1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * This file contains the functions which manage clocksource drivers.
4 *
5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/device.h>
11 #include <linux/clocksource.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15 #include <linux/tick.h>
16 #include <linux/kthread.h>
17
18 #include "tick-internal.h"
19 #include "timekeeping_internal.h"
20
21 /**
22 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
23 * @mult: pointer to mult variable
24 * @shift: pointer to shift variable
25 * @from: frequency to convert from
26 * @to: frequency to convert to
27 * @maxsec: guaranteed runtime conversion range in seconds
28 *
29 * The function evaluates the shift/mult pair for the scaled math
30 * operations of clocksources and clockevents.
31 *
32 * @to and @from are frequency values in HZ. For clock sources @to is
33 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
34 * event @to is the counter frequency and @from is NSEC_PER_SEC.
35 *
36 * The @maxsec conversion range argument controls the time frame in
37 * seconds which must be covered by the runtime conversion with the
38 * calculated mult and shift factors. This guarantees that no 64bit
39 * overflow happens when the input value of the conversion is
40 * multiplied with the calculated mult factor. Larger ranges may
41 * reduce the conversion accuracy by chosing smaller mult and shift
42 * factors.
43 */
44 void
clocks_calc_mult_shift(u32 * mult,u32 * shift,u32 from,u32 to,u32 maxsec)45 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
46 {
47 u64 tmp;
48 u32 sft, sftacc= 32;
49
50 /*
51 * Calculate the shift factor which is limiting the conversion
52 * range:
53 */
54 tmp = ((u64)maxsec * from) >> 32;
55 while (tmp) {
56 tmp >>=1;
57 sftacc--;
58 }
59
60 /*
61 * Find the conversion shift/mult pair which has the best
62 * accuracy and fits the maxsec conversion range:
63 */
64 for (sft = 32; sft > 0; sft--) {
65 tmp = (u64) to << sft;
66 tmp += from / 2;
67 do_div(tmp, from);
68 if ((tmp >> sftacc) == 0)
69 break;
70 }
71 *mult = tmp;
72 *shift = sft;
73 }
74 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
75
76 /*[Clocksource internal variables]---------
77 * curr_clocksource:
78 * currently selected clocksource.
79 * suspend_clocksource:
80 * used to calculate the suspend time.
81 * clocksource_list:
82 * linked list with the registered clocksources
83 * clocksource_mutex:
84 * protects manipulations to curr_clocksource and the clocksource_list
85 * override_name:
86 * Name of the user-specified clocksource.
87 */
88 static struct clocksource *curr_clocksource;
89 static struct clocksource *suspend_clocksource;
90 static LIST_HEAD(clocksource_list);
91 static DEFINE_MUTEX(clocksource_mutex);
92 static char override_name[CS_NAME_LEN];
93 static int finished_booting;
94 static u64 suspend_start;
95
96 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
97 static void clocksource_watchdog_work(struct work_struct *work);
98 static void clocksource_select(void);
99
100 static LIST_HEAD(watchdog_list);
101 static struct clocksource *watchdog;
102 static struct timer_list watchdog_timer;
103 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
104 static DEFINE_SPINLOCK(watchdog_lock);
105 static int watchdog_running;
106 static atomic_t watchdog_reset_pending;
107
clocksource_watchdog_lock(unsigned long * flags)108 static inline void clocksource_watchdog_lock(unsigned long *flags)
109 {
110 spin_lock_irqsave(&watchdog_lock, *flags);
111 }
112
clocksource_watchdog_unlock(unsigned long * flags)113 static inline void clocksource_watchdog_unlock(unsigned long *flags)
114 {
115 spin_unlock_irqrestore(&watchdog_lock, *flags);
116 }
117
118 static int clocksource_watchdog_kthread(void *data);
119 static void __clocksource_change_rating(struct clocksource *cs, int rating);
120
121 /*
122 * Interval: 0.5sec Threshold: 0.0625s
123 */
124 #define WATCHDOG_INTERVAL (HZ >> 1)
125 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
126
127 /*
128 * Maximum permissible delay between two readouts of the watchdog
129 * clocksource surrounding a read of the clocksource being validated.
130 * This delay could be due to SMIs, NMIs, or to VCPU preemptions.
131 */
132 #define WATCHDOG_MAX_SKEW (100 * NSEC_PER_USEC)
133
clocksource_watchdog_work(struct work_struct * work)134 static void clocksource_watchdog_work(struct work_struct *work)
135 {
136 /*
137 * We cannot directly run clocksource_watchdog_kthread() here, because
138 * clocksource_select() calls timekeeping_notify() which uses
139 * stop_machine(). One cannot use stop_machine() from a workqueue() due
140 * lock inversions wrt CPU hotplug.
141 *
142 * Also, we only ever run this work once or twice during the lifetime
143 * of the kernel, so there is no point in creating a more permanent
144 * kthread for this.
145 *
146 * If kthread_run fails the next watchdog scan over the
147 * watchdog_list will find the unstable clock again.
148 */
149 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
150 }
151
__clocksource_unstable(struct clocksource * cs)152 static void __clocksource_unstable(struct clocksource *cs)
153 {
154 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
155 cs->flags |= CLOCK_SOURCE_UNSTABLE;
156
157 /*
158 * If the clocksource is registered clocksource_watchdog_kthread() will
159 * re-rate and re-select.
160 */
161 if (list_empty(&cs->list)) {
162 cs->rating = 0;
163 return;
164 }
165
166 if (cs->mark_unstable)
167 cs->mark_unstable(cs);
168
169 /* kick clocksource_watchdog_kthread() */
170 if (finished_booting)
171 schedule_work(&watchdog_work);
172 }
173
174 /**
175 * clocksource_mark_unstable - mark clocksource unstable via watchdog
176 * @cs: clocksource to be marked unstable
177 *
178 * This function is called by the x86 TSC code to mark clocksources as unstable;
179 * it defers demotion and re-selection to a kthread.
180 */
clocksource_mark_unstable(struct clocksource * cs)181 void clocksource_mark_unstable(struct clocksource *cs)
182 {
183 unsigned long flags;
184
185 spin_lock_irqsave(&watchdog_lock, flags);
186 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
187 if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
188 list_add(&cs->wd_list, &watchdog_list);
189 __clocksource_unstable(cs);
190 }
191 spin_unlock_irqrestore(&watchdog_lock, flags);
192 }
193
194 static ulong max_cswd_read_retries = 3;
195 module_param(max_cswd_read_retries, ulong, 0644);
196
cs_watchdog_read(struct clocksource * cs,u64 * csnow,u64 * wdnow)197 static bool cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
198 {
199 unsigned int nretries;
200 u64 wd_end, wd_delta;
201 int64_t wd_delay;
202
203 for (nretries = 0; nretries <= max_cswd_read_retries; nretries++) {
204 local_irq_disable();
205 *wdnow = watchdog->read(watchdog);
206 *csnow = cs->read(cs);
207 wd_end = watchdog->read(watchdog);
208 local_irq_enable();
209
210 wd_delta = clocksource_delta(wd_end, *wdnow, watchdog->mask);
211 wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult,
212 watchdog->shift);
213 if (wd_delay <= WATCHDOG_MAX_SKEW) {
214 if (nretries > 1 || nretries >= max_cswd_read_retries) {
215 pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
216 smp_processor_id(), watchdog->name, nretries);
217 }
218 return true;
219 }
220 }
221
222 pr_warn("timekeeping watchdog on CPU%d: %s read-back delay of %lldns, attempt %d, marking unstable\n",
223 smp_processor_id(), watchdog->name, wd_delay, nretries);
224 return false;
225 }
226
clocksource_watchdog(struct timer_list * unused)227 static void clocksource_watchdog(struct timer_list *unused)
228 {
229 u64 csnow, wdnow, cslast, wdlast, delta;
230 int next_cpu, reset_pending;
231 int64_t wd_nsec, cs_nsec;
232 struct clocksource *cs;
233
234 spin_lock(&watchdog_lock);
235 if (!watchdog_running)
236 goto out;
237
238 reset_pending = atomic_read(&watchdog_reset_pending);
239
240 list_for_each_entry(cs, &watchdog_list, wd_list) {
241
242 /* Clocksource already marked unstable? */
243 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
244 if (finished_booting)
245 schedule_work(&watchdog_work);
246 continue;
247 }
248
249 if (!cs_watchdog_read(cs, &csnow, &wdnow)) {
250 /* Clock readout unreliable, so give it up. */
251 __clocksource_unstable(cs);
252 continue;
253 }
254
255 /* Clocksource initialized ? */
256 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
257 atomic_read(&watchdog_reset_pending)) {
258 cs->flags |= CLOCK_SOURCE_WATCHDOG;
259 cs->wd_last = wdnow;
260 cs->cs_last = csnow;
261 continue;
262 }
263
264 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
265 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
266 watchdog->shift);
267
268 delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
269 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
270 wdlast = cs->wd_last; /* save these in case we print them */
271 cslast = cs->cs_last;
272 cs->cs_last = csnow;
273 cs->wd_last = wdnow;
274
275 if (atomic_read(&watchdog_reset_pending))
276 continue;
277
278 /* Check the deviation from the watchdog clocksource. */
279 if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
280 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
281 smp_processor_id(), cs->name);
282 pr_warn(" '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
283 watchdog->name, wdnow, wdlast, watchdog->mask);
284 pr_warn(" '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
285 cs->name, csnow, cslast, cs->mask);
286 __clocksource_unstable(cs);
287 continue;
288 }
289
290 if (cs == curr_clocksource && cs->tick_stable)
291 cs->tick_stable(cs);
292
293 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
294 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
295 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
296 /* Mark it valid for high-res. */
297 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
298
299 /*
300 * clocksource_done_booting() will sort it if
301 * finished_booting is not set yet.
302 */
303 if (!finished_booting)
304 continue;
305
306 /*
307 * If this is not the current clocksource let
308 * the watchdog thread reselect it. Due to the
309 * change to high res this clocksource might
310 * be preferred now. If it is the current
311 * clocksource let the tick code know about
312 * that change.
313 */
314 if (cs != curr_clocksource) {
315 cs->flags |= CLOCK_SOURCE_RESELECT;
316 schedule_work(&watchdog_work);
317 } else {
318 tick_clock_notify();
319 }
320 }
321 }
322
323 /*
324 * We only clear the watchdog_reset_pending, when we did a
325 * full cycle through all clocksources.
326 */
327 if (reset_pending)
328 atomic_dec(&watchdog_reset_pending);
329
330 /*
331 * Cycle through CPUs to check if the CPUs stay synchronized
332 * to each other.
333 */
334 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
335 if (next_cpu >= nr_cpu_ids)
336 next_cpu = cpumask_first(cpu_online_mask);
337
338 /*
339 * Arm timer if not already pending: could race with concurrent
340 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
341 */
342 if (!timer_pending(&watchdog_timer)) {
343 watchdog_timer.expires += WATCHDOG_INTERVAL;
344 add_timer_on(&watchdog_timer, next_cpu);
345 }
346 out:
347 spin_unlock(&watchdog_lock);
348 }
349
clocksource_start_watchdog(void)350 static inline void clocksource_start_watchdog(void)
351 {
352 if (watchdog_running || !watchdog || list_empty(&watchdog_list))
353 return;
354 timer_setup(&watchdog_timer, clocksource_watchdog, 0);
355 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
356 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
357 watchdog_running = 1;
358 }
359
clocksource_stop_watchdog(void)360 static inline void clocksource_stop_watchdog(void)
361 {
362 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
363 return;
364 del_timer(&watchdog_timer);
365 watchdog_running = 0;
366 }
367
clocksource_reset_watchdog(void)368 static inline void clocksource_reset_watchdog(void)
369 {
370 struct clocksource *cs;
371
372 list_for_each_entry(cs, &watchdog_list, wd_list)
373 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
374 }
375
clocksource_resume_watchdog(void)376 static void clocksource_resume_watchdog(void)
377 {
378 atomic_inc(&watchdog_reset_pending);
379 }
380
clocksource_enqueue_watchdog(struct clocksource * cs)381 static void clocksource_enqueue_watchdog(struct clocksource *cs)
382 {
383 INIT_LIST_HEAD(&cs->wd_list);
384
385 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
386 /* cs is a clocksource to be watched. */
387 list_add(&cs->wd_list, &watchdog_list);
388 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
389 } else {
390 /* cs is a watchdog. */
391 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
392 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
393 }
394 }
395
clocksource_select_watchdog(bool fallback)396 static void clocksource_select_watchdog(bool fallback)
397 {
398 struct clocksource *cs, *old_wd;
399 unsigned long flags;
400
401 spin_lock_irqsave(&watchdog_lock, flags);
402 /* save current watchdog */
403 old_wd = watchdog;
404 if (fallback)
405 watchdog = NULL;
406
407 list_for_each_entry(cs, &clocksource_list, list) {
408 /* cs is a clocksource to be watched. */
409 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
410 continue;
411
412 /* Skip current if we were requested for a fallback. */
413 if (fallback && cs == old_wd)
414 continue;
415
416 /* Pick the best watchdog. */
417 if (!watchdog || cs->rating > watchdog->rating)
418 watchdog = cs;
419 }
420 /* If we failed to find a fallback restore the old one. */
421 if (!watchdog)
422 watchdog = old_wd;
423
424 /* If we changed the watchdog we need to reset cycles. */
425 if (watchdog != old_wd)
426 clocksource_reset_watchdog();
427
428 /* Check if the watchdog timer needs to be started. */
429 clocksource_start_watchdog();
430 spin_unlock_irqrestore(&watchdog_lock, flags);
431 }
432
clocksource_dequeue_watchdog(struct clocksource * cs)433 static void clocksource_dequeue_watchdog(struct clocksource *cs)
434 {
435 if (cs != watchdog) {
436 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
437 /* cs is a watched clocksource. */
438 list_del_init(&cs->wd_list);
439 /* Check if the watchdog timer needs to be stopped. */
440 clocksource_stop_watchdog();
441 }
442 }
443 }
444
__clocksource_watchdog_kthread(void)445 static int __clocksource_watchdog_kthread(void)
446 {
447 struct clocksource *cs, *tmp;
448 unsigned long flags;
449 int select = 0;
450
451 spin_lock_irqsave(&watchdog_lock, flags);
452 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
453 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
454 list_del_init(&cs->wd_list);
455 __clocksource_change_rating(cs, 0);
456 select = 1;
457 }
458 if (cs->flags & CLOCK_SOURCE_RESELECT) {
459 cs->flags &= ~CLOCK_SOURCE_RESELECT;
460 select = 1;
461 }
462 }
463 /* Check if the watchdog timer needs to be stopped. */
464 clocksource_stop_watchdog();
465 spin_unlock_irqrestore(&watchdog_lock, flags);
466
467 return select;
468 }
469
clocksource_watchdog_kthread(void * data)470 static int clocksource_watchdog_kthread(void *data)
471 {
472 mutex_lock(&clocksource_mutex);
473 if (__clocksource_watchdog_kthread())
474 clocksource_select();
475 mutex_unlock(&clocksource_mutex);
476 return 0;
477 }
478
clocksource_is_watchdog(struct clocksource * cs)479 static bool clocksource_is_watchdog(struct clocksource *cs)
480 {
481 return cs == watchdog;
482 }
483
484 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
485
clocksource_enqueue_watchdog(struct clocksource * cs)486 static void clocksource_enqueue_watchdog(struct clocksource *cs)
487 {
488 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
489 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
490 }
491
clocksource_select_watchdog(bool fallback)492 static void clocksource_select_watchdog(bool fallback) { }
clocksource_dequeue_watchdog(struct clocksource * cs)493 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
clocksource_resume_watchdog(void)494 static inline void clocksource_resume_watchdog(void) { }
__clocksource_watchdog_kthread(void)495 static inline int __clocksource_watchdog_kthread(void) { return 0; }
clocksource_is_watchdog(struct clocksource * cs)496 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
clocksource_mark_unstable(struct clocksource * cs)497 void clocksource_mark_unstable(struct clocksource *cs) { }
498
clocksource_watchdog_lock(unsigned long * flags)499 static inline void clocksource_watchdog_lock(unsigned long *flags) { }
clocksource_watchdog_unlock(unsigned long * flags)500 static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
501
502 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
503
clocksource_is_suspend(struct clocksource * cs)504 static bool clocksource_is_suspend(struct clocksource *cs)
505 {
506 return cs == suspend_clocksource;
507 }
508
__clocksource_suspend_select(struct clocksource * cs)509 static void __clocksource_suspend_select(struct clocksource *cs)
510 {
511 /*
512 * Skip the clocksource which will be stopped in suspend state.
513 */
514 if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
515 return;
516
517 /*
518 * The nonstop clocksource can be selected as the suspend clocksource to
519 * calculate the suspend time, so it should not supply suspend/resume
520 * interfaces to suspend the nonstop clocksource when system suspends.
521 */
522 if (cs->suspend || cs->resume) {
523 pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
524 cs->name);
525 }
526
527 /* Pick the best rating. */
528 if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
529 suspend_clocksource = cs;
530 }
531
532 /**
533 * clocksource_suspend_select - Select the best clocksource for suspend timing
534 * @fallback: if select a fallback clocksource
535 */
clocksource_suspend_select(bool fallback)536 static void clocksource_suspend_select(bool fallback)
537 {
538 struct clocksource *cs, *old_suspend;
539
540 old_suspend = suspend_clocksource;
541 if (fallback)
542 suspend_clocksource = NULL;
543
544 list_for_each_entry(cs, &clocksource_list, list) {
545 /* Skip current if we were requested for a fallback. */
546 if (fallback && cs == old_suspend)
547 continue;
548
549 __clocksource_suspend_select(cs);
550 }
551 }
552
553 /**
554 * clocksource_start_suspend_timing - Start measuring the suspend timing
555 * @cs: current clocksource from timekeeping
556 * @start_cycles: current cycles from timekeeping
557 *
558 * This function will save the start cycle values of suspend timer to calculate
559 * the suspend time when resuming system.
560 *
561 * This function is called late in the suspend process from timekeeping_suspend(),
562 * that means processes are freezed, non-boot cpus and interrupts are disabled
563 * now. It is therefore possible to start the suspend timer without taking the
564 * clocksource mutex.
565 */
clocksource_start_suspend_timing(struct clocksource * cs,u64 start_cycles)566 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
567 {
568 if (!suspend_clocksource)
569 return;
570
571 /*
572 * If current clocksource is the suspend timer, we should use the
573 * tkr_mono.cycle_last value as suspend_start to avoid same reading
574 * from suspend timer.
575 */
576 if (clocksource_is_suspend(cs)) {
577 suspend_start = start_cycles;
578 return;
579 }
580
581 if (suspend_clocksource->enable &&
582 suspend_clocksource->enable(suspend_clocksource)) {
583 pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
584 return;
585 }
586
587 suspend_start = suspend_clocksource->read(suspend_clocksource);
588 }
589
590 /**
591 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
592 * @cs: current clocksource from timekeeping
593 * @cycle_now: current cycles from timekeeping
594 *
595 * This function will calculate the suspend time from suspend timer.
596 *
597 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
598 *
599 * This function is called early in the resume process from timekeeping_resume(),
600 * that means there is only one cpu, no processes are running and the interrupts
601 * are disabled. It is therefore possible to stop the suspend timer without
602 * taking the clocksource mutex.
603 */
clocksource_stop_suspend_timing(struct clocksource * cs,u64 cycle_now)604 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
605 {
606 u64 now, delta, nsec = 0;
607
608 if (!suspend_clocksource)
609 return 0;
610
611 /*
612 * If current clocksource is the suspend timer, we should use the
613 * tkr_mono.cycle_last value from timekeeping as current cycle to
614 * avoid same reading from suspend timer.
615 */
616 if (clocksource_is_suspend(cs))
617 now = cycle_now;
618 else
619 now = suspend_clocksource->read(suspend_clocksource);
620
621 if (now > suspend_start) {
622 delta = clocksource_delta(now, suspend_start,
623 suspend_clocksource->mask);
624 nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
625 suspend_clocksource->shift);
626 }
627
628 /*
629 * Disable the suspend timer to save power if current clocksource is
630 * not the suspend timer.
631 */
632 if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
633 suspend_clocksource->disable(suspend_clocksource);
634
635 return nsec;
636 }
637
638 /**
639 * clocksource_suspend - suspend the clocksource(s)
640 */
clocksource_suspend(void)641 void clocksource_suspend(void)
642 {
643 struct clocksource *cs;
644
645 list_for_each_entry_reverse(cs, &clocksource_list, list)
646 if (cs->suspend)
647 cs->suspend(cs);
648 }
649
650 /**
651 * clocksource_resume - resume the clocksource(s)
652 */
clocksource_resume(void)653 void clocksource_resume(void)
654 {
655 struct clocksource *cs;
656
657 list_for_each_entry(cs, &clocksource_list, list)
658 if (cs->resume)
659 cs->resume(cs);
660
661 clocksource_resume_watchdog();
662 }
663
664 /**
665 * clocksource_touch_watchdog - Update watchdog
666 *
667 * Update the watchdog after exception contexts such as kgdb so as not
668 * to incorrectly trip the watchdog. This might fail when the kernel
669 * was stopped in code which holds watchdog_lock.
670 */
clocksource_touch_watchdog(void)671 void clocksource_touch_watchdog(void)
672 {
673 clocksource_resume_watchdog();
674 }
675
676 /**
677 * clocksource_max_adjustment- Returns max adjustment amount
678 * @cs: Pointer to clocksource
679 *
680 */
clocksource_max_adjustment(struct clocksource * cs)681 static u32 clocksource_max_adjustment(struct clocksource *cs)
682 {
683 u64 ret;
684 /*
685 * We won't try to correct for more than 11% adjustments (110,000 ppm),
686 */
687 ret = (u64)cs->mult * 11;
688 do_div(ret,100);
689 return (u32)ret;
690 }
691
692 /**
693 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
694 * @mult: cycle to nanosecond multiplier
695 * @shift: cycle to nanosecond divisor (power of two)
696 * @maxadj: maximum adjustment value to mult (~11%)
697 * @mask: bitmask for two's complement subtraction of non 64 bit counters
698 * @max_cyc: maximum cycle value before potential overflow (does not include
699 * any safety margin)
700 *
701 * NOTE: This function includes a safety margin of 50%, in other words, we
702 * return half the number of nanoseconds the hardware counter can technically
703 * cover. This is done so that we can potentially detect problems caused by
704 * delayed timers or bad hardware, which might result in time intervals that
705 * are larger than what the math used can handle without overflows.
706 */
clocks_calc_max_nsecs(u32 mult,u32 shift,u32 maxadj,u64 mask,u64 * max_cyc)707 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
708 {
709 u64 max_nsecs, max_cycles;
710
711 /*
712 * Calculate the maximum number of cycles that we can pass to the
713 * cyc2ns() function without overflowing a 64-bit result.
714 */
715 max_cycles = ULLONG_MAX;
716 do_div(max_cycles, mult+maxadj);
717
718 /*
719 * The actual maximum number of cycles we can defer the clocksource is
720 * determined by the minimum of max_cycles and mask.
721 * Note: Here we subtract the maxadj to make sure we don't sleep for
722 * too long if there's a large negative adjustment.
723 */
724 max_cycles = min(max_cycles, mask);
725 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
726
727 /* return the max_cycles value as well if requested */
728 if (max_cyc)
729 *max_cyc = max_cycles;
730
731 /* Return 50% of the actual maximum, so we can detect bad values */
732 max_nsecs >>= 1;
733
734 return max_nsecs;
735 }
736
737 /**
738 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
739 * @cs: Pointer to clocksource to be updated
740 *
741 */
clocksource_update_max_deferment(struct clocksource * cs)742 static inline void clocksource_update_max_deferment(struct clocksource *cs)
743 {
744 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
745 cs->maxadj, cs->mask,
746 &cs->max_cycles);
747 }
748
749 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
750
clocksource_find_best(bool oneshot,bool skipcur)751 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
752 {
753 struct clocksource *cs;
754
755 if (!finished_booting || list_empty(&clocksource_list))
756 return NULL;
757
758 /*
759 * We pick the clocksource with the highest rating. If oneshot
760 * mode is active, we pick the highres valid clocksource with
761 * the best rating.
762 */
763 list_for_each_entry(cs, &clocksource_list, list) {
764 if (skipcur && cs == curr_clocksource)
765 continue;
766 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
767 continue;
768 return cs;
769 }
770 return NULL;
771 }
772
__clocksource_select(bool skipcur)773 static void __clocksource_select(bool skipcur)
774 {
775 bool oneshot = tick_oneshot_mode_active();
776 struct clocksource *best, *cs;
777
778 /* Find the best suitable clocksource */
779 best = clocksource_find_best(oneshot, skipcur);
780 if (!best)
781 return;
782
783 if (!strlen(override_name))
784 goto found;
785
786 /* Check for the override clocksource. */
787 list_for_each_entry(cs, &clocksource_list, list) {
788 if (skipcur && cs == curr_clocksource)
789 continue;
790 if (strcmp(cs->name, override_name) != 0)
791 continue;
792 /*
793 * Check to make sure we don't switch to a non-highres
794 * capable clocksource if the tick code is in oneshot
795 * mode (highres or nohz)
796 */
797 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
798 /* Override clocksource cannot be used. */
799 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
800 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
801 cs->name);
802 override_name[0] = 0;
803 } else {
804 /*
805 * The override cannot be currently verified.
806 * Deferring to let the watchdog check.
807 */
808 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
809 cs->name);
810 }
811 } else
812 /* Override clocksource can be used. */
813 best = cs;
814 break;
815 }
816
817 found:
818 if (curr_clocksource != best && !timekeeping_notify(best)) {
819 pr_info("Switched to clocksource %s\n", best->name);
820 curr_clocksource = best;
821 }
822 }
823
824 /**
825 * clocksource_select - Select the best clocksource available
826 *
827 * Private function. Must hold clocksource_mutex when called.
828 *
829 * Select the clocksource with the best rating, or the clocksource,
830 * which is selected by userspace override.
831 */
clocksource_select(void)832 static void clocksource_select(void)
833 {
834 __clocksource_select(false);
835 }
836
clocksource_select_fallback(void)837 static void clocksource_select_fallback(void)
838 {
839 __clocksource_select(true);
840 }
841
842 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
clocksource_select(void)843 static inline void clocksource_select(void) { }
clocksource_select_fallback(void)844 static inline void clocksource_select_fallback(void) { }
845
846 #endif
847
848 /*
849 * clocksource_done_booting - Called near the end of core bootup
850 *
851 * Hack to avoid lots of clocksource churn at boot time.
852 * We use fs_initcall because we want this to start before
853 * device_initcall but after subsys_initcall.
854 */
clocksource_done_booting(void)855 static int __init clocksource_done_booting(void)
856 {
857 mutex_lock(&clocksource_mutex);
858 curr_clocksource = clocksource_default_clock();
859 finished_booting = 1;
860 /*
861 * Run the watchdog first to eliminate unstable clock sources
862 */
863 __clocksource_watchdog_kthread();
864 clocksource_select();
865 mutex_unlock(&clocksource_mutex);
866 return 0;
867 }
868 fs_initcall(clocksource_done_booting);
869
870 /*
871 * Enqueue the clocksource sorted by rating
872 */
clocksource_enqueue(struct clocksource * cs)873 static void clocksource_enqueue(struct clocksource *cs)
874 {
875 struct list_head *entry = &clocksource_list;
876 struct clocksource *tmp;
877
878 list_for_each_entry(tmp, &clocksource_list, list) {
879 /* Keep track of the place, where to insert */
880 if (tmp->rating < cs->rating)
881 break;
882 entry = &tmp->list;
883 }
884 list_add(&cs->list, entry);
885 }
886
887 /**
888 * __clocksource_update_freq_scale - Used update clocksource with new freq
889 * @cs: clocksource to be registered
890 * @scale: Scale factor multiplied against freq to get clocksource hz
891 * @freq: clocksource frequency (cycles per second) divided by scale
892 *
893 * This should only be called from the clocksource->enable() method.
894 *
895 * This *SHOULD NOT* be called directly! Please use the
896 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
897 * functions.
898 */
__clocksource_update_freq_scale(struct clocksource * cs,u32 scale,u32 freq)899 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
900 {
901 u64 sec;
902
903 /*
904 * Default clocksources are *special* and self-define their mult/shift.
905 * But, you're not special, so you should specify a freq value.
906 */
907 if (freq) {
908 /*
909 * Calc the maximum number of seconds which we can run before
910 * wrapping around. For clocksources which have a mask > 32-bit
911 * we need to limit the max sleep time to have a good
912 * conversion precision. 10 minutes is still a reasonable
913 * amount. That results in a shift value of 24 for a
914 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
915 * ~ 0.06ppm granularity for NTP.
916 */
917 sec = cs->mask;
918 do_div(sec, freq);
919 do_div(sec, scale);
920 if (!sec)
921 sec = 1;
922 else if (sec > 600 && cs->mask > UINT_MAX)
923 sec = 600;
924
925 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
926 NSEC_PER_SEC / scale, sec * scale);
927 }
928 /*
929 * Ensure clocksources that have large 'mult' values don't overflow
930 * when adjusted.
931 */
932 cs->maxadj = clocksource_max_adjustment(cs);
933 while (freq && ((cs->mult + cs->maxadj < cs->mult)
934 || (cs->mult - cs->maxadj > cs->mult))) {
935 cs->mult >>= 1;
936 cs->shift--;
937 cs->maxadj = clocksource_max_adjustment(cs);
938 }
939
940 /*
941 * Only warn for *special* clocksources that self-define
942 * their mult/shift values and don't specify a freq.
943 */
944 WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
945 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
946 cs->name);
947
948 clocksource_update_max_deferment(cs);
949
950 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
951 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
952 }
953 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
954
955 /**
956 * __clocksource_register_scale - Used to install new clocksources
957 * @cs: clocksource to be registered
958 * @scale: Scale factor multiplied against freq to get clocksource hz
959 * @freq: clocksource frequency (cycles per second) divided by scale
960 *
961 * Returns -EBUSY if registration fails, zero otherwise.
962 *
963 * This *SHOULD NOT* be called directly! Please use the
964 * clocksource_register_hz() or clocksource_register_khz helper functions.
965 */
__clocksource_register_scale(struct clocksource * cs,u32 scale,u32 freq)966 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
967 {
968 unsigned long flags;
969
970 clocksource_arch_init(cs);
971
972 /* Initialize mult/shift and max_idle_ns */
973 __clocksource_update_freq_scale(cs, scale, freq);
974
975 /* Add clocksource to the clocksource list */
976 mutex_lock(&clocksource_mutex);
977
978 clocksource_watchdog_lock(&flags);
979 clocksource_enqueue(cs);
980 clocksource_enqueue_watchdog(cs);
981 clocksource_watchdog_unlock(&flags);
982
983 clocksource_select();
984 clocksource_select_watchdog(false);
985 __clocksource_suspend_select(cs);
986 mutex_unlock(&clocksource_mutex);
987 return 0;
988 }
989 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
990
__clocksource_change_rating(struct clocksource * cs,int rating)991 static void __clocksource_change_rating(struct clocksource *cs, int rating)
992 {
993 list_del(&cs->list);
994 cs->rating = rating;
995 clocksource_enqueue(cs);
996 }
997
998 /**
999 * clocksource_change_rating - Change the rating of a registered clocksource
1000 * @cs: clocksource to be changed
1001 * @rating: new rating
1002 */
clocksource_change_rating(struct clocksource * cs,int rating)1003 void clocksource_change_rating(struct clocksource *cs, int rating)
1004 {
1005 unsigned long flags;
1006
1007 mutex_lock(&clocksource_mutex);
1008 clocksource_watchdog_lock(&flags);
1009 __clocksource_change_rating(cs, rating);
1010 clocksource_watchdog_unlock(&flags);
1011
1012 clocksource_select();
1013 clocksource_select_watchdog(false);
1014 clocksource_suspend_select(false);
1015 mutex_unlock(&clocksource_mutex);
1016 }
1017 EXPORT_SYMBOL(clocksource_change_rating);
1018
1019 /*
1020 * Unbind clocksource @cs. Called with clocksource_mutex held
1021 */
clocksource_unbind(struct clocksource * cs)1022 static int clocksource_unbind(struct clocksource *cs)
1023 {
1024 unsigned long flags;
1025
1026 if (clocksource_is_watchdog(cs)) {
1027 /* Select and try to install a replacement watchdog. */
1028 clocksource_select_watchdog(true);
1029 if (clocksource_is_watchdog(cs))
1030 return -EBUSY;
1031 }
1032
1033 if (cs == curr_clocksource) {
1034 /* Select and try to install a replacement clock source */
1035 clocksource_select_fallback();
1036 if (curr_clocksource == cs)
1037 return -EBUSY;
1038 }
1039
1040 if (clocksource_is_suspend(cs)) {
1041 /*
1042 * Select and try to install a replacement suspend clocksource.
1043 * If no replacement suspend clocksource, we will just let the
1044 * clocksource go and have no suspend clocksource.
1045 */
1046 clocksource_suspend_select(true);
1047 }
1048
1049 clocksource_watchdog_lock(&flags);
1050 clocksource_dequeue_watchdog(cs);
1051 list_del_init(&cs->list);
1052 clocksource_watchdog_unlock(&flags);
1053
1054 return 0;
1055 }
1056
1057 /**
1058 * clocksource_unregister - remove a registered clocksource
1059 * @cs: clocksource to be unregistered
1060 */
clocksource_unregister(struct clocksource * cs)1061 int clocksource_unregister(struct clocksource *cs)
1062 {
1063 int ret = 0;
1064
1065 mutex_lock(&clocksource_mutex);
1066 if (!list_empty(&cs->list))
1067 ret = clocksource_unbind(cs);
1068 mutex_unlock(&clocksource_mutex);
1069 return ret;
1070 }
1071 EXPORT_SYMBOL(clocksource_unregister);
1072
1073 #ifdef CONFIG_SYSFS
1074 /**
1075 * current_clocksource_show - sysfs interface for current clocksource
1076 * @dev: unused
1077 * @attr: unused
1078 * @buf: char buffer to be filled with clocksource list
1079 *
1080 * Provides sysfs interface for listing current clocksource.
1081 */
current_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1082 static ssize_t current_clocksource_show(struct device *dev,
1083 struct device_attribute *attr,
1084 char *buf)
1085 {
1086 ssize_t count = 0;
1087
1088 mutex_lock(&clocksource_mutex);
1089 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1090 mutex_unlock(&clocksource_mutex);
1091
1092 return count;
1093 }
1094
sysfs_get_uname(const char * buf,char * dst,size_t cnt)1095 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1096 {
1097 size_t ret = cnt;
1098
1099 /* strings from sysfs write are not 0 terminated! */
1100 if (!cnt || cnt >= CS_NAME_LEN)
1101 return -EINVAL;
1102
1103 /* strip of \n: */
1104 if (buf[cnt-1] == '\n')
1105 cnt--;
1106 if (cnt > 0)
1107 memcpy(dst, buf, cnt);
1108 dst[cnt] = 0;
1109 return ret;
1110 }
1111
1112 /**
1113 * current_clocksource_store - interface for manually overriding clocksource
1114 * @dev: unused
1115 * @attr: unused
1116 * @buf: name of override clocksource
1117 * @count: length of buffer
1118 *
1119 * Takes input from sysfs interface for manually overriding the default
1120 * clocksource selection.
1121 */
current_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1122 static ssize_t current_clocksource_store(struct device *dev,
1123 struct device_attribute *attr,
1124 const char *buf, size_t count)
1125 {
1126 ssize_t ret;
1127
1128 mutex_lock(&clocksource_mutex);
1129
1130 ret = sysfs_get_uname(buf, override_name, count);
1131 if (ret >= 0)
1132 clocksource_select();
1133
1134 mutex_unlock(&clocksource_mutex);
1135
1136 return ret;
1137 }
1138 static DEVICE_ATTR_RW(current_clocksource);
1139
1140 /**
1141 * unbind_clocksource_store - interface for manually unbinding clocksource
1142 * @dev: unused
1143 * @attr: unused
1144 * @buf: unused
1145 * @count: length of buffer
1146 *
1147 * Takes input from sysfs interface for manually unbinding a clocksource.
1148 */
unbind_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1149 static ssize_t unbind_clocksource_store(struct device *dev,
1150 struct device_attribute *attr,
1151 const char *buf, size_t count)
1152 {
1153 struct clocksource *cs;
1154 char name[CS_NAME_LEN];
1155 ssize_t ret;
1156
1157 ret = sysfs_get_uname(buf, name, count);
1158 if (ret < 0)
1159 return ret;
1160
1161 ret = -ENODEV;
1162 mutex_lock(&clocksource_mutex);
1163 list_for_each_entry(cs, &clocksource_list, list) {
1164 if (strcmp(cs->name, name))
1165 continue;
1166 ret = clocksource_unbind(cs);
1167 break;
1168 }
1169 mutex_unlock(&clocksource_mutex);
1170
1171 return ret ? ret : count;
1172 }
1173 static DEVICE_ATTR_WO(unbind_clocksource);
1174
1175 /**
1176 * available_clocksource_show - sysfs interface for listing clocksource
1177 * @dev: unused
1178 * @attr: unused
1179 * @buf: char buffer to be filled with clocksource list
1180 *
1181 * Provides sysfs interface for listing registered clocksources
1182 */
available_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1183 static ssize_t available_clocksource_show(struct device *dev,
1184 struct device_attribute *attr,
1185 char *buf)
1186 {
1187 struct clocksource *src;
1188 ssize_t count = 0;
1189
1190 mutex_lock(&clocksource_mutex);
1191 list_for_each_entry(src, &clocksource_list, list) {
1192 /*
1193 * Don't show non-HRES clocksource if the tick code is
1194 * in one shot mode (highres=on or nohz=on)
1195 */
1196 if (!tick_oneshot_mode_active() ||
1197 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1198 count += snprintf(buf + count,
1199 max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1200 "%s ", src->name);
1201 }
1202 mutex_unlock(&clocksource_mutex);
1203
1204 count += snprintf(buf + count,
1205 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1206
1207 return count;
1208 }
1209 static DEVICE_ATTR_RO(available_clocksource);
1210
1211 static struct attribute *clocksource_attrs[] = {
1212 &dev_attr_current_clocksource.attr,
1213 &dev_attr_unbind_clocksource.attr,
1214 &dev_attr_available_clocksource.attr,
1215 NULL
1216 };
1217 ATTRIBUTE_GROUPS(clocksource);
1218
1219 static struct bus_type clocksource_subsys = {
1220 .name = "clocksource",
1221 .dev_name = "clocksource",
1222 };
1223
1224 static struct device device_clocksource = {
1225 .id = 0,
1226 .bus = &clocksource_subsys,
1227 .groups = clocksource_groups,
1228 };
1229
init_clocksource_sysfs(void)1230 static int __init init_clocksource_sysfs(void)
1231 {
1232 int error = subsys_system_register(&clocksource_subsys, NULL);
1233
1234 if (!error)
1235 error = device_register(&device_clocksource);
1236
1237 return error;
1238 }
1239
1240 device_initcall(init_clocksource_sysfs);
1241 #endif /* CONFIG_SYSFS */
1242
1243 /**
1244 * boot_override_clocksource - boot clock override
1245 * @str: override name
1246 *
1247 * Takes a clocksource= boot argument and uses it
1248 * as the clocksource override name.
1249 */
boot_override_clocksource(char * str)1250 static int __init boot_override_clocksource(char* str)
1251 {
1252 mutex_lock(&clocksource_mutex);
1253 if (str)
1254 strlcpy(override_name, str, sizeof(override_name));
1255 mutex_unlock(&clocksource_mutex);
1256 return 1;
1257 }
1258
1259 __setup("clocksource=", boot_override_clocksource);
1260
1261 /**
1262 * boot_override_clock - Compatibility layer for deprecated boot option
1263 * @str: override name
1264 *
1265 * DEPRECATED! Takes a clock= boot argument and uses it
1266 * as the clocksource override name
1267 */
boot_override_clock(char * str)1268 static int __init boot_override_clock(char* str)
1269 {
1270 if (!strcmp(str, "pmtmr")) {
1271 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1272 return boot_override_clocksource("acpi_pm");
1273 }
1274 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1275 return boot_override_clocksource(str);
1276 }
1277
1278 __setup("clock=", boot_override_clock);
1279