset_update(skb, nhead);
1695 skb->cloned = 0;
1696 skb->hdr_len = 0;
1697 skb->nohdr = 0;
1698 atomic_set(&skb_shinfo(skb)->dataref, 1);
1699
1700 skb_metadata_clear(skb);
1701
1702 /* It is not generally safe to change skb->truesize.
1703 * For the moment, we really care of rx path, or
1704 * when skb is orphaned (not attached to a socket).
1705 */
1706 if (!skb->sk || skb->destructor == sock_edemux)
1707 skb->truesize += size - osize;
1708
1709 return 0;
1710
1711 nofrags:
1712 kfree(data);
1713 nodata:
1714 return -ENOMEM;
1715 }
1716 EXPORT_SYMBOL(pskb_expand_head);
1717
1718 /* Make private copy of skb with writable head and some headroom */
1719
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1720 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1721 {
1722 struct sk_buff *skb2;
1723 int delta = headroom - skb_headroom(skb);
1724
1725 if (delta <= 0)
1726 skb2 = pskb_copy(skb, GFP_ATOMIC);
1727 else {
1728 skb2 = skb_clone(skb, GFP_ATOMIC);
1729 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1730 GFP_ATOMIC)) {
1731 kfree_skb(skb2);
1732 skb2 = NULL;
1733 }
1734 }
1735 return skb2;
1736 }
1737 EXPORT_SYMBOL(skb_realloc_headroom);
1738
1739 /**
1740 * skb_copy_expand - copy and expand sk_buff
1741 * @skb: buffer to copy
1742 * @newheadroom: new free bytes at head
1743 * @newtailroom: new free bytes at tail
1744 * @gfp_mask: allocation priority
1745 *
1746 * Make a copy of both an &sk_buff and its data and while doing so
1747 * allocate additional space.
1748 *
1749 * This is used when the caller wishes to modify the data and needs a
1750 * private copy of the data to alter as well as more space for new fields.
1751 * Returns %NULL on failure or the pointer to the buffer
1752 * on success. The returned buffer has a reference count of 1.
1753 *
1754 * You must pass %GFP_ATOMIC as the allocation priority if this function
1755 * is called from an interrupt.
1756 */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1757 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1758 int newheadroom, int newtailroom,
1759 gfp_t gfp_mask)
1760 {
1761 /*
1762 * Allocate the copy buffer
1763 */
1764 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1765 gfp_mask, skb_alloc_rx_flag(skb),
1766 NUMA_NO_NODE);
1767 int oldheadroom = skb_headroom(skb);
1768 int head_copy_len, head_copy_off;
1769
1770 if (!n)
1771 return NULL;
1772
1773 skb_reserve(n, newheadroom);
1774
1775 /* Set the tail pointer and length */
1776 skb_put(n, skb->len);
1777
1778 head_copy_len = oldheadroom;
1779 head_copy_off = 0;
1780 if (newheadroom <= head_copy_len)
1781 head_copy_len = newheadroom;
1782 else
1783 head_copy_off = newheadroom - head_copy_len;
1784
1785 /* Copy the linear header and data. */
1786 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1787 skb->len + head_copy_len));
1788
1789 skb_copy_header(n, skb);
1790
1791 skb_headers_offset_update(n, newheadroom - oldheadroom);
1792
1793 return n;
1794 }
1795 EXPORT_SYMBOL(skb_copy_expand);
1796
1797 /**
1798 * __skb_pad - zero pad the tail of an skb
1799 * @skb: buffer to pad
1800 * @pad: space to pad
1801 * @free_on_error: free buffer on error
1802 *
1803 * Ensure that a buffer is followed by a padding area that is zero
1804 * filled. Used by network drivers which may DMA or transfer data
1805 * beyond the buffer end onto the wire.
1806 *
1807 * May return error in out of memory cases. The skb is freed on error
1808 * if @free_on_error is true.
1809 */
1810
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)1811 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1812 {
1813 int err;
1814 int ntail;
1815
1816 /* If the skbuff is non linear tailroom is always zero.. */
1817 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1818 memset(skb->data+skb->len, 0, pad);
1819 return 0;
1820 }
1821
1822 ntail = skb->data_len + pad - (skb->end - skb->tail);
1823 if (likely(skb_cloned(skb) || ntail > 0)) {
1824 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1825 if (unlikely(err))
1826 goto free_skb;
1827 }
1828
1829 /* FIXME: The use of this function with non-linear skb's really needs
1830 * to be audited.
1831 */
1832 err = skb_linearize(skb);
1833 if (unlikely(err))
1834 goto free_skb;
1835
1836 memset(skb->data + skb->len, 0, pad);
1837 return 0;
1838
1839 free_skb:
1840 if (free_on_error)
1841 kfree_skb(skb);
1842 return err;
1843 }
1844 EXPORT_SYMBOL(__skb_pad);
1845
1846 /**
1847 * pskb_put - add data to the tail of a potentially fragmented buffer
1848 * @skb: start of the buffer to use
1849 * @tail: tail fragment of the buffer to use
1850 * @len: amount of data to add
1851 *
1852 * This function extends the used data area of the potentially
1853 * fragmented buffer. @tail must be the last fragment of @skb -- or
1854 * @skb itself. If this would exceed the total buffer size the kernel
1855 * will panic. A pointer to the first byte of the extra data is
1856 * returned.
1857 */
1858
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)1859 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1860 {
1861 if (tail != skb) {
1862 skb->data_len += len;
1863 skb->len += len;
1864 }
1865 return skb_put(tail, len);
1866 }
1867 EXPORT_SYMBOL_GPL(pskb_put);
1868
1869 /**
1870 * skb_put - add data to a buffer
1871 * @skb: buffer to use
1872 * @len: amount of data to add
1873 *
1874 * This function extends the used data area of the buffer. If this would
1875 * exceed the total buffer size the kernel will panic. A pointer to the
1876 * first byte of the extra data is returned.
1877 */
skb_put(struct sk_buff * skb,unsigned int len)1878 void *skb_put(struct sk_buff *skb, unsigned int len)
1879 {
1880 void *tmp = skb_tail_pointer(skb);
1881 SKB_LINEAR_ASSERT(skb);
1882 skb->tail += len;
1883 skb->len += len;
1884 if (unlikely(skb->tail > skb->end))
1885 skb_over_panic(skb, len, __builtin_return_address(0));
1886 return tmp;
1887 }
1888 EXPORT_SYMBOL(skb_put);
1889
1890 /**
1891 * skb_push - add data to the start of a buffer
1892 * @skb: buffer to use
1893 * @len: amount of data to add
1894 *
1895 * This function extends the used data area of the buffer at the buffer
1896 * start. If this would exceed the total buffer headroom the kernel will
1897 * panic. A pointer to the first byte of the extra data is returned.
1898 */
skb_push(struct sk_buff * skb,unsigned int len)1899 void *skb_push(struct sk_buff *skb, unsigned int len)
1900 {
1901 skb->data -= len;
1902 skb->len += len;
1903 if (unlikely(skb->data < skb->head))
1904 skb_under_panic(skb, len, __builtin_return_address(0));
1905 return skb->data;
1906 }
1907 EXPORT_SYMBOL(skb_push);
1908
1909 /**
1910 * skb_pull - remove data from the start of a buffer
1911 * @skb: buffer to use
1912 * @len: amount of data to remove
1913 *
1914 * This function removes data from the start of a buffer, returning
1915 * the memory to the headroom. A pointer to the next data in the buffer
1916 * is returned. Once the data has been pulled future pushes will overwrite
1917 * the old data.
1918 */
skb_pull(struct sk_buff * skb,unsigned int len)1919 void *skb_pull(struct sk_buff *skb, unsigned int len)
1920 {
1921 return skb_pull_inline(skb, len);
1922 }
1923 EXPORT_SYMBOL(skb_pull);
1924
1925 /**
1926 * skb_trim - remove end from a buffer
1927 * @skb: buffer to alter
1928 * @len: new length
1929 *
1930 * Cut the length of a buffer down by removing data from the tail. If
1931 * the buffer is already under the length specified it is not modified.
1932 * The skb must be linear.
1933 */
skb_trim(struct sk_buff * skb,unsigned int len)1934 void skb_trim(struct sk_buff *skb, unsigned int len)
1935 {
1936 if (skb->len > len)
1937 __skb_trim(skb, len);
1938 }
1939 EXPORT_SYMBOL(skb_trim);
1940
1941 /* Trims skb to length len. It can change skb pointers.
1942 */
1943
___pskb_trim(struct sk_buff * skb,unsigned int len)1944 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1945 {
1946 struct sk_buff **fragp;
1947 struct sk_buff *frag;
1948 int offset = skb_headlen(skb);
1949 int nfrags = skb_shinfo(skb)->nr_frags;
1950 int i;
1951 int err;
1952
1953 if (skb_cloned(skb) &&
1954 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1955 return err;
1956
1957 i = 0;
1958 if (offset >= len)
1959 goto drop_pages;
1960
1961 for (; i < nfrags; i++) {
1962 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1963
1964 if (end < len) {
1965 offset = end;
1966 continue;
1967 }
1968
1969 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1970
1971 drop_pages:
1972 skb_shinfo(skb)->nr_frags = i;
1973
1974 for (; i < nfrags; i++)
1975 skb_frag_unref(skb, i);
1976
1977 if (skb_has_frag_list(skb))
1978 skb_drop_fraglist(skb);
1979 goto done;
1980 }
1981
1982 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1983 fragp = &frag->next) {
1984 int end = offset + frag->len;
1985
1986 if (skb_shared(frag)) {
1987 struct sk_buff *nfrag;
1988
1989 nfrag = skb_clone(frag, GFP_ATOMIC);
1990 if (unlikely(!nfrag))
1991 return -ENOMEM;
1992
1993 nfrag->next = frag->next;
1994 consume_skb(frag);
1995 frag = nfrag;
1996 *fragp = frag;
1997 }
1998
1999 if (end < len) {
2000 offset = end;
2001 continue;
2002 }
2003
2004 if (end > len &&
2005 unlikely((err = pskb_trim(frag, len - offset))))
2006 return err;
2007
2008 if (frag->next)
2009 skb_drop_list(&frag->next);
2010 break;
2011 }
2012
2013 done:
2014 if (len > skb_headlen(skb)) {
2015 skb->data_len -= skb->len - len;
2016 skb->len = len;
2017 } else {
2018 skb->len = len;
2019 skb->data_len = 0;
2020 skb_set_tail_pointer(skb, len);
2021 }
2022
2023 if (!skb->sk || skb->destructor == sock_edemux)
2024 skb_condense(skb);
2025 return 0;
2026 }
2027 EXPORT_SYMBOL(___pskb_trim);
2028
2029 /* Note : use pskb_trim_rcsum() instead of calling this directly
2030 */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2031 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2032 {
2033 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2034 int delta = skb->len - len;
2035
2036 skb->csum = csum_block_sub(skb->csum,
2037 skb_checksum(skb, len, delta, 0),
2038 len);
2039 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2040 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2041 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2042
2043 if (offset + sizeof(__sum16) > hdlen)
2044 return -EINVAL;
2045 }
2046 return __pskb_trim(skb, len);
2047 }
2048 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2049
2050 /**
2051 * __pskb_pull_tail - advance tail of skb header
2052 * @skb: buffer to reallocate
2053 * @delta: number of bytes to advance tail
2054 *
2055 * The function makes a sense only on a fragmented &sk_buff,
2056 * it expands header moving its tail forward and copying necessary
2057 * data from fragmented part.
2058 *
2059 * &sk_buff MUST have reference count of 1.
2060 *
2061 * Returns %NULL (and &sk_buff does not change) if pull failed
2062 * or value of new tail of skb in the case of success.
2063 *
2064 * All the pointers pointing into skb header may change and must be
2065 * reloaded after call to this function.
2066 */
2067
2068 /* Moves tail of skb head forward, copying data from fragmented part,
2069 * when it is necessary.
2070 * 1. It may fail due to malloc failure.
2071 * 2. It may change skb pointers.
2072 *
2073 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2074 */
__pskb_pull_tail(struct sk_buff * skb,int delta)2075 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2076 {
2077 /* If skb has not enough free space at tail, get new one
2078 * plus 128 bytes for future expansions. If we have enough
2079 * room at tail, reallocate without expansion only if skb is cloned.
2080 */
2081 int i, k, eat = (skb->tail + delta) - skb->end;
2082
2083 if (eat > 0 || skb_cloned(skb)) {
2084 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2085 GFP_ATOMIC))
2086 return NULL;
2087 }
2088
2089 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2090 skb_tail_pointer(skb), delta));
2091
2092 /* Optimization: no fragments, no reasons to preestimate
2093 * size of pulled pages. Superb.
2094 */
2095 if (!skb_has_frag_list(skb))
2096 goto pull_pages;
2097
2098 /* Estimate size of pulled pages. */
2099 eat = delta;
2100 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2101 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2102
2103 if (size >= eat)
2104 goto pull_pages;
2105 eat -= size;
2106 }
2107
2108 /* If we need update frag list, we are in troubles.
2109 * Certainly, it is possible to add an offset to skb data,
2110 * but taking into account that pulling is expected to
2111 * be very rare operation, it is worth to fight against
2112 * further bloating skb head and crucify ourselves here instead.
2113 * Pure masohism, indeed. 8)8)
2114 */
2115 if (eat) {
2116 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2117 struct sk_buff *clone = NULL;
2118 struct sk_buff *insp = NULL;
2119
2120 do {
2121 if (list->len <= eat) {
2122 /* Eaten as whole. */
2123 eat -= list->len;
2124 list = list->next;
2125 insp = list;
2126 } else {
2127 /* Eaten partially. */
2128 if (skb_is_gso(skb) && !list->head_frag &&
2129 skb_headlen(list))
2130 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2131
2132 if (skb_shared(list)) {
2133 /* Sucks! We need to fork list. :-( */
2134 clone = skb_clone(list, GFP_ATOMIC);
2135 if (!clone)
2136 return NULL;
2137 insp = list->next;
2138 list = clone;
2139 } else {
2140 /* This may be pulled without
2141 * problems. */
2142 insp = list;
2143 }
2144 if (!pskb_pull(list, eat)) {
2145 kfree_skb(clone);
2146 return NULL;
2147 }
2148 break;
2149 }
2150 } while (eat);
2151
2152 /* Free pulled out fragments. */
2153 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2154 skb_shinfo(skb)->frag_list = list->next;
2155 consume_skb(list);
2156 }
2157 /* And insert new clone at head. */
2158 if (clone) {
2159 clone->next = list;
2160 skb_shinfo(skb)->frag_list = clone;
2161 }
2162 }
2163 /* Success! Now we may commit changes to skb data. */
2164
2165 pull_pages:
2166 eat = delta;
2167 k = 0;
2168 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2169 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2170
2171 if (size <= eat) {
2172 skb_frag_unref(skb, i);
2173 eat -= size;
2174 } else {
2175 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2176
2177 *frag = skb_shinfo(skb)->frags[i];
2178 if (eat) {
2179 skb_frag_off_add(frag, eat);
2180 skb_frag_size_sub(frag, eat);
2181 if (!i)
2182 goto end;
2183 eat = 0;
2184 }
2185 k++;
2186 }
2187 }
2188 skb_shinfo(skb)->nr_frags = k;
2189
2190 end:
2191 skb->tail += delta;
2192 skb->data_len -= delta;
2193
2194 if (!skb->data_len)
2195 skb_zcopy_clear(skb, false);
2196
2197 return skb_tail_pointer(skb);
2198 }
2199 EXPORT_SYMBOL(__pskb_pull_tail);
2200
2201 /**
2202 * skb_copy_bits - copy bits from skb to kernel buffer
2203 * @skb: source skb
2204 * @offset: offset in source
2205 * @to: destination buffer
2206 * @len: number of bytes to copy
2207 *
2208 * Copy the specified number of bytes from the source skb to the
2209 * destination buffer.
2210 *
2211 * CAUTION ! :
2212 * If its prototype is ever changed,
2213 * check arch/{*}/net/{*}.S files,
2214 * since it is called from BPF assembly code.
2215 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2216 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2217 {
2218 int start = skb_headlen(skb);
2219 struct sk_buff *frag_iter;
2220 int i, copy;
2221
2222 if (offset > (int)skb->len - len)
2223 goto fault;
2224
2225 /* Copy header. */
2226 if ((copy = start - offset) > 0) {
2227 if (copy > len)
2228 copy = len;
2229 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2230 if ((len -= copy) == 0)
2231 return 0;
2232 offset += copy;
2233 to += copy;
2234 }
2235
2236 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2237 int end;
2238 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2239
2240 WARN_ON(start > offset + len);
2241
2242 end = start + skb_frag_size(f);
2243 if ((copy = end - offset) > 0) {
2244 u32 p_off, p_len, copied;
2245 struct page *p;
2246 u8 *vaddr;
2247
2248 if (copy > len)
2249 copy = len;
2250
2251 skb_frag_foreach_page(f,
2252 skb_frag_off(f) + offset - start,
2253 copy, p, p_off, p_len, copied) {
2254 vaddr = kmap_atomic(p);
2255 memcpy(to + copied, vaddr + p_off, p_len);
2256 kunmap_atomic(vaddr);
2257 }
2258
2259 if ((len -= copy) == 0)
2260 return 0;
2261 offset += copy;
2262 to += copy;
2263 }
2264 start = end;
2265 }
2266
2267 skb_walk_frags(skb, frag_iter) {
2268 int end;
2269
2270 WARN_ON(start > offset + len);
2271
2272 end = start + frag_iter->len;
2273 if ((copy = end - offset) > 0) {
2274 if (copy > len)
2275 copy = len;
2276 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2277 goto fault;
2278 if ((len -= copy) == 0)
2279 return 0;
2280 offset += copy;
2281 to += copy;
2282 }
2283 start = end;
2284 }
2285
2286 if (!len)
2287 return 0;
2288
2289 fault:
2290 return -EFAULT;
2291 }
2292 EXPORT_SYMBOL(skb_copy_bits);
2293
2294 /*
2295 * Callback from splice_to_pipe(), if we need to release some pages
2296 * at the end of the spd in case we error'ed out in filling the pipe.
2297 */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2298 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2299 {
2300 put_page(spd->pages[i]);
2301 }
2302
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2303 static struct page *linear_to_page(struct page *page, unsigned int *len,
2304 unsigned int *offset,
2305 struct sock *sk)
2306 {
2307 struct page_frag *pfrag = sk_page_frag(sk);
2308
2309 if (!sk_page_frag_refill(sk, pfrag))
2310 return NULL;
2311
2312 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2313
2314 memcpy(page_address(pfrag->page) + pfrag->offset,
2315 page_address(page) + *offset, *len);
2316 *offset = pfrag->offset;
2317 pfrag->offset += *len;
2318
2319 return pfrag->page;
2320 }
2321
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2322 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2323 struct page *page,
2324 unsigned int offset)
2325 {
2326 return spd->nr_pages &&
2327 spd->pages[spd->nr_pages - 1] == page &&
2328 (spd->partial[spd->nr_pages - 1].offset +
2329 spd->partial[spd->nr_pages - 1].len == offset);
2330 }
2331
2332 /*
2333 * Fill page/offset/length into spd, if it can hold more pages.
2334 */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)2335 static bool spd_fill_page(struct splice_pipe_desc *spd,
2336 struct pipe_inode_info *pipe, struct page *page,
2337 unsigned int *len, unsigned int offset,
2338 bool linear,
2339 struct sock *sk)
2340 {
2341 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2342 return true;
2343
2344 if (linear) {
2345 page = linear_to_page(page, len, &offset, sk);
2346 if (!page)
2347 return true;
2348 }
2349 if (spd_can_coalesce(spd, page, offset)) {
2350 spd->partial[spd->nr_pages - 1].len += *len;
2351 return false;
2352 }
2353 get_page(page);
2354 spd->pages[spd->nr_pages] = page;
2355 spd->partial[spd->nr_pages].len = *len;
2356 spd->partial[spd->nr_pages].offset = offset;
2357 spd->nr_pages++;
2358
2359 return false;
2360 }
2361
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)2362 static bool __splice_segment(struct page *page, unsigned int poff,
2363 unsigned int plen, unsigned int *off,
2364 unsigned int *len,
2365 struct splice_pipe_desc *spd, bool linear,
2366 struct sock *sk,
2367 struct pipe_inode_info *pipe)
2368 {
2369 if (!*len)
2370 return true;
2371
2372 /* skip this segment if already processed */
2373 if (*off >= plen) {
2374 *off -= plen;
2375 return false;
2376 }
2377
2378 /* ignore any bits we already processed */
2379 poff += *off;
2380 plen -= *off;
2381 *off = 0;
2382
2383 do {
2384 unsigned int flen = min(*len, plen);
2385
2386 if (spd_fill_page(spd, pipe, page, &flen, poff,
2387 linear, sk))
2388 return true;
2389 poff += flen;
2390 plen -= flen;
2391 *len -= flen;
2392 } while (*len && plen);
2393
2394 return false;
2395 }
2396
2397 /*
2398 * Map linear and fragment data from the skb to spd. It reports true if the
2399 * pipe is full or if we already spliced the requested length.
2400 */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)2401 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2402 unsigned int *offset, unsigned int *len,
2403 struct splice_pipe_desc *spd, struct sock *sk)
2404 {
2405 int seg;
2406 struct sk_buff *iter;
2407
2408 /* map the linear part :
2409 * If skb->head_frag is set, this 'linear' part is backed by a
2410 * fragment, and if the head is not shared with any clones then
2411 * we can avoid a copy since we own the head portion of this page.
2412 */
2413 if (__splice_segment(virt_to_page(skb->data),
2414 (unsigned long) skb->data & (PAGE_SIZE - 1),
2415 skb_headlen(skb),
2416 offset, len, spd,
2417 skb_head_is_locked(skb),
2418 sk, pipe))
2419 return true;
2420
2421 /*
2422 * then map the fragments
2423 */
2424 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2425 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2426
2427 if (__splice_segment(skb_frag_page(f),
2428 skb_frag_off(f), skb_frag_size(f),
2429 offset, len, spd, false, sk, pipe))
2430 return true;
2431 }
2432
2433 skb_walk_frags(skb, iter) {
2434 if (*offset >= iter->len) {
2435 *offset -= iter->len;
2436 continue;
2437 }
2438 /* __skb_splice_bits() only fails if the output has no room
2439 * left, so no point in going over the frag_list for the error
2440 * case.
2441 */
2442 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2443 return true;
2444 }
2445
2446 return false;
2447 }
2448
2449 /*
2450 * Map data from the skb to a pipe. Should handle both the linear part,
2451 * the fragments, and the frag list.
2452 */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)2453 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2454 struct pipe_inode_info *pipe, unsigned int tlen,
2455 unsigned int flags)
2456 {
2457 struct partial_page partial[MAX_SKB_FRAGS];
2458 struct page *pages[MAX_SKB_FRAGS];
2459 struct splice_pipe_desc spd = {
2460 .pages = pages,
2461 .partial = partial,
2462 .nr_pages_max = MAX_SKB_FRAGS,
2463 .ops = &nosteal_pipe_buf_ops,
2464 .spd_release = sock_spd_release,
2465 };
2466 int ret = 0;
2467
2468 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2469
2470 if (spd.nr_pages)
2471 ret = splice_to_pipe(pipe, &spd);
2472
2473 return ret;
2474 }
2475 EXPORT_SYMBOL_GPL(skb_splice_bits);
2476
2477 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)2478 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2479 int len)
2480 {
2481 unsigned int orig_len = len;
2482 struct sk_buff *head = skb;
2483 unsigned short fragidx;
2484 int slen, ret;
2485
2486 do_frag_list:
2487
2488 /* Deal with head data */
2489 while (offset < skb_headlen(skb) && len) {
2490 struct kvec kv;
2491 struct msghdr msg;
2492
2493 slen = min_t(int, len, skb_headlen(skb) - offset);
2494 kv.iov_base = skb->data + offset;
2495 kv.iov_len = slen;
2496 memset(&msg, 0, sizeof(msg));
2497 msg.msg_flags = MSG_DONTWAIT;
2498
2499 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2500 if (ret <= 0)
2501 goto error;
2502
2503 offset += ret;
2504 len -= ret;
2505 }
2506
2507 /* All the data was skb head? */
2508 if (!len)
2509 goto out;
2510
2511 /* Make offset relative to start of frags */
2512 offset -= skb_headlen(skb);
2513
2514 /* Find where we are in frag list */
2515 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2516 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2517
2518 if (offset < skb_frag_size(frag))
2519 break;
2520
2521 offset -= skb_frag_size(frag);
2522 }
2523
2524 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2525 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2526
2527 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2528
2529 while (slen) {
2530 ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2531 skb_frag_off(frag) + offset,
2532 slen, MSG_DONTWAIT);
2533 if (ret <= 0)
2534 goto error;
2535
2536 len -= ret;
2537 offset += ret;
2538 slen -= ret;
2539 }
2540
2541 offset = 0;
2542 }
2543
2544 if (len) {
2545 /* Process any frag lists */
2546
2547 if (skb == head) {
2548 if (skb_has_frag_list(skb)) {
2549 skb = skb_shinfo(skb)->frag_list;
2550 goto do_frag_list;
2551 }
2552 } else if (skb->next) {
2553 skb = skb->next;
2554 goto do_frag_list;
2555 }
2556 }
2557
2558 out:
2559 return orig_len - len;
2560
2561 error:
2562 return orig_len == len ? ret : orig_len - len;
2563 }
2564 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2565
2566 /**
2567 * skb_store_bits - store bits from kernel buffer to skb
2568 * @skb: destination buffer
2569 * @offset: offset in destination
2570 * @from: source buffer
2571 * @len: number of bytes to copy
2572 *
2573 * Copy the specified number of bytes from the source buffer to the
2574 * destination skb. This function handles all the messy bits of
2575 * traversing fragment lists and such.
2576 */
2577
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)2578 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2579 {
2580 int start = skb_headlen(skb);
2581 struct sk_buff *frag_iter;
2582 int i, copy;
2583
2584 if (offset > (int)skb->len - len)
2585 goto fault;
2586
2587 if ((copy = start - offset) > 0) {
2588 if (copy > len)
2589 copy = len;
2590 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2591 if ((len -= copy) == 0)
2592 return 0;
2593 offset += copy;
2594 from += copy;
2595 }
2596
2597 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2598 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2599 int end;
2600
2601 WARN_ON(start > offset + len);
2602
2603 end = start + skb_frag_size(frag);
2604 if ((copy = end - offset) > 0) {
2605 u32 p_off, p_len, copied;
2606 struct page *p;
2607 u8 *vaddr;
2608
2609 if (copy > len)
2610 copy = len;
2611
2612 skb_frag_foreach_page(frag,
2613 skb_frag_off(frag) + offset - start,
2614 copy, p, p_off, p_len, copied) {
2615 vaddr = kmap_atomic(p);
2616 memcpy(vaddr + p_off, from + copied, p_len);
2617 kunmap_atomic(vaddr);
2618 }
2619
2620 if ((len -= copy) == 0)
2621 return 0;
2622 offset += copy;
2623 from += copy;
2624 }
2625 start = end;
2626 }
2627
2628 skb_walk_frags(skb, frag_iter) {
2629 int end;
2630
2631 WARN_ON(start > offset + len);
2632
2633 end = start + frag_iter->len;
2634 if ((copy = end - offset) > 0) {
2635 if (copy > len)
2636 copy = len;
2637 if (skb_store_bits(frag_iter, offset - start,
2638 from, copy))
2639 goto fault;
2640 if ((len -= copy) == 0)
2641 return 0;
2642 offset += copy;
2643 from += copy;
2644 }
2645 start = end;
2646 }
2647 if (!len)
2648 return 0;
2649
2650 fault:
2651 return -EFAULT;
2652 }
2653 EXPORT_SYMBOL(skb_store_bits);
2654
2655 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2656 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2657 __wsum csum, const struct skb_checksum_ops *ops)
2658 {
2659 int start = skb_headlen(skb);
2660 int i, copy = start - offset;
2661 struct sk_buff *frag_iter;
2662 int pos = 0;
2663
2664 /* Checksum header. */
2665 if (copy > 0) {
2666 if (copy > len)
2667 copy = len;
2668 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2669 skb->data + offset, copy, csum);
2670 if ((len -= copy) == 0)
2671 return csum;
2672 offset += copy;
2673 pos = copy;
2674 }
2675
2676 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2677 int end;
2678 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2679
2680 WARN_ON(start > offset + len);
2681
2682 end = start + skb_frag_size(frag);
2683 if ((copy = end - offset) > 0) {
2684 u32 p_off, p_len, copied;
2685 struct page *p;
2686 __wsum csum2;
2687 u8 *vaddr;
2688
2689 if (copy > len)
2690 copy = len;
2691
2692 skb_frag_foreach_page(frag,
2693 skb_frag_off(frag) + offset - start,
2694 copy, p, p_off, p_len, copied) {
2695 vaddr = kmap_atomic(p);
2696 csum2 = INDIRECT_CALL_1(ops->update,
2697 csum_partial_ext,
2698 vaddr + p_off, p_len, 0);
2699 kunmap_atomic(vaddr);
2700 csum = INDIRECT_CALL_1(ops->combine,
2701 csum_block_add_ext, csum,
2702 csum2, pos, p_len);
2703 pos += p_len;
2704 }
2705
2706 if (!(len -= copy))
2707 return csum;
2708 offset += copy;
2709 }
2710 start = end;
2711 }
2712
2713 skb_walk_frags(skb, frag_iter) {
2714 int end;
2715
2716 WARN_ON(start > offset + len);
2717
2718 end = start + frag_iter->len;
2719 if ((copy = end - offset) > 0) {
2720 __wsum csum2;
2721 if (copy > len)
2722 copy = len;
2723 csum2 = __skb_checksum(frag_iter, offset - start,
2724 copy, 0, ops);
2725 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2726 csum, csum2, pos, copy);
2727 if ((len -= copy) == 0)
2728 return csum;
2729 offset += copy;
2730 pos += copy;
2731 }
2732 start = end;
2733 }
2734 BUG_ON(len);
2735
2736 return csum;
2737 }
2738 EXPORT_SYMBOL(__skb_checksum);
2739
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)2740 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2741 int len, __wsum csum)
2742 {
2743 const struct skb_checksum_ops ops = {
2744 .update = csum_partial_ext,
2745 .combine = csum_block_add_ext,
2746 };
2747
2748 return __skb_checksum(skb, offset, len, csum, &ops);
2749 }
2750 EXPORT_SYMBOL(skb_checksum);
2751
2752 /* Both of above in one bottle. */
2753
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len,__wsum csum)2754 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2755 u8 *to, int len, __wsum csum)
2756 {
2757 int start = skb_headlen(skb);
2758 int i, copy = start - offset;
2759 struct sk_buff *frag_iter;
2760 int pos = 0;
2761
2762 /* Copy header. */
2763 if (copy > 0) {
2764 if (copy > len)
2765 copy = len;
2766 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2767 copy, csum);
2768 if ((len -= copy) == 0)
2769 return csum;
2770 offset += copy;
2771 to += copy;
2772 pos = copy;
2773 }
2774
2775 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2776 int end;
2777
2778 WARN_ON(start > offset + len);
2779
2780 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2781 if ((copy = end - offset) > 0) {
2782 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2783 u32 p_off, p_len, copied;
2784 struct page *p;
2785 __wsum csum2;
2786 u8 *vaddr;
2787
2788 if (copy > len)
2789 copy = len;
2790
2791 skb_frag_foreach_page(frag,
2792 skb_frag_off(frag) + offset - start,
2793 copy, p, p_off, p_len, copied) {
2794 vaddr = kmap_atomic(p);
2795 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2796 to + copied,
2797 p_len, 0);
2798 kunmap_atomic(vaddr);
2799 csum = csum_block_add(csum, csum2, pos);
2800 pos += p_len;
2801 }
2802
2803 if (!(len -= copy))
2804 return csum;
2805 offset += copy;
2806 to += copy;
2807 }
2808 start = end;
2809 }
2810
2811 skb_walk_frags(skb, frag_iter) {
2812 __wsum csum2;
2813 int end;
2814
2815 WARN_ON(start > offset + len);
2816
2817 end = start + frag_iter->len;
2818 if ((copy = end - offset) > 0) {
2819 if (copy > len)
2820 copy = len;
2821 csum2 = skb_copy_and_csum_bits(frag_iter,
2822 offset - start,
2823 to, copy, 0);
2824 csum = csum_block_add(csum, csum2, pos);
2825 if ((len -= copy) == 0)
2826 return csum;
2827 offset += copy;
2828 to += copy;
2829 pos += copy;
2830 }
2831 start = end;
2832 }
2833 BUG_ON(len);
2834 return csum;
2835 }
2836 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2837
__skb_checksum_complete_head(struct sk_buff * skb,int len)2838 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2839 {
2840 __sum16 sum;
2841
2842 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2843 /* See comments in __skb_checksum_complete(). */
2844 if (likely(!sum)) {
2845 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2846 !skb->csum_complete_sw)
2847 netdev_rx_csum_fault(skb->dev, skb);
2848 }
2849 if (!skb_shared(skb))
2850 skb->csum_valid = !sum;
2851 return sum;
2852 }
2853 EXPORT_SYMBOL(__skb_checksum_complete_head);
2854
2855 /* This function assumes skb->csum already holds pseudo header's checksum,
2856 * which has been changed from the hardware checksum, for example, by
2857 * __skb_checksum_validate_complete(). And, the original skb->csum must
2858 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2859 *
2860 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2861 * zero. The new checksum is stored back into skb->csum unless the skb is
2862 * shared.
2863 */
__skb_checksum_complete(struct sk_buff * skb)2864 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2865 {
2866 __wsum csum;
2867 __sum16 sum;
2868
2869 csum = skb_checksum(skb, 0, skb->len, 0);
2870
2871 sum = csum_fold(csum_add(skb->csum, csum));
2872 /* This check is inverted, because we already knew the hardware
2873 * checksum is invalid before calling this function. So, if the
2874 * re-computed checksum is valid instead, then we have a mismatch
2875 * between the original skb->csum and skb_checksum(). This means either
2876 * the original hardware checksum is incorrect or we screw up skb->csum
2877 * when moving skb->data around.
2878 */
2879 if (likely(!sum)) {
2880 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2881 !skb->csum_complete_sw)
2882 netdev_rx_csum_fault(skb->dev, skb);
2883 }
2884
2885 if (!skb_shared(skb)) {
2886 /* Save full packet checksum */
2887 skb->csum = csum;
2888 skb->ip_summed = CHECKSUM_COMPLETE;
2889 skb->csum_complete_sw = 1;
2890 skb->csum_valid = !sum;
2891 }
2892
2893 return sum;
2894 }
2895 EXPORT_SYMBOL(__skb_checksum_complete);
2896
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)2897 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2898 {
2899 net_warn_ratelimited(
2900 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2901 __func__);
2902 return 0;
2903 }
2904
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)2905 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2906 int offset, int len)
2907 {
2908 net_warn_ratelimited(
2909 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2910 __func__);
2911 return 0;
2912 }
2913
2914 static const struct skb_checksum_ops default_crc32c_ops = {
2915 .update = warn_crc32c_csum_update,
2916 .combine = warn_crc32c_csum_combine,
2917 };
2918
2919 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2920 &default_crc32c_ops;
2921 EXPORT_SYMBOL(crc32c_csum_stub);
2922
2923 /**
2924 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2925 * @from: source buffer
2926 *
2927 * Calculates the amount of linear headroom needed in the 'to' skb passed
2928 * into skb_zerocopy().
2929 */
2930 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)2931 skb_zerocopy_headlen(const struct sk_buff *from)
2932 {
2933 unsigned int hlen = 0;
2934
2935 if (!from->head_frag ||
2936 skb_headlen(from) < L1_CACHE_BYTES ||
2937 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
2938 hlen = skb_headlen(from);
2939 if (!hlen)
2940 hlen = from->len;
2941 }
2942
2943 if (skb_has_frag_list(from))
2944 hlen = from->len;
2945
2946 return hlen;
2947 }
2948 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2949
2950 /**
2951 * skb_zerocopy - Zero copy skb to skb
2952 * @to: destination buffer
2953 * @from: source buffer
2954 * @len: number of bytes to copy from source buffer
2955 * @hlen: size of linear headroom in destination buffer
2956 *
2957 * Copies up to `len` bytes from `from` to `to` by creating references
2958 * to the frags in the source buffer.
2959 *
2960 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2961 * headroom in the `to` buffer.
2962 *
2963 * Return value:
2964 * 0: everything is OK
2965 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2966 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2967 */
2968 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)2969 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2970 {
2971 int i, j = 0;
2972 int plen = 0; /* length of skb->head fragment */
2973 int ret;
2974 struct page *page;
2975 unsigned int offset;
2976
2977 BUG_ON(!from->head_frag && !hlen);
2978
2979 /* dont bother with small payloads */
2980 if (len <= skb_tailroom(to))
2981 return skb_copy_bits(from, 0, skb_put(to, len), len);
2982
2983 if (hlen) {
2984 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2985 if (unlikely(ret))
2986 return ret;
2987 len -= hlen;
2988 } else {
2989 plen = min_t(int, skb_headlen(from), len);
2990 if (plen) {
2991 page = virt_to_head_page(from->head);
2992 offset = from->data - (unsigned char *)page_address(page);
2993 __skb_fill_page_desc(to, 0, page, offset, plen);
2994 get_page(page);
2995 j = 1;
2996 len -= plen;
2997 }
2998 }
2999
3000 to->truesize += len + plen;
3001 to->len += len + plen;
3002 to->data_len += len + plen;
3003
3004 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3005 skb_tx_error(from);
3006 return -ENOMEM;
3007 }
3008 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3009
3010 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3011 int size;
3012
3013 if (!len)
3014 break;
3015 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3016 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3017 len);
3018 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3019 len -= size;
3020 skb_frag_ref(to, j);
3021 j++;
3022 }
3023 skb_shinfo(to)->nr_frags = j;
3024
3025 return 0;
3026 }
3027 EXPORT_SYMBOL_GPL(skb_zerocopy);
3028
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3029 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3030 {
3031 __wsum csum;
3032 long csstart;
3033
3034 if (skb->ip_summed == CHECKSUM_PARTIAL)
3035 csstart = skb_checksum_start_offset(skb);
3036 else
3037 csstart = skb_headlen(skb);
3038
3039 BUG_ON(csstart > skb_headlen(skb));
3040
3041 skb_copy_from_linear_data(skb, to, csstart);
3042
3043 csum = 0;
3044 if (csstart != skb->len)
3045 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3046 skb->len - csstart, 0);
3047
3048 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3049 long csstuff = csstart + skb->csum_offset;
3050
3051 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3052 }
3053 }
3054 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3055
3056 /**
3057 * skb_dequeue - remove from the head of the queue
3058 * @list: list to dequeue from
3059 *
3060 * Remove the head of the list. The list lock is taken so the function
3061 * may be used safely with other locking list functions. The head item is
3062 * returned or %NULL if the list is empty.
3063 */
3064
skb_dequeue(struct sk_buff_head * list)3065 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3066 {
3067 unsigned long flags;
3068 struct sk_buff *result;
3069
3070 spin_lock_irqsave(&list->lock, flags);
3071 result = __skb_dequeue(list);
3072 spin_unlock_irqrestore(&list->lock, flags);
3073 return result;
3074 }
3075 EXPORT_SYMBOL(skb_dequeue);
3076
3077 /**
3078 * skb_dequeue_tail - remove from the tail of the queue
3079 * @list: list to dequeue from
3080 *
3081 * Remove the tail of the list. The list lock is taken so the function
3082 * may be used safely with other locking list functions. The tail item is
3083 * returned or %NULL if the list is empty.
3084 */
skb_dequeue_tail(struct sk_buff_head * list)3085 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3086 {
3087 unsigned long flags;
3088 struct sk_buff *result;
3089
3090 spin_lock_irqsave(&list->lock, flags);
3091 result = __skb_dequeue_tail(list);
3092 spin_unlock_irqrestore(&list->lock, flags);
3093 return result;
3094 }
3095 EXPORT_SYMBOL(skb_dequeue_tail);
3096
3097 /**
3098 * skb_queue_purge - empty a list
3099 * @list: list to empty
3100 *
3101 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3102 * the list and one reference dropped. This function takes the list
3103 * lock and is atomic with respect to other list locking functions.
3104 */
skb_queue_purge(struct sk_buff_head * list)3105 void skb_queue_purge(struct sk_buff_head *list)
3106 {
3107 struct sk_buff *skb;
3108 while ((skb = skb_dequeue(list)) != NULL)
3109 kfree_skb(skb);
3110 }
3111 EXPORT_SYMBOL(skb_queue_purge);
3112
3113 /**
3114 * skb_rbtree_purge - empty a skb rbtree
3115 * @root: root of the rbtree to empty
3116 * Return value: the sum of truesizes of all purged skbs.
3117 *
3118 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3119 * the list and one reference dropped. This function does not take
3120 * any lock. Synchronization should be handled by the caller (e.g., TCP
3121 * out-of-order queue is protected by the socket lock).
3122 */
skb_rbtree_purge(struct rb_root * root)3123 unsigned int skb_rbtree_purge(struct rb_root *root)
3124 {
3125 struct rb_node *p = rb_first(root);
3126 unsigned int sum = 0;
3127
3128 while (p) {
3129 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3130
3131 p = rb_next(p);
3132 rb_erase(&skb->rbnode, root);
3133 sum += skb->truesize;
3134 kfree_skb(skb);
3135 }
3136 return sum;
3137 }
3138
3139 /**
3140 * skb_queue_head - queue a buffer at the list head
3141 * @list: list to use
3142 * @newsk: buffer to queue
3143 *
3144 * Queue a buffer at the start of the list. This function takes the
3145 * list lock and can be used safely with other locking &sk_buff functions
3146 * safely.
3147 *
3148 * A buffer cannot be placed on two lists at the same time.
3149 */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3150 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3151 {
3152 unsigned long flags;
3153
3154 spin_lock_irqsave(&list->lock, flags);
3155 __skb_queue_head(list, newsk);
3156 spin_unlock_irqrestore(&list->lock, flags);
3157 }
3158 EXPORT_SYMBOL(skb_queue_head);
3159
3160 /**
3161 * skb_queue_tail - queue a buffer at the list tail
3162 * @list: list to use
3163 * @newsk: buffer to queue
3164 *
3165 * Queue a buffer at the tail of the list. This function takes the
3166 * list lock and can be used safely with other locking &sk_buff functions
3167 * safely.
3168 *
3169 * A buffer cannot be placed on two lists at the same time.
3170 */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)3171 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3172 {
3173 unsigned long flags;
3174
3175 spin_lock_irqsave(&list->lock, flags);
3176 __skb_queue_tail(list, newsk);
3177 spin_unlock_irqrestore(&list->lock, flags);
3178 }
3179 EXPORT_SYMBOL(skb_queue_tail);
3180
3181 /**
3182 * skb_unlink - remove a buffer from a list
3183 * @skb: buffer to remove
3184 * @list: list to use
3185 *
3186 * Remove a packet from a list. The list locks are taken and this
3187 * function is atomic with respect to other list locked calls
3188 *
3189 * You must know what list the SKB is on.
3190 */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)3191 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3192 {
3193 unsigned long flags;
3194
3195 spin_lock_irqsave(&list->lock, flags);
3196 __skb_unlink(skb, list);
3197 spin_unlock_irqrestore(&list->lock, flags);
3198 }
3199 EXPORT_SYMBOL(skb_unlink);
3200
3201 /**
3202 * skb_append - append a buffer
3203 * @old: buffer to insert after
3204 * @newsk: buffer to insert
3205 * @list: list to use
3206 *
3207 * Place a packet after a given packet in a list. The list locks are taken
3208 * and this function is atomic with respect to other list locked calls.
3209 * A buffer cannot be placed on two lists at the same time.
3210 */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)3211 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3212 {
3213 unsigned long flags;
3214
3215 spin_lock_irqsave(&list->lock, flags);
3216 __skb_queue_after(list, old, newsk);
3217 spin_unlock_irqrestore(&list->lock, flags);
3218 }
3219 EXPORT_SYMBOL(skb_append);
3220
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)3221 static inline void skb_split_inside_header(struct sk_buff *skb,
3222 struct sk_buff* skb1,
3223 const u32 len, const int pos)
3224 {
3225 int i;
3226
3227 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3228 pos - len);
3229 /* And move data appendix as is. */
3230 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3231 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3232
3233 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3234 skb_shinfo(skb)->nr_frags = 0;
3235 skb1->data_len = skb->data_len;
3236 skb1->len += skb1->data_len;
3237 skb->data_len = 0;
3238 skb->len = len;
3239 skb_set_tail_pointer(skb, len);
3240 }
3241
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)3242 static inline void skb_split_no_header(struct sk_buff *skb,
3243 struct sk_buff* skb1,
3244 const u32 len, int pos)
3245 {
3246 int i, k = 0;
3247 const int nfrags = skb_shinfo(skb)->nr_frags;
3248
3249 skb_shinfo(skb)->nr_frags = 0;
3250 skb1->len = skb1->data_len = skb->len - len;
3251 skb->len = len;
3252 skb->data_len = len - pos;
3253
3254 for (i = 0; i < nfrags; i++) {
3255 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3256
3257 if (pos + size > len) {
3258 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3259
3260 if (pos < len) {
3261 /* Split frag.
3262 * We have two variants in this case:
3263 * 1. Move all the frag to the second
3264 * part, if it is possible. F.e.
3265 * this approach is mandatory for TUX,
3266 * where splitting is expensive.
3267 * 2. Split is accurately. We make this.
3268 */
3269 skb_frag_ref(skb, i);
3270 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3271 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3272 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3273 skb_shinfo(skb)->nr_frags++;
3274 }
3275 k++;
3276 } else
3277 skb_shinfo(skb)->nr_frags++;
3278 pos += size;
3279 }
3280 skb_shinfo(skb1)->nr_frags = k;
3281 }
3282
3283 /**
3284 * skb_split - Split fragmented skb to two parts at length len.
3285 * @skb: the buffer to split
3286 * @skb1: the buffer to receive the second part
3287 * @len: new length for skb
3288 */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)3289 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3290 {
3291 int pos = skb_headlen(skb);
3292
3293 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3294 SKBTX_SHARED_FRAG;
3295 skb_zerocopy_clone(skb1, skb, 0);
3296 if (len < pos) /* Split line is inside header. */
3297 skb_split_inside_header(skb, skb1, len, pos);
3298 else /* Second chunk has no header, nothing to copy. */
3299 skb_split_no_header(skb, skb1, len, pos);
3300 }
3301 EXPORT_SYMBOL(skb_split);
3302
3303 /* Shifting from/to a cloned skb is a no-go.
3304 *
3305 * Caller cannot keep skb_shinfo related pointers past calling here!
3306 */
skb_prepare_for_shift(struct sk_buff * skb)3307 static int skb_prepare_for_shift(struct sk_buff *skb)
3308 {
3309 int ret = 0;
3310
3311 if (skb_cloned(skb)) {
3312 /* Save and restore truesize: pskb_expand_head() may reallocate
3313 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
3314 * cannot change truesize at this point.
3315 */
3316 unsigned int save_truesize = skb->truesize;
3317
3318 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3319 skb->truesize = save_truesize;
3320 }
3321 return ret;
3322 }
3323
3324 /**
3325 * skb_shift - Shifts paged data partially from skb to another
3326 * @tgt: buffer into which tail data gets added
3327 * @skb: buffer from which the paged data comes from
3328 * @shiftlen: shift up to this many bytes
3329 *
3330 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3331 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3332 * It's up to caller to free skb if everything was shifted.
3333 *
3334 * If @tgt runs out of frags, the whole operation is aborted.
3335 *
3336 * Skb cannot include anything else but paged data while tgt is allowed
3337 * to have non-paged data as well.
3338 *
3339 * TODO: full sized shift could be optimized but that would need
3340 * specialized skb free'er to handle frags without up-to-date nr_frags.
3341 */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)3342 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3343 {
3344 int from, to, merge, todo;
3345 skb_frag_t *fragfrom, *fragto;
3346
3347 BUG_ON(shiftlen > skb->len);
3348
3349 if (skb_headlen(skb))
3350 return 0;
3351 if (skb_zcopy(tgt) || skb_zcopy(skb))
3352 return 0;
3353
3354 todo = shiftlen;
3355 from = 0;
3356 to = skb_shinfo(tgt)->nr_frags;
3357 fragfrom = &skb_shinfo(skb)->frags[from];
3358
3359 /* Actual merge is delayed until the point when we know we can
3360 * commit all, so that we don't have to undo partial changes
3361 */
3362 if (!to ||
3363 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3364 skb_frag_off(fragfrom))) {
3365 merge = -1;
3366 } else {
3367 merge = to - 1;
3368
3369 todo -= skb_frag_size(fragfrom);
3370 if (todo < 0) {
3371 if (skb_prepare_for_shift(skb) ||
3372 skb_prepare_for_shift(tgt))
3373 return 0;
3374
3375 /* All previous frag pointers might be stale! */
3376 fragfrom = &skb_shinfo(skb)->frags[from];
3377 fragto = &skb_shinfo(tgt)->frags[merge];
3378
3379 skb_frag_size_add(fragto, shiftlen);
3380 skb_frag_size_sub(fragfrom, shiftlen);
3381 skb_frag_off_add(fragfrom, shiftlen);
3382
3383 goto onlymerged;
3384 }
3385
3386 from++;
3387 }
3388
3389 /* Skip full, not-fitting skb to avoid expensive operations */
3390 if ((shiftlen == skb->len) &&
3391 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3392 return 0;
3393
3394 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3395 return 0;
3396
3397 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3398 if (to == MAX_SKB_FRAGS)
3399 return 0;
3400
3401 fragfrom = &skb_shinfo(skb)->frags[from];
3402 fragto = &skb_shinfo(tgt)->frags[to];
3403
3404 if (todo >= skb_frag_size(fragfrom)) {
3405 *fragto = *fragfrom;
3406 todo -= skb_frag_size(fragfrom);
3407 from++;
3408 to++;
3409
3410 } else {
3411 __skb_frag_ref(fragfrom);
3412 skb_frag_page_copy(fragto, fragfrom);
3413 skb_frag_off_copy(fragto, fragfrom);
3414 skb_frag_size_set(fragto, todo);
3415
3416 skb_frag_off_add(fragfrom, todo);
3417 skb_frag_size_sub(fragfrom, todo);
3418 todo = 0;
3419
3420 to++;
3421 break;
3422 }
3423 }
3424
3425 /* Ready to "commit" this state change to tgt */
3426 skb_shinfo(tgt)->nr_frags = to;
3427
3428 if (merge >= 0) {
3429 fragfrom = &skb_shinfo(skb)->frags[0];
3430 fragto = &skb_shinfo(tgt)->frags[merge];
3431
3432 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3433 __skb_frag_unref(fragfrom);
3434 }
3435
3436 /* Reposition in the original skb */
3437 to = 0;
3438 while (from < skb_shinfo(skb)->nr_frags)
3439 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3440 skb_shinfo(skb)->nr_frags = to;
3441
3442 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3443
3444 onlymerged:
3445 /* Most likely the tgt won't ever need its checksum anymore, skb on
3446 * the other hand might need it if it needs to be resent
3447 */
3448 tgt->ip_summed = CHECKSUM_PARTIAL;
3449 skb->ip_summed = CHECKSUM_PARTIAL;
3450
3451 /* Yak, is it really working this way? Some helper please? */
3452 skb->len -= shiftlen;
3453 skb->data_len -= shiftlen;
3454 skb->truesize -= shiftlen;
3455 tgt->len += shiftlen;
3456 tgt->data_len += shiftlen;
3457 tgt->truesize += shiftlen;
3458
3459 return shiftlen;
3460 }
3461
3462 /**
3463 * skb_prepare_seq_read - Prepare a sequential read of skb data
3464 * @skb: the buffer to read
3465 * @from: lower offset of data to be read
3466 * @to: upper offset of data to be read
3467 * @st: state variable
3468 *
3469 * Initializes the specified state variable. Must be called before
3470 * invoking skb_seq_read() for the first time.
3471 */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)3472 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3473 unsigned int to, struct skb_seq_state *st)
3474 {
3475 st->lower_offset = from;
3476 st->upper_offset = to;
3477 st->root_skb = st->cur_skb = skb;
3478 st->frag_idx = st->stepped_offset = 0;
3479 st->frag_data = NULL;
3480 }
3481 EXPORT_SYMBOL(skb_prepare_seq_read);
3482
3483 /**
3484 * skb_seq_read - Sequentially read skb data
3485 * @consumed: number of bytes consumed by the caller so far
3486 * @data: destination pointer for data to be returned
3487 * @st: state variable
3488 *
3489 * Reads a block of skb data at @consumed relative to the
3490 * lower offset specified to skb_prepare_seq_read(). Assigns
3491 * the head of the data block to @data and returns the length
3492 * of the block or 0 if the end of the skb data or the upper
3493 * offset has been reached.
3494 *
3495 * The caller is not required to consume all of the data
3496 * returned, i.e. @consumed is typically set to the number
3497 * of bytes already consumed and the next call to
3498 * skb_seq_read() will return the remaining part of the block.
3499 *
3500 * Note 1: The size of each block of data returned can be arbitrary,
3501 * this limitation is the cost for zerocopy sequential
3502 * reads of potentially non linear data.
3503 *
3504 * Note 2: Fragment lists within fragments are not implemented
3505 * at the moment, state->root_skb could be replaced with
3506 * a stack for this purpose.
3507 */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)3508 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3509 struct skb_seq_state *st)
3510 {
3511 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3512 skb_frag_t *frag;
3513
3514 if (unlikely(abs_offset >= st->upper_offset)) {
3515 if (st->frag_data) {
3516 kunmap_atomic(st->frag_data);
3517 st->frag_data = NULL;
3518 }
3519 return 0;
3520 }
3521
3522 next_skb:
3523 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3524
3525 if (abs_offset < block_limit && !st->frag_data) {
3526 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3527 return block_limit - abs_offset;
3528 }
3529
3530 if (st->frag_idx == 0 && !st->frag_data)
3531 st->stepped_offset += skb_headlen(st->cur_skb);
3532
3533 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3534 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3535 block_limit = skb_frag_size(frag) + st->stepped_offset;
3536
3537 if (abs_offset < block_limit) {
3538 if (!st->frag_data)
3539 st->frag_data = kmap_atomic(skb_frag_page(frag));
3540
3541 *data = (u8 *) st->frag_data + skb_frag_off(frag) +
3542 (abs_offset - st->stepped_offset);
3543
3544 return block_limit - abs_offset;
3545 }
3546
3547 if (st->frag_data) {
3548 kunmap_atomic(st->frag_data);
3549 st->frag_data = NULL;
3550 }
3551
3552 st->frag_idx++;
3553 st->stepped_offset += skb_frag_size(frag);
3554 }
3555
3556 if (st->frag_data) {
3557 kunmap_atomic(st->frag_data);
3558 st->frag_data = NULL;
3559 }
3560
3561 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3562 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3563 st->frag_idx = 0;
3564 goto next_skb;
3565 } else if (st->cur_skb->next) {
3566 st->cur_skb = st->cur_skb->next;
3567 st->frag_idx = 0;
3568 goto next_skb;
3569 }
3570
3571 return 0;
3572 }
3573 EXPORT_SYMBOL(skb_seq_read);
3574
3575 /**
3576 * skb_abort_seq_read - Abort a sequential read of skb data
3577 * @st: state variable
3578 *
3579 * Must be called if skb_seq_read() was not called until it
3580 * returned 0.
3581 */
skb_abort_seq_read(struct skb_seq_state * st)3582 void skb_abort_seq_read(struct skb_seq_state *st)
3583 {
3584 if (st->frag_data)
3585 kunmap_atomic(st->frag_data);
3586 }
3587 EXPORT_SYMBOL(skb_abort_seq_read);
3588
3589 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3590
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)3591 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3592 struct ts_config *conf,
3593 struct ts_state *state)
3594 {
3595 return skb_seq_read(offset, text, TS_SKB_CB(state));
3596 }
3597
skb_ts_finish(struct ts_config * conf,struct ts_state * state)3598 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3599 {
3600 skb_abort_seq_read(TS_SKB_CB(state));
3601 }
3602
3603 /**
3604 * skb_find_text - Find a text pattern in skb data
3605 * @skb: the buffer to look in
3606 * @from: search offset
3607 * @to: search limit
3608 * @config: textsearch configuration
3609 *
3610 * Finds a pattern in the skb data according to the specified
3611 * textsearch configuration. Use textsearch_next() to retrieve
3612 * subsequent occurrences of the pattern. Returns the offset
3613 * to the first occurrence or UINT_MAX if no match was found.
3614 */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)3615 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3616 unsigned int to, struct ts_config *config)
3617 {
3618 struct ts_state state;
3619 unsigned int ret;
3620
3621 config->get_next_block = skb_ts_get_next_block;
3622 config->finish = skb_ts_finish;
3623
3624 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3625
3626 ret = textsearch_find(config, &state);
3627 return (ret <= to - from ? ret : UINT_MAX);
3628 }
3629 EXPORT_SYMBOL(skb_find_text);
3630
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)3631 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3632 int offset, size_t size)
3633 {
3634 int i = skb_shinfo(skb)->nr_frags;
3635
3636 if (skb_can_coalesce(skb, i, page, offset)) {
3637 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3638 } else if (i < MAX_SKB_FRAGS) {
3639 get_page(page);
3640 skb_fill_page_desc(skb, i, page, offset, size);
3641 } else {
3642 return -EMSGSIZE;
3643 }
3644
3645 return 0;
3646 }
3647 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3648
3649 /**
3650 * skb_pull_rcsum - pull skb and update receive checksum
3651 * @skb: buffer to update
3652 * @len: length of data pulled
3653 *
3654 * This function performs an skb_pull on the packet and updates
3655 * the CHECKSUM_COMPLETE checksum. It should be used on
3656 * receive path processing instead of skb_pull unless you know
3657 * that the checksum difference is zero (e.g., a valid IP header)
3658 * or you are setting ip_summed to CHECKSUM_NONE.
3659 */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)3660 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3661 {
3662 unsigned char *data = skb->data;
3663
3664 BUG_ON(len > skb->len);
3665 __skb_pull(skb, len);
3666 skb_postpull_rcsum(skb, data, len);
3667 return skb->data;
3668 }
3669 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3670
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)3671 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3672 {
3673 skb_frag_t head_frag;
3674 struct page *page;
3675
3676 page = virt_to_head_page(frag_skb->head);
3677 __skb_frag_set_page(&head_frag, page);
3678 skb_frag_off_set(&head_frag, frag_skb->data -
3679 (unsigned char *)page_address(page));
3680 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3681 return head_frag;
3682 }
3683
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)3684 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3685 netdev_features_t features,
3686 unsigned int offset)
3687 {
3688 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3689 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3690 unsigned int delta_truesize = 0;
3691 unsigned int delta_len = 0;
3692 struct sk_buff *tail = NULL;
3693 struct sk_buff *nskb, *tmp;
3694 int len_diff, err;
3695
3696 skb_push(skb, -skb_network_offset(skb) + offset);
3697
3698 /* Ensure the head is writeable before touching the shared info */
3699 err = skb_unclone(skb, GFP_ATOMIC);
3700 if (err)
3701 goto err_linearize;
3702
3703 skb_shinfo(skb)->frag_list = NULL;
3704
3705 while (list_skb) {
3706 nskb = list_skb;
3707 list_skb = list_skb->next;
3708
3709 err = 0;
3710 delta_truesize += nskb->truesize;
3711 if (skb_shared(nskb)) {
3712 tmp = skb_clone(nskb, GFP_ATOMIC);
3713 if (tmp) {
3714 consume_skb(nskb);
3715 nskb = tmp;
3716 err = skb_unclone(nskb, GFP_ATOMIC);
3717 } else {
3718 err = -ENOMEM;
3719 }
3720 }
3721
3722 if (!tail)
3723 skb->next = nskb;
3724 else
3725 tail->next = nskb;
3726
3727 if (unlikely(err)) {
3728 nskb->next = list_skb;
3729 goto err_linearize;
3730 }
3731
3732 tail = nskb;
3733
3734 delta_len += nskb->len;
3735
3736 skb_push(nskb, -skb_network_offset(nskb) + offset);
3737
3738 skb_release_head_state(nskb);
3739 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
3740 __copy_skb_header(nskb, skb);
3741
3742 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3743 nskb->transport_header += len_diff;
3744 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3745 nskb->data - tnl_hlen,
3746 offset + tnl_hlen);
3747
3748 if (skb_needs_linearize(nskb, features) &&
3749 __skb_linearize(nskb))
3750 goto err_linearize;
3751 }
3752
3753 skb->truesize = skb->truesize - delta_truesize;
3754 skb->data_len = skb->data_len - delta_len;
3755 skb->len = skb->len - delta_len;
3756
3757 skb_gso_reset(skb);
3758
3759 skb->prev = tail;
3760
3761 if (skb_needs_linearize(skb, features) &&
3762 __skb_linearize(skb))
3763 goto err_linearize;
3764
3765 skb_get(skb);
3766
3767 return skb;
3768
3769 err_linearize:
3770 kfree_skb_list(skb->next);
3771 skb->next = NULL;
3772 return ERR_PTR(-ENOMEM);
3773 }
3774 EXPORT_SYMBOL_GPL(skb_segment_list);
3775
skb_gro_receive_list(struct sk_buff * p,struct sk_buff * skb)3776 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3777 {
3778 if (unlikely(p->len + skb->len >= 65536))
3779 return -E2BIG;
3780
3781 if (NAPI_GRO_CB(p)->last == p)
3782 skb_shinfo(p)->frag_list = skb;
3783 else
3784 NAPI_GRO_CB(p)->last->next = skb;
3785
3786 skb_pull(skb, skb_gro_offset(skb));
3787
3788 NAPI_GRO_CB(p)->last = skb;
3789 NAPI_GRO_CB(p)->count++;
3790 p->data_len += skb->len;
3791 p->truesize += skb->truesize;
3792 p->len += skb->len;
3793
3794 NAPI_GRO_CB(skb)->same_flow = 1;
3795
3796 return 0;
3797 }
3798 EXPORT_SYMBOL_GPL(skb_gro_receive_list);
3799
3800 /**
3801 * skb_segment - Perform protocol segmentation on skb.
3802 * @head_skb: buffer to segment
3803 * @features: features for the output path (see dev->features)
3804 *
3805 * This function performs segmentation on the given skb. It returns
3806 * a pointer to the first in a list of new skbs for the segments.
3807 * In case of error it returns ERR_PTR(err).
3808 */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)3809 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3810 netdev_features_t features)
3811 {
3812 struct sk_buff *segs = NULL;
3813 struct sk_buff *tail = NULL;
3814 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3815 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3816 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3817 unsigned int offset = doffset;
3818 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3819 unsigned int partial_segs = 0;
3820 unsigned int headroom;
3821 unsigned int len = head_skb->len;
3822 struct sk_buff *frag_skb;
3823 skb_frag_t *frag;
3824 __be16 proto;
3825 bool csum, sg;
3826 int err = -ENOMEM;
3827 int i = 0;
3828 int nfrags, pos;
3829 int dummy;
3830
3831 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
3832 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
3833 struct sk_buff *check_skb;
3834
3835 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
3836 if (skb_headlen(check_skb) && !check_skb->head_frag) {
3837 /* gso_size is untrusted, and we have a frag_list with
3838 * a linear non head_frag item.
3839 *
3840 * If head_skb's headlen does not fit requested gso_size,
3841 * it means that the frag_list members do NOT terminate
3842 * on exact gso_size boundaries. Hence we cannot perform
3843 * skb_frag_t page sharing. Therefore we must fallback to
3844 * copying the frag_list skbs; we do so by disabling SG.
3845 */
3846 features &= ~NETIF_F_SG;
3847 break;
3848 }
3849 }
3850 }
3851
3852 __skb_push(head_skb, doffset);
3853 proto = skb_network_protocol(head_skb, &dummy);
3854 if (unlikely(!proto))
3855 return ERR_PTR(-EINVAL);
3856
3857 sg = !!(features & NETIF_F_SG);
3858 csum = !!can_checksum_protocol(features, proto);
3859
3860 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3861 if (!(features & NETIF_F_GSO_PARTIAL)) {
3862 struct sk_buff *iter;
3863 unsigned int frag_len;
3864
3865 if (!list_skb ||
3866 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3867 goto normal;
3868
3869 /* If we get here then all the required
3870 * GSO features except frag_list are supported.
3871 * Try to split the SKB to multiple GSO SKBs
3872 * with no frag_list.
3873 * Currently we can do that only when the buffers don't
3874 * have a linear part and all the buffers except
3875 * the last are of the same length.
3876 */
3877 frag_len = list_skb->len;
3878 skb_walk_frags(head_skb, iter) {
3879 if (frag_len != iter->len && iter->next)
3880 goto normal;
3881 if (skb_headlen(iter) && !iter->head_frag)
3882 goto normal;
3883
3884 len -= iter->len;
3885 }
3886
3887 if (len != frag_len)
3888 goto normal;
3889 }
3890
3891 /* GSO partial only requires that we trim off any excess that
3892 * doesn't fit into an MSS sized block, so take care of that
3893 * now.
3894 * Cap len to not accidentally hit GSO_BY_FRAGS.
3895 */
3896 partial_segs = min(len, GSO_BY_FRAGS - 1U) / mss;
3897 if (partial_segs > 1)
3898 mss *= partial_segs;
3899 else
3900 partial_segs = 0;
3901 }
3902
3903 normal:
3904 headroom = skb_headroom(head_skb);
3905 pos = skb_headlen(head_skb);
3906
3907 if (skb_orphan_frags(head_skb, GFP_ATOMIC))
3908 return ERR_PTR(-ENOMEM);
3909
3910 nfrags = skb_shinfo(head_skb)->nr_frags;
3911 frag = skb_shinfo(head_skb)->frags;
3912 frag_skb = head_skb;
3913
3914 do {
3915 struct sk_buff *nskb;
3916 skb_frag_t *nskb_frag;
3917 int hsize;
3918 int size;
3919
3920 if (unlikely(mss == GSO_BY_FRAGS)) {
3921 len = list_skb->len;
3922 } else {
3923 len = head_skb->len - offset;
3924 if (len > mss)
3925 len = mss;
3926 }
3927
3928 hsize = skb_headlen(head_skb) - offset;
3929 if (hsize < 0)
3930 hsize = 0;
3931 if (hsize > len || !sg)
3932 hsize = len;
3933
3934 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3935 (skb_headlen(list_skb) == len || sg)) {
3936 BUG_ON(skb_headlen(list_skb) > len);
3937
3938 nskb = skb_clone(list_skb, GFP_ATOMIC);
3939 if (unlikely(!nskb))
3940 goto err;
3941
3942 i = 0;
3943 nfrags = skb_shinfo(list_skb)->nr_frags;
3944 frag = skb_shinfo(list_skb)->frags;
3945 frag_skb = list_skb;
3946 pos += skb_headlen(list_skb);
3947
3948 while (pos < offset + len) {
3949 BUG_ON(i >= nfrags);
3950
3951 size = skb_frag_size(frag);
3952 if (pos + size > offset + len)
3953 break;
3954
3955 i++;
3956 pos += size;
3957 frag++;
3958 }
3959
3960 list_skb = list_skb->next;
3961
3962 if (unlikely(pskb_trim(nskb, len))) {
3963 kfree_skb(nskb);
3964 goto err;
3965 }
3966
3967 hsize = skb_end_offset(nskb);
3968 if (skb_cow_head(nskb, doffset + headroom)) {
3969 kfree_skb(nskb);
3970 goto err;
3971 }
3972
3973 nskb->truesize += skb_end_offset(nskb) - hsize;
3974 skb_release_head_state(nskb);
3975 __skb_push(nskb, doffset);
3976 } else {
3977 nskb = __alloc_skb(hsize + doffset + headroom,
3978 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3979 NUMA_NO_NODE);
3980
3981 if (unlikely(!nskb))
3982 goto err;
3983
3984 skb_reserve(nskb, headroom);
3985 __skb_put(nskb, doffset);
3986 }
3987
3988 if (segs)
3989 tail->next = nskb;
3990 else
3991 segs = nskb;
3992 tail = nskb;
3993
3994 __copy_skb_header(nskb, head_skb);
3995
3996 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3997 skb_reset_mac_len(nskb);
3998
3999 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4000 nskb->data - tnl_hlen,
4001 doffset + tnl_hlen);
4002
4003 if (nskb->len == len + doffset)
4004 goto perform_csum_check;
4005
4006 if (!sg) {
4007 if (!nskb->remcsum_offload)
4008 nskb->ip_summed = CHECKSUM_NONE;
4009 SKB_GSO_CB(nskb)->csum =
4010 skb_copy_and_csum_bits(head_skb, offset,
4011 skb_put(nskb, len),
4012 len, 0);
4013 SKB_GSO_CB(nskb)->csum_start =
4014 skb_headroom(nskb) + doffset;
4015 continue;
4016 }
4017
4018 nskb_frag = skb_shinfo(nskb)->frags;
4019
4020 skb_copy_from_linear_data_offset(head_skb, offset,
4021 skb_put(nskb, hsize), hsize);
4022
4023 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
4024 SKBTX_SHARED_FRAG;
4025
4026 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4027 goto err;
4028
4029 while (pos < offset + len) {
4030 if (i >= nfrags) {
4031 if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4032 skb_zerocopy_clone(nskb, list_skb,
4033 GFP_ATOMIC))
4034 goto err;
4035
4036 i = 0;
4037 nfrags = skb_shinfo(list_skb)->nr_frags;
4038 frag = skb_shinfo(list_skb)->frags;
4039 frag_skb = list_skb;
4040 if (!skb_headlen(list_skb)) {
4041 BUG_ON(!nfrags);
4042 } else {
4043 BUG_ON(!list_skb->head_frag);
4044
4045 /* to make room for head_frag. */
4046 i--;
4047 frag--;
4048 }
4049
4050 list_skb = list_skb->next;
4051 }
4052
4053 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4054 MAX_SKB_FRAGS)) {
4055 net_warn_ratelimited(
4056 "skb_segment: too many frags: %u %u\n",
4057 pos, mss);
4058 err = -EINVAL;
4059 goto err;
4060 }
4061
4062 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4063 __skb_frag_ref(nskb_frag);
4064 size = skb_frag_size(nskb_frag);
4065
4066 if (pos < offset) {
4067 skb_frag_off_add(nskb_frag, offset - pos);
4068 skb_frag_size_sub(nskb_frag, offset - pos);
4069 }
4070
4071 skb_shinfo(nskb)->nr_frags++;
4072
4073 if (pos + size <= offset + len) {
4074 i++;
4075 frag++;
4076 pos += size;
4077 } else {
4078 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4079 goto skip_fraglist;
4080 }
4081
4082 nskb_frag++;
4083 }
4084
4085 skip_fraglist:
4086 nskb->data_len = len - hsize;
4087 nskb->len += nskb->data_len;
4088 nskb->truesize += nskb->data_len;
4089
4090 perform_csum_check:
4091 if (!csum) {
4092 if (skb_has_shared_frag(nskb) &&
4093 __skb_linearize(nskb))
4094 goto err;
4095
4096 if (!nskb->remcsum_offload)
4097 nskb->ip_summed = CHECKSUM_NONE;
4098 SKB_GSO_CB(nskb)->csum =
4099 skb_checksum(nskb, doffset,
4100 nskb->len - doffset, 0);
4101 SKB_GSO_CB(nskb)->csum_start =
4102 skb_headroom(nskb) + doffset;
4103 }
4104 } while ((offset += len) < head_skb->len);
4105
4106 /* Some callers want to get the end of the list.
4107 * Put it in segs->prev to avoid walking the list.
4108 * (see validate_xmit_skb_list() for example)
4109 */
4110 segs->prev = tail;
4111
4112 if (partial_segs) {
4113 struct sk_buff *iter;
4114 int type = skb_shinfo(head_skb)->gso_type;
4115 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4116
4117 /* Update type to add partial and then remove dodgy if set */
4118 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4119 type &= ~SKB_GSO_DODGY;
4120
4121 /* Update GSO info and prepare to start updating headers on
4122 * our way back down the stack of protocols.
4123 */
4124 for (iter = segs; iter; iter = iter->next) {
4125 skb_shinfo(iter)->gso_size = gso_size;
4126 skb_shinfo(iter)->gso_segs = partial_segs;
4127 skb_shinfo(iter)->gso_type = type;
4128 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4129 }
4130
4131 if (tail->len - doffset <= gso_size)
4132 skb_shinfo(tail)->gso_size = 0;
4133 else if (tail != segs)
4134 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4135 }
4136
4137 /* Following permits correct backpressure, for protocols
4138 * using skb_set_owner_w().
4139 * Idea is to tranfert ownership from head_skb to last segment.
4140 */
4141 if (head_skb->destructor == sock_wfree) {
4142 swap(tail->truesize, head_skb->truesize);
4143 swap(tail->destructor, head_skb->destructor);
4144 swap(tail->sk, head_skb->sk);
4145 }
4146 return segs;
4147
4148 err:
4149 kfree_skb_list(segs);
4150 return ERR_PTR(err);
4151 }
4152 EXPORT_SYMBOL_GPL(skb_segment);
4153
skb_gro_receive(struct sk_buff * p,struct sk_buff * skb)4154 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4155 {
4156 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4157 unsigned int offset = skb_gro_offset(skb);
4158 unsigned int headlen = skb_headlen(skb);
4159 unsigned int len = skb_gro_len(skb);
4160 unsigned int delta_truesize;
4161 struct sk_buff *lp;
4162
4163 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4164 return -E2BIG;
4165
4166 lp = NAPI_GRO_CB(p)->last;
4167 pinfo = skb_shinfo(lp);
4168
4169 if (headlen <= offset) {
4170 skb_frag_t *frag;
4171 skb_frag_t *frag2;
4172 int i = skbinfo->nr_frags;
4173 int nr_frags = pinfo->nr_frags + i;
4174
4175 if (nr_frags > MAX_SKB_FRAGS)
4176 goto merge;
4177
4178 offset -= headlen;
4179 pinfo->nr_frags = nr_frags;
4180 skbinfo->nr_frags = 0;
4181
4182 frag = pinfo->frags + nr_frags;
4183 frag2 = skbinfo->frags + i;
4184 do {
4185 *--frag = *--frag2;
4186 } while (--i);
4187
4188 skb_frag_off_add(frag, offset);
4189 skb_frag_size_sub(frag, offset);
4190
4191 /* all fragments truesize : remove (head size + sk_buff) */
4192 delta_truesize = skb->truesize -
4193 SKB_TRUESIZE(skb_end_offset(skb));
4194
4195 skb->truesize -= skb->data_len;
4196 skb->len -= skb->data_len;
4197 skb->data_len = 0;
4198
4199 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4200 goto done;
4201 } else if (skb->head_frag) {
4202 int nr_frags = pinfo->nr_frags;
4203 skb_frag_t *frag = pinfo->frags + nr_frags;
4204 struct page *page = virt_to_head_page(skb->head);
4205 unsigned int first_size = headlen - offset;
4206 unsigned int first_offset;
4207
4208 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4209 goto merge;
4210
4211 first_offset = skb->data -
4212 (unsigned char *)page_address(page) +
4213 offset;
4214
4215 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4216
4217 __skb_frag_set_page(frag, page);
4218 skb_frag_off_set(frag, first_offset);
4219 skb_frag_size_set(frag, first_size);
4220
4221 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4222 /* We dont need to clear skbinfo->nr_frags here */
4223
4224 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4225 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4226 goto done;
4227 }
4228
4229 merge:
4230 delta_truesize = skb->truesize;
4231 if (offset > headlen) {
4232 unsigned int eat = offset - headlen;
4233
4234 skb_frag_off_add(&skbinfo->frags[0], eat);
4235 skb_frag_size_sub(&skbinfo->frags[0], eat);
4236 skb->data_len -= eat;
4237 skb->len -= eat;
4238 offset = headlen;
4239 }
4240
4241 __skb_pull(skb, offset);
4242
4243 if (NAPI_GRO_CB(p)->last == p)
4244 skb_shinfo(p)->frag_list = skb;
4245 else
4246 NAPI_GRO_CB(p)->last->next = skb;
4247 NAPI_GRO_CB(p)->last = skb;
4248 __skb_header_release(skb);
4249 lp = p;
4250
4251 done:
4252 NAPI_GRO_CB(p)->count++;
4253 p->data_len += len;
4254 p->truesize += delta_truesize;
4255 p->len += len;
4256 if (lp != p) {
4257 lp->data_len += len;
4258 lp->truesize += delta_truesize;
4259 lp->len += len;
4260 }
4261 NAPI_GRO_CB(skb)->same_flow = 1;
4262 return 0;
4263 }
4264 EXPORT_SYMBOL_GPL(skb_gro_receive);
4265
4266 #ifdef CONFIG_SKB_EXTENSIONS
4267 #define SKB_EXT_ALIGN_VALUE 8
4268 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4269
4270 static const u8 skb_ext_type_len[] = {
4271 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4272 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4273 #endif
4274 #ifdef CONFIG_XFRM
4275 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4276 #endif
4277 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4278 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4279 #endif
4280 };
4281
skb_ext_total_length(void)4282 static __always_inline unsigned int skb_ext_total_length(void)
4283 {
4284 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4285 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4286 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4287 #endif
4288 #ifdef CONFIG_XFRM
4289 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4290 #endif
4291 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4292 skb_ext_type_len[TC_SKB_EXT] +
4293 #endif
4294 0;
4295 }
4296
skb_extensions_init(void)4297 static void skb_extensions_init(void)
4298 {
4299 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4300 BUILD_BUG_ON(skb_ext_total_length() > 255);
4301
4302 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4303 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4304 0,
4305 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4306 NULL);
4307 }
4308 #else
skb_extensions_init(void)4309 static void skb_extensions_init(void) {}
4310 #endif
4311
skb_init(void)4312 void __init skb_init(void)
4313 {
4314 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4315 sizeof(struct sk_buff),
4316 0,
4317 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4318 offsetof(struct sk_buff, cb),
4319 sizeof_field(struct sk_buff, cb),
4320 NULL);
4321 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4322 sizeof(struct sk_buff_fclones),
4323 0,
4324 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4325 NULL);
4326 skb_extensions_init();
4327 }
4328
4329 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)4330 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4331 unsigned int recursion_level)
4332 {
4333 int start = skb_headlen(skb);
4334 int i, copy = start - offset;
4335 struct sk_buff *frag_iter;
4336 int elt = 0;
4337
4338 if (unlikely(recursion_level >= 24))
4339 return -EMSGSIZE;
4340
4341 if (copy > 0) {
4342 if (copy > len)
4343 copy = len;
4344 sg_set_buf(sg, skb->data + offset, copy);
4345 elt++;
4346 if ((len -= copy) == 0)
4347 return elt;
4348 offset += copy;
4349 }
4350
4351 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4352 int end;
4353
4354 WARN_ON(start > offset + len);
4355
4356 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4357 if ((copy = end - offset) > 0) {
4358 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4359 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4360 return -EMSGSIZE;
4361
4362 if (copy > len)
4363 copy = len;
4364 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4365 skb_frag_off(frag) + offset - start);
4366 elt++;
4367 if (!(len -= copy))
4368 return elt;
4369 offset += copy;
4370 }
4371 start = end;
4372 }
4373
4374 skb_walk_frags(skb, frag_iter) {
4375 int end, ret;
4376
4377 WARN_ON(start > offset + len);
4378
4379 end = start + frag_iter->len;
4380 if ((copy = end - offset) > 0) {
4381 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4382 return -EMSGSIZE;
4383
4384 if (copy > len)
4385 copy = len;
4386 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4387 copy, recursion_level + 1);
4388 if (unlikely(ret < 0))
4389 return ret;
4390 elt += ret;
4391 if ((len -= copy) == 0)
4392 return elt;
4393 offset += copy;
4394 }
4395 start = end;
4396 }
4397 BUG_ON(len);
4398 return elt;
4399 }
4400
4401 /**
4402 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4403 * @skb: Socket buffer containing the buffers to be mapped
4404 * @sg: The scatter-gather list to map into
4405 * @offset: The offset into the buffer's contents to start mapping
4406 * @len: Length of buffer space to be mapped
4407 *
4408 * Fill the specified scatter-gather list with mappings/pointers into a
4409 * region of the buffer space attached to a socket buffer. Returns either
4410 * the number of scatterlist items used, or -EMSGSIZE if the contents
4411 * could not fit.
4412 */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4413 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4414 {
4415 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4416
4417 if (nsg <= 0)
4418 return nsg;
4419
4420 sg_mark_end(&sg[nsg - 1]);
4421
4422 return nsg;
4423 }
4424 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4425
4426 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4427 * sglist without mark the sg which contain last skb data as the end.
4428 * So the caller can mannipulate sg list as will when padding new data after
4429 * the first call without calling sg_unmark_end to expend sg list.
4430 *
4431 * Scenario to use skb_to_sgvec_nomark:
4432 * 1. sg_init_table
4433 * 2. skb_to_sgvec_nomark(payload1)
4434 * 3. skb_to_sgvec_nomark(payload2)
4435 *
4436 * This is equivalent to:
4437 * 1. sg_init_table
4438 * 2. skb_to_sgvec(payload1)
4439 * 3. sg_unmark_end
4440 * 4. skb_to_sgvec(payload2)
4441 *
4442 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4443 * is more preferable.
4444 */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4445 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4446 int offset, int len)
4447 {
4448 return __skb_to_sgvec(skb, sg, offset, len, 0);
4449 }
4450 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4451
4452
4453
4454 /**
4455 * skb_cow_data - Check that a socket buffer's data buffers are writable
4456 * @skb: The socket buffer to check.
4457 * @tailbits: Amount of trailing space to be added
4458 * @trailer: Returned pointer to the skb where the @tailbits space begins
4459 *
4460 * Make sure that the data buffers attached to a socket buffer are
4461 * writable. If they are not, private copies are made of the data buffers
4462 * and the socket buffer is set to use these instead.
4463 *
4464 * If @tailbits is given, make sure that there is space to write @tailbits
4465 * bytes of data beyond current end of socket buffer. @trailer will be
4466 * set to point to the skb in which this space begins.
4467 *
4468 * The number of scatterlist elements required to completely map the
4469 * COW'd and extended socket buffer will be returned.
4470 */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)4471 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4472 {
4473 int copyflag;
4474 int elt;
4475 struct sk_buff *skb1, **skb_p;
4476
4477 /* If skb is cloned or its head is paged, reallocate
4478 * head pulling out all the pages (pages are considered not writable
4479 * at the moment even if they are anonymous).
4480 */
4481 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4482 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4483 return -ENOMEM;
4484
4485 /* Easy case. Most of packets will go this way. */
4486 if (!skb_has_frag_list(skb)) {
4487 /* A little of trouble, not enough of space for trailer.
4488 * This should not happen, when stack is tuned to generate
4489 * good frames. OK, on miss we reallocate and reserve even more
4490 * space, 128 bytes is fair. */
4491
4492 if (skb_tailroom(skb) < tailbits &&
4493 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4494 return -ENOMEM;
4495
4496 /* Voila! */
4497 *trailer = skb;
4498 return 1;
4499 }
4500
4501 /* Misery. We are in troubles, going to mincer fragments... */
4502
4503 elt = 1;
4504 skb_p = &skb_shinfo(skb)->frag_list;
4505 copyflag = 0;
4506
4507 while ((skb1 = *skb_p) != NULL) {
4508 int ntail = 0;
4509
4510 /* The fragment is partially pulled by someone,
4511 * this can happen on input. Copy it and everything
4512 * after it. */
4513
4514 if (skb_shared(skb1))
4515 copyflag = 1;
4516
4517 /* If the skb is the last, worry about trailer. */
4518
4519 if (skb1->next == NULL && tailbits) {
4520 if (skb_shinfo(skb1)->nr_frags ||
4521 skb_has_frag_list(skb1) ||
4522 skb_tailroom(skb1) < tailbits)
4523 ntail = tailbits + 128;
4524 }
4525
4526 if (copyflag ||
4527 skb_cloned(skb1) ||
4528 ntail ||
4529 skb_shinfo(skb1)->nr_frags ||
4530 skb_has_frag_list(skb1)) {
4531 struct sk_buff *skb2;
4532
4533 /* Fuck, we are miserable poor guys... */
4534 if (ntail == 0)
4535 skb2 = skb_copy(skb1, GFP_ATOMIC);
4536 else
4537 skb2 = skb_copy_expand(skb1,
4538 skb_headroom(skb1),
4539 ntail,
4540 GFP_ATOMIC);
4541 if (unlikely(skb2 == NULL))
4542 return -ENOMEM;
4543
4544 if (skb1->sk)
4545 skb_set_owner_w(skb2, skb1->sk);
4546
4547 /* Looking around. Are we still alive?
4548 * OK, link new skb, drop old one */
4549
4550 skb2->next = skb1->next;
4551 *skb_p = skb2;
4552 kfree_skb(skb1);
4553 skb1 = skb2;
4554 }
4555 elt++;
4556 *trailer = skb1;
4557 skb_p = &skb1->next;
4558 }
4559
4560 return elt;
4561 }
4562 EXPORT_SYMBOL_GPL(skb_cow_data);
4563
sock_rmem_free(struct sk_buff * skb)4564 static void sock_rmem_free(struct sk_buff *skb)
4565 {
4566 struct sock *sk = skb->sk;
4567
4568 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4569 }
4570
skb_set_err_queue(struct sk_buff * skb)4571 static void skb_set_err_queue(struct sk_buff *skb)
4572 {
4573 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4574 * So, it is safe to (mis)use it to mark skbs on the error queue.
4575 */
4576 skb->pkt_type = PACKET_OUTGOING;
4577 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4578 }
4579
4580 /*
4581 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4582 */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)4583 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4584 {
4585 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4586 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4587 return -ENOMEM;
4588
4589 skb_orphan(skb);
4590 skb->sk = sk;
4591 skb->destructor = sock_rmem_free;
4592 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4593 skb_set_err_queue(skb);
4594
4595 /* before exiting rcu section, make sure dst is refcounted */
4596 skb_dst_force(skb);
4597
4598 skb_queue_tail(&sk->sk_error_queue, skb);
4599 if (!sock_flag(sk, SOCK_DEAD))
4600 sk->sk_error_report(sk);
4601 return 0;
4602 }
4603 EXPORT_SYMBOL(sock_queue_err_skb);
4604
is_icmp_err_skb(const struct sk_buff * skb)4605 static bool is_icmp_err_skb(const struct sk_buff *skb)
4606 {
4607 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4608 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4609 }
4610
sock_dequeue_err_skb(struct sock * sk)4611 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4612 {
4613 struct sk_buff_head *q = &sk->sk_error_queue;
4614 struct sk_buff *skb, *skb_next = NULL;
4615 bool icmp_next = false;
4616 unsigned long flags;
4617
4618 spin_lock_irqsave(&q->lock, flags);
4619 skb = __skb_dequeue(q);
4620 if (skb && (skb_next = skb_peek(q))) {
4621 icmp_next = is_icmp_err_skb(skb_next);
4622 if (icmp_next)
4623 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4624 }
4625 spin_unlock_irqrestore(&q->lock, flags);
4626
4627 if (is_icmp_err_skb(skb) && !icmp_next)
4628 sk->sk_err = 0;
4629
4630 if (skb_next)
4631 sk->sk_error_report(sk);
4632
4633 return skb;
4634 }
4635 EXPORT_SYMBOL(sock_dequeue_err_skb);
4636
4637 /**
4638 * skb_clone_sk - create clone of skb, and take reference to socket
4639 * @skb: the skb to clone
4640 *
4641 * This function creates a clone of a buffer that holds a reference on
4642 * sk_refcnt. Buffers created via this function are meant to be
4643 * returned using sock_queue_err_skb, or free via kfree_skb.
4644 *
4645 * When passing buffers allocated with this function to sock_queue_err_skb
4646 * it is necessary to wrap the call with sock_hold/sock_put in order to
4647 * prevent the socket from being released prior to being enqueued on
4648 * the sk_error_queue.
4649 */
skb_clone_sk(struct sk_buff * skb)4650 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4651 {
4652 struct sock *sk = skb->sk;
4653 struct sk_buff *clone;
4654
4655 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4656 return NULL;
4657
4658 clone = skb_clone(skb, GFP_ATOMIC);
4659 if (!clone) {
4660 sock_put(sk);
4661 return NULL;
4662 }
4663
4664 clone->sk = sk;
4665 clone->destructor = sock_efree;
4666
4667 return clone;
4668 }
4669 EXPORT_SYMBOL(skb_clone_sk);
4670
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)4671 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4672 struct sock *sk,
4673 int tstype,
4674 bool opt_stats)
4675 {
4676 struct sock_exterr_skb *serr;
4677 int err;
4678
4679 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4680
4681 serr = SKB_EXT_ERR(skb);
4682 memset(serr, 0, sizeof(*serr));
4683 serr->ee.ee_errno = ENOMSG;
4684 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4685 serr->ee.ee_info = tstype;
4686 serr->opt_stats = opt_stats;
4687 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4688 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4689 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4690 if (sk->sk_protocol == IPPROTO_TCP &&
4691 sk->sk_type == SOCK_STREAM)
4692 serr->ee.ee_data -= sk->sk_tskey;
4693 }
4694
4695 err = sock_queue_err_skb(sk, skb);
4696
4697 if (err)
4698 kfree_skb(skb);
4699 }
4700
skb_may_tx_timestamp(struct sock * sk,bool tsonly)4701 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4702 {
4703 bool ret;
4704
4705 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4706 return true;
4707
4708 read_lock_bh(&sk->sk_callback_lock);
4709 ret = sk->sk_socket && sk->sk_socket->file &&
4710 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4711 read_unlock_bh(&sk->sk_callback_lock);
4712 return ret;
4713 }
4714
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)4715 void skb_complete_tx_timestamp(struct sk_buff *skb,
4716 struct skb_shared_hwtstamps *hwtstamps)
4717 {
4718 struct sock *sk = skb->sk;
4719
4720 if (!skb_may_tx_timestamp(sk, false))
4721 goto err;
4722
4723 /* Take a reference to prevent skb_orphan() from freeing the socket,
4724 * but only if the socket refcount is not zero.
4725 */
4726 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4727 *skb_hwtstamps(skb) = *hwtstamps;
4728 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4729 sock_put(sk);
4730 return;
4731 }
4732
4733 err:
4734 kfree_skb(skb);
4735 }
4736 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4737
__skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)4738 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4739 struct skb_shared_hwtstamps *hwtstamps,
4740 struct sock *sk, int tstype)
4741 {
4742 struct sk_buff *skb;
4743 bool tsonly, opt_stats = false;
4744
4745 if (!sk)
4746 return;
4747
4748 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4749 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4750 return;
4751
4752 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4753 if (!skb_may_tx_timestamp(sk, tsonly))
4754 return;
4755
4756 if (tsonly) {
4757 #ifdef CONFIG_INET
4758 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4759 sk->sk_protocol == IPPROTO_TCP &&
4760 sk->sk_type == SOCK_STREAM) {
4761 skb = tcp_get_timestamping_opt_stats(sk);
4762 opt_stats = true;
4763 } else
4764 #endif
4765 skb = alloc_skb(0, GFP_ATOMIC);
4766 } else {
4767 skb = skb_clone(orig_skb, GFP_ATOMIC);
4768
4769 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
4770 kfree_skb(skb);
4771 return;
4772 }
4773 }
4774 if (!skb)
4775 return;
4776
4777 if (tsonly) {
4778 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4779 SKBTX_ANY_TSTAMP;
4780 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4781 }
4782
4783 if (hwtstamps)
4784 *skb_hwtstamps(skb) = *hwtstamps;
4785 else
4786 skb->tstamp = ktime_get_real();
4787
4788 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4789 }
4790 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4791
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)4792 void skb_tstamp_tx(struct sk_buff *orig_skb,
4793 struct skb_shared_hwtstamps *hwtstamps)
4794 {
4795 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4796 SCM_TSTAMP_SND);
4797 }
4798 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4799
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)4800 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4801 {
4802 struct sock *sk = skb->sk;
4803 struct sock_exterr_skb *serr;
4804 int err = 1;
4805
4806 skb->wifi_acked_valid = 1;
4807 skb->wifi_acked = acked;
4808
4809 serr = SKB_EXT_ERR(skb);
4810 memset(serr, 0, sizeof(*serr));
4811 serr->ee.ee_errno = ENOMSG;
4812 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4813
4814 /* Take a reference to prevent skb_orphan() from freeing the socket,
4815 * but only if the socket refcount is not zero.
4816 */
4817 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4818 err = sock_queue_err_skb(sk, skb);
4819 sock_put(sk);
4820 }
4821 if (err)
4822 kfree_skb(skb);
4823 }
4824 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4825
4826 /**
4827 * skb_partial_csum_set - set up and verify partial csum values for packet
4828 * @skb: the skb to set
4829 * @start: the number of bytes after skb->data to start checksumming.
4830 * @off: the offset from start to place the checksum.
4831 *
4832 * For untrusted partially-checksummed packets, we need to make sure the values
4833 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4834 *
4835 * This function checks and sets those values and skb->ip_summed: if this
4836 * returns false you should drop the packet.
4837 */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)4838 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4839 {
4840 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4841 u32 csum_start = skb_headroom(skb) + (u32)start;
4842
4843 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4844 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4845 start, off, skb_headroom(skb), skb_headlen(skb));
4846 return false;
4847 }
4848 skb->ip_summed = CHECKSUM_PARTIAL;
4849 skb->csum_start = csum_start;
4850 skb->csum_offset = off;
4851 skb_set_transport_header(skb, start);
4852 return true;
4853 }
4854 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4855
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)4856 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4857 unsigned int max)
4858 {
4859 if (skb_headlen(skb) >= len)
4860 return 0;
4861
4862 /* If we need to pullup then pullup to the max, so we
4863 * won't need to do it again.
4864 */
4865 if (max > skb->len)
4866 max = skb->len;
4867
4868 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4869 return -ENOMEM;
4870
4871 if (skb_headlen(skb) < len)
4872 return -EPROTO;
4873
4874 return 0;
4875 }
4876
4877 #define MAX_TCP_HDR_LEN (15 * 4)
4878
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)4879 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4880 typeof(IPPROTO_IP) proto,
4881 unsigned int off)
4882 {
4883 switch (proto) {
4884 int err;
4885
4886 case IPPROTO_TCP:
4887 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4888 off + MAX_TCP_HDR_LEN);
4889 if (!err && !skb_partial_csum_set(skb, off,
4890 offsetof(struct tcphdr,
4891 check)))
4892 err = -EPROTO;
4893 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4894
4895 case IPPROTO_UDP:
4896 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4897 off + sizeof(struct udphdr));
4898 if (!err && !skb_partial_csum_set(skb, off,
4899 offsetof(struct udphdr,
4900 check)))
4901 err = -EPROTO;
4902 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4903 }
4904
4905 return ERR_PTR(-EPROTO);
4906 }
4907
4908 /* This value should be large enough to cover a tagged ethernet header plus
4909 * maximally sized IP and TCP or UDP headers.
4910 */
4911 #define MAX_IP_HDR_LEN 128
4912
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)4913 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4914 {
4915 unsigned int off;
4916 bool fragment;
4917 __sum16 *csum;
4918 int err;
4919
4920 fragment = false;
4921
4922 err = skb_maybe_pull_tail(skb,
4923 sizeof(struct iphdr),
4924 MAX_IP_HDR_LEN);
4925 if (err < 0)
4926 goto out;
4927
4928 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4929 fragment = true;
4930
4931 off = ip_hdrlen(skb);
4932
4933 err = -EPROTO;
4934
4935 if (fragment)
4936 goto out;
4937
4938 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4939 if (IS_ERR(csum))
4940 return PTR_ERR(csum);
4941
4942 if (recalculate)
4943 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4944 ip_hdr(skb)->daddr,
4945 skb->len - off,
4946 ip_hdr(skb)->protocol, 0);
4947 err = 0;
4948
4949 out:
4950 return err;
4951 }
4952
4953 /* This value should be large enough to cover a tagged ethernet header plus
4954 * an IPv6 header, all options, and a maximal TCP or UDP header.
4955 */
4956 #define MAX_IPV6_HDR_LEN 256
4957
4958 #define OPT_HDR(type, skb, off) \
4959 (type *)(skb_network_header(skb) + (off))
4960
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)4961 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4962 {
4963 int err;
4964 u8 nexthdr;
4965 unsigned int off;
4966 unsigned int len;
4967 bool fragment;
4968 bool done;
4969 __sum16 *csum;
4970
4971 fragment = false;
4972 done = false;
4973
4974 off = sizeof(struct ipv6hdr);
4975
4976 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4977 if (err < 0)
4978 goto out;
4979
4980 nexthdr = ipv6_hdr(skb)->nexthdr;
4981
4982 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4983 while (off <= len && !done) {
4984 switch (nexthdr) {
4985 case IPPROTO_DSTOPTS:
4986 case IPPROTO_HOPOPTS:
4987 case IPPROTO_ROUTING: {
4988 struct ipv6_opt_hdr *hp;
4989
4990 err = skb_maybe_pull_tail(skb,
4991 off +
4992 sizeof(struct ipv6_opt_hdr),
4993 MAX_IPV6_HDR_LEN);
4994 if (err < 0)
4995 goto out;
4996
4997 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4998 nexthdr = hp->nexthdr;
4999 off += ipv6_optlen(hp);
5000 break;
5001 }
5002 case IPPROTO_AH: {
5003 struct ip_auth_hdr *hp;
5004
5005 err = skb_maybe_pull_tail(skb,
5006 off +
5007 sizeof(struct ip_auth_hdr),
5008 MAX_IPV6_HDR_LEN);
5009 if (err < 0)
5010 goto out;
5011
5012 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5013 nexthdr = hp->nexthdr;
5014 off += ipv6_authlen(hp);
5015 break;
5016 }
5017 case IPPROTO_FRAGMENT: {
5018 struct frag_hdr *hp;
5019
5020 err = skb_maybe_pull_tail(skb,
5021 off +
5022 sizeof(struct frag_hdr),
5023 MAX_IPV6_HDR_LEN);
5024 if (err < 0)
5025 goto out;
5026
5027 hp = OPT_HDR(struct frag_hdr, skb, off);
5028
5029 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5030 fragment = true;
5031
5032 nexthdr = hp->nexthdr;
5033 off += sizeof(struct frag_hdr);
5034 break;
5035 }
5036 default:
5037 done = true;
5038 break;
5039 }
5040 }
5041
5042 err = -EPROTO;
5043
5044 if (!done || fragment)
5045 goto out;
5046
5047 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5048 if (IS_ERR(csum))
5049 return PTR_ERR(csum);
5050
5051 if (recalculate)
5052 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5053 &ipv6_hdr(skb)->daddr,
5054 skb->len - off, nexthdr, 0);
5055 err = 0;
5056
5057 out:
5058 return err;
5059 }
5060
5061 /**
5062 * skb_checksum_setup - set up partial checksum offset
5063 * @skb: the skb to set up
5064 * @recalculate: if true the pseudo-header checksum will be recalculated
5065 */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5066 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5067 {
5068 int err;
5069
5070 switch (skb->protocol) {
5071 case htons(ETH_P_IP):
5072 err = skb_checksum_setup_ipv4(skb, recalculate);
5073 break;
5074
5075 case htons(ETH_P_IPV6):
5076 err = skb_checksum_setup_ipv6(skb, recalculate);
5077 break;
5078
5079 default:
5080 err = -EPROTO;
5081 break;
5082 }
5083
5084 return err;
5085 }
5086 EXPORT_SYMBOL(skb_checksum_setup);
5087
5088 /**
5089 * skb_checksum_maybe_trim - maybe trims the given skb
5090 * @skb: the skb to check
5091 * @transport_len: the data length beyond the network header
5092 *
5093 * Checks whether the given skb has data beyond the given transport length.
5094 * If so, returns a cloned skb trimmed to this transport length.
5095 * Otherwise returns the provided skb. Returns NULL in error cases
5096 * (e.g. transport_len exceeds skb length or out-of-memory).
5097 *
5098 * Caller needs to set the skb transport header and free any returned skb if it
5099 * differs from the provided skb.
5100 */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5101 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5102 unsigned int transport_len)
5103 {
5104 struct sk_buff *skb_chk;
5105 unsigned int len = skb_transport_offset(skb) + transport_len;
5106 int ret;
5107
5108 if (skb->len < len)
5109 return NULL;
5110 else if (skb->len == len)
5111 return skb;
5112
5113 skb_chk = skb_clone(skb, GFP_ATOMIC);
5114 if (!skb_chk)
5115 return NULL;
5116
5117 ret = pskb_trim_rcsum(skb_chk, len);
5118 if (ret) {
5119 kfree_skb(skb_chk);
5120 return NULL;
5121 }
5122
5123 return skb_chk;
5124 }
5125
5126 /**
5127 * skb_checksum_trimmed - validate checksum of an skb
5128 * @skb: the skb to check
5129 * @transport_len: the data length beyond the network header
5130 * @skb_chkf: checksum function to use
5131 *
5132 * Applies the given checksum function skb_chkf to the provided skb.
5133 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5134 *
5135 * If the skb has data beyond the given transport length, then a
5136 * trimmed & cloned skb is checked and returned.
5137 *
5138 * Caller needs to set the skb transport header and free any returned skb if it
5139 * differs from the provided skb.
5140 */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5141 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5142 unsigned int transport_len,
5143 __sum16(*skb_chkf)(struct sk_buff *skb))
5144 {
5145 struct sk_buff *skb_chk;
5146 unsigned int offset = skb_transport_offset(skb);
5147 __sum16 ret;
5148
5149 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5150 if (!skb_chk)
5151 goto err;
5152
5153 if (!pskb_may_pull(skb_chk, offset))
5154 goto err;
5155
5156 skb_pull_rcsum(skb_chk, offset);
5157 ret = skb_chkf(skb_chk);
5158 skb_push_rcsum(skb_chk, offset);
5159
5160 if (ret)
5161 goto err;
5162
5163 return skb_chk;
5164
5165 err:
5166 if (skb_chk && skb_chk != skb)
5167 kfree_skb(skb_chk);
5168
5169 return NULL;
5170
5171 }
5172 EXPORT_SYMBOL(skb_checksum_trimmed);
5173
__skb_warn_lro_forwarding(const struct sk_buff * skb)5174 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5175 {
5176 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5177 skb->dev->name);
5178 }
5179 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5180
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5181 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5182 {
5183 if (head_stolen) {
5184 skb_release_head_state(skb);
5185 kmem_cache_free(skbuff_head_cache, skb);
5186 } else {
5187 __kfree_skb(skb);
5188 }
5189 }
5190 EXPORT_SYMBOL(kfree_skb_partial);
5191
5192 /**
5193 * skb_try_coalesce - try to merge skb to prior one
5194 * @to: prior buffer
5195 * @from: buffer to add
5196 * @fragstolen: pointer to boolean
5197 * @delta_truesize: how much more was allocated than was requested
5198 */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)5199 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5200 bool *fragstolen, int *delta_truesize)
5201 {
5202 struct skb_shared_info *to_shinfo, *from_shinfo;
5203 int i, delta, len = from->len;
5204
5205 *fragstolen = false;
5206
5207 if (skb_cloned(to))
5208 return false;
5209
5210 if (len <= skb_tailroom(to)) {
5211 if (len)
5212 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5213 *delta_truesize = 0;
5214 return true;
5215 }
5216
5217 to_shinfo = skb_shinfo(to);
5218 from_shinfo = skb_shinfo(from);
5219 if (to_shinfo->frag_list || from_shinfo->frag_list)
5220 return false;
5221 if (skb_zcopy(to) || skb_zcopy(from))
5222 return false;
5223
5224 if (skb_headlen(from) != 0) {
5225 struct page *page;
5226 unsigned int offset;
5227
5228 if (to_shinfo->nr_frags +
5229 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5230 return false;
5231
5232 if (skb_head_is_locked(from))
5233 return false;
5234
5235 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5236
5237 page = virt_to_head_page(from->head);
5238 offset = from->data - (unsigned char *)page_address(page);
5239
5240 skb_fill_page_desc(to, to_shinfo->nr_frags,
5241 page, offset, skb_headlen(from));
5242 *fragstolen = true;
5243 } else {
5244 if (to_shinfo->nr_frags +
5245 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5246 return false;
5247
5248 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5249 }
5250
5251 WARN_ON_ONCE(delta < len);
5252
5253 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5254 from_shinfo->frags,
5255 from_shinfo->nr_frags * sizeof(skb_frag_t));
5256 to_shinfo->nr_frags += from_shinfo->nr_frags;
5257
5258 if (!skb_cloned(from))
5259 from_shinfo->nr_frags = 0;
5260
5261 /* if the skb is not cloned this does nothing
5262 * since we set nr_frags to 0.
5263 */
5264 for (i = 0; i < from_shinfo->nr_frags; i++)
5265 __skb_frag_ref(&from_shinfo->frags[i]);
5266
5267 to->truesize += delta;
5268 to->len += len;
5269 to->data_len += len;
5270
5271 *delta_truesize = delta;
5272 return true;
5273 }
5274 EXPORT_SYMBOL(skb_try_coalesce);
5275
5276 /**
5277 * skb_scrub_packet - scrub an skb
5278 *
5279 * @skb: buffer to clean
5280 * @xnet: packet is crossing netns
5281 *
5282 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5283 * into/from a tunnel. Some information have to be cleared during these
5284 * operations.
5285 * skb_scrub_packet can also be used to clean a skb before injecting it in
5286 * another namespace (@xnet == true). We have to clear all information in the
5287 * skb that could impact namespace isolation.
5288 */
skb_scrub_packet(struct sk_buff * skb,bool xnet)5289 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5290 {
5291 skb->pkt_type = PACKET_HOST;
5292 skb->skb_iif = 0;
5293 skb->ignore_df = 0;
5294 skb_dst_drop(skb);
5295 skb_ext_reset(skb);
5296 nf_reset_ct(skb);
5297 nf_reset_trace(skb);
5298
5299 #ifdef CONFIG_NET_SWITCHDEV
5300 skb->offload_fwd_mark = 0;
5301 skb->offload_l3_fwd_mark = 0;
5302 #endif
5303
5304 if (!xnet)
5305 return;
5306
5307 ipvs_reset(skb);
5308 skb->mark = 0;
5309 skb->tstamp = 0;
5310 }
5311 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5312
5313 /**
5314 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5315 *
5316 * @skb: GSO skb
5317 *
5318 * skb_gso_transport_seglen is used to determine the real size of the
5319 * individual segments, including Layer4 headers (TCP/UDP).
5320 *
5321 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5322 */
skb_gso_transport_seglen(const struct sk_buff * skb)5323 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5324 {
5325 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5326 unsigned int thlen = 0;
5327
5328 if (skb->encapsulation) {
5329 thlen = skb_inner_transport_header(skb) -
5330 skb_transport_header(skb);
5331
5332 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5333 thlen += inner_tcp_hdrlen(skb);
5334 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5335 thlen = tcp_hdrlen(skb);
5336 } else if (unlikely(skb_is_gso_sctp(skb))) {
5337 thlen = sizeof(struct sctphdr);
5338 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5339 thlen = sizeof(struct udphdr);
5340 }
5341 /* UFO sets gso_size to the size of the fragmentation
5342 * payload, i.e. the size of the L4 (UDP) header is already
5343 * accounted for.
5344 */
5345 return thlen + shinfo->gso_size;
5346 }
5347
5348 /**
5349 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5350 *
5351 * @skb: GSO skb
5352 *
5353 * skb_gso_network_seglen is used to determine the real size of the
5354 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5355 *
5356 * The MAC/L2 header is not accounted for.
5357 */
skb_gso_network_seglen(const struct sk_buff * skb)5358 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5359 {
5360 unsigned int hdr_len = skb_transport_header(skb) -
5361 skb_network_header(skb);
5362
5363 return hdr_len + skb_gso_transport_seglen(skb);
5364 }
5365
5366 /**
5367 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5368 *
5369 * @skb: GSO skb
5370 *
5371 * skb_gso_mac_seglen is used to determine the real size of the
5372 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5373 * headers (TCP/UDP).
5374 */
skb_gso_mac_seglen(const struct sk_buff * skb)5375 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5376 {
5377 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5378
5379 return hdr_len + skb_gso_transport_seglen(skb);
5380 }
5381
5382 /**
5383 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5384 *
5385 * There are a couple of instances where we have a GSO skb, and we
5386 * want to determine what size it would be after it is segmented.
5387 *
5388 * We might want to check:
5389 * - L3+L4+payload size (e.g. IP forwarding)
5390 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5391 *
5392 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5393 *
5394 * @skb: GSO skb
5395 *
5396 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5397 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5398 *
5399 * @max_len: The maximum permissible length.
5400 *
5401 * Returns true if the segmented length <= max length.
5402 */
skb_gso_size_check(const struct sk_buff * skb,unsigned int seg_len,unsigned int max_len)5403 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5404 unsigned int seg_len,
5405 unsigned int max_len) {
5406 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5407 const struct sk_buff *iter;
5408
5409 if (shinfo->gso_size != GSO_BY_FRAGS)
5410 return seg_len <= max_len;
5411
5412 /* Undo this so we can re-use header sizes */
5413 seg_len -= GSO_BY_FRAGS;
5414
5415 skb_walk_frags(skb, iter) {
5416 if (seg_len + skb_headlen(iter) > max_len)
5417 return false;
5418 }
5419
5420 return true;
5421 }
5422
5423 /**
5424 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5425 *
5426 * @skb: GSO skb
5427 * @mtu: MTU to validate against
5428 *
5429 * skb_gso_validate_network_len validates if a given skb will fit a
5430 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5431 * payload.
5432 */
skb_gso_validate_network_len(const struct sk_buff * skb,unsigned int mtu)5433 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5434 {
5435 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5436 }
5437 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5438
5439 /**
5440 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5441 *
5442 * @skb: GSO skb
5443 * @len: length to validate against
5444 *
5445 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5446 * length once split, including L2, L3 and L4 headers and the payload.
5447 */
skb_gso_validate_mac_len(const struct sk_buff * skb,unsigned int len)5448 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5449 {
5450 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5451 }
5452 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5453
skb_reorder_vlan_header(struct sk_buff * skb)5454 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5455 {
5456 int mac_len, meta_len;
5457 void *meta;
5458
5459 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5460 kfree_skb(skb);
5461 return NULL;
5462 }
5463
5464 mac_len = skb->data - skb_mac_header(skb);
5465 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5466 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5467 mac_len - VLAN_HLEN - ETH_TLEN);
5468 }
5469
5470 meta_len = skb_metadata_len(skb);
5471 if (meta_len) {
5472 meta = skb_metadata_end(skb) - meta_len;
5473 memmove(meta + VLAN_HLEN, meta, meta_len);
5474 }
5475
5476 skb->mac_header += VLAN_HLEN;
5477 return skb;
5478 }
5479
skb_vlan_untag(struct sk_buff * skb)5480 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5481 {
5482 struct vlan_hdr *vhdr;
5483 u16 vlan_tci;
5484
5485 if (unlikely(skb_vlan_tag_present(skb))) {
5486 /* vlan_tci is already set-up so leave this for another time */
5487 return skb;
5488 }
5489
5490 skb = skb_share_check(skb, GFP_ATOMIC);
5491 if (unlikely(!skb))
5492 goto err_free;
5493 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5494 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5495 goto err_free;
5496
5497 vhdr = (struct vlan_hdr *)skb->data;
5498 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5499 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5500
5501 skb_pull_rcsum(skb, VLAN_HLEN);
5502 vlan_set_encap_proto(skb, vhdr);
5503
5504 skb = skb_reorder_vlan_header(skb);
5505 if (unlikely(!skb))
5506 goto err_free;
5507
5508 skb_reset_network_header(skb);
5509 skb_reset_transport_header(skb);
5510 skb_reset_mac_len(skb);
5511
5512 return skb;
5513
5514 err_free:
5515 kfree_skb(skb);
5516 return NULL;
5517 }
5518 EXPORT_SYMBOL(skb_vlan_untag);
5519
skb_ensure_writable(struct sk_buff * skb,int write_len)5520 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5521 {
5522 if (!pskb_may_pull(skb, write_len))
5523 return -ENOMEM;
5524
5525 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5526 return 0;
5527
5528 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5529 }
5530 EXPORT_SYMBOL(skb_ensure_writable);
5531
5532 /* remove VLAN header from packet and update csum accordingly.
5533 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5534 */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)5535 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5536 {
5537 struct vlan_hdr *vhdr;
5538 int offset = skb->data - skb_mac_header(skb);
5539 int err;
5540
5541 if (WARN_ONCE(offset,
5542 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5543 offset)) {
5544 return -EINVAL;
5545 }
5546
5547 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5548 if (unlikely(err))
5549 return err;
5550
5551 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5552
5553 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5554 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5555
5556 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5557 __skb_pull(skb, VLAN_HLEN);
5558
5559 vlan_set_encap_proto(skb, vhdr);
5560 skb->mac_header += VLAN_HLEN;
5561
5562 if (skb_network_offset(skb) < ETH_HLEN)
5563 skb_set_network_header(skb, ETH_HLEN);
5564
5565 skb_reset_mac_len(skb);
5566
5567 return err;
5568 }
5569 EXPORT_SYMBOL(__skb_vlan_pop);
5570
5571 /* Pop a vlan tag either from hwaccel or from payload.
5572 * Expects skb->data at mac header.
5573 */
skb_vlan_pop(struct sk_buff * skb)5574 int skb_vlan_pop(struct sk_buff *skb)
5575 {
5576 u16 vlan_tci;
5577 __be16 vlan_proto;
5578 int err;
5579
5580 if (likely(skb_vlan_tag_present(skb))) {
5581 __vlan_hwaccel_clear_tag(skb);
5582 } else {
5583 if (unlikely(!eth_type_vlan(skb->protocol)))
5584 return 0;
5585
5586 err = __skb_vlan_pop(skb, &vlan_tci);
5587 if (err)
5588 return err;
5589 }
5590 /* move next vlan tag to hw accel tag */
5591 if (likely(!eth_type_vlan(skb->protocol)))
5592 return 0;
5593
5594 vlan_proto = skb->protocol;
5595 err = __skb_vlan_pop(skb, &vlan_tci);
5596 if (unlikely(err))
5597 return err;
5598
5599 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5600 return 0;
5601 }
5602 EXPORT_SYMBOL(skb_vlan_pop);
5603
5604 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5605 * Expects skb->data at mac header.
5606 */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)5607 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5608 {
5609 if (skb_vlan_tag_present(skb)) {
5610 int offset = skb->data - skb_mac_header(skb);
5611 int err;
5612
5613 if (WARN_ONCE(offset,
5614 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5615 offset)) {
5616 return -EINVAL;
5617 }
5618
5619 err = __vlan_insert_tag(skb, skb->vlan_proto,
5620 skb_vlan_tag_get(skb));
5621 if (err)
5622 return err;
5623
5624 skb->protocol = skb->vlan_proto;
5625 skb->mac_len += VLAN_HLEN;
5626
5627 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5628 }
5629 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5630 return 0;
5631 }
5632 EXPORT_SYMBOL(skb_vlan_push);
5633
5634 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)5635 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5636 __be16 ethertype)
5637 {
5638 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5639 __be16 diff[] = { ~hdr->h_proto, ethertype };
5640
5641 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5642 }
5643
5644 hdr->h_proto = ethertype;
5645 }
5646
5647 /**
5648 * skb_mpls_push() - push a new MPLS header after the mac header
5649 *
5650 * @skb: buffer
5651 * @mpls_lse: MPLS label stack entry to push
5652 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5653 * @mac_len: length of the MAC header
5654 *
5655 * Expects skb->data at mac header.
5656 *
5657 * Returns 0 on success, -errno otherwise.
5658 */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)5659 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5660 int mac_len, bool ethernet)
5661 {
5662 struct mpls_shim_hdr *lse;
5663 int err;
5664
5665 if (unlikely(!eth_p_mpls(mpls_proto)))
5666 return -EINVAL;
5667
5668 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5669 if (skb->encapsulation)
5670 return -EINVAL;
5671
5672 err = skb_cow_head(skb, MPLS_HLEN);
5673 if (unlikely(err))
5674 return err;
5675
5676 if (!skb->inner_protocol) {
5677 skb_set_inner_network_header(skb, mac_len);
5678 skb_set_inner_protocol(skb, skb->protocol);
5679 }
5680
5681 skb_push(skb, MPLS_HLEN);
5682 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5683 mac_len);
5684 skb_reset_mac_header(skb);
5685 skb_set_network_header(skb, mac_len);
5686
5687 lse = mpls_hdr(skb);
5688 lse->label_stack_entry = mpls_lse;
5689 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5690
5691 if (ethernet && mac_len >= ETH_HLEN)
5692 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5693 skb->protocol = mpls_proto;
5694
5695 return 0;
5696 }
5697 EXPORT_SYMBOL_GPL(skb_mpls_push);
5698
5699 /**
5700 * skb_mpls_pop() - pop the outermost MPLS header
5701 *
5702 * @skb: buffer
5703 * @next_proto: ethertype of header after popped MPLS header
5704 * @mac_len: length of the MAC header
5705 * @ethernet: flag to indicate if ethernet header is present in packet
5706 *
5707 * Expects skb->data at mac header.
5708 *
5709 * Returns 0 on success, -errno otherwise.
5710 */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)5711 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5712 bool ethernet)
5713 {
5714 int err;
5715
5716 if (unlikely(!eth_p_mpls(skb->protocol)))
5717 return 0;
5718
5719 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5720 if (unlikely(err))
5721 return err;
5722
5723 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5724 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5725 mac_len);
5726
5727 __skb_pull(skb, MPLS_HLEN);
5728 skb_reset_mac_header(skb);
5729 skb_set_network_header(skb, mac_len);
5730
5731 if (ethernet && mac_len >= ETH_HLEN) {
5732 struct ethhdr *hdr;
5733
5734 /* use mpls_hdr() to get ethertype to account for VLANs. */
5735 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5736 skb_mod_eth_type(skb, hdr, next_proto);
5737 }
5738 skb->protocol = next_proto;
5739
5740 return 0;
5741 }
5742 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5743
5744 /**
5745 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5746 *
5747 * @skb: buffer
5748 * @mpls_lse: new MPLS label stack entry to update to
5749 *
5750 * Expects skb->data at mac header.
5751 *
5752 * Returns 0 on success, -errno otherwise.
5753 */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)5754 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5755 {
5756 int err;
5757
5758 if (unlikely(!eth_p_mpls(skb->protocol)))
5759 return -EINVAL;
5760
5761 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5762 if (unlikely(err))
5763 return err;
5764
5765 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5766 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5767
5768 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5769 }
5770
5771 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5772
5773 return 0;
5774 }
5775 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5776
5777 /**
5778 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5779 *
5780 * @skb: buffer
5781 *
5782 * Expects skb->data at mac header.
5783 *
5784 * Returns 0 on success, -errno otherwise.
5785 */
skb_mpls_dec_ttl(struct sk_buff * skb)5786 int skb_mpls_dec_ttl(struct sk_buff *skb)
5787 {
5788 u32 lse;
5789 u8 ttl;
5790
5791 if (unlikely(!eth_p_mpls(skb->protocol)))
5792 return -EINVAL;
5793
5794 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5795 return -ENOMEM;
5796
5797 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5798 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5799 if (!--ttl)
5800 return -EINVAL;
5801
5802 lse &= ~MPLS_LS_TTL_MASK;
5803 lse |= ttl << MPLS_LS_TTL_SHIFT;
5804
5805 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5806 }
5807 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5808
5809 /**
5810 * alloc_skb_with_frags - allocate skb with page frags
5811 *
5812 * @header_len: size of linear part
5813 * @data_len: needed length in frags
5814 * @max_page_order: max page order desired.
5815 * @errcode: pointer to error code if any
5816 * @gfp_mask: allocation mask
5817 *
5818 * This can be used to allocate a paged skb, given a maximal order for frags.
5819 */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)5820 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5821 unsigned long data_len,
5822 int max_page_order,
5823 int *errcode,
5824 gfp_t gfp_mask)
5825 {
5826 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5827 unsigned long chunk;
5828 struct sk_buff *skb;
5829 struct page *page;
5830 int i;
5831
5832 *errcode = -EMSGSIZE;
5833 /* Note this test could be relaxed, if we succeed to allocate
5834 * high order pages...
5835 */
5836 if (npages > MAX_SKB_FRAGS)
5837 return NULL;
5838
5839 *errcode = -ENOBUFS;
5840 skb = alloc_skb(header_len, gfp_mask);
5841 if (!skb)
5842 return NULL;
5843
5844 skb->truesize += npages << PAGE_SHIFT;
5845
5846 for (i = 0; npages > 0; i++) {
5847 int order = max_page_order;
5848
5849 while (order) {
5850 if (npages >= 1 << order) {
5851 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5852 __GFP_COMP |
5853 __GFP_NOWARN,
5854 order);
5855 if (page)
5856 goto fill_page;
5857 /* Do not retry other high order allocations */
5858 order = 1;
5859 max_page_order = 0;
5860 }
5861 order--;
5862 }
5863 page = alloc_page(gfp_mask);
5864 if (!page)
5865 goto failure;
5866 fill_page:
5867 chunk = min_t(unsigned long, data_len,
5868 PAGE_SIZE << order);
5869 skb_fill_page_desc(skb, i, page, 0, chunk);
5870 data_len -= chunk;
5871 npages -= 1 << order;
5872 }
5873 return skb;
5874
5875 failure:
5876 kfree_skb(skb);
5877 return NULL;
5878 }
5879 EXPORT_SYMBOL(alloc_skb_with_frags);
5880
5881 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)5882 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5883 const int headlen, gfp_t gfp_mask)
5884 {
5885 int i;
5886 int size = skb_end_offset(skb);
5887 int new_hlen = headlen - off;
5888 u8 *data;
5889
5890 size = SKB_DATA_ALIGN(size);
5891
5892 if (skb_pfmemalloc(skb))
5893 gfp_mask |= __GFP_MEMALLOC;
5894 data = kmalloc_reserve(size +
5895 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5896 gfp_mask, NUMA_NO_NODE, NULL);
5897 if (!data)
5898 return -ENOMEM;
5899
5900 size = SKB_WITH_OVERHEAD(ksize(data));
5901
5902 /* Copy real data, and all frags */
5903 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5904 skb->len -= off;
5905
5906 memcpy((struct skb_shared_info *)(data + size),
5907 skb_shinfo(skb),
5908 offsetof(struct skb_shared_info,
5909 frags[skb_shinfo(skb)->nr_frags]));
5910 if (skb_cloned(skb)) {
5911 /* drop the old head gracefully */
5912 if (skb_orphan_frags(skb, gfp_mask)) {
5913 kfree(data);
5914 return -ENOMEM;
5915 }
5916 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5917 skb_frag_ref(skb, i);
5918 if (skb_has_frag_list(skb))
5919 skb_clone_fraglist(skb);
5920 skb_release_data(skb);
5921 } else {
5922 /* we can reuse existing recount- all we did was
5923 * relocate values
5924 */
5925 skb_free_head(skb);
5926 }
5927
5928 skb->head = data;
5929 skb->data = data;
5930 skb->head_frag = 0;
5931 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5932 skb->end = size;
5933 #else
5934 skb->end = skb->head + size;
5935 #endif
5936 skb_set_tail_pointer(skb, skb_headlen(skb));
5937 skb_headers_offset_update(skb, 0);
5938 skb->cloned = 0;
5939 skb->hdr_len = 0;
5940 skb->nohdr = 0;
5941 atomic_set(&skb_shinfo(skb)->dataref, 1);
5942
5943 return 0;
5944 }
5945
5946 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5947
5948 /* carve out the first eat bytes from skb's frag_list. May recurse into
5949 * pskb_carve()
5950 */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)5951 static int pskb_carve_frag_list(struct sk_buff *skb,
5952 struct skb_shared_info *shinfo, int eat,
5953 gfp_t gfp_mask)
5954 {
5955 struct sk_buff *list = shinfo->frag_list;
5956 struct sk_buff *clone = NULL;
5957 struct sk_buff *insp = NULL;
5958
5959 do {
5960 if (!list) {
5961 pr_err("Not enough bytes to eat. Want %d\n", eat);
5962 return -EFAULT;
5963 }
5964 if (list->len <= eat) {
5965 /* Eaten as whole. */
5966 eat -= list->len;
5967 list = list->next;
5968 insp = list;
5969 } else {
5970 /* Eaten partially. */
5971 if (skb_shared(list)) {
5972 clone = skb_clone(list, gfp_mask);
5973 if (!clone)
5974 return -ENOMEM;
5975 insp = list->next;
5976 list = clone;
5977 } else {
5978 /* This may be pulled without problems. */
5979 insp = list;
5980 }
5981 if (pskb_carve(list, eat, gfp_mask) < 0) {
5982 kfree_skb(clone);
5983 return -ENOMEM;
5984 }
5985 break;
5986 }
5987 } while (eat);
5988
5989 /* Free pulled out fragments. */
5990 while ((list = shinfo->frag_list) != insp) {
5991 shinfo->frag_list = list->next;
5992 consume_skb(list);
5993 }
5994 /* And insert new clone at head. */
5995 if (clone) {
5996 clone->next = list;
5997 shinfo->frag_list = clone;
5998 }
5999 return 0;
6000 }
6001
6002 /* carve off first len bytes from skb. Split line (off) is in the
6003 * non-linear part of skb
6004 */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6005 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6006 int pos, gfp_t gfp_mask)
6007 {
6008 int i, k = 0;
6009 int size = skb_end_offset(skb);
6010 u8 *data;
6011 const int nfrags = skb_shinfo(skb)->nr_frags;
6012 struct skb_shared_info *shinfo;
6013
6014 size = SKB_DATA_ALIGN(size);
6015
6016 if (skb_pfmemalloc(skb))
6017 gfp_mask |= __GFP_MEMALLOC;
6018 data = kmalloc_reserve(size +
6019 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6020 gfp_mask, NUMA_NO_NODE, NULL);
6021 if (!data)
6022 return -ENOMEM;
6023
6024 size = SKB_WITH_OVERHEAD(ksize(data));
6025
6026 memcpy((struct skb_shared_info *)(data + size),
6027 skb_shinfo(skb), offsetof(struct skb_shared_info,
6028 frags[skb_shinfo(skb)->nr_frags]));
6029 if (skb_orphan_frags(skb, gfp_mask)) {
6030 kfree(data);
6031 return -ENOMEM;
6032 }
6033 shinfo = (struct skb_shared_info *)(data + size);
6034 for (i = 0; i < nfrags; i++) {
6035 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6036
6037 if (pos + fsize > off) {
6038 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6039
6040 if (pos < off) {
6041 /* Split frag.
6042 * We have two variants in this case:
6043 * 1. Move all the frag to the second
6044 * part, if it is possible. F.e.
6045 * this approach is mandatory for TUX,
6046 * where splitting is expensive.
6047 * 2. Split is accurately. We make this.
6048 */
6049 skb_frag_off_add(&shinfo->frags[0], off - pos);
6050 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6051 }
6052 skb_frag_ref(skb, i);
6053 k++;
6054 }
6055 pos += fsize;
6056 }
6057 shinfo->nr_frags = k;
6058 if (skb_has_frag_list(skb))
6059 skb_clone_fraglist(skb);
6060
6061 /* split line is in frag list */
6062 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6063 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6064 if (skb_has_frag_list(skb))
6065 kfree_skb_list(skb_shinfo(skb)->frag_list);
6066 kfree(data);
6067 return -ENOMEM;
6068 }
6069 skb_release_data(skb);
6070
6071 skb->head = data;
6072 skb->head_frag = 0;
6073 skb->data = data;
6074 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6075 skb->end = size;
6076 #else
6077 skb->end = skb->head + size;
6078 #endif
6079 skb_reset_tail_pointer(skb);
6080 skb_headers_offset_update(skb, 0);
6081 skb->cloned = 0;
6082 skb->hdr_len = 0;
6083 skb->nohdr = 0;
6084 skb->len -= off;
6085 skb->data_len = skb->len;
6086 atomic_set(&skb_shinfo(skb)->dataref, 1);
6087 return 0;
6088 }
6089
6090 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6091 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6092 {
6093 int headlen = skb_headlen(skb);
6094
6095 if (len < headlen)
6096 return pskb_carve_inside_header(skb, len, headlen, gfp);
6097 else
6098 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6099 }
6100
6101 /* Extract to_copy bytes starting at off from skb, and return this in
6102 * a new skb
6103 */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6104 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6105 int to_copy, gfp_t gfp)
6106 {
6107 struct sk_buff *clone = skb_clone(skb, gfp);
6108
6109 if (!clone)
6110 return NULL;
6111
6112 if (pskb_carve(clone, off, gfp) < 0 ||
6113 pskb_trim(clone, to_copy)) {
6114 kfree_skb(clone);
6115 return NULL;
6116 }
6117 return clone;
6118 }
6119 EXPORT_SYMBOL(pskb_extract);
6120
6121 /**
6122 * skb_condense - try to get rid of fragments/frag_list if possible
6123 * @skb: buffer
6124 *
6125 * Can be used to save memory before skb is added to a busy queue.
6126 * If packet has bytes in frags and enough tail room in skb->head,
6127 * pull all of them, so that we can free the frags right now and adjust
6128 * truesize.
6129 * Notes:
6130 * We do not reallocate skb->head thus can not fail.
6131 * Caller must re-evaluate skb->truesize if needed.
6132 */
skb_condense(struct sk_buff * skb)6133 void skb_condense(struct sk_buff *skb)
6134 {
6135 if (skb->data_len) {
6136 if (skb->data_len > skb->end - skb->tail ||
6137 skb_cloned(skb))
6138 return;
6139
6140 /* Nice, we can free page frag(s) right now */
6141 __pskb_pull_tail(skb, skb->data_len);
6142 }
6143 /* At this point, skb->truesize might be over estimated,
6144 * because skb had a fragment, and fragments do not tell
6145 * their truesize.
6146 * When we pulled its content into skb->head, fragment
6147 * was freed, but __pskb_pull_tail() could not possibly
6148 * adjust skb->truesize, not knowing the frag truesize.
6149 */
6150 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6151 }
6152
6153 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6154 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6155 {
6156 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6157 }
6158
skb_ext_alloc(void)6159 static struct skb_ext *skb_ext_alloc(void)
6160 {
6161 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6162
6163 if (new) {
6164 memset(new->offset, 0, sizeof(new->offset));
6165 refcount_set(&new->refcnt, 1);
6166 }
6167
6168 return new;
6169 }
6170
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6171 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6172 unsigned int old_active)
6173 {
6174 struct skb_ext *new;
6175
6176 if (refcount_read(&old->refcnt) == 1)
6177 return old;
6178
6179 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6180 if (!new)
6181 return NULL;
6182
6183 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6184 refcount_set(&new->refcnt, 1);
6185
6186 #ifdef CONFIG_XFRM
6187 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6188 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6189 unsigned int i;
6190
6191 for (i = 0; i < sp->len; i++)
6192 xfrm_state_hold(sp->xvec[i]);
6193 }
6194 #endif
6195 __skb_ext_put(old);
6196 return new;
6197 }
6198
6199 /**
6200 * skb_ext_add - allocate space for given extension, COW if needed
6201 * @skb: buffer
6202 * @id: extension to allocate space for
6203 *
6204 * Allocates enough space for the given extension.
6205 * If the extension is already present, a pointer to that extension
6206 * is returned.
6207 *
6208 * If the skb was cloned, COW applies and the returned memory can be
6209 * modified without changing the extension space of clones buffers.
6210 *
6211 * Returns pointer to the extension or NULL on allocation failure.
6212 */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)6213 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6214 {
6215 struct skb_ext *new, *old = NULL;
6216 unsigned int newlen, newoff;
6217
6218 if (skb->active_extensions) {
6219 old = skb->extensions;
6220
6221 new = skb_ext_maybe_cow(old, skb->active_extensions);
6222 if (!new)
6223 return NULL;
6224
6225 if (__skb_ext_exist(new, id))
6226 goto set_active;
6227
6228 newoff = new->chunks;
6229 } else {
6230 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6231
6232 new = skb_ext_alloc();
6233 if (!new)
6234 return NULL;
6235 }
6236
6237 newlen = newoff + skb_ext_type_len[id];
6238 new->chunks = newlen;
6239 new->offset[id] = newoff;
6240 set_active:
6241 skb->extensions = new;
6242 skb->active_extensions |= 1 << id;
6243 return skb_ext_get_ptr(new, id);
6244 }
6245 EXPORT_SYMBOL(skb_ext_add);
6246
6247 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)6248 static void skb_ext_put_sp(struct sec_path *sp)
6249 {
6250 unsigned int i;
6251
6252 for (i = 0; i < sp->len; i++)
6253 xfrm_state_put(sp->xvec[i]);
6254 }
6255 #endif
6256
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)6257 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6258 {
6259 struct skb_ext *ext = skb->extensions;
6260
6261 skb->active_extensions &= ~(1 << id);
6262 if (skb->active_extensions == 0) {
6263 skb->extensions = NULL;
6264 __skb_ext_put(ext);
6265 #ifdef CONFIG_XFRM
6266 } else if (id == SKB_EXT_SEC_PATH &&
6267 refcount_read(&ext->refcnt) == 1) {
6268 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6269
6270 skb_ext_put_sp(sp);
6271 sp->len = 0;
6272 #endif
6273 }
6274 }
6275 EXPORT_SYMBOL(__skb_ext_del);
6276
__skb_ext_put(struct skb_ext * ext)6277 void __skb_ext_put(struct skb_ext *ext)
6278 {
6279 /* If this is last clone, nothing can increment
6280 * it after check passes. Avoids one atomic op.
6281 */
6282 if (refcount_read(&ext->refcnt) == 1)
6283 goto free_now;
6284
6285 if (!refcount_dec_and_test(&ext->refcnt))
6286 return;
6287 free_now:
6288 #ifdef CONFIG_XFRM
6289 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6290 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6291 #endif
6292
6293 kmem_cache_free(skbuff_ext_cache, ext);
6294 }
6295 EXPORT_SYMBOL(__skb_ext_put);
6296 #endif /* CONFIG_SKB_EXTENSIONS */
6297