1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2017, Microsoft Corporation.
4 *
5 * Author(s): Long Li <longli@microsoft.com>
6 */
7 #include <linux/module.h>
8 #include <linux/highmem.h>
9 #include "smbdirect.h"
10 #include "cifs_debug.h"
11 #include "cifsproto.h"
12 #include "smb2proto.h"
13
14 static struct smbd_response *get_empty_queue_buffer(
15 struct smbd_connection *info);
16 static struct smbd_response *get_receive_buffer(
17 struct smbd_connection *info);
18 static void put_receive_buffer(
19 struct smbd_connection *info,
20 struct smbd_response *response);
21 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
22 static void destroy_receive_buffers(struct smbd_connection *info);
23
24 static void put_empty_packet(
25 struct smbd_connection *info, struct smbd_response *response);
26 static void enqueue_reassembly(
27 struct smbd_connection *info,
28 struct smbd_response *response, int data_length);
29 static struct smbd_response *_get_first_reassembly(
30 struct smbd_connection *info);
31
32 static int smbd_post_recv(
33 struct smbd_connection *info,
34 struct smbd_response *response);
35
36 static int smbd_post_send_empty(struct smbd_connection *info);
37 static int smbd_post_send_data(
38 struct smbd_connection *info,
39 struct kvec *iov, int n_vec, int remaining_data_length);
40 static int smbd_post_send_page(struct smbd_connection *info,
41 struct page *page, unsigned long offset,
42 size_t size, int remaining_data_length);
43
44 static void destroy_mr_list(struct smbd_connection *info);
45 static int allocate_mr_list(struct smbd_connection *info);
46
47 /* SMBD version number */
48 #define SMBD_V1 0x0100
49
50 /* Port numbers for SMBD transport */
51 #define SMB_PORT 445
52 #define SMBD_PORT 5445
53
54 /* Address lookup and resolve timeout in ms */
55 #define RDMA_RESOLVE_TIMEOUT 5000
56
57 /* SMBD negotiation timeout in seconds */
58 #define SMBD_NEGOTIATE_TIMEOUT 120
59
60 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
61 #define SMBD_MIN_RECEIVE_SIZE 128
62 #define SMBD_MIN_FRAGMENTED_SIZE 131072
63
64 /*
65 * Default maximum number of RDMA read/write outstanding on this connection
66 * This value is possibly decreased during QP creation on hardware limit
67 */
68 #define SMBD_CM_RESPONDER_RESOURCES 32
69
70 /* Maximum number of retries on data transfer operations */
71 #define SMBD_CM_RETRY 6
72 /* No need to retry on Receiver Not Ready since SMBD manages credits */
73 #define SMBD_CM_RNR_RETRY 0
74
75 /*
76 * User configurable initial values per SMBD transport connection
77 * as defined in [MS-SMBD] 3.1.1.1
78 * Those may change after a SMBD negotiation
79 */
80 /* The local peer's maximum number of credits to grant to the peer */
81 int smbd_receive_credit_max = 255;
82
83 /* The remote peer's credit request of local peer */
84 int smbd_send_credit_target = 255;
85
86 /* The maximum single message size can be sent to remote peer */
87 int smbd_max_send_size = 1364;
88
89 /* The maximum fragmented upper-layer payload receive size supported */
90 int smbd_max_fragmented_recv_size = 1024 * 1024;
91
92 /* The maximum single-message size which can be received */
93 int smbd_max_receive_size = 8192;
94
95 /* The timeout to initiate send of a keepalive message on idle */
96 int smbd_keep_alive_interval = 120;
97
98 /*
99 * User configurable initial values for RDMA transport
100 * The actual values used may be lower and are limited to hardware capabilities
101 */
102 /* Default maximum number of SGEs in a RDMA write/read */
103 int smbd_max_frmr_depth = 2048;
104
105 /* If payload is less than this byte, use RDMA send/recv not read/write */
106 int rdma_readwrite_threshold = 4096;
107
108 /* Transport logging functions
109 * Logging are defined as classes. They can be OR'ed to define the actual
110 * logging level via module parameter smbd_logging_class
111 * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
112 * log_rdma_event()
113 */
114 #define LOG_OUTGOING 0x1
115 #define LOG_INCOMING 0x2
116 #define LOG_READ 0x4
117 #define LOG_WRITE 0x8
118 #define LOG_RDMA_SEND 0x10
119 #define LOG_RDMA_RECV 0x20
120 #define LOG_KEEP_ALIVE 0x40
121 #define LOG_RDMA_EVENT 0x80
122 #define LOG_RDMA_MR 0x100
123 static unsigned int smbd_logging_class;
124 module_param(smbd_logging_class, uint, 0644);
125 MODULE_PARM_DESC(smbd_logging_class,
126 "Logging class for SMBD transport 0x0 to 0x100");
127
128 #define ERR 0x0
129 #define INFO 0x1
130 static unsigned int smbd_logging_level = ERR;
131 module_param(smbd_logging_level, uint, 0644);
132 MODULE_PARM_DESC(smbd_logging_level,
133 "Logging level for SMBD transport, 0 (default): error, 1: info");
134
135 #define log_rdma(level, class, fmt, args...) \
136 do { \
137 if (level <= smbd_logging_level || class & smbd_logging_class) \
138 cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
139 } while (0)
140
141 #define log_outgoing(level, fmt, args...) \
142 log_rdma(level, LOG_OUTGOING, fmt, ##args)
143 #define log_incoming(level, fmt, args...) \
144 log_rdma(level, LOG_INCOMING, fmt, ##args)
145 #define log_read(level, fmt, args...) log_rdma(level, LOG_READ, fmt, ##args)
146 #define log_write(level, fmt, args...) log_rdma(level, LOG_WRITE, fmt, ##args)
147 #define log_rdma_send(level, fmt, args...) \
148 log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
149 #define log_rdma_recv(level, fmt, args...) \
150 log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
151 #define log_keep_alive(level, fmt, args...) \
152 log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
153 #define log_rdma_event(level, fmt, args...) \
154 log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
155 #define log_rdma_mr(level, fmt, args...) \
156 log_rdma(level, LOG_RDMA_MR, fmt, ##args)
157
smbd_disconnect_rdma_work(struct work_struct * work)158 static void smbd_disconnect_rdma_work(struct work_struct *work)
159 {
160 struct smbd_connection *info =
161 container_of(work, struct smbd_connection, disconnect_work);
162
163 if (info->transport_status == SMBD_CONNECTED) {
164 info->transport_status = SMBD_DISCONNECTING;
165 rdma_disconnect(info->id);
166 }
167 }
168
smbd_disconnect_rdma_connection(struct smbd_connection * info)169 static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
170 {
171 queue_work(info->workqueue, &info->disconnect_work);
172 }
173
174 /* Upcall from RDMA CM */
smbd_conn_upcall(struct rdma_cm_id * id,struct rdma_cm_event * event)175 static int smbd_conn_upcall(
176 struct rdma_cm_id *id, struct rdma_cm_event *event)
177 {
178 struct smbd_connection *info = id->context;
179
180 log_rdma_event(INFO, "event=%d status=%d\n",
181 event->event, event->status);
182
183 switch (event->event) {
184 case RDMA_CM_EVENT_ADDR_RESOLVED:
185 case RDMA_CM_EVENT_ROUTE_RESOLVED:
186 info->ri_rc = 0;
187 complete(&info->ri_done);
188 break;
189
190 case RDMA_CM_EVENT_ADDR_ERROR:
191 info->ri_rc = -EHOSTUNREACH;
192 complete(&info->ri_done);
193 break;
194
195 case RDMA_CM_EVENT_ROUTE_ERROR:
196 info->ri_rc = -ENETUNREACH;
197 complete(&info->ri_done);
198 break;
199
200 case RDMA_CM_EVENT_ESTABLISHED:
201 log_rdma_event(INFO, "connected event=%d\n", event->event);
202 info->transport_status = SMBD_CONNECTED;
203 wake_up_interruptible(&info->conn_wait);
204 break;
205
206 case RDMA_CM_EVENT_CONNECT_ERROR:
207 case RDMA_CM_EVENT_UNREACHABLE:
208 case RDMA_CM_EVENT_REJECTED:
209 log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
210 info->transport_status = SMBD_DISCONNECTED;
211 wake_up_interruptible(&info->conn_wait);
212 break;
213
214 case RDMA_CM_EVENT_DEVICE_REMOVAL:
215 case RDMA_CM_EVENT_DISCONNECTED:
216 /* This happenes when we fail the negotiation */
217 if (info->transport_status == SMBD_NEGOTIATE_FAILED) {
218 info->transport_status = SMBD_DISCONNECTED;
219 wake_up(&info->conn_wait);
220 break;
221 }
222
223 info->transport_status = SMBD_DISCONNECTED;
224 wake_up_interruptible(&info->disconn_wait);
225 wake_up_interruptible(&info->wait_reassembly_queue);
226 wake_up_interruptible_all(&info->wait_send_queue);
227 break;
228
229 default:
230 break;
231 }
232
233 return 0;
234 }
235
236 /* Upcall from RDMA QP */
237 static void
smbd_qp_async_error_upcall(struct ib_event * event,void * context)238 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
239 {
240 struct smbd_connection *info = context;
241
242 log_rdma_event(ERR, "%s on device %s info %p\n",
243 ib_event_msg(event->event), event->device->name, info);
244
245 switch (event->event) {
246 case IB_EVENT_CQ_ERR:
247 case IB_EVENT_QP_FATAL:
248 smbd_disconnect_rdma_connection(info);
249
250 default:
251 break;
252 }
253 }
254
smbd_request_payload(struct smbd_request * request)255 static inline void *smbd_request_payload(struct smbd_request *request)
256 {
257 return (void *)request->packet;
258 }
259
smbd_response_payload(struct smbd_response * response)260 static inline void *smbd_response_payload(struct smbd_response *response)
261 {
262 return (void *)response->packet;
263 }
264
265 /* Called when a RDMA send is done */
send_done(struct ib_cq * cq,struct ib_wc * wc)266 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
267 {
268 int i;
269 struct smbd_request *request =
270 container_of(wc->wr_cqe, struct smbd_request, cqe);
271
272 log_rdma_send(INFO, "smbd_request %p completed wc->status=%d\n",
273 request, wc->status);
274
275 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
276 log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
277 wc->status, wc->opcode);
278 smbd_disconnect_rdma_connection(request->info);
279 }
280
281 for (i = 0; i < request->num_sge; i++)
282 ib_dma_unmap_single(request->info->id->device,
283 request->sge[i].addr,
284 request->sge[i].length,
285 DMA_TO_DEVICE);
286
287 if (request->has_payload) {
288 if (atomic_dec_and_test(&request->info->send_payload_pending))
289 wake_up(&request->info->wait_send_payload_pending);
290 } else {
291 if (atomic_dec_and_test(&request->info->send_pending))
292 wake_up(&request->info->wait_send_pending);
293 }
294
295 mempool_free(request, request->info->request_mempool);
296 }
297
dump_smbd_negotiate_resp(struct smbd_negotiate_resp * resp)298 static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp)
299 {
300 log_rdma_event(INFO, "resp message min_version %u max_version %u "
301 "negotiated_version %u credits_requested %u "
302 "credits_granted %u status %u max_readwrite_size %u "
303 "preferred_send_size %u max_receive_size %u "
304 "max_fragmented_size %u\n",
305 resp->min_version, resp->max_version, resp->negotiated_version,
306 resp->credits_requested, resp->credits_granted, resp->status,
307 resp->max_readwrite_size, resp->preferred_send_size,
308 resp->max_receive_size, resp->max_fragmented_size);
309 }
310
311 /*
312 * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
313 * response, packet_length: the negotiation response message
314 * return value: true if negotiation is a success, false if failed
315 */
process_negotiation_response(struct smbd_response * response,int packet_length)316 static bool process_negotiation_response(
317 struct smbd_response *response, int packet_length)
318 {
319 struct smbd_connection *info = response->info;
320 struct smbd_negotiate_resp *packet = smbd_response_payload(response);
321
322 if (packet_length < sizeof(struct smbd_negotiate_resp)) {
323 log_rdma_event(ERR,
324 "error: packet_length=%d\n", packet_length);
325 return false;
326 }
327
328 if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) {
329 log_rdma_event(ERR, "error: negotiated_version=%x\n",
330 le16_to_cpu(packet->negotiated_version));
331 return false;
332 }
333 info->protocol = le16_to_cpu(packet->negotiated_version);
334
335 if (packet->credits_requested == 0) {
336 log_rdma_event(ERR, "error: credits_requested==0\n");
337 return false;
338 }
339 info->receive_credit_target = le16_to_cpu(packet->credits_requested);
340
341 if (packet->credits_granted == 0) {
342 log_rdma_event(ERR, "error: credits_granted==0\n");
343 return false;
344 }
345 atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
346
347 atomic_set(&info->receive_credits, 0);
348
349 if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) {
350 log_rdma_event(ERR, "error: preferred_send_size=%d\n",
351 le32_to_cpu(packet->preferred_send_size));
352 return false;
353 }
354 info->max_receive_size = le32_to_cpu(packet->preferred_send_size);
355
356 if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
357 log_rdma_event(ERR, "error: max_receive_size=%d\n",
358 le32_to_cpu(packet->max_receive_size));
359 return false;
360 }
361 info->max_send_size = min_t(int, info->max_send_size,
362 le32_to_cpu(packet->max_receive_size));
363
364 if (le32_to_cpu(packet->max_fragmented_size) <
365 SMBD_MIN_FRAGMENTED_SIZE) {
366 log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
367 le32_to_cpu(packet->max_fragmented_size));
368 return false;
369 }
370 info->max_fragmented_send_size =
371 le32_to_cpu(packet->max_fragmented_size);
372 info->rdma_readwrite_threshold =
373 rdma_readwrite_threshold > info->max_fragmented_send_size ?
374 info->max_fragmented_send_size :
375 rdma_readwrite_threshold;
376
377
378 info->max_readwrite_size = min_t(u32,
379 le32_to_cpu(packet->max_readwrite_size),
380 info->max_frmr_depth * PAGE_SIZE);
381 info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE;
382
383 return true;
384 }
385
386 /*
387 * Check and schedule to send an immediate packet
388 * This is used to extend credtis to remote peer to keep the transport busy
389 */
check_and_send_immediate(struct smbd_connection * info)390 static void check_and_send_immediate(struct smbd_connection *info)
391 {
392 if (info->transport_status != SMBD_CONNECTED)
393 return;
394
395 info->send_immediate = true;
396
397 /*
398 * Promptly send a packet if our peer is running low on receive
399 * credits
400 */
401 if (atomic_read(&info->receive_credits) <
402 info->receive_credit_target - 1)
403 queue_delayed_work(
404 info->workqueue, &info->send_immediate_work, 0);
405 }
406
smbd_post_send_credits(struct work_struct * work)407 static void smbd_post_send_credits(struct work_struct *work)
408 {
409 int ret = 0;
410 int use_receive_queue = 1;
411 int rc;
412 struct smbd_response *response;
413 struct smbd_connection *info =
414 container_of(work, struct smbd_connection,
415 post_send_credits_work);
416
417 if (info->transport_status != SMBD_CONNECTED) {
418 wake_up(&info->wait_receive_queues);
419 return;
420 }
421
422 if (info->receive_credit_target >
423 atomic_read(&info->receive_credits)) {
424 while (true) {
425 if (use_receive_queue)
426 response = get_receive_buffer(info);
427 else
428 response = get_empty_queue_buffer(info);
429 if (!response) {
430 /* now switch to emtpy packet queue */
431 if (use_receive_queue) {
432 use_receive_queue = 0;
433 continue;
434 } else
435 break;
436 }
437
438 response->type = SMBD_TRANSFER_DATA;
439 response->first_segment = false;
440 rc = smbd_post_recv(info, response);
441 if (rc) {
442 log_rdma_recv(ERR,
443 "post_recv failed rc=%d\n", rc);
444 put_receive_buffer(info, response);
445 break;
446 }
447
448 ret++;
449 }
450 }
451
452 spin_lock(&info->lock_new_credits_offered);
453 info->new_credits_offered += ret;
454 spin_unlock(&info->lock_new_credits_offered);
455
456 atomic_add(ret, &info->receive_credits);
457
458 /* Check if we can post new receive and grant credits to peer */
459 check_and_send_immediate(info);
460 }
461
smbd_recv_done_work(struct work_struct * work)462 static void smbd_recv_done_work(struct work_struct *work)
463 {
464 struct smbd_connection *info =
465 container_of(work, struct smbd_connection, recv_done_work);
466
467 /*
468 * We may have new send credits granted from remote peer
469 * If any sender is blcoked on lack of credets, unblock it
470 */
471 if (atomic_read(&info->send_credits))
472 wake_up_interruptible(&info->wait_send_queue);
473
474 /*
475 * Check if we need to send something to remote peer to
476 * grant more credits or respond to KEEP_ALIVE packet
477 */
478 check_and_send_immediate(info);
479 }
480
481 /* Called from softirq, when recv is done */
recv_done(struct ib_cq * cq,struct ib_wc * wc)482 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
483 {
484 struct smbd_data_transfer *data_transfer;
485 struct smbd_response *response =
486 container_of(wc->wr_cqe, struct smbd_response, cqe);
487 struct smbd_connection *info = response->info;
488 int data_length = 0;
489
490 log_rdma_recv(INFO, "response=%p type=%d wc status=%d wc opcode %d "
491 "byte_len=%d pkey_index=%x\n",
492 response, response->type, wc->status, wc->opcode,
493 wc->byte_len, wc->pkey_index);
494
495 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
496 log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
497 wc->status, wc->opcode);
498 smbd_disconnect_rdma_connection(info);
499 goto error;
500 }
501
502 ib_dma_sync_single_for_cpu(
503 wc->qp->device,
504 response->sge.addr,
505 response->sge.length,
506 DMA_FROM_DEVICE);
507
508 switch (response->type) {
509 /* SMBD negotiation response */
510 case SMBD_NEGOTIATE_RESP:
511 dump_smbd_negotiate_resp(smbd_response_payload(response));
512 info->full_packet_received = true;
513 info->negotiate_done =
514 process_negotiation_response(response, wc->byte_len);
515 complete(&info->negotiate_completion);
516 break;
517
518 /* SMBD data transfer packet */
519 case SMBD_TRANSFER_DATA:
520 data_transfer = smbd_response_payload(response);
521 data_length = le32_to_cpu(data_transfer->data_length);
522
523 /*
524 * If this is a packet with data playload place the data in
525 * reassembly queue and wake up the reading thread
526 */
527 if (data_length) {
528 if (info->full_packet_received)
529 response->first_segment = true;
530
531 if (le32_to_cpu(data_transfer->remaining_data_length))
532 info->full_packet_received = false;
533 else
534 info->full_packet_received = true;
535
536 enqueue_reassembly(
537 info,
538 response,
539 data_length);
540 } else
541 put_empty_packet(info, response);
542
543 if (data_length)
544 wake_up_interruptible(&info->wait_reassembly_queue);
545
546 atomic_dec(&info->receive_credits);
547 info->receive_credit_target =
548 le16_to_cpu(data_transfer->credits_requested);
549 atomic_add(le16_to_cpu(data_transfer->credits_granted),
550 &info->send_credits);
551
552 log_incoming(INFO, "data flags %d data_offset %d "
553 "data_length %d remaining_data_length %d\n",
554 le16_to_cpu(data_transfer->flags),
555 le32_to_cpu(data_transfer->data_offset),
556 le32_to_cpu(data_transfer->data_length),
557 le32_to_cpu(data_transfer->remaining_data_length));
558
559 /* Send a KEEP_ALIVE response right away if requested */
560 info->keep_alive_requested = KEEP_ALIVE_NONE;
561 if (le16_to_cpu(data_transfer->flags) &
562 SMB_DIRECT_RESPONSE_REQUESTED) {
563 info->keep_alive_requested = KEEP_ALIVE_PENDING;
564 }
565
566 queue_work(info->workqueue, &info->recv_done_work);
567 return;
568
569 default:
570 log_rdma_recv(ERR,
571 "unexpected response type=%d\n", response->type);
572 }
573
574 error:
575 put_receive_buffer(info, response);
576 }
577
smbd_create_id(struct smbd_connection * info,struct sockaddr * dstaddr,int port)578 static struct rdma_cm_id *smbd_create_id(
579 struct smbd_connection *info,
580 struct sockaddr *dstaddr, int port)
581 {
582 struct rdma_cm_id *id;
583 int rc;
584 __be16 *sport;
585
586 id = rdma_create_id(&init_net, smbd_conn_upcall, info,
587 RDMA_PS_TCP, IB_QPT_RC);
588 if (IS_ERR(id)) {
589 rc = PTR_ERR(id);
590 log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
591 return id;
592 }
593
594 if (dstaddr->sa_family == AF_INET6)
595 sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
596 else
597 sport = &((struct sockaddr_in *)dstaddr)->sin_port;
598
599 *sport = htons(port);
600
601 init_completion(&info->ri_done);
602 info->ri_rc = -ETIMEDOUT;
603
604 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
605 RDMA_RESOLVE_TIMEOUT);
606 if (rc) {
607 log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
608 goto out;
609 }
610 rc = wait_for_completion_interruptible_timeout(
611 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
612 /* e.g. if interrupted returns -ERESTARTSYS */
613 if (rc < 0) {
614 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
615 goto out;
616 }
617 rc = info->ri_rc;
618 if (rc) {
619 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
620 goto out;
621 }
622
623 info->ri_rc = -ETIMEDOUT;
624 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
625 if (rc) {
626 log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
627 goto out;
628 }
629 rc = wait_for_completion_interruptible_timeout(
630 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
631 /* e.g. if interrupted returns -ERESTARTSYS */
632 if (rc < 0) {
633 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
634 goto out;
635 }
636 rc = info->ri_rc;
637 if (rc) {
638 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
639 goto out;
640 }
641
642 return id;
643
644 out:
645 rdma_destroy_id(id);
646 return ERR_PTR(rc);
647 }
648
649 /*
650 * Test if FRWR (Fast Registration Work Requests) is supported on the device
651 * This implementation requries FRWR on RDMA read/write
652 * return value: true if it is supported
653 */
frwr_is_supported(struct ib_device_attr * attrs)654 static bool frwr_is_supported(struct ib_device_attr *attrs)
655 {
656 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
657 return false;
658 if (attrs->max_fast_reg_page_list_len == 0)
659 return false;
660 return true;
661 }
662
smbd_ia_open(struct smbd_connection * info,struct sockaddr * dstaddr,int port)663 static int smbd_ia_open(
664 struct smbd_connection *info,
665 struct sockaddr *dstaddr, int port)
666 {
667 int rc;
668
669 info->id = smbd_create_id(info, dstaddr, port);
670 if (IS_ERR(info->id)) {
671 rc = PTR_ERR(info->id);
672 goto out1;
673 }
674
675 if (!frwr_is_supported(&info->id->device->attrs)) {
676 log_rdma_event(ERR,
677 "Fast Registration Work Requests "
678 "(FRWR) is not supported\n");
679 log_rdma_event(ERR,
680 "Device capability flags = %llx "
681 "max_fast_reg_page_list_len = %u\n",
682 info->id->device->attrs.device_cap_flags,
683 info->id->device->attrs.max_fast_reg_page_list_len);
684 rc = -EPROTONOSUPPORT;
685 goto out2;
686 }
687 info->max_frmr_depth = min_t(int,
688 smbd_max_frmr_depth,
689 info->id->device->attrs.max_fast_reg_page_list_len);
690 info->mr_type = IB_MR_TYPE_MEM_REG;
691 if (info->id->device->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG)
692 info->mr_type = IB_MR_TYPE_SG_GAPS;
693
694 info->pd = ib_alloc_pd(info->id->device, 0);
695 if (IS_ERR(info->pd)) {
696 rc = PTR_ERR(info->pd);
697 log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
698 goto out2;
699 }
700
701 return 0;
702
703 out2:
704 rdma_destroy_id(info->id);
705 info->id = NULL;
706
707 out1:
708 return rc;
709 }
710
711 /*
712 * Send a negotiation request message to the peer
713 * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
714 * After negotiation, the transport is connected and ready for
715 * carrying upper layer SMB payload
716 */
smbd_post_send_negotiate_req(struct smbd_connection * info)717 static int smbd_post_send_negotiate_req(struct smbd_connection *info)
718 {
719 struct ib_send_wr send_wr;
720 int rc = -ENOMEM;
721 struct smbd_request *request;
722 struct smbd_negotiate_req *packet;
723
724 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
725 if (!request)
726 return rc;
727
728 request->info = info;
729
730 packet = smbd_request_payload(request);
731 packet->min_version = cpu_to_le16(SMBD_V1);
732 packet->max_version = cpu_to_le16(SMBD_V1);
733 packet->reserved = 0;
734 packet->credits_requested = cpu_to_le16(info->send_credit_target);
735 packet->preferred_send_size = cpu_to_le32(info->max_send_size);
736 packet->max_receive_size = cpu_to_le32(info->max_receive_size);
737 packet->max_fragmented_size =
738 cpu_to_le32(info->max_fragmented_recv_size);
739
740 request->num_sge = 1;
741 request->sge[0].addr = ib_dma_map_single(
742 info->id->device, (void *)packet,
743 sizeof(*packet), DMA_TO_DEVICE);
744 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
745 rc = -EIO;
746 goto dma_mapping_failed;
747 }
748
749 request->sge[0].length = sizeof(*packet);
750 request->sge[0].lkey = info->pd->local_dma_lkey;
751
752 ib_dma_sync_single_for_device(
753 info->id->device, request->sge[0].addr,
754 request->sge[0].length, DMA_TO_DEVICE);
755
756 request->cqe.done = send_done;
757
758 send_wr.next = NULL;
759 send_wr.wr_cqe = &request->cqe;
760 send_wr.sg_list = request->sge;
761 send_wr.num_sge = request->num_sge;
762 send_wr.opcode = IB_WR_SEND;
763 send_wr.send_flags = IB_SEND_SIGNALED;
764
765 log_rdma_send(INFO, "sge addr=%llx length=%x lkey=%x\n",
766 request->sge[0].addr,
767 request->sge[0].length, request->sge[0].lkey);
768
769 request->has_payload = false;
770 atomic_inc(&info->send_pending);
771 rc = ib_post_send(info->id->qp, &send_wr, NULL);
772 if (!rc)
773 return 0;
774
775 /* if we reach here, post send failed */
776 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
777 atomic_dec(&info->send_pending);
778 ib_dma_unmap_single(info->id->device, request->sge[0].addr,
779 request->sge[0].length, DMA_TO_DEVICE);
780
781 smbd_disconnect_rdma_connection(info);
782
783 dma_mapping_failed:
784 mempool_free(request, info->request_mempool);
785 return rc;
786 }
787
788 /*
789 * Extend the credits to remote peer
790 * This implements [MS-SMBD] 3.1.5.9
791 * The idea is that we should extend credits to remote peer as quickly as
792 * it's allowed, to maintain data flow. We allocate as much receive
793 * buffer as possible, and extend the receive credits to remote peer
794 * return value: the new credtis being granted.
795 */
manage_credits_prior_sending(struct smbd_connection * info)796 static int manage_credits_prior_sending(struct smbd_connection *info)
797 {
798 int new_credits;
799
800 spin_lock(&info->lock_new_credits_offered);
801 new_credits = info->new_credits_offered;
802 info->new_credits_offered = 0;
803 spin_unlock(&info->lock_new_credits_offered);
804
805 return new_credits;
806 }
807
808 /*
809 * Check if we need to send a KEEP_ALIVE message
810 * The idle connection timer triggers a KEEP_ALIVE message when expires
811 * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send
812 * back a response.
813 * return value:
814 * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set
815 * 0: otherwise
816 */
manage_keep_alive_before_sending(struct smbd_connection * info)817 static int manage_keep_alive_before_sending(struct smbd_connection *info)
818 {
819 if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
820 info->keep_alive_requested = KEEP_ALIVE_SENT;
821 return 1;
822 }
823 return 0;
824 }
825
826 /*
827 * Build and prepare the SMBD packet header
828 * This function waits for avaialbe send credits and build a SMBD packet
829 * header. The caller then optional append payload to the packet after
830 * the header
831 * intput values
832 * size: the size of the payload
833 * remaining_data_length: remaining data to send if this is part of a
834 * fragmented packet
835 * output values
836 * request_out: the request allocated from this function
837 * return values: 0 on success, otherwise actual error code returned
838 */
smbd_create_header(struct smbd_connection * info,int size,int remaining_data_length,struct smbd_request ** request_out)839 static int smbd_create_header(struct smbd_connection *info,
840 int size, int remaining_data_length,
841 struct smbd_request **request_out)
842 {
843 struct smbd_request *request;
844 struct smbd_data_transfer *packet;
845 int header_length;
846 int rc;
847
848 /* Wait for send credits. A SMBD packet needs one credit */
849 rc = wait_event_interruptible(info->wait_send_queue,
850 atomic_read(&info->send_credits) > 0 ||
851 info->transport_status != SMBD_CONNECTED);
852 if (rc)
853 return rc;
854
855 if (info->transport_status != SMBD_CONNECTED) {
856 log_outgoing(ERR, "disconnected not sending\n");
857 return -EAGAIN;
858 }
859 atomic_dec(&info->send_credits);
860
861 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
862 if (!request) {
863 rc = -ENOMEM;
864 goto err;
865 }
866
867 request->info = info;
868
869 /* Fill in the packet header */
870 packet = smbd_request_payload(request);
871 packet->credits_requested = cpu_to_le16(info->send_credit_target);
872 packet->credits_granted =
873 cpu_to_le16(manage_credits_prior_sending(info));
874 info->send_immediate = false;
875
876 packet->flags = 0;
877 if (manage_keep_alive_before_sending(info))
878 packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED);
879
880 packet->reserved = 0;
881 if (!size)
882 packet->data_offset = 0;
883 else
884 packet->data_offset = cpu_to_le32(24);
885 packet->data_length = cpu_to_le32(size);
886 packet->remaining_data_length = cpu_to_le32(remaining_data_length);
887 packet->padding = 0;
888
889 log_outgoing(INFO, "credits_requested=%d credits_granted=%d "
890 "data_offset=%d data_length=%d remaining_data_length=%d\n",
891 le16_to_cpu(packet->credits_requested),
892 le16_to_cpu(packet->credits_granted),
893 le32_to_cpu(packet->data_offset),
894 le32_to_cpu(packet->data_length),
895 le32_to_cpu(packet->remaining_data_length));
896
897 /* Map the packet to DMA */
898 header_length = sizeof(struct smbd_data_transfer);
899 /* If this is a packet without payload, don't send padding */
900 if (!size)
901 header_length = offsetof(struct smbd_data_transfer, padding);
902
903 request->num_sge = 1;
904 request->sge[0].addr = ib_dma_map_single(info->id->device,
905 (void *)packet,
906 header_length,
907 DMA_TO_DEVICE);
908 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
909 mempool_free(request, info->request_mempool);
910 rc = -EIO;
911 goto err;
912 }
913
914 request->sge[0].length = header_length;
915 request->sge[0].lkey = info->pd->local_dma_lkey;
916
917 *request_out = request;
918 return 0;
919
920 err:
921 atomic_inc(&info->send_credits);
922 return rc;
923 }
924
smbd_destroy_header(struct smbd_connection * info,struct smbd_request * request)925 static void smbd_destroy_header(struct smbd_connection *info,
926 struct smbd_request *request)
927 {
928
929 ib_dma_unmap_single(info->id->device,
930 request->sge[0].addr,
931 request->sge[0].length,
932 DMA_TO_DEVICE);
933 mempool_free(request, info->request_mempool);
934 atomic_inc(&info->send_credits);
935 }
936
937 /* Post the send request */
smbd_post_send(struct smbd_connection * info,struct smbd_request * request,bool has_payload)938 static int smbd_post_send(struct smbd_connection *info,
939 struct smbd_request *request, bool has_payload)
940 {
941 struct ib_send_wr send_wr;
942 int rc, i;
943
944 for (i = 0; i < request->num_sge; i++) {
945 log_rdma_send(INFO,
946 "rdma_request sge[%d] addr=%llu length=%u\n",
947 i, request->sge[i].addr, request->sge[i].length);
948 ib_dma_sync_single_for_device(
949 info->id->device,
950 request->sge[i].addr,
951 request->sge[i].length,
952 DMA_TO_DEVICE);
953 }
954
955 request->cqe.done = send_done;
956
957 send_wr.next = NULL;
958 send_wr.wr_cqe = &request->cqe;
959 send_wr.sg_list = request->sge;
960 send_wr.num_sge = request->num_sge;
961 send_wr.opcode = IB_WR_SEND;
962 send_wr.send_flags = IB_SEND_SIGNALED;
963
964 if (has_payload) {
965 request->has_payload = true;
966 atomic_inc(&info->send_payload_pending);
967 } else {
968 request->has_payload = false;
969 atomic_inc(&info->send_pending);
970 }
971
972 rc = ib_post_send(info->id->qp, &send_wr, NULL);
973 if (rc) {
974 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
975 if (has_payload) {
976 if (atomic_dec_and_test(&info->send_payload_pending))
977 wake_up(&info->wait_send_payload_pending);
978 } else {
979 if (atomic_dec_and_test(&info->send_pending))
980 wake_up(&info->wait_send_pending);
981 }
982 smbd_disconnect_rdma_connection(info);
983 rc = -EAGAIN;
984 } else
985 /* Reset timer for idle connection after packet is sent */
986 mod_delayed_work(info->workqueue, &info->idle_timer_work,
987 info->keep_alive_interval*HZ);
988
989 return rc;
990 }
991
smbd_post_send_sgl(struct smbd_connection * info,struct scatterlist * sgl,int data_length,int remaining_data_length)992 static int smbd_post_send_sgl(struct smbd_connection *info,
993 struct scatterlist *sgl, int data_length, int remaining_data_length)
994 {
995 int num_sgs;
996 int i, rc;
997 struct smbd_request *request;
998 struct scatterlist *sg;
999
1000 rc = smbd_create_header(
1001 info, data_length, remaining_data_length, &request);
1002 if (rc)
1003 return rc;
1004
1005 num_sgs = sgl ? sg_nents(sgl) : 0;
1006 for_each_sg(sgl, sg, num_sgs, i) {
1007 request->sge[i+1].addr =
1008 ib_dma_map_page(info->id->device, sg_page(sg),
1009 sg->offset, sg->length, DMA_TO_DEVICE);
1010 if (ib_dma_mapping_error(
1011 info->id->device, request->sge[i+1].addr)) {
1012 rc = -EIO;
1013 request->sge[i+1].addr = 0;
1014 goto dma_mapping_failure;
1015 }
1016 request->sge[i+1].length = sg->length;
1017 request->sge[i+1].lkey = info->pd->local_dma_lkey;
1018 request->num_sge++;
1019 }
1020
1021 rc = smbd_post_send(info, request, data_length);
1022 if (!rc)
1023 return 0;
1024
1025 dma_mapping_failure:
1026 for (i = 1; i < request->num_sge; i++)
1027 if (request->sge[i].addr)
1028 ib_dma_unmap_single(info->id->device,
1029 request->sge[i].addr,
1030 request->sge[i].length,
1031 DMA_TO_DEVICE);
1032 smbd_destroy_header(info, request);
1033 return rc;
1034 }
1035
1036 /*
1037 * Send a page
1038 * page: the page to send
1039 * offset: offset in the page to send
1040 * size: length in the page to send
1041 * remaining_data_length: remaining data to send in this payload
1042 */
smbd_post_send_page(struct smbd_connection * info,struct page * page,unsigned long offset,size_t size,int remaining_data_length)1043 static int smbd_post_send_page(struct smbd_connection *info, struct page *page,
1044 unsigned long offset, size_t size, int remaining_data_length)
1045 {
1046 struct scatterlist sgl;
1047
1048 sg_init_table(&sgl, 1);
1049 sg_set_page(&sgl, page, size, offset);
1050
1051 return smbd_post_send_sgl(info, &sgl, size, remaining_data_length);
1052 }
1053
1054 /*
1055 * Send an empty message
1056 * Empty message is used to extend credits to peer to for keep live
1057 * while there is no upper layer payload to send at the time
1058 */
smbd_post_send_empty(struct smbd_connection * info)1059 static int smbd_post_send_empty(struct smbd_connection *info)
1060 {
1061 info->count_send_empty++;
1062 return smbd_post_send_sgl(info, NULL, 0, 0);
1063 }
1064
1065 /*
1066 * Send a data buffer
1067 * iov: the iov array describing the data buffers
1068 * n_vec: number of iov array
1069 * remaining_data_length: remaining data to send following this packet
1070 * in segmented SMBD packet
1071 */
smbd_post_send_data(struct smbd_connection * info,struct kvec * iov,int n_vec,int remaining_data_length)1072 static int smbd_post_send_data(
1073 struct smbd_connection *info, struct kvec *iov, int n_vec,
1074 int remaining_data_length)
1075 {
1076 int i;
1077 u32 data_length = 0;
1078 struct scatterlist sgl[SMBDIRECT_MAX_SGE];
1079
1080 if (n_vec > SMBDIRECT_MAX_SGE) {
1081 cifs_dbg(VFS, "Can't fit data to SGL, n_vec=%d\n", n_vec);
1082 return -EINVAL;
1083 }
1084
1085 sg_init_table(sgl, n_vec);
1086 for (i = 0; i < n_vec; i++) {
1087 data_length += iov[i].iov_len;
1088 sg_set_buf(&sgl[i], iov[i].iov_base, iov[i].iov_len);
1089 }
1090
1091 return smbd_post_send_sgl(info, sgl, data_length, remaining_data_length);
1092 }
1093
1094 /*
1095 * Post a receive request to the transport
1096 * The remote peer can only send data when a receive request is posted
1097 * The interaction is controlled by send/receive credit system
1098 */
smbd_post_recv(struct smbd_connection * info,struct smbd_response * response)1099 static int smbd_post_recv(
1100 struct smbd_connection *info, struct smbd_response *response)
1101 {
1102 struct ib_recv_wr recv_wr;
1103 int rc = -EIO;
1104
1105 response->sge.addr = ib_dma_map_single(
1106 info->id->device, response->packet,
1107 info->max_receive_size, DMA_FROM_DEVICE);
1108 if (ib_dma_mapping_error(info->id->device, response->sge.addr))
1109 return rc;
1110
1111 response->sge.length = info->max_receive_size;
1112 response->sge.lkey = info->pd->local_dma_lkey;
1113
1114 response->cqe.done = recv_done;
1115
1116 recv_wr.wr_cqe = &response->cqe;
1117 recv_wr.next = NULL;
1118 recv_wr.sg_list = &response->sge;
1119 recv_wr.num_sge = 1;
1120
1121 rc = ib_post_recv(info->id->qp, &recv_wr, NULL);
1122 if (rc) {
1123 ib_dma_unmap_single(info->id->device, response->sge.addr,
1124 response->sge.length, DMA_FROM_DEVICE);
1125 smbd_disconnect_rdma_connection(info);
1126 log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1127 }
1128
1129 return rc;
1130 }
1131
1132 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
smbd_negotiate(struct smbd_connection * info)1133 static int smbd_negotiate(struct smbd_connection *info)
1134 {
1135 int rc;
1136 struct smbd_response *response = get_receive_buffer(info);
1137
1138 response->type = SMBD_NEGOTIATE_RESP;
1139 rc = smbd_post_recv(info, response);
1140 log_rdma_event(INFO,
1141 "smbd_post_recv rc=%d iov.addr=%llx iov.length=%x "
1142 "iov.lkey=%x\n",
1143 rc, response->sge.addr,
1144 response->sge.length, response->sge.lkey);
1145 if (rc)
1146 return rc;
1147
1148 init_completion(&info->negotiate_completion);
1149 info->negotiate_done = false;
1150 rc = smbd_post_send_negotiate_req(info);
1151 if (rc)
1152 return rc;
1153
1154 rc = wait_for_completion_interruptible_timeout(
1155 &info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1156 log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1157
1158 if (info->negotiate_done)
1159 return 0;
1160
1161 if (rc == 0)
1162 rc = -ETIMEDOUT;
1163 else if (rc == -ERESTARTSYS)
1164 rc = -EINTR;
1165 else
1166 rc = -ENOTCONN;
1167
1168 return rc;
1169 }
1170
put_empty_packet(struct smbd_connection * info,struct smbd_response * response)1171 static void put_empty_packet(
1172 struct smbd_connection *info, struct smbd_response *response)
1173 {
1174 spin_lock(&info->empty_packet_queue_lock);
1175 list_add_tail(&response->list, &info->empty_packet_queue);
1176 info->count_empty_packet_queue++;
1177 spin_unlock(&info->empty_packet_queue_lock);
1178
1179 queue_work(info->workqueue, &info->post_send_credits_work);
1180 }
1181
1182 /*
1183 * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1184 * This is a queue for reassembling upper layer payload and present to upper
1185 * layer. All the inncoming payload go to the reassembly queue, regardless of
1186 * if reassembly is required. The uuper layer code reads from the queue for all
1187 * incoming payloads.
1188 * Put a received packet to the reassembly queue
1189 * response: the packet received
1190 * data_length: the size of payload in this packet
1191 */
enqueue_reassembly(struct smbd_connection * info,struct smbd_response * response,int data_length)1192 static void enqueue_reassembly(
1193 struct smbd_connection *info,
1194 struct smbd_response *response,
1195 int data_length)
1196 {
1197 spin_lock(&info->reassembly_queue_lock);
1198 list_add_tail(&response->list, &info->reassembly_queue);
1199 info->reassembly_queue_length++;
1200 /*
1201 * Make sure reassembly_data_length is updated after list and
1202 * reassembly_queue_length are updated. On the dequeue side
1203 * reassembly_data_length is checked without a lock to determine
1204 * if reassembly_queue_length and list is up to date
1205 */
1206 virt_wmb();
1207 info->reassembly_data_length += data_length;
1208 spin_unlock(&info->reassembly_queue_lock);
1209 info->count_reassembly_queue++;
1210 info->count_enqueue_reassembly_queue++;
1211 }
1212
1213 /*
1214 * Get the first entry at the front of reassembly queue
1215 * Caller is responsible for locking
1216 * return value: the first entry if any, NULL if queue is empty
1217 */
_get_first_reassembly(struct smbd_connection * info)1218 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1219 {
1220 struct smbd_response *ret = NULL;
1221
1222 if (!list_empty(&info->reassembly_queue)) {
1223 ret = list_first_entry(
1224 &info->reassembly_queue,
1225 struct smbd_response, list);
1226 }
1227 return ret;
1228 }
1229
get_empty_queue_buffer(struct smbd_connection * info)1230 static struct smbd_response *get_empty_queue_buffer(
1231 struct smbd_connection *info)
1232 {
1233 struct smbd_response *ret = NULL;
1234 unsigned long flags;
1235
1236 spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
1237 if (!list_empty(&info->empty_packet_queue)) {
1238 ret = list_first_entry(
1239 &info->empty_packet_queue,
1240 struct smbd_response, list);
1241 list_del(&ret->list);
1242 info->count_empty_packet_queue--;
1243 }
1244 spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
1245
1246 return ret;
1247 }
1248
1249 /*
1250 * Get a receive buffer
1251 * For each remote send, we need to post a receive. The receive buffers are
1252 * pre-allocated in advance.
1253 * return value: the receive buffer, NULL if none is available
1254 */
get_receive_buffer(struct smbd_connection * info)1255 static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1256 {
1257 struct smbd_response *ret = NULL;
1258 unsigned long flags;
1259
1260 spin_lock_irqsave(&info->receive_queue_lock, flags);
1261 if (!list_empty(&info->receive_queue)) {
1262 ret = list_first_entry(
1263 &info->receive_queue,
1264 struct smbd_response, list);
1265 list_del(&ret->list);
1266 info->count_receive_queue--;
1267 info->count_get_receive_buffer++;
1268 }
1269 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1270
1271 return ret;
1272 }
1273
1274 /*
1275 * Return a receive buffer
1276 * Upon returning of a receive buffer, we can post new receive and extend
1277 * more receive credits to remote peer. This is done immediately after a
1278 * receive buffer is returned.
1279 */
put_receive_buffer(struct smbd_connection * info,struct smbd_response * response)1280 static void put_receive_buffer(
1281 struct smbd_connection *info, struct smbd_response *response)
1282 {
1283 unsigned long flags;
1284
1285 ib_dma_unmap_single(info->id->device, response->sge.addr,
1286 response->sge.length, DMA_FROM_DEVICE);
1287
1288 spin_lock_irqsave(&info->receive_queue_lock, flags);
1289 list_add_tail(&response->list, &info->receive_queue);
1290 info->count_receive_queue++;
1291 info->count_put_receive_buffer++;
1292 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1293
1294 queue_work(info->workqueue, &info->post_send_credits_work);
1295 }
1296
1297 /* Preallocate all receive buffer on transport establishment */
allocate_receive_buffers(struct smbd_connection * info,int num_buf)1298 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1299 {
1300 int i;
1301 struct smbd_response *response;
1302
1303 INIT_LIST_HEAD(&info->reassembly_queue);
1304 spin_lock_init(&info->reassembly_queue_lock);
1305 info->reassembly_data_length = 0;
1306 info->reassembly_queue_length = 0;
1307
1308 INIT_LIST_HEAD(&info->receive_queue);
1309 spin_lock_init(&info->receive_queue_lock);
1310 info->count_receive_queue = 0;
1311
1312 INIT_LIST_HEAD(&info->empty_packet_queue);
1313 spin_lock_init(&info->empty_packet_queue_lock);
1314 info->count_empty_packet_queue = 0;
1315
1316 init_waitqueue_head(&info->wait_receive_queues);
1317
1318 for (i = 0; i < num_buf; i++) {
1319 response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1320 if (!response)
1321 goto allocate_failed;
1322
1323 response->info = info;
1324 list_add_tail(&response->list, &info->receive_queue);
1325 info->count_receive_queue++;
1326 }
1327
1328 return 0;
1329
1330 allocate_failed:
1331 while (!list_empty(&info->receive_queue)) {
1332 response = list_first_entry(
1333 &info->receive_queue,
1334 struct smbd_response, list);
1335 list_del(&response->list);
1336 info->count_receive_queue--;
1337
1338 mempool_free(response, info->response_mempool);
1339 }
1340 return -ENOMEM;
1341 }
1342
destroy_receive_buffers(struct smbd_connection * info)1343 static void destroy_receive_buffers(struct smbd_connection *info)
1344 {
1345 struct smbd_response *response;
1346
1347 while ((response = get_receive_buffer(info)))
1348 mempool_free(response, info->response_mempool);
1349
1350 while ((response = get_empty_queue_buffer(info)))
1351 mempool_free(response, info->response_mempool);
1352 }
1353
1354 /*
1355 * Check and send an immediate or keep alive packet
1356 * The condition to send those packets are defined in [MS-SMBD] 3.1.1.1
1357 * Connection.KeepaliveRequested and Connection.SendImmediate
1358 * The idea is to extend credits to server as soon as it becomes available
1359 */
send_immediate_work(struct work_struct * work)1360 static void send_immediate_work(struct work_struct *work)
1361 {
1362 struct smbd_connection *info = container_of(
1363 work, struct smbd_connection,
1364 send_immediate_work.work);
1365
1366 if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
1367 info->send_immediate) {
1368 log_keep_alive(INFO, "send an empty message\n");
1369 smbd_post_send_empty(info);
1370 }
1371 }
1372
1373 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
idle_connection_timer(struct work_struct * work)1374 static void idle_connection_timer(struct work_struct *work)
1375 {
1376 struct smbd_connection *info = container_of(
1377 work, struct smbd_connection,
1378 idle_timer_work.work);
1379
1380 if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1381 log_keep_alive(ERR,
1382 "error status info->keep_alive_requested=%d\n",
1383 info->keep_alive_requested);
1384 smbd_disconnect_rdma_connection(info);
1385 return;
1386 }
1387
1388 log_keep_alive(INFO, "about to send an empty idle message\n");
1389 smbd_post_send_empty(info);
1390
1391 /* Setup the next idle timeout work */
1392 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1393 info->keep_alive_interval*HZ);
1394 }
1395
1396 /*
1397 * Destroy the transport and related RDMA and memory resources
1398 * Need to go through all the pending counters and make sure on one is using
1399 * the transport while it is destroyed
1400 */
smbd_destroy(struct TCP_Server_Info * server)1401 void smbd_destroy(struct TCP_Server_Info *server)
1402 {
1403 struct smbd_connection *info = server->smbd_conn;
1404 struct smbd_response *response;
1405 unsigned long flags;
1406
1407 if (!info) {
1408 log_rdma_event(INFO, "rdma session already destroyed\n");
1409 return;
1410 }
1411
1412 log_rdma_event(INFO, "destroying rdma session\n");
1413 if (info->transport_status != SMBD_DISCONNECTED) {
1414 rdma_disconnect(server->smbd_conn->id);
1415 log_rdma_event(INFO, "wait for transport being disconnected\n");
1416 wait_event_interruptible(
1417 info->disconn_wait,
1418 info->transport_status == SMBD_DISCONNECTED);
1419 }
1420
1421 log_rdma_event(INFO, "destroying qp\n");
1422 ib_drain_qp(info->id->qp);
1423 rdma_destroy_qp(info->id);
1424
1425 log_rdma_event(INFO, "cancelling idle timer\n");
1426 cancel_delayed_work_sync(&info->idle_timer_work);
1427 log_rdma_event(INFO, "cancelling send immediate work\n");
1428 cancel_delayed_work_sync(&info->send_immediate_work);
1429
1430 log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
1431 wait_event(info->wait_send_pending,
1432 atomic_read(&info->send_pending) == 0);
1433 wait_event(info->wait_send_payload_pending,
1434 atomic_read(&info->send_payload_pending) == 0);
1435
1436 /* It's not posssible for upper layer to get to reassembly */
1437 log_rdma_event(INFO, "drain the reassembly queue\n");
1438 do {
1439 spin_lock_irqsave(&info->reassembly_queue_lock, flags);
1440 response = _get_first_reassembly(info);
1441 if (response) {
1442 list_del(&response->list);
1443 spin_unlock_irqrestore(
1444 &info->reassembly_queue_lock, flags);
1445 put_receive_buffer(info, response);
1446 } else
1447 spin_unlock_irqrestore(
1448 &info->reassembly_queue_lock, flags);
1449 } while (response);
1450 info->reassembly_data_length = 0;
1451
1452 log_rdma_event(INFO, "free receive buffers\n");
1453 wait_event(info->wait_receive_queues,
1454 info->count_receive_queue + info->count_empty_packet_queue
1455 == info->receive_credit_max);
1456 destroy_receive_buffers(info);
1457
1458 /*
1459 * For performance reasons, memory registration and deregistration
1460 * are not locked by srv_mutex. It is possible some processes are
1461 * blocked on transport srv_mutex while holding memory registration.
1462 * Release the transport srv_mutex to allow them to hit the failure
1463 * path when sending data, and then release memory registartions.
1464 */
1465 log_rdma_event(INFO, "freeing mr list\n");
1466 wake_up_interruptible_all(&info->wait_mr);
1467 while (atomic_read(&info->mr_used_count)) {
1468 mutex_unlock(&server->srv_mutex);
1469 msleep(1000);
1470 mutex_lock(&server->srv_mutex);
1471 }
1472 destroy_mr_list(info);
1473
1474 ib_free_cq(info->send_cq);
1475 ib_free_cq(info->recv_cq);
1476 ib_dealloc_pd(info->pd);
1477 rdma_destroy_id(info->id);
1478
1479 /* free mempools */
1480 mempool_destroy(info->request_mempool);
1481 kmem_cache_destroy(info->request_cache);
1482
1483 mempool_destroy(info->response_mempool);
1484 kmem_cache_destroy(info->response_cache);
1485
1486 info->transport_status = SMBD_DESTROYED;
1487
1488 destroy_workqueue(info->workqueue);
1489 log_rdma_event(INFO, "rdma session destroyed\n");
1490 kfree(info);
1491 server->smbd_conn = NULL;
1492 }
1493
1494 /*
1495 * Reconnect this SMBD connection, called from upper layer
1496 * return value: 0 on success, or actual error code
1497 */
smbd_reconnect(struct TCP_Server_Info * server)1498 int smbd_reconnect(struct TCP_Server_Info *server)
1499 {
1500 log_rdma_event(INFO, "reconnecting rdma session\n");
1501
1502 if (!server->smbd_conn) {
1503 log_rdma_event(INFO, "rdma session already destroyed\n");
1504 goto create_conn;
1505 }
1506
1507 /*
1508 * This is possible if transport is disconnected and we haven't received
1509 * notification from RDMA, but upper layer has detected timeout
1510 */
1511 if (server->smbd_conn->transport_status == SMBD_CONNECTED) {
1512 log_rdma_event(INFO, "disconnecting transport\n");
1513 smbd_destroy(server);
1514 }
1515
1516 create_conn:
1517 log_rdma_event(INFO, "creating rdma session\n");
1518 server->smbd_conn = smbd_get_connection(
1519 server, (struct sockaddr *) &server->dstaddr);
1520
1521 if (server->smbd_conn)
1522 cifs_dbg(VFS, "RDMA transport re-established\n");
1523
1524 return server->smbd_conn ? 0 : -ENOENT;
1525 }
1526
destroy_caches_and_workqueue(struct smbd_connection * info)1527 static void destroy_caches_and_workqueue(struct smbd_connection *info)
1528 {
1529 destroy_receive_buffers(info);
1530 destroy_workqueue(info->workqueue);
1531 mempool_destroy(info->response_mempool);
1532 kmem_cache_destroy(info->response_cache);
1533 mempool_destroy(info->request_mempool);
1534 kmem_cache_destroy(info->request_cache);
1535 }
1536
1537 #define MAX_NAME_LEN 80
allocate_caches_and_workqueue(struct smbd_connection * info)1538 static int allocate_caches_and_workqueue(struct smbd_connection *info)
1539 {
1540 char name[MAX_NAME_LEN];
1541 int rc;
1542
1543 scnprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1544 info->request_cache =
1545 kmem_cache_create(
1546 name,
1547 sizeof(struct smbd_request) +
1548 sizeof(struct smbd_data_transfer),
1549 0, SLAB_HWCACHE_ALIGN, NULL);
1550 if (!info->request_cache)
1551 return -ENOMEM;
1552
1553 info->request_mempool =
1554 mempool_create(info->send_credit_target, mempool_alloc_slab,
1555 mempool_free_slab, info->request_cache);
1556 if (!info->request_mempool)
1557 goto out1;
1558
1559 scnprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1560 info->response_cache =
1561 kmem_cache_create(
1562 name,
1563 sizeof(struct smbd_response) +
1564 info->max_receive_size,
1565 0, SLAB_HWCACHE_ALIGN, NULL);
1566 if (!info->response_cache)
1567 goto out2;
1568
1569 info->response_mempool =
1570 mempool_create(info->receive_credit_max, mempool_alloc_slab,
1571 mempool_free_slab, info->response_cache);
1572 if (!info->response_mempool)
1573 goto out3;
1574
1575 scnprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1576 info->workqueue = create_workqueue(name);
1577 if (!info->workqueue)
1578 goto out4;
1579
1580 rc = allocate_receive_buffers(info, info->receive_credit_max);
1581 if (rc) {
1582 log_rdma_event(ERR, "failed to allocate receive buffers\n");
1583 goto out5;
1584 }
1585
1586 return 0;
1587
1588 out5:
1589 destroy_workqueue(info->workqueue);
1590 out4:
1591 mempool_destroy(info->response_mempool);
1592 out3:
1593 kmem_cache_destroy(info->response_cache);
1594 out2:
1595 mempool_destroy(info->request_mempool);
1596 out1:
1597 kmem_cache_destroy(info->request_cache);
1598 return -ENOMEM;
1599 }
1600
1601 /* Create a SMBD connection, called by upper layer */
_smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr,int port)1602 static struct smbd_connection *_smbd_get_connection(
1603 struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1604 {
1605 int rc;
1606 struct smbd_connection *info;
1607 struct rdma_conn_param conn_param;
1608 struct ib_qp_init_attr qp_attr;
1609 struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1610 struct ib_port_immutable port_immutable;
1611 u32 ird_ord_hdr[2];
1612
1613 info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1614 if (!info)
1615 return NULL;
1616
1617 info->transport_status = SMBD_CONNECTING;
1618 rc = smbd_ia_open(info, dstaddr, port);
1619 if (rc) {
1620 log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1621 goto create_id_failed;
1622 }
1623
1624 if (smbd_send_credit_target > info->id->device->attrs.max_cqe ||
1625 smbd_send_credit_target > info->id->device->attrs.max_qp_wr) {
1626 log_rdma_event(ERR,
1627 "consider lowering send_credit_target = %d. "
1628 "Possible CQE overrun, device "
1629 "reporting max_cpe %d max_qp_wr %d\n",
1630 smbd_send_credit_target,
1631 info->id->device->attrs.max_cqe,
1632 info->id->device->attrs.max_qp_wr);
1633 goto config_failed;
1634 }
1635
1636 if (smbd_receive_credit_max > info->id->device->attrs.max_cqe ||
1637 smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) {
1638 log_rdma_event(ERR,
1639 "consider lowering receive_credit_max = %d. "
1640 "Possible CQE overrun, device "
1641 "reporting max_cpe %d max_qp_wr %d\n",
1642 smbd_receive_credit_max,
1643 info->id->device->attrs.max_cqe,
1644 info->id->device->attrs.max_qp_wr);
1645 goto config_failed;
1646 }
1647
1648 info->receive_credit_max = smbd_receive_credit_max;
1649 info->send_credit_target = smbd_send_credit_target;
1650 info->max_send_size = smbd_max_send_size;
1651 info->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1652 info->max_receive_size = smbd_max_receive_size;
1653 info->keep_alive_interval = smbd_keep_alive_interval;
1654
1655 if (info->id->device->attrs.max_send_sge < SMBDIRECT_MAX_SGE) {
1656 log_rdma_event(ERR,
1657 "warning: device max_send_sge = %d too small\n",
1658 info->id->device->attrs.max_send_sge);
1659 log_rdma_event(ERR, "Queue Pair creation may fail\n");
1660 }
1661 if (info->id->device->attrs.max_recv_sge < SMBDIRECT_MAX_SGE) {
1662 log_rdma_event(ERR,
1663 "warning: device max_recv_sge = %d too small\n",
1664 info->id->device->attrs.max_recv_sge);
1665 log_rdma_event(ERR, "Queue Pair creation may fail\n");
1666 }
1667
1668 info->send_cq = NULL;
1669 info->recv_cq = NULL;
1670 info->send_cq =
1671 ib_alloc_cq_any(info->id->device, info,
1672 info->send_credit_target, IB_POLL_SOFTIRQ);
1673 if (IS_ERR(info->send_cq)) {
1674 info->send_cq = NULL;
1675 goto alloc_cq_failed;
1676 }
1677
1678 info->recv_cq =
1679 ib_alloc_cq_any(info->id->device, info,
1680 info->receive_credit_max, IB_POLL_SOFTIRQ);
1681 if (IS_ERR(info->recv_cq)) {
1682 info->recv_cq = NULL;
1683 goto alloc_cq_failed;
1684 }
1685
1686 memset(&qp_attr, 0, sizeof(qp_attr));
1687 qp_attr.event_handler = smbd_qp_async_error_upcall;
1688 qp_attr.qp_context = info;
1689 qp_attr.cap.max_send_wr = info->send_credit_target;
1690 qp_attr.cap.max_recv_wr = info->receive_credit_max;
1691 qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SGE;
1692 qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_SGE;
1693 qp_attr.cap.max_inline_data = 0;
1694 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1695 qp_attr.qp_type = IB_QPT_RC;
1696 qp_attr.send_cq = info->send_cq;
1697 qp_attr.recv_cq = info->recv_cq;
1698 qp_attr.port_num = ~0;
1699
1700 rc = rdma_create_qp(info->id, info->pd, &qp_attr);
1701 if (rc) {
1702 log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1703 goto create_qp_failed;
1704 }
1705
1706 memset(&conn_param, 0, sizeof(conn_param));
1707 conn_param.initiator_depth = 0;
1708
1709 conn_param.responder_resources =
1710 info->id->device->attrs.max_qp_rd_atom
1711 < SMBD_CM_RESPONDER_RESOURCES ?
1712 info->id->device->attrs.max_qp_rd_atom :
1713 SMBD_CM_RESPONDER_RESOURCES;
1714 info->responder_resources = conn_param.responder_resources;
1715 log_rdma_mr(INFO, "responder_resources=%d\n",
1716 info->responder_resources);
1717
1718 /* Need to send IRD/ORD in private data for iWARP */
1719 info->id->device->ops.get_port_immutable(
1720 info->id->device, info->id->port_num, &port_immutable);
1721 if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1722 ird_ord_hdr[0] = info->responder_resources;
1723 ird_ord_hdr[1] = 1;
1724 conn_param.private_data = ird_ord_hdr;
1725 conn_param.private_data_len = sizeof(ird_ord_hdr);
1726 } else {
1727 conn_param.private_data = NULL;
1728 conn_param.private_data_len = 0;
1729 }
1730
1731 conn_param.retry_count = SMBD_CM_RETRY;
1732 conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1733 conn_param.flow_control = 0;
1734
1735 log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1736 &addr_in->sin_addr, port);
1737
1738 init_waitqueue_head(&info->conn_wait);
1739 init_waitqueue_head(&info->disconn_wait);
1740 init_waitqueue_head(&info->wait_reassembly_queue);
1741 rc = rdma_connect(info->id, &conn_param);
1742 if (rc) {
1743 log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1744 goto rdma_connect_failed;
1745 }
1746
1747 wait_event_interruptible(
1748 info->conn_wait, info->transport_status != SMBD_CONNECTING);
1749
1750 if (info->transport_status != SMBD_CONNECTED) {
1751 log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1752 goto rdma_connect_failed;
1753 }
1754
1755 log_rdma_event(INFO, "rdma_connect connected\n");
1756
1757 rc = allocate_caches_and_workqueue(info);
1758 if (rc) {
1759 log_rdma_event(ERR, "cache allocation failed\n");
1760 goto allocate_cache_failed;
1761 }
1762
1763 init_waitqueue_head(&info->wait_send_queue);
1764 INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1765 INIT_DELAYED_WORK(&info->send_immediate_work, send_immediate_work);
1766 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1767 info->keep_alive_interval*HZ);
1768
1769 init_waitqueue_head(&info->wait_send_pending);
1770 atomic_set(&info->send_pending, 0);
1771
1772 init_waitqueue_head(&info->wait_send_payload_pending);
1773 atomic_set(&info->send_payload_pending, 0);
1774
1775 INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1776 INIT_WORK(&info->recv_done_work, smbd_recv_done_work);
1777 INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1778 info->new_credits_offered = 0;
1779 spin_lock_init(&info->lock_new_credits_offered);
1780
1781 rc = smbd_negotiate(info);
1782 if (rc) {
1783 log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1784 goto negotiation_failed;
1785 }
1786
1787 rc = allocate_mr_list(info);
1788 if (rc) {
1789 log_rdma_mr(ERR, "memory registration allocation failed\n");
1790 goto allocate_mr_failed;
1791 }
1792
1793 return info;
1794
1795 allocate_mr_failed:
1796 /* At this point, need to a full transport shutdown */
1797 server->smbd_conn = info;
1798 smbd_destroy(server);
1799 return NULL;
1800
1801 negotiation_failed:
1802 cancel_delayed_work_sync(&info->idle_timer_work);
1803 destroy_caches_and_workqueue(info);
1804 info->transport_status = SMBD_NEGOTIATE_FAILED;
1805 init_waitqueue_head(&info->conn_wait);
1806 rdma_disconnect(info->id);
1807 wait_event(info->conn_wait,
1808 info->transport_status == SMBD_DISCONNECTED);
1809
1810 allocate_cache_failed:
1811 rdma_connect_failed:
1812 rdma_destroy_qp(info->id);
1813
1814 create_qp_failed:
1815 alloc_cq_failed:
1816 if (info->send_cq)
1817 ib_free_cq(info->send_cq);
1818 if (info->recv_cq)
1819 ib_free_cq(info->recv_cq);
1820
1821 config_failed:
1822 ib_dealloc_pd(info->pd);
1823 rdma_destroy_id(info->id);
1824
1825 create_id_failed:
1826 kfree(info);
1827 return NULL;
1828 }
1829
smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr)1830 struct smbd_connection *smbd_get_connection(
1831 struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1832 {
1833 struct smbd_connection *ret;
1834 int port = SMBD_PORT;
1835
1836 try_again:
1837 ret = _smbd_get_connection(server, dstaddr, port);
1838
1839 /* Try SMB_PORT if SMBD_PORT doesn't work */
1840 if (!ret && port == SMBD_PORT) {
1841 port = SMB_PORT;
1842 goto try_again;
1843 }
1844 return ret;
1845 }
1846
1847 /*
1848 * Receive data from receive reassembly queue
1849 * All the incoming data packets are placed in reassembly queue
1850 * buf: the buffer to read data into
1851 * size: the length of data to read
1852 * return value: actual data read
1853 * Note: this implementation copies the data from reassebmly queue to receive
1854 * buffers used by upper layer. This is not the optimal code path. A better way
1855 * to do it is to not have upper layer allocate its receive buffers but rather
1856 * borrow the buffer from reassembly queue, and return it after data is
1857 * consumed. But this will require more changes to upper layer code, and also
1858 * need to consider packet boundaries while they still being reassembled.
1859 */
smbd_recv_buf(struct smbd_connection * info,char * buf,unsigned int size)1860 static int smbd_recv_buf(struct smbd_connection *info, char *buf,
1861 unsigned int size)
1862 {
1863 struct smbd_response *response;
1864 struct smbd_data_transfer *data_transfer;
1865 int to_copy, to_read, data_read, offset;
1866 u32 data_length, remaining_data_length, data_offset;
1867 int rc;
1868
1869 again:
1870 /*
1871 * No need to hold the reassembly queue lock all the time as we are
1872 * the only one reading from the front of the queue. The transport
1873 * may add more entries to the back of the queue at the same time
1874 */
1875 log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size,
1876 info->reassembly_data_length);
1877 if (info->reassembly_data_length >= size) {
1878 int queue_length;
1879 int queue_removed = 0;
1880
1881 /*
1882 * Need to make sure reassembly_data_length is read before
1883 * reading reassembly_queue_length and calling
1884 * _get_first_reassembly. This call is lock free
1885 * as we never read at the end of the queue which are being
1886 * updated in SOFTIRQ as more data is received
1887 */
1888 virt_rmb();
1889 queue_length = info->reassembly_queue_length;
1890 data_read = 0;
1891 to_read = size;
1892 offset = info->first_entry_offset;
1893 while (data_read < size) {
1894 response = _get_first_reassembly(info);
1895 data_transfer = smbd_response_payload(response);
1896 data_length = le32_to_cpu(data_transfer->data_length);
1897 remaining_data_length =
1898 le32_to_cpu(
1899 data_transfer->remaining_data_length);
1900 data_offset = le32_to_cpu(data_transfer->data_offset);
1901
1902 /*
1903 * The upper layer expects RFC1002 length at the
1904 * beginning of the payload. Return it to indicate
1905 * the total length of the packet. This minimize the
1906 * change to upper layer packet processing logic. This
1907 * will be eventually remove when an intermediate
1908 * transport layer is added
1909 */
1910 if (response->first_segment && size == 4) {
1911 unsigned int rfc1002_len =
1912 data_length + remaining_data_length;
1913 *((__be32 *)buf) = cpu_to_be32(rfc1002_len);
1914 data_read = 4;
1915 response->first_segment = false;
1916 log_read(INFO, "returning rfc1002 length %d\n",
1917 rfc1002_len);
1918 goto read_rfc1002_done;
1919 }
1920
1921 to_copy = min_t(int, data_length - offset, to_read);
1922 memcpy(
1923 buf + data_read,
1924 (char *)data_transfer + data_offset + offset,
1925 to_copy);
1926
1927 /* move on to the next buffer? */
1928 if (to_copy == data_length - offset) {
1929 queue_length--;
1930 /*
1931 * No need to lock if we are not at the
1932 * end of the queue
1933 */
1934 if (queue_length)
1935 list_del(&response->list);
1936 else {
1937 spin_lock_irq(
1938 &info->reassembly_queue_lock);
1939 list_del(&response->list);
1940 spin_unlock_irq(
1941 &info->reassembly_queue_lock);
1942 }
1943 queue_removed++;
1944 info->count_reassembly_queue--;
1945 info->count_dequeue_reassembly_queue++;
1946 put_receive_buffer(info, response);
1947 offset = 0;
1948 log_read(INFO, "put_receive_buffer offset=0\n");
1949 } else
1950 offset += to_copy;
1951
1952 to_read -= to_copy;
1953 data_read += to_copy;
1954
1955 log_read(INFO, "_get_first_reassembly memcpy %d bytes "
1956 "data_transfer_length-offset=%d after that "
1957 "to_read=%d data_read=%d offset=%d\n",
1958 to_copy, data_length - offset,
1959 to_read, data_read, offset);
1960 }
1961
1962 spin_lock_irq(&info->reassembly_queue_lock);
1963 info->reassembly_data_length -= data_read;
1964 info->reassembly_queue_length -= queue_removed;
1965 spin_unlock_irq(&info->reassembly_queue_lock);
1966
1967 info->first_entry_offset = offset;
1968 log_read(INFO, "returning to thread data_read=%d "
1969 "reassembly_data_length=%d first_entry_offset=%d\n",
1970 data_read, info->reassembly_data_length,
1971 info->first_entry_offset);
1972 read_rfc1002_done:
1973 return data_read;
1974 }
1975
1976 log_read(INFO, "wait_event on more data\n");
1977 rc = wait_event_interruptible(
1978 info->wait_reassembly_queue,
1979 info->reassembly_data_length >= size ||
1980 info->transport_status != SMBD_CONNECTED);
1981 /* Don't return any data if interrupted */
1982 if (rc)
1983 return rc;
1984
1985 if (info->transport_status != SMBD_CONNECTED) {
1986 log_read(ERR, "disconnected\n");
1987 return -ECONNABORTED;
1988 }
1989
1990 goto again;
1991 }
1992
1993 /*
1994 * Receive a page from receive reassembly queue
1995 * page: the page to read data into
1996 * to_read: the length of data to read
1997 * return value: actual data read
1998 */
smbd_recv_page(struct smbd_connection * info,struct page * page,unsigned int page_offset,unsigned int to_read)1999 static int smbd_recv_page(struct smbd_connection *info,
2000 struct page *page, unsigned int page_offset,
2001 unsigned int to_read)
2002 {
2003 int ret;
2004 char *to_address;
2005 void *page_address;
2006
2007 /* make sure we have the page ready for read */
2008 ret = wait_event_interruptible(
2009 info->wait_reassembly_queue,
2010 info->reassembly_data_length >= to_read ||
2011 info->transport_status != SMBD_CONNECTED);
2012 if (ret)
2013 return ret;
2014
2015 /* now we can read from reassembly queue and not sleep */
2016 page_address = kmap_atomic(page);
2017 to_address = (char *) page_address + page_offset;
2018
2019 log_read(INFO, "reading from page=%p address=%p to_read=%d\n",
2020 page, to_address, to_read);
2021
2022 ret = smbd_recv_buf(info, to_address, to_read);
2023 kunmap_atomic(page_address);
2024
2025 return ret;
2026 }
2027
2028 /*
2029 * Receive data from transport
2030 * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC
2031 * return: total bytes read, or 0. SMB Direct will not do partial read.
2032 */
smbd_recv(struct smbd_connection * info,struct msghdr * msg)2033 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
2034 {
2035 char *buf;
2036 struct page *page;
2037 unsigned int to_read, page_offset;
2038 int rc;
2039
2040 if (iov_iter_rw(&msg->msg_iter) == WRITE) {
2041 /* It's a bug in upper layer to get there */
2042 cifs_dbg(VFS, "CIFS: invalid msg iter dir %u\n",
2043 iov_iter_rw(&msg->msg_iter));
2044 rc = -EINVAL;
2045 goto out;
2046 }
2047
2048 switch (iov_iter_type(&msg->msg_iter)) {
2049 case ITER_KVEC:
2050 buf = msg->msg_iter.kvec->iov_base;
2051 to_read = msg->msg_iter.kvec->iov_len;
2052 rc = smbd_recv_buf(info, buf, to_read);
2053 break;
2054
2055 case ITER_BVEC:
2056 page = msg->msg_iter.bvec->bv_page;
2057 page_offset = msg->msg_iter.bvec->bv_offset;
2058 to_read = msg->msg_iter.bvec->bv_len;
2059 rc = smbd_recv_page(info, page, page_offset, to_read);
2060 break;
2061
2062 default:
2063 /* It's a bug in upper layer to get there */
2064 cifs_dbg(VFS, "CIFS: invalid msg type %d\n",
2065 iov_iter_type(&msg->msg_iter));
2066 rc = -EINVAL;
2067 }
2068
2069 out:
2070 /* SMBDirect will read it all or nothing */
2071 if (rc > 0)
2072 msg->msg_iter.count = 0;
2073 return rc;
2074 }
2075
2076 /*
2077 * Send data to transport
2078 * Each rqst is transported as a SMBDirect payload
2079 * rqst: the data to write
2080 * return value: 0 if successfully write, otherwise error code
2081 */
smbd_send(struct TCP_Server_Info * server,int num_rqst,struct smb_rqst * rqst_array)2082 int smbd_send(struct TCP_Server_Info *server,
2083 int num_rqst, struct smb_rqst *rqst_array)
2084 {
2085 struct smbd_connection *info = server->smbd_conn;
2086 struct kvec vec;
2087 int nvecs;
2088 int size;
2089 unsigned int buflen, remaining_data_length;
2090 int start, i, j;
2091 int max_iov_size =
2092 info->max_send_size - sizeof(struct smbd_data_transfer);
2093 struct kvec *iov;
2094 int rc;
2095 struct smb_rqst *rqst;
2096 int rqst_idx;
2097
2098 if (info->transport_status != SMBD_CONNECTED) {
2099 rc = -EAGAIN;
2100 goto done;
2101 }
2102
2103 /*
2104 * Add in the page array if there is one. The caller needs to set
2105 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
2106 * ends at page boundary
2107 */
2108 remaining_data_length = 0;
2109 for (i = 0; i < num_rqst; i++)
2110 remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
2111
2112 if (remaining_data_length + sizeof(struct smbd_data_transfer) >
2113 info->max_fragmented_send_size) {
2114 log_write(ERR, "payload size %d > max size %d\n",
2115 remaining_data_length, info->max_fragmented_send_size);
2116 rc = -EINVAL;
2117 goto done;
2118 }
2119
2120 log_write(INFO, "num_rqst=%d total length=%u\n",
2121 num_rqst, remaining_data_length);
2122
2123 rqst_idx = 0;
2124 next_rqst:
2125 rqst = &rqst_array[rqst_idx];
2126 iov = rqst->rq_iov;
2127
2128 cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
2129 rqst_idx, smb_rqst_len(server, rqst));
2130 for (i = 0; i < rqst->rq_nvec; i++)
2131 dump_smb(iov[i].iov_base, iov[i].iov_len);
2132
2133
2134 log_write(INFO, "rqst_idx=%d nvec=%d rqst->rq_npages=%d rq_pagesz=%d "
2135 "rq_tailsz=%d buflen=%lu\n",
2136 rqst_idx, rqst->rq_nvec, rqst->rq_npages, rqst->rq_pagesz,
2137 rqst->rq_tailsz, smb_rqst_len(server, rqst));
2138
2139 start = i = 0;
2140 buflen = 0;
2141 while (true) {
2142 buflen += iov[i].iov_len;
2143 if (buflen > max_iov_size) {
2144 if (i > start) {
2145 remaining_data_length -=
2146 (buflen-iov[i].iov_len);
2147 log_write(INFO, "sending iov[] from start=%d "
2148 "i=%d nvecs=%d "
2149 "remaining_data_length=%d\n",
2150 start, i, i-start,
2151 remaining_data_length);
2152 rc = smbd_post_send_data(
2153 info, &iov[start], i-start,
2154 remaining_data_length);
2155 if (rc)
2156 goto done;
2157 } else {
2158 /* iov[start] is too big, break it */
2159 nvecs = (buflen+max_iov_size-1)/max_iov_size;
2160 log_write(INFO, "iov[%d] iov_base=%p buflen=%d"
2161 " break to %d vectors\n",
2162 start, iov[start].iov_base,
2163 buflen, nvecs);
2164 for (j = 0; j < nvecs; j++) {
2165 vec.iov_base =
2166 (char *)iov[start].iov_base +
2167 j*max_iov_size;
2168 vec.iov_len = max_iov_size;
2169 if (j == nvecs-1)
2170 vec.iov_len =
2171 buflen -
2172 max_iov_size*(nvecs-1);
2173 remaining_data_length -= vec.iov_len;
2174 log_write(INFO,
2175 "sending vec j=%d iov_base=%p"
2176 " iov_len=%zu "
2177 "remaining_data_length=%d\n",
2178 j, vec.iov_base, vec.iov_len,
2179 remaining_data_length);
2180 rc = smbd_post_send_data(
2181 info, &vec, 1,
2182 remaining_data_length);
2183 if (rc)
2184 goto done;
2185 }
2186 i++;
2187 if (i == rqst->rq_nvec)
2188 break;
2189 }
2190 start = i;
2191 buflen = 0;
2192 } else {
2193 i++;
2194 if (i == rqst->rq_nvec) {
2195 /* send out all remaining vecs */
2196 remaining_data_length -= buflen;
2197 log_write(INFO,
2198 "sending iov[] from start=%d i=%d "
2199 "nvecs=%d remaining_data_length=%d\n",
2200 start, i, i-start,
2201 remaining_data_length);
2202 rc = smbd_post_send_data(info, &iov[start],
2203 i-start, remaining_data_length);
2204 if (rc)
2205 goto done;
2206 break;
2207 }
2208 }
2209 log_write(INFO, "looping i=%d buflen=%d\n", i, buflen);
2210 }
2211
2212 /* now sending pages if there are any */
2213 for (i = 0; i < rqst->rq_npages; i++) {
2214 unsigned int offset;
2215
2216 rqst_page_get_length(rqst, i, &buflen, &offset);
2217 nvecs = (buflen + max_iov_size - 1) / max_iov_size;
2218 log_write(INFO, "sending pages buflen=%d nvecs=%d\n",
2219 buflen, nvecs);
2220 for (j = 0; j < nvecs; j++) {
2221 size = max_iov_size;
2222 if (j == nvecs-1)
2223 size = buflen - j*max_iov_size;
2224 remaining_data_length -= size;
2225 log_write(INFO, "sending pages i=%d offset=%d size=%d"
2226 " remaining_data_length=%d\n",
2227 i, j*max_iov_size+offset, size,
2228 remaining_data_length);
2229 rc = smbd_post_send_page(
2230 info, rqst->rq_pages[i],
2231 j*max_iov_size + offset,
2232 size, remaining_data_length);
2233 if (rc)
2234 goto done;
2235 }
2236 }
2237
2238 rqst_idx++;
2239 if (rqst_idx < num_rqst)
2240 goto next_rqst;
2241
2242 done:
2243 /*
2244 * As an optimization, we don't wait for individual I/O to finish
2245 * before sending the next one.
2246 * Send them all and wait for pending send count to get to 0
2247 * that means all the I/Os have been out and we are good to return
2248 */
2249
2250 wait_event(info->wait_send_payload_pending,
2251 atomic_read(&info->send_payload_pending) == 0);
2252
2253 return rc;
2254 }
2255
register_mr_done(struct ib_cq * cq,struct ib_wc * wc)2256 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2257 {
2258 struct smbd_mr *mr;
2259 struct ib_cqe *cqe;
2260
2261 if (wc->status) {
2262 log_rdma_mr(ERR, "status=%d\n", wc->status);
2263 cqe = wc->wr_cqe;
2264 mr = container_of(cqe, struct smbd_mr, cqe);
2265 smbd_disconnect_rdma_connection(mr->conn);
2266 }
2267 }
2268
2269 /*
2270 * The work queue function that recovers MRs
2271 * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2272 * again. Both calls are slow, so finish them in a workqueue. This will not
2273 * block I/O path.
2274 * There is one workqueue that recovers MRs, there is no need to lock as the
2275 * I/O requests calling smbd_register_mr will never update the links in the
2276 * mr_list.
2277 */
smbd_mr_recovery_work(struct work_struct * work)2278 static void smbd_mr_recovery_work(struct work_struct *work)
2279 {
2280 struct smbd_connection *info =
2281 container_of(work, struct smbd_connection, mr_recovery_work);
2282 struct smbd_mr *smbdirect_mr;
2283 int rc;
2284
2285 list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2286 if (smbdirect_mr->state == MR_ERROR) {
2287
2288 /* recover this MR entry */
2289 rc = ib_dereg_mr(smbdirect_mr->mr);
2290 if (rc) {
2291 log_rdma_mr(ERR,
2292 "ib_dereg_mr failed rc=%x\n",
2293 rc);
2294 smbd_disconnect_rdma_connection(info);
2295 continue;
2296 }
2297
2298 smbdirect_mr->mr = ib_alloc_mr(
2299 info->pd, info->mr_type,
2300 info->max_frmr_depth);
2301 if (IS_ERR(smbdirect_mr->mr)) {
2302 log_rdma_mr(ERR,
2303 "ib_alloc_mr failed mr_type=%x "
2304 "max_frmr_depth=%x\n",
2305 info->mr_type,
2306 info->max_frmr_depth);
2307 smbd_disconnect_rdma_connection(info);
2308 continue;
2309 }
2310 } else
2311 /* This MR is being used, don't recover it */
2312 continue;
2313
2314 smbdirect_mr->state = MR_READY;
2315
2316 /* smbdirect_mr->state is updated by this function
2317 * and is read and updated by I/O issuing CPUs trying
2318 * to get a MR, the call to atomic_inc_return
2319 * implicates a memory barrier and guarantees this
2320 * value is updated before waking up any calls to
2321 * get_mr() from the I/O issuing CPUs
2322 */
2323 if (atomic_inc_return(&info->mr_ready_count) == 1)
2324 wake_up_interruptible(&info->wait_mr);
2325 }
2326 }
2327
destroy_mr_list(struct smbd_connection * info)2328 static void destroy_mr_list(struct smbd_connection *info)
2329 {
2330 struct smbd_mr *mr, *tmp;
2331
2332 cancel_work_sync(&info->mr_recovery_work);
2333 list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2334 if (mr->state == MR_INVALIDATED)
2335 ib_dma_unmap_sg(info->id->device, mr->sgl,
2336 mr->sgl_count, mr->dir);
2337 ib_dereg_mr(mr->mr);
2338 kfree(mr->sgl);
2339 kfree(mr);
2340 }
2341 }
2342
2343 /*
2344 * Allocate MRs used for RDMA read/write
2345 * The number of MRs will not exceed hardware capability in responder_resources
2346 * All MRs are kept in mr_list. The MR can be recovered after it's used
2347 * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2348 * as MRs are used and recovered for I/O, but the list links will not change
2349 */
allocate_mr_list(struct smbd_connection * info)2350 static int allocate_mr_list(struct smbd_connection *info)
2351 {
2352 int i;
2353 struct smbd_mr *smbdirect_mr, *tmp;
2354
2355 INIT_LIST_HEAD(&info->mr_list);
2356 init_waitqueue_head(&info->wait_mr);
2357 spin_lock_init(&info->mr_list_lock);
2358 atomic_set(&info->mr_ready_count, 0);
2359 atomic_set(&info->mr_used_count, 0);
2360 init_waitqueue_head(&info->wait_for_mr_cleanup);
2361 INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2362 /* Allocate more MRs (2x) than hardware responder_resources */
2363 for (i = 0; i < info->responder_resources * 2; i++) {
2364 smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2365 if (!smbdirect_mr)
2366 goto out;
2367 smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type,
2368 info->max_frmr_depth);
2369 if (IS_ERR(smbdirect_mr->mr)) {
2370 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x "
2371 "max_frmr_depth=%x\n",
2372 info->mr_type, info->max_frmr_depth);
2373 goto out;
2374 }
2375 smbdirect_mr->sgl = kcalloc(
2376 info->max_frmr_depth,
2377 sizeof(struct scatterlist),
2378 GFP_KERNEL);
2379 if (!smbdirect_mr->sgl) {
2380 log_rdma_mr(ERR, "failed to allocate sgl\n");
2381 ib_dereg_mr(smbdirect_mr->mr);
2382 goto out;
2383 }
2384 smbdirect_mr->state = MR_READY;
2385 smbdirect_mr->conn = info;
2386
2387 list_add_tail(&smbdirect_mr->list, &info->mr_list);
2388 atomic_inc(&info->mr_ready_count);
2389 }
2390 return 0;
2391
2392 out:
2393 kfree(smbdirect_mr);
2394
2395 list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2396 list_del(&smbdirect_mr->list);
2397 ib_dereg_mr(smbdirect_mr->mr);
2398 kfree(smbdirect_mr->sgl);
2399 kfree(smbdirect_mr);
2400 }
2401 return -ENOMEM;
2402 }
2403
2404 /*
2405 * Get a MR from mr_list. This function waits until there is at least one
2406 * MR available in the list. It may access the list while the
2407 * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2408 * as they never modify the same places. However, there may be several CPUs
2409 * issueing I/O trying to get MR at the same time, mr_list_lock is used to
2410 * protect this situation.
2411 */
get_mr(struct smbd_connection * info)2412 static struct smbd_mr *get_mr(struct smbd_connection *info)
2413 {
2414 struct smbd_mr *ret;
2415 int rc;
2416 again:
2417 rc = wait_event_interruptible(info->wait_mr,
2418 atomic_read(&info->mr_ready_count) ||
2419 info->transport_status != SMBD_CONNECTED);
2420 if (rc) {
2421 log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2422 return NULL;
2423 }
2424
2425 if (info->transport_status != SMBD_CONNECTED) {
2426 log_rdma_mr(ERR, "info->transport_status=%x\n",
2427 info->transport_status);
2428 return NULL;
2429 }
2430
2431 spin_lock(&info->mr_list_lock);
2432 list_for_each_entry(ret, &info->mr_list, list) {
2433 if (ret->state == MR_READY) {
2434 ret->state = MR_REGISTERED;
2435 spin_unlock(&info->mr_list_lock);
2436 atomic_dec(&info->mr_ready_count);
2437 atomic_inc(&info->mr_used_count);
2438 return ret;
2439 }
2440 }
2441
2442 spin_unlock(&info->mr_list_lock);
2443 /*
2444 * It is possible that we could fail to get MR because other processes may
2445 * try to acquire a MR at the same time. If this is the case, retry it.
2446 */
2447 goto again;
2448 }
2449
2450 /*
2451 * Register memory for RDMA read/write
2452 * pages[]: the list of pages to register memory with
2453 * num_pages: the number of pages to register
2454 * tailsz: if non-zero, the bytes to register in the last page
2455 * writing: true if this is a RDMA write (SMB read), false for RDMA read
2456 * need_invalidate: true if this MR needs to be locally invalidated after I/O
2457 * return value: the MR registered, NULL if failed.
2458 */
smbd_register_mr(struct smbd_connection * info,struct page * pages[],int num_pages,int offset,int tailsz,bool writing,bool need_invalidate)2459 struct smbd_mr *smbd_register_mr(
2460 struct smbd_connection *info, struct page *pages[], int num_pages,
2461 int offset, int tailsz, bool writing, bool need_invalidate)
2462 {
2463 struct smbd_mr *smbdirect_mr;
2464 int rc, i;
2465 enum dma_data_direction dir;
2466 struct ib_reg_wr *reg_wr;
2467
2468 if (num_pages > info->max_frmr_depth) {
2469 log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2470 num_pages, info->max_frmr_depth);
2471 return NULL;
2472 }
2473
2474 smbdirect_mr = get_mr(info);
2475 if (!smbdirect_mr) {
2476 log_rdma_mr(ERR, "get_mr returning NULL\n");
2477 return NULL;
2478 }
2479 smbdirect_mr->need_invalidate = need_invalidate;
2480 smbdirect_mr->sgl_count = num_pages;
2481 sg_init_table(smbdirect_mr->sgl, num_pages);
2482
2483 log_rdma_mr(INFO, "num_pages=0x%x offset=0x%x tailsz=0x%x\n",
2484 num_pages, offset, tailsz);
2485
2486 if (num_pages == 1) {
2487 sg_set_page(&smbdirect_mr->sgl[0], pages[0], tailsz, offset);
2488 goto skip_multiple_pages;
2489 }
2490
2491 /* We have at least two pages to register */
2492 sg_set_page(
2493 &smbdirect_mr->sgl[0], pages[0], PAGE_SIZE - offset, offset);
2494 i = 1;
2495 while (i < num_pages - 1) {
2496 sg_set_page(&smbdirect_mr->sgl[i], pages[i], PAGE_SIZE, 0);
2497 i++;
2498 }
2499 sg_set_page(&smbdirect_mr->sgl[i], pages[i],
2500 tailsz ? tailsz : PAGE_SIZE, 0);
2501
2502 skip_multiple_pages:
2503 dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2504 smbdirect_mr->dir = dir;
2505 rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgl, num_pages, dir);
2506 if (!rc) {
2507 log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2508 num_pages, dir, rc);
2509 goto dma_map_error;
2510 }
2511
2512 rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgl, num_pages,
2513 NULL, PAGE_SIZE);
2514 if (rc != num_pages) {
2515 log_rdma_mr(ERR,
2516 "ib_map_mr_sg failed rc = %d num_pages = %x\n",
2517 rc, num_pages);
2518 goto map_mr_error;
2519 }
2520
2521 ib_update_fast_reg_key(smbdirect_mr->mr,
2522 ib_inc_rkey(smbdirect_mr->mr->rkey));
2523 reg_wr = &smbdirect_mr->wr;
2524 reg_wr->wr.opcode = IB_WR_REG_MR;
2525 smbdirect_mr->cqe.done = register_mr_done;
2526 reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2527 reg_wr->wr.num_sge = 0;
2528 reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2529 reg_wr->mr = smbdirect_mr->mr;
2530 reg_wr->key = smbdirect_mr->mr->rkey;
2531 reg_wr->access = writing ?
2532 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2533 IB_ACCESS_REMOTE_READ;
2534
2535 /*
2536 * There is no need for waiting for complemtion on ib_post_send
2537 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2538 * on the next ib_post_send when we actaully send I/O to remote peer
2539 */
2540 rc = ib_post_send(info->id->qp, ®_wr->wr, NULL);
2541 if (!rc)
2542 return smbdirect_mr;
2543
2544 log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2545 rc, reg_wr->key);
2546
2547 /* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2548 map_mr_error:
2549 ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgl,
2550 smbdirect_mr->sgl_count, smbdirect_mr->dir);
2551
2552 dma_map_error:
2553 smbdirect_mr->state = MR_ERROR;
2554 if (atomic_dec_and_test(&info->mr_used_count))
2555 wake_up(&info->wait_for_mr_cleanup);
2556
2557 smbd_disconnect_rdma_connection(info);
2558
2559 return NULL;
2560 }
2561
local_inv_done(struct ib_cq * cq,struct ib_wc * wc)2562 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2563 {
2564 struct smbd_mr *smbdirect_mr;
2565 struct ib_cqe *cqe;
2566
2567 cqe = wc->wr_cqe;
2568 smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2569 smbdirect_mr->state = MR_INVALIDATED;
2570 if (wc->status != IB_WC_SUCCESS) {
2571 log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2572 smbdirect_mr->state = MR_ERROR;
2573 }
2574 complete(&smbdirect_mr->invalidate_done);
2575 }
2576
2577 /*
2578 * Deregister a MR after I/O is done
2579 * This function may wait if remote invalidation is not used
2580 * and we have to locally invalidate the buffer to prevent data is being
2581 * modified by remote peer after upper layer consumes it
2582 */
smbd_deregister_mr(struct smbd_mr * smbdirect_mr)2583 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2584 {
2585 struct ib_send_wr *wr;
2586 struct smbd_connection *info = smbdirect_mr->conn;
2587 int rc = 0;
2588
2589 if (smbdirect_mr->need_invalidate) {
2590 /* Need to finish local invalidation before returning */
2591 wr = &smbdirect_mr->inv_wr;
2592 wr->opcode = IB_WR_LOCAL_INV;
2593 smbdirect_mr->cqe.done = local_inv_done;
2594 wr->wr_cqe = &smbdirect_mr->cqe;
2595 wr->num_sge = 0;
2596 wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2597 wr->send_flags = IB_SEND_SIGNALED;
2598
2599 init_completion(&smbdirect_mr->invalidate_done);
2600 rc = ib_post_send(info->id->qp, wr, NULL);
2601 if (rc) {
2602 log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2603 smbd_disconnect_rdma_connection(info);
2604 goto done;
2605 }
2606 wait_for_completion(&smbdirect_mr->invalidate_done);
2607 smbdirect_mr->need_invalidate = false;
2608 } else
2609 /*
2610 * For remote invalidation, just set it to MR_INVALIDATED
2611 * and defer to mr_recovery_work to recover the MR for next use
2612 */
2613 smbdirect_mr->state = MR_INVALIDATED;
2614
2615 if (smbdirect_mr->state == MR_INVALIDATED) {
2616 ib_dma_unmap_sg(
2617 info->id->device, smbdirect_mr->sgl,
2618 smbdirect_mr->sgl_count,
2619 smbdirect_mr->dir);
2620 smbdirect_mr->state = MR_READY;
2621 if (atomic_inc_return(&info->mr_ready_count) == 1)
2622 wake_up_interruptible(&info->wait_mr);
2623 } else
2624 /*
2625 * Schedule the work to do MR recovery for future I/Os MR
2626 * recovery is slow and don't want it to block current I/O
2627 */
2628 queue_work(info->workqueue, &info->mr_recovery_work);
2629
2630 done:
2631 if (atomic_dec_and_test(&info->mr_used_count))
2632 wake_up(&info->wait_for_mr_cleanup);
2633
2634 return rc;
2635 }
2636