• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file contains the functions which manage clocksource drivers.
4  *
5  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/device.h>
11 #include <linux/clocksource.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15 #include <linux/tick.h>
16 #include <linux/kthread.h>
17 
18 #include "tick-internal.h"
19 #include "timekeeping_internal.h"
20 
21 /**
22  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
23  * @mult:	pointer to mult variable
24  * @shift:	pointer to shift variable
25  * @from:	frequency to convert from
26  * @to:		frequency to convert to
27  * @maxsec:	guaranteed runtime conversion range in seconds
28  *
29  * The function evaluates the shift/mult pair for the scaled math
30  * operations of clocksources and clockevents.
31  *
32  * @to and @from are frequency values in HZ. For clock sources @to is
33  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
34  * event @to is the counter frequency and @from is NSEC_PER_SEC.
35  *
36  * The @maxsec conversion range argument controls the time frame in
37  * seconds which must be covered by the runtime conversion with the
38  * calculated mult and shift factors. This guarantees that no 64bit
39  * overflow happens when the input value of the conversion is
40  * multiplied with the calculated mult factor. Larger ranges may
41  * reduce the conversion accuracy by chosing smaller mult and shift
42  * factors.
43  */
44 void
clocks_calc_mult_shift(u32 * mult,u32 * shift,u32 from,u32 to,u32 maxsec)45 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
46 {
47 	u64 tmp;
48 	u32 sft, sftacc= 32;
49 
50 	/*
51 	 * Calculate the shift factor which is limiting the conversion
52 	 * range:
53 	 */
54 	tmp = ((u64)maxsec * from) >> 32;
55 	while (tmp) {
56 		tmp >>=1;
57 		sftacc--;
58 	}
59 
60 	/*
61 	 * Find the conversion shift/mult pair which has the best
62 	 * accuracy and fits the maxsec conversion range:
63 	 */
64 	for (sft = 32; sft > 0; sft--) {
65 		tmp = (u64) to << sft;
66 		tmp += from / 2;
67 		do_div(tmp, from);
68 		if ((tmp >> sftacc) == 0)
69 			break;
70 	}
71 	*mult = tmp;
72 	*shift = sft;
73 }
74 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
75 
76 /*[Clocksource internal variables]---------
77  * curr_clocksource:
78  *	currently selected clocksource.
79  * suspend_clocksource:
80  *	used to calculate the suspend time.
81  * clocksource_list:
82  *	linked list with the registered clocksources
83  * clocksource_mutex:
84  *	protects manipulations to curr_clocksource and the clocksource_list
85  * override_name:
86  *	Name of the user-specified clocksource.
87  */
88 static struct clocksource *curr_clocksource;
89 static struct clocksource *suspend_clocksource;
90 static LIST_HEAD(clocksource_list);
91 static DEFINE_MUTEX(clocksource_mutex);
92 static char override_name[CS_NAME_LEN];
93 static int finished_booting;
94 static u64 suspend_start;
95 
96 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
97 static void clocksource_watchdog_work(struct work_struct *work);
98 static void clocksource_select(void);
99 
100 static LIST_HEAD(watchdog_list);
101 static struct clocksource *watchdog;
102 static struct timer_list watchdog_timer;
103 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
104 static DEFINE_SPINLOCK(watchdog_lock);
105 static int watchdog_running;
106 static atomic_t watchdog_reset_pending;
107 
clocksource_watchdog_lock(unsigned long * flags)108 static inline void clocksource_watchdog_lock(unsigned long *flags)
109 {
110 	spin_lock_irqsave(&watchdog_lock, *flags);
111 }
112 
clocksource_watchdog_unlock(unsigned long * flags)113 static inline void clocksource_watchdog_unlock(unsigned long *flags)
114 {
115 	spin_unlock_irqrestore(&watchdog_lock, *flags);
116 }
117 
118 static int clocksource_watchdog_kthread(void *data);
119 static void __clocksource_change_rating(struct clocksource *cs, int rating);
120 
121 /*
122  * Interval: 0.5sec Threshold: 0.0625s
123  */
124 #define WATCHDOG_INTERVAL (HZ >> 1)
125 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
126 
127 /*
128  * Maximum permissible delay between two readouts of the watchdog
129  * clocksource surrounding a read of the clocksource being validated.
130  * This delay could be due to SMIs, NMIs, or to VCPU preemptions.
131  */
132 #define WATCHDOG_MAX_SKEW (100 * NSEC_PER_USEC)
133 
clocksource_watchdog_work(struct work_struct * work)134 static void clocksource_watchdog_work(struct work_struct *work)
135 {
136 	/*
137 	 * We cannot directly run clocksource_watchdog_kthread() here, because
138 	 * clocksource_select() calls timekeeping_notify() which uses
139 	 * stop_machine(). One cannot use stop_machine() from a workqueue() due
140 	 * lock inversions wrt CPU hotplug.
141 	 *
142 	 * Also, we only ever run this work once or twice during the lifetime
143 	 * of the kernel, so there is no point in creating a more permanent
144 	 * kthread for this.
145 	 *
146 	 * If kthread_run fails the next watchdog scan over the
147 	 * watchdog_list will find the unstable clock again.
148 	 */
149 	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
150 }
151 
__clocksource_unstable(struct clocksource * cs)152 static void __clocksource_unstable(struct clocksource *cs)
153 {
154 	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
155 	cs->flags |= CLOCK_SOURCE_UNSTABLE;
156 
157 	/*
158 	 * If the clocksource is registered clocksource_watchdog_kthread() will
159 	 * re-rate and re-select.
160 	 */
161 	if (list_empty(&cs->list)) {
162 		cs->rating = 0;
163 		return;
164 	}
165 
166 	if (cs->mark_unstable)
167 		cs->mark_unstable(cs);
168 
169 	/* kick clocksource_watchdog_kthread() */
170 	if (finished_booting)
171 		schedule_work(&watchdog_work);
172 }
173 
174 /**
175  * clocksource_mark_unstable - mark clocksource unstable via watchdog
176  * @cs:		clocksource to be marked unstable
177  *
178  * This function is called by the x86 TSC code to mark clocksources as unstable;
179  * it defers demotion and re-selection to a kthread.
180  */
clocksource_mark_unstable(struct clocksource * cs)181 void clocksource_mark_unstable(struct clocksource *cs)
182 {
183 	unsigned long flags;
184 
185 	spin_lock_irqsave(&watchdog_lock, flags);
186 	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
187 		if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
188 			list_add(&cs->wd_list, &watchdog_list);
189 		__clocksource_unstable(cs);
190 	}
191 	spin_unlock_irqrestore(&watchdog_lock, flags);
192 }
193 
194 static ulong max_cswd_read_retries = 3;
195 module_param(max_cswd_read_retries, ulong, 0644);
196 
cs_watchdog_read(struct clocksource * cs,u64 * csnow,u64 * wdnow)197 static bool cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
198 {
199 	unsigned int nretries;
200 	u64 wd_end, wd_delta;
201 	int64_t wd_delay;
202 
203 	for (nretries = 0; nretries <= max_cswd_read_retries; nretries++) {
204 		local_irq_disable();
205 		*wdnow = watchdog->read(watchdog);
206 		*csnow = cs->read(cs);
207 		wd_end = watchdog->read(watchdog);
208 		local_irq_enable();
209 
210 		wd_delta = clocksource_delta(wd_end, *wdnow, watchdog->mask);
211 		wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult,
212 					      watchdog->shift);
213 		if (wd_delay <= WATCHDOG_MAX_SKEW) {
214 			if (nretries > 1 || nretries >= max_cswd_read_retries) {
215 				pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
216 					smp_processor_id(), watchdog->name, nretries);
217 			}
218 			return true;
219 		}
220 	}
221 
222 	pr_warn("timekeeping watchdog on CPU%d: %s read-back delay of %lldns, attempt %d, marking unstable\n",
223 		smp_processor_id(), watchdog->name, wd_delay, nretries);
224 	return false;
225 }
226 
clocksource_watchdog(struct timer_list * unused)227 static void clocksource_watchdog(struct timer_list *unused)
228 {
229 	u64 csnow, wdnow, cslast, wdlast, delta;
230 	int next_cpu, reset_pending;
231 	int64_t wd_nsec, cs_nsec;
232 	struct clocksource *cs;
233 
234 	spin_lock(&watchdog_lock);
235 	if (!watchdog_running)
236 		goto out;
237 
238 	reset_pending = atomic_read(&watchdog_reset_pending);
239 
240 	list_for_each_entry(cs, &watchdog_list, wd_list) {
241 
242 		/* Clocksource already marked unstable? */
243 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
244 			if (finished_booting)
245 				schedule_work(&watchdog_work);
246 			continue;
247 		}
248 
249 		if (!cs_watchdog_read(cs, &csnow, &wdnow)) {
250 			/* Clock readout unreliable, so give it up. */
251 			__clocksource_unstable(cs);
252 			continue;
253 		}
254 
255 		/* Clocksource initialized ? */
256 		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
257 		    atomic_read(&watchdog_reset_pending)) {
258 			cs->flags |= CLOCK_SOURCE_WATCHDOG;
259 			cs->wd_last = wdnow;
260 			cs->cs_last = csnow;
261 			continue;
262 		}
263 
264 		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
265 		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
266 					     watchdog->shift);
267 
268 		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
269 		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
270 		wdlast = cs->wd_last; /* save these in case we print them */
271 		cslast = cs->cs_last;
272 		cs->cs_last = csnow;
273 		cs->wd_last = wdnow;
274 
275 		if (atomic_read(&watchdog_reset_pending))
276 			continue;
277 
278 		/* Check the deviation from the watchdog clocksource. */
279 		if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
280 			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
281 				smp_processor_id(), cs->name);
282 			pr_warn("                      '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
283 				watchdog->name, wdnow, wdlast, watchdog->mask);
284 			pr_warn("                      '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
285 				cs->name, csnow, cslast, cs->mask);
286 			__clocksource_unstable(cs);
287 			continue;
288 		}
289 
290 		if (cs == curr_clocksource && cs->tick_stable)
291 			cs->tick_stable(cs);
292 
293 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
294 		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
295 		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
296 			/* Mark it valid for high-res. */
297 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
298 
299 			/*
300 			 * clocksource_done_booting() will sort it if
301 			 * finished_booting is not set yet.
302 			 */
303 			if (!finished_booting)
304 				continue;
305 
306 			/*
307 			 * If this is not the current clocksource let
308 			 * the watchdog thread reselect it. Due to the
309 			 * change to high res this clocksource might
310 			 * be preferred now. If it is the current
311 			 * clocksource let the tick code know about
312 			 * that change.
313 			 */
314 			if (cs != curr_clocksource) {
315 				cs->flags |= CLOCK_SOURCE_RESELECT;
316 				schedule_work(&watchdog_work);
317 			} else {
318 				tick_clock_notify();
319 			}
320 		}
321 	}
322 
323 	/*
324 	 * We only clear the watchdog_reset_pending, when we did a
325 	 * full cycle through all clocksources.
326 	 */
327 	if (reset_pending)
328 		atomic_dec(&watchdog_reset_pending);
329 
330 	/*
331 	 * Cycle through CPUs to check if the CPUs stay synchronized
332 	 * to each other.
333 	 */
334 	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
335 	if (next_cpu >= nr_cpu_ids)
336 		next_cpu = cpumask_first(cpu_online_mask);
337 
338 	/*
339 	 * Arm timer if not already pending: could race with concurrent
340 	 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
341 	 */
342 	if (!timer_pending(&watchdog_timer)) {
343 		watchdog_timer.expires += WATCHDOG_INTERVAL;
344 		add_timer_on(&watchdog_timer, next_cpu);
345 	}
346 out:
347 	spin_unlock(&watchdog_lock);
348 }
349 
clocksource_start_watchdog(void)350 static inline void clocksource_start_watchdog(void)
351 {
352 	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
353 		return;
354 	timer_setup(&watchdog_timer, clocksource_watchdog, 0);
355 	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
356 	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
357 	watchdog_running = 1;
358 }
359 
clocksource_stop_watchdog(void)360 static inline void clocksource_stop_watchdog(void)
361 {
362 	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
363 		return;
364 	del_timer(&watchdog_timer);
365 	watchdog_running = 0;
366 }
367 
clocksource_reset_watchdog(void)368 static inline void clocksource_reset_watchdog(void)
369 {
370 	struct clocksource *cs;
371 
372 	list_for_each_entry(cs, &watchdog_list, wd_list)
373 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
374 }
375 
clocksource_resume_watchdog(void)376 static void clocksource_resume_watchdog(void)
377 {
378 	atomic_inc(&watchdog_reset_pending);
379 }
380 
clocksource_enqueue_watchdog(struct clocksource * cs)381 static void clocksource_enqueue_watchdog(struct clocksource *cs)
382 {
383 	INIT_LIST_HEAD(&cs->wd_list);
384 
385 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
386 		/* cs is a clocksource to be watched. */
387 		list_add(&cs->wd_list, &watchdog_list);
388 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
389 	} else {
390 		/* cs is a watchdog. */
391 		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
392 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
393 	}
394 }
395 
clocksource_select_watchdog(bool fallback)396 static void clocksource_select_watchdog(bool fallback)
397 {
398 	struct clocksource *cs, *old_wd;
399 	unsigned long flags;
400 
401 	spin_lock_irqsave(&watchdog_lock, flags);
402 	/* save current watchdog */
403 	old_wd = watchdog;
404 	if (fallback)
405 		watchdog = NULL;
406 
407 	list_for_each_entry(cs, &clocksource_list, list) {
408 		/* cs is a clocksource to be watched. */
409 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
410 			continue;
411 
412 		/* Skip current if we were requested for a fallback. */
413 		if (fallback && cs == old_wd)
414 			continue;
415 
416 		/* Pick the best watchdog. */
417 		if (!watchdog || cs->rating > watchdog->rating)
418 			watchdog = cs;
419 	}
420 	/* If we failed to find a fallback restore the old one. */
421 	if (!watchdog)
422 		watchdog = old_wd;
423 
424 	/* If we changed the watchdog we need to reset cycles. */
425 	if (watchdog != old_wd)
426 		clocksource_reset_watchdog();
427 
428 	/* Check if the watchdog timer needs to be started. */
429 	clocksource_start_watchdog();
430 	spin_unlock_irqrestore(&watchdog_lock, flags);
431 }
432 
clocksource_dequeue_watchdog(struct clocksource * cs)433 static void clocksource_dequeue_watchdog(struct clocksource *cs)
434 {
435 	if (cs != watchdog) {
436 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
437 			/* cs is a watched clocksource. */
438 			list_del_init(&cs->wd_list);
439 			/* Check if the watchdog timer needs to be stopped. */
440 			clocksource_stop_watchdog();
441 		}
442 	}
443 }
444 
__clocksource_watchdog_kthread(void)445 static int __clocksource_watchdog_kthread(void)
446 {
447 	struct clocksource *cs, *tmp;
448 	unsigned long flags;
449 	int select = 0;
450 
451 	spin_lock_irqsave(&watchdog_lock, flags);
452 	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
453 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
454 			list_del_init(&cs->wd_list);
455 			__clocksource_change_rating(cs, 0);
456 			select = 1;
457 		}
458 		if (cs->flags & CLOCK_SOURCE_RESELECT) {
459 			cs->flags &= ~CLOCK_SOURCE_RESELECT;
460 			select = 1;
461 		}
462 	}
463 	/* Check if the watchdog timer needs to be stopped. */
464 	clocksource_stop_watchdog();
465 	spin_unlock_irqrestore(&watchdog_lock, flags);
466 
467 	return select;
468 }
469 
clocksource_watchdog_kthread(void * data)470 static int clocksource_watchdog_kthread(void *data)
471 {
472 	mutex_lock(&clocksource_mutex);
473 	if (__clocksource_watchdog_kthread())
474 		clocksource_select();
475 	mutex_unlock(&clocksource_mutex);
476 	return 0;
477 }
478 
clocksource_is_watchdog(struct clocksource * cs)479 static bool clocksource_is_watchdog(struct clocksource *cs)
480 {
481 	return cs == watchdog;
482 }
483 
484 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
485 
clocksource_enqueue_watchdog(struct clocksource * cs)486 static void clocksource_enqueue_watchdog(struct clocksource *cs)
487 {
488 	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
489 		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
490 }
491 
clocksource_select_watchdog(bool fallback)492 static void clocksource_select_watchdog(bool fallback) { }
clocksource_dequeue_watchdog(struct clocksource * cs)493 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
clocksource_resume_watchdog(void)494 static inline void clocksource_resume_watchdog(void) { }
__clocksource_watchdog_kthread(void)495 static inline int __clocksource_watchdog_kthread(void) { return 0; }
clocksource_is_watchdog(struct clocksource * cs)496 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
clocksource_mark_unstable(struct clocksource * cs)497 void clocksource_mark_unstable(struct clocksource *cs) { }
498 
clocksource_watchdog_lock(unsigned long * flags)499 static inline void clocksource_watchdog_lock(unsigned long *flags) { }
clocksource_watchdog_unlock(unsigned long * flags)500 static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
501 
502 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
503 
clocksource_is_suspend(struct clocksource * cs)504 static bool clocksource_is_suspend(struct clocksource *cs)
505 {
506 	return cs == suspend_clocksource;
507 }
508 
__clocksource_suspend_select(struct clocksource * cs)509 static void __clocksource_suspend_select(struct clocksource *cs)
510 {
511 	/*
512 	 * Skip the clocksource which will be stopped in suspend state.
513 	 */
514 	if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
515 		return;
516 
517 	/*
518 	 * The nonstop clocksource can be selected as the suspend clocksource to
519 	 * calculate the suspend time, so it should not supply suspend/resume
520 	 * interfaces to suspend the nonstop clocksource when system suspends.
521 	 */
522 	if (cs->suspend || cs->resume) {
523 		pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
524 			cs->name);
525 	}
526 
527 	/* Pick the best rating. */
528 	if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
529 		suspend_clocksource = cs;
530 }
531 
532 /**
533  * clocksource_suspend_select - Select the best clocksource for suspend timing
534  * @fallback:	if select a fallback clocksource
535  */
clocksource_suspend_select(bool fallback)536 static void clocksource_suspend_select(bool fallback)
537 {
538 	struct clocksource *cs, *old_suspend;
539 
540 	old_suspend = suspend_clocksource;
541 	if (fallback)
542 		suspend_clocksource = NULL;
543 
544 	list_for_each_entry(cs, &clocksource_list, list) {
545 		/* Skip current if we were requested for a fallback. */
546 		if (fallback && cs == old_suspend)
547 			continue;
548 
549 		__clocksource_suspend_select(cs);
550 	}
551 }
552 
553 /**
554  * clocksource_start_suspend_timing - Start measuring the suspend timing
555  * @cs:			current clocksource from timekeeping
556  * @start_cycles:	current cycles from timekeeping
557  *
558  * This function will save the start cycle values of suspend timer to calculate
559  * the suspend time when resuming system.
560  *
561  * This function is called late in the suspend process from timekeeping_suspend(),
562  * that means processes are freezed, non-boot cpus and interrupts are disabled
563  * now. It is therefore possible to start the suspend timer without taking the
564  * clocksource mutex.
565  */
clocksource_start_suspend_timing(struct clocksource * cs,u64 start_cycles)566 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
567 {
568 	if (!suspend_clocksource)
569 		return;
570 
571 	/*
572 	 * If current clocksource is the suspend timer, we should use the
573 	 * tkr_mono.cycle_last value as suspend_start to avoid same reading
574 	 * from suspend timer.
575 	 */
576 	if (clocksource_is_suspend(cs)) {
577 		suspend_start = start_cycles;
578 		return;
579 	}
580 
581 	if (suspend_clocksource->enable &&
582 	    suspend_clocksource->enable(suspend_clocksource)) {
583 		pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
584 		return;
585 	}
586 
587 	suspend_start = suspend_clocksource->read(suspend_clocksource);
588 }
589 
590 /**
591  * clocksource_stop_suspend_timing - Stop measuring the suspend timing
592  * @cs:		current clocksource from timekeeping
593  * @cycle_now:	current cycles from timekeeping
594  *
595  * This function will calculate the suspend time from suspend timer.
596  *
597  * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
598  *
599  * This function is called early in the resume process from timekeeping_resume(),
600  * that means there is only one cpu, no processes are running and the interrupts
601  * are disabled. It is therefore possible to stop the suspend timer without
602  * taking the clocksource mutex.
603  */
clocksource_stop_suspend_timing(struct clocksource * cs,u64 cycle_now)604 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
605 {
606 	u64 now, delta, nsec = 0;
607 
608 	if (!suspend_clocksource)
609 		return 0;
610 
611 	/*
612 	 * If current clocksource is the suspend timer, we should use the
613 	 * tkr_mono.cycle_last value from timekeeping as current cycle to
614 	 * avoid same reading from suspend timer.
615 	 */
616 	if (clocksource_is_suspend(cs))
617 		now = cycle_now;
618 	else
619 		now = suspend_clocksource->read(suspend_clocksource);
620 
621 	if (now > suspend_start) {
622 		delta = clocksource_delta(now, suspend_start,
623 					  suspend_clocksource->mask);
624 		nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
625 				       suspend_clocksource->shift);
626 	}
627 
628 	/*
629 	 * Disable the suspend timer to save power if current clocksource is
630 	 * not the suspend timer.
631 	 */
632 	if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
633 		suspend_clocksource->disable(suspend_clocksource);
634 
635 	return nsec;
636 }
637 
638 /**
639  * clocksource_suspend - suspend the clocksource(s)
640  */
clocksource_suspend(void)641 void clocksource_suspend(void)
642 {
643 	struct clocksource *cs;
644 
645 	list_for_each_entry_reverse(cs, &clocksource_list, list)
646 		if (cs->suspend)
647 			cs->suspend(cs);
648 }
649 
650 /**
651  * clocksource_resume - resume the clocksource(s)
652  */
clocksource_resume(void)653 void clocksource_resume(void)
654 {
655 	struct clocksource *cs;
656 
657 	list_for_each_entry(cs, &clocksource_list, list)
658 		if (cs->resume)
659 			cs->resume(cs);
660 
661 	clocksource_resume_watchdog();
662 }
663 
664 /**
665  * clocksource_touch_watchdog - Update watchdog
666  *
667  * Update the watchdog after exception contexts such as kgdb so as not
668  * to incorrectly trip the watchdog. This might fail when the kernel
669  * was stopped in code which holds watchdog_lock.
670  */
clocksource_touch_watchdog(void)671 void clocksource_touch_watchdog(void)
672 {
673 	clocksource_resume_watchdog();
674 }
675 
676 /**
677  * clocksource_max_adjustment- Returns max adjustment amount
678  * @cs:         Pointer to clocksource
679  *
680  */
clocksource_max_adjustment(struct clocksource * cs)681 static u32 clocksource_max_adjustment(struct clocksource *cs)
682 {
683 	u64 ret;
684 	/*
685 	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
686 	 */
687 	ret = (u64)cs->mult * 11;
688 	do_div(ret,100);
689 	return (u32)ret;
690 }
691 
692 /**
693  * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
694  * @mult:	cycle to nanosecond multiplier
695  * @shift:	cycle to nanosecond divisor (power of two)
696  * @maxadj:	maximum adjustment value to mult (~11%)
697  * @mask:	bitmask for two's complement subtraction of non 64 bit counters
698  * @max_cyc:	maximum cycle value before potential overflow (does not include
699  *		any safety margin)
700  *
701  * NOTE: This function includes a safety margin of 50%, in other words, we
702  * return half the number of nanoseconds the hardware counter can technically
703  * cover. This is done so that we can potentially detect problems caused by
704  * delayed timers or bad hardware, which might result in time intervals that
705  * are larger than what the math used can handle without overflows.
706  */
clocks_calc_max_nsecs(u32 mult,u32 shift,u32 maxadj,u64 mask,u64 * max_cyc)707 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
708 {
709 	u64 max_nsecs, max_cycles;
710 
711 	/*
712 	 * Calculate the maximum number of cycles that we can pass to the
713 	 * cyc2ns() function without overflowing a 64-bit result.
714 	 */
715 	max_cycles = ULLONG_MAX;
716 	do_div(max_cycles, mult+maxadj);
717 
718 	/*
719 	 * The actual maximum number of cycles we can defer the clocksource is
720 	 * determined by the minimum of max_cycles and mask.
721 	 * Note: Here we subtract the maxadj to make sure we don't sleep for
722 	 * too long if there's a large negative adjustment.
723 	 */
724 	max_cycles = min(max_cycles, mask);
725 	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
726 
727 	/* return the max_cycles value as well if requested */
728 	if (max_cyc)
729 		*max_cyc = max_cycles;
730 
731 	/* Return 50% of the actual maximum, so we can detect bad values */
732 	max_nsecs >>= 1;
733 
734 	return max_nsecs;
735 }
736 
737 /**
738  * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
739  * @cs:         Pointer to clocksource to be updated
740  *
741  */
clocksource_update_max_deferment(struct clocksource * cs)742 static inline void clocksource_update_max_deferment(struct clocksource *cs)
743 {
744 	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
745 						cs->maxadj, cs->mask,
746 						&cs->max_cycles);
747 }
748 
749 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
750 
clocksource_find_best(bool oneshot,bool skipcur)751 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
752 {
753 	struct clocksource *cs;
754 
755 	if (!finished_booting || list_empty(&clocksource_list))
756 		return NULL;
757 
758 	/*
759 	 * We pick the clocksource with the highest rating. If oneshot
760 	 * mode is active, we pick the highres valid clocksource with
761 	 * the best rating.
762 	 */
763 	list_for_each_entry(cs, &clocksource_list, list) {
764 		if (skipcur && cs == curr_clocksource)
765 			continue;
766 		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
767 			continue;
768 		return cs;
769 	}
770 	return NULL;
771 }
772 
__clocksource_select(bool skipcur)773 static void __clocksource_select(bool skipcur)
774 {
775 	bool oneshot = tick_oneshot_mode_active();
776 	struct clocksource *best, *cs;
777 
778 	/* Find the best suitable clocksource */
779 	best = clocksource_find_best(oneshot, skipcur);
780 	if (!best)
781 		return;
782 
783 	if (!strlen(override_name))
784 		goto found;
785 
786 	/* Check for the override clocksource. */
787 	list_for_each_entry(cs, &clocksource_list, list) {
788 		if (skipcur && cs == curr_clocksource)
789 			continue;
790 		if (strcmp(cs->name, override_name) != 0)
791 			continue;
792 		/*
793 		 * Check to make sure we don't switch to a non-highres
794 		 * capable clocksource if the tick code is in oneshot
795 		 * mode (highres or nohz)
796 		 */
797 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
798 			/* Override clocksource cannot be used. */
799 			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
800 				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
801 					cs->name);
802 				override_name[0] = 0;
803 			} else {
804 				/*
805 				 * The override cannot be currently verified.
806 				 * Deferring to let the watchdog check.
807 				 */
808 				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
809 					cs->name);
810 			}
811 		} else
812 			/* Override clocksource can be used. */
813 			best = cs;
814 		break;
815 	}
816 
817 found:
818 	if (curr_clocksource != best && !timekeeping_notify(best)) {
819 		pr_info("Switched to clocksource %s\n", best->name);
820 		curr_clocksource = best;
821 	}
822 }
823 
824 /**
825  * clocksource_select - Select the best clocksource available
826  *
827  * Private function. Must hold clocksource_mutex when called.
828  *
829  * Select the clocksource with the best rating, or the clocksource,
830  * which is selected by userspace override.
831  */
clocksource_select(void)832 static void clocksource_select(void)
833 {
834 	__clocksource_select(false);
835 }
836 
clocksource_select_fallback(void)837 static void clocksource_select_fallback(void)
838 {
839 	__clocksource_select(true);
840 }
841 
842 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
clocksource_select(void)843 static inline void clocksource_select(void) { }
clocksource_select_fallback(void)844 static inline void clocksource_select_fallback(void) { }
845 
846 #endif
847 
848 /*
849  * clocksource_done_booting - Called near the end of core bootup
850  *
851  * Hack to avoid lots of clocksource churn at boot time.
852  * We use fs_initcall because we want this to start before
853  * device_initcall but after subsys_initcall.
854  */
clocksource_done_booting(void)855 static int __init clocksource_done_booting(void)
856 {
857 	mutex_lock(&clocksource_mutex);
858 	curr_clocksource = clocksource_default_clock();
859 	finished_booting = 1;
860 	/*
861 	 * Run the watchdog first to eliminate unstable clock sources
862 	 */
863 	__clocksource_watchdog_kthread();
864 	clocksource_select();
865 	mutex_unlock(&clocksource_mutex);
866 	return 0;
867 }
868 fs_initcall(clocksource_done_booting);
869 
870 /*
871  * Enqueue the clocksource sorted by rating
872  */
clocksource_enqueue(struct clocksource * cs)873 static void clocksource_enqueue(struct clocksource *cs)
874 {
875 	struct list_head *entry = &clocksource_list;
876 	struct clocksource *tmp;
877 
878 	list_for_each_entry(tmp, &clocksource_list, list) {
879 		/* Keep track of the place, where to insert */
880 		if (tmp->rating < cs->rating)
881 			break;
882 		entry = &tmp->list;
883 	}
884 	list_add(&cs->list, entry);
885 }
886 
887 /**
888  * __clocksource_update_freq_scale - Used update clocksource with new freq
889  * @cs:		clocksource to be registered
890  * @scale:	Scale factor multiplied against freq to get clocksource hz
891  * @freq:	clocksource frequency (cycles per second) divided by scale
892  *
893  * This should only be called from the clocksource->enable() method.
894  *
895  * This *SHOULD NOT* be called directly! Please use the
896  * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
897  * functions.
898  */
__clocksource_update_freq_scale(struct clocksource * cs,u32 scale,u32 freq)899 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
900 {
901 	u64 sec;
902 
903 	/*
904 	 * Default clocksources are *special* and self-define their mult/shift.
905 	 * But, you're not special, so you should specify a freq value.
906 	 */
907 	if (freq) {
908 		/*
909 		 * Calc the maximum number of seconds which we can run before
910 		 * wrapping around. For clocksources which have a mask > 32-bit
911 		 * we need to limit the max sleep time to have a good
912 		 * conversion precision. 10 minutes is still a reasonable
913 		 * amount. That results in a shift value of 24 for a
914 		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
915 		 * ~ 0.06ppm granularity for NTP.
916 		 */
917 		sec = cs->mask;
918 		do_div(sec, freq);
919 		do_div(sec, scale);
920 		if (!sec)
921 			sec = 1;
922 		else if (sec > 600 && cs->mask > UINT_MAX)
923 			sec = 600;
924 
925 		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
926 				       NSEC_PER_SEC / scale, sec * scale);
927 	}
928 	/*
929 	 * Ensure clocksources that have large 'mult' values don't overflow
930 	 * when adjusted.
931 	 */
932 	cs->maxadj = clocksource_max_adjustment(cs);
933 	while (freq && ((cs->mult + cs->maxadj < cs->mult)
934 		|| (cs->mult - cs->maxadj > cs->mult))) {
935 		cs->mult >>= 1;
936 		cs->shift--;
937 		cs->maxadj = clocksource_max_adjustment(cs);
938 	}
939 
940 	/*
941 	 * Only warn for *special* clocksources that self-define
942 	 * their mult/shift values and don't specify a freq.
943 	 */
944 	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
945 		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
946 		cs->name);
947 
948 	clocksource_update_max_deferment(cs);
949 
950 	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
951 		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
952 }
953 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
954 
955 /**
956  * __clocksource_register_scale - Used to install new clocksources
957  * @cs:		clocksource to be registered
958  * @scale:	Scale factor multiplied against freq to get clocksource hz
959  * @freq:	clocksource frequency (cycles per second) divided by scale
960  *
961  * Returns -EBUSY if registration fails, zero otherwise.
962  *
963  * This *SHOULD NOT* be called directly! Please use the
964  * clocksource_register_hz() or clocksource_register_khz helper functions.
965  */
__clocksource_register_scale(struct clocksource * cs,u32 scale,u32 freq)966 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
967 {
968 	unsigned long flags;
969 
970 	clocksource_arch_init(cs);
971 
972 	/* Initialize mult/shift and max_idle_ns */
973 	__clocksource_update_freq_scale(cs, scale, freq);
974 
975 	/* Add clocksource to the clocksource list */
976 	mutex_lock(&clocksource_mutex);
977 
978 	clocksource_watchdog_lock(&flags);
979 	clocksource_enqueue(cs);
980 	clocksource_enqueue_watchdog(cs);
981 	clocksource_watchdog_unlock(&flags);
982 
983 	clocksource_select();
984 	clocksource_select_watchdog(false);
985 	__clocksource_suspend_select(cs);
986 	mutex_unlock(&clocksource_mutex);
987 	return 0;
988 }
989 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
990 
__clocksource_change_rating(struct clocksource * cs,int rating)991 static void __clocksource_change_rating(struct clocksource *cs, int rating)
992 {
993 	list_del(&cs->list);
994 	cs->rating = rating;
995 	clocksource_enqueue(cs);
996 }
997 
998 /**
999  * clocksource_change_rating - Change the rating of a registered clocksource
1000  * @cs:		clocksource to be changed
1001  * @rating:	new rating
1002  */
clocksource_change_rating(struct clocksource * cs,int rating)1003 void clocksource_change_rating(struct clocksource *cs, int rating)
1004 {
1005 	unsigned long flags;
1006 
1007 	mutex_lock(&clocksource_mutex);
1008 	clocksource_watchdog_lock(&flags);
1009 	__clocksource_change_rating(cs, rating);
1010 	clocksource_watchdog_unlock(&flags);
1011 
1012 	clocksource_select();
1013 	clocksource_select_watchdog(false);
1014 	clocksource_suspend_select(false);
1015 	mutex_unlock(&clocksource_mutex);
1016 }
1017 EXPORT_SYMBOL(clocksource_change_rating);
1018 
1019 /*
1020  * Unbind clocksource @cs. Called with clocksource_mutex held
1021  */
clocksource_unbind(struct clocksource * cs)1022 static int clocksource_unbind(struct clocksource *cs)
1023 {
1024 	unsigned long flags;
1025 
1026 	if (clocksource_is_watchdog(cs)) {
1027 		/* Select and try to install a replacement watchdog. */
1028 		clocksource_select_watchdog(true);
1029 		if (clocksource_is_watchdog(cs))
1030 			return -EBUSY;
1031 	}
1032 
1033 	if (cs == curr_clocksource) {
1034 		/* Select and try to install a replacement clock source */
1035 		clocksource_select_fallback();
1036 		if (curr_clocksource == cs)
1037 			return -EBUSY;
1038 	}
1039 
1040 	if (clocksource_is_suspend(cs)) {
1041 		/*
1042 		 * Select and try to install a replacement suspend clocksource.
1043 		 * If no replacement suspend clocksource, we will just let the
1044 		 * clocksource go and have no suspend clocksource.
1045 		 */
1046 		clocksource_suspend_select(true);
1047 	}
1048 
1049 	clocksource_watchdog_lock(&flags);
1050 	clocksource_dequeue_watchdog(cs);
1051 	list_del_init(&cs->list);
1052 	clocksource_watchdog_unlock(&flags);
1053 
1054 	return 0;
1055 }
1056 
1057 /**
1058  * clocksource_unregister - remove a registered clocksource
1059  * @cs:	clocksource to be unregistered
1060  */
clocksource_unregister(struct clocksource * cs)1061 int clocksource_unregister(struct clocksource *cs)
1062 {
1063 	int ret = 0;
1064 
1065 	mutex_lock(&clocksource_mutex);
1066 	if (!list_empty(&cs->list))
1067 		ret = clocksource_unbind(cs);
1068 	mutex_unlock(&clocksource_mutex);
1069 	return ret;
1070 }
1071 EXPORT_SYMBOL(clocksource_unregister);
1072 
1073 #ifdef CONFIG_SYSFS
1074 /**
1075  * current_clocksource_show - sysfs interface for current clocksource
1076  * @dev:	unused
1077  * @attr:	unused
1078  * @buf:	char buffer to be filled with clocksource list
1079  *
1080  * Provides sysfs interface for listing current clocksource.
1081  */
current_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1082 static ssize_t current_clocksource_show(struct device *dev,
1083 					struct device_attribute *attr,
1084 					char *buf)
1085 {
1086 	ssize_t count = 0;
1087 
1088 	mutex_lock(&clocksource_mutex);
1089 	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1090 	mutex_unlock(&clocksource_mutex);
1091 
1092 	return count;
1093 }
1094 
sysfs_get_uname(const char * buf,char * dst,size_t cnt)1095 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1096 {
1097 	size_t ret = cnt;
1098 
1099 	/* strings from sysfs write are not 0 terminated! */
1100 	if (!cnt || cnt >= CS_NAME_LEN)
1101 		return -EINVAL;
1102 
1103 	/* strip of \n: */
1104 	if (buf[cnt-1] == '\n')
1105 		cnt--;
1106 	if (cnt > 0)
1107 		memcpy(dst, buf, cnt);
1108 	dst[cnt] = 0;
1109 	return ret;
1110 }
1111 
1112 /**
1113  * current_clocksource_store - interface for manually overriding clocksource
1114  * @dev:	unused
1115  * @attr:	unused
1116  * @buf:	name of override clocksource
1117  * @count:	length of buffer
1118  *
1119  * Takes input from sysfs interface for manually overriding the default
1120  * clocksource selection.
1121  */
current_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1122 static ssize_t current_clocksource_store(struct device *dev,
1123 					 struct device_attribute *attr,
1124 					 const char *buf, size_t count)
1125 {
1126 	ssize_t ret;
1127 
1128 	mutex_lock(&clocksource_mutex);
1129 
1130 	ret = sysfs_get_uname(buf, override_name, count);
1131 	if (ret >= 0)
1132 		clocksource_select();
1133 
1134 	mutex_unlock(&clocksource_mutex);
1135 
1136 	return ret;
1137 }
1138 static DEVICE_ATTR_RW(current_clocksource);
1139 
1140 /**
1141  * unbind_clocksource_store - interface for manually unbinding clocksource
1142  * @dev:	unused
1143  * @attr:	unused
1144  * @buf:	unused
1145  * @count:	length of buffer
1146  *
1147  * Takes input from sysfs interface for manually unbinding a clocksource.
1148  */
unbind_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1149 static ssize_t unbind_clocksource_store(struct device *dev,
1150 					struct device_attribute *attr,
1151 					const char *buf, size_t count)
1152 {
1153 	struct clocksource *cs;
1154 	char name[CS_NAME_LEN];
1155 	ssize_t ret;
1156 
1157 	ret = sysfs_get_uname(buf, name, count);
1158 	if (ret < 0)
1159 		return ret;
1160 
1161 	ret = -ENODEV;
1162 	mutex_lock(&clocksource_mutex);
1163 	list_for_each_entry(cs, &clocksource_list, list) {
1164 		if (strcmp(cs->name, name))
1165 			continue;
1166 		ret = clocksource_unbind(cs);
1167 		break;
1168 	}
1169 	mutex_unlock(&clocksource_mutex);
1170 
1171 	return ret ? ret : count;
1172 }
1173 static DEVICE_ATTR_WO(unbind_clocksource);
1174 
1175 /**
1176  * available_clocksource_show - sysfs interface for listing clocksource
1177  * @dev:	unused
1178  * @attr:	unused
1179  * @buf:	char buffer to be filled with clocksource list
1180  *
1181  * Provides sysfs interface for listing registered clocksources
1182  */
available_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1183 static ssize_t available_clocksource_show(struct device *dev,
1184 					  struct device_attribute *attr,
1185 					  char *buf)
1186 {
1187 	struct clocksource *src;
1188 	ssize_t count = 0;
1189 
1190 	mutex_lock(&clocksource_mutex);
1191 	list_for_each_entry(src, &clocksource_list, list) {
1192 		/*
1193 		 * Don't show non-HRES clocksource if the tick code is
1194 		 * in one shot mode (highres=on or nohz=on)
1195 		 */
1196 		if (!tick_oneshot_mode_active() ||
1197 		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1198 			count += snprintf(buf + count,
1199 				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1200 				  "%s ", src->name);
1201 	}
1202 	mutex_unlock(&clocksource_mutex);
1203 
1204 	count += snprintf(buf + count,
1205 			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1206 
1207 	return count;
1208 }
1209 static DEVICE_ATTR_RO(available_clocksource);
1210 
1211 static struct attribute *clocksource_attrs[] = {
1212 	&dev_attr_current_clocksource.attr,
1213 	&dev_attr_unbind_clocksource.attr,
1214 	&dev_attr_available_clocksource.attr,
1215 	NULL
1216 };
1217 ATTRIBUTE_GROUPS(clocksource);
1218 
1219 static struct bus_type clocksource_subsys = {
1220 	.name = "clocksource",
1221 	.dev_name = "clocksource",
1222 };
1223 
1224 static struct device device_clocksource = {
1225 	.id	= 0,
1226 	.bus	= &clocksource_subsys,
1227 	.groups	= clocksource_groups,
1228 };
1229 
init_clocksource_sysfs(void)1230 static int __init init_clocksource_sysfs(void)
1231 {
1232 	int error = subsys_system_register(&clocksource_subsys, NULL);
1233 
1234 	if (!error)
1235 		error = device_register(&device_clocksource);
1236 
1237 	return error;
1238 }
1239 
1240 device_initcall(init_clocksource_sysfs);
1241 #endif /* CONFIG_SYSFS */
1242 
1243 /**
1244  * boot_override_clocksource - boot clock override
1245  * @str:	override name
1246  *
1247  * Takes a clocksource= boot argument and uses it
1248  * as the clocksource override name.
1249  */
boot_override_clocksource(char * str)1250 static int __init boot_override_clocksource(char* str)
1251 {
1252 	mutex_lock(&clocksource_mutex);
1253 	if (str)
1254 		strlcpy(override_name, str, sizeof(override_name));
1255 	mutex_unlock(&clocksource_mutex);
1256 	return 1;
1257 }
1258 
1259 __setup("clocksource=", boot_override_clocksource);
1260 
1261 /**
1262  * boot_override_clock - Compatibility layer for deprecated boot option
1263  * @str:	override name
1264  *
1265  * DEPRECATED! Takes a clock= boot argument and uses it
1266  * as the clocksource override name
1267  */
boot_override_clock(char * str)1268 static int __init boot_override_clock(char* str)
1269 {
1270 	if (!strcmp(str, "pmtmr")) {
1271 		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1272 		return boot_override_clocksource("acpi_pm");
1273 	}
1274 	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1275 	return boot_override_clocksource(str);
1276 }
1277 
1278 __setup("clock=", boot_override_clock);
1279