1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * SMP support for ppc.
4 *
5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6 * deal of code from the sparc and intel versions.
7 *
8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9 *
10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
12 */
13
14 #undef DEBUG
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/sched/topology.h>
21 #include <linux/smp.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/err.h>
28 #include <linux/device.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/profile.h>
33 #include <linux/processor.h>
34 #include <linux/random.h>
35 #include <linux/stackprotector.h>
36
37 #include <asm/ptrace.h>
38 #include <linux/atomic.h>
39 #include <asm/irq.h>
40 #include <asm/hw_irq.h>
41 #include <asm/kvm_ppc.h>
42 #include <asm/dbell.h>
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/prom.h>
46 #include <asm/smp.h>
47 #include <asm/time.h>
48 #include <asm/machdep.h>
49 #include <asm/cputhreads.h>
50 #include <asm/cputable.h>
51 #include <asm/mpic.h>
52 #include <asm/vdso_datapage.h>
53 #ifdef CONFIG_PPC64
54 #include <asm/paca.h>
55 #endif
56 #include <asm/vdso.h>
57 #include <asm/debug.h>
58 #include <asm/kexec.h>
59 #include <asm/asm-prototypes.h>
60 #include <asm/cpu_has_feature.h>
61 #include <asm/ftrace.h>
62
63 #ifdef DEBUG
64 #include <asm/udbg.h>
65 #define DBG(fmt...) udbg_printf(fmt)
66 #else
67 #define DBG(fmt...)
68 #endif
69
70 #ifdef CONFIG_HOTPLUG_CPU
71 /* State of each CPU during hotplug phases */
72 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
73 #endif
74
75 struct task_struct *secondary_current;
76 bool has_big_cores;
77
78 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
79 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
80 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
81 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
82
83 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
84 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
85 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
86 EXPORT_SYMBOL_GPL(has_big_cores);
87
88 #define MAX_THREAD_LIST_SIZE 8
89 #define THREAD_GROUP_SHARE_L1 1
90 struct thread_groups {
91 unsigned int property;
92 unsigned int nr_groups;
93 unsigned int threads_per_group;
94 unsigned int thread_list[MAX_THREAD_LIST_SIZE];
95 };
96
97 /*
98 * On big-cores system, cpu_l1_cache_map for each CPU corresponds to
99 * the set its siblings that share the L1-cache.
100 */
101 DEFINE_PER_CPU(cpumask_var_t, cpu_l1_cache_map);
102
103 /* SMP operations for this machine */
104 struct smp_ops_t *smp_ops;
105
106 /* Can't be static due to PowerMac hackery */
107 volatile unsigned int cpu_callin_map[NR_CPUS];
108
109 int smt_enabled_at_boot = 1;
110
111 /*
112 * Returns 1 if the specified cpu should be brought up during boot.
113 * Used to inhibit booting threads if they've been disabled or
114 * limited on the command line
115 */
smp_generic_cpu_bootable(unsigned int nr)116 int smp_generic_cpu_bootable(unsigned int nr)
117 {
118 /* Special case - we inhibit secondary thread startup
119 * during boot if the user requests it.
120 */
121 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
122 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
123 return 0;
124 if (smt_enabled_at_boot
125 && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
126 return 0;
127 }
128
129 return 1;
130 }
131
132
133 #ifdef CONFIG_PPC64
smp_generic_kick_cpu(int nr)134 int smp_generic_kick_cpu(int nr)
135 {
136 if (nr < 0 || nr >= nr_cpu_ids)
137 return -EINVAL;
138
139 /*
140 * The processor is currently spinning, waiting for the
141 * cpu_start field to become non-zero After we set cpu_start,
142 * the processor will continue on to secondary_start
143 */
144 if (!paca_ptrs[nr]->cpu_start) {
145 paca_ptrs[nr]->cpu_start = 1;
146 smp_mb();
147 return 0;
148 }
149
150 #ifdef CONFIG_HOTPLUG_CPU
151 /*
152 * Ok it's not there, so it might be soft-unplugged, let's
153 * try to bring it back
154 */
155 generic_set_cpu_up(nr);
156 smp_wmb();
157 smp_send_reschedule(nr);
158 #endif /* CONFIG_HOTPLUG_CPU */
159
160 return 0;
161 }
162 #endif /* CONFIG_PPC64 */
163
call_function_action(int irq,void * data)164 static irqreturn_t call_function_action(int irq, void *data)
165 {
166 generic_smp_call_function_interrupt();
167 return IRQ_HANDLED;
168 }
169
reschedule_action(int irq,void * data)170 static irqreturn_t reschedule_action(int irq, void *data)
171 {
172 scheduler_ipi();
173 return IRQ_HANDLED;
174 }
175
176 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast_ipi_action(int irq,void * data)177 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
178 {
179 timer_broadcast_interrupt();
180 return IRQ_HANDLED;
181 }
182 #endif
183
184 #ifdef CONFIG_NMI_IPI
nmi_ipi_action(int irq,void * data)185 static irqreturn_t nmi_ipi_action(int irq, void *data)
186 {
187 smp_handle_nmi_ipi(get_irq_regs());
188 return IRQ_HANDLED;
189 }
190 #endif
191
192 static irq_handler_t smp_ipi_action[] = {
193 [PPC_MSG_CALL_FUNCTION] = call_function_action,
194 [PPC_MSG_RESCHEDULE] = reschedule_action,
195 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
196 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
197 #endif
198 #ifdef CONFIG_NMI_IPI
199 [PPC_MSG_NMI_IPI] = nmi_ipi_action,
200 #endif
201 };
202
203 /*
204 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
205 * than going through the call function infrastructure, and strongly
206 * serialized, so it is more appropriate for debugging.
207 */
208 const char *smp_ipi_name[] = {
209 [PPC_MSG_CALL_FUNCTION] = "ipi call function",
210 [PPC_MSG_RESCHEDULE] = "ipi reschedule",
211 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
212 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
213 #endif
214 #ifdef CONFIG_NMI_IPI
215 [PPC_MSG_NMI_IPI] = "nmi ipi",
216 #endif
217 };
218
219 /* optional function to request ipi, for controllers with >= 4 ipis */
smp_request_message_ipi(int virq,int msg)220 int smp_request_message_ipi(int virq, int msg)
221 {
222 int err;
223
224 if (msg < 0 || msg > PPC_MSG_NMI_IPI)
225 return -EINVAL;
226 #ifndef CONFIG_NMI_IPI
227 if (msg == PPC_MSG_NMI_IPI)
228 return 1;
229 #endif
230
231 err = request_irq(virq, smp_ipi_action[msg],
232 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
233 smp_ipi_name[msg], NULL);
234 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
235 virq, smp_ipi_name[msg], err);
236
237 return err;
238 }
239
240 #ifdef CONFIG_PPC_SMP_MUXED_IPI
241 struct cpu_messages {
242 long messages; /* current messages */
243 };
244 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
245
smp_muxed_ipi_set_message(int cpu,int msg)246 void smp_muxed_ipi_set_message(int cpu, int msg)
247 {
248 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
249 char *message = (char *)&info->messages;
250
251 /*
252 * Order previous accesses before accesses in the IPI handler.
253 */
254 smp_mb();
255 message[msg] = 1;
256 }
257
smp_muxed_ipi_message_pass(int cpu,int msg)258 void smp_muxed_ipi_message_pass(int cpu, int msg)
259 {
260 smp_muxed_ipi_set_message(cpu, msg);
261
262 /*
263 * cause_ipi functions are required to include a full barrier
264 * before doing whatever causes the IPI.
265 */
266 smp_ops->cause_ipi(cpu);
267 }
268
269 #ifdef __BIG_ENDIAN__
270 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
271 #else
272 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
273 #endif
274
smp_ipi_demux(void)275 irqreturn_t smp_ipi_demux(void)
276 {
277 mb(); /* order any irq clear */
278
279 return smp_ipi_demux_relaxed();
280 }
281
282 /* sync-free variant. Callers should ensure synchronization */
smp_ipi_demux_relaxed(void)283 irqreturn_t smp_ipi_demux_relaxed(void)
284 {
285 struct cpu_messages *info;
286 unsigned long all;
287
288 info = this_cpu_ptr(&ipi_message);
289 do {
290 all = xchg(&info->messages, 0);
291 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
292 /*
293 * Must check for PPC_MSG_RM_HOST_ACTION messages
294 * before PPC_MSG_CALL_FUNCTION messages because when
295 * a VM is destroyed, we call kick_all_cpus_sync()
296 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
297 * messages have completed before we free any VCPUs.
298 */
299 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
300 kvmppc_xics_ipi_action();
301 #endif
302 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
303 generic_smp_call_function_interrupt();
304 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
305 scheduler_ipi();
306 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
307 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
308 timer_broadcast_interrupt();
309 #endif
310 #ifdef CONFIG_NMI_IPI
311 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
312 nmi_ipi_action(0, NULL);
313 #endif
314 } while (info->messages);
315
316 return IRQ_HANDLED;
317 }
318 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
319
do_message_pass(int cpu,int msg)320 static inline void do_message_pass(int cpu, int msg)
321 {
322 if (smp_ops->message_pass)
323 smp_ops->message_pass(cpu, msg);
324 #ifdef CONFIG_PPC_SMP_MUXED_IPI
325 else
326 smp_muxed_ipi_message_pass(cpu, msg);
327 #endif
328 }
329
smp_send_reschedule(int cpu)330 void smp_send_reschedule(int cpu)
331 {
332 if (likely(smp_ops))
333 do_message_pass(cpu, PPC_MSG_RESCHEDULE);
334 }
335 EXPORT_SYMBOL_GPL(smp_send_reschedule);
336
arch_send_call_function_single_ipi(int cpu)337 void arch_send_call_function_single_ipi(int cpu)
338 {
339 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
340 }
341
arch_send_call_function_ipi_mask(const struct cpumask * mask)342 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
343 {
344 unsigned int cpu;
345
346 for_each_cpu(cpu, mask)
347 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
348 }
349
350 #ifdef CONFIG_NMI_IPI
351
352 /*
353 * "NMI IPI" system.
354 *
355 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
356 * a running system. They can be used for crash, debug, halt/reboot, etc.
357 *
358 * The IPI call waits with interrupts disabled until all targets enter the
359 * NMI handler, then returns. Subsequent IPIs can be issued before targets
360 * have returned from their handlers, so there is no guarantee about
361 * concurrency or re-entrancy.
362 *
363 * A new NMI can be issued before all targets exit the handler.
364 *
365 * The IPI call may time out without all targets entering the NMI handler.
366 * In that case, there is some logic to recover (and ignore subsequent
367 * NMI interrupts that may eventually be raised), but the platform interrupt
368 * handler may not be able to distinguish this from other exception causes,
369 * which may cause a crash.
370 */
371
372 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
373 static struct cpumask nmi_ipi_pending_mask;
374 static bool nmi_ipi_busy = false;
375 static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
376
nmi_ipi_lock_start(unsigned long * flags)377 static void nmi_ipi_lock_start(unsigned long *flags)
378 {
379 raw_local_irq_save(*flags);
380 hard_irq_disable();
381 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
382 raw_local_irq_restore(*flags);
383 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
384 raw_local_irq_save(*flags);
385 hard_irq_disable();
386 }
387 }
388
nmi_ipi_lock(void)389 static void nmi_ipi_lock(void)
390 {
391 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
392 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
393 }
394
nmi_ipi_unlock(void)395 static void nmi_ipi_unlock(void)
396 {
397 smp_mb();
398 WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
399 atomic_set(&__nmi_ipi_lock, 0);
400 }
401
nmi_ipi_unlock_end(unsigned long * flags)402 static void nmi_ipi_unlock_end(unsigned long *flags)
403 {
404 nmi_ipi_unlock();
405 raw_local_irq_restore(*flags);
406 }
407
408 /*
409 * Platform NMI handler calls this to ack
410 */
smp_handle_nmi_ipi(struct pt_regs * regs)411 int smp_handle_nmi_ipi(struct pt_regs *regs)
412 {
413 void (*fn)(struct pt_regs *) = NULL;
414 unsigned long flags;
415 int me = raw_smp_processor_id();
416 int ret = 0;
417
418 /*
419 * Unexpected NMIs are possible here because the interrupt may not
420 * be able to distinguish NMI IPIs from other types of NMIs, or
421 * because the caller may have timed out.
422 */
423 nmi_ipi_lock_start(&flags);
424 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
425 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
426 fn = READ_ONCE(nmi_ipi_function);
427 WARN_ON_ONCE(!fn);
428 ret = 1;
429 }
430 nmi_ipi_unlock_end(&flags);
431
432 if (fn)
433 fn(regs);
434
435 return ret;
436 }
437
do_smp_send_nmi_ipi(int cpu,bool safe)438 static void do_smp_send_nmi_ipi(int cpu, bool safe)
439 {
440 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
441 return;
442
443 if (cpu >= 0) {
444 do_message_pass(cpu, PPC_MSG_NMI_IPI);
445 } else {
446 int c;
447
448 for_each_online_cpu(c) {
449 if (c == raw_smp_processor_id())
450 continue;
451 do_message_pass(c, PPC_MSG_NMI_IPI);
452 }
453 }
454 }
455
456 /*
457 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
458 * - fn is the target callback function.
459 * - delay_us > 0 is the delay before giving up waiting for targets to
460 * begin executing the handler, == 0 specifies indefinite delay.
461 */
__smp_send_nmi_ipi(int cpu,void (* fn)(struct pt_regs *),u64 delay_us,bool safe)462 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
463 u64 delay_us, bool safe)
464 {
465 unsigned long flags;
466 int me = raw_smp_processor_id();
467 int ret = 1;
468
469 BUG_ON(cpu == me);
470 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
471
472 if (unlikely(!smp_ops))
473 return 0;
474
475 nmi_ipi_lock_start(&flags);
476 while (nmi_ipi_busy) {
477 nmi_ipi_unlock_end(&flags);
478 spin_until_cond(!nmi_ipi_busy);
479 nmi_ipi_lock_start(&flags);
480 }
481 nmi_ipi_busy = true;
482 nmi_ipi_function = fn;
483
484 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
485
486 if (cpu < 0) {
487 /* ALL_OTHERS */
488 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
489 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
490 } else {
491 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
492 }
493
494 nmi_ipi_unlock();
495
496 /* Interrupts remain hard disabled */
497
498 do_smp_send_nmi_ipi(cpu, safe);
499
500 nmi_ipi_lock();
501 /* nmi_ipi_busy is set here, so unlock/lock is okay */
502 while (!cpumask_empty(&nmi_ipi_pending_mask)) {
503 nmi_ipi_unlock();
504 udelay(1);
505 nmi_ipi_lock();
506 if (delay_us) {
507 delay_us--;
508 if (!delay_us)
509 break;
510 }
511 }
512
513 if (!cpumask_empty(&nmi_ipi_pending_mask)) {
514 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
515 ret = 0;
516 cpumask_clear(&nmi_ipi_pending_mask);
517 }
518
519 nmi_ipi_function = NULL;
520 nmi_ipi_busy = false;
521
522 nmi_ipi_unlock_end(&flags);
523
524 return ret;
525 }
526
smp_send_nmi_ipi(int cpu,void (* fn)(struct pt_regs *),u64 delay_us)527 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
528 {
529 return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
530 }
531
smp_send_safe_nmi_ipi(int cpu,void (* fn)(struct pt_regs *),u64 delay_us)532 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
533 {
534 return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
535 }
536 #endif /* CONFIG_NMI_IPI */
537
538 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)539 void tick_broadcast(const struct cpumask *mask)
540 {
541 unsigned int cpu;
542
543 for_each_cpu(cpu, mask)
544 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
545 }
546 #endif
547
548 #ifdef CONFIG_DEBUGGER
debugger_ipi_callback(struct pt_regs * regs)549 void debugger_ipi_callback(struct pt_regs *regs)
550 {
551 debugger_ipi(regs);
552 }
553
smp_send_debugger_break(void)554 void smp_send_debugger_break(void)
555 {
556 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
557 }
558 #endif
559
560 #ifdef CONFIG_KEXEC_CORE
crash_send_ipi(void (* crash_ipi_callback)(struct pt_regs *))561 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
562 {
563 int cpu;
564
565 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
566 if (kdump_in_progress() && crash_wake_offline) {
567 for_each_present_cpu(cpu) {
568 if (cpu_online(cpu))
569 continue;
570 /*
571 * crash_ipi_callback will wait for
572 * all cpus, including offline CPUs.
573 * We don't care about nmi_ipi_function.
574 * Offline cpus will jump straight into
575 * crash_ipi_callback, we can skip the
576 * entire NMI dance and waiting for
577 * cpus to clear pending mask, etc.
578 */
579 do_smp_send_nmi_ipi(cpu, false);
580 }
581 }
582 }
583 #endif
584
585 #ifdef CONFIG_NMI_IPI
crash_stop_this_cpu(struct pt_regs * regs)586 static void crash_stop_this_cpu(struct pt_regs *regs)
587 #else
588 static void crash_stop_this_cpu(void *dummy)
589 #endif
590 {
591 /*
592 * Just busy wait here and avoid marking CPU as offline to ensure
593 * register data is captured appropriately.
594 */
595 while (1)
596 cpu_relax();
597 }
598
crash_smp_send_stop(void)599 void crash_smp_send_stop(void)
600 {
601 static bool stopped = false;
602
603 if (stopped)
604 return;
605
606 stopped = true;
607
608 #ifdef CONFIG_NMI_IPI
609 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_stop_this_cpu, 1000000);
610 #else
611 smp_call_function(crash_stop_this_cpu, NULL, 0);
612 #endif /* CONFIG_NMI_IPI */
613 }
614
615 #ifdef CONFIG_NMI_IPI
nmi_stop_this_cpu(struct pt_regs * regs)616 static void nmi_stop_this_cpu(struct pt_regs *regs)
617 {
618 /*
619 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
620 */
621 set_cpu_online(smp_processor_id(), false);
622
623 spin_begin();
624 while (1)
625 spin_cpu_relax();
626 }
627
smp_send_stop(void)628 void smp_send_stop(void)
629 {
630 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
631 }
632
633 #else /* CONFIG_NMI_IPI */
634
stop_this_cpu(void * dummy)635 static void stop_this_cpu(void *dummy)
636 {
637 hard_irq_disable();
638
639 /*
640 * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
641 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
642 * to know other CPUs are offline before it breaks locks to flush
643 * printk buffers, in case we panic()ed while holding the lock.
644 */
645 set_cpu_online(smp_processor_id(), false);
646
647 spin_begin();
648 while (1)
649 spin_cpu_relax();
650 }
651
smp_send_stop(void)652 void smp_send_stop(void)
653 {
654 static bool stopped = false;
655
656 /*
657 * Prevent waiting on csd lock from a previous smp_send_stop.
658 * This is racy, but in general callers try to do the right
659 * thing and only fire off one smp_send_stop (e.g., see
660 * kernel/panic.c)
661 */
662 if (stopped)
663 return;
664
665 stopped = true;
666
667 smp_call_function(stop_this_cpu, NULL, 0);
668 }
669 #endif /* CONFIG_NMI_IPI */
670
671 struct task_struct *current_set[NR_CPUS];
672
smp_store_cpu_info(int id)673 static void smp_store_cpu_info(int id)
674 {
675 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
676 #ifdef CONFIG_PPC_FSL_BOOK3E
677 per_cpu(next_tlbcam_idx, id)
678 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
679 #endif
680 }
681
682 /*
683 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
684 * rather than just passing around the cpumask we pass around a function that
685 * returns the that cpumask for the given CPU.
686 */
set_cpus_related(int i,int j,struct cpumask * (* get_cpumask)(int))687 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
688 {
689 cpumask_set_cpu(i, get_cpumask(j));
690 cpumask_set_cpu(j, get_cpumask(i));
691 }
692
693 #ifdef CONFIG_HOTPLUG_CPU
set_cpus_unrelated(int i,int j,struct cpumask * (* get_cpumask)(int))694 static void set_cpus_unrelated(int i, int j,
695 struct cpumask *(*get_cpumask)(int))
696 {
697 cpumask_clear_cpu(i, get_cpumask(j));
698 cpumask_clear_cpu(j, get_cpumask(i));
699 }
700 #endif
701
702 /*
703 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
704 * property for the CPU device node @dn and stores
705 * the parsed output in the thread_groups
706 * structure @tg if the ibm,thread-groups[0]
707 * matches @property.
708 *
709 * @dn: The device node of the CPU device.
710 * @tg: Pointer to a thread group structure into which the parsed
711 * output of "ibm,thread-groups" is stored.
712 * @property: The property of the thread-group that the caller is
713 * interested in.
714 *
715 * ibm,thread-groups[0..N-1] array defines which group of threads in
716 * the CPU-device node can be grouped together based on the property.
717 *
718 * ibm,thread-groups[0] tells us the property based on which the
719 * threads are being grouped together. If this value is 1, it implies
720 * that the threads in the same group share L1, translation cache.
721 *
722 * ibm,thread-groups[1] tells us how many such thread groups exist.
723 *
724 * ibm,thread-groups[2] tells us the number of threads in each such
725 * group.
726 *
727 * ibm,thread-groups[3..N-1] is the list of threads identified by
728 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
729 * the grouping.
730 *
731 * Example: If ibm,thread-groups = [1,2,4,5,6,7,8,9,10,11,12] it
732 * implies that there are 2 groups of 4 threads each, where each group
733 * of threads share L1, translation cache.
734 *
735 * The "ibm,ppc-interrupt-server#s" of the first group is {5,6,7,8}
736 * and the "ibm,ppc-interrupt-server#s" of the second group is {9, 10,
737 * 11, 12} structure
738 *
739 * Returns 0 on success, -EINVAL if the property does not exist,
740 * -ENODATA if property does not have a value, and -EOVERFLOW if the
741 * property data isn't large enough.
742 */
parse_thread_groups(struct device_node * dn,struct thread_groups * tg,unsigned int property)743 static int parse_thread_groups(struct device_node *dn,
744 struct thread_groups *tg,
745 unsigned int property)
746 {
747 int i;
748 u32 thread_group_array[3 + MAX_THREAD_LIST_SIZE];
749 u32 *thread_list;
750 size_t total_threads;
751 int ret;
752
753 ret = of_property_read_u32_array(dn, "ibm,thread-groups",
754 thread_group_array, 3);
755 if (ret)
756 return ret;
757
758 tg->property = thread_group_array[0];
759 tg->nr_groups = thread_group_array[1];
760 tg->threads_per_group = thread_group_array[2];
761 if (tg->property != property ||
762 tg->nr_groups < 1 ||
763 tg->threads_per_group < 1)
764 return -ENODATA;
765
766 total_threads = tg->nr_groups * tg->threads_per_group;
767
768 ret = of_property_read_u32_array(dn, "ibm,thread-groups",
769 thread_group_array,
770 3 + total_threads);
771 if (ret)
772 return ret;
773
774 thread_list = &thread_group_array[3];
775
776 for (i = 0 ; i < total_threads; i++)
777 tg->thread_list[i] = thread_list[i];
778
779 return 0;
780 }
781
782 /*
783 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
784 * that @cpu belongs to.
785 *
786 * @cpu : The logical CPU whose thread group is being searched.
787 * @tg : The thread-group structure of the CPU node which @cpu belongs
788 * to.
789 *
790 * Returns the index to tg->thread_list that points to the the start
791 * of the thread_group that @cpu belongs to.
792 *
793 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
794 * tg->thread_list.
795 */
get_cpu_thread_group_start(int cpu,struct thread_groups * tg)796 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
797 {
798 int hw_cpu_id = get_hard_smp_processor_id(cpu);
799 int i, j;
800
801 for (i = 0; i < tg->nr_groups; i++) {
802 int group_start = i * tg->threads_per_group;
803
804 for (j = 0; j < tg->threads_per_group; j++) {
805 int idx = group_start + j;
806
807 if (tg->thread_list[idx] == hw_cpu_id)
808 return group_start;
809 }
810 }
811
812 return -1;
813 }
814
init_cpu_l1_cache_map(int cpu)815 static int init_cpu_l1_cache_map(int cpu)
816
817 {
818 struct device_node *dn = of_get_cpu_node(cpu, NULL);
819 struct thread_groups tg = {.property = 0,
820 .nr_groups = 0,
821 .threads_per_group = 0};
822 int first_thread = cpu_first_thread_sibling(cpu);
823 int i, cpu_group_start = -1, err = 0;
824
825 if (!dn)
826 return -ENODATA;
827
828 err = parse_thread_groups(dn, &tg, THREAD_GROUP_SHARE_L1);
829 if (err)
830 goto out;
831
832 zalloc_cpumask_var_node(&per_cpu(cpu_l1_cache_map, cpu),
833 GFP_KERNEL,
834 cpu_to_node(cpu));
835
836 cpu_group_start = get_cpu_thread_group_start(cpu, &tg);
837
838 if (unlikely(cpu_group_start == -1)) {
839 WARN_ON_ONCE(1);
840 err = -ENODATA;
841 goto out;
842 }
843
844 for (i = first_thread; i < first_thread + threads_per_core; i++) {
845 int i_group_start = get_cpu_thread_group_start(i, &tg);
846
847 if (unlikely(i_group_start == -1)) {
848 WARN_ON_ONCE(1);
849 err = -ENODATA;
850 goto out;
851 }
852
853 if (i_group_start == cpu_group_start)
854 cpumask_set_cpu(i, per_cpu(cpu_l1_cache_map, cpu));
855 }
856
857 out:
858 of_node_put(dn);
859 return err;
860 }
861
init_big_cores(void)862 static int init_big_cores(void)
863 {
864 int cpu;
865
866 for_each_possible_cpu(cpu) {
867 int err = init_cpu_l1_cache_map(cpu);
868
869 if (err)
870 return err;
871
872 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
873 GFP_KERNEL,
874 cpu_to_node(cpu));
875 }
876
877 has_big_cores = true;
878 return 0;
879 }
880
smp_prepare_cpus(unsigned int max_cpus)881 void __init smp_prepare_cpus(unsigned int max_cpus)
882 {
883 unsigned int cpu;
884
885 DBG("smp_prepare_cpus\n");
886
887 /*
888 * setup_cpu may need to be called on the boot cpu. We havent
889 * spun any cpus up but lets be paranoid.
890 */
891 BUG_ON(boot_cpuid != smp_processor_id());
892
893 /* Fixup boot cpu */
894 smp_store_cpu_info(boot_cpuid);
895 cpu_callin_map[boot_cpuid] = 1;
896
897 for_each_possible_cpu(cpu) {
898 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
899 GFP_KERNEL, cpu_to_node(cpu));
900 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
901 GFP_KERNEL, cpu_to_node(cpu));
902 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
903 GFP_KERNEL, cpu_to_node(cpu));
904 /*
905 * numa_node_id() works after this.
906 */
907 if (cpu_present(cpu)) {
908 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
909 set_cpu_numa_mem(cpu,
910 local_memory_node(numa_cpu_lookup_table[cpu]));
911 }
912 }
913
914 /* Init the cpumasks so the boot CPU is related to itself */
915 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
916 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
917 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
918
919 init_big_cores();
920 if (has_big_cores) {
921 cpumask_set_cpu(boot_cpuid,
922 cpu_smallcore_mask(boot_cpuid));
923 }
924
925 if (smp_ops && smp_ops->probe)
926 smp_ops->probe();
927 }
928
smp_prepare_boot_cpu(void)929 void smp_prepare_boot_cpu(void)
930 {
931 BUG_ON(smp_processor_id() != boot_cpuid);
932 #ifdef CONFIG_PPC64
933 paca_ptrs[boot_cpuid]->__current = current;
934 #endif
935 set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
936 current_set[boot_cpuid] = current;
937 }
938
939 #ifdef CONFIG_HOTPLUG_CPU
940
generic_cpu_disable(void)941 int generic_cpu_disable(void)
942 {
943 unsigned int cpu = smp_processor_id();
944
945 if (cpu == boot_cpuid)
946 return -EBUSY;
947
948 set_cpu_online(cpu, false);
949 #ifdef CONFIG_PPC64
950 vdso_data->processorCount--;
951 #endif
952 /* Update affinity of all IRQs previously aimed at this CPU */
953 irq_migrate_all_off_this_cpu();
954
955 /*
956 * Depending on the details of the interrupt controller, it's possible
957 * that one of the interrupts we just migrated away from this CPU is
958 * actually already pending on this CPU. If we leave it in that state
959 * the interrupt will never be EOI'ed, and will never fire again. So
960 * temporarily enable interrupts here, to allow any pending interrupt to
961 * be received (and EOI'ed), before we take this CPU offline.
962 */
963 local_irq_enable();
964 mdelay(1);
965 local_irq_disable();
966
967 return 0;
968 }
969
generic_cpu_die(unsigned int cpu)970 void generic_cpu_die(unsigned int cpu)
971 {
972 int i;
973
974 for (i = 0; i < 100; i++) {
975 smp_rmb();
976 if (is_cpu_dead(cpu))
977 return;
978 msleep(100);
979 }
980 printk(KERN_ERR "CPU%d didn't die...\n", cpu);
981 }
982
generic_set_cpu_dead(unsigned int cpu)983 void generic_set_cpu_dead(unsigned int cpu)
984 {
985 per_cpu(cpu_state, cpu) = CPU_DEAD;
986 }
987
988 /*
989 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
990 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
991 * which makes the delay in generic_cpu_die() not happen.
992 */
generic_set_cpu_up(unsigned int cpu)993 void generic_set_cpu_up(unsigned int cpu)
994 {
995 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
996 }
997
generic_check_cpu_restart(unsigned int cpu)998 int generic_check_cpu_restart(unsigned int cpu)
999 {
1000 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1001 }
1002
is_cpu_dead(unsigned int cpu)1003 int is_cpu_dead(unsigned int cpu)
1004 {
1005 return per_cpu(cpu_state, cpu) == CPU_DEAD;
1006 }
1007
secondaries_inhibited(void)1008 static bool secondaries_inhibited(void)
1009 {
1010 return kvm_hv_mode_active();
1011 }
1012
1013 #else /* HOTPLUG_CPU */
1014
1015 #define secondaries_inhibited() 0
1016
1017 #endif
1018
cpu_idle_thread_init(unsigned int cpu,struct task_struct * idle)1019 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
1020 {
1021 #ifdef CONFIG_PPC64
1022 paca_ptrs[cpu]->__current = idle;
1023 paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1024 THREAD_SIZE - STACK_FRAME_OVERHEAD;
1025 #endif
1026 idle->cpu = cpu;
1027 secondary_current = current_set[cpu] = idle;
1028 }
1029
__cpu_up(unsigned int cpu,struct task_struct * tidle)1030 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1031 {
1032 int rc, c;
1033
1034 /*
1035 * Don't allow secondary threads to come online if inhibited
1036 */
1037 if (threads_per_core > 1 && secondaries_inhibited() &&
1038 cpu_thread_in_subcore(cpu))
1039 return -EBUSY;
1040
1041 if (smp_ops == NULL ||
1042 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1043 return -EINVAL;
1044
1045 cpu_idle_thread_init(cpu, tidle);
1046
1047 /*
1048 * The platform might need to allocate resources prior to bringing
1049 * up the CPU
1050 */
1051 if (smp_ops->prepare_cpu) {
1052 rc = smp_ops->prepare_cpu(cpu);
1053 if (rc)
1054 return rc;
1055 }
1056
1057 /* Make sure callin-map entry is 0 (can be leftover a CPU
1058 * hotplug
1059 */
1060 cpu_callin_map[cpu] = 0;
1061
1062 /* The information for processor bringup must
1063 * be written out to main store before we release
1064 * the processor.
1065 */
1066 smp_mb();
1067
1068 /* wake up cpus */
1069 DBG("smp: kicking cpu %d\n", cpu);
1070 rc = smp_ops->kick_cpu(cpu);
1071 if (rc) {
1072 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1073 return rc;
1074 }
1075
1076 /*
1077 * wait to see if the cpu made a callin (is actually up).
1078 * use this value that I found through experimentation.
1079 * -- Cort
1080 */
1081 if (system_state < SYSTEM_RUNNING)
1082 for (c = 50000; c && !cpu_callin_map[cpu]; c--)
1083 udelay(100);
1084 #ifdef CONFIG_HOTPLUG_CPU
1085 else
1086 /*
1087 * CPUs can take much longer to come up in the
1088 * hotplug case. Wait five seconds.
1089 */
1090 for (c = 5000; c && !cpu_callin_map[cpu]; c--)
1091 msleep(1);
1092 #endif
1093
1094 if (!cpu_callin_map[cpu]) {
1095 printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1096 return -ENOENT;
1097 }
1098
1099 DBG("Processor %u found.\n", cpu);
1100
1101 if (smp_ops->give_timebase)
1102 smp_ops->give_timebase();
1103
1104 /* Wait until cpu puts itself in the online & active maps */
1105 spin_until_cond(cpu_online(cpu));
1106
1107 return 0;
1108 }
1109
1110 /* Return the value of the reg property corresponding to the given
1111 * logical cpu.
1112 */
cpu_to_core_id(int cpu)1113 int cpu_to_core_id(int cpu)
1114 {
1115 struct device_node *np;
1116 const __be32 *reg;
1117 int id = -1;
1118
1119 np = of_get_cpu_node(cpu, NULL);
1120 if (!np)
1121 goto out;
1122
1123 reg = of_get_property(np, "reg", NULL);
1124 if (!reg)
1125 goto out;
1126
1127 id = be32_to_cpup(reg);
1128 out:
1129 of_node_put(np);
1130 return id;
1131 }
1132 EXPORT_SYMBOL_GPL(cpu_to_core_id);
1133
1134 /* Helper routines for cpu to core mapping */
cpu_core_index_of_thread(int cpu)1135 int cpu_core_index_of_thread(int cpu)
1136 {
1137 return cpu >> threads_shift;
1138 }
1139 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1140
cpu_first_thread_of_core(int core)1141 int cpu_first_thread_of_core(int core)
1142 {
1143 return core << threads_shift;
1144 }
1145 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1146
1147 /* Must be called when no change can occur to cpu_present_mask,
1148 * i.e. during cpu online or offline.
1149 */
cpu_to_l2cache(int cpu)1150 static struct device_node *cpu_to_l2cache(int cpu)
1151 {
1152 struct device_node *np;
1153 struct device_node *cache;
1154
1155 if (!cpu_present(cpu))
1156 return NULL;
1157
1158 np = of_get_cpu_node(cpu, NULL);
1159 if (np == NULL)
1160 return NULL;
1161
1162 cache = of_find_next_cache_node(np);
1163
1164 of_node_put(np);
1165
1166 return cache;
1167 }
1168
update_mask_by_l2(int cpu,struct cpumask * (* mask_fn)(int))1169 static bool update_mask_by_l2(int cpu, struct cpumask *(*mask_fn)(int))
1170 {
1171 struct device_node *l2_cache, *np;
1172 int i;
1173
1174 l2_cache = cpu_to_l2cache(cpu);
1175 if (!l2_cache)
1176 return false;
1177
1178 for_each_cpu(i, cpu_online_mask) {
1179 /*
1180 * when updating the marks the current CPU has not been marked
1181 * online, but we need to update the cache masks
1182 */
1183 np = cpu_to_l2cache(i);
1184 if (!np)
1185 continue;
1186
1187 if (np == l2_cache)
1188 set_cpus_related(cpu, i, mask_fn);
1189
1190 of_node_put(np);
1191 }
1192 of_node_put(l2_cache);
1193
1194 return true;
1195 }
1196
1197 #ifdef CONFIG_HOTPLUG_CPU
remove_cpu_from_masks(int cpu)1198 static void remove_cpu_from_masks(int cpu)
1199 {
1200 int i;
1201
1202 /* NB: cpu_core_mask is a superset of the others */
1203 for_each_cpu(i, cpu_core_mask(cpu)) {
1204 set_cpus_unrelated(cpu, i, cpu_core_mask);
1205 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1206 set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1207 if (has_big_cores)
1208 set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1209 }
1210 }
1211 #endif
1212
add_cpu_to_smallcore_masks(int cpu)1213 static inline void add_cpu_to_smallcore_masks(int cpu)
1214 {
1215 struct cpumask *this_l1_cache_map = per_cpu(cpu_l1_cache_map, cpu);
1216 int i, first_thread = cpu_first_thread_sibling(cpu);
1217
1218 if (!has_big_cores)
1219 return;
1220
1221 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1222
1223 for (i = first_thread; i < first_thread + threads_per_core; i++) {
1224 if (cpu_online(i) && cpumask_test_cpu(i, this_l1_cache_map))
1225 set_cpus_related(i, cpu, cpu_smallcore_mask);
1226 }
1227 }
1228
add_cpu_to_masks(int cpu)1229 static void add_cpu_to_masks(int cpu)
1230 {
1231 int first_thread = cpu_first_thread_sibling(cpu);
1232 int chipid = cpu_to_chip_id(cpu);
1233 int i;
1234
1235 /*
1236 * This CPU will not be in the online mask yet so we need to manually
1237 * add it to it's own thread sibling mask.
1238 */
1239 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1240
1241 for (i = first_thread; i < first_thread + threads_per_core; i++)
1242 if (cpu_online(i))
1243 set_cpus_related(i, cpu, cpu_sibling_mask);
1244
1245 add_cpu_to_smallcore_masks(cpu);
1246 /*
1247 * Copy the thread sibling mask into the cache sibling mask
1248 * and mark any CPUs that share an L2 with this CPU.
1249 */
1250 for_each_cpu(i, cpu_sibling_mask(cpu))
1251 set_cpus_related(cpu, i, cpu_l2_cache_mask);
1252 update_mask_by_l2(cpu, cpu_l2_cache_mask);
1253
1254 /*
1255 * Copy the cache sibling mask into core sibling mask and mark
1256 * any CPUs on the same chip as this CPU.
1257 */
1258 for_each_cpu(i, cpu_l2_cache_mask(cpu))
1259 set_cpus_related(cpu, i, cpu_core_mask);
1260
1261 if (chipid == -1)
1262 return;
1263
1264 for_each_cpu(i, cpu_online_mask)
1265 if (cpu_to_chip_id(i) == chipid)
1266 set_cpus_related(cpu, i, cpu_core_mask);
1267 }
1268
1269 static bool shared_caches;
1270
1271 /* Activate a secondary processor. */
start_secondary(void * unused)1272 void start_secondary(void *unused)
1273 {
1274 unsigned int cpu = smp_processor_id();
1275 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1276
1277 mmgrab(&init_mm);
1278 current->active_mm = &init_mm;
1279
1280 smp_store_cpu_info(cpu);
1281 set_dec(tb_ticks_per_jiffy);
1282 preempt_disable();
1283 cpu_callin_map[cpu] = 1;
1284
1285 if (smp_ops->setup_cpu)
1286 smp_ops->setup_cpu(cpu);
1287 if (smp_ops->take_timebase)
1288 smp_ops->take_timebase();
1289
1290 secondary_cpu_time_init();
1291
1292 #ifdef CONFIG_PPC64
1293 if (system_state == SYSTEM_RUNNING)
1294 vdso_data->processorCount++;
1295
1296 vdso_getcpu_init();
1297 #endif
1298 set_numa_node(numa_cpu_lookup_table[cpu]);
1299 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1300
1301 /* Update topology CPU masks */
1302 add_cpu_to_masks(cpu);
1303
1304 if (has_big_cores)
1305 sibling_mask = cpu_smallcore_mask;
1306 /*
1307 * Check for any shared caches. Note that this must be done on a
1308 * per-core basis because one core in the pair might be disabled.
1309 */
1310 if (!cpumask_equal(cpu_l2_cache_mask(cpu), sibling_mask(cpu)))
1311 shared_caches = true;
1312
1313 smp_wmb();
1314 notify_cpu_starting(cpu);
1315 set_cpu_online(cpu, true);
1316
1317 boot_init_stack_canary();
1318
1319 local_irq_enable();
1320
1321 /* We can enable ftrace for secondary cpus now */
1322 this_cpu_enable_ftrace();
1323
1324 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1325
1326 BUG();
1327 }
1328
1329 #ifdef CONFIG_PROFILING
setup_profiling_timer(unsigned int multiplier)1330 int setup_profiling_timer(unsigned int multiplier)
1331 {
1332 return 0;
1333 }
1334 #endif
1335
1336 #ifdef CONFIG_SCHED_SMT
1337 /* cpumask of CPUs with asymetric SMT dependancy */
powerpc_smt_flags(void)1338 static int powerpc_smt_flags(void)
1339 {
1340 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1341
1342 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
1343 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
1344 flags |= SD_ASYM_PACKING;
1345 }
1346 return flags;
1347 }
1348 #endif
1349
1350 static struct sched_domain_topology_level powerpc_topology[] = {
1351 #ifdef CONFIG_SCHED_SMT
1352 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1353 #endif
1354 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1355 { NULL, },
1356 };
1357
1358 /*
1359 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
1360 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
1361 * since the migrated task remains cache hot. We want to take advantage of this
1362 * at the scheduler level so an extra topology level is required.
1363 */
powerpc_shared_cache_flags(void)1364 static int powerpc_shared_cache_flags(void)
1365 {
1366 return SD_SHARE_PKG_RESOURCES;
1367 }
1368
1369 /*
1370 * We can't just pass cpu_l2_cache_mask() directly because
1371 * returns a non-const pointer and the compiler barfs on that.
1372 */
shared_cache_mask(int cpu)1373 static const struct cpumask *shared_cache_mask(int cpu)
1374 {
1375 return cpu_l2_cache_mask(cpu);
1376 }
1377
1378 #ifdef CONFIG_SCHED_SMT
smallcore_smt_mask(int cpu)1379 static const struct cpumask *smallcore_smt_mask(int cpu)
1380 {
1381 return cpu_smallcore_mask(cpu);
1382 }
1383 #endif
1384
1385 static struct sched_domain_topology_level power9_topology[] = {
1386 #ifdef CONFIG_SCHED_SMT
1387 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1388 #endif
1389 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1390 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1391 { NULL, },
1392 };
1393
smp_cpus_done(unsigned int max_cpus)1394 void __init smp_cpus_done(unsigned int max_cpus)
1395 {
1396 /*
1397 * We are running pinned to the boot CPU, see rest_init().
1398 */
1399 if (smp_ops && smp_ops->setup_cpu)
1400 smp_ops->setup_cpu(boot_cpuid);
1401
1402 if (smp_ops && smp_ops->bringup_done)
1403 smp_ops->bringup_done();
1404
1405 /*
1406 * On a shared LPAR, associativity needs to be requested.
1407 * Hence, get numa topology before dumping cpu topology
1408 */
1409 shared_proc_topology_init();
1410 dump_numa_cpu_topology();
1411
1412 #ifdef CONFIG_SCHED_SMT
1413 if (has_big_cores) {
1414 pr_info("Using small cores at SMT level\n");
1415 power9_topology[0].mask = smallcore_smt_mask;
1416 powerpc_topology[0].mask = smallcore_smt_mask;
1417 }
1418 #endif
1419 /*
1420 * If any CPU detects that it's sharing a cache with another CPU then
1421 * use the deeper topology that is aware of this sharing.
1422 */
1423 if (shared_caches) {
1424 pr_info("Using shared cache scheduler topology\n");
1425 set_sched_topology(power9_topology);
1426 } else {
1427 pr_info("Using standard scheduler topology\n");
1428 set_sched_topology(powerpc_topology);
1429 }
1430 }
1431
1432 #ifdef CONFIG_HOTPLUG_CPU
__cpu_disable(void)1433 int __cpu_disable(void)
1434 {
1435 int cpu = smp_processor_id();
1436 int err;
1437
1438 if (!smp_ops->cpu_disable)
1439 return -ENOSYS;
1440
1441 this_cpu_disable_ftrace();
1442
1443 err = smp_ops->cpu_disable();
1444 if (err)
1445 return err;
1446
1447 /* Update sibling maps */
1448 remove_cpu_from_masks(cpu);
1449
1450 return 0;
1451 }
1452
__cpu_die(unsigned int cpu)1453 void __cpu_die(unsigned int cpu)
1454 {
1455 if (smp_ops->cpu_die)
1456 smp_ops->cpu_die(cpu);
1457 }
1458
cpu_die(void)1459 void cpu_die(void)
1460 {
1461 /*
1462 * Disable on the down path. This will be re-enabled by
1463 * start_secondary() via start_secondary_resume() below
1464 */
1465 this_cpu_disable_ftrace();
1466
1467 if (ppc_md.cpu_die)
1468 ppc_md.cpu_die();
1469
1470 /* If we return, we re-enter start_secondary */
1471 start_secondary_resume();
1472 }
1473
1474 #endif
1475