• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/hmm.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/cpufreq_times.h>
97 #include <linux/stackleak.h>
98 #include <linux/scs.h>
99 
100 #include <asm/pgtable.h>
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106 
107 #include <trace/events/sched.h>
108 
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111 
112 /*
113  * Minimum number of threads to boot the kernel
114  */
115 #define MIN_THREADS 20
116 
117 /*
118  * Maximum number of threads
119  */
120 #define MAX_THREADS FUTEX_TID_MASK
121 
122 /*
123  * Protected counters by write_lock_irq(&tasklist_lock)
124  */
125 unsigned long total_forks;	/* Handle normal Linux uptimes. */
126 int nr_threads;			/* The idle threads do not count.. */
127 
128 static int max_threads;		/* tunable limit on nr_threads */
129 
130 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
131 
132 static const char * const resident_page_types[] = {
133 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137 };
138 
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140 
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
142 
143 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)144 int lockdep_tasklist_lock_is_held(void)
145 {
146 	return lockdep_is_held(&tasklist_lock);
147 }
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
150 
nr_processes(void)151 int nr_processes(void)
152 {
153 	int cpu;
154 	int total = 0;
155 
156 	for_each_possible_cpu(cpu)
157 		total += per_cpu(process_counts, cpu);
158 
159 	return total;
160 }
161 
arch_release_task_struct(struct task_struct * tsk)162 void __weak arch_release_task_struct(struct task_struct *tsk)
163 {
164 }
165 
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
168 
alloc_task_struct_node(int node)169 static inline struct task_struct *alloc_task_struct_node(int node)
170 {
171 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172 }
173 
free_task_struct(struct task_struct * tsk)174 static inline void free_task_struct(struct task_struct *tsk)
175 {
176 	kmem_cache_free(task_struct_cachep, tsk);
177 }
178 #endif
179 
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
181 
182 /*
183  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184  * kmemcache based allocator.
185  */
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187 
188 #ifdef CONFIG_VMAP_STACK
189 /*
190  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191  * flush.  Try to minimize the number of calls by caching stacks.
192  */
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195 
free_vm_stack_cache(unsigned int cpu)196 static int free_vm_stack_cache(unsigned int cpu)
197 {
198 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
199 	int i;
200 
201 	for (i = 0; i < NR_CACHED_STACKS; i++) {
202 		struct vm_struct *vm_stack = cached_vm_stacks[i];
203 
204 		if (!vm_stack)
205 			continue;
206 
207 		vfree(vm_stack->addr);
208 		cached_vm_stacks[i] = NULL;
209 	}
210 
211 	return 0;
212 }
213 #endif
214 
alloc_thread_stack_node(struct task_struct * tsk,int node)215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
216 {
217 #ifdef CONFIG_VMAP_STACK
218 	void *stack;
219 	int i;
220 
221 	for (i = 0; i < NR_CACHED_STACKS; i++) {
222 		struct vm_struct *s;
223 
224 		s = this_cpu_xchg(cached_stacks[i], NULL);
225 
226 		if (!s)
227 			continue;
228 
229 		/* Clear stale pointers from reused stack. */
230 		memset(s->addr, 0, THREAD_SIZE);
231 
232 		tsk->stack_vm_area = s;
233 		tsk->stack = s->addr;
234 		return s->addr;
235 	}
236 
237 	/*
238 	 * Allocated stacks are cached and later reused by new threads,
239 	 * so memcg accounting is performed manually on assigning/releasing
240 	 * stacks to tasks. Drop __GFP_ACCOUNT.
241 	 */
242 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
243 				     VMALLOC_START, VMALLOC_END,
244 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
245 				     PAGE_KERNEL,
246 				     0, node, __builtin_return_address(0));
247 
248 	/*
249 	 * We can't call find_vm_area() in interrupt context, and
250 	 * free_thread_stack() can be called in interrupt context,
251 	 * so cache the vm_struct.
252 	 */
253 	if (stack) {
254 		tsk->stack_vm_area = find_vm_area(stack);
255 		tsk->stack = stack;
256 	}
257 	return stack;
258 #else
259 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
260 					     THREAD_SIZE_ORDER);
261 
262 	if (likely(page)) {
263 		tsk->stack = page_address(page);
264 		return tsk->stack;
265 	}
266 	return NULL;
267 #endif
268 }
269 
free_thread_stack(struct task_struct * tsk)270 static inline void free_thread_stack(struct task_struct *tsk)
271 {
272 #ifdef CONFIG_VMAP_STACK
273 	struct vm_struct *vm = task_stack_vm_area(tsk);
274 
275 	if (vm) {
276 		int i;
277 
278 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
279 			mod_memcg_page_state(vm->pages[i],
280 					     MEMCG_KERNEL_STACK_KB,
281 					     -(int)(PAGE_SIZE / 1024));
282 
283 			memcg_kmem_uncharge(vm->pages[i], 0);
284 		}
285 
286 		for (i = 0; i < NR_CACHED_STACKS; i++) {
287 			if (this_cpu_cmpxchg(cached_stacks[i],
288 					NULL, tsk->stack_vm_area) != NULL)
289 				continue;
290 
291 			return;
292 		}
293 
294 		vfree_atomic(tsk->stack);
295 		return;
296 	}
297 #endif
298 
299 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
300 }
301 # else
302 static struct kmem_cache *thread_stack_cache;
303 
alloc_thread_stack_node(struct task_struct * tsk,int node)304 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
305 						  int node)
306 {
307 	unsigned long *stack;
308 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
309 	tsk->stack = stack;
310 	return stack;
311 }
312 
free_thread_stack(struct task_struct * tsk)313 static void free_thread_stack(struct task_struct *tsk)
314 {
315 	kmem_cache_free(thread_stack_cache, tsk->stack);
316 }
317 
thread_stack_cache_init(void)318 void thread_stack_cache_init(void)
319 {
320 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
321 					THREAD_SIZE, THREAD_SIZE, 0, 0,
322 					THREAD_SIZE, NULL);
323 	BUG_ON(thread_stack_cache == NULL);
324 }
325 # endif
326 #endif
327 
328 /* SLAB cache for signal_struct structures (tsk->signal) */
329 static struct kmem_cache *signal_cachep;
330 
331 /* SLAB cache for sighand_struct structures (tsk->sighand) */
332 struct kmem_cache *sighand_cachep;
333 
334 /* SLAB cache for files_struct structures (tsk->files) */
335 struct kmem_cache *files_cachep;
336 
337 /* SLAB cache for fs_struct structures (tsk->fs) */
338 struct kmem_cache *fs_cachep;
339 
340 /* SLAB cache for vm_area_struct structures */
341 static struct kmem_cache *vm_area_cachep;
342 
343 /* SLAB cache for mm_struct structures (tsk->mm) */
344 static struct kmem_cache *mm_cachep;
345 
vm_area_alloc(struct mm_struct * mm)346 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
347 {
348 	struct vm_area_struct *vma;
349 
350 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
351 	if (vma)
352 		vma_init(vma, mm);
353 	return vma;
354 }
355 
vm_area_dup(struct vm_area_struct * orig)356 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
357 {
358 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
359 
360 	if (new) {
361 		*new = *orig;
362 		INIT_LIST_HEAD(&new->anon_vma_chain);
363 	}
364 	return new;
365 }
366 
vm_area_free(struct vm_area_struct * vma)367 void vm_area_free(struct vm_area_struct *vma)
368 {
369 	kmem_cache_free(vm_area_cachep, vma);
370 }
371 
account_kernel_stack(struct task_struct * tsk,int account)372 static void account_kernel_stack(struct task_struct *tsk, int account)
373 {
374 	void *stack = task_stack_page(tsk);
375 	struct vm_struct *vm = task_stack_vm_area(tsk);
376 
377 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
378 
379 	if (vm) {
380 		int i;
381 
382 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
383 
384 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
385 			mod_zone_page_state(page_zone(vm->pages[i]),
386 					    NR_KERNEL_STACK_KB,
387 					    PAGE_SIZE / 1024 * account);
388 		}
389 	} else {
390 		/*
391 		 * All stack pages are in the same zone and belong to the
392 		 * same memcg.
393 		 */
394 		struct page *first_page = virt_to_page(stack);
395 
396 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
397 				    THREAD_SIZE / 1024 * account);
398 
399 		mod_memcg_obj_state(stack, MEMCG_KERNEL_STACK_KB,
400 				    account * (THREAD_SIZE / 1024));
401 	}
402 }
403 
memcg_charge_kernel_stack(struct task_struct * tsk)404 static int memcg_charge_kernel_stack(struct task_struct *tsk)
405 {
406 #ifdef CONFIG_VMAP_STACK
407 	struct vm_struct *vm = task_stack_vm_area(tsk);
408 	int ret;
409 
410 	if (vm) {
411 		int i;
412 
413 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
414 			/*
415 			 * If memcg_kmem_charge() fails, page->mem_cgroup
416 			 * pointer is NULL, and both memcg_kmem_uncharge()
417 			 * and mod_memcg_page_state() in free_thread_stack()
418 			 * will ignore this page. So it's safe.
419 			 */
420 			ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
421 			if (ret)
422 				return ret;
423 
424 			mod_memcg_page_state(vm->pages[i],
425 					     MEMCG_KERNEL_STACK_KB,
426 					     PAGE_SIZE / 1024);
427 		}
428 	}
429 #endif
430 	return 0;
431 }
432 
release_task_stack(struct task_struct * tsk)433 static void release_task_stack(struct task_struct *tsk)
434 {
435 	if (WARN_ON(tsk->state != TASK_DEAD))
436 		return;  /* Better to leak the stack than to free prematurely */
437 
438 	account_kernel_stack(tsk, -1);
439 	free_thread_stack(tsk);
440 	tsk->stack = NULL;
441 #ifdef CONFIG_VMAP_STACK
442 	tsk->stack_vm_area = NULL;
443 #endif
444 }
445 
446 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)447 void put_task_stack(struct task_struct *tsk)
448 {
449 	if (refcount_dec_and_test(&tsk->stack_refcount))
450 		release_task_stack(tsk);
451 }
452 #endif
453 
free_task(struct task_struct * tsk)454 void free_task(struct task_struct *tsk)
455 {
456 	cpufreq_task_times_exit(tsk);
457 	scs_release(tsk);
458 
459 #ifndef CONFIG_THREAD_INFO_IN_TASK
460 	/*
461 	 * The task is finally done with both the stack and thread_info,
462 	 * so free both.
463 	 */
464 	release_task_stack(tsk);
465 #else
466 	/*
467 	 * If the task had a separate stack allocation, it should be gone
468 	 * by now.
469 	 */
470 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
471 #endif
472 	rt_mutex_debug_task_free(tsk);
473 	ftrace_graph_exit_task(tsk);
474 	put_seccomp_filter(tsk);
475 	arch_release_task_struct(tsk);
476 	if (tsk->flags & PF_KTHREAD)
477 		free_kthread_struct(tsk);
478 	free_task_struct(tsk);
479 }
480 EXPORT_SYMBOL(free_task);
481 
482 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)483 static __latent_entropy int dup_mmap(struct mm_struct *mm,
484 					struct mm_struct *oldmm)
485 {
486 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
487 	struct rb_node **rb_link, *rb_parent;
488 	int retval;
489 	unsigned long charge;
490 	LIST_HEAD(uf);
491 
492 	uprobe_start_dup_mmap();
493 	if (down_write_killable(&oldmm->mmap_sem)) {
494 		retval = -EINTR;
495 		goto fail_uprobe_end;
496 	}
497 	flush_cache_dup_mm(oldmm);
498 	uprobe_dup_mmap(oldmm, mm);
499 	/*
500 	 * Not linked in yet - no deadlock potential:
501 	 */
502 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
503 
504 	/* No ordering required: file already has been exposed. */
505 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
506 
507 	mm->total_vm = oldmm->total_vm;
508 	mm->data_vm = oldmm->data_vm;
509 	mm->exec_vm = oldmm->exec_vm;
510 	mm->stack_vm = oldmm->stack_vm;
511 
512 	rb_link = &mm->mm_rb.rb_node;
513 	rb_parent = NULL;
514 	pprev = &mm->mmap;
515 	retval = ksm_fork(mm, oldmm);
516 	if (retval)
517 		goto out;
518 	retval = khugepaged_fork(mm, oldmm);
519 	if (retval)
520 		goto out;
521 
522 	prev = NULL;
523 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
524 		struct file *file;
525 
526 		if (mpnt->vm_flags & VM_DONTCOPY) {
527 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
528 			continue;
529 		}
530 		charge = 0;
531 		/*
532 		 * Don't duplicate many vmas if we've been oom-killed (for
533 		 * example)
534 		 */
535 		if (fatal_signal_pending(current)) {
536 			retval = -EINTR;
537 			goto out;
538 		}
539 		if (mpnt->vm_flags & VM_ACCOUNT) {
540 			unsigned long len = vma_pages(mpnt);
541 
542 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
543 				goto fail_nomem;
544 			charge = len;
545 		}
546 		tmp = vm_area_dup(mpnt);
547 		if (!tmp)
548 			goto fail_nomem;
549 		retval = vma_dup_policy(mpnt, tmp);
550 		if (retval)
551 			goto fail_nomem_policy;
552 		tmp->vm_mm = mm;
553 		retval = dup_userfaultfd(tmp, &uf);
554 		if (retval)
555 			goto fail_nomem_anon_vma_fork;
556 		if (tmp->vm_flags & VM_WIPEONFORK) {
557 			/* VM_WIPEONFORK gets a clean slate in the child. */
558 			tmp->anon_vma = NULL;
559 			if (anon_vma_prepare(tmp))
560 				goto fail_nomem_anon_vma_fork;
561 		} else if (anon_vma_fork(tmp, mpnt))
562 			goto fail_nomem_anon_vma_fork;
563 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
564 		tmp->vm_next = tmp->vm_prev = NULL;
565 		file = tmp->vm_file;
566 		if (file) {
567 			struct inode *inode = file_inode(file);
568 			struct address_space *mapping = file->f_mapping;
569 
570 			get_file(file);
571 			if (tmp->vm_flags & VM_DENYWRITE)
572 				atomic_dec(&inode->i_writecount);
573 			i_mmap_lock_write(mapping);
574 			if (tmp->vm_flags & VM_SHARED)
575 				atomic_inc(&mapping->i_mmap_writable);
576 			flush_dcache_mmap_lock(mapping);
577 			/* insert tmp into the share list, just after mpnt */
578 			vma_interval_tree_insert_after(tmp, mpnt,
579 					&mapping->i_mmap);
580 			flush_dcache_mmap_unlock(mapping);
581 			i_mmap_unlock_write(mapping);
582 		}
583 
584 		/*
585 		 * Clear hugetlb-related page reserves for children. This only
586 		 * affects MAP_PRIVATE mappings. Faults generated by the child
587 		 * are not guaranteed to succeed, even if read-only
588 		 */
589 		if (is_vm_hugetlb_page(tmp))
590 			reset_vma_resv_huge_pages(tmp);
591 
592 		/*
593 		 * Link in the new vma and copy the page table entries.
594 		 */
595 		*pprev = tmp;
596 		pprev = &tmp->vm_next;
597 		tmp->vm_prev = prev;
598 		prev = tmp;
599 
600 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
601 		rb_link = &tmp->vm_rb.rb_right;
602 		rb_parent = &tmp->vm_rb;
603 
604 		mm->map_count++;
605 		if (!(tmp->vm_flags & VM_WIPEONFORK))
606 			retval = copy_page_range(mm, oldmm, mpnt);
607 
608 		if (tmp->vm_ops && tmp->vm_ops->open)
609 			tmp->vm_ops->open(tmp);
610 
611 		if (retval)
612 			goto out;
613 	}
614 	/* a new mm has just been created */
615 	retval = arch_dup_mmap(oldmm, mm);
616 out:
617 	up_write(&mm->mmap_sem);
618 	flush_tlb_mm(oldmm);
619 	up_write(&oldmm->mmap_sem);
620 	dup_userfaultfd_complete(&uf);
621 fail_uprobe_end:
622 	uprobe_end_dup_mmap();
623 	return retval;
624 fail_nomem_anon_vma_fork:
625 	mpol_put(vma_policy(tmp));
626 fail_nomem_policy:
627 	vm_area_free(tmp);
628 fail_nomem:
629 	retval = -ENOMEM;
630 	vm_unacct_memory(charge);
631 	goto out;
632 }
633 
mm_alloc_pgd(struct mm_struct * mm)634 static inline int mm_alloc_pgd(struct mm_struct *mm)
635 {
636 	mm->pgd = pgd_alloc(mm);
637 	if (unlikely(!mm->pgd))
638 		return -ENOMEM;
639 	return 0;
640 }
641 
mm_free_pgd(struct mm_struct * mm)642 static inline void mm_free_pgd(struct mm_struct *mm)
643 {
644 	pgd_free(mm, mm->pgd);
645 }
646 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)647 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
648 {
649 	down_write(&oldmm->mmap_sem);
650 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
651 	up_write(&oldmm->mmap_sem);
652 	return 0;
653 }
654 #define mm_alloc_pgd(mm)	(0)
655 #define mm_free_pgd(mm)
656 #endif /* CONFIG_MMU */
657 
check_mm(struct mm_struct * mm)658 static void check_mm(struct mm_struct *mm)
659 {
660 	int i;
661 
662 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
663 			 "Please make sure 'struct resident_page_types[]' is updated as well");
664 
665 	for (i = 0; i < NR_MM_COUNTERS; i++) {
666 		long x = atomic_long_read(&mm->rss_stat.count[i]);
667 
668 		if (unlikely(x))
669 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
670 				 mm, resident_page_types[i], x);
671 	}
672 
673 	if (mm_pgtables_bytes(mm))
674 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
675 				mm_pgtables_bytes(mm));
676 
677 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
678 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
679 #endif
680 }
681 
682 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
683 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
684 
685 /*
686  * Called when the last reference to the mm
687  * is dropped: either by a lazy thread or by
688  * mmput. Free the page directory and the mm.
689  */
__mmdrop(struct mm_struct * mm)690 void __mmdrop(struct mm_struct *mm)
691 {
692 	BUG_ON(mm == &init_mm);
693 	WARN_ON_ONCE(mm == current->mm);
694 	WARN_ON_ONCE(mm == current->active_mm);
695 	mm_free_pgd(mm);
696 	destroy_context(mm);
697 	mmu_notifier_mm_destroy(mm);
698 	check_mm(mm);
699 	put_user_ns(mm->user_ns);
700 	free_mm(mm);
701 }
702 EXPORT_SYMBOL_GPL(__mmdrop);
703 
mmdrop_async_fn(struct work_struct * work)704 static void mmdrop_async_fn(struct work_struct *work)
705 {
706 	struct mm_struct *mm;
707 
708 	mm = container_of(work, struct mm_struct, async_put_work);
709 	__mmdrop(mm);
710 }
711 
mmdrop_async(struct mm_struct * mm)712 static void mmdrop_async(struct mm_struct *mm)
713 {
714 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
715 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
716 		schedule_work(&mm->async_put_work);
717 	}
718 }
719 
free_signal_struct(struct signal_struct * sig)720 static inline void free_signal_struct(struct signal_struct *sig)
721 {
722 	taskstats_tgid_free(sig);
723 	sched_autogroup_exit(sig);
724 	/*
725 	 * __mmdrop is not safe to call from softirq context on x86 due to
726 	 * pgd_dtor so postpone it to the async context
727 	 */
728 	if (sig->oom_mm)
729 		mmdrop_async(sig->oom_mm);
730 	kmem_cache_free(signal_cachep, sig);
731 }
732 
put_signal_struct(struct signal_struct * sig)733 static inline void put_signal_struct(struct signal_struct *sig)
734 {
735 	if (refcount_dec_and_test(&sig->sigcnt))
736 		free_signal_struct(sig);
737 }
738 
__put_task_struct(struct task_struct * tsk)739 void __put_task_struct(struct task_struct *tsk)
740 {
741 	WARN_ON(!tsk->exit_state);
742 	WARN_ON(refcount_read(&tsk->usage));
743 	WARN_ON(tsk == current);
744 
745 	cgroup_free(tsk);
746 	task_numa_free(tsk, true);
747 	security_task_free(tsk);
748 	exit_creds(tsk);
749 	delayacct_tsk_free(tsk);
750 	put_signal_struct(tsk->signal);
751 
752 	if (!profile_handoff_task(tsk))
753 		free_task(tsk);
754 }
755 EXPORT_SYMBOL_GPL(__put_task_struct);
756 
__put_task_struct_rcu_cb(struct rcu_head * rhp)757 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
758 {
759 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
760 
761 	__put_task_struct(task);
762 }
763 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
764 
arch_task_cache_init(void)765 void __init __weak arch_task_cache_init(void) { }
766 
767 /*
768  * set_max_threads
769  */
set_max_threads(unsigned int max_threads_suggested)770 static void set_max_threads(unsigned int max_threads_suggested)
771 {
772 	u64 threads;
773 	unsigned long nr_pages = totalram_pages();
774 
775 	/*
776 	 * The number of threads shall be limited such that the thread
777 	 * structures may only consume a small part of the available memory.
778 	 */
779 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
780 		threads = MAX_THREADS;
781 	else
782 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
783 				    (u64) THREAD_SIZE * 8UL);
784 
785 	if (threads > max_threads_suggested)
786 		threads = max_threads_suggested;
787 
788 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
789 }
790 
791 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
792 /* Initialized by the architecture: */
793 int arch_task_struct_size __read_mostly;
794 #endif
795 
796 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)797 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
798 {
799 	/* Fetch thread_struct whitelist for the architecture. */
800 	arch_thread_struct_whitelist(offset, size);
801 
802 	/*
803 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
804 	 * adjust offset to position of thread_struct in task_struct.
805 	 */
806 	if (unlikely(*size == 0))
807 		*offset = 0;
808 	else
809 		*offset += offsetof(struct task_struct, thread);
810 }
811 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
812 
fork_init(void)813 void __init fork_init(void)
814 {
815 	int i;
816 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
817 #ifndef ARCH_MIN_TASKALIGN
818 #define ARCH_MIN_TASKALIGN	0
819 #endif
820 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
821 	unsigned long useroffset, usersize;
822 
823 	/* create a slab on which task_structs can be allocated */
824 	task_struct_whitelist(&useroffset, &usersize);
825 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
826 			arch_task_struct_size, align,
827 			SLAB_PANIC|SLAB_ACCOUNT,
828 			useroffset, usersize, NULL);
829 #endif
830 
831 	/* do the arch specific task caches init */
832 	arch_task_cache_init();
833 
834 	set_max_threads(MAX_THREADS);
835 
836 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
837 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
838 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
839 		init_task.signal->rlim[RLIMIT_NPROC];
840 
841 	for (i = 0; i < UCOUNT_COUNTS; i++) {
842 		init_user_ns.ucount_max[i] = max_threads/2;
843 	}
844 
845 #ifdef CONFIG_VMAP_STACK
846 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
847 			  NULL, free_vm_stack_cache);
848 #endif
849 
850 	scs_init();
851 
852 	lockdep_init_task(&init_task);
853 	uprobes_init();
854 }
855 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)856 int __weak arch_dup_task_struct(struct task_struct *dst,
857 					       struct task_struct *src)
858 {
859 	*dst = *src;
860 	return 0;
861 }
862 
set_task_stack_end_magic(struct task_struct * tsk)863 void set_task_stack_end_magic(struct task_struct *tsk)
864 {
865 	unsigned long *stackend;
866 
867 	stackend = end_of_stack(tsk);
868 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
869 }
870 
dup_task_struct(struct task_struct * orig,int node)871 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
872 {
873 	struct task_struct *tsk;
874 	unsigned long *stack;
875 	struct vm_struct *stack_vm_area __maybe_unused;
876 	int err;
877 
878 	if (node == NUMA_NO_NODE)
879 		node = tsk_fork_get_node(orig);
880 	tsk = alloc_task_struct_node(node);
881 	if (!tsk)
882 		return NULL;
883 
884 	stack = alloc_thread_stack_node(tsk, node);
885 	if (!stack)
886 		goto free_tsk;
887 
888 	if (memcg_charge_kernel_stack(tsk))
889 		goto free_stack;
890 
891 	stack_vm_area = task_stack_vm_area(tsk);
892 
893 	err = arch_dup_task_struct(tsk, orig);
894 
895 	/*
896 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
897 	 * sure they're properly initialized before using any stack-related
898 	 * functions again.
899 	 */
900 	tsk->stack = stack;
901 #ifdef CONFIG_VMAP_STACK
902 	tsk->stack_vm_area = stack_vm_area;
903 #endif
904 #ifdef CONFIG_THREAD_INFO_IN_TASK
905 	refcount_set(&tsk->stack_refcount, 1);
906 #endif
907 
908 	if (err)
909 		goto free_stack;
910 
911 	err = scs_prepare(tsk, node);
912 	if (err)
913 		goto free_stack;
914 
915 #ifdef CONFIG_SECCOMP
916 	/*
917 	 * We must handle setting up seccomp filters once we're under
918 	 * the sighand lock in case orig has changed between now and
919 	 * then. Until then, filter must be NULL to avoid messing up
920 	 * the usage counts on the error path calling free_task.
921 	 */
922 	tsk->seccomp.filter = NULL;
923 #endif
924 
925 	setup_thread_stack(tsk, orig);
926 	clear_user_return_notifier(tsk);
927 	clear_tsk_need_resched(tsk);
928 	set_task_stack_end_magic(tsk);
929 
930 #ifdef CONFIG_STACKPROTECTOR
931 	tsk->stack_canary = get_random_canary();
932 #endif
933 	if (orig->cpus_ptr == &orig->cpus_mask)
934 		tsk->cpus_ptr = &tsk->cpus_mask;
935 
936 	/*
937 	 * One for the user space visible state that goes away when reaped.
938 	 * One for the scheduler.
939 	 */
940 	refcount_set(&tsk->rcu_users, 2);
941 	/* One for the rcu users */
942 	refcount_set(&tsk->usage, 1);
943 #ifdef CONFIG_BLK_DEV_IO_TRACE
944 	tsk->btrace_seq = 0;
945 #endif
946 	tsk->splice_pipe = NULL;
947 	tsk->task_frag.page = NULL;
948 	tsk->wake_q.next = NULL;
949 
950 	account_kernel_stack(tsk, 1);
951 
952 	kcov_task_init(tsk);
953 
954 #ifdef CONFIG_FAULT_INJECTION
955 	tsk->fail_nth = 0;
956 #endif
957 
958 #ifdef CONFIG_BLK_CGROUP
959 	tsk->throttle_queue = NULL;
960 	tsk->use_memdelay = 0;
961 #endif
962 
963 #ifdef CONFIG_MEMCG
964 	tsk->active_memcg = NULL;
965 #endif
966 	return tsk;
967 
968 free_stack:
969 	free_thread_stack(tsk);
970 free_tsk:
971 	free_task_struct(tsk);
972 	return NULL;
973 }
974 
975 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
976 
977 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
978 
coredump_filter_setup(char * s)979 static int __init coredump_filter_setup(char *s)
980 {
981 	default_dump_filter =
982 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
983 		MMF_DUMP_FILTER_MASK;
984 	return 1;
985 }
986 
987 __setup("coredump_filter=", coredump_filter_setup);
988 
989 #include <linux/init_task.h>
990 
mm_init_aio(struct mm_struct * mm)991 static void mm_init_aio(struct mm_struct *mm)
992 {
993 #ifdef CONFIG_AIO
994 	spin_lock_init(&mm->ioctx_lock);
995 	mm->ioctx_table = NULL;
996 #endif
997 }
998 
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)999 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1000 					   struct task_struct *p)
1001 {
1002 #ifdef CONFIG_MEMCG
1003 	if (mm->owner == p)
1004 		WRITE_ONCE(mm->owner, NULL);
1005 #endif
1006 }
1007 
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1008 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1009 {
1010 #ifdef CONFIG_MEMCG
1011 	mm->owner = p;
1012 #endif
1013 }
1014 
mm_init_uprobes_state(struct mm_struct * mm)1015 static void mm_init_uprobes_state(struct mm_struct *mm)
1016 {
1017 #ifdef CONFIG_UPROBES
1018 	mm->uprobes_state.xol_area = NULL;
1019 #endif
1020 }
1021 
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1022 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1023 	struct user_namespace *user_ns)
1024 {
1025 	mm->mmap = NULL;
1026 	mm->mm_rb = RB_ROOT;
1027 	mm->vmacache_seqnum = 0;
1028 	atomic_set(&mm->mm_users, 1);
1029 	atomic_set(&mm->mm_count, 1);
1030 	init_rwsem(&mm->mmap_sem);
1031 	INIT_LIST_HEAD(&mm->mmlist);
1032 	mm->core_state = NULL;
1033 	mm_pgtables_bytes_init(mm);
1034 	mm->map_count = 0;
1035 	mm->locked_vm = 0;
1036 	atomic64_set(&mm->pinned_vm, 0);
1037 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1038 	spin_lock_init(&mm->page_table_lock);
1039 	spin_lock_init(&mm->arg_lock);
1040 	mm_init_cpumask(mm);
1041 	mm_init_aio(mm);
1042 	mm_init_owner(mm, p);
1043 	RCU_INIT_POINTER(mm->exe_file, NULL);
1044 	mmu_notifier_mm_init(mm);
1045 	init_tlb_flush_pending(mm);
1046 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1047 	mm->pmd_huge_pte = NULL;
1048 #endif
1049 	mm_init_uprobes_state(mm);
1050 	hugetlb_count_init(mm);
1051 
1052 	if (current->mm) {
1053 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1054 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1055 	} else {
1056 		mm->flags = default_dump_filter;
1057 		mm->def_flags = 0;
1058 	}
1059 
1060 	if (mm_alloc_pgd(mm))
1061 		goto fail_nopgd;
1062 
1063 	if (init_new_context(p, mm))
1064 		goto fail_nocontext;
1065 
1066 	mm->user_ns = get_user_ns(user_ns);
1067 	return mm;
1068 
1069 fail_nocontext:
1070 	mm_free_pgd(mm);
1071 fail_nopgd:
1072 	free_mm(mm);
1073 	return NULL;
1074 }
1075 
1076 /*
1077  * Allocate and initialize an mm_struct.
1078  */
mm_alloc(void)1079 struct mm_struct *mm_alloc(void)
1080 {
1081 	struct mm_struct *mm;
1082 
1083 	mm = allocate_mm();
1084 	if (!mm)
1085 		return NULL;
1086 
1087 	memset(mm, 0, sizeof(*mm));
1088 	return mm_init(mm, current, current_user_ns());
1089 }
1090 
__mmput(struct mm_struct * mm)1091 static inline void __mmput(struct mm_struct *mm)
1092 {
1093 	VM_BUG_ON(atomic_read(&mm->mm_users));
1094 
1095 	uprobe_clear_state(mm);
1096 	exit_aio(mm);
1097 	ksm_exit(mm);
1098 	khugepaged_exit(mm); /* must run before exit_mmap */
1099 	exit_mmap(mm);
1100 	mm_put_huge_zero_page(mm);
1101 	set_mm_exe_file(mm, NULL);
1102 	if (!list_empty(&mm->mmlist)) {
1103 		spin_lock(&mmlist_lock);
1104 		list_del(&mm->mmlist);
1105 		spin_unlock(&mmlist_lock);
1106 	}
1107 	if (mm->binfmt)
1108 		module_put(mm->binfmt->module);
1109 	mmdrop(mm);
1110 }
1111 
1112 /*
1113  * Decrement the use count and release all resources for an mm.
1114  */
mmput(struct mm_struct * mm)1115 void mmput(struct mm_struct *mm)
1116 {
1117 	might_sleep();
1118 
1119 	if (atomic_dec_and_test(&mm->mm_users))
1120 		__mmput(mm);
1121 }
1122 EXPORT_SYMBOL_GPL(mmput);
1123 
1124 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1125 static void mmput_async_fn(struct work_struct *work)
1126 {
1127 	struct mm_struct *mm = container_of(work, struct mm_struct,
1128 					    async_put_work);
1129 
1130 	__mmput(mm);
1131 }
1132 
mmput_async(struct mm_struct * mm)1133 void mmput_async(struct mm_struct *mm)
1134 {
1135 	if (atomic_dec_and_test(&mm->mm_users)) {
1136 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1137 		schedule_work(&mm->async_put_work);
1138 	}
1139 }
1140 #endif
1141 
1142 /**
1143  * set_mm_exe_file - change a reference to the mm's executable file
1144  *
1145  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1146  *
1147  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1148  * invocations: in mmput() nobody alive left, in execve task is single
1149  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1150  * mm->exe_file, but does so without using set_mm_exe_file() in order
1151  * to do avoid the need for any locks.
1152  */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1153 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1154 {
1155 	struct file *old_exe_file;
1156 
1157 	/*
1158 	 * It is safe to dereference the exe_file without RCU as
1159 	 * this function is only called if nobody else can access
1160 	 * this mm -- see comment above for justification.
1161 	 */
1162 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1163 
1164 	if (new_exe_file)
1165 		get_file(new_exe_file);
1166 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1167 	if (old_exe_file)
1168 		fput(old_exe_file);
1169 }
1170 
1171 /**
1172  * get_mm_exe_file - acquire a reference to the mm's executable file
1173  *
1174  * Returns %NULL if mm has no associated executable file.
1175  * User must release file via fput().
1176  */
get_mm_exe_file(struct mm_struct * mm)1177 struct file *get_mm_exe_file(struct mm_struct *mm)
1178 {
1179 	struct file *exe_file;
1180 
1181 	rcu_read_lock();
1182 	exe_file = rcu_dereference(mm->exe_file);
1183 	if (exe_file && !get_file_rcu(exe_file))
1184 		exe_file = NULL;
1185 	rcu_read_unlock();
1186 	return exe_file;
1187 }
1188 EXPORT_SYMBOL(get_mm_exe_file);
1189 
1190 /**
1191  * get_task_exe_file - acquire a reference to the task's executable file
1192  *
1193  * Returns %NULL if task's mm (if any) has no associated executable file or
1194  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1195  * User must release file via fput().
1196  */
get_task_exe_file(struct task_struct * task)1197 struct file *get_task_exe_file(struct task_struct *task)
1198 {
1199 	struct file *exe_file = NULL;
1200 	struct mm_struct *mm;
1201 
1202 	task_lock(task);
1203 	mm = task->mm;
1204 	if (mm) {
1205 		if (!(task->flags & PF_KTHREAD))
1206 			exe_file = get_mm_exe_file(mm);
1207 	}
1208 	task_unlock(task);
1209 	return exe_file;
1210 }
1211 EXPORT_SYMBOL(get_task_exe_file);
1212 
1213 /**
1214  * get_task_mm - acquire a reference to the task's mm
1215  *
1216  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1217  * this kernel workthread has transiently adopted a user mm with use_mm,
1218  * to do its AIO) is not set and if so returns a reference to it, after
1219  * bumping up the use count.  User must release the mm via mmput()
1220  * after use.  Typically used by /proc and ptrace.
1221  */
get_task_mm(struct task_struct * task)1222 struct mm_struct *get_task_mm(struct task_struct *task)
1223 {
1224 	struct mm_struct *mm;
1225 
1226 	task_lock(task);
1227 	mm = task->mm;
1228 	if (mm) {
1229 		if (task->flags & PF_KTHREAD)
1230 			mm = NULL;
1231 		else
1232 			mmget(mm);
1233 	}
1234 	task_unlock(task);
1235 	return mm;
1236 }
1237 EXPORT_SYMBOL_GPL(get_task_mm);
1238 
mm_access(struct task_struct * task,unsigned int mode)1239 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1240 {
1241 	struct mm_struct *mm;
1242 	int err;
1243 
1244 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1245 	if (err)
1246 		return ERR_PTR(err);
1247 
1248 	mm = get_task_mm(task);
1249 	if (mm && mm != current->mm &&
1250 			!ptrace_may_access(task, mode)) {
1251 		mmput(mm);
1252 		mm = ERR_PTR(-EACCES);
1253 	}
1254 	mutex_unlock(&task->signal->cred_guard_mutex);
1255 
1256 	return mm;
1257 }
1258 
complete_vfork_done(struct task_struct * tsk)1259 static void complete_vfork_done(struct task_struct *tsk)
1260 {
1261 	struct completion *vfork;
1262 
1263 	task_lock(tsk);
1264 	vfork = tsk->vfork_done;
1265 	if (likely(vfork)) {
1266 		tsk->vfork_done = NULL;
1267 		complete(vfork);
1268 	}
1269 	task_unlock(tsk);
1270 }
1271 
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1272 static int wait_for_vfork_done(struct task_struct *child,
1273 				struct completion *vfork)
1274 {
1275 	int killed;
1276 
1277 	freezer_do_not_count();
1278 	cgroup_enter_frozen();
1279 	killed = wait_for_completion_killable(vfork);
1280 	cgroup_leave_frozen(false);
1281 	freezer_count();
1282 
1283 	if (killed) {
1284 		task_lock(child);
1285 		child->vfork_done = NULL;
1286 		task_unlock(child);
1287 	}
1288 
1289 	put_task_struct(child);
1290 	return killed;
1291 }
1292 
1293 /* Please note the differences between mmput and mm_release.
1294  * mmput is called whenever we stop holding onto a mm_struct,
1295  * error success whatever.
1296  *
1297  * mm_release is called after a mm_struct has been removed
1298  * from the current process.
1299  *
1300  * This difference is important for error handling, when we
1301  * only half set up a mm_struct for a new process and need to restore
1302  * the old one.  Because we mmput the new mm_struct before
1303  * restoring the old one. . .
1304  * Eric Biederman 10 January 1998
1305  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1306 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1307 {
1308 	uprobe_free_utask(tsk);
1309 
1310 	/* Get rid of any cached register state */
1311 	deactivate_mm(tsk, mm);
1312 
1313 	/*
1314 	 * Signal userspace if we're not exiting with a core dump
1315 	 * because we want to leave the value intact for debugging
1316 	 * purposes.
1317 	 */
1318 	if (tsk->clear_child_tid) {
1319 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1320 		    atomic_read(&mm->mm_users) > 1) {
1321 			/*
1322 			 * We don't check the error code - if userspace has
1323 			 * not set up a proper pointer then tough luck.
1324 			 */
1325 			put_user(0, tsk->clear_child_tid);
1326 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1327 					1, NULL, NULL, 0, 0);
1328 		}
1329 		tsk->clear_child_tid = NULL;
1330 	}
1331 
1332 	/*
1333 	 * All done, finally we can wake up parent and return this mm to him.
1334 	 * Also kthread_stop() uses this completion for synchronization.
1335 	 */
1336 	if (tsk->vfork_done)
1337 		complete_vfork_done(tsk);
1338 }
1339 
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1340 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1341 {
1342 	futex_exit_release(tsk);
1343 	mm_release(tsk, mm);
1344 }
1345 
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1346 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1347 {
1348 	futex_exec_release(tsk);
1349 	mm_release(tsk, mm);
1350 }
1351 
1352 /**
1353  * dup_mm() - duplicates an existing mm structure
1354  * @tsk: the task_struct with which the new mm will be associated.
1355  * @oldmm: the mm to duplicate.
1356  *
1357  * Allocates a new mm structure and duplicates the provided @oldmm structure
1358  * content into it.
1359  *
1360  * Return: the duplicated mm or NULL on failure.
1361  */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1362 static struct mm_struct *dup_mm(struct task_struct *tsk,
1363 				struct mm_struct *oldmm)
1364 {
1365 	struct mm_struct *mm;
1366 	int err;
1367 
1368 	mm = allocate_mm();
1369 	if (!mm)
1370 		goto fail_nomem;
1371 
1372 	memcpy(mm, oldmm, sizeof(*mm));
1373 
1374 	if (!mm_init(mm, tsk, mm->user_ns))
1375 		goto fail_nomem;
1376 
1377 	err = dup_mmap(mm, oldmm);
1378 	if (err)
1379 		goto free_pt;
1380 
1381 	mm->hiwater_rss = get_mm_rss(mm);
1382 	mm->hiwater_vm = mm->total_vm;
1383 
1384 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1385 		goto free_pt;
1386 
1387 	return mm;
1388 
1389 free_pt:
1390 	/* don't put binfmt in mmput, we haven't got module yet */
1391 	mm->binfmt = NULL;
1392 	mm_init_owner(mm, NULL);
1393 	mmput(mm);
1394 
1395 fail_nomem:
1396 	return NULL;
1397 }
1398 
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1399 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1400 {
1401 	struct mm_struct *mm, *oldmm;
1402 	int retval;
1403 
1404 	tsk->min_flt = tsk->maj_flt = 0;
1405 	tsk->nvcsw = tsk->nivcsw = 0;
1406 #ifdef CONFIG_DETECT_HUNG_TASK
1407 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1408 	tsk->last_switch_time = 0;
1409 #endif
1410 
1411 	tsk->mm = NULL;
1412 	tsk->active_mm = NULL;
1413 
1414 	/*
1415 	 * Are we cloning a kernel thread?
1416 	 *
1417 	 * We need to steal a active VM for that..
1418 	 */
1419 	oldmm = current->mm;
1420 	if (!oldmm)
1421 		return 0;
1422 
1423 	/* initialize the new vmacache entries */
1424 	vmacache_flush(tsk);
1425 
1426 	if (clone_flags & CLONE_VM) {
1427 		mmget(oldmm);
1428 		mm = oldmm;
1429 		goto good_mm;
1430 	}
1431 
1432 	retval = -ENOMEM;
1433 	mm = dup_mm(tsk, current->mm);
1434 	if (!mm)
1435 		goto fail_nomem;
1436 
1437 good_mm:
1438 	tsk->mm = mm;
1439 	tsk->active_mm = mm;
1440 	return 0;
1441 
1442 fail_nomem:
1443 	return retval;
1444 }
1445 
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1446 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1447 {
1448 	struct fs_struct *fs = current->fs;
1449 	if (clone_flags & CLONE_FS) {
1450 		/* tsk->fs is already what we want */
1451 		spin_lock(&fs->lock);
1452 		if (fs->in_exec) {
1453 			spin_unlock(&fs->lock);
1454 			return -EAGAIN;
1455 		}
1456 		fs->users++;
1457 		spin_unlock(&fs->lock);
1458 		return 0;
1459 	}
1460 	tsk->fs = copy_fs_struct(fs);
1461 	if (!tsk->fs)
1462 		return -ENOMEM;
1463 	return 0;
1464 }
1465 
copy_files(unsigned long clone_flags,struct task_struct * tsk)1466 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1467 {
1468 	struct files_struct *oldf, *newf;
1469 	int error = 0;
1470 
1471 	/*
1472 	 * A background process may not have any files ...
1473 	 */
1474 	oldf = current->files;
1475 	if (!oldf)
1476 		goto out;
1477 
1478 	if (clone_flags & CLONE_FILES) {
1479 		atomic_inc(&oldf->count);
1480 		goto out;
1481 	}
1482 
1483 	newf = dup_fd(oldf, &error);
1484 	if (!newf)
1485 		goto out;
1486 
1487 	tsk->files = newf;
1488 	error = 0;
1489 out:
1490 	return error;
1491 }
1492 
copy_io(unsigned long clone_flags,struct task_struct * tsk)1493 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1494 {
1495 #ifdef CONFIG_BLOCK
1496 	struct io_context *ioc = current->io_context;
1497 	struct io_context *new_ioc;
1498 
1499 	if (!ioc)
1500 		return 0;
1501 	/*
1502 	 * Share io context with parent, if CLONE_IO is set
1503 	 */
1504 	if (clone_flags & CLONE_IO) {
1505 		ioc_task_link(ioc);
1506 		tsk->io_context = ioc;
1507 	} else if (ioprio_valid(ioc->ioprio)) {
1508 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1509 		if (unlikely(!new_ioc))
1510 			return -ENOMEM;
1511 
1512 		new_ioc->ioprio = ioc->ioprio;
1513 		put_io_context(new_ioc);
1514 	}
1515 #endif
1516 	return 0;
1517 }
1518 
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1519 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1520 {
1521 	struct sighand_struct *sig;
1522 
1523 	if (clone_flags & CLONE_SIGHAND) {
1524 		refcount_inc(&current->sighand->count);
1525 		return 0;
1526 	}
1527 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1528 	rcu_assign_pointer(tsk->sighand, sig);
1529 	if (!sig)
1530 		return -ENOMEM;
1531 
1532 	refcount_set(&sig->count, 1);
1533 	spin_lock_irq(&current->sighand->siglock);
1534 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1535 	spin_unlock_irq(&current->sighand->siglock);
1536 	return 0;
1537 }
1538 
__cleanup_sighand(struct sighand_struct * sighand)1539 void __cleanup_sighand(struct sighand_struct *sighand)
1540 {
1541 	if (refcount_dec_and_test(&sighand->count)) {
1542 		signalfd_cleanup(sighand);
1543 		/*
1544 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1545 		 * without an RCU grace period, see __lock_task_sighand().
1546 		 */
1547 		kmem_cache_free(sighand_cachep, sighand);
1548 	}
1549 }
1550 
1551 /*
1552  * Initialize POSIX timer handling for a thread group.
1553  */
posix_cpu_timers_init_group(struct signal_struct * sig)1554 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1555 {
1556 	struct posix_cputimers *pct = &sig->posix_cputimers;
1557 	unsigned long cpu_limit;
1558 
1559 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1560 	posix_cputimers_group_init(pct, cpu_limit);
1561 }
1562 
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1563 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1564 {
1565 	struct signal_struct *sig;
1566 
1567 	if (clone_flags & CLONE_THREAD)
1568 		return 0;
1569 
1570 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1571 	tsk->signal = sig;
1572 	if (!sig)
1573 		return -ENOMEM;
1574 
1575 	sig->nr_threads = 1;
1576 	atomic_set(&sig->live, 1);
1577 	refcount_set(&sig->sigcnt, 1);
1578 
1579 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1580 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1581 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1582 
1583 	init_waitqueue_head(&sig->wait_chldexit);
1584 	sig->curr_target = tsk;
1585 	init_sigpending(&sig->shared_pending);
1586 	INIT_HLIST_HEAD(&sig->multiprocess);
1587 	seqlock_init(&sig->stats_lock);
1588 	prev_cputime_init(&sig->prev_cputime);
1589 
1590 #ifdef CONFIG_POSIX_TIMERS
1591 	INIT_LIST_HEAD(&sig->posix_timers);
1592 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1593 	sig->real_timer.function = it_real_fn;
1594 #endif
1595 
1596 	task_lock(current->group_leader);
1597 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1598 	task_unlock(current->group_leader);
1599 
1600 	posix_cpu_timers_init_group(sig);
1601 
1602 	tty_audit_fork(sig);
1603 	sched_autogroup_fork(sig);
1604 
1605 	sig->oom_score_adj = current->signal->oom_score_adj;
1606 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1607 
1608 	mutex_init(&sig->cred_guard_mutex);
1609 
1610 	return 0;
1611 }
1612 
copy_seccomp(struct task_struct * p)1613 static void copy_seccomp(struct task_struct *p)
1614 {
1615 #ifdef CONFIG_SECCOMP
1616 	/*
1617 	 * Must be called with sighand->lock held, which is common to
1618 	 * all threads in the group. Holding cred_guard_mutex is not
1619 	 * needed because this new task is not yet running and cannot
1620 	 * be racing exec.
1621 	 */
1622 	assert_spin_locked(&current->sighand->siglock);
1623 
1624 	/* Ref-count the new filter user, and assign it. */
1625 	get_seccomp_filter(current);
1626 	p->seccomp = current->seccomp;
1627 
1628 	/*
1629 	 * Explicitly enable no_new_privs here in case it got set
1630 	 * between the task_struct being duplicated and holding the
1631 	 * sighand lock. The seccomp state and nnp must be in sync.
1632 	 */
1633 	if (task_no_new_privs(current))
1634 		task_set_no_new_privs(p);
1635 
1636 	/*
1637 	 * If the parent gained a seccomp mode after copying thread
1638 	 * flags and between before we held the sighand lock, we have
1639 	 * to manually enable the seccomp thread flag here.
1640 	 */
1641 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1642 		set_tsk_thread_flag(p, TIF_SECCOMP);
1643 #endif
1644 }
1645 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1646 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1647 {
1648 	current->clear_child_tid = tidptr;
1649 
1650 	return task_pid_vnr(current);
1651 }
1652 
rt_mutex_init_task(struct task_struct * p)1653 static void rt_mutex_init_task(struct task_struct *p)
1654 {
1655 	raw_spin_lock_init(&p->pi_lock);
1656 #ifdef CONFIG_RT_MUTEXES
1657 	p->pi_waiters = RB_ROOT_CACHED;
1658 	p->pi_top_task = NULL;
1659 	p->pi_blocked_on = NULL;
1660 #endif
1661 }
1662 
init_task_pid_links(struct task_struct * task)1663 static inline void init_task_pid_links(struct task_struct *task)
1664 {
1665 	enum pid_type type;
1666 
1667 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1668 		INIT_HLIST_NODE(&task->pid_links[type]);
1669 	}
1670 }
1671 
1672 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1673 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1674 {
1675 	if (type == PIDTYPE_PID)
1676 		task->thread_pid = pid;
1677 	else
1678 		task->signal->pids[type] = pid;
1679 }
1680 
rcu_copy_process(struct task_struct * p)1681 static inline void rcu_copy_process(struct task_struct *p)
1682 {
1683 #ifdef CONFIG_PREEMPT_RCU
1684 	p->rcu_read_lock_nesting = 0;
1685 	p->rcu_read_unlock_special.s = 0;
1686 	p->rcu_blocked_node = NULL;
1687 	INIT_LIST_HEAD(&p->rcu_node_entry);
1688 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1689 #ifdef CONFIG_TASKS_RCU
1690 	p->rcu_tasks_holdout = false;
1691 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1692 	p->rcu_tasks_idle_cpu = -1;
1693 #endif /* #ifdef CONFIG_TASKS_RCU */
1694 }
1695 
pidfd_pid(const struct file * file)1696 struct pid *pidfd_pid(const struct file *file)
1697 {
1698 	if (file->f_op == &pidfd_fops)
1699 		return file->private_data;
1700 
1701 	return ERR_PTR(-EBADF);
1702 }
1703 
pidfd_release(struct inode * inode,struct file * file)1704 static int pidfd_release(struct inode *inode, struct file *file)
1705 {
1706 	struct pid *pid = file->private_data;
1707 
1708 	file->private_data = NULL;
1709 	put_pid(pid);
1710 	return 0;
1711 }
1712 
1713 #ifdef CONFIG_PROC_FS
pidfd_show_fdinfo(struct seq_file * m,struct file * f)1714 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1715 {
1716 	struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1717 	struct pid *pid = f->private_data;
1718 
1719 	seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1720 	seq_putc(m, '\n');
1721 }
1722 #endif
1723 
1724 /*
1725  * Poll support for process exit notification.
1726  */
pidfd_poll(struct file * file,struct poll_table_struct * pts)1727 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1728 {
1729 	struct task_struct *task;
1730 	struct pid *pid = file->private_data;
1731 	__poll_t poll_flags = 0;
1732 
1733 	poll_wait(file, &pid->wait_pidfd, pts);
1734 
1735 	rcu_read_lock();
1736 	task = pid_task(pid, PIDTYPE_PID);
1737 	/*
1738 	 * Inform pollers only when the whole thread group exits.
1739 	 * If the thread group leader exits before all other threads in the
1740 	 * group, then poll(2) should block, similar to the wait(2) family.
1741 	 */
1742 	if (!task || (task->exit_state && thread_group_empty(task)))
1743 		poll_flags = EPOLLIN | EPOLLRDNORM;
1744 	rcu_read_unlock();
1745 
1746 	return poll_flags;
1747 }
1748 
1749 const struct file_operations pidfd_fops = {
1750 	.release = pidfd_release,
1751 	.poll = pidfd_poll,
1752 #ifdef CONFIG_PROC_FS
1753 	.show_fdinfo = pidfd_show_fdinfo,
1754 #endif
1755 };
1756 
__delayed_free_task(struct rcu_head * rhp)1757 static void __delayed_free_task(struct rcu_head *rhp)
1758 {
1759 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1760 
1761 	free_task(tsk);
1762 }
1763 
delayed_free_task(struct task_struct * tsk)1764 static __always_inline void delayed_free_task(struct task_struct *tsk)
1765 {
1766 	if (IS_ENABLED(CONFIG_MEMCG))
1767 		call_rcu(&tsk->rcu, __delayed_free_task);
1768 	else
1769 		free_task(tsk);
1770 }
1771 
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1772 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1773 {
1774 	/* Skip if kernel thread */
1775 	if (!tsk->mm)
1776 		return;
1777 
1778 	/* Skip if spawning a thread or using vfork */
1779 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1780 		return;
1781 
1782 	/* We need to synchronize with __set_oom_adj */
1783 	mutex_lock(&oom_adj_mutex);
1784 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1785 	/* Update the values in case they were changed after copy_signal */
1786 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1787 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1788 	mutex_unlock(&oom_adj_mutex);
1789 }
1790 
1791 /*
1792  * This creates a new process as a copy of the old one,
1793  * but does not actually start it yet.
1794  *
1795  * It copies the registers, and all the appropriate
1796  * parts of the process environment (as per the clone
1797  * flags). The actual kick-off is left to the caller.
1798  */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1799 static __latent_entropy struct task_struct *copy_process(
1800 					struct pid *pid,
1801 					int trace,
1802 					int node,
1803 					struct kernel_clone_args *args)
1804 {
1805 	int pidfd = -1, retval;
1806 	struct task_struct *p;
1807 	struct multiprocess_signals delayed;
1808 	struct file *pidfile = NULL;
1809 	u64 clone_flags = args->flags;
1810 
1811 	/*
1812 	 * Don't allow sharing the root directory with processes in a different
1813 	 * namespace
1814 	 */
1815 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1816 		return ERR_PTR(-EINVAL);
1817 
1818 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1819 		return ERR_PTR(-EINVAL);
1820 
1821 	/*
1822 	 * Thread groups must share signals as well, and detached threads
1823 	 * can only be started up within the thread group.
1824 	 */
1825 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1826 		return ERR_PTR(-EINVAL);
1827 
1828 	/*
1829 	 * Shared signal handlers imply shared VM. By way of the above,
1830 	 * thread groups also imply shared VM. Blocking this case allows
1831 	 * for various simplifications in other code.
1832 	 */
1833 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1834 		return ERR_PTR(-EINVAL);
1835 
1836 	/*
1837 	 * Siblings of global init remain as zombies on exit since they are
1838 	 * not reaped by their parent (swapper). To solve this and to avoid
1839 	 * multi-rooted process trees, prevent global and container-inits
1840 	 * from creating siblings.
1841 	 */
1842 	if ((clone_flags & CLONE_PARENT) &&
1843 				current->signal->flags & SIGNAL_UNKILLABLE)
1844 		return ERR_PTR(-EINVAL);
1845 
1846 	/*
1847 	 * If the new process will be in a different pid or user namespace
1848 	 * do not allow it to share a thread group with the forking task.
1849 	 */
1850 	if (clone_flags & CLONE_THREAD) {
1851 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1852 		    (task_active_pid_ns(current) !=
1853 				current->nsproxy->pid_ns_for_children))
1854 			return ERR_PTR(-EINVAL);
1855 	}
1856 
1857 	if (clone_flags & CLONE_PIDFD) {
1858 		/*
1859 		 * - CLONE_DETACHED is blocked so that we can potentially
1860 		 *   reuse it later for CLONE_PIDFD.
1861 		 * - CLONE_THREAD is blocked until someone really needs it.
1862 		 */
1863 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1864 			return ERR_PTR(-EINVAL);
1865 	}
1866 
1867 	/*
1868 	 * Force any signals received before this point to be delivered
1869 	 * before the fork happens.  Collect up signals sent to multiple
1870 	 * processes that happen during the fork and delay them so that
1871 	 * they appear to happen after the fork.
1872 	 */
1873 	sigemptyset(&delayed.signal);
1874 	INIT_HLIST_NODE(&delayed.node);
1875 
1876 	spin_lock_irq(&current->sighand->siglock);
1877 	if (!(clone_flags & CLONE_THREAD))
1878 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1879 	recalc_sigpending();
1880 	spin_unlock_irq(&current->sighand->siglock);
1881 	retval = -ERESTARTNOINTR;
1882 	if (signal_pending(current))
1883 		goto fork_out;
1884 
1885 	retval = -ENOMEM;
1886 	p = dup_task_struct(current, node);
1887 	if (!p)
1888 		goto fork_out;
1889 
1890 	cpufreq_task_times_init(p);
1891 
1892 	/*
1893 	 * This _must_ happen before we call free_task(), i.e. before we jump
1894 	 * to any of the bad_fork_* labels. This is to avoid freeing
1895 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1896 	 * kernel threads (PF_KTHREAD).
1897 	 */
1898 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1899 	/*
1900 	 * Clear TID on mm_release()?
1901 	 */
1902 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1903 
1904 	ftrace_graph_init_task(p);
1905 
1906 	rt_mutex_init_task(p);
1907 
1908 #ifdef CONFIG_PROVE_LOCKING
1909 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1910 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1911 #endif
1912 	retval = -EAGAIN;
1913 	if (atomic_read(&p->real_cred->user->processes) >=
1914 			task_rlimit(p, RLIMIT_NPROC)) {
1915 		if (p->real_cred->user != INIT_USER &&
1916 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1917 			goto bad_fork_free;
1918 	}
1919 	current->flags &= ~PF_NPROC_EXCEEDED;
1920 
1921 	retval = copy_creds(p, clone_flags);
1922 	if (retval < 0)
1923 		goto bad_fork_free;
1924 
1925 	/*
1926 	 * If multiple threads are within copy_process(), then this check
1927 	 * triggers too late. This doesn't hurt, the check is only there
1928 	 * to stop root fork bombs.
1929 	 */
1930 	retval = -EAGAIN;
1931 	if (nr_threads >= max_threads)
1932 		goto bad_fork_cleanup_count;
1933 
1934 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1935 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1936 	p->flags |= PF_FORKNOEXEC;
1937 	INIT_LIST_HEAD(&p->children);
1938 	INIT_LIST_HEAD(&p->sibling);
1939 	rcu_copy_process(p);
1940 	p->vfork_done = NULL;
1941 	spin_lock_init(&p->alloc_lock);
1942 
1943 	init_sigpending(&p->pending);
1944 
1945 	p->utime = p->stime = p->gtime = 0;
1946 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1947 	p->utimescaled = p->stimescaled = 0;
1948 #endif
1949 	prev_cputime_init(&p->prev_cputime);
1950 
1951 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1952 	seqcount_init(&p->vtime.seqcount);
1953 	p->vtime.starttime = 0;
1954 	p->vtime.state = VTIME_INACTIVE;
1955 #endif
1956 
1957 #if defined(SPLIT_RSS_COUNTING)
1958 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1959 #endif
1960 
1961 	p->default_timer_slack_ns = current->timer_slack_ns;
1962 
1963 #ifdef CONFIG_PSI
1964 	p->psi_flags = 0;
1965 #endif
1966 
1967 	task_io_accounting_init(&p->ioac);
1968 	acct_clear_integrals(p);
1969 
1970 	posix_cputimers_init(&p->posix_cputimers);
1971 
1972 	p->io_context = NULL;
1973 	audit_set_context(p, NULL);
1974 	cgroup_fork(p);
1975 #ifdef CONFIG_NUMA
1976 	p->mempolicy = mpol_dup(p->mempolicy);
1977 	if (IS_ERR(p->mempolicy)) {
1978 		retval = PTR_ERR(p->mempolicy);
1979 		p->mempolicy = NULL;
1980 		goto bad_fork_cleanup_threadgroup_lock;
1981 	}
1982 #endif
1983 #ifdef CONFIG_CPUSETS
1984 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1985 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1986 	seqcount_init(&p->mems_allowed_seq);
1987 #endif
1988 #ifdef CONFIG_TRACE_IRQFLAGS
1989 	p->irq_events = 0;
1990 	p->hardirqs_enabled = 0;
1991 	p->hardirq_enable_ip = 0;
1992 	p->hardirq_enable_event = 0;
1993 	p->hardirq_disable_ip = _THIS_IP_;
1994 	p->hardirq_disable_event = 0;
1995 	p->softirqs_enabled = 1;
1996 	p->softirq_enable_ip = _THIS_IP_;
1997 	p->softirq_enable_event = 0;
1998 	p->softirq_disable_ip = 0;
1999 	p->softirq_disable_event = 0;
2000 	p->hardirq_context = 0;
2001 	p->softirq_context = 0;
2002 #endif
2003 
2004 	p->pagefault_disabled = 0;
2005 
2006 #ifdef CONFIG_LOCKDEP
2007 	lockdep_init_task(p);
2008 #endif
2009 
2010 #ifdef CONFIG_DEBUG_MUTEXES
2011 	p->blocked_on = NULL; /* not blocked yet */
2012 #endif
2013 #ifdef CONFIG_BCACHE
2014 	p->sequential_io	= 0;
2015 	p->sequential_io_avg	= 0;
2016 #endif
2017 
2018 	/* Perform scheduler related setup. Assign this task to a CPU. */
2019 	retval = sched_fork(clone_flags, p);
2020 	if (retval)
2021 		goto bad_fork_cleanup_policy;
2022 
2023 	retval = perf_event_init_task(p);
2024 	if (retval)
2025 		goto bad_fork_cleanup_policy;
2026 	retval = audit_alloc(p);
2027 	if (retval)
2028 		goto bad_fork_cleanup_perf;
2029 	/* copy all the process information */
2030 	shm_init_task(p);
2031 	retval = security_task_alloc(p, clone_flags);
2032 	if (retval)
2033 		goto bad_fork_cleanup_audit;
2034 	retval = copy_semundo(clone_flags, p);
2035 	if (retval)
2036 		goto bad_fork_cleanup_security;
2037 	retval = copy_files(clone_flags, p);
2038 	if (retval)
2039 		goto bad_fork_cleanup_semundo;
2040 	retval = copy_fs(clone_flags, p);
2041 	if (retval)
2042 		goto bad_fork_cleanup_files;
2043 	retval = copy_sighand(clone_flags, p);
2044 	if (retval)
2045 		goto bad_fork_cleanup_fs;
2046 	retval = copy_signal(clone_flags, p);
2047 	if (retval)
2048 		goto bad_fork_cleanup_sighand;
2049 	retval = copy_mm(clone_flags, p);
2050 	if (retval)
2051 		goto bad_fork_cleanup_signal;
2052 	retval = copy_namespaces(clone_flags, p);
2053 	if (retval)
2054 		goto bad_fork_cleanup_mm;
2055 	retval = copy_io(clone_flags, p);
2056 	if (retval)
2057 		goto bad_fork_cleanup_namespaces;
2058 	retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2059 				 args->tls);
2060 	if (retval)
2061 		goto bad_fork_cleanup_io;
2062 
2063 	stackleak_task_init(p);
2064 
2065 	if (pid != &init_struct_pid) {
2066 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2067 		if (IS_ERR(pid)) {
2068 			retval = PTR_ERR(pid);
2069 			goto bad_fork_cleanup_thread;
2070 		}
2071 	}
2072 
2073 	/*
2074 	 * This has to happen after we've potentially unshared the file
2075 	 * descriptor table (so that the pidfd doesn't leak into the child
2076 	 * if the fd table isn't shared).
2077 	 */
2078 	if (clone_flags & CLONE_PIDFD) {
2079 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2080 		if (retval < 0)
2081 			goto bad_fork_free_pid;
2082 
2083 		pidfd = retval;
2084 
2085 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2086 					      O_RDWR | O_CLOEXEC);
2087 		if (IS_ERR(pidfile)) {
2088 			put_unused_fd(pidfd);
2089 			retval = PTR_ERR(pidfile);
2090 			goto bad_fork_free_pid;
2091 		}
2092 		get_pid(pid);	/* held by pidfile now */
2093 
2094 		retval = put_user(pidfd, args->pidfd);
2095 		if (retval)
2096 			goto bad_fork_put_pidfd;
2097 	}
2098 
2099 #ifdef CONFIG_BLOCK
2100 	p->plug = NULL;
2101 #endif
2102 	futex_init_task(p);
2103 
2104 	/*
2105 	 * sigaltstack should be cleared when sharing the same VM
2106 	 */
2107 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2108 		sas_ss_reset(p);
2109 
2110 	/*
2111 	 * Syscall tracing and stepping should be turned off in the
2112 	 * child regardless of CLONE_PTRACE.
2113 	 */
2114 	user_disable_single_step(p);
2115 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2116 #ifdef TIF_SYSCALL_EMU
2117 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2118 #endif
2119 	clear_tsk_latency_tracing(p);
2120 
2121 	/* ok, now we should be set up.. */
2122 	p->pid = pid_nr(pid);
2123 	if (clone_flags & CLONE_THREAD) {
2124 		p->group_leader = current->group_leader;
2125 		p->tgid = current->tgid;
2126 	} else {
2127 		p->group_leader = p;
2128 		p->tgid = p->pid;
2129 	}
2130 
2131 	p->nr_dirtied = 0;
2132 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2133 	p->dirty_paused_when = 0;
2134 
2135 	p->pdeath_signal = 0;
2136 	INIT_LIST_HEAD(&p->thread_group);
2137 	p->task_works = NULL;
2138 
2139 	cgroup_threadgroup_change_begin(current);
2140 	/*
2141 	 * Ensure that the cgroup subsystem policies allow the new process to be
2142 	 * forked. It should be noted the the new process's css_set can be changed
2143 	 * between here and cgroup_post_fork() if an organisation operation is in
2144 	 * progress.
2145 	 */
2146 	retval = cgroup_can_fork(p);
2147 	if (retval)
2148 		goto bad_fork_cgroup_threadgroup_change_end;
2149 
2150 	/*
2151 	 * From this point on we must avoid any synchronous user-space
2152 	 * communication until we take the tasklist-lock. In particular, we do
2153 	 * not want user-space to be able to predict the process start-time by
2154 	 * stalling fork(2) after we recorded the start_time but before it is
2155 	 * visible to the system.
2156 	 */
2157 
2158 	p->start_time = ktime_get_ns();
2159 	p->real_start_time = ktime_get_boottime_ns();
2160 
2161 	/*
2162 	 * Make it visible to the rest of the system, but dont wake it up yet.
2163 	 * Need tasklist lock for parent etc handling!
2164 	 */
2165 	write_lock_irq(&tasklist_lock);
2166 
2167 	/* CLONE_PARENT re-uses the old parent */
2168 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2169 		p->real_parent = current->real_parent;
2170 		p->parent_exec_id = current->parent_exec_id;
2171 		if (clone_flags & CLONE_THREAD)
2172 			p->exit_signal = -1;
2173 		else
2174 			p->exit_signal = current->group_leader->exit_signal;
2175 	} else {
2176 		p->real_parent = current;
2177 		p->parent_exec_id = current->self_exec_id;
2178 		p->exit_signal = args->exit_signal;
2179 	}
2180 
2181 	klp_copy_process(p);
2182 
2183 	spin_lock(&current->sighand->siglock);
2184 
2185 	/*
2186 	 * Copy seccomp details explicitly here, in case they were changed
2187 	 * before holding sighand lock.
2188 	 */
2189 	copy_seccomp(p);
2190 
2191 	rseq_fork(p, clone_flags);
2192 
2193 	/* Don't start children in a dying pid namespace */
2194 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2195 		retval = -ENOMEM;
2196 		goto bad_fork_cancel_cgroup;
2197 	}
2198 
2199 	/* Let kill terminate clone/fork in the middle */
2200 	if (fatal_signal_pending(current)) {
2201 		retval = -EINTR;
2202 		goto bad_fork_cancel_cgroup;
2203 	}
2204 
2205 	init_task_pid_links(p);
2206 	if (likely(p->pid)) {
2207 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2208 
2209 		init_task_pid(p, PIDTYPE_PID, pid);
2210 		if (thread_group_leader(p)) {
2211 			init_task_pid(p, PIDTYPE_TGID, pid);
2212 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2213 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2214 
2215 			if (is_child_reaper(pid)) {
2216 				ns_of_pid(pid)->child_reaper = p;
2217 				p->signal->flags |= SIGNAL_UNKILLABLE;
2218 			}
2219 			p->signal->shared_pending.signal = delayed.signal;
2220 			p->signal->tty = tty_kref_get(current->signal->tty);
2221 			/*
2222 			 * Inherit has_child_subreaper flag under the same
2223 			 * tasklist_lock with adding child to the process tree
2224 			 * for propagate_has_child_subreaper optimization.
2225 			 */
2226 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2227 							 p->real_parent->signal->is_child_subreaper;
2228 			list_add_tail(&p->sibling, &p->real_parent->children);
2229 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2230 			attach_pid(p, PIDTYPE_TGID);
2231 			attach_pid(p, PIDTYPE_PGID);
2232 			attach_pid(p, PIDTYPE_SID);
2233 			__this_cpu_inc(process_counts);
2234 		} else {
2235 			current->signal->nr_threads++;
2236 			atomic_inc(&current->signal->live);
2237 			refcount_inc(&current->signal->sigcnt);
2238 			task_join_group_stop(p);
2239 			list_add_tail_rcu(&p->thread_group,
2240 					  &p->group_leader->thread_group);
2241 			list_add_tail_rcu(&p->thread_node,
2242 					  &p->signal->thread_head);
2243 		}
2244 		attach_pid(p, PIDTYPE_PID);
2245 		nr_threads++;
2246 	}
2247 	total_forks++;
2248 	hlist_del_init(&delayed.node);
2249 	spin_unlock(&current->sighand->siglock);
2250 	syscall_tracepoint_update(p);
2251 	write_unlock_irq(&tasklist_lock);
2252 
2253 	if (pidfile)
2254 		fd_install(pidfd, pidfile);
2255 
2256 	proc_fork_connector(p);
2257 	cgroup_post_fork(p);
2258 	cgroup_threadgroup_change_end(current);
2259 	perf_event_fork(p);
2260 
2261 	trace_task_newtask(p, clone_flags);
2262 	uprobe_copy_process(p, clone_flags);
2263 
2264 	copy_oom_score_adj(clone_flags, p);
2265 
2266 	return p;
2267 
2268 bad_fork_cancel_cgroup:
2269 	spin_unlock(&current->sighand->siglock);
2270 	write_unlock_irq(&tasklist_lock);
2271 	cgroup_cancel_fork(p);
2272 bad_fork_cgroup_threadgroup_change_end:
2273 	cgroup_threadgroup_change_end(current);
2274 bad_fork_put_pidfd:
2275 	if (clone_flags & CLONE_PIDFD) {
2276 		fput(pidfile);
2277 		put_unused_fd(pidfd);
2278 	}
2279 bad_fork_free_pid:
2280 	if (pid != &init_struct_pid)
2281 		free_pid(pid);
2282 bad_fork_cleanup_thread:
2283 	exit_thread(p);
2284 bad_fork_cleanup_io:
2285 	if (p->io_context)
2286 		exit_io_context(p);
2287 bad_fork_cleanup_namespaces:
2288 	exit_task_namespaces(p);
2289 bad_fork_cleanup_mm:
2290 	if (p->mm) {
2291 		mm_clear_owner(p->mm, p);
2292 		mmput(p->mm);
2293 	}
2294 bad_fork_cleanup_signal:
2295 	if (!(clone_flags & CLONE_THREAD))
2296 		free_signal_struct(p->signal);
2297 bad_fork_cleanup_sighand:
2298 	__cleanup_sighand(p->sighand);
2299 bad_fork_cleanup_fs:
2300 	exit_fs(p); /* blocking */
2301 bad_fork_cleanup_files:
2302 	exit_files(p); /* blocking */
2303 bad_fork_cleanup_semundo:
2304 	exit_sem(p);
2305 bad_fork_cleanup_security:
2306 	security_task_free(p);
2307 bad_fork_cleanup_audit:
2308 	audit_free(p);
2309 bad_fork_cleanup_perf:
2310 	perf_event_free_task(p);
2311 bad_fork_cleanup_policy:
2312 	lockdep_free_task(p);
2313 #ifdef CONFIG_NUMA
2314 	mpol_put(p->mempolicy);
2315 bad_fork_cleanup_threadgroup_lock:
2316 #endif
2317 	delayacct_tsk_free(p);
2318 bad_fork_cleanup_count:
2319 	atomic_dec(&p->cred->user->processes);
2320 	exit_creds(p);
2321 bad_fork_free:
2322 	p->state = TASK_DEAD;
2323 	put_task_stack(p);
2324 	delayed_free_task(p);
2325 fork_out:
2326 	spin_lock_irq(&current->sighand->siglock);
2327 	hlist_del_init(&delayed.node);
2328 	spin_unlock_irq(&current->sighand->siglock);
2329 	return ERR_PTR(retval);
2330 }
2331 
init_idle_pids(struct task_struct * idle)2332 static inline void init_idle_pids(struct task_struct *idle)
2333 {
2334 	enum pid_type type;
2335 
2336 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2337 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2338 		init_task_pid(idle, type, &init_struct_pid);
2339 	}
2340 }
2341 
fork_idle(int cpu)2342 struct task_struct *fork_idle(int cpu)
2343 {
2344 	struct task_struct *task;
2345 	struct kernel_clone_args args = {
2346 		.flags = CLONE_VM,
2347 	};
2348 
2349 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2350 	if (!IS_ERR(task)) {
2351 		init_idle_pids(task);
2352 		init_idle(task, cpu);
2353 	}
2354 
2355 	return task;
2356 }
2357 
2358 /*
2359  *  Ok, this is the main fork-routine.
2360  *
2361  * It copies the process, and if successful kick-starts
2362  * it and waits for it to finish using the VM if required.
2363  *
2364  * args->exit_signal is expected to be checked for sanity by the caller.
2365  */
_do_fork(struct kernel_clone_args * args)2366 long _do_fork(struct kernel_clone_args *args)
2367 {
2368 	u64 clone_flags = args->flags;
2369 	struct completion vfork;
2370 	struct pid *pid;
2371 	struct task_struct *p;
2372 	int trace = 0;
2373 	long nr;
2374 
2375 	/*
2376 	 * Determine whether and which event to report to ptracer.  When
2377 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2378 	 * requested, no event is reported; otherwise, report if the event
2379 	 * for the type of forking is enabled.
2380 	 */
2381 	if (!(clone_flags & CLONE_UNTRACED)) {
2382 		if (clone_flags & CLONE_VFORK)
2383 			trace = PTRACE_EVENT_VFORK;
2384 		else if (args->exit_signal != SIGCHLD)
2385 			trace = PTRACE_EVENT_CLONE;
2386 		else
2387 			trace = PTRACE_EVENT_FORK;
2388 
2389 		if (likely(!ptrace_event_enabled(current, trace)))
2390 			trace = 0;
2391 	}
2392 
2393 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2394 	add_latent_entropy();
2395 
2396 	if (IS_ERR(p))
2397 		return PTR_ERR(p);
2398 
2399 	cpufreq_task_times_alloc(p);
2400 
2401 	/*
2402 	 * Do this prior waking up the new thread - the thread pointer
2403 	 * might get invalid after that point, if the thread exits quickly.
2404 	 */
2405 	trace_sched_process_fork(current, p);
2406 
2407 	pid = get_task_pid(p, PIDTYPE_PID);
2408 	nr = pid_vnr(pid);
2409 
2410 	if (clone_flags & CLONE_PARENT_SETTID)
2411 		put_user(nr, args->parent_tid);
2412 
2413 	if (clone_flags & CLONE_VFORK) {
2414 		p->vfork_done = &vfork;
2415 		init_completion(&vfork);
2416 		get_task_struct(p);
2417 	}
2418 
2419 	wake_up_new_task(p);
2420 
2421 	/* forking complete and child started to run, tell ptracer */
2422 	if (unlikely(trace))
2423 		ptrace_event_pid(trace, pid);
2424 
2425 	if (clone_flags & CLONE_VFORK) {
2426 		if (!wait_for_vfork_done(p, &vfork))
2427 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2428 	}
2429 
2430 	put_pid(pid);
2431 	return nr;
2432 }
2433 
legacy_clone_args_valid(const struct kernel_clone_args * kargs)2434 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2435 {
2436 	/* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2437 	if ((kargs->flags & CLONE_PIDFD) &&
2438 	    (kargs->flags & CLONE_PARENT_SETTID))
2439 		return false;
2440 
2441 	return true;
2442 }
2443 
2444 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2445 /* For compatibility with architectures that call do_fork directly rather than
2446  * using the syscall entry points below. */
do_fork(unsigned long clone_flags,unsigned long stack_start,unsigned long stack_size,int __user * parent_tidptr,int __user * child_tidptr)2447 long do_fork(unsigned long clone_flags,
2448 	      unsigned long stack_start,
2449 	      unsigned long stack_size,
2450 	      int __user *parent_tidptr,
2451 	      int __user *child_tidptr)
2452 {
2453 	struct kernel_clone_args args = {
2454 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2455 		.pidfd		= parent_tidptr,
2456 		.child_tid	= child_tidptr,
2457 		.parent_tid	= parent_tidptr,
2458 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2459 		.stack		= stack_start,
2460 		.stack_size	= stack_size,
2461 	};
2462 
2463 	if (!legacy_clone_args_valid(&args))
2464 		return -EINVAL;
2465 
2466 	return _do_fork(&args);
2467 }
2468 #endif
2469 
2470 /*
2471  * Create a kernel thread.
2472  */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)2473 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2474 {
2475 	struct kernel_clone_args args = {
2476 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2477 				    CLONE_UNTRACED) & ~CSIGNAL),
2478 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2479 		.stack		= (unsigned long)fn,
2480 		.stack_size	= (unsigned long)arg,
2481 	};
2482 
2483 	return _do_fork(&args);
2484 }
2485 
2486 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2487 SYSCALL_DEFINE0(fork)
2488 {
2489 #ifdef CONFIG_MMU
2490 	struct kernel_clone_args args = {
2491 		.exit_signal = SIGCHLD,
2492 	};
2493 
2494 	return _do_fork(&args);
2495 #else
2496 	/* can not support in nommu mode */
2497 	return -EINVAL;
2498 #endif
2499 }
2500 #endif
2501 
2502 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2503 SYSCALL_DEFINE0(vfork)
2504 {
2505 	struct kernel_clone_args args = {
2506 		.flags		= CLONE_VFORK | CLONE_VM,
2507 		.exit_signal	= SIGCHLD,
2508 	};
2509 
2510 	return _do_fork(&args);
2511 }
2512 #endif
2513 
2514 #ifdef __ARCH_WANT_SYS_CLONE
2515 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2516 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2517 		 int __user *, parent_tidptr,
2518 		 unsigned long, tls,
2519 		 int __user *, child_tidptr)
2520 #elif defined(CONFIG_CLONE_BACKWARDS2)
2521 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2522 		 int __user *, parent_tidptr,
2523 		 int __user *, child_tidptr,
2524 		 unsigned long, tls)
2525 #elif defined(CONFIG_CLONE_BACKWARDS3)
2526 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2527 		int, stack_size,
2528 		int __user *, parent_tidptr,
2529 		int __user *, child_tidptr,
2530 		unsigned long, tls)
2531 #else
2532 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2533 		 int __user *, parent_tidptr,
2534 		 int __user *, child_tidptr,
2535 		 unsigned long, tls)
2536 #endif
2537 {
2538 	struct kernel_clone_args args = {
2539 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2540 		.pidfd		= parent_tidptr,
2541 		.child_tid	= child_tidptr,
2542 		.parent_tid	= parent_tidptr,
2543 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2544 		.stack		= newsp,
2545 		.tls		= tls,
2546 	};
2547 
2548 	if (!legacy_clone_args_valid(&args))
2549 		return -EINVAL;
2550 
2551 	return _do_fork(&args);
2552 }
2553 #endif
2554 
2555 #ifdef __ARCH_WANT_SYS_CLONE3
2556 
2557 /*
2558  * copy_thread implementations handle CLONE_SETTLS by reading the TLS value from
2559  * the registers containing the syscall arguments for clone. This doesn't work
2560  * with clone3 since the TLS value is passed in clone_args instead.
2561  */
2562 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2563 #error clone3 requires copy_thread_tls support in arch
2564 #endif
2565 
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2566 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2567 					      struct clone_args __user *uargs,
2568 					      size_t usize)
2569 {
2570 	int err;
2571 	struct clone_args args;
2572 
2573 	if (unlikely(usize > PAGE_SIZE))
2574 		return -E2BIG;
2575 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2576 		return -EINVAL;
2577 
2578 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2579 	if (err)
2580 		return err;
2581 
2582 	/*
2583 	 * Verify that higher 32bits of exit_signal are unset and that
2584 	 * it is a valid signal
2585 	 */
2586 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2587 		     !valid_signal(args.exit_signal)))
2588 		return -EINVAL;
2589 
2590 	*kargs = (struct kernel_clone_args){
2591 		.flags		= args.flags,
2592 		.pidfd		= u64_to_user_ptr(args.pidfd),
2593 		.child_tid	= u64_to_user_ptr(args.child_tid),
2594 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2595 		.exit_signal	= args.exit_signal,
2596 		.stack		= args.stack,
2597 		.stack_size	= args.stack_size,
2598 		.tls		= args.tls,
2599 	};
2600 
2601 	return 0;
2602 }
2603 
2604 /**
2605  * clone3_stack_valid - check and prepare stack
2606  * @kargs: kernel clone args
2607  *
2608  * Verify that the stack arguments userspace gave us are sane.
2609  * In addition, set the stack direction for userspace since it's easy for us to
2610  * determine.
2611  */
clone3_stack_valid(struct kernel_clone_args * kargs)2612 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2613 {
2614 	if (kargs->stack == 0) {
2615 		if (kargs->stack_size > 0)
2616 			return false;
2617 	} else {
2618 		if (kargs->stack_size == 0)
2619 			return false;
2620 
2621 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2622 			return false;
2623 
2624 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2625 		kargs->stack += kargs->stack_size;
2626 #endif
2627 	}
2628 
2629 	return true;
2630 }
2631 
clone3_args_valid(struct kernel_clone_args * kargs)2632 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2633 {
2634 	/*
2635 	 * All lower bits of the flag word are taken.
2636 	 * Verify that no other unknown flags are passed along.
2637 	 */
2638 	if (kargs->flags & ~CLONE_LEGACY_FLAGS)
2639 		return false;
2640 
2641 	/*
2642 	 * - make the CLONE_DETACHED bit reuseable for clone3
2643 	 * - make the CSIGNAL bits reuseable for clone3
2644 	 */
2645 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2646 		return false;
2647 
2648 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2649 	    kargs->exit_signal)
2650 		return false;
2651 
2652 	if (!clone3_stack_valid(kargs))
2653 		return false;
2654 
2655 	return true;
2656 }
2657 
2658 /**
2659  * clone3 - create a new process with specific properties
2660  * @uargs: argument structure
2661  * @size:  size of @uargs
2662  *
2663  * clone3() is the extensible successor to clone()/clone2().
2664  * It takes a struct as argument that is versioned by its size.
2665  *
2666  * Return: On success, a positive PID for the child process.
2667  *         On error, a negative errno number.
2668  */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2669 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2670 {
2671 	int err;
2672 
2673 	struct kernel_clone_args kargs;
2674 
2675 	err = copy_clone_args_from_user(&kargs, uargs, size);
2676 	if (err)
2677 		return err;
2678 
2679 	if (!clone3_args_valid(&kargs))
2680 		return -EINVAL;
2681 
2682 	return _do_fork(&kargs);
2683 }
2684 #endif
2685 
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2686 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2687 {
2688 	struct task_struct *leader, *parent, *child;
2689 	int res;
2690 
2691 	read_lock(&tasklist_lock);
2692 	leader = top = top->group_leader;
2693 down:
2694 	for_each_thread(leader, parent) {
2695 		list_for_each_entry(child, &parent->children, sibling) {
2696 			res = visitor(child, data);
2697 			if (res) {
2698 				if (res < 0)
2699 					goto out;
2700 				leader = child;
2701 				goto down;
2702 			}
2703 up:
2704 			;
2705 		}
2706 	}
2707 
2708 	if (leader != top) {
2709 		child = leader;
2710 		parent = child->real_parent;
2711 		leader = parent->group_leader;
2712 		goto up;
2713 	}
2714 out:
2715 	read_unlock(&tasklist_lock);
2716 }
2717 
2718 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2719 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2720 #endif
2721 
sighand_ctor(void * data)2722 static void sighand_ctor(void *data)
2723 {
2724 	struct sighand_struct *sighand = data;
2725 
2726 	spin_lock_init(&sighand->siglock);
2727 	init_waitqueue_head(&sighand->signalfd_wqh);
2728 }
2729 
mm_cache_init(void)2730 void __init mm_cache_init(void)
2731 {
2732 	unsigned int mm_size;
2733 
2734 	/*
2735 	 * The mm_cpumask is located at the end of mm_struct, and is
2736 	 * dynamically sized based on the maximum CPU number this system
2737 	 * can have, taking hotplug into account (nr_cpu_ids).
2738 	 */
2739 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2740 
2741 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2742 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2743 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2744 			offsetof(struct mm_struct, saved_auxv),
2745 			sizeof_field(struct mm_struct, saved_auxv),
2746 			NULL);
2747 }
2748 
proc_caches_init(void)2749 void __init proc_caches_init(void)
2750 {
2751 	sighand_cachep = kmem_cache_create("sighand_cache",
2752 			sizeof(struct sighand_struct), 0,
2753 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2754 			SLAB_ACCOUNT, sighand_ctor);
2755 	signal_cachep = kmem_cache_create("signal_cache",
2756 			sizeof(struct signal_struct), 0,
2757 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2758 			NULL);
2759 	files_cachep = kmem_cache_create("files_cache",
2760 			sizeof(struct files_struct), 0,
2761 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2762 			NULL);
2763 	fs_cachep = kmem_cache_create("fs_cache",
2764 			sizeof(struct fs_struct), 0,
2765 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2766 			NULL);
2767 
2768 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2769 	mmap_init();
2770 	nsproxy_cache_init();
2771 }
2772 
2773 /*
2774  * Check constraints on flags passed to the unshare system call.
2775  */
check_unshare_flags(unsigned long unshare_flags)2776 static int check_unshare_flags(unsigned long unshare_flags)
2777 {
2778 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2779 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2780 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2781 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2782 		return -EINVAL;
2783 	/*
2784 	 * Not implemented, but pretend it works if there is nothing
2785 	 * to unshare.  Note that unsharing the address space or the
2786 	 * signal handlers also need to unshare the signal queues (aka
2787 	 * CLONE_THREAD).
2788 	 */
2789 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2790 		if (!thread_group_empty(current))
2791 			return -EINVAL;
2792 	}
2793 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2794 		if (refcount_read(&current->sighand->count) > 1)
2795 			return -EINVAL;
2796 	}
2797 	if (unshare_flags & CLONE_VM) {
2798 		if (!current_is_single_threaded())
2799 			return -EINVAL;
2800 	}
2801 
2802 	return 0;
2803 }
2804 
2805 /*
2806  * Unshare the filesystem structure if it is being shared
2807  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)2808 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2809 {
2810 	struct fs_struct *fs = current->fs;
2811 
2812 	if (!(unshare_flags & CLONE_FS) || !fs)
2813 		return 0;
2814 
2815 	/* don't need lock here; in the worst case we'll do useless copy */
2816 	if (fs->users == 1)
2817 		return 0;
2818 
2819 	*new_fsp = copy_fs_struct(fs);
2820 	if (!*new_fsp)
2821 		return -ENOMEM;
2822 
2823 	return 0;
2824 }
2825 
2826 /*
2827  * Unshare file descriptor table if it is being shared
2828  */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)2829 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2830 {
2831 	struct files_struct *fd = current->files;
2832 	int error = 0;
2833 
2834 	if ((unshare_flags & CLONE_FILES) &&
2835 	    (fd && atomic_read(&fd->count) > 1)) {
2836 		*new_fdp = dup_fd(fd, &error);
2837 		if (!*new_fdp)
2838 			return error;
2839 	}
2840 
2841 	return 0;
2842 }
2843 
2844 /*
2845  * unshare allows a process to 'unshare' part of the process
2846  * context which was originally shared using clone.  copy_*
2847  * functions used by do_fork() cannot be used here directly
2848  * because they modify an inactive task_struct that is being
2849  * constructed. Here we are modifying the current, active,
2850  * task_struct.
2851  */
ksys_unshare(unsigned long unshare_flags)2852 int ksys_unshare(unsigned long unshare_flags)
2853 {
2854 	struct fs_struct *fs, *new_fs = NULL;
2855 	struct files_struct *fd, *new_fd = NULL;
2856 	struct cred *new_cred = NULL;
2857 	struct nsproxy *new_nsproxy = NULL;
2858 	int do_sysvsem = 0;
2859 	int err;
2860 
2861 	/*
2862 	 * If unsharing a user namespace must also unshare the thread group
2863 	 * and unshare the filesystem root and working directories.
2864 	 */
2865 	if (unshare_flags & CLONE_NEWUSER)
2866 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2867 	/*
2868 	 * If unsharing vm, must also unshare signal handlers.
2869 	 */
2870 	if (unshare_flags & CLONE_VM)
2871 		unshare_flags |= CLONE_SIGHAND;
2872 	/*
2873 	 * If unsharing a signal handlers, must also unshare the signal queues.
2874 	 */
2875 	if (unshare_flags & CLONE_SIGHAND)
2876 		unshare_flags |= CLONE_THREAD;
2877 	/*
2878 	 * If unsharing namespace, must also unshare filesystem information.
2879 	 */
2880 	if (unshare_flags & CLONE_NEWNS)
2881 		unshare_flags |= CLONE_FS;
2882 
2883 	err = check_unshare_flags(unshare_flags);
2884 	if (err)
2885 		goto bad_unshare_out;
2886 	/*
2887 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2888 	 * to a new ipc namespace, the semaphore arrays from the old
2889 	 * namespace are unreachable.
2890 	 */
2891 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2892 		do_sysvsem = 1;
2893 	err = unshare_fs(unshare_flags, &new_fs);
2894 	if (err)
2895 		goto bad_unshare_out;
2896 	err = unshare_fd(unshare_flags, &new_fd);
2897 	if (err)
2898 		goto bad_unshare_cleanup_fs;
2899 	err = unshare_userns(unshare_flags, &new_cred);
2900 	if (err)
2901 		goto bad_unshare_cleanup_fd;
2902 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2903 					 new_cred, new_fs);
2904 	if (err)
2905 		goto bad_unshare_cleanup_cred;
2906 
2907 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2908 		if (do_sysvsem) {
2909 			/*
2910 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2911 			 */
2912 			exit_sem(current);
2913 		}
2914 		if (unshare_flags & CLONE_NEWIPC) {
2915 			/* Orphan segments in old ns (see sem above). */
2916 			exit_shm(current);
2917 			shm_init_task(current);
2918 		}
2919 
2920 		if (new_nsproxy)
2921 			switch_task_namespaces(current, new_nsproxy);
2922 
2923 		task_lock(current);
2924 
2925 		if (new_fs) {
2926 			fs = current->fs;
2927 			spin_lock(&fs->lock);
2928 			current->fs = new_fs;
2929 			if (--fs->users)
2930 				new_fs = NULL;
2931 			else
2932 				new_fs = fs;
2933 			spin_unlock(&fs->lock);
2934 		}
2935 
2936 		if (new_fd) {
2937 			fd = current->files;
2938 			current->files = new_fd;
2939 			new_fd = fd;
2940 		}
2941 
2942 		task_unlock(current);
2943 
2944 		if (new_cred) {
2945 			/* Install the new user namespace */
2946 			commit_creds(new_cred);
2947 			new_cred = NULL;
2948 		}
2949 	}
2950 
2951 	perf_event_namespaces(current);
2952 
2953 bad_unshare_cleanup_cred:
2954 	if (new_cred)
2955 		put_cred(new_cred);
2956 bad_unshare_cleanup_fd:
2957 	if (new_fd)
2958 		put_files_struct(new_fd);
2959 
2960 bad_unshare_cleanup_fs:
2961 	if (new_fs)
2962 		free_fs_struct(new_fs);
2963 
2964 bad_unshare_out:
2965 	return err;
2966 }
2967 
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)2968 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2969 {
2970 	return ksys_unshare(unshare_flags);
2971 }
2972 
2973 /*
2974  *	Helper to unshare the files of the current task.
2975  *	We don't want to expose copy_files internals to
2976  *	the exec layer of the kernel.
2977  */
2978 
unshare_files(struct files_struct ** displaced)2979 int unshare_files(struct files_struct **displaced)
2980 {
2981 	struct task_struct *task = current;
2982 	struct files_struct *copy = NULL;
2983 	int error;
2984 
2985 	error = unshare_fd(CLONE_FILES, &copy);
2986 	if (error || !copy) {
2987 		*displaced = NULL;
2988 		return error;
2989 	}
2990 	*displaced = task->files;
2991 	task_lock(task);
2992 	task->files = copy;
2993 	task_unlock(task);
2994 	return 0;
2995 }
2996 
sysctl_max_threads(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2997 int sysctl_max_threads(struct ctl_table *table, int write,
2998 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2999 {
3000 	struct ctl_table t;
3001 	int ret;
3002 	int threads = max_threads;
3003 	int min = 1;
3004 	int max = MAX_THREADS;
3005 
3006 	t = *table;
3007 	t.data = &threads;
3008 	t.extra1 = &min;
3009 	t.extra2 = &max;
3010 
3011 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3012 	if (ret || !write)
3013 		return ret;
3014 
3015 	max_threads = threads;
3016 
3017 	return 0;
3018 }
3019