1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Common boot and setup code.
5 *
6 * Copyright (C) 2001 PPC64 Team, IBM Corp
7 */
8
9 #include <linux/export.h>
10 #include <linux/string.h>
11 #include <linux/sched.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/reboot.h>
15 #include <linux/delay.h>
16 #include <linux/initrd.h>
17 #include <linux/seq_file.h>
18 #include <linux/ioport.h>
19 #include <linux/console.h>
20 #include <linux/utsname.h>
21 #include <linux/tty.h>
22 #include <linux/root_dev.h>
23 #include <linux/notifier.h>
24 #include <linux/cpu.h>
25 #include <linux/unistd.h>
26 #include <linux/serial.h>
27 #include <linux/serial_8250.h>
28 #include <linux/memblock.h>
29 #include <linux/pci.h>
30 #include <linux/lockdep.h>
31 #include <linux/memory.h>
32 #include <linux/nmi.h>
33
34 #include <asm/debugfs.h>
35 #include <asm/io.h>
36 #include <asm/kdump.h>
37 #include <asm/prom.h>
38 #include <asm/processor.h>
39 #include <asm/pgtable.h>
40 #include <asm/smp.h>
41 #include <asm/elf.h>
42 #include <asm/machdep.h>
43 #include <asm/paca.h>
44 #include <asm/time.h>
45 #include <asm/cputable.h>
46 #include <asm/dt_cpu_ftrs.h>
47 #include <asm/sections.h>
48 #include <asm/btext.h>
49 #include <asm/nvram.h>
50 #include <asm/setup.h>
51 #include <asm/rtas.h>
52 #include <asm/iommu.h>
53 #include <asm/serial.h>
54 #include <asm/cache.h>
55 #include <asm/page.h>
56 #include <asm/mmu.h>
57 #include <asm/firmware.h>
58 #include <asm/xmon.h>
59 #include <asm/udbg.h>
60 #include <asm/kexec.h>
61 #include <asm/code-patching.h>
62 #include <asm/livepatch.h>
63 #include <asm/opal.h>
64 #include <asm/cputhreads.h>
65 #include <asm/hw_irq.h>
66 #include <asm/feature-fixups.h>
67 #include <asm/kup.h>
68
69 #include "setup.h"
70
71 #ifdef DEBUG
72 #define DBG(fmt...) udbg_printf(fmt)
73 #else
74 #define DBG(fmt...)
75 #endif
76
77 int spinning_secondaries;
78 u64 ppc64_pft_size;
79
80 struct ppc64_caches ppc64_caches = {
81 .l1d = {
82 .block_size = 0x40,
83 .log_block_size = 6,
84 },
85 .l1i = {
86 .block_size = 0x40,
87 .log_block_size = 6
88 },
89 };
90 EXPORT_SYMBOL_GPL(ppc64_caches);
91
92 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
setup_tlb_core_data(void)93 void __init setup_tlb_core_data(void)
94 {
95 int cpu;
96
97 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
98
99 for_each_possible_cpu(cpu) {
100 int first = cpu_first_thread_sibling(cpu);
101
102 /*
103 * If we boot via kdump on a non-primary thread,
104 * make sure we point at the thread that actually
105 * set up this TLB.
106 */
107 if (cpu_first_thread_sibling(boot_cpuid) == first)
108 first = boot_cpuid;
109
110 paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
111
112 /*
113 * If we have threads, we need either tlbsrx.
114 * or e6500 tablewalk mode, or else TLB handlers
115 * will be racy and could produce duplicate entries.
116 * Should we panic instead?
117 */
118 WARN_ONCE(smt_enabled_at_boot >= 2 &&
119 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
120 book3e_htw_mode != PPC_HTW_E6500,
121 "%s: unsupported MMU configuration\n", __func__);
122 }
123 }
124 #endif
125
126 #ifdef CONFIG_SMP
127
128 static char *smt_enabled_cmdline;
129
130 /* Look for ibm,smt-enabled OF option */
check_smt_enabled(void)131 void __init check_smt_enabled(void)
132 {
133 struct device_node *dn;
134 const char *smt_option;
135
136 /* Default to enabling all threads */
137 smt_enabled_at_boot = threads_per_core;
138
139 /* Allow the command line to overrule the OF option */
140 if (smt_enabled_cmdline) {
141 if (!strcmp(smt_enabled_cmdline, "on"))
142 smt_enabled_at_boot = threads_per_core;
143 else if (!strcmp(smt_enabled_cmdline, "off"))
144 smt_enabled_at_boot = 0;
145 else {
146 int smt;
147 int rc;
148
149 rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
150 if (!rc)
151 smt_enabled_at_boot =
152 min(threads_per_core, smt);
153 }
154 } else {
155 dn = of_find_node_by_path("/options");
156 if (dn) {
157 smt_option = of_get_property(dn, "ibm,smt-enabled",
158 NULL);
159
160 if (smt_option) {
161 if (!strcmp(smt_option, "on"))
162 smt_enabled_at_boot = threads_per_core;
163 else if (!strcmp(smt_option, "off"))
164 smt_enabled_at_boot = 0;
165 }
166
167 of_node_put(dn);
168 }
169 }
170 }
171
172 /* Look for smt-enabled= cmdline option */
early_smt_enabled(char * p)173 static int __init early_smt_enabled(char *p)
174 {
175 smt_enabled_cmdline = p;
176 return 0;
177 }
178 early_param("smt-enabled", early_smt_enabled);
179
180 #endif /* CONFIG_SMP */
181
182 /** Fix up paca fields required for the boot cpu */
fixup_boot_paca(void)183 static void __init fixup_boot_paca(void)
184 {
185 /* The boot cpu is started */
186 get_paca()->cpu_start = 1;
187 /* Allow percpu accesses to work until we setup percpu data */
188 get_paca()->data_offset = 0;
189 /* Mark interrupts disabled in PACA */
190 irq_soft_mask_set(IRQS_DISABLED);
191 }
192
configure_exceptions(void)193 static void __init configure_exceptions(void)
194 {
195 /*
196 * Setup the trampolines from the lowmem exception vectors
197 * to the kdump kernel when not using a relocatable kernel.
198 */
199 setup_kdump_trampoline();
200
201 /* Under a PAPR hypervisor, we need hypercalls */
202 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
203 /* Enable AIL if possible */
204 pseries_enable_reloc_on_exc();
205
206 /*
207 * Tell the hypervisor that we want our exceptions to
208 * be taken in little endian mode.
209 *
210 * We don't call this for big endian as our calling convention
211 * makes us always enter in BE, and the call may fail under
212 * some circumstances with kdump.
213 */
214 #ifdef __LITTLE_ENDIAN__
215 pseries_little_endian_exceptions();
216 #endif
217 } else {
218 /* Set endian mode using OPAL */
219 if (firmware_has_feature(FW_FEATURE_OPAL))
220 opal_configure_cores();
221
222 /* AIL on native is done in cpu_ready_for_interrupts() */
223 }
224 }
225
cpu_ready_for_interrupts(void)226 static void cpu_ready_for_interrupts(void)
227 {
228 /*
229 * Enable AIL if supported, and we are in hypervisor mode. This
230 * is called once for every processor.
231 *
232 * If we are not in hypervisor mode the job is done once for
233 * the whole partition in configure_exceptions().
234 */
235 if (cpu_has_feature(CPU_FTR_HVMODE) &&
236 cpu_has_feature(CPU_FTR_ARCH_207S)) {
237 unsigned long lpcr = mfspr(SPRN_LPCR);
238 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
239 }
240
241 /*
242 * Set HFSCR:TM based on CPU features:
243 * In the special case of TM no suspend (P9N DD2.1), Linux is
244 * told TM is off via the dt-ftrs but told to (partially) use
245 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
246 * will be off from dt-ftrs but we need to turn it on for the
247 * no suspend case.
248 */
249 if (cpu_has_feature(CPU_FTR_HVMODE)) {
250 if (cpu_has_feature(CPU_FTR_TM_COMP))
251 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
252 else
253 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
254 }
255
256 /* Set IR and DR in PACA MSR */
257 get_paca()->kernel_msr = MSR_KERNEL;
258 }
259
260 unsigned long spr_default_dscr = 0;
261
record_spr_defaults(void)262 void __init record_spr_defaults(void)
263 {
264 if (early_cpu_has_feature(CPU_FTR_DSCR))
265 spr_default_dscr = mfspr(SPRN_DSCR);
266 }
267
268 /*
269 * Early initialization entry point. This is called by head.S
270 * with MMU translation disabled. We rely on the "feature" of
271 * the CPU that ignores the top 2 bits of the address in real
272 * mode so we can access kernel globals normally provided we
273 * only toy with things in the RMO region. From here, we do
274 * some early parsing of the device-tree to setup out MEMBLOCK
275 * data structures, and allocate & initialize the hash table
276 * and segment tables so we can start running with translation
277 * enabled.
278 *
279 * It is this function which will call the probe() callback of
280 * the various platform types and copy the matching one to the
281 * global ppc_md structure. Your platform can eventually do
282 * some very early initializations from the probe() routine, but
283 * this is not recommended, be very careful as, for example, the
284 * device-tree is not accessible via normal means at this point.
285 */
286
early_setup(unsigned long dt_ptr)287 void __init early_setup(unsigned long dt_ptr)
288 {
289 static __initdata struct paca_struct boot_paca;
290
291 /* -------- printk is _NOT_ safe to use here ! ------- */
292
293 /*
294 * Assume we're on cpu 0 for now.
295 *
296 * We need to load a PACA very early for a few reasons.
297 *
298 * The stack protector canary is stored in the paca, so as soon as we
299 * call any stack protected code we need r13 pointing somewhere valid.
300 *
301 * If we are using kcov it will call in_task() in its instrumentation,
302 * which relies on the current task from the PACA.
303 *
304 * dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as
305 * printk(), which can trigger both stack protector and kcov.
306 *
307 * percpu variables and spin locks also use the paca.
308 *
309 * So set up a temporary paca. It will be replaced below once we know
310 * what CPU we are on.
311 */
312 initialise_paca(&boot_paca, 0);
313 setup_paca(&boot_paca);
314 fixup_boot_paca();
315
316 /* -------- printk is now safe to use ------- */
317
318 /* Try new device tree based feature discovery ... */
319 if (!dt_cpu_ftrs_init(__va(dt_ptr)))
320 /* Otherwise use the old style CPU table */
321 identify_cpu(0, mfspr(SPRN_PVR));
322
323 /* Enable early debugging if any specified (see udbg.h) */
324 udbg_early_init();
325
326 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
327
328 /*
329 * Do early initialization using the flattened device
330 * tree, such as retrieving the physical memory map or
331 * calculating/retrieving the hash table size.
332 */
333 early_init_devtree(__va(dt_ptr));
334
335 /* Now we know the logical id of our boot cpu, setup the paca. */
336 if (boot_cpuid != 0) {
337 /* Poison paca_ptrs[0] again if it's not the boot cpu */
338 memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
339 }
340 setup_paca(paca_ptrs[boot_cpuid]);
341 fixup_boot_paca();
342
343 /*
344 * Configure exception handlers. This include setting up trampolines
345 * if needed, setting exception endian mode, etc...
346 */
347 configure_exceptions();
348
349 /*
350 * Configure Kernel Userspace Protection. This needs to happen before
351 * feature fixups for platforms that implement this using features.
352 */
353 setup_kup();
354
355 /* Apply all the dynamic patching */
356 apply_feature_fixups();
357 setup_feature_keys();
358
359 /* Initialize the hash table or TLB handling */
360 early_init_mmu();
361
362 /*
363 * After firmware and early platform setup code has set things up,
364 * we note the SPR values for configurable control/performance
365 * registers, and use those as initial defaults.
366 */
367 record_spr_defaults();
368
369 /*
370 * At this point, we can let interrupts switch to virtual mode
371 * (the MMU has been setup), so adjust the MSR in the PACA to
372 * have IR and DR set and enable AIL if it exists
373 */
374 cpu_ready_for_interrupts();
375
376 /*
377 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
378 * will only actually get enabled on the boot cpu much later once
379 * ftrace itself has been initialized.
380 */
381 this_cpu_enable_ftrace();
382
383 DBG(" <- early_setup()\n");
384
385 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
386 /*
387 * This needs to be done *last* (after the above DBG() even)
388 *
389 * Right after we return from this function, we turn on the MMU
390 * which means the real-mode access trick that btext does will
391 * no longer work, it needs to switch to using a real MMU
392 * mapping. This call will ensure that it does
393 */
394 btext_map();
395 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
396 }
397
398 #ifdef CONFIG_SMP
early_setup_secondary(void)399 void early_setup_secondary(void)
400 {
401 /* Mark interrupts disabled in PACA */
402 irq_soft_mask_set(IRQS_DISABLED);
403
404 /* Initialize the hash table or TLB handling */
405 early_init_mmu_secondary();
406
407 /* Perform any KUP setup that is per-cpu */
408 setup_kup();
409
410 /*
411 * At this point, we can let interrupts switch to virtual mode
412 * (the MMU has been setup), so adjust the MSR in the PACA to
413 * have IR and DR set.
414 */
415 cpu_ready_for_interrupts();
416 }
417
418 #endif /* CONFIG_SMP */
419
panic_smp_self_stop(void)420 void panic_smp_self_stop(void)
421 {
422 hard_irq_disable();
423 spin_begin();
424 while (1)
425 spin_cpu_relax();
426 }
427
428 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
use_spinloop(void)429 static bool use_spinloop(void)
430 {
431 if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
432 /*
433 * See comments in head_64.S -- not all platforms insert
434 * secondaries at __secondary_hold and wait at the spin
435 * loop.
436 */
437 if (firmware_has_feature(FW_FEATURE_OPAL))
438 return false;
439 return true;
440 }
441
442 /*
443 * When book3e boots from kexec, the ePAPR spin table does
444 * not get used.
445 */
446 return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
447 }
448
smp_release_cpus(void)449 void smp_release_cpus(void)
450 {
451 unsigned long *ptr;
452 int i;
453
454 if (!use_spinloop())
455 return;
456
457 DBG(" -> smp_release_cpus()\n");
458
459 /* All secondary cpus are spinning on a common spinloop, release them
460 * all now so they can start to spin on their individual paca
461 * spinloops. For non SMP kernels, the secondary cpus never get out
462 * of the common spinloop.
463 */
464
465 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
466 - PHYSICAL_START);
467 *ptr = ppc_function_entry(generic_secondary_smp_init);
468
469 /* And wait a bit for them to catch up */
470 for (i = 0; i < 100000; i++) {
471 mb();
472 HMT_low();
473 if (spinning_secondaries == 0)
474 break;
475 udelay(1);
476 }
477 DBG("spinning_secondaries = %d\n", spinning_secondaries);
478
479 DBG(" <- smp_release_cpus()\n");
480 }
481 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
482
483 /*
484 * Initialize some remaining members of the ppc64_caches and systemcfg
485 * structures
486 * (at least until we get rid of them completely). This is mostly some
487 * cache informations about the CPU that will be used by cache flush
488 * routines and/or provided to userland
489 */
490
init_cache_info(struct ppc_cache_info * info,u32 size,u32 lsize,u32 bsize,u32 sets)491 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
492 u32 bsize, u32 sets)
493 {
494 info->size = size;
495 info->sets = sets;
496 info->line_size = lsize;
497 info->block_size = bsize;
498 info->log_block_size = __ilog2(bsize);
499 if (bsize)
500 info->blocks_per_page = PAGE_SIZE / bsize;
501 else
502 info->blocks_per_page = 0;
503
504 if (sets == 0)
505 info->assoc = 0xffff;
506 else
507 info->assoc = size / (sets * lsize);
508 }
509
parse_cache_info(struct device_node * np,bool icache,struct ppc_cache_info * info)510 static bool __init parse_cache_info(struct device_node *np,
511 bool icache,
512 struct ppc_cache_info *info)
513 {
514 static const char *ipropnames[] __initdata = {
515 "i-cache-size",
516 "i-cache-sets",
517 "i-cache-block-size",
518 "i-cache-line-size",
519 };
520 static const char *dpropnames[] __initdata = {
521 "d-cache-size",
522 "d-cache-sets",
523 "d-cache-block-size",
524 "d-cache-line-size",
525 };
526 const char **propnames = icache ? ipropnames : dpropnames;
527 const __be32 *sizep, *lsizep, *bsizep, *setsp;
528 u32 size, lsize, bsize, sets;
529 bool success = true;
530
531 size = 0;
532 sets = -1u;
533 lsize = bsize = cur_cpu_spec->dcache_bsize;
534 sizep = of_get_property(np, propnames[0], NULL);
535 if (sizep != NULL)
536 size = be32_to_cpu(*sizep);
537 setsp = of_get_property(np, propnames[1], NULL);
538 if (setsp != NULL)
539 sets = be32_to_cpu(*setsp);
540 bsizep = of_get_property(np, propnames[2], NULL);
541 lsizep = of_get_property(np, propnames[3], NULL);
542 if (bsizep == NULL)
543 bsizep = lsizep;
544 if (lsizep == NULL)
545 lsizep = bsizep;
546 if (lsizep != NULL)
547 lsize = be32_to_cpu(*lsizep);
548 if (bsizep != NULL)
549 bsize = be32_to_cpu(*bsizep);
550 if (sizep == NULL || bsizep == NULL || lsizep == NULL)
551 success = false;
552
553 /*
554 * OF is weird .. it represents fully associative caches
555 * as "1 way" which doesn't make much sense and doesn't
556 * leave room for direct mapped. We'll assume that 0
557 * in OF means direct mapped for that reason.
558 */
559 if (sets == 1)
560 sets = 0;
561 else if (sets == 0)
562 sets = 1;
563
564 init_cache_info(info, size, lsize, bsize, sets);
565
566 return success;
567 }
568
initialize_cache_info(void)569 void __init initialize_cache_info(void)
570 {
571 struct device_node *cpu = NULL, *l2, *l3 = NULL;
572 u32 pvr;
573
574 DBG(" -> initialize_cache_info()\n");
575
576 /*
577 * All shipping POWER8 machines have a firmware bug that
578 * puts incorrect information in the device-tree. This will
579 * be (hopefully) fixed for future chips but for now hard
580 * code the values if we are running on one of these
581 */
582 pvr = PVR_VER(mfspr(SPRN_PVR));
583 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
584 pvr == PVR_POWER8NVL) {
585 /* size lsize blk sets */
586 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32);
587 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64);
588 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512);
589 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192);
590 } else
591 cpu = of_find_node_by_type(NULL, "cpu");
592
593 /*
594 * We're assuming *all* of the CPUs have the same
595 * d-cache and i-cache sizes... -Peter
596 */
597 if (cpu) {
598 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
599 DBG("Argh, can't find dcache properties !\n");
600
601 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
602 DBG("Argh, can't find icache properties !\n");
603
604 /*
605 * Try to find the L2 and L3 if any. Assume they are
606 * unified and use the D-side properties.
607 */
608 l2 = of_find_next_cache_node(cpu);
609 of_node_put(cpu);
610 if (l2) {
611 parse_cache_info(l2, false, &ppc64_caches.l2);
612 l3 = of_find_next_cache_node(l2);
613 of_node_put(l2);
614 }
615 if (l3) {
616 parse_cache_info(l3, false, &ppc64_caches.l3);
617 of_node_put(l3);
618 }
619 }
620
621 /* For use by binfmt_elf */
622 dcache_bsize = ppc64_caches.l1d.block_size;
623 icache_bsize = ppc64_caches.l1i.block_size;
624
625 cur_cpu_spec->dcache_bsize = dcache_bsize;
626 cur_cpu_spec->icache_bsize = icache_bsize;
627
628 DBG(" <- initialize_cache_info()\n");
629 }
630
631 /*
632 * This returns the limit below which memory accesses to the linear
633 * mapping are guarnateed not to cause an architectural exception (e.g.,
634 * TLB or SLB miss fault).
635 *
636 * This is used to allocate PACAs and various interrupt stacks that
637 * that are accessed early in interrupt handlers that must not cause
638 * re-entrant interrupts.
639 */
ppc64_bolted_size(void)640 __init u64 ppc64_bolted_size(void)
641 {
642 #ifdef CONFIG_PPC_BOOK3E
643 /* Freescale BookE bolts the entire linear mapping */
644 /* XXX: BookE ppc64_rma_limit setup seems to disagree? */
645 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
646 return linear_map_top;
647 /* Other BookE, we assume the first GB is bolted */
648 return 1ul << 30;
649 #else
650 /* BookS radix, does not take faults on linear mapping */
651 if (early_radix_enabled())
652 return ULONG_MAX;
653
654 /* BookS hash, the first segment is bolted */
655 if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
656 return 1UL << SID_SHIFT_1T;
657 return 1UL << SID_SHIFT;
658 #endif
659 }
660
alloc_stack(unsigned long limit,int cpu)661 static void *__init alloc_stack(unsigned long limit, int cpu)
662 {
663 void *ptr;
664
665 BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
666
667 ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_SIZE,
668 MEMBLOCK_LOW_LIMIT, limit,
669 early_cpu_to_node(cpu));
670 if (!ptr)
671 panic("cannot allocate stacks");
672
673 return ptr;
674 }
675
irqstack_early_init(void)676 void __init irqstack_early_init(void)
677 {
678 u64 limit = ppc64_bolted_size();
679 unsigned int i;
680
681 /*
682 * Interrupt stacks must be in the first segment since we
683 * cannot afford to take SLB misses on them. They are not
684 * accessed in realmode.
685 */
686 for_each_possible_cpu(i) {
687 softirq_ctx[i] = alloc_stack(limit, i);
688 hardirq_ctx[i] = alloc_stack(limit, i);
689 }
690 }
691
692 #ifdef CONFIG_PPC_BOOK3E
exc_lvl_early_init(void)693 void __init exc_lvl_early_init(void)
694 {
695 unsigned int i;
696
697 for_each_possible_cpu(i) {
698 void *sp;
699
700 sp = alloc_stack(ULONG_MAX, i);
701 critirq_ctx[i] = sp;
702 paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
703
704 sp = alloc_stack(ULONG_MAX, i);
705 dbgirq_ctx[i] = sp;
706 paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
707
708 sp = alloc_stack(ULONG_MAX, i);
709 mcheckirq_ctx[i] = sp;
710 paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
711 }
712
713 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
714 patch_exception(0x040, exc_debug_debug_book3e);
715 }
716 #endif
717
718 /*
719 * Stack space used when we detect a bad kernel stack pointer, and
720 * early in SMP boots before relocation is enabled. Exclusive emergency
721 * stack for machine checks.
722 */
emergency_stack_init(void)723 void __init emergency_stack_init(void)
724 {
725 u64 limit;
726 unsigned int i;
727
728 /*
729 * Emergency stacks must be under 256MB, we cannot afford to take
730 * SLB misses on them. The ABI also requires them to be 128-byte
731 * aligned.
732 *
733 * Since we use these as temporary stacks during secondary CPU
734 * bringup, machine check, system reset, and HMI, we need to get
735 * at them in real mode. This means they must also be within the RMO
736 * region.
737 *
738 * The IRQ stacks allocated elsewhere in this file are zeroed and
739 * initialized in kernel/irq.c. These are initialized here in order
740 * to have emergency stacks available as early as possible.
741 */
742 limit = min(ppc64_bolted_size(), ppc64_rma_size);
743
744 for_each_possible_cpu(i) {
745 paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
746
747 #ifdef CONFIG_PPC_BOOK3S_64
748 /* emergency stack for NMI exception handling. */
749 paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
750
751 /* emergency stack for machine check exception handling. */
752 paca_ptrs[i]->mc_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
753 #endif
754 }
755 }
756
757 #ifdef CONFIG_SMP
758 #define PCPU_DYN_SIZE ()
759
pcpu_fc_alloc(unsigned int cpu,size_t size,size_t align)760 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
761 {
762 return memblock_alloc_try_nid(size, align, __pa(MAX_DMA_ADDRESS),
763 MEMBLOCK_ALLOC_ACCESSIBLE,
764 early_cpu_to_node(cpu));
765
766 }
767
pcpu_fc_free(void * ptr,size_t size)768 static void __init pcpu_fc_free(void *ptr, size_t size)
769 {
770 memblock_free(__pa(ptr), size);
771 }
772
pcpu_cpu_distance(unsigned int from,unsigned int to)773 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
774 {
775 if (early_cpu_to_node(from) == early_cpu_to_node(to))
776 return LOCAL_DISTANCE;
777 else
778 return REMOTE_DISTANCE;
779 }
780
781 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
782 EXPORT_SYMBOL(__per_cpu_offset);
783
setup_per_cpu_areas(void)784 void __init setup_per_cpu_areas(void)
785 {
786 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
787 size_t atom_size;
788 unsigned long delta;
789 unsigned int cpu;
790 int rc;
791
792 /*
793 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need
794 * to group units. For larger mappings, use 1M atom which
795 * should be large enough to contain a number of units.
796 */
797 if (mmu_linear_psize == MMU_PAGE_4K)
798 atom_size = PAGE_SIZE;
799 else
800 atom_size = 1 << 20;
801
802 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
803 pcpu_fc_alloc, pcpu_fc_free);
804 if (rc < 0)
805 panic("cannot initialize percpu area (err=%d)", rc);
806
807 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
808 for_each_possible_cpu(cpu) {
809 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
810 paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
811 }
812 }
813 #endif
814
815 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
memory_block_size_bytes(void)816 unsigned long memory_block_size_bytes(void)
817 {
818 if (ppc_md.memory_block_size)
819 return ppc_md.memory_block_size();
820
821 return MIN_MEMORY_BLOCK_SIZE;
822 }
823 #endif
824
825 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
826 struct ppc_pci_io ppc_pci_io;
827 EXPORT_SYMBOL(ppc_pci_io);
828 #endif
829
830 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
hw_nmi_get_sample_period(int watchdog_thresh)831 u64 hw_nmi_get_sample_period(int watchdog_thresh)
832 {
833 return ppc_proc_freq * watchdog_thresh;
834 }
835 #endif
836
837 /*
838 * The perf based hardlockup detector breaks PMU event based branches, so
839 * disable it by default. Book3S has a soft-nmi hardlockup detector based
840 * on the decrementer interrupt, so it does not suffer from this problem.
841 *
842 * It is likely to get false positives in VM guests, so disable it there
843 * by default too.
844 */
disable_hardlockup_detector(void)845 static int __init disable_hardlockup_detector(void)
846 {
847 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
848 hardlockup_detector_disable();
849 #else
850 if (firmware_has_feature(FW_FEATURE_LPAR))
851 hardlockup_detector_disable();
852 #endif
853
854 return 0;
855 }
856 early_initcall(disable_hardlockup_detector);
857
858 #ifdef CONFIG_PPC_BOOK3S_64
859 static enum l1d_flush_type enabled_flush_types;
860 static void *l1d_flush_fallback_area;
861 static bool no_rfi_flush;
862 static bool no_entry_flush;
863 static bool no_uaccess_flush;
864 bool rfi_flush;
865 bool entry_flush;
866 bool uaccess_flush;
867 DEFINE_STATIC_KEY_FALSE(uaccess_flush_key);
868 EXPORT_SYMBOL(uaccess_flush_key);
869
handle_no_rfi_flush(char * p)870 static int __init handle_no_rfi_flush(char *p)
871 {
872 pr_info("rfi-flush: disabled on command line.");
873 no_rfi_flush = true;
874 return 0;
875 }
876 early_param("no_rfi_flush", handle_no_rfi_flush);
877
handle_no_entry_flush(char * p)878 static int __init handle_no_entry_flush(char *p)
879 {
880 pr_info("entry-flush: disabled on command line.");
881 no_entry_flush = true;
882 return 0;
883 }
884 early_param("no_entry_flush", handle_no_entry_flush);
885
handle_no_uaccess_flush(char * p)886 static int __init handle_no_uaccess_flush(char *p)
887 {
888 pr_info("uaccess-flush: disabled on command line.");
889 no_uaccess_flush = true;
890 return 0;
891 }
892 early_param("no_uaccess_flush", handle_no_uaccess_flush);
893
894 /*
895 * The RFI flush is not KPTI, but because users will see doco that says to use
896 * nopti we hijack that option here to also disable the RFI flush.
897 */
handle_no_pti(char * p)898 static int __init handle_no_pti(char *p)
899 {
900 pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
901 handle_no_rfi_flush(NULL);
902 return 0;
903 }
904 early_param("nopti", handle_no_pti);
905
do_nothing(void * unused)906 static void do_nothing(void *unused)
907 {
908 /*
909 * We don't need to do the flush explicitly, just enter+exit kernel is
910 * sufficient, the RFI exit handlers will do the right thing.
911 */
912 }
913
rfi_flush_enable(bool enable)914 void rfi_flush_enable(bool enable)
915 {
916 if (enable) {
917 do_rfi_flush_fixups(enabled_flush_types);
918 on_each_cpu(do_nothing, NULL, 1);
919 } else
920 do_rfi_flush_fixups(L1D_FLUSH_NONE);
921
922 rfi_flush = enable;
923 }
924
entry_flush_enable(bool enable)925 void entry_flush_enable(bool enable)
926 {
927 if (enable) {
928 do_entry_flush_fixups(enabled_flush_types);
929 on_each_cpu(do_nothing, NULL, 1);
930 } else {
931 do_entry_flush_fixups(L1D_FLUSH_NONE);
932 }
933
934 entry_flush = enable;
935 }
936
uaccess_flush_enable(bool enable)937 void uaccess_flush_enable(bool enable)
938 {
939 if (enable) {
940 do_uaccess_flush_fixups(enabled_flush_types);
941 static_branch_enable(&uaccess_flush_key);
942 on_each_cpu(do_nothing, NULL, 1);
943 } else {
944 static_branch_disable(&uaccess_flush_key);
945 do_uaccess_flush_fixups(L1D_FLUSH_NONE);
946 }
947
948 uaccess_flush = enable;
949 }
950
init_fallback_flush(void)951 static void __ref init_fallback_flush(void)
952 {
953 u64 l1d_size, limit;
954 int cpu;
955
956 /* Only allocate the fallback flush area once (at boot time). */
957 if (l1d_flush_fallback_area)
958 return;
959
960 l1d_size = ppc64_caches.l1d.size;
961
962 /*
963 * If there is no d-cache-size property in the device tree, l1d_size
964 * could be zero. That leads to the loop in the asm wrapping around to
965 * 2^64-1, and then walking off the end of the fallback area and
966 * eventually causing a page fault which is fatal. Just default to
967 * something vaguely sane.
968 */
969 if (!l1d_size)
970 l1d_size = (64 * 1024);
971
972 limit = min(ppc64_bolted_size(), ppc64_rma_size);
973
974 /*
975 * Align to L1d size, and size it at 2x L1d size, to catch possible
976 * hardware prefetch runoff. We don't have a recipe for load patterns to
977 * reliably avoid the prefetcher.
978 */
979 l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2,
980 l1d_size, MEMBLOCK_LOW_LIMIT,
981 limit, NUMA_NO_NODE);
982 if (!l1d_flush_fallback_area)
983 panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n",
984 __func__, l1d_size * 2, l1d_size, &limit);
985
986
987 for_each_possible_cpu(cpu) {
988 struct paca_struct *paca = paca_ptrs[cpu];
989 paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
990 paca->l1d_flush_size = l1d_size;
991 }
992 }
993
setup_rfi_flush(enum l1d_flush_type types,bool enable)994 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
995 {
996 if (types & L1D_FLUSH_FALLBACK) {
997 pr_info("rfi-flush: fallback displacement flush available\n");
998 init_fallback_flush();
999 }
1000
1001 if (types & L1D_FLUSH_ORI)
1002 pr_info("rfi-flush: ori type flush available\n");
1003
1004 if (types & L1D_FLUSH_MTTRIG)
1005 pr_info("rfi-flush: mttrig type flush available\n");
1006
1007 enabled_flush_types = types;
1008
1009 if (!cpu_mitigations_off() && !no_rfi_flush)
1010 rfi_flush_enable(enable);
1011 }
1012
setup_entry_flush(bool enable)1013 void setup_entry_flush(bool enable)
1014 {
1015 if (cpu_mitigations_off())
1016 return;
1017
1018 if (!no_entry_flush)
1019 entry_flush_enable(enable);
1020 }
1021
setup_uaccess_flush(bool enable)1022 void setup_uaccess_flush(bool enable)
1023 {
1024 if (cpu_mitigations_off())
1025 return;
1026
1027 if (!no_uaccess_flush)
1028 uaccess_flush_enable(enable);
1029 }
1030
1031 #ifdef CONFIG_DEBUG_FS
rfi_flush_set(void * data,u64 val)1032 static int rfi_flush_set(void *data, u64 val)
1033 {
1034 bool enable;
1035
1036 if (val == 1)
1037 enable = true;
1038 else if (val == 0)
1039 enable = false;
1040 else
1041 return -EINVAL;
1042
1043 /* Only do anything if we're changing state */
1044 if (enable != rfi_flush)
1045 rfi_flush_enable(enable);
1046
1047 return 0;
1048 }
1049
rfi_flush_get(void * data,u64 * val)1050 static int rfi_flush_get(void *data, u64 *val)
1051 {
1052 *val = rfi_flush ? 1 : 0;
1053 return 0;
1054 }
1055
1056 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
1057
entry_flush_set(void * data,u64 val)1058 static int entry_flush_set(void *data, u64 val)
1059 {
1060 bool enable;
1061
1062 if (val == 1)
1063 enable = true;
1064 else if (val == 0)
1065 enable = false;
1066 else
1067 return -EINVAL;
1068
1069 /* Only do anything if we're changing state */
1070 if (enable != entry_flush)
1071 entry_flush_enable(enable);
1072
1073 return 0;
1074 }
1075
entry_flush_get(void * data,u64 * val)1076 static int entry_flush_get(void *data, u64 *val)
1077 {
1078 *val = entry_flush ? 1 : 0;
1079 return 0;
1080 }
1081
1082 DEFINE_SIMPLE_ATTRIBUTE(fops_entry_flush, entry_flush_get, entry_flush_set, "%llu\n");
1083
uaccess_flush_set(void * data,u64 val)1084 static int uaccess_flush_set(void *data, u64 val)
1085 {
1086 bool enable;
1087
1088 if (val == 1)
1089 enable = true;
1090 else if (val == 0)
1091 enable = false;
1092 else
1093 return -EINVAL;
1094
1095 /* Only do anything if we're changing state */
1096 if (enable != uaccess_flush)
1097 uaccess_flush_enable(enable);
1098
1099 return 0;
1100 }
1101
uaccess_flush_get(void * data,u64 * val)1102 static int uaccess_flush_get(void *data, u64 *val)
1103 {
1104 *val = uaccess_flush ? 1 : 0;
1105 return 0;
1106 }
1107
1108 DEFINE_SIMPLE_ATTRIBUTE(fops_uaccess_flush, uaccess_flush_get, uaccess_flush_set, "%llu\n");
1109
rfi_flush_debugfs_init(void)1110 static __init int rfi_flush_debugfs_init(void)
1111 {
1112 debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
1113 debugfs_create_file("entry_flush", 0600, powerpc_debugfs_root, NULL, &fops_entry_flush);
1114 debugfs_create_file("uaccess_flush", 0600, powerpc_debugfs_root, NULL, &fops_uaccess_flush);
1115 return 0;
1116 }
1117 device_initcall(rfi_flush_debugfs_init);
1118 #endif
1119 #endif /* CONFIG_PPC_BOOK3S_64 */
1120