1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7 #include <linux/slab.h>
8
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/module.h>
16 #include <linux/cpu.h>
17 #include <linux/uaccess.h>
18 #include <linux/seq_file.h>
19 #include <linux/proc_fs.h>
20 #include <linux/debugfs.h>
21 #include <asm/cacheflush.h>
22 #include <asm/tlbflush.h>
23 #include <asm/page.h>
24 #include <linux/memcontrol.h>
25
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/kmem.h>
28
29 #include "slab.h"
30
31 enum slab_state slab_state;
32 LIST_HEAD(slab_caches);
33 DEFINE_MUTEX(slab_mutex);
34 struct kmem_cache *kmem_cache;
35
36 #ifdef CONFIG_HARDENED_USERCOPY
37 bool usercopy_fallback __ro_after_init =
38 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
39 module_param(usercopy_fallback, bool, 0400);
40 MODULE_PARM_DESC(usercopy_fallback,
41 "WARN instead of reject usercopy whitelist violations");
42 #endif
43
44 static LIST_HEAD(slab_caches_to_rcu_destroy);
45 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
46 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
47 slab_caches_to_rcu_destroy_workfn);
48
49 /*
50 * Set of flags that will prevent slab merging
51 */
52 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
53 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
54 SLAB_FAILSLAB | SLAB_KASAN)
55
56 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
57 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
58
59 /*
60 * Merge control. If this is set then no merging of slab caches will occur.
61 */
62 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
63
setup_slab_nomerge(char * str)64 static int __init setup_slab_nomerge(char *str)
65 {
66 slab_nomerge = true;
67 return 1;
68 }
69
70 #ifdef CONFIG_SLUB
71 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
72 #endif
73
74 __setup("slab_nomerge", setup_slab_nomerge);
75
76 /*
77 * Determine the size of a slab object
78 */
kmem_cache_size(struct kmem_cache * s)79 unsigned int kmem_cache_size(struct kmem_cache *s)
80 {
81 return s->object_size;
82 }
83 EXPORT_SYMBOL(kmem_cache_size);
84
85 #ifdef CONFIG_DEBUG_VM
kmem_cache_sanity_check(const char * name,unsigned int size)86 static int kmem_cache_sanity_check(const char *name, unsigned int size)
87 {
88 if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
89 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
90 return -EINVAL;
91 }
92
93 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
94 return 0;
95 }
96 #else
kmem_cache_sanity_check(const char * name,unsigned int size)97 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
98 {
99 return 0;
100 }
101 #endif
102
__kmem_cache_free_bulk(struct kmem_cache * s,size_t nr,void ** p)103 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
104 {
105 size_t i;
106
107 for (i = 0; i < nr; i++) {
108 if (s)
109 kmem_cache_free(s, p[i]);
110 else
111 kfree(p[i]);
112 }
113 }
114
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t nr,void ** p)115 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
116 void **p)
117 {
118 size_t i;
119
120 for (i = 0; i < nr; i++) {
121 void *x = p[i] = kmem_cache_alloc(s, flags);
122 if (!x) {
123 __kmem_cache_free_bulk(s, i, p);
124 return 0;
125 }
126 }
127 return i;
128 }
129
130 #ifdef CONFIG_MEMCG_KMEM
131
132 LIST_HEAD(slab_root_caches);
133 static DEFINE_SPINLOCK(memcg_kmem_wq_lock);
134
135 static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref);
136
slab_init_memcg_params(struct kmem_cache * s)137 void slab_init_memcg_params(struct kmem_cache *s)
138 {
139 s->memcg_params.root_cache = NULL;
140 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
141 INIT_LIST_HEAD(&s->memcg_params.children);
142 s->memcg_params.dying = false;
143 }
144
init_memcg_params(struct kmem_cache * s,struct kmem_cache * root_cache)145 static int init_memcg_params(struct kmem_cache *s,
146 struct kmem_cache *root_cache)
147 {
148 struct memcg_cache_array *arr;
149
150 if (root_cache) {
151 int ret = percpu_ref_init(&s->memcg_params.refcnt,
152 kmemcg_cache_shutdown,
153 0, GFP_KERNEL);
154 if (ret)
155 return ret;
156
157 s->memcg_params.root_cache = root_cache;
158 INIT_LIST_HEAD(&s->memcg_params.children_node);
159 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
160 return 0;
161 }
162
163 slab_init_memcg_params(s);
164
165 if (!memcg_nr_cache_ids)
166 return 0;
167
168 arr = kvzalloc(sizeof(struct memcg_cache_array) +
169 memcg_nr_cache_ids * sizeof(void *),
170 GFP_KERNEL);
171 if (!arr)
172 return -ENOMEM;
173
174 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
175 return 0;
176 }
177
destroy_memcg_params(struct kmem_cache * s)178 static void destroy_memcg_params(struct kmem_cache *s)
179 {
180 if (is_root_cache(s)) {
181 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
182 } else {
183 mem_cgroup_put(s->memcg_params.memcg);
184 WRITE_ONCE(s->memcg_params.memcg, NULL);
185 percpu_ref_exit(&s->memcg_params.refcnt);
186 }
187 }
188
free_memcg_params(struct rcu_head * rcu)189 static void free_memcg_params(struct rcu_head *rcu)
190 {
191 struct memcg_cache_array *old;
192
193 old = container_of(rcu, struct memcg_cache_array, rcu);
194 kvfree(old);
195 }
196
update_memcg_params(struct kmem_cache * s,int new_array_size)197 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
198 {
199 struct memcg_cache_array *old, *new;
200
201 new = kvzalloc(sizeof(struct memcg_cache_array) +
202 new_array_size * sizeof(void *), GFP_KERNEL);
203 if (!new)
204 return -ENOMEM;
205
206 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
207 lockdep_is_held(&slab_mutex));
208 if (old)
209 memcpy(new->entries, old->entries,
210 memcg_nr_cache_ids * sizeof(void *));
211
212 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
213 if (old)
214 call_rcu(&old->rcu, free_memcg_params);
215 return 0;
216 }
217
memcg_update_all_caches(int num_memcgs)218 int memcg_update_all_caches(int num_memcgs)
219 {
220 struct kmem_cache *s;
221 int ret = 0;
222
223 mutex_lock(&slab_mutex);
224 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
225 ret = update_memcg_params(s, num_memcgs);
226 /*
227 * Instead of freeing the memory, we'll just leave the caches
228 * up to this point in an updated state.
229 */
230 if (ret)
231 break;
232 }
233 mutex_unlock(&slab_mutex);
234 return ret;
235 }
236
memcg_link_cache(struct kmem_cache * s,struct mem_cgroup * memcg)237 void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg)
238 {
239 if (is_root_cache(s)) {
240 list_add(&s->root_caches_node, &slab_root_caches);
241 } else {
242 css_get(&memcg->css);
243 s->memcg_params.memcg = memcg;
244 list_add(&s->memcg_params.children_node,
245 &s->memcg_params.root_cache->memcg_params.children);
246 list_add(&s->memcg_params.kmem_caches_node,
247 &s->memcg_params.memcg->kmem_caches);
248 }
249 }
250
memcg_unlink_cache(struct kmem_cache * s)251 static void memcg_unlink_cache(struct kmem_cache *s)
252 {
253 if (is_root_cache(s)) {
254 list_del(&s->root_caches_node);
255 } else {
256 list_del(&s->memcg_params.children_node);
257 list_del(&s->memcg_params.kmem_caches_node);
258 }
259 }
260 #else
init_memcg_params(struct kmem_cache * s,struct kmem_cache * root_cache)261 static inline int init_memcg_params(struct kmem_cache *s,
262 struct kmem_cache *root_cache)
263 {
264 return 0;
265 }
266
destroy_memcg_params(struct kmem_cache * s)267 static inline void destroy_memcg_params(struct kmem_cache *s)
268 {
269 }
270
memcg_unlink_cache(struct kmem_cache * s)271 static inline void memcg_unlink_cache(struct kmem_cache *s)
272 {
273 }
274 #endif /* CONFIG_MEMCG_KMEM */
275
276 /*
277 * Figure out what the alignment of the objects will be given a set of
278 * flags, a user specified alignment and the size of the objects.
279 */
calculate_alignment(slab_flags_t flags,unsigned int align,unsigned int size)280 static unsigned int calculate_alignment(slab_flags_t flags,
281 unsigned int align, unsigned int size)
282 {
283 /*
284 * If the user wants hardware cache aligned objects then follow that
285 * suggestion if the object is sufficiently large.
286 *
287 * The hardware cache alignment cannot override the specified
288 * alignment though. If that is greater then use it.
289 */
290 if (flags & SLAB_HWCACHE_ALIGN) {
291 unsigned int ralign;
292
293 ralign = cache_line_size();
294 while (size <= ralign / 2)
295 ralign /= 2;
296 align = max(align, ralign);
297 }
298
299 if (align < ARCH_SLAB_MINALIGN)
300 align = ARCH_SLAB_MINALIGN;
301
302 return ALIGN(align, sizeof(void *));
303 }
304
305 /*
306 * Find a mergeable slab cache
307 */
slab_unmergeable(struct kmem_cache * s)308 int slab_unmergeable(struct kmem_cache *s)
309 {
310 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
311 return 1;
312
313 if (!is_root_cache(s))
314 return 1;
315
316 if (s->ctor)
317 return 1;
318
319 if (s->usersize)
320 return 1;
321
322 /*
323 * We may have set a slab to be unmergeable during bootstrap.
324 */
325 if (s->refcount < 0)
326 return 1;
327
328 return 0;
329 }
330
find_mergeable(unsigned int size,unsigned int align,slab_flags_t flags,const char * name,void (* ctor)(void *))331 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
332 slab_flags_t flags, const char *name, void (*ctor)(void *))
333 {
334 struct kmem_cache *s;
335
336 if (slab_nomerge)
337 return NULL;
338
339 if (ctor)
340 return NULL;
341
342 size = ALIGN(size, sizeof(void *));
343 align = calculate_alignment(flags, align, size);
344 size = ALIGN(size, align);
345 flags = kmem_cache_flags(size, flags, name, NULL);
346
347 if (flags & SLAB_NEVER_MERGE)
348 return NULL;
349
350 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
351 if (slab_unmergeable(s))
352 continue;
353
354 if (size > s->size)
355 continue;
356
357 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
358 continue;
359 /*
360 * Check if alignment is compatible.
361 * Courtesy of Adrian Drzewiecki
362 */
363 if ((s->size & ~(align - 1)) != s->size)
364 continue;
365
366 if (s->size - size >= sizeof(void *))
367 continue;
368
369 if (IS_ENABLED(CONFIG_SLAB) && align &&
370 (align > s->align || s->align % align))
371 continue;
372
373 return s;
374 }
375 return NULL;
376 }
377
create_cache(const char * name,unsigned int object_size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *),struct mem_cgroup * memcg,struct kmem_cache * root_cache)378 static struct kmem_cache *create_cache(const char *name,
379 unsigned int object_size, unsigned int align,
380 slab_flags_t flags, unsigned int useroffset,
381 unsigned int usersize, void (*ctor)(void *),
382 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
383 {
384 struct kmem_cache *s;
385 int err;
386
387 if (WARN_ON(useroffset + usersize > object_size))
388 useroffset = usersize = 0;
389
390 err = -ENOMEM;
391 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
392 if (!s)
393 goto out;
394
395 s->name = name;
396 s->size = s->object_size = object_size;
397 s->align = align;
398 s->ctor = ctor;
399 s->useroffset = useroffset;
400 s->usersize = usersize;
401
402 err = init_memcg_params(s, root_cache);
403 if (err)
404 goto out_free_cache;
405
406 err = __kmem_cache_create(s, flags);
407 if (err)
408 goto out_free_cache;
409
410 s->refcount = 1;
411 list_add(&s->list, &slab_caches);
412 memcg_link_cache(s, memcg);
413 out:
414 if (err)
415 return ERR_PTR(err);
416 return s;
417
418 out_free_cache:
419 destroy_memcg_params(s);
420 kmem_cache_free(kmem_cache, s);
421 goto out;
422 }
423
424 /**
425 * kmem_cache_create_usercopy - Create a cache with a region suitable
426 * for copying to userspace
427 * @name: A string which is used in /proc/slabinfo to identify this cache.
428 * @size: The size of objects to be created in this cache.
429 * @align: The required alignment for the objects.
430 * @flags: SLAB flags
431 * @useroffset: Usercopy region offset
432 * @usersize: Usercopy region size
433 * @ctor: A constructor for the objects.
434 *
435 * Cannot be called within a interrupt, but can be interrupted.
436 * The @ctor is run when new pages are allocated by the cache.
437 *
438 * The flags are
439 *
440 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
441 * to catch references to uninitialised memory.
442 *
443 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
444 * for buffer overruns.
445 *
446 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
447 * cacheline. This can be beneficial if you're counting cycles as closely
448 * as davem.
449 *
450 * Return: a pointer to the cache on success, NULL on failure.
451 */
452 struct kmem_cache *
kmem_cache_create_usercopy(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *))453 kmem_cache_create_usercopy(const char *name,
454 unsigned int size, unsigned int align,
455 slab_flags_t flags,
456 unsigned int useroffset, unsigned int usersize,
457 void (*ctor)(void *))
458 {
459 struct kmem_cache *s = NULL;
460 const char *cache_name;
461 int err;
462
463 get_online_cpus();
464 get_online_mems();
465 memcg_get_cache_ids();
466
467 mutex_lock(&slab_mutex);
468
469 err = kmem_cache_sanity_check(name, size);
470 if (err) {
471 goto out_unlock;
472 }
473
474 /* Refuse requests with allocator specific flags */
475 if (flags & ~SLAB_FLAGS_PERMITTED) {
476 err = -EINVAL;
477 goto out_unlock;
478 }
479
480 /*
481 * Some allocators will constraint the set of valid flags to a subset
482 * of all flags. We expect them to define CACHE_CREATE_MASK in this
483 * case, and we'll just provide them with a sanitized version of the
484 * passed flags.
485 */
486 flags &= CACHE_CREATE_MASK;
487
488 /* Fail closed on bad usersize of useroffset values. */
489 if (WARN_ON(!usersize && useroffset) ||
490 WARN_ON(size < usersize || size - usersize < useroffset))
491 usersize = useroffset = 0;
492
493 if (!usersize)
494 s = __kmem_cache_alias(name, size, align, flags, ctor);
495 if (s)
496 goto out_unlock;
497
498 cache_name = kstrdup_const(name, GFP_KERNEL);
499 if (!cache_name) {
500 err = -ENOMEM;
501 goto out_unlock;
502 }
503
504 s = create_cache(cache_name, size,
505 calculate_alignment(flags, align, size),
506 flags, useroffset, usersize, ctor, NULL, NULL);
507 if (IS_ERR(s)) {
508 err = PTR_ERR(s);
509 kfree_const(cache_name);
510 }
511
512 out_unlock:
513 mutex_unlock(&slab_mutex);
514
515 memcg_put_cache_ids();
516 put_online_mems();
517 put_online_cpus();
518
519 if (err) {
520 if (flags & SLAB_PANIC)
521 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
522 name, err);
523 else {
524 pr_warn("kmem_cache_create(%s) failed with error %d\n",
525 name, err);
526 dump_stack();
527 }
528 return NULL;
529 }
530 return s;
531 }
532 EXPORT_SYMBOL(kmem_cache_create_usercopy);
533
534 /**
535 * kmem_cache_create - Create a cache.
536 * @name: A string which is used in /proc/slabinfo to identify this cache.
537 * @size: The size of objects to be created in this cache.
538 * @align: The required alignment for the objects.
539 * @flags: SLAB flags
540 * @ctor: A constructor for the objects.
541 *
542 * Cannot be called within a interrupt, but can be interrupted.
543 * The @ctor is run when new pages are allocated by the cache.
544 *
545 * The flags are
546 *
547 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
548 * to catch references to uninitialised memory.
549 *
550 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
551 * for buffer overruns.
552 *
553 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
554 * cacheline. This can be beneficial if you're counting cycles as closely
555 * as davem.
556 *
557 * Return: a pointer to the cache on success, NULL on failure.
558 */
559 struct kmem_cache *
kmem_cache_create(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))560 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
561 slab_flags_t flags, void (*ctor)(void *))
562 {
563 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
564 ctor);
565 }
566 EXPORT_SYMBOL(kmem_cache_create);
567
slab_caches_to_rcu_destroy_workfn(struct work_struct * work)568 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
569 {
570 LIST_HEAD(to_destroy);
571 struct kmem_cache *s, *s2;
572
573 /*
574 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
575 * @slab_caches_to_rcu_destroy list. The slab pages are freed
576 * through RCU and and the associated kmem_cache are dereferenced
577 * while freeing the pages, so the kmem_caches should be freed only
578 * after the pending RCU operations are finished. As rcu_barrier()
579 * is a pretty slow operation, we batch all pending destructions
580 * asynchronously.
581 */
582 mutex_lock(&slab_mutex);
583 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
584 mutex_unlock(&slab_mutex);
585
586 if (list_empty(&to_destroy))
587 return;
588
589 rcu_barrier();
590
591 list_for_each_entry_safe(s, s2, &to_destroy, list) {
592 #ifdef SLAB_SUPPORTS_SYSFS
593 sysfs_slab_release(s);
594 #else
595 slab_kmem_cache_release(s);
596 #endif
597 }
598 }
599
shutdown_cache(struct kmem_cache * s)600 static int shutdown_cache(struct kmem_cache *s)
601 {
602 /* free asan quarantined objects */
603 kasan_cache_shutdown(s);
604
605 if (__kmem_cache_shutdown(s) != 0)
606 return -EBUSY;
607
608 memcg_unlink_cache(s);
609 list_del(&s->list);
610
611 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
612 #ifdef SLAB_SUPPORTS_SYSFS
613 sysfs_slab_unlink(s);
614 #endif
615 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
616 schedule_work(&slab_caches_to_rcu_destroy_work);
617 } else {
618 #ifdef SLAB_SUPPORTS_SYSFS
619 sysfs_slab_unlink(s);
620 sysfs_slab_release(s);
621 #else
622 slab_kmem_cache_release(s);
623 #endif
624 }
625
626 return 0;
627 }
628
629 #ifdef CONFIG_MEMCG_KMEM
630 /*
631 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
632 * @memcg: The memory cgroup the new cache is for.
633 * @root_cache: The parent of the new cache.
634 *
635 * This function attempts to create a kmem cache that will serve allocation
636 * requests going from @memcg to @root_cache. The new cache inherits properties
637 * from its parent.
638 */
memcg_create_kmem_cache(struct mem_cgroup * memcg,struct kmem_cache * root_cache)639 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
640 struct kmem_cache *root_cache)
641 {
642 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
643 struct cgroup_subsys_state *css = &memcg->css;
644 struct memcg_cache_array *arr;
645 struct kmem_cache *s = NULL;
646 char *cache_name;
647 int idx;
648
649 get_online_cpus();
650 get_online_mems();
651
652 mutex_lock(&slab_mutex);
653
654 /*
655 * The memory cgroup could have been offlined while the cache
656 * creation work was pending.
657 */
658 if (memcg->kmem_state != KMEM_ONLINE)
659 goto out_unlock;
660
661 idx = memcg_cache_id(memcg);
662 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
663 lockdep_is_held(&slab_mutex));
664
665 /*
666 * Since per-memcg caches are created asynchronously on first
667 * allocation (see memcg_kmem_get_cache()), several threads can try to
668 * create the same cache, but only one of them may succeed.
669 */
670 if (arr->entries[idx])
671 goto out_unlock;
672
673 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
674 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
675 css->serial_nr, memcg_name_buf);
676 if (!cache_name)
677 goto out_unlock;
678
679 s = create_cache(cache_name, root_cache->object_size,
680 root_cache->align,
681 root_cache->flags & CACHE_CREATE_MASK,
682 root_cache->useroffset, root_cache->usersize,
683 root_cache->ctor, memcg, root_cache);
684 /*
685 * If we could not create a memcg cache, do not complain, because
686 * that's not critical at all as we can always proceed with the root
687 * cache.
688 */
689 if (IS_ERR(s)) {
690 kfree(cache_name);
691 goto out_unlock;
692 }
693
694 /*
695 * Since readers won't lock (see memcg_kmem_get_cache()), we need a
696 * barrier here to ensure nobody will see the kmem_cache partially
697 * initialized.
698 */
699 smp_wmb();
700 arr->entries[idx] = s;
701
702 out_unlock:
703 mutex_unlock(&slab_mutex);
704
705 put_online_mems();
706 put_online_cpus();
707 }
708
kmemcg_workfn(struct work_struct * work)709 static void kmemcg_workfn(struct work_struct *work)
710 {
711 struct kmem_cache *s = container_of(work, struct kmem_cache,
712 memcg_params.work);
713
714 get_online_cpus();
715 get_online_mems();
716
717 mutex_lock(&slab_mutex);
718 s->memcg_params.work_fn(s);
719 mutex_unlock(&slab_mutex);
720
721 put_online_mems();
722 put_online_cpus();
723 }
724
kmemcg_rcufn(struct rcu_head * head)725 static void kmemcg_rcufn(struct rcu_head *head)
726 {
727 struct kmem_cache *s = container_of(head, struct kmem_cache,
728 memcg_params.rcu_head);
729
730 /*
731 * We need to grab blocking locks. Bounce to ->work. The
732 * work item shares the space with the RCU head and can't be
733 * initialized eariler.
734 */
735 INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
736 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
737 }
738
kmemcg_cache_shutdown_fn(struct kmem_cache * s)739 static void kmemcg_cache_shutdown_fn(struct kmem_cache *s)
740 {
741 WARN_ON(shutdown_cache(s));
742 }
743
kmemcg_cache_shutdown(struct percpu_ref * percpu_ref)744 static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref)
745 {
746 struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache,
747 memcg_params.refcnt);
748 unsigned long flags;
749
750 spin_lock_irqsave(&memcg_kmem_wq_lock, flags);
751 if (s->memcg_params.root_cache->memcg_params.dying)
752 goto unlock;
753
754 s->memcg_params.work_fn = kmemcg_cache_shutdown_fn;
755 INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
756 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
757
758 unlock:
759 spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags);
760 }
761
kmemcg_cache_deactivate_after_rcu(struct kmem_cache * s)762 static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
763 {
764 __kmemcg_cache_deactivate_after_rcu(s);
765 percpu_ref_kill(&s->memcg_params.refcnt);
766 }
767
kmemcg_cache_deactivate(struct kmem_cache * s)768 static void kmemcg_cache_deactivate(struct kmem_cache *s)
769 {
770 if (WARN_ON_ONCE(is_root_cache(s)))
771 return;
772
773 __kmemcg_cache_deactivate(s);
774 s->flags |= SLAB_DEACTIVATED;
775
776 /*
777 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying
778 * flag and make sure that no new kmem_cache deactivation tasks
779 * are queued (see flush_memcg_workqueue() ).
780 */
781 spin_lock_irq(&memcg_kmem_wq_lock);
782 if (s->memcg_params.root_cache->memcg_params.dying)
783 goto unlock;
784
785 s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu;
786 call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn);
787 unlock:
788 spin_unlock_irq(&memcg_kmem_wq_lock);
789 }
790
memcg_deactivate_kmem_caches(struct mem_cgroup * memcg,struct mem_cgroup * parent)791 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg,
792 struct mem_cgroup *parent)
793 {
794 int idx;
795 struct memcg_cache_array *arr;
796 struct kmem_cache *s, *c;
797 unsigned int nr_reparented;
798
799 idx = memcg_cache_id(memcg);
800
801 get_online_cpus();
802 get_online_mems();
803
804 mutex_lock(&slab_mutex);
805 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
806 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
807 lockdep_is_held(&slab_mutex));
808 c = arr->entries[idx];
809 if (!c)
810 continue;
811
812 kmemcg_cache_deactivate(c);
813 arr->entries[idx] = NULL;
814 }
815 nr_reparented = 0;
816 list_for_each_entry(s, &memcg->kmem_caches,
817 memcg_params.kmem_caches_node) {
818 WRITE_ONCE(s->memcg_params.memcg, parent);
819 css_put(&memcg->css);
820 nr_reparented++;
821 }
822 if (nr_reparented) {
823 list_splice_init(&memcg->kmem_caches,
824 &parent->kmem_caches);
825 css_get_many(&parent->css, nr_reparented);
826 }
827 mutex_unlock(&slab_mutex);
828
829 put_online_mems();
830 put_online_cpus();
831 }
832
shutdown_memcg_caches(struct kmem_cache * s)833 static int shutdown_memcg_caches(struct kmem_cache *s)
834 {
835 struct memcg_cache_array *arr;
836 struct kmem_cache *c, *c2;
837 LIST_HEAD(busy);
838 int i;
839
840 BUG_ON(!is_root_cache(s));
841
842 /*
843 * First, shutdown active caches, i.e. caches that belong to online
844 * memory cgroups.
845 */
846 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
847 lockdep_is_held(&slab_mutex));
848 for_each_memcg_cache_index(i) {
849 c = arr->entries[i];
850 if (!c)
851 continue;
852 if (shutdown_cache(c))
853 /*
854 * The cache still has objects. Move it to a temporary
855 * list so as not to try to destroy it for a second
856 * time while iterating over inactive caches below.
857 */
858 list_move(&c->memcg_params.children_node, &busy);
859 else
860 /*
861 * The cache is empty and will be destroyed soon. Clear
862 * the pointer to it in the memcg_caches array so that
863 * it will never be accessed even if the root cache
864 * stays alive.
865 */
866 arr->entries[i] = NULL;
867 }
868
869 /*
870 * Second, shutdown all caches left from memory cgroups that are now
871 * offline.
872 */
873 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
874 memcg_params.children_node)
875 shutdown_cache(c);
876
877 list_splice(&busy, &s->memcg_params.children);
878
879 /*
880 * A cache being destroyed must be empty. In particular, this means
881 * that all per memcg caches attached to it must be empty too.
882 */
883 if (!list_empty(&s->memcg_params.children))
884 return -EBUSY;
885 return 0;
886 }
887
memcg_set_kmem_cache_dying(struct kmem_cache * s)888 static void memcg_set_kmem_cache_dying(struct kmem_cache *s)
889 {
890 spin_lock_irq(&memcg_kmem_wq_lock);
891 s->memcg_params.dying = true;
892 spin_unlock_irq(&memcg_kmem_wq_lock);
893 }
894
flush_memcg_workqueue(struct kmem_cache * s)895 static void flush_memcg_workqueue(struct kmem_cache *s)
896 {
897 /*
898 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
899 * sure all registered rcu callbacks have been invoked.
900 */
901 rcu_barrier();
902
903 /*
904 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
905 * deactivates the memcg kmem_caches through workqueue. Make sure all
906 * previous workitems on workqueue are processed.
907 */
908 if (likely(memcg_kmem_cache_wq))
909 flush_workqueue(memcg_kmem_cache_wq);
910
911 /*
912 * If we're racing with children kmem_cache deactivation, it might
913 * take another rcu grace period to complete their destruction.
914 * At this moment the corresponding percpu_ref_kill() call should be
915 * done, but it might take another rcu grace period to complete
916 * switching to the atomic mode.
917 * Please, note that we check without grabbing the slab_mutex. It's safe
918 * because at this moment the children list can't grow.
919 */
920 if (!list_empty(&s->memcg_params.children))
921 rcu_barrier();
922 }
923 #else
shutdown_memcg_caches(struct kmem_cache * s)924 static inline int shutdown_memcg_caches(struct kmem_cache *s)
925 {
926 return 0;
927 }
928 #endif /* CONFIG_MEMCG_KMEM */
929
slab_kmem_cache_release(struct kmem_cache * s)930 void slab_kmem_cache_release(struct kmem_cache *s)
931 {
932 __kmem_cache_release(s);
933 destroy_memcg_params(s);
934 kfree_const(s->name);
935 kmem_cache_free(kmem_cache, s);
936 }
937
kmem_cache_destroy(struct kmem_cache * s)938 void kmem_cache_destroy(struct kmem_cache *s)
939 {
940 int err;
941
942 if (unlikely(!s))
943 return;
944
945 get_online_cpus();
946 get_online_mems();
947
948 mutex_lock(&slab_mutex);
949
950 s->refcount--;
951 if (s->refcount)
952 goto out_unlock;
953
954 #ifdef CONFIG_MEMCG_KMEM
955 memcg_set_kmem_cache_dying(s);
956
957 mutex_unlock(&slab_mutex);
958
959 put_online_mems();
960 put_online_cpus();
961
962 flush_memcg_workqueue(s);
963
964 get_online_cpus();
965 get_online_mems();
966
967 mutex_lock(&slab_mutex);
968
969 /*
970 * Another thread referenced it again
971 */
972 if (READ_ONCE(s->refcount)) {
973 spin_lock_irq(&memcg_kmem_wq_lock);
974 s->memcg_params.dying = false;
975 spin_unlock_irq(&memcg_kmem_wq_lock);
976 goto out_unlock;
977 }
978 #endif
979
980 err = shutdown_memcg_caches(s);
981 if (!err)
982 err = shutdown_cache(s);
983
984 if (err) {
985 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
986 s->name);
987 dump_stack();
988 }
989 out_unlock:
990 mutex_unlock(&slab_mutex);
991
992 put_online_mems();
993 put_online_cpus();
994 }
995 EXPORT_SYMBOL(kmem_cache_destroy);
996
997 /**
998 * kmem_cache_shrink - Shrink a cache.
999 * @cachep: The cache to shrink.
1000 *
1001 * Releases as many slabs as possible for a cache.
1002 * To help debugging, a zero exit status indicates all slabs were released.
1003 *
1004 * Return: %0 if all slabs were released, non-zero otherwise
1005 */
kmem_cache_shrink(struct kmem_cache * cachep)1006 int kmem_cache_shrink(struct kmem_cache *cachep)
1007 {
1008 int ret;
1009
1010 get_online_cpus();
1011 get_online_mems();
1012 kasan_cache_shrink(cachep);
1013 ret = __kmem_cache_shrink(cachep);
1014 put_online_mems();
1015 put_online_cpus();
1016 return ret;
1017 }
1018 EXPORT_SYMBOL(kmem_cache_shrink);
1019
1020 /**
1021 * kmem_cache_shrink_all - shrink a cache and all memcg caches for root cache
1022 * @s: The cache pointer
1023 */
kmem_cache_shrink_all(struct kmem_cache * s)1024 void kmem_cache_shrink_all(struct kmem_cache *s)
1025 {
1026 struct kmem_cache *c;
1027
1028 if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || !is_root_cache(s)) {
1029 kmem_cache_shrink(s);
1030 return;
1031 }
1032
1033 get_online_cpus();
1034 get_online_mems();
1035 kasan_cache_shrink(s);
1036 __kmem_cache_shrink(s);
1037
1038 /*
1039 * We have to take the slab_mutex to protect from the memcg list
1040 * modification.
1041 */
1042 mutex_lock(&slab_mutex);
1043 for_each_memcg_cache(c, s) {
1044 /*
1045 * Don't need to shrink deactivated memcg caches.
1046 */
1047 if (s->flags & SLAB_DEACTIVATED)
1048 continue;
1049 kasan_cache_shrink(c);
1050 __kmem_cache_shrink(c);
1051 }
1052 mutex_unlock(&slab_mutex);
1053 put_online_mems();
1054 put_online_cpus();
1055 }
1056
slab_is_available(void)1057 bool slab_is_available(void)
1058 {
1059 return slab_state >= UP;
1060 }
1061
1062 #ifndef CONFIG_SLOB
1063 /* Create a cache during boot when no slab services are available yet */
create_boot_cache(struct kmem_cache * s,const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)1064 void __init create_boot_cache(struct kmem_cache *s, const char *name,
1065 unsigned int size, slab_flags_t flags,
1066 unsigned int useroffset, unsigned int usersize)
1067 {
1068 int err;
1069 unsigned int align = ARCH_KMALLOC_MINALIGN;
1070
1071 s->name = name;
1072 s->size = s->object_size = size;
1073
1074 /*
1075 * For power of two sizes, guarantee natural alignment for kmalloc
1076 * caches, regardless of SL*B debugging options.
1077 */
1078 if (is_power_of_2(size))
1079 align = max(align, size);
1080 s->align = calculate_alignment(flags, align, size);
1081
1082 s->useroffset = useroffset;
1083 s->usersize = usersize;
1084
1085 slab_init_memcg_params(s);
1086
1087 err = __kmem_cache_create(s, flags);
1088
1089 if (err)
1090 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
1091 name, size, err);
1092
1093 s->refcount = -1; /* Exempt from merging for now */
1094 }
1095
create_kmalloc_cache(const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)1096 struct kmem_cache *__init create_kmalloc_cache(const char *name,
1097 unsigned int size, slab_flags_t flags,
1098 unsigned int useroffset, unsigned int usersize)
1099 {
1100 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1101
1102 if (!s)
1103 panic("Out of memory when creating slab %s\n", name);
1104
1105 create_boot_cache(s, name, size, flags, useroffset, usersize);
1106 list_add(&s->list, &slab_caches);
1107 memcg_link_cache(s, NULL);
1108 s->refcount = 1;
1109 return s;
1110 }
1111
1112 struct kmem_cache *
1113 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
1114 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
1115 EXPORT_SYMBOL(kmalloc_caches);
1116
1117 /*
1118 * Conversion table for small slabs sizes / 8 to the index in the
1119 * kmalloc array. This is necessary for slabs < 192 since we have non power
1120 * of two cache sizes there. The size of larger slabs can be determined using
1121 * fls.
1122 */
1123 static u8 size_index[24] __ro_after_init = {
1124 3, /* 8 */
1125 4, /* 16 */
1126 5, /* 24 */
1127 5, /* 32 */
1128 6, /* 40 */
1129 6, /* 48 */
1130 6, /* 56 */
1131 6, /* 64 */
1132 1, /* 72 */
1133 1, /* 80 */
1134 1, /* 88 */
1135 1, /* 96 */
1136 7, /* 104 */
1137 7, /* 112 */
1138 7, /* 120 */
1139 7, /* 128 */
1140 2, /* 136 */
1141 2, /* 144 */
1142 2, /* 152 */
1143 2, /* 160 */
1144 2, /* 168 */
1145 2, /* 176 */
1146 2, /* 184 */
1147 2 /* 192 */
1148 };
1149
size_index_elem(unsigned int bytes)1150 static inline unsigned int size_index_elem(unsigned int bytes)
1151 {
1152 return (bytes - 1) / 8;
1153 }
1154
1155 /*
1156 * Find the kmem_cache structure that serves a given size of
1157 * allocation
1158 */
kmalloc_slab(size_t size,gfp_t flags)1159 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
1160 {
1161 unsigned int index;
1162
1163 if (size <= 192) {
1164 if (!size)
1165 return ZERO_SIZE_PTR;
1166
1167 index = size_index[size_index_elem(size)];
1168 } else {
1169 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
1170 return NULL;
1171 index = fls(size - 1);
1172 }
1173
1174 return kmalloc_caches[kmalloc_type(flags)][index];
1175 }
1176
1177 /*
1178 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1179 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1180 * kmalloc-67108864.
1181 */
1182 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1183 {NULL, 0}, {"kmalloc-96", 96},
1184 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1185 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1186 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1187 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1188 {"kmalloc-1k", 1024}, {"kmalloc-2k", 2048},
1189 {"kmalloc-4k", 4096}, {"kmalloc-8k", 8192},
1190 {"kmalloc-16k", 16384}, {"kmalloc-32k", 32768},
1191 {"kmalloc-64k", 65536}, {"kmalloc-128k", 131072},
1192 {"kmalloc-256k", 262144}, {"kmalloc-512k", 524288},
1193 {"kmalloc-1M", 1048576}, {"kmalloc-2M", 2097152},
1194 {"kmalloc-4M", 4194304}, {"kmalloc-8M", 8388608},
1195 {"kmalloc-16M", 16777216}, {"kmalloc-32M", 33554432},
1196 {"kmalloc-64M", 67108864}
1197 };
1198
1199 /*
1200 * Patch up the size_index table if we have strange large alignment
1201 * requirements for the kmalloc array. This is only the case for
1202 * MIPS it seems. The standard arches will not generate any code here.
1203 *
1204 * Largest permitted alignment is 256 bytes due to the way we
1205 * handle the index determination for the smaller caches.
1206 *
1207 * Make sure that nothing crazy happens if someone starts tinkering
1208 * around with ARCH_KMALLOC_MINALIGN
1209 */
setup_kmalloc_cache_index_table(void)1210 void __init setup_kmalloc_cache_index_table(void)
1211 {
1212 unsigned int i;
1213
1214 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1215 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1216
1217 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1218 unsigned int elem = size_index_elem(i);
1219
1220 if (elem >= ARRAY_SIZE(size_index))
1221 break;
1222 size_index[elem] = KMALLOC_SHIFT_LOW;
1223 }
1224
1225 if (KMALLOC_MIN_SIZE >= 64) {
1226 /*
1227 * The 96 byte size cache is not used if the alignment
1228 * is 64 byte.
1229 */
1230 for (i = 64 + 8; i <= 96; i += 8)
1231 size_index[size_index_elem(i)] = 7;
1232
1233 }
1234
1235 if (KMALLOC_MIN_SIZE >= 128) {
1236 /*
1237 * The 192 byte sized cache is not used if the alignment
1238 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1239 * instead.
1240 */
1241 for (i = 128 + 8; i <= 192; i += 8)
1242 size_index[size_index_elem(i)] = 8;
1243 }
1244 }
1245
1246 static const char *
kmalloc_cache_name(const char * prefix,unsigned int size)1247 kmalloc_cache_name(const char *prefix, unsigned int size)
1248 {
1249
1250 static const char units[3] = "\0kM";
1251 int idx = 0;
1252
1253 while (size >= 1024 && (size % 1024 == 0)) {
1254 size /= 1024;
1255 idx++;
1256 }
1257
1258 return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]);
1259 }
1260
1261 static void __init
new_kmalloc_cache(int idx,int type,slab_flags_t flags)1262 new_kmalloc_cache(int idx, int type, slab_flags_t flags)
1263 {
1264 const char *name;
1265
1266 if (type == KMALLOC_RECLAIM) {
1267 flags |= SLAB_RECLAIM_ACCOUNT;
1268 name = kmalloc_cache_name("kmalloc-rcl",
1269 kmalloc_info[idx].size);
1270 BUG_ON(!name);
1271 } else {
1272 name = kmalloc_info[idx].name;
1273 }
1274
1275 kmalloc_caches[type][idx] = create_kmalloc_cache(name,
1276 kmalloc_info[idx].size, flags, 0,
1277 kmalloc_info[idx].size);
1278 }
1279
1280 /*
1281 * Create the kmalloc array. Some of the regular kmalloc arrays
1282 * may already have been created because they were needed to
1283 * enable allocations for slab creation.
1284 */
create_kmalloc_caches(slab_flags_t flags)1285 void __init create_kmalloc_caches(slab_flags_t flags)
1286 {
1287 int i, type;
1288
1289 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
1290 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1291 if (!kmalloc_caches[type][i])
1292 new_kmalloc_cache(i, type, flags);
1293
1294 /*
1295 * Caches that are not of the two-to-the-power-of size.
1296 * These have to be created immediately after the
1297 * earlier power of two caches
1298 */
1299 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
1300 !kmalloc_caches[type][1])
1301 new_kmalloc_cache(1, type, flags);
1302 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
1303 !kmalloc_caches[type][2])
1304 new_kmalloc_cache(2, type, flags);
1305 }
1306 }
1307
1308 /* Kmalloc array is now usable */
1309 slab_state = UP;
1310
1311 #ifdef CONFIG_ZONE_DMA
1312 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1313 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
1314
1315 if (s) {
1316 unsigned int size = kmalloc_size(i);
1317 const char *n = kmalloc_cache_name("dma-kmalloc", size);
1318
1319 BUG_ON(!n);
1320 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
1321 n, size, SLAB_CACHE_DMA | flags, 0, 0);
1322 }
1323 }
1324 #endif
1325 }
1326 #endif /* !CONFIG_SLOB */
1327
1328 /*
1329 * To avoid unnecessary overhead, we pass through large allocation requests
1330 * directly to the page allocator. We use __GFP_COMP, because we will need to
1331 * know the allocation order to free the pages properly in kfree.
1332 */
kmalloc_order(size_t size,gfp_t flags,unsigned int order)1333 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1334 {
1335 void *ret = NULL;
1336 struct page *page;
1337
1338 flags |= __GFP_COMP;
1339 page = alloc_pages(flags, order);
1340 if (likely(page)) {
1341 ret = page_address(page);
1342 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
1343 1 << order);
1344 }
1345 ret = kasan_kmalloc_large(ret, size, flags);
1346 /* As ret might get tagged, call kmemleak hook after KASAN. */
1347 kmemleak_alloc(ret, size, 1, flags);
1348 return ret;
1349 }
1350 EXPORT_SYMBOL(kmalloc_order);
1351
1352 #ifdef CONFIG_TRACING
kmalloc_order_trace(size_t size,gfp_t flags,unsigned int order)1353 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1354 {
1355 void *ret = kmalloc_order(size, flags, order);
1356 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1357 return ret;
1358 }
1359 EXPORT_SYMBOL(kmalloc_order_trace);
1360 #endif
1361
1362 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1363 /* Randomize a generic freelist */
freelist_randomize(struct rnd_state * state,unsigned int * list,unsigned int count)1364 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1365 unsigned int count)
1366 {
1367 unsigned int rand;
1368 unsigned int i;
1369
1370 for (i = 0; i < count; i++)
1371 list[i] = i;
1372
1373 /* Fisher-Yates shuffle */
1374 for (i = count - 1; i > 0; i--) {
1375 rand = prandom_u32_state(state);
1376 rand %= (i + 1);
1377 swap(list[i], list[rand]);
1378 }
1379 }
1380
1381 /* Create a random sequence per cache */
cache_random_seq_create(struct kmem_cache * cachep,unsigned int count,gfp_t gfp)1382 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1383 gfp_t gfp)
1384 {
1385 struct rnd_state state;
1386
1387 if (count < 2 || cachep->random_seq)
1388 return 0;
1389
1390 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1391 if (!cachep->random_seq)
1392 return -ENOMEM;
1393
1394 /* Get best entropy at this stage of boot */
1395 prandom_seed_state(&state, get_random_long());
1396
1397 freelist_randomize(&state, cachep->random_seq, count);
1398 return 0;
1399 }
1400
1401 /* Destroy the per-cache random freelist sequence */
cache_random_seq_destroy(struct kmem_cache * cachep)1402 void cache_random_seq_destroy(struct kmem_cache *cachep)
1403 {
1404 kfree(cachep->random_seq);
1405 cachep->random_seq = NULL;
1406 }
1407 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1408
1409 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1410 #ifdef CONFIG_SLAB
1411 #define SLABINFO_RIGHTS (0600)
1412 #else
1413 #define SLABINFO_RIGHTS (0400)
1414 #endif
1415
print_slabinfo_header(struct seq_file * m)1416 static void print_slabinfo_header(struct seq_file *m)
1417 {
1418 /*
1419 * Output format version, so at least we can change it
1420 * without _too_ many complaints.
1421 */
1422 #ifdef CONFIG_DEBUG_SLAB
1423 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1424 #else
1425 seq_puts(m, "slabinfo - version: 2.1\n");
1426 #endif
1427 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1428 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1429 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1430 #ifdef CONFIG_DEBUG_SLAB
1431 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1432 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1433 #endif
1434 seq_putc(m, '\n');
1435 }
1436
slab_start(struct seq_file * m,loff_t * pos)1437 void *slab_start(struct seq_file *m, loff_t *pos)
1438 {
1439 mutex_lock(&slab_mutex);
1440 return seq_list_start(&slab_root_caches, *pos);
1441 }
1442
slab_next(struct seq_file * m,void * p,loff_t * pos)1443 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1444 {
1445 return seq_list_next(p, &slab_root_caches, pos);
1446 }
1447
slab_stop(struct seq_file * m,void * p)1448 void slab_stop(struct seq_file *m, void *p)
1449 {
1450 mutex_unlock(&slab_mutex);
1451 }
1452
1453 static void
memcg_accumulate_slabinfo(struct kmem_cache * s,struct slabinfo * info)1454 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1455 {
1456 struct kmem_cache *c;
1457 struct slabinfo sinfo;
1458
1459 if (!is_root_cache(s))
1460 return;
1461
1462 for_each_memcg_cache(c, s) {
1463 memset(&sinfo, 0, sizeof(sinfo));
1464 get_slabinfo(c, &sinfo);
1465
1466 info->active_slabs += sinfo.active_slabs;
1467 info->num_slabs += sinfo.num_slabs;
1468 info->shared_avail += sinfo.shared_avail;
1469 info->active_objs += sinfo.active_objs;
1470 info->num_objs += sinfo.num_objs;
1471 }
1472 }
1473
cache_show(struct kmem_cache * s,struct seq_file * m)1474 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1475 {
1476 struct slabinfo sinfo;
1477
1478 memset(&sinfo, 0, sizeof(sinfo));
1479 get_slabinfo(s, &sinfo);
1480
1481 memcg_accumulate_slabinfo(s, &sinfo);
1482
1483 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1484 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1485 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1486
1487 seq_printf(m, " : tunables %4u %4u %4u",
1488 sinfo.limit, sinfo.batchcount, sinfo.shared);
1489 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1490 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1491 slabinfo_show_stats(m, s);
1492 seq_putc(m, '\n');
1493 }
1494
slab_show(struct seq_file * m,void * p)1495 static int slab_show(struct seq_file *m, void *p)
1496 {
1497 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1498
1499 if (p == slab_root_caches.next)
1500 print_slabinfo_header(m);
1501 cache_show(s, m);
1502 return 0;
1503 }
1504
dump_unreclaimable_slab(void)1505 void dump_unreclaimable_slab(void)
1506 {
1507 struct kmem_cache *s, *s2;
1508 struct slabinfo sinfo;
1509
1510 /*
1511 * Here acquiring slab_mutex is risky since we don't prefer to get
1512 * sleep in oom path. But, without mutex hold, it may introduce a
1513 * risk of crash.
1514 * Use mutex_trylock to protect the list traverse, dump nothing
1515 * without acquiring the mutex.
1516 */
1517 if (!mutex_trylock(&slab_mutex)) {
1518 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1519 return;
1520 }
1521
1522 pr_info("Unreclaimable slab info:\n");
1523 pr_info("Name Used Total\n");
1524
1525 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1526 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1527 continue;
1528
1529 get_slabinfo(s, &sinfo);
1530
1531 if (sinfo.num_objs > 0)
1532 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1533 (sinfo.active_objs * s->size) / 1024,
1534 (sinfo.num_objs * s->size) / 1024);
1535 }
1536 mutex_unlock(&slab_mutex);
1537 }
1538
1539 #if defined(CONFIG_MEMCG)
memcg_slab_start(struct seq_file * m,loff_t * pos)1540 void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1541 {
1542 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1543
1544 mutex_lock(&slab_mutex);
1545 return seq_list_start(&memcg->kmem_caches, *pos);
1546 }
1547
memcg_slab_next(struct seq_file * m,void * p,loff_t * pos)1548 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1549 {
1550 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1551
1552 return seq_list_next(p, &memcg->kmem_caches, pos);
1553 }
1554
memcg_slab_stop(struct seq_file * m,void * p)1555 void memcg_slab_stop(struct seq_file *m, void *p)
1556 {
1557 mutex_unlock(&slab_mutex);
1558 }
1559
memcg_slab_show(struct seq_file * m,void * p)1560 int memcg_slab_show(struct seq_file *m, void *p)
1561 {
1562 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1563 memcg_params.kmem_caches_node);
1564 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1565
1566 if (p == memcg->kmem_caches.next)
1567 print_slabinfo_header(m);
1568 cache_show(s, m);
1569 return 0;
1570 }
1571 #endif
1572
1573 /*
1574 * slabinfo_op - iterator that generates /proc/slabinfo
1575 *
1576 * Output layout:
1577 * cache-name
1578 * num-active-objs
1579 * total-objs
1580 * object size
1581 * num-active-slabs
1582 * total-slabs
1583 * num-pages-per-slab
1584 * + further values on SMP and with statistics enabled
1585 */
1586 static const struct seq_operations slabinfo_op = {
1587 .start = slab_start,
1588 .next = slab_next,
1589 .stop = slab_stop,
1590 .show = slab_show,
1591 };
1592
slabinfo_open(struct inode * inode,struct file * file)1593 static int slabinfo_open(struct inode *inode, struct file *file)
1594 {
1595 return seq_open(file, &slabinfo_op);
1596 }
1597
1598 static const struct file_operations proc_slabinfo_operations = {
1599 .open = slabinfo_open,
1600 .read = seq_read,
1601 .write = slabinfo_write,
1602 .llseek = seq_lseek,
1603 .release = seq_release,
1604 };
1605
slab_proc_init(void)1606 static int __init slab_proc_init(void)
1607 {
1608 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1609 &proc_slabinfo_operations);
1610 return 0;
1611 }
1612 module_init(slab_proc_init);
1613
1614 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM)
1615 /*
1616 * Display information about kmem caches that have child memcg caches.
1617 */
memcg_slabinfo_show(struct seq_file * m,void * unused)1618 static int memcg_slabinfo_show(struct seq_file *m, void *unused)
1619 {
1620 struct kmem_cache *s, *c;
1621 struct slabinfo sinfo;
1622
1623 mutex_lock(&slab_mutex);
1624 seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>");
1625 seq_puts(m, " <active_slabs> <num_slabs>\n");
1626 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
1627 /*
1628 * Skip kmem caches that don't have any memcg children.
1629 */
1630 if (list_empty(&s->memcg_params.children))
1631 continue;
1632
1633 memset(&sinfo, 0, sizeof(sinfo));
1634 get_slabinfo(s, &sinfo);
1635 seq_printf(m, "%-17s root %6lu %6lu %6lu %6lu\n",
1636 cache_name(s), sinfo.active_objs, sinfo.num_objs,
1637 sinfo.active_slabs, sinfo.num_slabs);
1638
1639 for_each_memcg_cache(c, s) {
1640 struct cgroup_subsys_state *css;
1641 char *status = "";
1642
1643 css = &c->memcg_params.memcg->css;
1644 if (!(css->flags & CSS_ONLINE))
1645 status = ":dead";
1646 else if (c->flags & SLAB_DEACTIVATED)
1647 status = ":deact";
1648
1649 memset(&sinfo, 0, sizeof(sinfo));
1650 get_slabinfo(c, &sinfo);
1651 seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n",
1652 cache_name(c), css->id, status,
1653 sinfo.active_objs, sinfo.num_objs,
1654 sinfo.active_slabs, sinfo.num_slabs);
1655 }
1656 }
1657 mutex_unlock(&slab_mutex);
1658 return 0;
1659 }
1660 DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo);
1661
memcg_slabinfo_init(void)1662 static int __init memcg_slabinfo_init(void)
1663 {
1664 debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO,
1665 NULL, NULL, &memcg_slabinfo_fops);
1666 return 0;
1667 }
1668
1669 late_initcall(memcg_slabinfo_init);
1670 #endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */
1671 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1672
__do_krealloc(const void * p,size_t new_size,gfp_t flags)1673 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1674 gfp_t flags)
1675 {
1676 void *ret;
1677 size_t ks = 0;
1678
1679 if (p)
1680 ks = ksize(p);
1681
1682 if (ks >= new_size) {
1683 p = kasan_krealloc((void *)p, new_size, flags);
1684 return (void *)p;
1685 }
1686
1687 ret = kmalloc_track_caller(new_size, flags);
1688 if (ret && p)
1689 memcpy(ret, p, ks);
1690
1691 return ret;
1692 }
1693
1694 /**
1695 * __krealloc - like krealloc() but don't free @p.
1696 * @p: object to reallocate memory for.
1697 * @new_size: how many bytes of memory are required.
1698 * @flags: the type of memory to allocate.
1699 *
1700 * This function is like krealloc() except it never frees the originally
1701 * allocated buffer. Use this if you don't want to free the buffer immediately
1702 * like, for example, with RCU.
1703 *
1704 * Return: pointer to the allocated memory or %NULL in case of error
1705 */
__krealloc(const void * p,size_t new_size,gfp_t flags)1706 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1707 {
1708 if (unlikely(!new_size))
1709 return ZERO_SIZE_PTR;
1710
1711 return __do_krealloc(p, new_size, flags);
1712
1713 }
1714 EXPORT_SYMBOL(__krealloc);
1715
1716 /**
1717 * krealloc - reallocate memory. The contents will remain unchanged.
1718 * @p: object to reallocate memory for.
1719 * @new_size: how many bytes of memory are required.
1720 * @flags: the type of memory to allocate.
1721 *
1722 * The contents of the object pointed to are preserved up to the
1723 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1724 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1725 * %NULL pointer, the object pointed to is freed.
1726 *
1727 * Return: pointer to the allocated memory or %NULL in case of error
1728 */
krealloc(const void * p,size_t new_size,gfp_t flags)1729 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1730 {
1731 void *ret;
1732
1733 if (unlikely(!new_size)) {
1734 kfree(p);
1735 return ZERO_SIZE_PTR;
1736 }
1737
1738 ret = __do_krealloc(p, new_size, flags);
1739 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1740 kfree(p);
1741
1742 return ret;
1743 }
1744 EXPORT_SYMBOL(krealloc);
1745
1746 /**
1747 * kzfree - like kfree but zero memory
1748 * @p: object to free memory of
1749 *
1750 * The memory of the object @p points to is zeroed before freed.
1751 * If @p is %NULL, kzfree() does nothing.
1752 *
1753 * Note: this function zeroes the whole allocated buffer which can be a good
1754 * deal bigger than the requested buffer size passed to kmalloc(). So be
1755 * careful when using this function in performance sensitive code.
1756 */
kzfree(const void * p)1757 void kzfree(const void *p)
1758 {
1759 size_t ks;
1760 void *mem = (void *)p;
1761
1762 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1763 return;
1764 ks = ksize(mem);
1765 memzero_explicit(mem, ks);
1766 kfree(mem);
1767 }
1768 EXPORT_SYMBOL(kzfree);
1769
1770 /**
1771 * ksize - get the actual amount of memory allocated for a given object
1772 * @objp: Pointer to the object
1773 *
1774 * kmalloc may internally round up allocations and return more memory
1775 * than requested. ksize() can be used to determine the actual amount of
1776 * memory allocated. The caller may use this additional memory, even though
1777 * a smaller amount of memory was initially specified with the kmalloc call.
1778 * The caller must guarantee that objp points to a valid object previously
1779 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1780 * must not be freed during the duration of the call.
1781 *
1782 * Return: size of the actual memory used by @objp in bytes
1783 */
ksize(const void * objp)1784 size_t ksize(const void *objp)
1785 {
1786 size_t size;
1787
1788 if (WARN_ON_ONCE(!objp))
1789 return 0;
1790 /*
1791 * We need to check that the pointed to object is valid, and only then
1792 * unpoison the shadow memory below. We use __kasan_check_read(), to
1793 * generate a more useful report at the time ksize() is called (rather
1794 * than later where behaviour is undefined due to potential
1795 * use-after-free or double-free).
1796 *
1797 * If the pointed to memory is invalid we return 0, to avoid users of
1798 * ksize() writing to and potentially corrupting the memory region.
1799 *
1800 * We want to perform the check before __ksize(), to avoid potentially
1801 * crashing in __ksize() due to accessing invalid metadata.
1802 */
1803 if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1))
1804 return 0;
1805
1806 size = __ksize(objp);
1807 /*
1808 * We assume that ksize callers could use whole allocated area,
1809 * so we need to unpoison this area.
1810 */
1811 kasan_unpoison_shadow(objp, size);
1812 return size;
1813 }
1814 EXPORT_SYMBOL(ksize);
1815
1816 /* Tracepoints definitions. */
1817 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1818 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1819 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1820 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1821 EXPORT_TRACEPOINT_SYMBOL(kfree);
1822 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1823
should_failslab(struct kmem_cache * s,gfp_t gfpflags)1824 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1825 {
1826 if (__should_failslab(s, gfpflags))
1827 return -ENOMEM;
1828 return 0;
1829 }
1830 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1831