• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <trace/hooks/net.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 
104 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
107 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
108 
109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111 
112 #define REXMIT_NONE	0 /* no loss recovery to do */
113 #define REXMIT_LOST	1 /* retransmit packets marked lost */
114 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
115 
116 #if IS_ENABLED(CONFIG_TLS_DEVICE)
117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
118 
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))119 void clean_acked_data_enable(struct inet_connection_sock *icsk,
120 			     void (*cad)(struct sock *sk, u32 ack_seq))
121 {
122 	icsk->icsk_clean_acked = cad;
123 	static_branch_deferred_inc(&clean_acked_data_enabled);
124 }
125 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
126 
clean_acked_data_disable(struct inet_connection_sock * icsk)127 void clean_acked_data_disable(struct inet_connection_sock *icsk)
128 {
129 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
130 	icsk->icsk_clean_acked = NULL;
131 }
132 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
133 
clean_acked_data_flush(void)134 void clean_acked_data_flush(void)
135 {
136 	static_key_deferred_flush(&clean_acked_data_enabled);
137 }
138 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
139 #endif
140 
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)141 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
142 			     unsigned int len)
143 {
144 	static bool __once __read_mostly;
145 
146 	if (!__once) {
147 		struct net_device *dev;
148 
149 		__once = true;
150 
151 		rcu_read_lock();
152 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
153 		if (!dev || len >= dev->mtu)
154 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
155 				dev ? dev->name : "Unknown driver");
156 		rcu_read_unlock();
157 	}
158 }
159 
160 /* Adapt the MSS value used to make delayed ack decision to the
161  * real world.
162  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)163 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
164 {
165 	struct inet_connection_sock *icsk = inet_csk(sk);
166 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
167 	unsigned int len;
168 
169 	icsk->icsk_ack.last_seg_size = 0;
170 
171 	/* skb->len may jitter because of SACKs, even if peer
172 	 * sends good full-sized frames.
173 	 */
174 	len = skb_shinfo(skb)->gso_size ? : skb->len;
175 	if (len >= icsk->icsk_ack.rcv_mss) {
176 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
177 					       tcp_sk(sk)->advmss);
178 		/* Account for possibly-removed options */
179 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
180 				   MAX_TCP_OPTION_SPACE))
181 			tcp_gro_dev_warn(sk, skb, len);
182 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
183 		 * set then it is likely the end of an application write. So
184 		 * more data may not be arriving soon, and yet the data sender
185 		 * may be waiting for an ACK if cwnd-bound or using TX zero
186 		 * copy. So we set ICSK_ACK_PUSHED here so that
187 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
188 		 * reads all of the data and is not ping-pong. If len > MSS
189 		 * then this logic does not matter (and does not hurt) because
190 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
191 		 * reads data and there is more than an MSS of unACKed data.
192 		 */
193 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
194 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
195 	} else {
196 		/* Otherwise, we make more careful check taking into account,
197 		 * that SACKs block is variable.
198 		 *
199 		 * "len" is invariant segment length, including TCP header.
200 		 */
201 		len += skb->data - skb_transport_header(skb);
202 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
203 		    /* If PSH is not set, packet should be
204 		     * full sized, provided peer TCP is not badly broken.
205 		     * This observation (if it is correct 8)) allows
206 		     * to handle super-low mtu links fairly.
207 		     */
208 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
209 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
210 			/* Subtract also invariant (if peer is RFC compliant),
211 			 * tcp header plus fixed timestamp option length.
212 			 * Resulting "len" is MSS free of SACK jitter.
213 			 */
214 			len -= tcp_sk(sk)->tcp_header_len;
215 			icsk->icsk_ack.last_seg_size = len;
216 			if (len == lss) {
217 				icsk->icsk_ack.rcv_mss = len;
218 				return;
219 			}
220 		}
221 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
222 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
223 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
224 	}
225 }
226 
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)227 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
228 {
229 	struct inet_connection_sock *icsk = inet_csk(sk);
230 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
231 
232 	if (quickacks == 0)
233 		quickacks = 2;
234 	quickacks = min(quickacks, max_quickacks);
235 	if (quickacks > icsk->icsk_ack.quick)
236 		icsk->icsk_ack.quick = quickacks;
237 }
238 
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)239 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
240 {
241 	struct inet_connection_sock *icsk = inet_csk(sk);
242 
243 	tcp_incr_quickack(sk, max_quickacks);
244 	inet_csk_exit_pingpong_mode(sk);
245 	icsk->icsk_ack.ato = TCP_ATO_MIN;
246 }
247 
248 /* Send ACKs quickly, if "quick" count is not exhausted
249  * and the session is not interactive.
250  */
251 
tcp_in_quickack_mode(struct sock * sk)252 static bool tcp_in_quickack_mode(struct sock *sk)
253 {
254 	const struct inet_connection_sock *icsk = inet_csk(sk);
255 	const struct dst_entry *dst = __sk_dst_get(sk);
256 
257 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
258 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
259 }
260 
tcp_ecn_queue_cwr(struct tcp_sock * tp)261 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
262 {
263 	if (tp->ecn_flags & TCP_ECN_OK)
264 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
265 }
266 
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)267 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
268 {
269 	if (tcp_hdr(skb)->cwr) {
270 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
271 
272 		/* If the sender is telling us it has entered CWR, then its
273 		 * cwnd may be very low (even just 1 packet), so we should ACK
274 		 * immediately.
275 		 */
276 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
277 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
278 	}
279 }
280 
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)281 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
282 {
283 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
284 }
285 
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)286 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
287 {
288 	struct tcp_sock *tp = tcp_sk(sk);
289 
290 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
291 	case INET_ECN_NOT_ECT:
292 		/* Funny extension: if ECT is not set on a segment,
293 		 * and we already seen ECT on a previous segment,
294 		 * it is probably a retransmit.
295 		 */
296 		if (tp->ecn_flags & TCP_ECN_SEEN)
297 			tcp_enter_quickack_mode(sk, 2);
298 		break;
299 	case INET_ECN_CE:
300 		if (tcp_ca_needs_ecn(sk))
301 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
302 
303 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
304 			/* Better not delay acks, sender can have a very low cwnd */
305 			tcp_enter_quickack_mode(sk, 2);
306 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
307 		}
308 		tp->ecn_flags |= TCP_ECN_SEEN;
309 		break;
310 	default:
311 		if (tcp_ca_needs_ecn(sk))
312 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
313 		tp->ecn_flags |= TCP_ECN_SEEN;
314 		break;
315 	}
316 }
317 
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)318 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
319 {
320 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
321 		__tcp_ecn_check_ce(sk, skb);
322 }
323 
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)324 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
325 {
326 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
327 		tp->ecn_flags &= ~TCP_ECN_OK;
328 }
329 
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)330 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
331 {
332 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
333 		tp->ecn_flags &= ~TCP_ECN_OK;
334 }
335 
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)336 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
337 {
338 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
339 		return true;
340 	return false;
341 }
342 
343 /* Buffer size and advertised window tuning.
344  *
345  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
346  */
347 
tcp_sndbuf_expand(struct sock * sk)348 static void tcp_sndbuf_expand(struct sock *sk)
349 {
350 	const struct tcp_sock *tp = tcp_sk(sk);
351 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
352 	int sndmem, per_mss;
353 	u32 nr_segs;
354 
355 	/* Worst case is non GSO/TSO : each frame consumes one skb
356 	 * and skb->head is kmalloced using power of two area of memory
357 	 */
358 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
359 		  MAX_TCP_HEADER +
360 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
361 
362 	per_mss = roundup_pow_of_two(per_mss) +
363 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
364 
365 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
366 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
367 
368 	/* Fast Recovery (RFC 5681 3.2) :
369 	 * Cubic needs 1.7 factor, rounded to 2 to include
370 	 * extra cushion (application might react slowly to EPOLLOUT)
371 	 */
372 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
373 	sndmem *= nr_segs * per_mss;
374 
375 	if (sk->sk_sndbuf < sndmem)
376 		WRITE_ONCE(sk->sk_sndbuf,
377 			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
378 }
379 
380 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
381  *
382  * All tcp_full_space() is split to two parts: "network" buffer, allocated
383  * forward and advertised in receiver window (tp->rcv_wnd) and
384  * "application buffer", required to isolate scheduling/application
385  * latencies from network.
386  * window_clamp is maximal advertised window. It can be less than
387  * tcp_full_space(), in this case tcp_full_space() - window_clamp
388  * is reserved for "application" buffer. The less window_clamp is
389  * the smoother our behaviour from viewpoint of network, but the lower
390  * throughput and the higher sensitivity of the connection to losses. 8)
391  *
392  * rcv_ssthresh is more strict window_clamp used at "slow start"
393  * phase to predict further behaviour of this connection.
394  * It is used for two goals:
395  * - to enforce header prediction at sender, even when application
396  *   requires some significant "application buffer". It is check #1.
397  * - to prevent pruning of receive queue because of misprediction
398  *   of receiver window. Check #2.
399  *
400  * The scheme does not work when sender sends good segments opening
401  * window and then starts to feed us spaghetti. But it should work
402  * in common situations. Otherwise, we have to rely on queue collapsing.
403  */
404 
405 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb)406 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
407 {
408 	struct tcp_sock *tp = tcp_sk(sk);
409 	/* Optimize this! */
410 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
411 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
412 
413 	while (tp->rcv_ssthresh <= window) {
414 		if (truesize <= skb->len)
415 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
416 
417 		truesize >>= 1;
418 		window >>= 1;
419 	}
420 	return 0;
421 }
422 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb)423 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
424 {
425 	struct tcp_sock *tp = tcp_sk(sk);
426 	int room;
427 
428 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
429 
430 	/* Check #1 */
431 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
432 		int incr;
433 
434 		/* Check #2. Increase window, if skb with such overhead
435 		 * will fit to rcvbuf in future.
436 		 */
437 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
438 			incr = 2 * tp->advmss;
439 		else
440 			incr = __tcp_grow_window(sk, skb);
441 
442 		if (incr) {
443 			incr = max_t(int, incr, 2 * skb->len);
444 			tp->rcv_ssthresh += min(room, incr);
445 			inet_csk(sk)->icsk_ack.quick |= 1;
446 		}
447 	}
448 }
449 
450 /* 3. Try to fixup all. It is made immediately after connection enters
451  *    established state.
452  */
tcp_init_buffer_space(struct sock * sk)453 void tcp_init_buffer_space(struct sock *sk)
454 {
455 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
456 	struct tcp_sock *tp = tcp_sk(sk);
457 	int maxwin;
458 
459 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
460 		tcp_sndbuf_expand(sk);
461 
462 	tcp_mstamp_refresh(tp);
463 	tp->rcvq_space.time = tp->tcp_mstamp;
464 	tp->rcvq_space.seq = tp->copied_seq;
465 
466 	maxwin = tcp_full_space(sk);
467 
468 	if (tp->window_clamp >= maxwin) {
469 		tp->window_clamp = maxwin;
470 
471 		if (tcp_app_win && maxwin > 4 * tp->advmss)
472 			tp->window_clamp = max(maxwin -
473 					       (maxwin >> tcp_app_win),
474 					       4 * tp->advmss);
475 	}
476 
477 	/* Force reservation of one segment. */
478 	if (tcp_app_win &&
479 	    tp->window_clamp > 2 * tp->advmss &&
480 	    tp->window_clamp + tp->advmss > maxwin)
481 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
482 
483 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
484 	tp->snd_cwnd_stamp = tcp_jiffies32;
485 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
486 				    (u32)TCP_INIT_CWND * tp->advmss);
487 }
488 
489 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)490 static void tcp_clamp_window(struct sock *sk)
491 {
492 	struct tcp_sock *tp = tcp_sk(sk);
493 	struct inet_connection_sock *icsk = inet_csk(sk);
494 	struct net *net = sock_net(sk);
495 
496 	icsk->icsk_ack.quick = 0;
497 
498 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
499 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
500 	    !tcp_under_memory_pressure(sk) &&
501 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
502 		WRITE_ONCE(sk->sk_rcvbuf,
503 			   min(atomic_read(&sk->sk_rmem_alloc),
504 			       net->ipv4.sysctl_tcp_rmem[2]));
505 	}
506 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
507 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
508 }
509 
510 /* Initialize RCV_MSS value.
511  * RCV_MSS is an our guess about MSS used by the peer.
512  * We haven't any direct information about the MSS.
513  * It's better to underestimate the RCV_MSS rather than overestimate.
514  * Overestimations make us ACKing less frequently than needed.
515  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
516  */
tcp_initialize_rcv_mss(struct sock * sk)517 void tcp_initialize_rcv_mss(struct sock *sk)
518 {
519 	const struct tcp_sock *tp = tcp_sk(sk);
520 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
521 
522 	hint = min(hint, tp->rcv_wnd / 2);
523 	hint = min(hint, TCP_MSS_DEFAULT);
524 	hint = max(hint, TCP_MIN_MSS);
525 
526 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
527 }
528 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
529 
530 /* Receiver "autotuning" code.
531  *
532  * The algorithm for RTT estimation w/o timestamps is based on
533  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
534  * <http://public.lanl.gov/radiant/pubs.html#DRS>
535  *
536  * More detail on this code can be found at
537  * <http://staff.psc.edu/jheffner/>,
538  * though this reference is out of date.  A new paper
539  * is pending.
540  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)541 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
542 {
543 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
544 	long m = sample;
545 
546 	if (new_sample != 0) {
547 		/* If we sample in larger samples in the non-timestamp
548 		 * case, we could grossly overestimate the RTT especially
549 		 * with chatty applications or bulk transfer apps which
550 		 * are stalled on filesystem I/O.
551 		 *
552 		 * Also, since we are only going for a minimum in the
553 		 * non-timestamp case, we do not smooth things out
554 		 * else with timestamps disabled convergence takes too
555 		 * long.
556 		 */
557 		if (!win_dep) {
558 			m -= (new_sample >> 3);
559 			new_sample += m;
560 		} else {
561 			m <<= 3;
562 			if (m < new_sample)
563 				new_sample = m;
564 		}
565 	} else {
566 		/* No previous measure. */
567 		new_sample = m << 3;
568 	}
569 
570 	tp->rcv_rtt_est.rtt_us = new_sample;
571 }
572 
tcp_rcv_rtt_measure(struct tcp_sock * tp)573 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
574 {
575 	u32 delta_us;
576 
577 	if (tp->rcv_rtt_est.time == 0)
578 		goto new_measure;
579 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
580 		return;
581 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
582 	if (!delta_us)
583 		delta_us = 1;
584 	tcp_rcv_rtt_update(tp, delta_us, 1);
585 
586 new_measure:
587 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
588 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
589 }
590 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)591 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
592 					  const struct sk_buff *skb)
593 {
594 	struct tcp_sock *tp = tcp_sk(sk);
595 
596 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
597 		return;
598 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
599 
600 	if (TCP_SKB_CB(skb)->end_seq -
601 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
602 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
603 		u32 delta_us;
604 
605 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
606 			if (!delta)
607 				delta = 1;
608 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
609 			tcp_rcv_rtt_update(tp, delta_us, 0);
610 		}
611 	}
612 }
613 
614 /*
615  * This function should be called every time data is copied to user space.
616  * It calculates the appropriate TCP receive buffer space.
617  */
tcp_rcv_space_adjust(struct sock * sk)618 void tcp_rcv_space_adjust(struct sock *sk)
619 {
620 	struct tcp_sock *tp = tcp_sk(sk);
621 	u32 copied;
622 	int time;
623 
624 	trace_tcp_rcv_space_adjust(sk);
625 
626 	tcp_mstamp_refresh(tp);
627 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
628 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
629 		return;
630 
631 	/* Number of bytes copied to user in last RTT */
632 	copied = tp->copied_seq - tp->rcvq_space.seq;
633 	if (copied <= tp->rcvq_space.space)
634 		goto new_measure;
635 
636 	/* A bit of theory :
637 	 * copied = bytes received in previous RTT, our base window
638 	 * To cope with packet losses, we need a 2x factor
639 	 * To cope with slow start, and sender growing its cwin by 100 %
640 	 * every RTT, we need a 4x factor, because the ACK we are sending
641 	 * now is for the next RTT, not the current one :
642 	 * <prev RTT . ><current RTT .. ><next RTT .... >
643 	 */
644 
645 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
646 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
647 		int rcvmem, rcvbuf;
648 		u64 rcvwin, grow;
649 
650 		/* minimal window to cope with packet losses, assuming
651 		 * steady state. Add some cushion because of small variations.
652 		 */
653 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
654 
655 		/* Accommodate for sender rate increase (eg. slow start) */
656 		grow = rcvwin * (copied - tp->rcvq_space.space);
657 		do_div(grow, tp->rcvq_space.space);
658 		rcvwin += (grow << 1);
659 
660 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
661 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
662 			rcvmem += 128;
663 
664 		do_div(rcvwin, tp->advmss);
665 		rcvbuf = min_t(u64, rcvwin * rcvmem,
666 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
667 		if (rcvbuf > sk->sk_rcvbuf) {
668 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
669 
670 			/* Make the window clamp follow along.  */
671 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
672 		}
673 	}
674 	tp->rcvq_space.space = copied;
675 
676 new_measure:
677 	tp->rcvq_space.seq = tp->copied_seq;
678 	tp->rcvq_space.time = tp->tcp_mstamp;
679 }
680 
681 /* There is something which you must keep in mind when you analyze the
682  * behavior of the tp->ato delayed ack timeout interval.  When a
683  * connection starts up, we want to ack as quickly as possible.  The
684  * problem is that "good" TCP's do slow start at the beginning of data
685  * transmission.  The means that until we send the first few ACK's the
686  * sender will sit on his end and only queue most of his data, because
687  * he can only send snd_cwnd unacked packets at any given time.  For
688  * each ACK we send, he increments snd_cwnd and transmits more of his
689  * queue.  -DaveM
690  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)691 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
692 {
693 	struct tcp_sock *tp = tcp_sk(sk);
694 	struct inet_connection_sock *icsk = inet_csk(sk);
695 	u32 now;
696 
697 	inet_csk_schedule_ack(sk);
698 
699 	tcp_measure_rcv_mss(sk, skb);
700 
701 	tcp_rcv_rtt_measure(tp);
702 
703 	now = tcp_jiffies32;
704 
705 	if (!icsk->icsk_ack.ato) {
706 		/* The _first_ data packet received, initialize
707 		 * delayed ACK engine.
708 		 */
709 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
710 		icsk->icsk_ack.ato = TCP_ATO_MIN;
711 	} else {
712 		int m = now - icsk->icsk_ack.lrcvtime;
713 
714 		if (m <= TCP_ATO_MIN / 2) {
715 			/* The fastest case is the first. */
716 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
717 		} else if (m < icsk->icsk_ack.ato) {
718 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
719 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
720 				icsk->icsk_ack.ato = icsk->icsk_rto;
721 		} else if (m > icsk->icsk_rto) {
722 			/* Too long gap. Apparently sender failed to
723 			 * restart window, so that we send ACKs quickly.
724 			 */
725 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
726 			sk_mem_reclaim(sk);
727 		}
728 	}
729 	icsk->icsk_ack.lrcvtime = now;
730 
731 	tcp_ecn_check_ce(sk, skb);
732 
733 	if (skb->len >= 128)
734 		tcp_grow_window(sk, skb);
735 }
736 
737 /* Called to compute a smoothed rtt estimate. The data fed to this
738  * routine either comes from timestamps, or from segments that were
739  * known _not_ to have been retransmitted [see Karn/Partridge
740  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
741  * piece by Van Jacobson.
742  * NOTE: the next three routines used to be one big routine.
743  * To save cycles in the RFC 1323 implementation it was better to break
744  * it up into three procedures. -- erics
745  */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)746 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
747 {
748 	struct tcp_sock *tp = tcp_sk(sk);
749 	long m = mrtt_us; /* RTT */
750 	u32 srtt = tp->srtt_us;
751 
752 	/*	The following amusing code comes from Jacobson's
753 	 *	article in SIGCOMM '88.  Note that rtt and mdev
754 	 *	are scaled versions of rtt and mean deviation.
755 	 *	This is designed to be as fast as possible
756 	 *	m stands for "measurement".
757 	 *
758 	 *	On a 1990 paper the rto value is changed to:
759 	 *	RTO = rtt + 4 * mdev
760 	 *
761 	 * Funny. This algorithm seems to be very broken.
762 	 * These formulae increase RTO, when it should be decreased, increase
763 	 * too slowly, when it should be increased quickly, decrease too quickly
764 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
765 	 * does not matter how to _calculate_ it. Seems, it was trap
766 	 * that VJ failed to avoid. 8)
767 	 */
768 	if (srtt != 0) {
769 		m -= (srtt >> 3);	/* m is now error in rtt est */
770 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
771 		if (m < 0) {
772 			m = -m;		/* m is now abs(error) */
773 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
774 			/* This is similar to one of Eifel findings.
775 			 * Eifel blocks mdev updates when rtt decreases.
776 			 * This solution is a bit different: we use finer gain
777 			 * for mdev in this case (alpha*beta).
778 			 * Like Eifel it also prevents growth of rto,
779 			 * but also it limits too fast rto decreases,
780 			 * happening in pure Eifel.
781 			 */
782 			if (m > 0)
783 				m >>= 3;
784 		} else {
785 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
786 		}
787 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
788 		if (tp->mdev_us > tp->mdev_max_us) {
789 			tp->mdev_max_us = tp->mdev_us;
790 			if (tp->mdev_max_us > tp->rttvar_us)
791 				tp->rttvar_us = tp->mdev_max_us;
792 		}
793 		if (after(tp->snd_una, tp->rtt_seq)) {
794 			if (tp->mdev_max_us < tp->rttvar_us)
795 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
796 			tp->rtt_seq = tp->snd_nxt;
797 			tp->mdev_max_us = tcp_rto_min_us(sk);
798 
799 			tcp_bpf_rtt(sk);
800 		}
801 	} else {
802 		/* no previous measure. */
803 		srtt = m << 3;		/* take the measured time to be rtt */
804 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
805 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
806 		tp->mdev_max_us = tp->rttvar_us;
807 		tp->rtt_seq = tp->snd_nxt;
808 
809 		tcp_bpf_rtt(sk);
810 	}
811 	tp->srtt_us = max(1U, srtt);
812 }
813 
tcp_update_pacing_rate(struct sock * sk)814 static void tcp_update_pacing_rate(struct sock *sk)
815 {
816 	const struct tcp_sock *tp = tcp_sk(sk);
817 	u64 rate;
818 
819 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
820 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
821 
822 	/* current rate is (cwnd * mss) / srtt
823 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
824 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
825 	 *
826 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
827 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
828 	 *	 end of slow start and should slow down.
829 	 */
830 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
831 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
832 	else
833 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
834 
835 	rate *= max(tp->snd_cwnd, tp->packets_out);
836 
837 	if (likely(tp->srtt_us))
838 		do_div(rate, tp->srtt_us);
839 
840 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
841 	 * without any lock. We want to make sure compiler wont store
842 	 * intermediate values in this location.
843 	 */
844 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
845 					     sk->sk_max_pacing_rate));
846 }
847 
848 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
849  * routine referred to above.
850  */
tcp_set_rto(struct sock * sk)851 static void tcp_set_rto(struct sock *sk)
852 {
853 	const struct tcp_sock *tp = tcp_sk(sk);
854 	/* Old crap is replaced with new one. 8)
855 	 *
856 	 * More seriously:
857 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
858 	 *    It cannot be less due to utterly erratic ACK generation made
859 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
860 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
861 	 *    is invisible. Actually, Linux-2.4 also generates erratic
862 	 *    ACKs in some circumstances.
863 	 */
864 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
865 
866 	/* 2. Fixups made earlier cannot be right.
867 	 *    If we do not estimate RTO correctly without them,
868 	 *    all the algo is pure shit and should be replaced
869 	 *    with correct one. It is exactly, which we pretend to do.
870 	 */
871 
872 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
873 	 * guarantees that rto is higher.
874 	 */
875 	tcp_bound_rto(sk);
876 }
877 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)878 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
879 {
880 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
881 
882 	if (!cwnd)
883 		cwnd = TCP_INIT_CWND;
884 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
885 }
886 
887 /* Take a notice that peer is sending D-SACKs */
tcp_dsack_seen(struct tcp_sock * tp)888 static void tcp_dsack_seen(struct tcp_sock *tp)
889 {
890 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
891 	tp->rack.dsack_seen = 1;
892 	tp->dsack_dups++;
893 }
894 
895 /* It's reordering when higher sequence was delivered (i.e. sacked) before
896  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
897  * distance is approximated in full-mss packet distance ("reordering").
898  */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)899 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
900 				      const int ts)
901 {
902 	struct tcp_sock *tp = tcp_sk(sk);
903 	const u32 mss = tp->mss_cache;
904 	u32 fack, metric;
905 
906 	fack = tcp_highest_sack_seq(tp);
907 	if (!before(low_seq, fack))
908 		return;
909 
910 	metric = fack - low_seq;
911 	if ((metric > tp->reordering * mss) && mss) {
912 #if FASTRETRANS_DEBUG > 1
913 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
914 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
915 			 tp->reordering,
916 			 0,
917 			 tp->sacked_out,
918 			 tp->undo_marker ? tp->undo_retrans : 0);
919 #endif
920 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
921 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
922 	}
923 
924 	/* This exciting event is worth to be remembered. 8) */
925 	tp->reord_seen++;
926 	NET_INC_STATS(sock_net(sk),
927 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
928 }
929 
930 /* This must be called before lost_out is incremented */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)931 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
932 {
933 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
934 	    (tp->retransmit_skb_hint &&
935 	     before(TCP_SKB_CB(skb)->seq,
936 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
937 		tp->retransmit_skb_hint = skb;
938 }
939 
940 /* Sum the number of packets on the wire we have marked as lost.
941  * There are two cases we care about here:
942  * a) Packet hasn't been marked lost (nor retransmitted),
943  *    and this is the first loss.
944  * b) Packet has been marked both lost and retransmitted,
945  *    and this means we think it was lost again.
946  */
tcp_sum_lost(struct tcp_sock * tp,struct sk_buff * skb)947 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
948 {
949 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
950 
951 	if (!(sacked & TCPCB_LOST) ||
952 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
953 		tp->lost += tcp_skb_pcount(skb);
954 }
955 
tcp_skb_mark_lost(struct tcp_sock * tp,struct sk_buff * skb)956 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
957 {
958 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
959 		tcp_verify_retransmit_hint(tp, skb);
960 
961 		tp->lost_out += tcp_skb_pcount(skb);
962 		tcp_sum_lost(tp, skb);
963 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
964 	}
965 }
966 
tcp_skb_mark_lost_uncond_verify(struct tcp_sock * tp,struct sk_buff * skb)967 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
968 {
969 	tcp_verify_retransmit_hint(tp, skb);
970 
971 	tcp_sum_lost(tp, skb);
972 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
973 		tp->lost_out += tcp_skb_pcount(skb);
974 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
975 	}
976 }
977 
978 /* This procedure tags the retransmission queue when SACKs arrive.
979  *
980  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
981  * Packets in queue with these bits set are counted in variables
982  * sacked_out, retrans_out and lost_out, correspondingly.
983  *
984  * Valid combinations are:
985  * Tag  InFlight	Description
986  * 0	1		- orig segment is in flight.
987  * S	0		- nothing flies, orig reached receiver.
988  * L	0		- nothing flies, orig lost by net.
989  * R	2		- both orig and retransmit are in flight.
990  * L|R	1		- orig is lost, retransmit is in flight.
991  * S|R  1		- orig reached receiver, retrans is still in flight.
992  * (L|S|R is logically valid, it could occur when L|R is sacked,
993  *  but it is equivalent to plain S and code short-curcuits it to S.
994  *  L|S is logically invalid, it would mean -1 packet in flight 8))
995  *
996  * These 6 states form finite state machine, controlled by the following events:
997  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
998  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
999  * 3. Loss detection event of two flavors:
1000  *	A. Scoreboard estimator decided the packet is lost.
1001  *	   A'. Reno "three dupacks" marks head of queue lost.
1002  *	B. SACK arrives sacking SND.NXT at the moment, when the
1003  *	   segment was retransmitted.
1004  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1005  *
1006  * It is pleasant to note, that state diagram turns out to be commutative,
1007  * so that we are allowed not to be bothered by order of our actions,
1008  * when multiple events arrive simultaneously. (see the function below).
1009  *
1010  * Reordering detection.
1011  * --------------------
1012  * Reordering metric is maximal distance, which a packet can be displaced
1013  * in packet stream. With SACKs we can estimate it:
1014  *
1015  * 1. SACK fills old hole and the corresponding segment was not
1016  *    ever retransmitted -> reordering. Alas, we cannot use it
1017  *    when segment was retransmitted.
1018  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1019  *    for retransmitted and already SACKed segment -> reordering..
1020  * Both of these heuristics are not used in Loss state, when we cannot
1021  * account for retransmits accurately.
1022  *
1023  * SACK block validation.
1024  * ----------------------
1025  *
1026  * SACK block range validation checks that the received SACK block fits to
1027  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1028  * Note that SND.UNA is not included to the range though being valid because
1029  * it means that the receiver is rather inconsistent with itself reporting
1030  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1031  * perfectly valid, however, in light of RFC2018 which explicitly states
1032  * that "SACK block MUST reflect the newest segment.  Even if the newest
1033  * segment is going to be discarded ...", not that it looks very clever
1034  * in case of head skb. Due to potentional receiver driven attacks, we
1035  * choose to avoid immediate execution of a walk in write queue due to
1036  * reneging and defer head skb's loss recovery to standard loss recovery
1037  * procedure that will eventually trigger (nothing forbids us doing this).
1038  *
1039  * Implements also blockage to start_seq wrap-around. Problem lies in the
1040  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1041  * there's no guarantee that it will be before snd_nxt (n). The problem
1042  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1043  * wrap (s_w):
1044  *
1045  *         <- outs wnd ->                          <- wrapzone ->
1046  *         u     e      n                         u_w   e_w  s n_w
1047  *         |     |      |                          |     |   |  |
1048  * |<------------+------+----- TCP seqno space --------------+---------->|
1049  * ...-- <2^31 ->|                                           |<--------...
1050  * ...---- >2^31 ------>|                                    |<--------...
1051  *
1052  * Current code wouldn't be vulnerable but it's better still to discard such
1053  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1054  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1055  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1056  * equal to the ideal case (infinite seqno space without wrap caused issues).
1057  *
1058  * With D-SACK the lower bound is extended to cover sequence space below
1059  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1060  * again, D-SACK block must not to go across snd_una (for the same reason as
1061  * for the normal SACK blocks, explained above). But there all simplicity
1062  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1063  * fully below undo_marker they do not affect behavior in anyway and can
1064  * therefore be safely ignored. In rare cases (which are more or less
1065  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1066  * fragmentation and packet reordering past skb's retransmission. To consider
1067  * them correctly, the acceptable range must be extended even more though
1068  * the exact amount is rather hard to quantify. However, tp->max_window can
1069  * be used as an exaggerated estimate.
1070  */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1071 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1072 				   u32 start_seq, u32 end_seq)
1073 {
1074 	/* Too far in future, or reversed (interpretation is ambiguous) */
1075 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1076 		return false;
1077 
1078 	/* Nasty start_seq wrap-around check (see comments above) */
1079 	if (!before(start_seq, tp->snd_nxt))
1080 		return false;
1081 
1082 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1083 	 * start_seq == snd_una is non-sensical (see comments above)
1084 	 */
1085 	if (after(start_seq, tp->snd_una))
1086 		return true;
1087 
1088 	if (!is_dsack || !tp->undo_marker)
1089 		return false;
1090 
1091 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1092 	if (after(end_seq, tp->snd_una))
1093 		return false;
1094 
1095 	if (!before(start_seq, tp->undo_marker))
1096 		return true;
1097 
1098 	/* Too old */
1099 	if (!after(end_seq, tp->undo_marker))
1100 		return false;
1101 
1102 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1103 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1104 	 */
1105 	return !before(start_seq, end_seq - tp->max_window);
1106 }
1107 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una)1108 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1109 			    struct tcp_sack_block_wire *sp, int num_sacks,
1110 			    u32 prior_snd_una)
1111 {
1112 	struct tcp_sock *tp = tcp_sk(sk);
1113 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1114 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1115 	bool dup_sack = false;
1116 
1117 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1118 		dup_sack = true;
1119 		tcp_dsack_seen(tp);
1120 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1121 	} else if (num_sacks > 1) {
1122 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1123 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1124 
1125 		if (!after(end_seq_0, end_seq_1) &&
1126 		    !before(start_seq_0, start_seq_1)) {
1127 			dup_sack = true;
1128 			tcp_dsack_seen(tp);
1129 			NET_INC_STATS(sock_net(sk),
1130 					LINUX_MIB_TCPDSACKOFORECV);
1131 		}
1132 	}
1133 
1134 	/* D-SACK for already forgotten data... Do dumb counting. */
1135 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1136 	    !after(end_seq_0, prior_snd_una) &&
1137 	    after(end_seq_0, tp->undo_marker))
1138 		tp->undo_retrans--;
1139 
1140 	return dup_sack;
1141 }
1142 
1143 struct tcp_sacktag_state {
1144 	u32	reord;
1145 	/* Timestamps for earliest and latest never-retransmitted segment
1146 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1147 	 * but congestion control should still get an accurate delay signal.
1148 	 */
1149 	u64	first_sackt;
1150 	u64	last_sackt;
1151 	struct rate_sample *rate;
1152 	int	flag;
1153 	unsigned int mss_now;
1154 };
1155 
1156 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1157  * the incoming SACK may not exactly match but we can find smaller MSS
1158  * aligned portion of it that matches. Therefore we might need to fragment
1159  * which may fail and creates some hassle (caller must handle error case
1160  * returns).
1161  *
1162  * FIXME: this could be merged to shift decision code
1163  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1164 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1165 				  u32 start_seq, u32 end_seq)
1166 {
1167 	int err;
1168 	bool in_sack;
1169 	unsigned int pkt_len;
1170 	unsigned int mss;
1171 
1172 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1173 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1174 
1175 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1176 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1177 		mss = tcp_skb_mss(skb);
1178 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1179 
1180 		if (!in_sack) {
1181 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1182 			if (pkt_len < mss)
1183 				pkt_len = mss;
1184 		} else {
1185 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1186 			if (pkt_len < mss)
1187 				return -EINVAL;
1188 		}
1189 
1190 		/* Round if necessary so that SACKs cover only full MSSes
1191 		 * and/or the remaining small portion (if present)
1192 		 */
1193 		if (pkt_len > mss) {
1194 			unsigned int new_len = (pkt_len / mss) * mss;
1195 			if (!in_sack && new_len < pkt_len)
1196 				new_len += mss;
1197 			pkt_len = new_len;
1198 		}
1199 
1200 		if (pkt_len >= skb->len && !in_sack)
1201 			return 0;
1202 
1203 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1204 				   pkt_len, mss, GFP_ATOMIC);
1205 		if (err < 0)
1206 			return err;
1207 	}
1208 
1209 	return in_sack;
1210 }
1211 
1212 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1213 static u8 tcp_sacktag_one(struct sock *sk,
1214 			  struct tcp_sacktag_state *state, u8 sacked,
1215 			  u32 start_seq, u32 end_seq,
1216 			  int dup_sack, int pcount,
1217 			  u64 xmit_time)
1218 {
1219 	struct tcp_sock *tp = tcp_sk(sk);
1220 
1221 	/* Account D-SACK for retransmitted packet. */
1222 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1223 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1224 		    after(end_seq, tp->undo_marker))
1225 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1226 		if ((sacked & TCPCB_SACKED_ACKED) &&
1227 		    before(start_seq, state->reord))
1228 				state->reord = start_seq;
1229 	}
1230 
1231 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1232 	if (!after(end_seq, tp->snd_una))
1233 		return sacked;
1234 
1235 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1236 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1237 
1238 		if (sacked & TCPCB_SACKED_RETRANS) {
1239 			/* If the segment is not tagged as lost,
1240 			 * we do not clear RETRANS, believing
1241 			 * that retransmission is still in flight.
1242 			 */
1243 			if (sacked & TCPCB_LOST) {
1244 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1245 				tp->lost_out -= pcount;
1246 				tp->retrans_out -= pcount;
1247 			}
1248 		} else {
1249 			if (!(sacked & TCPCB_RETRANS)) {
1250 				/* New sack for not retransmitted frame,
1251 				 * which was in hole. It is reordering.
1252 				 */
1253 				if (before(start_seq,
1254 					   tcp_highest_sack_seq(tp)) &&
1255 				    before(start_seq, state->reord))
1256 					state->reord = start_seq;
1257 
1258 				if (!after(end_seq, tp->high_seq))
1259 					state->flag |= FLAG_ORIG_SACK_ACKED;
1260 				if (state->first_sackt == 0)
1261 					state->first_sackt = xmit_time;
1262 				state->last_sackt = xmit_time;
1263 			}
1264 
1265 			if (sacked & TCPCB_LOST) {
1266 				sacked &= ~TCPCB_LOST;
1267 				tp->lost_out -= pcount;
1268 			}
1269 		}
1270 
1271 		sacked |= TCPCB_SACKED_ACKED;
1272 		state->flag |= FLAG_DATA_SACKED;
1273 		tp->sacked_out += pcount;
1274 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1275 
1276 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1277 		if (tp->lost_skb_hint &&
1278 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1279 			tp->lost_cnt_hint += pcount;
1280 	}
1281 
1282 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1283 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1284 	 * are accounted above as well.
1285 	 */
1286 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1287 		sacked &= ~TCPCB_SACKED_RETRANS;
1288 		tp->retrans_out -= pcount;
1289 	}
1290 
1291 	return sacked;
1292 }
1293 
1294 /* Shift newly-SACKed bytes from this skb to the immediately previous
1295  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1296  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1297 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1298 			    struct sk_buff *skb,
1299 			    struct tcp_sacktag_state *state,
1300 			    unsigned int pcount, int shifted, int mss,
1301 			    bool dup_sack)
1302 {
1303 	struct tcp_sock *tp = tcp_sk(sk);
1304 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1305 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1306 
1307 	BUG_ON(!pcount);
1308 
1309 	/* Adjust counters and hints for the newly sacked sequence
1310 	 * range but discard the return value since prev is already
1311 	 * marked. We must tag the range first because the seq
1312 	 * advancement below implicitly advances
1313 	 * tcp_highest_sack_seq() when skb is highest_sack.
1314 	 */
1315 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1316 			start_seq, end_seq, dup_sack, pcount,
1317 			tcp_skb_timestamp_us(skb));
1318 	tcp_rate_skb_delivered(sk, skb, state->rate);
1319 
1320 	if (skb == tp->lost_skb_hint)
1321 		tp->lost_cnt_hint += pcount;
1322 
1323 	TCP_SKB_CB(prev)->end_seq += shifted;
1324 	TCP_SKB_CB(skb)->seq += shifted;
1325 
1326 	tcp_skb_pcount_add(prev, pcount);
1327 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1328 	tcp_skb_pcount_add(skb, -pcount);
1329 
1330 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1331 	 * in theory this shouldn't be necessary but as long as DSACK
1332 	 * code can come after this skb later on it's better to keep
1333 	 * setting gso_size to something.
1334 	 */
1335 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1336 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1337 
1338 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1339 	if (tcp_skb_pcount(skb) <= 1)
1340 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1341 
1342 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1343 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1344 
1345 	if (skb->len > 0) {
1346 		BUG_ON(!tcp_skb_pcount(skb));
1347 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1348 		return false;
1349 	}
1350 
1351 	/* Whole SKB was eaten :-) */
1352 
1353 	if (skb == tp->retransmit_skb_hint)
1354 		tp->retransmit_skb_hint = prev;
1355 	if (skb == tp->lost_skb_hint) {
1356 		tp->lost_skb_hint = prev;
1357 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1358 	}
1359 
1360 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1361 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1362 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1363 		TCP_SKB_CB(prev)->end_seq++;
1364 
1365 	if (skb == tcp_highest_sack(sk))
1366 		tcp_advance_highest_sack(sk, skb);
1367 
1368 	tcp_skb_collapse_tstamp(prev, skb);
1369 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1370 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1371 
1372 	tcp_rtx_queue_unlink_and_free(skb, sk);
1373 
1374 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1375 
1376 	return true;
1377 }
1378 
1379 /* I wish gso_size would have a bit more sane initialization than
1380  * something-or-zero which complicates things
1381  */
tcp_skb_seglen(const struct sk_buff * skb)1382 static int tcp_skb_seglen(const struct sk_buff *skb)
1383 {
1384 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1385 }
1386 
1387 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1388 static int skb_can_shift(const struct sk_buff *skb)
1389 {
1390 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1391 }
1392 
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1393 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1394 		  int pcount, int shiftlen)
1395 {
1396 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1397 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1398 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1399 	 * even if current MSS is bigger.
1400 	 */
1401 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1402 		return 0;
1403 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1404 		return 0;
1405 	return skb_shift(to, from, shiftlen);
1406 }
1407 
1408 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1409  * skb.
1410  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1411 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1412 					  struct tcp_sacktag_state *state,
1413 					  u32 start_seq, u32 end_seq,
1414 					  bool dup_sack)
1415 {
1416 	struct tcp_sock *tp = tcp_sk(sk);
1417 	struct sk_buff *prev;
1418 	int mss;
1419 	int pcount = 0;
1420 	int len;
1421 	int in_sack;
1422 
1423 	/* Normally R but no L won't result in plain S */
1424 	if (!dup_sack &&
1425 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1426 		goto fallback;
1427 	if (!skb_can_shift(skb))
1428 		goto fallback;
1429 	/* This frame is about to be dropped (was ACKed). */
1430 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1431 		goto fallback;
1432 
1433 	/* Can only happen with delayed DSACK + discard craziness */
1434 	prev = skb_rb_prev(skb);
1435 	if (!prev)
1436 		goto fallback;
1437 
1438 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1439 		goto fallback;
1440 
1441 	if (!tcp_skb_can_collapse_to(prev))
1442 		goto fallback;
1443 
1444 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1445 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1446 
1447 	if (in_sack) {
1448 		len = skb->len;
1449 		pcount = tcp_skb_pcount(skb);
1450 		mss = tcp_skb_seglen(skb);
1451 
1452 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1453 		 * drop this restriction as unnecessary
1454 		 */
1455 		if (mss != tcp_skb_seglen(prev))
1456 			goto fallback;
1457 	} else {
1458 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1459 			goto noop;
1460 		/* CHECKME: This is non-MSS split case only?, this will
1461 		 * cause skipped skbs due to advancing loop btw, original
1462 		 * has that feature too
1463 		 */
1464 		if (tcp_skb_pcount(skb) <= 1)
1465 			goto noop;
1466 
1467 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1468 		if (!in_sack) {
1469 			/* TODO: head merge to next could be attempted here
1470 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1471 			 * though it might not be worth of the additional hassle
1472 			 *
1473 			 * ...we can probably just fallback to what was done
1474 			 * previously. We could try merging non-SACKed ones
1475 			 * as well but it probably isn't going to buy off
1476 			 * because later SACKs might again split them, and
1477 			 * it would make skb timestamp tracking considerably
1478 			 * harder problem.
1479 			 */
1480 			goto fallback;
1481 		}
1482 
1483 		len = end_seq - TCP_SKB_CB(skb)->seq;
1484 		BUG_ON(len < 0);
1485 		BUG_ON(len > skb->len);
1486 
1487 		/* MSS boundaries should be honoured or else pcount will
1488 		 * severely break even though it makes things bit trickier.
1489 		 * Optimize common case to avoid most of the divides
1490 		 */
1491 		mss = tcp_skb_mss(skb);
1492 
1493 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1494 		 * drop this restriction as unnecessary
1495 		 */
1496 		if (mss != tcp_skb_seglen(prev))
1497 			goto fallback;
1498 
1499 		if (len == mss) {
1500 			pcount = 1;
1501 		} else if (len < mss) {
1502 			goto noop;
1503 		} else {
1504 			pcount = len / mss;
1505 			len = pcount * mss;
1506 		}
1507 	}
1508 
1509 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1510 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1511 		goto fallback;
1512 
1513 	if (!tcp_skb_shift(prev, skb, pcount, len))
1514 		goto fallback;
1515 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1516 		goto out;
1517 
1518 	/* Hole filled allows collapsing with the next as well, this is very
1519 	 * useful when hole on every nth skb pattern happens
1520 	 */
1521 	skb = skb_rb_next(prev);
1522 	if (!skb)
1523 		goto out;
1524 
1525 	if (!skb_can_shift(skb) ||
1526 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1527 	    (mss != tcp_skb_seglen(skb)))
1528 		goto out;
1529 
1530 	len = skb->len;
1531 	pcount = tcp_skb_pcount(skb);
1532 	if (tcp_skb_shift(prev, skb, pcount, len))
1533 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1534 				len, mss, 0);
1535 
1536 out:
1537 	return prev;
1538 
1539 noop:
1540 	return skb;
1541 
1542 fallback:
1543 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1544 	return NULL;
1545 }
1546 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1547 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1548 					struct tcp_sack_block *next_dup,
1549 					struct tcp_sacktag_state *state,
1550 					u32 start_seq, u32 end_seq,
1551 					bool dup_sack_in)
1552 {
1553 	struct tcp_sock *tp = tcp_sk(sk);
1554 	struct sk_buff *tmp;
1555 
1556 	skb_rbtree_walk_from(skb) {
1557 		int in_sack = 0;
1558 		bool dup_sack = dup_sack_in;
1559 
1560 		/* queue is in-order => we can short-circuit the walk early */
1561 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1562 			break;
1563 
1564 		if (next_dup  &&
1565 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1566 			in_sack = tcp_match_skb_to_sack(sk, skb,
1567 							next_dup->start_seq,
1568 							next_dup->end_seq);
1569 			if (in_sack > 0)
1570 				dup_sack = true;
1571 		}
1572 
1573 		/* skb reference here is a bit tricky to get right, since
1574 		 * shifting can eat and free both this skb and the next,
1575 		 * so not even _safe variant of the loop is enough.
1576 		 */
1577 		if (in_sack <= 0) {
1578 			tmp = tcp_shift_skb_data(sk, skb, state,
1579 						 start_seq, end_seq, dup_sack);
1580 			if (tmp) {
1581 				if (tmp != skb) {
1582 					skb = tmp;
1583 					continue;
1584 				}
1585 
1586 				in_sack = 0;
1587 			} else {
1588 				in_sack = tcp_match_skb_to_sack(sk, skb,
1589 								start_seq,
1590 								end_seq);
1591 			}
1592 		}
1593 
1594 		if (unlikely(in_sack < 0))
1595 			break;
1596 
1597 		if (in_sack) {
1598 			TCP_SKB_CB(skb)->sacked =
1599 				tcp_sacktag_one(sk,
1600 						state,
1601 						TCP_SKB_CB(skb)->sacked,
1602 						TCP_SKB_CB(skb)->seq,
1603 						TCP_SKB_CB(skb)->end_seq,
1604 						dup_sack,
1605 						tcp_skb_pcount(skb),
1606 						tcp_skb_timestamp_us(skb));
1607 			tcp_rate_skb_delivered(sk, skb, state->rate);
1608 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1609 				list_del_init(&skb->tcp_tsorted_anchor);
1610 
1611 			if (!before(TCP_SKB_CB(skb)->seq,
1612 				    tcp_highest_sack_seq(tp)))
1613 				tcp_advance_highest_sack(sk, skb);
1614 		}
1615 	}
1616 	return skb;
1617 }
1618 
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1619 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1620 {
1621 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1622 	struct sk_buff *skb;
1623 
1624 	while (*p) {
1625 		parent = *p;
1626 		skb = rb_to_skb(parent);
1627 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1628 			p = &parent->rb_left;
1629 			continue;
1630 		}
1631 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1632 			p = &parent->rb_right;
1633 			continue;
1634 		}
1635 		return skb;
1636 	}
1637 	return NULL;
1638 }
1639 
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1640 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1641 					u32 skip_to_seq)
1642 {
1643 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1644 		return skb;
1645 
1646 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1647 }
1648 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1649 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1650 						struct sock *sk,
1651 						struct tcp_sack_block *next_dup,
1652 						struct tcp_sacktag_state *state,
1653 						u32 skip_to_seq)
1654 {
1655 	if (!next_dup)
1656 		return skb;
1657 
1658 	if (before(next_dup->start_seq, skip_to_seq)) {
1659 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1660 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1661 				       next_dup->start_seq, next_dup->end_seq,
1662 				       1);
1663 	}
1664 
1665 	return skb;
1666 }
1667 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1668 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1669 {
1670 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1671 }
1672 
1673 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1674 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1675 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1676 {
1677 	struct tcp_sock *tp = tcp_sk(sk);
1678 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1679 				    TCP_SKB_CB(ack_skb)->sacked);
1680 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1681 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1682 	struct tcp_sack_block *cache;
1683 	struct sk_buff *skb;
1684 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1685 	int used_sacks;
1686 	bool found_dup_sack = false;
1687 	int i, j;
1688 	int first_sack_index;
1689 
1690 	state->flag = 0;
1691 	state->reord = tp->snd_nxt;
1692 
1693 	if (!tp->sacked_out)
1694 		tcp_highest_sack_reset(sk);
1695 
1696 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1697 					 num_sacks, prior_snd_una);
1698 	if (found_dup_sack) {
1699 		state->flag |= FLAG_DSACKING_ACK;
1700 		tp->delivered++; /* A spurious retransmission is delivered */
1701 	}
1702 
1703 	/* Eliminate too old ACKs, but take into
1704 	 * account more or less fresh ones, they can
1705 	 * contain valid SACK info.
1706 	 */
1707 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1708 		return 0;
1709 
1710 	if (!tp->packets_out)
1711 		goto out;
1712 
1713 	used_sacks = 0;
1714 	first_sack_index = 0;
1715 	for (i = 0; i < num_sacks; i++) {
1716 		bool dup_sack = !i && found_dup_sack;
1717 
1718 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1719 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1720 
1721 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1722 					    sp[used_sacks].start_seq,
1723 					    sp[used_sacks].end_seq)) {
1724 			int mib_idx;
1725 
1726 			if (dup_sack) {
1727 				if (!tp->undo_marker)
1728 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1729 				else
1730 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1731 			} else {
1732 				/* Don't count olds caused by ACK reordering */
1733 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1734 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1735 					continue;
1736 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1737 			}
1738 
1739 			NET_INC_STATS(sock_net(sk), mib_idx);
1740 			if (i == 0)
1741 				first_sack_index = -1;
1742 			continue;
1743 		}
1744 
1745 		/* Ignore very old stuff early */
1746 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1747 			if (i == 0)
1748 				first_sack_index = -1;
1749 			continue;
1750 		}
1751 
1752 		used_sacks++;
1753 	}
1754 
1755 	/* order SACK blocks to allow in order walk of the retrans queue */
1756 	for (i = used_sacks - 1; i > 0; i--) {
1757 		for (j = 0; j < i; j++) {
1758 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1759 				swap(sp[j], sp[j + 1]);
1760 
1761 				/* Track where the first SACK block goes to */
1762 				if (j == first_sack_index)
1763 					first_sack_index = j + 1;
1764 			}
1765 		}
1766 	}
1767 
1768 	state->mss_now = tcp_current_mss(sk);
1769 	skb = NULL;
1770 	i = 0;
1771 
1772 	if (!tp->sacked_out) {
1773 		/* It's already past, so skip checking against it */
1774 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1775 	} else {
1776 		cache = tp->recv_sack_cache;
1777 		/* Skip empty blocks in at head of the cache */
1778 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1779 		       !cache->end_seq)
1780 			cache++;
1781 	}
1782 
1783 	while (i < used_sacks) {
1784 		u32 start_seq = sp[i].start_seq;
1785 		u32 end_seq = sp[i].end_seq;
1786 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1787 		struct tcp_sack_block *next_dup = NULL;
1788 
1789 		if (found_dup_sack && ((i + 1) == first_sack_index))
1790 			next_dup = &sp[i + 1];
1791 
1792 		/* Skip too early cached blocks */
1793 		while (tcp_sack_cache_ok(tp, cache) &&
1794 		       !before(start_seq, cache->end_seq))
1795 			cache++;
1796 
1797 		/* Can skip some work by looking recv_sack_cache? */
1798 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1799 		    after(end_seq, cache->start_seq)) {
1800 
1801 			/* Head todo? */
1802 			if (before(start_seq, cache->start_seq)) {
1803 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1804 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1805 						       state,
1806 						       start_seq,
1807 						       cache->start_seq,
1808 						       dup_sack);
1809 			}
1810 
1811 			/* Rest of the block already fully processed? */
1812 			if (!after(end_seq, cache->end_seq))
1813 				goto advance_sp;
1814 
1815 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1816 						       state,
1817 						       cache->end_seq);
1818 
1819 			/* ...tail remains todo... */
1820 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1821 				/* ...but better entrypoint exists! */
1822 				skb = tcp_highest_sack(sk);
1823 				if (!skb)
1824 					break;
1825 				cache++;
1826 				goto walk;
1827 			}
1828 
1829 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1830 			/* Check overlap against next cached too (past this one already) */
1831 			cache++;
1832 			continue;
1833 		}
1834 
1835 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1836 			skb = tcp_highest_sack(sk);
1837 			if (!skb)
1838 				break;
1839 		}
1840 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1841 
1842 walk:
1843 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1844 				       start_seq, end_seq, dup_sack);
1845 
1846 advance_sp:
1847 		i++;
1848 	}
1849 
1850 	/* Clear the head of the cache sack blocks so we can skip it next time */
1851 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1852 		tp->recv_sack_cache[i].start_seq = 0;
1853 		tp->recv_sack_cache[i].end_seq = 0;
1854 	}
1855 	for (j = 0; j < used_sacks; j++)
1856 		tp->recv_sack_cache[i++] = sp[j];
1857 
1858 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1859 		tcp_check_sack_reordering(sk, state->reord, 0);
1860 
1861 	tcp_verify_left_out(tp);
1862 out:
1863 
1864 #if FASTRETRANS_DEBUG > 0
1865 	WARN_ON((int)tp->sacked_out < 0);
1866 	WARN_ON((int)tp->lost_out < 0);
1867 	WARN_ON((int)tp->retrans_out < 0);
1868 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1869 #endif
1870 	return state->flag;
1871 }
1872 
1873 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1874  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1875  */
tcp_limit_reno_sacked(struct tcp_sock * tp)1876 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1877 {
1878 	u32 holes;
1879 
1880 	holes = max(tp->lost_out, 1U);
1881 	holes = min(holes, tp->packets_out);
1882 
1883 	if ((tp->sacked_out + holes) > tp->packets_out) {
1884 		tp->sacked_out = tp->packets_out - holes;
1885 		return true;
1886 	}
1887 	return false;
1888 }
1889 
1890 /* If we receive more dupacks than we expected counting segments
1891  * in assumption of absent reordering, interpret this as reordering.
1892  * The only another reason could be bug in receiver TCP.
1893  */
tcp_check_reno_reordering(struct sock * sk,const int addend)1894 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1895 {
1896 	struct tcp_sock *tp = tcp_sk(sk);
1897 
1898 	if (!tcp_limit_reno_sacked(tp))
1899 		return;
1900 
1901 	tp->reordering = min_t(u32, tp->packets_out + addend,
1902 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1903 	tp->reord_seen++;
1904 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1905 }
1906 
1907 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1908 
tcp_add_reno_sack(struct sock * sk,int num_dupack)1909 static void tcp_add_reno_sack(struct sock *sk, int num_dupack)
1910 {
1911 	if (num_dupack) {
1912 		struct tcp_sock *tp = tcp_sk(sk);
1913 		u32 prior_sacked = tp->sacked_out;
1914 		s32 delivered;
1915 
1916 		tp->sacked_out += num_dupack;
1917 		tcp_check_reno_reordering(sk, 0);
1918 		delivered = tp->sacked_out - prior_sacked;
1919 		if (delivered > 0)
1920 			tp->delivered += delivered;
1921 		tcp_verify_left_out(tp);
1922 	}
1923 }
1924 
1925 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1926 
tcp_remove_reno_sacks(struct sock * sk,int acked)1927 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1928 {
1929 	struct tcp_sock *tp = tcp_sk(sk);
1930 
1931 	if (acked > 0) {
1932 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1933 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1934 		if (acked - 1 >= tp->sacked_out)
1935 			tp->sacked_out = 0;
1936 		else
1937 			tp->sacked_out -= acked - 1;
1938 	}
1939 	tcp_check_reno_reordering(sk, acked);
1940 	tcp_verify_left_out(tp);
1941 }
1942 
tcp_reset_reno_sack(struct tcp_sock * tp)1943 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1944 {
1945 	tp->sacked_out = 0;
1946 }
1947 
tcp_clear_retrans(struct tcp_sock * tp)1948 void tcp_clear_retrans(struct tcp_sock *tp)
1949 {
1950 	tp->retrans_out = 0;
1951 	tp->lost_out = 0;
1952 	tp->undo_marker = 0;
1953 	tp->undo_retrans = -1;
1954 	tp->sacked_out = 0;
1955 }
1956 
tcp_init_undo(struct tcp_sock * tp)1957 static inline void tcp_init_undo(struct tcp_sock *tp)
1958 {
1959 	tp->undo_marker = tp->snd_una;
1960 	/* Retransmission still in flight may cause DSACKs later. */
1961 	tp->undo_retrans = tp->retrans_out ? : -1;
1962 }
1963 
tcp_is_rack(const struct sock * sk)1964 static bool tcp_is_rack(const struct sock *sk)
1965 {
1966 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
1967 		TCP_RACK_LOSS_DETECTION;
1968 }
1969 
1970 /* If we detect SACK reneging, forget all SACK information
1971  * and reset tags completely, otherwise preserve SACKs. If receiver
1972  * dropped its ofo queue, we will know this due to reneging detection.
1973  */
tcp_timeout_mark_lost(struct sock * sk)1974 static void tcp_timeout_mark_lost(struct sock *sk)
1975 {
1976 	struct tcp_sock *tp = tcp_sk(sk);
1977 	struct sk_buff *skb, *head;
1978 	bool is_reneg;			/* is receiver reneging on SACKs? */
1979 
1980 	head = tcp_rtx_queue_head(sk);
1981 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1982 	if (is_reneg) {
1983 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1984 		tp->sacked_out = 0;
1985 		/* Mark SACK reneging until we recover from this loss event. */
1986 		tp->is_sack_reneg = 1;
1987 	} else if (tcp_is_reno(tp)) {
1988 		tcp_reset_reno_sack(tp);
1989 	}
1990 
1991 	skb = head;
1992 	skb_rbtree_walk_from(skb) {
1993 		if (is_reneg)
1994 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1995 		else if (tcp_is_rack(sk) && skb != head &&
1996 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1997 			continue; /* Don't mark recently sent ones lost yet */
1998 		tcp_mark_skb_lost(sk, skb);
1999 	}
2000 	tcp_verify_left_out(tp);
2001 	tcp_clear_all_retrans_hints(tp);
2002 }
2003 
2004 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2005 void tcp_enter_loss(struct sock *sk)
2006 {
2007 	const struct inet_connection_sock *icsk = inet_csk(sk);
2008 	struct tcp_sock *tp = tcp_sk(sk);
2009 	struct net *net = sock_net(sk);
2010 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2011 	u8 reordering;
2012 
2013 	tcp_timeout_mark_lost(sk);
2014 
2015 	/* Reduce ssthresh if it has not yet been made inside this window. */
2016 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2017 	    !after(tp->high_seq, tp->snd_una) ||
2018 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2019 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2020 		tp->prior_cwnd = tp->snd_cwnd;
2021 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2022 		tcp_ca_event(sk, CA_EVENT_LOSS);
2023 		tcp_init_undo(tp);
2024 	}
2025 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2026 	tp->snd_cwnd_cnt   = 0;
2027 	tp->snd_cwnd_stamp = tcp_jiffies32;
2028 
2029 	/* Timeout in disordered state after receiving substantial DUPACKs
2030 	 * suggests that the degree of reordering is over-estimated.
2031 	 */
2032 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2033 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2034 	    tp->sacked_out >= reordering)
2035 		tp->reordering = min_t(unsigned int, tp->reordering,
2036 				       reordering);
2037 
2038 	tcp_set_ca_state(sk, TCP_CA_Loss);
2039 	tp->high_seq = tp->snd_nxt;
2040 	tcp_ecn_queue_cwr(tp);
2041 
2042 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2043 	 * loss recovery is underway except recurring timeout(s) on
2044 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2045 	 */
2046 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2047 		   (new_recovery || icsk->icsk_retransmits) &&
2048 		   !inet_csk(sk)->icsk_mtup.probe_size;
2049 }
2050 
2051 /* If ACK arrived pointing to a remembered SACK, it means that our
2052  * remembered SACKs do not reflect real state of receiver i.e.
2053  * receiver _host_ is heavily congested (or buggy).
2054  *
2055  * To avoid big spurious retransmission bursts due to transient SACK
2056  * scoreboard oddities that look like reneging, we give the receiver a
2057  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2058  * restore sanity to the SACK scoreboard. If the apparent reneging
2059  * persists until this RTO then we'll clear the SACK scoreboard.
2060  */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2061 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2062 {
2063 	if (*ack_flag & FLAG_SACK_RENEGING &&
2064 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2065 		struct tcp_sock *tp = tcp_sk(sk);
2066 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2067 					  msecs_to_jiffies(10));
2068 
2069 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2070 					  delay, TCP_RTO_MAX);
2071 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2072 		return true;
2073 	}
2074 	return false;
2075 }
2076 
2077 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2078  * counter when SACK is enabled (without SACK, sacked_out is used for
2079  * that purpose).
2080  *
2081  * With reordering, holes may still be in flight, so RFC3517 recovery
2082  * uses pure sacked_out (total number of SACKed segments) even though
2083  * it violates the RFC that uses duplicate ACKs, often these are equal
2084  * but when e.g. out-of-window ACKs or packet duplication occurs,
2085  * they differ. Since neither occurs due to loss, TCP should really
2086  * ignore them.
2087  */
tcp_dupack_heuristics(const struct tcp_sock * tp)2088 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2089 {
2090 	return tp->sacked_out + 1;
2091 }
2092 
2093 /* Linux NewReno/SACK/ECN state machine.
2094  * --------------------------------------
2095  *
2096  * "Open"	Normal state, no dubious events, fast path.
2097  * "Disorder"   In all the respects it is "Open",
2098  *		but requires a bit more attention. It is entered when
2099  *		we see some SACKs or dupacks. It is split of "Open"
2100  *		mainly to move some processing from fast path to slow one.
2101  * "CWR"	CWND was reduced due to some Congestion Notification event.
2102  *		It can be ECN, ICMP source quench, local device congestion.
2103  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2104  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2105  *
2106  * tcp_fastretrans_alert() is entered:
2107  * - each incoming ACK, if state is not "Open"
2108  * - when arrived ACK is unusual, namely:
2109  *	* SACK
2110  *	* Duplicate ACK.
2111  *	* ECN ECE.
2112  *
2113  * Counting packets in flight is pretty simple.
2114  *
2115  *	in_flight = packets_out - left_out + retrans_out
2116  *
2117  *	packets_out is SND.NXT-SND.UNA counted in packets.
2118  *
2119  *	retrans_out is number of retransmitted segments.
2120  *
2121  *	left_out is number of segments left network, but not ACKed yet.
2122  *
2123  *		left_out = sacked_out + lost_out
2124  *
2125  *     sacked_out: Packets, which arrived to receiver out of order
2126  *		   and hence not ACKed. With SACKs this number is simply
2127  *		   amount of SACKed data. Even without SACKs
2128  *		   it is easy to give pretty reliable estimate of this number,
2129  *		   counting duplicate ACKs.
2130  *
2131  *       lost_out: Packets lost by network. TCP has no explicit
2132  *		   "loss notification" feedback from network (for now).
2133  *		   It means that this number can be only _guessed_.
2134  *		   Actually, it is the heuristics to predict lossage that
2135  *		   distinguishes different algorithms.
2136  *
2137  *	F.e. after RTO, when all the queue is considered as lost,
2138  *	lost_out = packets_out and in_flight = retrans_out.
2139  *
2140  *		Essentially, we have now a few algorithms detecting
2141  *		lost packets.
2142  *
2143  *		If the receiver supports SACK:
2144  *
2145  *		RFC6675/3517: It is the conventional algorithm. A packet is
2146  *		considered lost if the number of higher sequence packets
2147  *		SACKed is greater than or equal the DUPACK thoreshold
2148  *		(reordering). This is implemented in tcp_mark_head_lost and
2149  *		tcp_update_scoreboard.
2150  *
2151  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2152  *		(2017-) that checks timing instead of counting DUPACKs.
2153  *		Essentially a packet is considered lost if it's not S/ACKed
2154  *		after RTT + reordering_window, where both metrics are
2155  *		dynamically measured and adjusted. This is implemented in
2156  *		tcp_rack_mark_lost.
2157  *
2158  *		If the receiver does not support SACK:
2159  *
2160  *		NewReno (RFC6582): in Recovery we assume that one segment
2161  *		is lost (classic Reno). While we are in Recovery and
2162  *		a partial ACK arrives, we assume that one more packet
2163  *		is lost (NewReno). This heuristics are the same in NewReno
2164  *		and SACK.
2165  *
2166  * Really tricky (and requiring careful tuning) part of algorithm
2167  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2168  * The first determines the moment _when_ we should reduce CWND and,
2169  * hence, slow down forward transmission. In fact, it determines the moment
2170  * when we decide that hole is caused by loss, rather than by a reorder.
2171  *
2172  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2173  * holes, caused by lost packets.
2174  *
2175  * And the most logically complicated part of algorithm is undo
2176  * heuristics. We detect false retransmits due to both too early
2177  * fast retransmit (reordering) and underestimated RTO, analyzing
2178  * timestamps and D-SACKs. When we detect that some segments were
2179  * retransmitted by mistake and CWND reduction was wrong, we undo
2180  * window reduction and abort recovery phase. This logic is hidden
2181  * inside several functions named tcp_try_undo_<something>.
2182  */
2183 
2184 /* This function decides, when we should leave Disordered state
2185  * and enter Recovery phase, reducing congestion window.
2186  *
2187  * Main question: may we further continue forward transmission
2188  * with the same cwnd?
2189  */
tcp_time_to_recover(struct sock * sk,int flag)2190 static bool tcp_time_to_recover(struct sock *sk, int flag)
2191 {
2192 	struct tcp_sock *tp = tcp_sk(sk);
2193 
2194 	/* Trick#1: The loss is proven. */
2195 	if (tp->lost_out)
2196 		return true;
2197 
2198 	/* Not-A-Trick#2 : Classic rule... */
2199 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2200 		return true;
2201 
2202 	return false;
2203 }
2204 
2205 /* Detect loss in event "A" above by marking head of queue up as lost.
2206  * For non-SACK(Reno) senders, the first "packets" number of segments
2207  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2208  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2209  * the maximum SACKed segments to pass before reaching this limit.
2210  */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2211 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2212 {
2213 	struct tcp_sock *tp = tcp_sk(sk);
2214 	struct sk_buff *skb;
2215 	int cnt, oldcnt, lost;
2216 	unsigned int mss;
2217 	/* Use SACK to deduce losses of new sequences sent during recovery */
2218 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2219 
2220 	WARN_ON(packets > tp->packets_out);
2221 	skb = tp->lost_skb_hint;
2222 	if (skb) {
2223 		/* Head already handled? */
2224 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2225 			return;
2226 		cnt = tp->lost_cnt_hint;
2227 	} else {
2228 		skb = tcp_rtx_queue_head(sk);
2229 		cnt = 0;
2230 	}
2231 
2232 	skb_rbtree_walk_from(skb) {
2233 		/* TODO: do this better */
2234 		/* this is not the most efficient way to do this... */
2235 		tp->lost_skb_hint = skb;
2236 		tp->lost_cnt_hint = cnt;
2237 
2238 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2239 			break;
2240 
2241 		oldcnt = cnt;
2242 		if (tcp_is_reno(tp) ||
2243 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2244 			cnt += tcp_skb_pcount(skb);
2245 
2246 		if (cnt > packets) {
2247 			if (tcp_is_sack(tp) ||
2248 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2249 			    (oldcnt >= packets))
2250 				break;
2251 
2252 			mss = tcp_skb_mss(skb);
2253 			/* If needed, chop off the prefix to mark as lost. */
2254 			lost = (packets - oldcnt) * mss;
2255 			if (lost < skb->len &&
2256 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2257 					 lost, mss, GFP_ATOMIC) < 0)
2258 				break;
2259 			cnt = packets;
2260 		}
2261 
2262 		tcp_skb_mark_lost(tp, skb);
2263 
2264 		if (mark_head)
2265 			break;
2266 	}
2267 	tcp_verify_left_out(tp);
2268 }
2269 
2270 /* Account newly detected lost packet(s) */
2271 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2272 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2273 {
2274 	struct tcp_sock *tp = tcp_sk(sk);
2275 
2276 	if (tcp_is_sack(tp)) {
2277 		int sacked_upto = tp->sacked_out - tp->reordering;
2278 		if (sacked_upto >= 0)
2279 			tcp_mark_head_lost(sk, sacked_upto, 0);
2280 		else if (fast_rexmit)
2281 			tcp_mark_head_lost(sk, 1, 1);
2282 	}
2283 }
2284 
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2285 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2286 {
2287 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2288 	       before(tp->rx_opt.rcv_tsecr, when);
2289 }
2290 
2291 /* skb is spurious retransmitted if the returned timestamp echo
2292  * reply is prior to the skb transmission time
2293  */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2294 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2295 				     const struct sk_buff *skb)
2296 {
2297 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2298 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2299 }
2300 
2301 /* Nothing was retransmitted or returned timestamp is less
2302  * than timestamp of the first retransmission.
2303  */
tcp_packet_delayed(const struct tcp_sock * tp)2304 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2305 {
2306 	return tp->retrans_stamp &&
2307 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2308 }
2309 
2310 /* Undo procedures. */
2311 
2312 /* We can clear retrans_stamp when there are no retransmissions in the
2313  * window. It would seem that it is trivially available for us in
2314  * tp->retrans_out, however, that kind of assumptions doesn't consider
2315  * what will happen if errors occur when sending retransmission for the
2316  * second time. ...It could the that such segment has only
2317  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2318  * the head skb is enough except for some reneging corner cases that
2319  * are not worth the effort.
2320  *
2321  * Main reason for all this complexity is the fact that connection dying
2322  * time now depends on the validity of the retrans_stamp, in particular,
2323  * that successive retransmissions of a segment must not advance
2324  * retrans_stamp under any conditions.
2325  */
tcp_any_retrans_done(const struct sock * sk)2326 static bool tcp_any_retrans_done(const struct sock *sk)
2327 {
2328 	const struct tcp_sock *tp = tcp_sk(sk);
2329 	struct sk_buff *skb;
2330 
2331 	if (tp->retrans_out)
2332 		return true;
2333 
2334 	skb = tcp_rtx_queue_head(sk);
2335 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2336 		return true;
2337 
2338 	return false;
2339 }
2340 
DBGUNDO(struct sock * sk,const char * msg)2341 static void DBGUNDO(struct sock *sk, const char *msg)
2342 {
2343 #if FASTRETRANS_DEBUG > 1
2344 	struct tcp_sock *tp = tcp_sk(sk);
2345 	struct inet_sock *inet = inet_sk(sk);
2346 
2347 	if (sk->sk_family == AF_INET) {
2348 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2349 			 msg,
2350 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2351 			 tp->snd_cwnd, tcp_left_out(tp),
2352 			 tp->snd_ssthresh, tp->prior_ssthresh,
2353 			 tp->packets_out);
2354 	}
2355 #if IS_ENABLED(CONFIG_IPV6)
2356 	else if (sk->sk_family == AF_INET6) {
2357 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2358 			 msg,
2359 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2360 			 tp->snd_cwnd, tcp_left_out(tp),
2361 			 tp->snd_ssthresh, tp->prior_ssthresh,
2362 			 tp->packets_out);
2363 	}
2364 #endif
2365 #endif
2366 }
2367 
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2368 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2369 {
2370 	struct tcp_sock *tp = tcp_sk(sk);
2371 
2372 	if (unmark_loss) {
2373 		struct sk_buff *skb;
2374 
2375 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2376 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2377 		}
2378 		tp->lost_out = 0;
2379 		tcp_clear_all_retrans_hints(tp);
2380 	}
2381 
2382 	if (tp->prior_ssthresh) {
2383 		const struct inet_connection_sock *icsk = inet_csk(sk);
2384 
2385 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2386 
2387 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2388 			tp->snd_ssthresh = tp->prior_ssthresh;
2389 			tcp_ecn_withdraw_cwr(tp);
2390 		}
2391 	}
2392 	tp->snd_cwnd_stamp = tcp_jiffies32;
2393 	tp->undo_marker = 0;
2394 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2395 }
2396 
tcp_may_undo(const struct tcp_sock * tp)2397 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2398 {
2399 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2400 }
2401 
tcp_is_non_sack_preventing_reopen(struct sock * sk)2402 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2403 {
2404 	struct tcp_sock *tp = tcp_sk(sk);
2405 
2406 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2407 		/* Hold old state until something *above* high_seq
2408 		 * is ACKed. For Reno it is MUST to prevent false
2409 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2410 		if (!tcp_any_retrans_done(sk))
2411 			tp->retrans_stamp = 0;
2412 		return true;
2413 	}
2414 	return false;
2415 }
2416 
2417 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2418 static bool tcp_try_undo_recovery(struct sock *sk)
2419 {
2420 	struct tcp_sock *tp = tcp_sk(sk);
2421 
2422 	if (tcp_may_undo(tp)) {
2423 		int mib_idx;
2424 
2425 		/* Happy end! We did not retransmit anything
2426 		 * or our original transmission succeeded.
2427 		 */
2428 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2429 		tcp_undo_cwnd_reduction(sk, false);
2430 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2431 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2432 		else
2433 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2434 
2435 		NET_INC_STATS(sock_net(sk), mib_idx);
2436 	} else if (tp->rack.reo_wnd_persist) {
2437 		tp->rack.reo_wnd_persist--;
2438 	}
2439 	if (tcp_is_non_sack_preventing_reopen(sk))
2440 		return true;
2441 	tcp_set_ca_state(sk, TCP_CA_Open);
2442 	tp->is_sack_reneg = 0;
2443 	return false;
2444 }
2445 
2446 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2447 static bool tcp_try_undo_dsack(struct sock *sk)
2448 {
2449 	struct tcp_sock *tp = tcp_sk(sk);
2450 
2451 	if (tp->undo_marker && !tp->undo_retrans) {
2452 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2453 					       tp->rack.reo_wnd_persist + 1);
2454 		DBGUNDO(sk, "D-SACK");
2455 		tcp_undo_cwnd_reduction(sk, false);
2456 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2457 		return true;
2458 	}
2459 	return false;
2460 }
2461 
2462 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2463 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2464 {
2465 	struct tcp_sock *tp = tcp_sk(sk);
2466 
2467 	if (frto_undo || tcp_may_undo(tp)) {
2468 		tcp_undo_cwnd_reduction(sk, true);
2469 
2470 		DBGUNDO(sk, "partial loss");
2471 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2472 		if (frto_undo)
2473 			NET_INC_STATS(sock_net(sk),
2474 					LINUX_MIB_TCPSPURIOUSRTOS);
2475 		inet_csk(sk)->icsk_retransmits = 0;
2476 		if (tcp_is_non_sack_preventing_reopen(sk))
2477 			return true;
2478 		if (frto_undo || tcp_is_sack(tp)) {
2479 			tcp_set_ca_state(sk, TCP_CA_Open);
2480 			tp->is_sack_reneg = 0;
2481 		}
2482 		return true;
2483 	}
2484 	return false;
2485 }
2486 
2487 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2488  * It computes the number of packets to send (sndcnt) based on packets newly
2489  * delivered:
2490  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2491  *	cwnd reductions across a full RTT.
2492  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2493  *      But when the retransmits are acked without further losses, PRR
2494  *      slow starts cwnd up to ssthresh to speed up the recovery.
2495  */
tcp_init_cwnd_reduction(struct sock * sk)2496 static void tcp_init_cwnd_reduction(struct sock *sk)
2497 {
2498 	struct tcp_sock *tp = tcp_sk(sk);
2499 
2500 	tp->high_seq = tp->snd_nxt;
2501 	tp->tlp_high_seq = 0;
2502 	tp->snd_cwnd_cnt = 0;
2503 	tp->prior_cwnd = tp->snd_cwnd;
2504 	tp->prr_delivered = 0;
2505 	tp->prr_out = 0;
2506 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2507 	tcp_ecn_queue_cwr(tp);
2508 }
2509 
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int flag)2510 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2511 {
2512 	struct tcp_sock *tp = tcp_sk(sk);
2513 	int sndcnt = 0;
2514 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2515 
2516 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2517 		return;
2518 
2519 	tp->prr_delivered += newly_acked_sacked;
2520 	if (delta < 0) {
2521 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2522 			       tp->prior_cwnd - 1;
2523 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2524 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2525 		   FLAG_RETRANS_DATA_ACKED) {
2526 		sndcnt = min_t(int, delta,
2527 			       max_t(int, tp->prr_delivered - tp->prr_out,
2528 				     newly_acked_sacked) + 1);
2529 	} else {
2530 		sndcnt = min(delta, newly_acked_sacked);
2531 	}
2532 	/* Force a fast retransmit upon entering fast recovery */
2533 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2534 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2535 }
2536 
tcp_end_cwnd_reduction(struct sock * sk)2537 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2538 {
2539 	struct tcp_sock *tp = tcp_sk(sk);
2540 
2541 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2542 		return;
2543 
2544 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2545 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2546 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2547 		tp->snd_cwnd = tp->snd_ssthresh;
2548 		tp->snd_cwnd_stamp = tcp_jiffies32;
2549 	}
2550 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2551 }
2552 
2553 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2554 void tcp_enter_cwr(struct sock *sk)
2555 {
2556 	struct tcp_sock *tp = tcp_sk(sk);
2557 
2558 	tp->prior_ssthresh = 0;
2559 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2560 		tp->undo_marker = 0;
2561 		tcp_init_cwnd_reduction(sk);
2562 		tcp_set_ca_state(sk, TCP_CA_CWR);
2563 	}
2564 }
2565 EXPORT_SYMBOL(tcp_enter_cwr);
2566 
tcp_try_keep_open(struct sock * sk)2567 static void tcp_try_keep_open(struct sock *sk)
2568 {
2569 	struct tcp_sock *tp = tcp_sk(sk);
2570 	int state = TCP_CA_Open;
2571 
2572 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2573 		state = TCP_CA_Disorder;
2574 
2575 	if (inet_csk(sk)->icsk_ca_state != state) {
2576 		tcp_set_ca_state(sk, state);
2577 		tp->high_seq = tp->snd_nxt;
2578 	}
2579 }
2580 
tcp_try_to_open(struct sock * sk,int flag)2581 static void tcp_try_to_open(struct sock *sk, int flag)
2582 {
2583 	struct tcp_sock *tp = tcp_sk(sk);
2584 
2585 	tcp_verify_left_out(tp);
2586 
2587 	if (!tcp_any_retrans_done(sk))
2588 		tp->retrans_stamp = 0;
2589 
2590 	if (flag & FLAG_ECE)
2591 		tcp_enter_cwr(sk);
2592 
2593 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2594 		tcp_try_keep_open(sk);
2595 	}
2596 }
2597 
tcp_mtup_probe_failed(struct sock * sk)2598 static void tcp_mtup_probe_failed(struct sock *sk)
2599 {
2600 	struct inet_connection_sock *icsk = inet_csk(sk);
2601 
2602 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2603 	icsk->icsk_mtup.probe_size = 0;
2604 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2605 }
2606 
tcp_mtup_probe_success(struct sock * sk)2607 static void tcp_mtup_probe_success(struct sock *sk)
2608 {
2609 	struct tcp_sock *tp = tcp_sk(sk);
2610 	struct inet_connection_sock *icsk = inet_csk(sk);
2611 	u64 val;
2612 
2613 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2614 
2615 	val = (u64)tp->snd_cwnd * tcp_mss_to_mtu(sk, tp->mss_cache);
2616 	do_div(val, icsk->icsk_mtup.probe_size);
2617 	WARN_ON_ONCE((u32)val != val);
2618 	tp->snd_cwnd = max_t(u32, 1U, val);
2619 
2620 	tp->snd_cwnd_cnt = 0;
2621 	tp->snd_cwnd_stamp = tcp_jiffies32;
2622 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2623 
2624 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2625 	icsk->icsk_mtup.probe_size = 0;
2626 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2627 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2628 }
2629 
2630 /* Do a simple retransmit without using the backoff mechanisms in
2631  * tcp_timer. This is used for path mtu discovery.
2632  * The socket is already locked here.
2633  */
tcp_simple_retransmit(struct sock * sk)2634 void tcp_simple_retransmit(struct sock *sk)
2635 {
2636 	const struct inet_connection_sock *icsk = inet_csk(sk);
2637 	struct tcp_sock *tp = tcp_sk(sk);
2638 	struct sk_buff *skb;
2639 	unsigned int mss = tcp_current_mss(sk);
2640 
2641 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2642 		if (tcp_skb_seglen(skb) > mss &&
2643 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2644 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2645 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2646 				tp->retrans_out -= tcp_skb_pcount(skb);
2647 			}
2648 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2649 		}
2650 	}
2651 
2652 	tcp_clear_retrans_hints_partial(tp);
2653 
2654 	if (!tp->lost_out)
2655 		return;
2656 
2657 	if (tcp_is_reno(tp))
2658 		tcp_limit_reno_sacked(tp);
2659 
2660 	tcp_verify_left_out(tp);
2661 
2662 	/* Don't muck with the congestion window here.
2663 	 * Reason is that we do not increase amount of _data_
2664 	 * in network, but units changed and effective
2665 	 * cwnd/ssthresh really reduced now.
2666 	 */
2667 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2668 		tp->high_seq = tp->snd_nxt;
2669 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2670 		tp->prior_ssthresh = 0;
2671 		tp->undo_marker = 0;
2672 		tcp_set_ca_state(sk, TCP_CA_Loss);
2673 	}
2674 	tcp_xmit_retransmit_queue(sk);
2675 }
2676 EXPORT_SYMBOL(tcp_simple_retransmit);
2677 
tcp_enter_recovery(struct sock * sk,bool ece_ack)2678 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2679 {
2680 	struct tcp_sock *tp = tcp_sk(sk);
2681 	int mib_idx;
2682 
2683 	if (tcp_is_reno(tp))
2684 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2685 	else
2686 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2687 
2688 	NET_INC_STATS(sock_net(sk), mib_idx);
2689 
2690 	tp->prior_ssthresh = 0;
2691 	tcp_init_undo(tp);
2692 
2693 	if (!tcp_in_cwnd_reduction(sk)) {
2694 		if (!ece_ack)
2695 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2696 		tcp_init_cwnd_reduction(sk);
2697 	}
2698 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2699 }
2700 
2701 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2702  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2703  */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2704 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2705 			     int *rexmit)
2706 {
2707 	struct tcp_sock *tp = tcp_sk(sk);
2708 	bool recovered = !before(tp->snd_una, tp->high_seq);
2709 
2710 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2711 	    tcp_try_undo_loss(sk, false))
2712 		return;
2713 
2714 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2715 		/* Step 3.b. A timeout is spurious if not all data are
2716 		 * lost, i.e., never-retransmitted data are (s)acked.
2717 		 */
2718 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2719 		    tcp_try_undo_loss(sk, true))
2720 			return;
2721 
2722 		if (after(tp->snd_nxt, tp->high_seq)) {
2723 			if (flag & FLAG_DATA_SACKED || num_dupack)
2724 				tp->frto = 0; /* Step 3.a. loss was real */
2725 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2726 			tp->high_seq = tp->snd_nxt;
2727 			/* Step 2.b. Try send new data (but deferred until cwnd
2728 			 * is updated in tcp_ack()). Otherwise fall back to
2729 			 * the conventional recovery.
2730 			 */
2731 			if (!tcp_write_queue_empty(sk) &&
2732 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2733 				*rexmit = REXMIT_NEW;
2734 				return;
2735 			}
2736 			tp->frto = 0;
2737 		}
2738 	}
2739 
2740 	if (recovered) {
2741 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2742 		tcp_try_undo_recovery(sk);
2743 		return;
2744 	}
2745 	if (tcp_is_reno(tp)) {
2746 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2747 		 * delivered. Lower inflight to clock out (re)tranmissions.
2748 		 */
2749 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2750 			tcp_add_reno_sack(sk, num_dupack);
2751 		else if (flag & FLAG_SND_UNA_ADVANCED)
2752 			tcp_reset_reno_sack(tp);
2753 	}
2754 	*rexmit = REXMIT_LOST;
2755 }
2756 
2757 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una)2758 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2759 {
2760 	struct tcp_sock *tp = tcp_sk(sk);
2761 
2762 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2763 		/* Plain luck! Hole if filled with delayed
2764 		 * packet, rather than with a retransmit. Check reordering.
2765 		 */
2766 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2767 
2768 		/* We are getting evidence that the reordering degree is higher
2769 		 * than we realized. If there are no retransmits out then we
2770 		 * can undo. Otherwise we clock out new packets but do not
2771 		 * mark more packets lost or retransmit more.
2772 		 */
2773 		if (tp->retrans_out)
2774 			return true;
2775 
2776 		if (!tcp_any_retrans_done(sk))
2777 			tp->retrans_stamp = 0;
2778 
2779 		DBGUNDO(sk, "partial recovery");
2780 		tcp_undo_cwnd_reduction(sk, true);
2781 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2782 		tcp_try_keep_open(sk);
2783 		return true;
2784 	}
2785 	return false;
2786 }
2787 
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2788 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2789 {
2790 	struct tcp_sock *tp = tcp_sk(sk);
2791 
2792 	if (tcp_rtx_queue_empty(sk))
2793 		return;
2794 
2795 	if (unlikely(tcp_is_reno(tp))) {
2796 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2797 	} else if (tcp_is_rack(sk)) {
2798 		u32 prior_retrans = tp->retrans_out;
2799 
2800 		if (tcp_rack_mark_lost(sk))
2801 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2802 		if (prior_retrans > tp->retrans_out)
2803 			*ack_flag |= FLAG_LOST_RETRANS;
2804 	}
2805 }
2806 
tcp_force_fast_retransmit(struct sock * sk)2807 static bool tcp_force_fast_retransmit(struct sock *sk)
2808 {
2809 	struct tcp_sock *tp = tcp_sk(sk);
2810 
2811 	return after(tcp_highest_sack_seq(tp),
2812 		     tp->snd_una + tp->reordering * tp->mss_cache);
2813 }
2814 
2815 /* Process an event, which can update packets-in-flight not trivially.
2816  * Main goal of this function is to calculate new estimate for left_out,
2817  * taking into account both packets sitting in receiver's buffer and
2818  * packets lost by network.
2819  *
2820  * Besides that it updates the congestion state when packet loss or ECN
2821  * is detected. But it does not reduce the cwnd, it is done by the
2822  * congestion control later.
2823  *
2824  * It does _not_ decide what to send, it is made in function
2825  * tcp_xmit_retransmit_queue().
2826  */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)2827 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2828 				  int num_dupack, int *ack_flag, int *rexmit)
2829 {
2830 	struct inet_connection_sock *icsk = inet_csk(sk);
2831 	struct tcp_sock *tp = tcp_sk(sk);
2832 	int fast_rexmit = 0, flag = *ack_flag;
2833 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2834 				      tcp_force_fast_retransmit(sk));
2835 
2836 	if (!tp->packets_out && tp->sacked_out)
2837 		tp->sacked_out = 0;
2838 
2839 	/* Now state machine starts.
2840 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2841 	if (flag & FLAG_ECE)
2842 		tp->prior_ssthresh = 0;
2843 
2844 	/* B. In all the states check for reneging SACKs. */
2845 	if (tcp_check_sack_reneging(sk, ack_flag))
2846 		return;
2847 
2848 	/* C. Check consistency of the current state. */
2849 	tcp_verify_left_out(tp);
2850 
2851 	/* D. Check state exit conditions. State can be terminated
2852 	 *    when high_seq is ACKed. */
2853 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2854 		WARN_ON(tp->retrans_out != 0);
2855 		tp->retrans_stamp = 0;
2856 	} else if (!before(tp->snd_una, tp->high_seq)) {
2857 		switch (icsk->icsk_ca_state) {
2858 		case TCP_CA_CWR:
2859 			/* CWR is to be held something *above* high_seq
2860 			 * is ACKed for CWR bit to reach receiver. */
2861 			if (tp->snd_una != tp->high_seq) {
2862 				tcp_end_cwnd_reduction(sk);
2863 				tcp_set_ca_state(sk, TCP_CA_Open);
2864 			}
2865 			break;
2866 
2867 		case TCP_CA_Recovery:
2868 			if (tcp_is_reno(tp))
2869 				tcp_reset_reno_sack(tp);
2870 			if (tcp_try_undo_recovery(sk))
2871 				return;
2872 			tcp_end_cwnd_reduction(sk);
2873 			break;
2874 		}
2875 	}
2876 
2877 	/* E. Process state. */
2878 	switch (icsk->icsk_ca_state) {
2879 	case TCP_CA_Recovery:
2880 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2881 			if (tcp_is_reno(tp))
2882 				tcp_add_reno_sack(sk, num_dupack);
2883 		} else {
2884 			if (tcp_try_undo_partial(sk, prior_snd_una))
2885 				return;
2886 			/* Partial ACK arrived. Force fast retransmit. */
2887 			do_lost = tcp_is_reno(tp) ||
2888 				  tcp_force_fast_retransmit(sk);
2889 		}
2890 		if (tcp_try_undo_dsack(sk)) {
2891 			tcp_try_keep_open(sk);
2892 			return;
2893 		}
2894 		tcp_identify_packet_loss(sk, ack_flag);
2895 		break;
2896 	case TCP_CA_Loss:
2897 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2898 		tcp_identify_packet_loss(sk, ack_flag);
2899 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2900 		      (*ack_flag & FLAG_LOST_RETRANS)))
2901 			return;
2902 		/* Change state if cwnd is undone or retransmits are lost */
2903 		/* fall through */
2904 	default:
2905 		if (tcp_is_reno(tp)) {
2906 			if (flag & FLAG_SND_UNA_ADVANCED)
2907 				tcp_reset_reno_sack(tp);
2908 			tcp_add_reno_sack(sk, num_dupack);
2909 		}
2910 
2911 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2912 			tcp_try_undo_dsack(sk);
2913 
2914 		tcp_identify_packet_loss(sk, ack_flag);
2915 		if (!tcp_time_to_recover(sk, flag)) {
2916 			tcp_try_to_open(sk, flag);
2917 			return;
2918 		}
2919 
2920 		/* MTU probe failure: don't reduce cwnd */
2921 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2922 		    icsk->icsk_mtup.probe_size &&
2923 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2924 			tcp_mtup_probe_failed(sk);
2925 			/* Restores the reduction we did in tcp_mtup_probe() */
2926 			tp->snd_cwnd++;
2927 			tcp_simple_retransmit(sk);
2928 			return;
2929 		}
2930 
2931 		/* Otherwise enter Recovery state */
2932 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2933 		fast_rexmit = 1;
2934 	}
2935 
2936 	if (!tcp_is_rack(sk) && do_lost)
2937 		tcp_update_scoreboard(sk, fast_rexmit);
2938 	*rexmit = REXMIT_LOST;
2939 }
2940 
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)2941 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2942 {
2943 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
2944 	struct tcp_sock *tp = tcp_sk(sk);
2945 
2946 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2947 		/* If the remote keeps returning delayed ACKs, eventually
2948 		 * the min filter would pick it up and overestimate the
2949 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2950 		 */
2951 		return;
2952 	}
2953 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2954 			   rtt_us ? : jiffies_to_usecs(1));
2955 }
2956 
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)2957 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2958 			       long seq_rtt_us, long sack_rtt_us,
2959 			       long ca_rtt_us, struct rate_sample *rs)
2960 {
2961 	const struct tcp_sock *tp = tcp_sk(sk);
2962 
2963 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2964 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2965 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2966 	 * is acked (RFC6298).
2967 	 */
2968 	if (seq_rtt_us < 0)
2969 		seq_rtt_us = sack_rtt_us;
2970 
2971 	/* RTTM Rule: A TSecr value received in a segment is used to
2972 	 * update the averaged RTT measurement only if the segment
2973 	 * acknowledges some new data, i.e., only if it advances the
2974 	 * left edge of the send window.
2975 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2976 	 */
2977 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2978 	    flag & FLAG_ACKED) {
2979 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2980 
2981 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2982 			if (!delta)
2983 				delta = 1;
2984 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2985 			ca_rtt_us = seq_rtt_us;
2986 		}
2987 	}
2988 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2989 	if (seq_rtt_us < 0)
2990 		return false;
2991 
2992 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2993 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2994 	 * values will be skipped with the seq_rtt_us < 0 check above.
2995 	 */
2996 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2997 	tcp_rtt_estimator(sk, seq_rtt_us);
2998 	tcp_set_rto(sk);
2999 
3000 	/* RFC6298: only reset backoff on valid RTT measurement. */
3001 	inet_csk(sk)->icsk_backoff = 0;
3002 	return true;
3003 }
3004 
3005 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3006 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3007 {
3008 	struct rate_sample rs;
3009 	long rtt_us = -1L;
3010 
3011 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3012 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3013 
3014 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3015 }
3016 
3017 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3018 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3019 {
3020 	const struct inet_connection_sock *icsk = inet_csk(sk);
3021 
3022 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3023 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3024 }
3025 
3026 /* Restart timer after forward progress on connection.
3027  * RFC2988 recommends to restart timer to now+rto.
3028  */
tcp_rearm_rto(struct sock * sk)3029 void tcp_rearm_rto(struct sock *sk)
3030 {
3031 	const struct inet_connection_sock *icsk = inet_csk(sk);
3032 	struct tcp_sock *tp = tcp_sk(sk);
3033 
3034 	/* If the retrans timer is currently being used by Fast Open
3035 	 * for SYN-ACK retrans purpose, stay put.
3036 	 */
3037 	if (rcu_access_pointer(tp->fastopen_rsk))
3038 		return;
3039 
3040 	if (!tp->packets_out) {
3041 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3042 	} else {
3043 		u32 rto = inet_csk(sk)->icsk_rto;
3044 		/* Offset the time elapsed after installing regular RTO */
3045 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3046 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3047 			s64 delta_us = tcp_rto_delta_us(sk);
3048 			/* delta_us may not be positive if the socket is locked
3049 			 * when the retrans timer fires and is rescheduled.
3050 			 */
3051 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3052 		}
3053 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3054 				     TCP_RTO_MAX, tcp_rtx_queue_head(sk));
3055 	}
3056 }
3057 
3058 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3059 static void tcp_set_xmit_timer(struct sock *sk)
3060 {
3061 	if (!tcp_schedule_loss_probe(sk, true))
3062 		tcp_rearm_rto(sk);
3063 }
3064 
3065 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3066 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3067 {
3068 	struct tcp_sock *tp = tcp_sk(sk);
3069 	u32 packets_acked;
3070 
3071 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3072 
3073 	packets_acked = tcp_skb_pcount(skb);
3074 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3075 		return 0;
3076 	packets_acked -= tcp_skb_pcount(skb);
3077 
3078 	if (packets_acked) {
3079 		BUG_ON(tcp_skb_pcount(skb) == 0);
3080 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3081 	}
3082 
3083 	return packets_acked;
3084 }
3085 
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,u32 prior_snd_una)3086 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3087 			   u32 prior_snd_una)
3088 {
3089 	const struct skb_shared_info *shinfo;
3090 
3091 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3092 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3093 		return;
3094 
3095 	shinfo = skb_shinfo(skb);
3096 	if (!before(shinfo->tskey, prior_snd_una) &&
3097 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3098 		tcp_skb_tsorted_save(skb) {
3099 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3100 		} tcp_skb_tsorted_restore(skb);
3101 	}
3102 }
3103 
3104 /* Remove acknowledged frames from the retransmission queue. If our packet
3105  * is before the ack sequence we can discard it as it's confirmed to have
3106  * arrived at the other end.
3107  */
tcp_clean_rtx_queue(struct sock * sk,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack)3108 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3109 			       u32 prior_snd_una,
3110 			       struct tcp_sacktag_state *sack)
3111 {
3112 	const struct inet_connection_sock *icsk = inet_csk(sk);
3113 	u64 first_ackt, last_ackt;
3114 	struct tcp_sock *tp = tcp_sk(sk);
3115 	u32 prior_sacked = tp->sacked_out;
3116 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3117 	struct sk_buff *skb, *next;
3118 	bool fully_acked = true;
3119 	long sack_rtt_us = -1L;
3120 	long seq_rtt_us = -1L;
3121 	long ca_rtt_us = -1L;
3122 	u32 pkts_acked = 0;
3123 	u32 last_in_flight = 0;
3124 	bool rtt_update;
3125 	int flag = 0;
3126 
3127 	first_ackt = 0;
3128 
3129 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3130 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3131 		const u32 start_seq = scb->seq;
3132 		u8 sacked = scb->sacked;
3133 		u32 acked_pcount;
3134 
3135 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3136 
3137 		/* Determine how many packets and what bytes were acked, tso and else */
3138 		if (after(scb->end_seq, tp->snd_una)) {
3139 			if (tcp_skb_pcount(skb) == 1 ||
3140 			    !after(tp->snd_una, scb->seq))
3141 				break;
3142 
3143 			acked_pcount = tcp_tso_acked(sk, skb);
3144 			if (!acked_pcount)
3145 				break;
3146 			fully_acked = false;
3147 		} else {
3148 			acked_pcount = tcp_skb_pcount(skb);
3149 		}
3150 
3151 		if (unlikely(sacked & TCPCB_RETRANS)) {
3152 			if (sacked & TCPCB_SACKED_RETRANS)
3153 				tp->retrans_out -= acked_pcount;
3154 			flag |= FLAG_RETRANS_DATA_ACKED;
3155 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3156 			last_ackt = tcp_skb_timestamp_us(skb);
3157 			WARN_ON_ONCE(last_ackt == 0);
3158 			if (!first_ackt)
3159 				first_ackt = last_ackt;
3160 
3161 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3162 			if (before(start_seq, reord))
3163 				reord = start_seq;
3164 			if (!after(scb->end_seq, tp->high_seq))
3165 				flag |= FLAG_ORIG_SACK_ACKED;
3166 		}
3167 
3168 		if (sacked & TCPCB_SACKED_ACKED) {
3169 			tp->sacked_out -= acked_pcount;
3170 		} else if (tcp_is_sack(tp)) {
3171 			tp->delivered += acked_pcount;
3172 			if (!tcp_skb_spurious_retrans(tp, skb))
3173 				tcp_rack_advance(tp, sacked, scb->end_seq,
3174 						 tcp_skb_timestamp_us(skb));
3175 		}
3176 		if (sacked & TCPCB_LOST)
3177 			tp->lost_out -= acked_pcount;
3178 
3179 		tp->packets_out -= acked_pcount;
3180 		pkts_acked += acked_pcount;
3181 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3182 
3183 		/* Initial outgoing SYN's get put onto the write_queue
3184 		 * just like anything else we transmit.  It is not
3185 		 * true data, and if we misinform our callers that
3186 		 * this ACK acks real data, we will erroneously exit
3187 		 * connection startup slow start one packet too
3188 		 * quickly.  This is severely frowned upon behavior.
3189 		 */
3190 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3191 			flag |= FLAG_DATA_ACKED;
3192 		} else {
3193 			flag |= FLAG_SYN_ACKED;
3194 			tp->retrans_stamp = 0;
3195 		}
3196 
3197 		if (!fully_acked)
3198 			break;
3199 
3200 		next = skb_rb_next(skb);
3201 		if (unlikely(skb == tp->retransmit_skb_hint))
3202 			tp->retransmit_skb_hint = NULL;
3203 		if (unlikely(skb == tp->lost_skb_hint))
3204 			tp->lost_skb_hint = NULL;
3205 		tcp_highest_sack_replace(sk, skb, next);
3206 		tcp_rtx_queue_unlink_and_free(skb, sk);
3207 	}
3208 
3209 	if (!skb)
3210 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3211 
3212 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3213 		tp->snd_up = tp->snd_una;
3214 
3215 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3216 		flag |= FLAG_SACK_RENEGING;
3217 
3218 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3219 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3220 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3221 
3222 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3223 		    last_in_flight && !prior_sacked && fully_acked &&
3224 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3225 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3226 			/* Conservatively mark a delayed ACK. It's typically
3227 			 * from a lone runt packet over the round trip to
3228 			 * a receiver w/o out-of-order or CE events.
3229 			 */
3230 			flag |= FLAG_ACK_MAYBE_DELAYED;
3231 		}
3232 	}
3233 	if (sack->first_sackt) {
3234 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3235 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3236 	}
3237 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3238 					ca_rtt_us, sack->rate);
3239 
3240 	if (flag & FLAG_ACKED) {
3241 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3242 		if (unlikely(icsk->icsk_mtup.probe_size &&
3243 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3244 			tcp_mtup_probe_success(sk);
3245 		}
3246 
3247 		if (tcp_is_reno(tp)) {
3248 			tcp_remove_reno_sacks(sk, pkts_acked);
3249 
3250 			/* If any of the cumulatively ACKed segments was
3251 			 * retransmitted, non-SACK case cannot confirm that
3252 			 * progress was due to original transmission due to
3253 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3254 			 * the packets may have been never retransmitted.
3255 			 */
3256 			if (flag & FLAG_RETRANS_DATA_ACKED)
3257 				flag &= ~FLAG_ORIG_SACK_ACKED;
3258 		} else {
3259 			int delta;
3260 
3261 			/* Non-retransmitted hole got filled? That's reordering */
3262 			if (before(reord, prior_fack))
3263 				tcp_check_sack_reordering(sk, reord, 0);
3264 
3265 			delta = prior_sacked - tp->sacked_out;
3266 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3267 		}
3268 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3269 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3270 						    tcp_skb_timestamp_us(skb))) {
3271 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3272 		 * after when the head was last (re)transmitted. Otherwise the
3273 		 * timeout may continue to extend in loss recovery.
3274 		 */
3275 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3276 	}
3277 
3278 	if (icsk->icsk_ca_ops->pkts_acked) {
3279 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3280 					     .rtt_us = sack->rate->rtt_us,
3281 					     .in_flight = last_in_flight };
3282 
3283 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3284 	}
3285 
3286 #if FASTRETRANS_DEBUG > 0
3287 	WARN_ON((int)tp->sacked_out < 0);
3288 	WARN_ON((int)tp->lost_out < 0);
3289 	WARN_ON((int)tp->retrans_out < 0);
3290 	if (!tp->packets_out && tcp_is_sack(tp)) {
3291 		icsk = inet_csk(sk);
3292 		if (tp->lost_out) {
3293 			pr_debug("Leak l=%u %d\n",
3294 				 tp->lost_out, icsk->icsk_ca_state);
3295 			tp->lost_out = 0;
3296 		}
3297 		if (tp->sacked_out) {
3298 			pr_debug("Leak s=%u %d\n",
3299 				 tp->sacked_out, icsk->icsk_ca_state);
3300 			tp->sacked_out = 0;
3301 		}
3302 		if (tp->retrans_out) {
3303 			pr_debug("Leak r=%u %d\n",
3304 				 tp->retrans_out, icsk->icsk_ca_state);
3305 			tp->retrans_out = 0;
3306 		}
3307 	}
3308 #endif
3309 	return flag;
3310 }
3311 
tcp_ack_probe(struct sock * sk)3312 static void tcp_ack_probe(struct sock *sk)
3313 {
3314 	struct inet_connection_sock *icsk = inet_csk(sk);
3315 	struct sk_buff *head = tcp_send_head(sk);
3316 	const struct tcp_sock *tp = tcp_sk(sk);
3317 
3318 	/* Was it a usable window open? */
3319 	if (!head)
3320 		return;
3321 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3322 		icsk->icsk_backoff = 0;
3323 		icsk->icsk_probes_tstamp = 0;
3324 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3325 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3326 		 * This function is not for random using!
3327 		 */
3328 	} else {
3329 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3330 
3331 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3332 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3333 				     when, TCP_RTO_MAX, NULL);
3334 	}
3335 }
3336 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3337 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3338 {
3339 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3340 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3341 }
3342 
3343 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3344 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3345 {
3346 	/* If reordering is high then always grow cwnd whenever data is
3347 	 * delivered regardless of its ordering. Otherwise stay conservative
3348 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3349 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3350 	 * cwnd in tcp_fastretrans_alert() based on more states.
3351 	 */
3352 	if (tcp_sk(sk)->reordering >
3353 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3354 		return flag & FLAG_FORWARD_PROGRESS;
3355 
3356 	return flag & FLAG_DATA_ACKED;
3357 }
3358 
3359 /* The "ultimate" congestion control function that aims to replace the rigid
3360  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3361  * It's called toward the end of processing an ACK with precise rate
3362  * information. All transmission or retransmission are delayed afterwards.
3363  */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3364 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3365 			     int flag, const struct rate_sample *rs)
3366 {
3367 	const struct inet_connection_sock *icsk = inet_csk(sk);
3368 
3369 	if (icsk->icsk_ca_ops->cong_control) {
3370 		icsk->icsk_ca_ops->cong_control(sk, rs);
3371 		return;
3372 	}
3373 
3374 	if (tcp_in_cwnd_reduction(sk)) {
3375 		/* Reduce cwnd if state mandates */
3376 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3377 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3378 		/* Advance cwnd if state allows */
3379 		tcp_cong_avoid(sk, ack, acked_sacked);
3380 	}
3381 	tcp_update_pacing_rate(sk);
3382 }
3383 
3384 /* Check that window update is acceptable.
3385  * The function assumes that snd_una<=ack<=snd_next.
3386  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3387 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3388 					const u32 ack, const u32 ack_seq,
3389 					const u32 nwin)
3390 {
3391 	return	after(ack, tp->snd_una) ||
3392 		after(ack_seq, tp->snd_wl1) ||
3393 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3394 }
3395 
3396 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3397 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3398 {
3399 	u32 delta = ack - tp->snd_una;
3400 
3401 	sock_owned_by_me((struct sock *)tp);
3402 	tp->bytes_acked += delta;
3403 	tp->snd_una = ack;
3404 }
3405 
3406 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3407 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3408 {
3409 	u32 delta = seq - tp->rcv_nxt;
3410 
3411 	sock_owned_by_me((struct sock *)tp);
3412 	tp->bytes_received += delta;
3413 	WRITE_ONCE(tp->rcv_nxt, seq);
3414 }
3415 
3416 /* Update our send window.
3417  *
3418  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3419  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3420  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3421 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3422 				 u32 ack_seq)
3423 {
3424 	struct tcp_sock *tp = tcp_sk(sk);
3425 	int flag = 0;
3426 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3427 
3428 	if (likely(!tcp_hdr(skb)->syn))
3429 		nwin <<= tp->rx_opt.snd_wscale;
3430 
3431 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3432 		flag |= FLAG_WIN_UPDATE;
3433 		tcp_update_wl(tp, ack_seq);
3434 
3435 		if (tp->snd_wnd != nwin) {
3436 			tp->snd_wnd = nwin;
3437 
3438 			/* Note, it is the only place, where
3439 			 * fast path is recovered for sending TCP.
3440 			 */
3441 			tp->pred_flags = 0;
3442 			tcp_fast_path_check(sk);
3443 
3444 			if (!tcp_write_queue_empty(sk))
3445 				tcp_slow_start_after_idle_check(sk);
3446 
3447 			if (nwin > tp->max_window) {
3448 				tp->max_window = nwin;
3449 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3450 			}
3451 		}
3452 	}
3453 
3454 	tcp_snd_una_update(tp, ack);
3455 
3456 	return flag;
3457 }
3458 
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3459 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3460 				   u32 *last_oow_ack_time)
3461 {
3462 	/* Paired with the WRITE_ONCE() in this function. */
3463 	u32 val = READ_ONCE(*last_oow_ack_time);
3464 
3465 	if (val) {
3466 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3467 
3468 		if (0 <= elapsed &&
3469 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3470 			NET_INC_STATS(net, mib_idx);
3471 			return true;	/* rate-limited: don't send yet! */
3472 		}
3473 	}
3474 
3475 	/* Paired with the prior READ_ONCE() and with itself,
3476 	 * as we might be lockless.
3477 	 */
3478 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3479 
3480 	return false;	/* not rate-limited: go ahead, send dupack now! */
3481 }
3482 
3483 /* Return true if we're currently rate-limiting out-of-window ACKs and
3484  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3485  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3486  * attacks that send repeated SYNs or ACKs for the same connection. To
3487  * do this, we do not send a duplicate SYNACK or ACK if the remote
3488  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3489  */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3490 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3491 			  int mib_idx, u32 *last_oow_ack_time)
3492 {
3493 	/* Data packets without SYNs are not likely part of an ACK loop. */
3494 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3495 	    !tcp_hdr(skb)->syn)
3496 		return false;
3497 
3498 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3499 }
3500 
3501 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3502 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3503 {
3504 	/* unprotected vars, we dont care of overwrites */
3505 	static u32 challenge_timestamp;
3506 	static unsigned int challenge_count;
3507 	struct tcp_sock *tp = tcp_sk(sk);
3508 	struct net *net = sock_net(sk);
3509 	u32 count, now;
3510 
3511 	/* First check our per-socket dupack rate limit. */
3512 	if (__tcp_oow_rate_limited(net,
3513 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3514 				   &tp->last_oow_ack_time))
3515 		return;
3516 
3517 	/* Then check host-wide RFC 5961 rate limit. */
3518 	now = jiffies / HZ;
3519 	if (now != READ_ONCE(challenge_timestamp)) {
3520 		u32 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3521 		u32 half = (ack_limit + 1) >> 1;
3522 
3523 		WRITE_ONCE(challenge_timestamp, now);
3524 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3525 	}
3526 	count = READ_ONCE(challenge_count);
3527 	if (count > 0) {
3528 		WRITE_ONCE(challenge_count, count - 1);
3529 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3530 		tcp_send_ack(sk);
3531 	}
3532 }
3533 
tcp_store_ts_recent(struct tcp_sock * tp)3534 static void tcp_store_ts_recent(struct tcp_sock *tp)
3535 {
3536 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3537 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3538 }
3539 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3540 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3541 {
3542 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3543 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3544 		 * extra check below makes sure this can only happen
3545 		 * for pure ACK frames.  -DaveM
3546 		 *
3547 		 * Not only, also it occurs for expired timestamps.
3548 		 */
3549 
3550 		if (tcp_paws_check(&tp->rx_opt, 0))
3551 			tcp_store_ts_recent(tp);
3552 	}
3553 }
3554 
3555 /* This routine deals with acks during a TLP episode and ends an episode by
3556  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3557  */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3558 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3559 {
3560 	struct tcp_sock *tp = tcp_sk(sk);
3561 
3562 	if (before(ack, tp->tlp_high_seq))
3563 		return;
3564 
3565 	if (!tp->tlp_retrans) {
3566 		/* TLP of new data has been acknowledged */
3567 		tp->tlp_high_seq = 0;
3568 	} else if (flag & FLAG_DSACKING_ACK) {
3569 		/* This DSACK means original and TLP probe arrived; no loss */
3570 		tp->tlp_high_seq = 0;
3571 	} else if (after(ack, tp->tlp_high_seq)) {
3572 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3573 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3574 		 */
3575 		tcp_init_cwnd_reduction(sk);
3576 		tcp_set_ca_state(sk, TCP_CA_CWR);
3577 		tcp_end_cwnd_reduction(sk);
3578 		tcp_try_keep_open(sk);
3579 		NET_INC_STATS(sock_net(sk),
3580 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3581 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3582 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3583 		/* Pure dupack: original and TLP probe arrived; no loss */
3584 		tp->tlp_high_seq = 0;
3585 	}
3586 }
3587 
tcp_in_ack_event(struct sock * sk,u32 flags)3588 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3589 {
3590 	const struct inet_connection_sock *icsk = inet_csk(sk);
3591 
3592 	if (icsk->icsk_ca_ops->in_ack_event)
3593 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3594 }
3595 
3596 /* Congestion control has updated the cwnd already. So if we're in
3597  * loss recovery then now we do any new sends (for FRTO) or
3598  * retransmits (for CA_Loss or CA_recovery) that make sense.
3599  */
tcp_xmit_recovery(struct sock * sk,int rexmit)3600 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3601 {
3602 	struct tcp_sock *tp = tcp_sk(sk);
3603 
3604 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3605 		return;
3606 
3607 	if (unlikely(rexmit == 2)) {
3608 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3609 					  TCP_NAGLE_OFF);
3610 		if (after(tp->snd_nxt, tp->high_seq))
3611 			return;
3612 		tp->frto = 0;
3613 	}
3614 	tcp_xmit_retransmit_queue(sk);
3615 }
3616 
3617 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3618 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3619 {
3620 	const struct net *net = sock_net(sk);
3621 	struct tcp_sock *tp = tcp_sk(sk);
3622 	u32 delivered;
3623 
3624 	delivered = tp->delivered - prior_delivered;
3625 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3626 	if (flag & FLAG_ECE) {
3627 		tp->delivered_ce += delivered;
3628 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3629 	}
3630 	return delivered;
3631 }
3632 
3633 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3634 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3635 {
3636 	struct inet_connection_sock *icsk = inet_csk(sk);
3637 	struct tcp_sock *tp = tcp_sk(sk);
3638 	struct tcp_sacktag_state sack_state;
3639 	struct rate_sample rs = { .prior_delivered = 0 };
3640 	u32 prior_snd_una = tp->snd_una;
3641 	bool is_sack_reneg = tp->is_sack_reneg;
3642 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3643 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3644 	int num_dupack = 0;
3645 	int prior_packets = tp->packets_out;
3646 	u32 delivered = tp->delivered;
3647 	u32 lost = tp->lost;
3648 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3649 	u32 prior_fack;
3650 
3651 	sack_state.first_sackt = 0;
3652 	sack_state.rate = &rs;
3653 
3654 	/* We very likely will need to access rtx queue. */
3655 	prefetch(sk->tcp_rtx_queue.rb_node);
3656 
3657 	/* If the ack is older than previous acks
3658 	 * then we can probably ignore it.
3659 	 */
3660 	if (before(ack, prior_snd_una)) {
3661 		u32 max_window;
3662 
3663 		/* do not accept ACK for bytes we never sent. */
3664 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3665 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3666 		if (before(ack, prior_snd_una - max_window)) {
3667 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3668 				tcp_send_challenge_ack(sk, skb);
3669 			return -1;
3670 		}
3671 		goto old_ack;
3672 	}
3673 
3674 	/* If the ack includes data we haven't sent yet, discard
3675 	 * this segment (RFC793 Section 3.9).
3676 	 */
3677 	if (after(ack, tp->snd_nxt))
3678 		return -1;
3679 
3680 	if (after(ack, prior_snd_una)) {
3681 		flag |= FLAG_SND_UNA_ADVANCED;
3682 		icsk->icsk_retransmits = 0;
3683 
3684 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3685 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3686 			if (icsk->icsk_clean_acked)
3687 				icsk->icsk_clean_acked(sk, ack);
3688 #endif
3689 	}
3690 
3691 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3692 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3693 
3694 	/* ts_recent update must be made after we are sure that the packet
3695 	 * is in window.
3696 	 */
3697 	if (flag & FLAG_UPDATE_TS_RECENT)
3698 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3699 
3700 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3701 	    FLAG_SND_UNA_ADVANCED) {
3702 		/* Window is constant, pure forward advance.
3703 		 * No more checks are required.
3704 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3705 		 */
3706 		tcp_update_wl(tp, ack_seq);
3707 		tcp_snd_una_update(tp, ack);
3708 		flag |= FLAG_WIN_UPDATE;
3709 
3710 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3711 
3712 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3713 	} else {
3714 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3715 
3716 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3717 			flag |= FLAG_DATA;
3718 		else
3719 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3720 
3721 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3722 
3723 		if (TCP_SKB_CB(skb)->sacked)
3724 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3725 							&sack_state);
3726 
3727 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3728 			flag |= FLAG_ECE;
3729 			ack_ev_flags |= CA_ACK_ECE;
3730 		}
3731 
3732 		if (flag & FLAG_WIN_UPDATE)
3733 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3734 
3735 		tcp_in_ack_event(sk, ack_ev_flags);
3736 	}
3737 
3738 	/* This is a deviation from RFC3168 since it states that:
3739 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3740 	 * the congestion window, it SHOULD set the CWR bit only on the first
3741 	 * new data packet that it transmits."
3742 	 * We accept CWR on pure ACKs to be more robust
3743 	 * with widely-deployed TCP implementations that do this.
3744 	 */
3745 	tcp_ecn_accept_cwr(sk, skb);
3746 
3747 	/* We passed data and got it acked, remove any soft error
3748 	 * log. Something worked...
3749 	 */
3750 	sk->sk_err_soft = 0;
3751 	icsk->icsk_probes_out = 0;
3752 	tp->rcv_tstamp = tcp_jiffies32;
3753 	if (!prior_packets)
3754 		goto no_queue;
3755 
3756 	/* See if we can take anything off of the retransmit queue. */
3757 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3758 
3759 	tcp_rack_update_reo_wnd(sk, &rs);
3760 
3761 	if (tp->tlp_high_seq)
3762 		tcp_process_tlp_ack(sk, ack, flag);
3763 
3764 	if (tcp_ack_is_dubious(sk, flag)) {
3765 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3766 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3767 			num_dupack = 1;
3768 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3769 			if (!(flag & FLAG_DATA))
3770 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3771 		}
3772 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3773 				      &rexmit);
3774 	}
3775 
3776 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3777 	if (flag & FLAG_SET_XMIT_TIMER)
3778 		tcp_set_xmit_timer(sk);
3779 
3780 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3781 		sk_dst_confirm(sk);
3782 
3783 	delivered = tcp_newly_delivered(sk, delivered, flag);
3784 	lost = tp->lost - lost;			/* freshly marked lost */
3785 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3786 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3787 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3788 	tcp_xmit_recovery(sk, rexmit);
3789 	return 1;
3790 
3791 no_queue:
3792 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3793 	if (flag & FLAG_DSACKING_ACK) {
3794 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3795 				      &rexmit);
3796 		tcp_newly_delivered(sk, delivered, flag);
3797 	}
3798 	/* If this ack opens up a zero window, clear backoff.  It was
3799 	 * being used to time the probes, and is probably far higher than
3800 	 * it needs to be for normal retransmission.
3801 	 */
3802 	tcp_ack_probe(sk);
3803 
3804 	if (tp->tlp_high_seq)
3805 		tcp_process_tlp_ack(sk, ack, flag);
3806 	return 1;
3807 
3808 old_ack:
3809 	/* If data was SACKed, tag it and see if we should send more data.
3810 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3811 	 */
3812 	if (TCP_SKB_CB(skb)->sacked) {
3813 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3814 						&sack_state);
3815 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3816 				      &rexmit);
3817 		tcp_newly_delivered(sk, delivered, flag);
3818 		tcp_xmit_recovery(sk, rexmit);
3819 	}
3820 
3821 	return 0;
3822 }
3823 
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3824 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3825 				      bool syn, struct tcp_fastopen_cookie *foc,
3826 				      bool exp_opt)
3827 {
3828 	/* Valid only in SYN or SYN-ACK with an even length.  */
3829 	if (!foc || !syn || len < 0 || (len & 1))
3830 		return;
3831 
3832 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3833 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3834 		memcpy(foc->val, cookie, len);
3835 	else if (len != 0)
3836 		len = -1;
3837 	foc->len = len;
3838 	foc->exp = exp_opt;
3839 }
3840 
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)3841 static void smc_parse_options(const struct tcphdr *th,
3842 			      struct tcp_options_received *opt_rx,
3843 			      const unsigned char *ptr,
3844 			      int opsize)
3845 {
3846 #if IS_ENABLED(CONFIG_SMC)
3847 	if (static_branch_unlikely(&tcp_have_smc)) {
3848 		if (th->syn && !(opsize & 1) &&
3849 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3850 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3851 			opt_rx->smc_ok = 1;
3852 	}
3853 #endif
3854 }
3855 
3856 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3857  * value on success.
3858  */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)3859 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3860 {
3861 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3862 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3863 	u16 mss = 0;
3864 
3865 	while (length > 0) {
3866 		int opcode = *ptr++;
3867 		int opsize;
3868 
3869 		switch (opcode) {
3870 		case TCPOPT_EOL:
3871 			return mss;
3872 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3873 			length--;
3874 			continue;
3875 		default:
3876 			if (length < 2)
3877 				return mss;
3878 			opsize = *ptr++;
3879 			if (opsize < 2) /* "silly options" */
3880 				return mss;
3881 			if (opsize > length)
3882 				return mss;	/* fail on partial options */
3883 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3884 				u16 in_mss = get_unaligned_be16(ptr);
3885 
3886 				if (in_mss) {
3887 					if (user_mss && user_mss < in_mss)
3888 						in_mss = user_mss;
3889 					mss = in_mss;
3890 				}
3891 			}
3892 			ptr += opsize - 2;
3893 			length -= opsize;
3894 		}
3895 	}
3896 	return mss;
3897 }
3898 
3899 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3900  * But, this can also be called on packets in the established flow when
3901  * the fast version below fails.
3902  */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)3903 void tcp_parse_options(const struct net *net,
3904 		       const struct sk_buff *skb,
3905 		       struct tcp_options_received *opt_rx, int estab,
3906 		       struct tcp_fastopen_cookie *foc)
3907 {
3908 	const unsigned char *ptr;
3909 	const struct tcphdr *th = tcp_hdr(skb);
3910 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3911 
3912 	ptr = (const unsigned char *)(th + 1);
3913 	opt_rx->saw_tstamp = 0;
3914 
3915 	while (length > 0) {
3916 		int opcode = *ptr++;
3917 		int opsize;
3918 
3919 		switch (opcode) {
3920 		case TCPOPT_EOL:
3921 			return;
3922 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3923 			length--;
3924 			continue;
3925 		default:
3926 			if (length < 2)
3927 				return;
3928 			opsize = *ptr++;
3929 			if (opsize < 2) /* "silly options" */
3930 				return;
3931 			if (opsize > length)
3932 				return;	/* don't parse partial options */
3933 			switch (opcode) {
3934 			case TCPOPT_MSS:
3935 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3936 					u16 in_mss = get_unaligned_be16(ptr);
3937 					if (in_mss) {
3938 						if (opt_rx->user_mss &&
3939 						    opt_rx->user_mss < in_mss)
3940 							in_mss = opt_rx->user_mss;
3941 						opt_rx->mss_clamp = in_mss;
3942 					}
3943 				}
3944 				break;
3945 			case TCPOPT_WINDOW:
3946 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3947 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
3948 					__u8 snd_wscale = *(__u8 *)ptr;
3949 					opt_rx->wscale_ok = 1;
3950 					if (snd_wscale > TCP_MAX_WSCALE) {
3951 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3952 								     __func__,
3953 								     snd_wscale,
3954 								     TCP_MAX_WSCALE);
3955 						snd_wscale = TCP_MAX_WSCALE;
3956 					}
3957 					opt_rx->snd_wscale = snd_wscale;
3958 				}
3959 				break;
3960 			case TCPOPT_TIMESTAMP:
3961 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3962 				    ((estab && opt_rx->tstamp_ok) ||
3963 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
3964 					opt_rx->saw_tstamp = 1;
3965 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3966 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3967 				}
3968 				break;
3969 			case TCPOPT_SACK_PERM:
3970 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3971 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
3972 					opt_rx->sack_ok = TCP_SACK_SEEN;
3973 					tcp_sack_reset(opt_rx);
3974 				}
3975 				break;
3976 
3977 			case TCPOPT_SACK:
3978 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3979 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3980 				   opt_rx->sack_ok) {
3981 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3982 				}
3983 				break;
3984 #ifdef CONFIG_TCP_MD5SIG
3985 			case TCPOPT_MD5SIG:
3986 				/*
3987 				 * The MD5 Hash has already been
3988 				 * checked (see tcp_v{4,6}_do_rcv()).
3989 				 */
3990 				break;
3991 #endif
3992 			case TCPOPT_FASTOPEN:
3993 				tcp_parse_fastopen_option(
3994 					opsize - TCPOLEN_FASTOPEN_BASE,
3995 					ptr, th->syn, foc, false);
3996 				break;
3997 
3998 			case TCPOPT_EXP:
3999 				/* Fast Open option shares code 254 using a
4000 				 * 16 bits magic number.
4001 				 */
4002 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4003 				    get_unaligned_be16(ptr) ==
4004 				    TCPOPT_FASTOPEN_MAGIC)
4005 					tcp_parse_fastopen_option(opsize -
4006 						TCPOLEN_EXP_FASTOPEN_BASE,
4007 						ptr + 2, th->syn, foc, true);
4008 				else
4009 					smc_parse_options(th, opt_rx, ptr,
4010 							  opsize);
4011 				break;
4012 
4013 			}
4014 			ptr += opsize-2;
4015 			length -= opsize;
4016 		}
4017 	}
4018 }
4019 EXPORT_SYMBOL(tcp_parse_options);
4020 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4021 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4022 {
4023 	const __be32 *ptr = (const __be32 *)(th + 1);
4024 
4025 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4026 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4027 		tp->rx_opt.saw_tstamp = 1;
4028 		++ptr;
4029 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4030 		++ptr;
4031 		if (*ptr)
4032 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4033 		else
4034 			tp->rx_opt.rcv_tsecr = 0;
4035 		return true;
4036 	}
4037 	return false;
4038 }
4039 
4040 /* Fast parse options. This hopes to only see timestamps.
4041  * If it is wrong it falls back on tcp_parse_options().
4042  */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4043 static bool tcp_fast_parse_options(const struct net *net,
4044 				   const struct sk_buff *skb,
4045 				   const struct tcphdr *th, struct tcp_sock *tp)
4046 {
4047 	/* In the spirit of fast parsing, compare doff directly to constant
4048 	 * values.  Because equality is used, short doff can be ignored here.
4049 	 */
4050 	if (th->doff == (sizeof(*th) / 4)) {
4051 		tp->rx_opt.saw_tstamp = 0;
4052 		return false;
4053 	} else if (tp->rx_opt.tstamp_ok &&
4054 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4055 		if (tcp_parse_aligned_timestamp(tp, th))
4056 			return true;
4057 	}
4058 
4059 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4060 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4061 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4062 
4063 	return true;
4064 }
4065 
4066 #ifdef CONFIG_TCP_MD5SIG
4067 /*
4068  * Parse MD5 Signature option
4069  */
tcp_parse_md5sig_option(const struct tcphdr * th)4070 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4071 {
4072 	int length = (th->doff << 2) - sizeof(*th);
4073 	const u8 *ptr = (const u8 *)(th + 1);
4074 
4075 	/* If not enough data remaining, we can short cut */
4076 	while (length >= TCPOLEN_MD5SIG) {
4077 		int opcode = *ptr++;
4078 		int opsize;
4079 
4080 		switch (opcode) {
4081 		case TCPOPT_EOL:
4082 			return NULL;
4083 		case TCPOPT_NOP:
4084 			length--;
4085 			continue;
4086 		default:
4087 			opsize = *ptr++;
4088 			if (opsize < 2 || opsize > length)
4089 				return NULL;
4090 			if (opcode == TCPOPT_MD5SIG)
4091 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4092 		}
4093 		ptr += opsize - 2;
4094 		length -= opsize;
4095 	}
4096 	return NULL;
4097 }
4098 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4099 #endif
4100 
4101 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4102  *
4103  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4104  * it can pass through stack. So, the following predicate verifies that
4105  * this segment is not used for anything but congestion avoidance or
4106  * fast retransmit. Moreover, we even are able to eliminate most of such
4107  * second order effects, if we apply some small "replay" window (~RTO)
4108  * to timestamp space.
4109  *
4110  * All these measures still do not guarantee that we reject wrapped ACKs
4111  * on networks with high bandwidth, when sequence space is recycled fastly,
4112  * but it guarantees that such events will be very rare and do not affect
4113  * connection seriously. This doesn't look nice, but alas, PAWS is really
4114  * buggy extension.
4115  *
4116  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4117  * states that events when retransmit arrives after original data are rare.
4118  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4119  * the biggest problem on large power networks even with minor reordering.
4120  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4121  * up to bandwidth of 18Gigabit/sec. 8) ]
4122  */
4123 
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4124 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4125 {
4126 	const struct tcp_sock *tp = tcp_sk(sk);
4127 	const struct tcphdr *th = tcp_hdr(skb);
4128 	u32 seq = TCP_SKB_CB(skb)->seq;
4129 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4130 
4131 	return (/* 1. Pure ACK with correct sequence number. */
4132 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4133 
4134 		/* 2. ... and duplicate ACK. */
4135 		ack == tp->snd_una &&
4136 
4137 		/* 3. ... and does not update window. */
4138 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4139 
4140 		/* 4. ... and sits in replay window. */
4141 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4142 }
4143 
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4144 static inline bool tcp_paws_discard(const struct sock *sk,
4145 				   const struct sk_buff *skb)
4146 {
4147 	const struct tcp_sock *tp = tcp_sk(sk);
4148 
4149 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4150 	       !tcp_disordered_ack(sk, skb);
4151 }
4152 
4153 /* Check segment sequence number for validity.
4154  *
4155  * Segment controls are considered valid, if the segment
4156  * fits to the window after truncation to the window. Acceptability
4157  * of data (and SYN, FIN, of course) is checked separately.
4158  * See tcp_data_queue(), for example.
4159  *
4160  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4161  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4162  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4163  * (borrowed from freebsd)
4164  */
4165 
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4166 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4167 {
4168 	return	!before(end_seq, tp->rcv_wup) &&
4169 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4170 }
4171 
4172 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)4173 void tcp_reset(struct sock *sk)
4174 {
4175 	trace_tcp_receive_reset(sk);
4176 
4177 	/* We want the right error as BSD sees it (and indeed as we do). */
4178 	switch (sk->sk_state) {
4179 	case TCP_SYN_SENT:
4180 		sk->sk_err = ECONNREFUSED;
4181 		break;
4182 	case TCP_CLOSE_WAIT:
4183 		sk->sk_err = EPIPE;
4184 		break;
4185 	case TCP_CLOSE:
4186 		return;
4187 	default:
4188 		sk->sk_err = ECONNRESET;
4189 	}
4190 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4191 	smp_wmb();
4192 
4193 	tcp_write_queue_purge(sk);
4194 	tcp_done(sk);
4195 
4196 	if (!sock_flag(sk, SOCK_DEAD))
4197 		sk->sk_error_report(sk);
4198 }
4199 
4200 /*
4201  * 	Process the FIN bit. This now behaves as it is supposed to work
4202  *	and the FIN takes effect when it is validly part of sequence
4203  *	space. Not before when we get holes.
4204  *
4205  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4206  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4207  *	TIME-WAIT)
4208  *
4209  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4210  *	close and we go into CLOSING (and later onto TIME-WAIT)
4211  *
4212  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4213  */
tcp_fin(struct sock * sk)4214 void tcp_fin(struct sock *sk)
4215 {
4216 	struct tcp_sock *tp = tcp_sk(sk);
4217 
4218 	inet_csk_schedule_ack(sk);
4219 
4220 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4221 	sock_set_flag(sk, SOCK_DONE);
4222 
4223 	switch (sk->sk_state) {
4224 	case TCP_SYN_RECV:
4225 	case TCP_ESTABLISHED:
4226 		/* Move to CLOSE_WAIT */
4227 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4228 		inet_csk_enter_pingpong_mode(sk);
4229 		break;
4230 
4231 	case TCP_CLOSE_WAIT:
4232 	case TCP_CLOSING:
4233 		/* Received a retransmission of the FIN, do
4234 		 * nothing.
4235 		 */
4236 		break;
4237 	case TCP_LAST_ACK:
4238 		/* RFC793: Remain in the LAST-ACK state. */
4239 		break;
4240 
4241 	case TCP_FIN_WAIT1:
4242 		/* This case occurs when a simultaneous close
4243 		 * happens, we must ack the received FIN and
4244 		 * enter the CLOSING state.
4245 		 */
4246 		tcp_send_ack(sk);
4247 		tcp_set_state(sk, TCP_CLOSING);
4248 		break;
4249 	case TCP_FIN_WAIT2:
4250 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4251 		tcp_send_ack(sk);
4252 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4253 		break;
4254 	default:
4255 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4256 		 * cases we should never reach this piece of code.
4257 		 */
4258 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4259 		       __func__, sk->sk_state);
4260 		break;
4261 	}
4262 
4263 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4264 	 * Probably, we should reset in this case. For now drop them.
4265 	 */
4266 	skb_rbtree_purge(&tp->out_of_order_queue);
4267 	if (tcp_is_sack(tp))
4268 		tcp_sack_reset(&tp->rx_opt);
4269 	sk_mem_reclaim(sk);
4270 
4271 	if (!sock_flag(sk, SOCK_DEAD)) {
4272 		sk->sk_state_change(sk);
4273 
4274 		/* Do not send POLL_HUP for half duplex close. */
4275 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4276 		    sk->sk_state == TCP_CLOSE)
4277 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4278 		else
4279 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4280 	}
4281 }
4282 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4283 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4284 				  u32 end_seq)
4285 {
4286 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4287 		if (before(seq, sp->start_seq))
4288 			sp->start_seq = seq;
4289 		if (after(end_seq, sp->end_seq))
4290 			sp->end_seq = end_seq;
4291 		return true;
4292 	}
4293 	return false;
4294 }
4295 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4296 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4297 {
4298 	struct tcp_sock *tp = tcp_sk(sk);
4299 
4300 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4301 		int mib_idx;
4302 
4303 		if (before(seq, tp->rcv_nxt))
4304 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4305 		else
4306 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4307 
4308 		NET_INC_STATS(sock_net(sk), mib_idx);
4309 
4310 		tp->rx_opt.dsack = 1;
4311 		tp->duplicate_sack[0].start_seq = seq;
4312 		tp->duplicate_sack[0].end_seq = end_seq;
4313 	}
4314 }
4315 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4316 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4317 {
4318 	struct tcp_sock *tp = tcp_sk(sk);
4319 
4320 	if (!tp->rx_opt.dsack)
4321 		tcp_dsack_set(sk, seq, end_seq);
4322 	else
4323 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4324 }
4325 
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4326 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4327 {
4328 	/* When the ACK path fails or drops most ACKs, the sender would
4329 	 * timeout and spuriously retransmit the same segment repeatedly.
4330 	 * The receiver remembers and reflects via DSACKs. Leverage the
4331 	 * DSACK state and change the txhash to re-route speculatively.
4332 	 */
4333 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4334 		sk_rethink_txhash(sk);
4335 }
4336 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4337 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4338 {
4339 	struct tcp_sock *tp = tcp_sk(sk);
4340 
4341 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4342 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4343 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4344 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4345 
4346 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4347 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4348 
4349 			tcp_rcv_spurious_retrans(sk, skb);
4350 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4351 				end_seq = tp->rcv_nxt;
4352 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4353 		}
4354 	}
4355 
4356 	tcp_send_ack(sk);
4357 }
4358 
4359 /* These routines update the SACK block as out-of-order packets arrive or
4360  * in-order packets close up the sequence space.
4361  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4362 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4363 {
4364 	int this_sack;
4365 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4366 	struct tcp_sack_block *swalk = sp + 1;
4367 
4368 	/* See if the recent change to the first SACK eats into
4369 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4370 	 */
4371 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4372 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4373 			int i;
4374 
4375 			/* Zap SWALK, by moving every further SACK up by one slot.
4376 			 * Decrease num_sacks.
4377 			 */
4378 			tp->rx_opt.num_sacks--;
4379 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4380 				sp[i] = sp[i + 1];
4381 			continue;
4382 		}
4383 		this_sack++, swalk++;
4384 	}
4385 }
4386 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4387 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4388 {
4389 	struct tcp_sock *tp = tcp_sk(sk);
4390 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4391 	int cur_sacks = tp->rx_opt.num_sacks;
4392 	int this_sack;
4393 
4394 	if (!cur_sacks)
4395 		goto new_sack;
4396 
4397 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4398 		if (tcp_sack_extend(sp, seq, end_seq)) {
4399 			/* Rotate this_sack to the first one. */
4400 			for (; this_sack > 0; this_sack--, sp--)
4401 				swap(*sp, *(sp - 1));
4402 			if (cur_sacks > 1)
4403 				tcp_sack_maybe_coalesce(tp);
4404 			return;
4405 		}
4406 	}
4407 
4408 	/* Could not find an adjacent existing SACK, build a new one,
4409 	 * put it at the front, and shift everyone else down.  We
4410 	 * always know there is at least one SACK present already here.
4411 	 *
4412 	 * If the sack array is full, forget about the last one.
4413 	 */
4414 	if (this_sack >= TCP_NUM_SACKS) {
4415 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4416 			tcp_send_ack(sk);
4417 		this_sack--;
4418 		tp->rx_opt.num_sacks--;
4419 		sp--;
4420 	}
4421 	for (; this_sack > 0; this_sack--, sp--)
4422 		*sp = *(sp - 1);
4423 
4424 new_sack:
4425 	/* Build the new head SACK, and we're done. */
4426 	sp->start_seq = seq;
4427 	sp->end_seq = end_seq;
4428 	tp->rx_opt.num_sacks++;
4429 }
4430 
4431 /* RCV.NXT advances, some SACKs should be eaten. */
4432 
tcp_sack_remove(struct tcp_sock * tp)4433 static void tcp_sack_remove(struct tcp_sock *tp)
4434 {
4435 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4436 	int num_sacks = tp->rx_opt.num_sacks;
4437 	int this_sack;
4438 
4439 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4440 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4441 		tp->rx_opt.num_sacks = 0;
4442 		return;
4443 	}
4444 
4445 	for (this_sack = 0; this_sack < num_sacks;) {
4446 		/* Check if the start of the sack is covered by RCV.NXT. */
4447 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4448 			int i;
4449 
4450 			/* RCV.NXT must cover all the block! */
4451 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4452 
4453 			/* Zap this SACK, by moving forward any other SACKS. */
4454 			for (i = this_sack+1; i < num_sacks; i++)
4455 				tp->selective_acks[i-1] = tp->selective_acks[i];
4456 			num_sacks--;
4457 			continue;
4458 		}
4459 		this_sack++;
4460 		sp++;
4461 	}
4462 	tp->rx_opt.num_sacks = num_sacks;
4463 }
4464 
4465 /**
4466  * tcp_try_coalesce - try to merge skb to prior one
4467  * @sk: socket
4468  * @dest: destination queue
4469  * @to: prior buffer
4470  * @from: buffer to add in queue
4471  * @fragstolen: pointer to boolean
4472  *
4473  * Before queueing skb @from after @to, try to merge them
4474  * to reduce overall memory use and queue lengths, if cost is small.
4475  * Packets in ofo or receive queues can stay a long time.
4476  * Better try to coalesce them right now to avoid future collapses.
4477  * Returns true if caller should free @from instead of queueing it
4478  */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4479 static bool tcp_try_coalesce(struct sock *sk,
4480 			     struct sk_buff *to,
4481 			     struct sk_buff *from,
4482 			     bool *fragstolen)
4483 {
4484 	int delta;
4485 
4486 	*fragstolen = false;
4487 
4488 	/* Its possible this segment overlaps with prior segment in queue */
4489 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4490 		return false;
4491 
4492 #ifdef CONFIG_TLS_DEVICE
4493 	if (from->decrypted != to->decrypted)
4494 		return false;
4495 #endif
4496 
4497 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4498 		return false;
4499 
4500 	atomic_add(delta, &sk->sk_rmem_alloc);
4501 	sk_mem_charge(sk, delta);
4502 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4503 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4504 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4505 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4506 
4507 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4508 		TCP_SKB_CB(to)->has_rxtstamp = true;
4509 		to->tstamp = from->tstamp;
4510 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4511 	}
4512 
4513 	return true;
4514 }
4515 
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4516 static bool tcp_ooo_try_coalesce(struct sock *sk,
4517 			     struct sk_buff *to,
4518 			     struct sk_buff *from,
4519 			     bool *fragstolen)
4520 {
4521 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4522 
4523 	/* In case tcp_drop() is called later, update to->gso_segs */
4524 	if (res) {
4525 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4526 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4527 
4528 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4529 	}
4530 	return res;
4531 }
4532 
tcp_drop(struct sock * sk,struct sk_buff * skb)4533 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4534 {
4535 	trace_android_vh_kfree_skb(skb);
4536 	sk_drops_add(sk, skb);
4537 	__kfree_skb(skb);
4538 }
4539 
4540 /* This one checks to see if we can put data from the
4541  * out_of_order queue into the receive_queue.
4542  */
tcp_ofo_queue(struct sock * sk)4543 static void tcp_ofo_queue(struct sock *sk)
4544 {
4545 	struct tcp_sock *tp = tcp_sk(sk);
4546 	__u32 dsack_high = tp->rcv_nxt;
4547 	bool fin, fragstolen, eaten;
4548 	struct sk_buff *skb, *tail;
4549 	struct rb_node *p;
4550 
4551 	p = rb_first(&tp->out_of_order_queue);
4552 	while (p) {
4553 		skb = rb_to_skb(p);
4554 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4555 			break;
4556 
4557 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4558 			__u32 dsack = dsack_high;
4559 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4560 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4561 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4562 		}
4563 		p = rb_next(p);
4564 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4565 
4566 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4567 			tcp_drop(sk, skb);
4568 			continue;
4569 		}
4570 
4571 		tail = skb_peek_tail(&sk->sk_receive_queue);
4572 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4573 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4574 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4575 		if (!eaten)
4576 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4577 		else
4578 			kfree_skb_partial(skb, fragstolen);
4579 
4580 		if (unlikely(fin)) {
4581 			tcp_fin(sk);
4582 			/* tcp_fin() purges tp->out_of_order_queue,
4583 			 * so we must end this loop right now.
4584 			 */
4585 			break;
4586 		}
4587 	}
4588 }
4589 
4590 static bool tcp_prune_ofo_queue(struct sock *sk);
4591 static int tcp_prune_queue(struct sock *sk);
4592 
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4593 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4594 				 unsigned int size)
4595 {
4596 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4597 	    !sk_rmem_schedule(sk, skb, size)) {
4598 
4599 		if (tcp_prune_queue(sk) < 0)
4600 			return -1;
4601 
4602 		while (!sk_rmem_schedule(sk, skb, size)) {
4603 			if (!tcp_prune_ofo_queue(sk))
4604 				return -1;
4605 		}
4606 	}
4607 	return 0;
4608 }
4609 
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4610 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4611 {
4612 	struct tcp_sock *tp = tcp_sk(sk);
4613 	struct rb_node **p, *parent;
4614 	struct sk_buff *skb1;
4615 	u32 seq, end_seq;
4616 	bool fragstolen;
4617 
4618 	tcp_ecn_check_ce(sk, skb);
4619 
4620 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4621 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4622 		sk->sk_data_ready(sk);
4623 		tcp_drop(sk, skb);
4624 		return;
4625 	}
4626 
4627 	/* Disable header prediction. */
4628 	tp->pred_flags = 0;
4629 	inet_csk_schedule_ack(sk);
4630 
4631 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4632 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4633 	seq = TCP_SKB_CB(skb)->seq;
4634 	end_seq = TCP_SKB_CB(skb)->end_seq;
4635 
4636 	p = &tp->out_of_order_queue.rb_node;
4637 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4638 		/* Initial out of order segment, build 1 SACK. */
4639 		if (tcp_is_sack(tp)) {
4640 			tp->rx_opt.num_sacks = 1;
4641 			tp->selective_acks[0].start_seq = seq;
4642 			tp->selective_acks[0].end_seq = end_seq;
4643 		}
4644 		rb_link_node(&skb->rbnode, NULL, p);
4645 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4646 		tp->ooo_last_skb = skb;
4647 		goto end;
4648 	}
4649 
4650 	/* In the typical case, we are adding an skb to the end of the list.
4651 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4652 	 */
4653 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4654 				 skb, &fragstolen)) {
4655 coalesce_done:
4656 		/* For non sack flows, do not grow window to force DUPACK
4657 		 * and trigger fast retransmit.
4658 		 */
4659 		if (tcp_is_sack(tp))
4660 			tcp_grow_window(sk, skb);
4661 		kfree_skb_partial(skb, fragstolen);
4662 		skb = NULL;
4663 		goto add_sack;
4664 	}
4665 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4666 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4667 		parent = &tp->ooo_last_skb->rbnode;
4668 		p = &parent->rb_right;
4669 		goto insert;
4670 	}
4671 
4672 	/* Find place to insert this segment. Handle overlaps on the way. */
4673 	parent = NULL;
4674 	while (*p) {
4675 		parent = *p;
4676 		skb1 = rb_to_skb(parent);
4677 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4678 			p = &parent->rb_left;
4679 			continue;
4680 		}
4681 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4682 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4683 				/* All the bits are present. Drop. */
4684 				NET_INC_STATS(sock_net(sk),
4685 					      LINUX_MIB_TCPOFOMERGE);
4686 				tcp_drop(sk, skb);
4687 				skb = NULL;
4688 				tcp_dsack_set(sk, seq, end_seq);
4689 				goto add_sack;
4690 			}
4691 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4692 				/* Partial overlap. */
4693 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4694 			} else {
4695 				/* skb's seq == skb1's seq and skb covers skb1.
4696 				 * Replace skb1 with skb.
4697 				 */
4698 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4699 						&tp->out_of_order_queue);
4700 				tcp_dsack_extend(sk,
4701 						 TCP_SKB_CB(skb1)->seq,
4702 						 TCP_SKB_CB(skb1)->end_seq);
4703 				NET_INC_STATS(sock_net(sk),
4704 					      LINUX_MIB_TCPOFOMERGE);
4705 				tcp_drop(sk, skb1);
4706 				goto merge_right;
4707 			}
4708 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4709 						skb, &fragstolen)) {
4710 			goto coalesce_done;
4711 		}
4712 		p = &parent->rb_right;
4713 	}
4714 insert:
4715 	/* Insert segment into RB tree. */
4716 	rb_link_node(&skb->rbnode, parent, p);
4717 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4718 
4719 merge_right:
4720 	/* Remove other segments covered by skb. */
4721 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4722 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4723 			break;
4724 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4725 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4726 					 end_seq);
4727 			break;
4728 		}
4729 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4730 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4731 				 TCP_SKB_CB(skb1)->end_seq);
4732 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4733 		tcp_drop(sk, skb1);
4734 	}
4735 	/* If there is no skb after us, we are the last_skb ! */
4736 	if (!skb1)
4737 		tp->ooo_last_skb = skb;
4738 
4739 add_sack:
4740 	if (tcp_is_sack(tp))
4741 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4742 end:
4743 	if (skb) {
4744 		/* For non sack flows, do not grow window to force DUPACK
4745 		 * and trigger fast retransmit.
4746 		 */
4747 		if (tcp_is_sack(tp))
4748 			tcp_grow_window(sk, skb);
4749 		skb_condense(skb);
4750 		skb_set_owner_r(skb, sk);
4751 	}
4752 }
4753 
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)4754 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4755 				      bool *fragstolen)
4756 {
4757 	int eaten;
4758 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4759 
4760 	eaten = (tail &&
4761 		 tcp_try_coalesce(sk, tail,
4762 				  skb, fragstolen)) ? 1 : 0;
4763 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4764 	if (!eaten) {
4765 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4766 		skb_set_owner_r(skb, sk);
4767 	}
4768 	return eaten;
4769 }
4770 
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4771 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4772 {
4773 	struct sk_buff *skb;
4774 	int err = -ENOMEM;
4775 	int data_len = 0;
4776 	bool fragstolen;
4777 
4778 	if (size == 0)
4779 		return 0;
4780 
4781 	if (size > PAGE_SIZE) {
4782 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4783 
4784 		data_len = npages << PAGE_SHIFT;
4785 		size = data_len + (size & ~PAGE_MASK);
4786 	}
4787 	skb = alloc_skb_with_frags(size - data_len, data_len,
4788 				   PAGE_ALLOC_COSTLY_ORDER,
4789 				   &err, sk->sk_allocation);
4790 	if (!skb)
4791 		goto err;
4792 
4793 	skb_put(skb, size - data_len);
4794 	skb->data_len = data_len;
4795 	skb->len = size;
4796 
4797 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4798 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4799 		goto err_free;
4800 	}
4801 
4802 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4803 	if (err)
4804 		goto err_free;
4805 
4806 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4807 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4808 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4809 
4810 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4811 		WARN_ON_ONCE(fragstolen); /* should not happen */
4812 		__kfree_skb(skb);
4813 	}
4814 	return size;
4815 
4816 err_free:
4817 	kfree_skb(skb);
4818 err:
4819 	return err;
4820 
4821 }
4822 
tcp_data_ready(struct sock * sk)4823 void tcp_data_ready(struct sock *sk)
4824 {
4825 	const struct tcp_sock *tp = tcp_sk(sk);
4826 	int avail = tp->rcv_nxt - tp->copied_seq;
4827 
4828 	if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4829 	    !sock_flag(sk, SOCK_DONE) &&
4830 	    tcp_receive_window(tp) > inet_csk(sk)->icsk_ack.rcv_mss)
4831 		return;
4832 
4833 	sk->sk_data_ready(sk);
4834 }
4835 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4836 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4837 {
4838 	struct tcp_sock *tp = tcp_sk(sk);
4839 	bool fragstolen;
4840 	int eaten;
4841 
4842 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4843 		__kfree_skb(skb);
4844 		return;
4845 	}
4846 	skb_dst_drop(skb);
4847 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4848 
4849 	tp->rx_opt.dsack = 0;
4850 
4851 	/*  Queue data for delivery to the user.
4852 	 *  Packets in sequence go to the receive queue.
4853 	 *  Out of sequence packets to the out_of_order_queue.
4854 	 */
4855 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4856 		if (tcp_receive_window(tp) == 0) {
4857 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4858 			goto out_of_window;
4859 		}
4860 
4861 		/* Ok. In sequence. In window. */
4862 queue_and_out:
4863 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4864 			sk_forced_mem_schedule(sk, skb->truesize);
4865 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4866 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4867 			sk->sk_data_ready(sk);
4868 			goto drop;
4869 		}
4870 
4871 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4872 		if (skb->len)
4873 			tcp_event_data_recv(sk, skb);
4874 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4875 			tcp_fin(sk);
4876 
4877 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4878 			tcp_ofo_queue(sk);
4879 
4880 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4881 			 * gap in queue is filled.
4882 			 */
4883 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4884 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4885 		}
4886 
4887 		if (tp->rx_opt.num_sacks)
4888 			tcp_sack_remove(tp);
4889 
4890 		tcp_fast_path_check(sk);
4891 
4892 		if (eaten > 0)
4893 			kfree_skb_partial(skb, fragstolen);
4894 		if (!sock_flag(sk, SOCK_DEAD))
4895 			tcp_data_ready(sk);
4896 		return;
4897 	}
4898 
4899 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4900 		tcp_rcv_spurious_retrans(sk, skb);
4901 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4902 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4903 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4904 
4905 out_of_window:
4906 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4907 		inet_csk_schedule_ack(sk);
4908 drop:
4909 		tcp_drop(sk, skb);
4910 		return;
4911 	}
4912 
4913 	/* Out of window. F.e. zero window probe. */
4914 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4915 		goto out_of_window;
4916 
4917 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4918 		/* Partial packet, seq < rcv_next < end_seq */
4919 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4920 
4921 		/* If window is closed, drop tail of packet. But after
4922 		 * remembering D-SACK for its head made in previous line.
4923 		 */
4924 		if (!tcp_receive_window(tp)) {
4925 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4926 			goto out_of_window;
4927 		}
4928 		goto queue_and_out;
4929 	}
4930 
4931 	tcp_data_queue_ofo(sk, skb);
4932 }
4933 
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)4934 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4935 {
4936 	if (list)
4937 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4938 
4939 	return skb_rb_next(skb);
4940 }
4941 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)4942 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4943 					struct sk_buff_head *list,
4944 					struct rb_root *root)
4945 {
4946 	struct sk_buff *next = tcp_skb_next(skb, list);
4947 
4948 	if (list)
4949 		__skb_unlink(skb, list);
4950 	else
4951 		rb_erase(&skb->rbnode, root);
4952 
4953 	__kfree_skb(skb);
4954 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4955 
4956 	return next;
4957 }
4958 
4959 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)4960 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4961 {
4962 	struct rb_node **p = &root->rb_node;
4963 	struct rb_node *parent = NULL;
4964 	struct sk_buff *skb1;
4965 
4966 	while (*p) {
4967 		parent = *p;
4968 		skb1 = rb_to_skb(parent);
4969 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4970 			p = &parent->rb_left;
4971 		else
4972 			p = &parent->rb_right;
4973 	}
4974 	rb_link_node(&skb->rbnode, parent, p);
4975 	rb_insert_color(&skb->rbnode, root);
4976 }
4977 
4978 /* Collapse contiguous sequence of skbs head..tail with
4979  * sequence numbers start..end.
4980  *
4981  * If tail is NULL, this means until the end of the queue.
4982  *
4983  * Segments with FIN/SYN are not collapsed (only because this
4984  * simplifies code)
4985  */
4986 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)4987 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4988 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4989 {
4990 	struct sk_buff *skb = head, *n;
4991 	struct sk_buff_head tmp;
4992 	bool end_of_skbs;
4993 
4994 	/* First, check that queue is collapsible and find
4995 	 * the point where collapsing can be useful.
4996 	 */
4997 restart:
4998 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4999 		n = tcp_skb_next(skb, list);
5000 
5001 		/* No new bits? It is possible on ofo queue. */
5002 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5003 			skb = tcp_collapse_one(sk, skb, list, root);
5004 			if (!skb)
5005 				break;
5006 			goto restart;
5007 		}
5008 
5009 		/* The first skb to collapse is:
5010 		 * - not SYN/FIN and
5011 		 * - bloated or contains data before "start" or
5012 		 *   overlaps to the next one.
5013 		 */
5014 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5015 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5016 		     before(TCP_SKB_CB(skb)->seq, start))) {
5017 			end_of_skbs = false;
5018 			break;
5019 		}
5020 
5021 		if (n && n != tail &&
5022 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5023 			end_of_skbs = false;
5024 			break;
5025 		}
5026 
5027 		/* Decided to skip this, advance start seq. */
5028 		start = TCP_SKB_CB(skb)->end_seq;
5029 	}
5030 	if (end_of_skbs ||
5031 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5032 		return;
5033 
5034 	__skb_queue_head_init(&tmp);
5035 
5036 	while (before(start, end)) {
5037 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5038 		struct sk_buff *nskb;
5039 
5040 		nskb = alloc_skb(copy, GFP_ATOMIC);
5041 		if (!nskb)
5042 			break;
5043 
5044 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5045 #ifdef CONFIG_TLS_DEVICE
5046 		nskb->decrypted = skb->decrypted;
5047 #endif
5048 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5049 		if (list)
5050 			__skb_queue_before(list, skb, nskb);
5051 		else
5052 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5053 		skb_set_owner_r(nskb, sk);
5054 
5055 		/* Copy data, releasing collapsed skbs. */
5056 		while (copy > 0) {
5057 			int offset = start - TCP_SKB_CB(skb)->seq;
5058 			int size = TCP_SKB_CB(skb)->end_seq - start;
5059 
5060 			BUG_ON(offset < 0);
5061 			if (size > 0) {
5062 				size = min(copy, size);
5063 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5064 					BUG();
5065 				TCP_SKB_CB(nskb)->end_seq += size;
5066 				copy -= size;
5067 				start += size;
5068 			}
5069 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5070 				skb = tcp_collapse_one(sk, skb, list, root);
5071 				if (!skb ||
5072 				    skb == tail ||
5073 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5074 					goto end;
5075 #ifdef CONFIG_TLS_DEVICE
5076 				if (skb->decrypted != nskb->decrypted)
5077 					goto end;
5078 #endif
5079 			}
5080 		}
5081 	}
5082 end:
5083 	skb_queue_walk_safe(&tmp, skb, n)
5084 		tcp_rbtree_insert(root, skb);
5085 }
5086 
5087 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5088  * and tcp_collapse() them until all the queue is collapsed.
5089  */
tcp_collapse_ofo_queue(struct sock * sk)5090 static void tcp_collapse_ofo_queue(struct sock *sk)
5091 {
5092 	struct tcp_sock *tp = tcp_sk(sk);
5093 	u32 range_truesize, sum_tiny = 0;
5094 	struct sk_buff *skb, *head;
5095 	u32 start, end;
5096 
5097 	skb = skb_rb_first(&tp->out_of_order_queue);
5098 new_range:
5099 	if (!skb) {
5100 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5101 		return;
5102 	}
5103 	start = TCP_SKB_CB(skb)->seq;
5104 	end = TCP_SKB_CB(skb)->end_seq;
5105 	range_truesize = skb->truesize;
5106 
5107 	for (head = skb;;) {
5108 		skb = skb_rb_next(skb);
5109 
5110 		/* Range is terminated when we see a gap or when
5111 		 * we are at the queue end.
5112 		 */
5113 		if (!skb ||
5114 		    after(TCP_SKB_CB(skb)->seq, end) ||
5115 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5116 			/* Do not attempt collapsing tiny skbs */
5117 			if (range_truesize != head->truesize ||
5118 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5119 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5120 					     head, skb, start, end);
5121 			} else {
5122 				sum_tiny += range_truesize;
5123 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5124 					return;
5125 			}
5126 			goto new_range;
5127 		}
5128 
5129 		range_truesize += skb->truesize;
5130 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5131 			start = TCP_SKB_CB(skb)->seq;
5132 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5133 			end = TCP_SKB_CB(skb)->end_seq;
5134 	}
5135 }
5136 
5137 /*
5138  * Clean the out-of-order queue to make room.
5139  * We drop high sequences packets to :
5140  * 1) Let a chance for holes to be filled.
5141  * 2) not add too big latencies if thousands of packets sit there.
5142  *    (But if application shrinks SO_RCVBUF, we could still end up
5143  *     freeing whole queue here)
5144  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5145  *
5146  * Return true if queue has shrunk.
5147  */
tcp_prune_ofo_queue(struct sock * sk)5148 static bool tcp_prune_ofo_queue(struct sock *sk)
5149 {
5150 	struct tcp_sock *tp = tcp_sk(sk);
5151 	struct rb_node *node, *prev;
5152 	int goal;
5153 
5154 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5155 		return false;
5156 
5157 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5158 	goal = sk->sk_rcvbuf >> 3;
5159 	node = &tp->ooo_last_skb->rbnode;
5160 	do {
5161 		prev = rb_prev(node);
5162 		rb_erase(node, &tp->out_of_order_queue);
5163 		goal -= rb_to_skb(node)->truesize;
5164 		tcp_drop(sk, rb_to_skb(node));
5165 		if (!prev || goal <= 0) {
5166 			sk_mem_reclaim(sk);
5167 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5168 			    !tcp_under_memory_pressure(sk))
5169 				break;
5170 			goal = sk->sk_rcvbuf >> 3;
5171 		}
5172 		node = prev;
5173 	} while (node);
5174 	tp->ooo_last_skb = rb_to_skb(prev);
5175 
5176 	/* Reset SACK state.  A conforming SACK implementation will
5177 	 * do the same at a timeout based retransmit.  When a connection
5178 	 * is in a sad state like this, we care only about integrity
5179 	 * of the connection not performance.
5180 	 */
5181 	if (tp->rx_opt.sack_ok)
5182 		tcp_sack_reset(&tp->rx_opt);
5183 	return true;
5184 }
5185 
5186 /* Reduce allocated memory if we can, trying to get
5187  * the socket within its memory limits again.
5188  *
5189  * Return less than zero if we should start dropping frames
5190  * until the socket owning process reads some of the data
5191  * to stabilize the situation.
5192  */
tcp_prune_queue(struct sock * sk)5193 static int tcp_prune_queue(struct sock *sk)
5194 {
5195 	struct tcp_sock *tp = tcp_sk(sk);
5196 
5197 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5198 
5199 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5200 		tcp_clamp_window(sk);
5201 	else if (tcp_under_memory_pressure(sk))
5202 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5203 
5204 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5205 		return 0;
5206 
5207 	tcp_collapse_ofo_queue(sk);
5208 	if (!skb_queue_empty(&sk->sk_receive_queue))
5209 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5210 			     skb_peek(&sk->sk_receive_queue),
5211 			     NULL,
5212 			     tp->copied_seq, tp->rcv_nxt);
5213 	sk_mem_reclaim(sk);
5214 
5215 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5216 		return 0;
5217 
5218 	/* Collapsing did not help, destructive actions follow.
5219 	 * This must not ever occur. */
5220 
5221 	tcp_prune_ofo_queue(sk);
5222 
5223 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5224 		return 0;
5225 
5226 	/* If we are really being abused, tell the caller to silently
5227 	 * drop receive data on the floor.  It will get retransmitted
5228 	 * and hopefully then we'll have sufficient space.
5229 	 */
5230 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5231 
5232 	/* Massive buffer overcommit. */
5233 	tp->pred_flags = 0;
5234 	return -1;
5235 }
5236 
tcp_should_expand_sndbuf(const struct sock * sk)5237 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5238 {
5239 	const struct tcp_sock *tp = tcp_sk(sk);
5240 
5241 	/* If the user specified a specific send buffer setting, do
5242 	 * not modify it.
5243 	 */
5244 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5245 		return false;
5246 
5247 	/* If we are under global TCP memory pressure, do not expand.  */
5248 	if (tcp_under_memory_pressure(sk))
5249 		return false;
5250 
5251 	/* If we are under soft global TCP memory pressure, do not expand.  */
5252 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5253 		return false;
5254 
5255 	/* If we filled the congestion window, do not expand.  */
5256 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5257 		return false;
5258 
5259 	return true;
5260 }
5261 
5262 /* When incoming ACK allowed to free some skb from write_queue,
5263  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5264  * on the exit from tcp input handler.
5265  *
5266  * PROBLEM: sndbuf expansion does not work well with largesend.
5267  */
tcp_new_space(struct sock * sk)5268 static void tcp_new_space(struct sock *sk)
5269 {
5270 	struct tcp_sock *tp = tcp_sk(sk);
5271 
5272 	if (tcp_should_expand_sndbuf(sk)) {
5273 		tcp_sndbuf_expand(sk);
5274 		tp->snd_cwnd_stamp = tcp_jiffies32;
5275 	}
5276 
5277 	sk->sk_write_space(sk);
5278 }
5279 
5280 /* Caller made space either from:
5281  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5282  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5283  *
5284  * We might be able to generate EPOLLOUT to the application if:
5285  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5286  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5287  *    small enough that tcp_stream_memory_free() decides it
5288  *    is time to generate EPOLLOUT.
5289  */
tcp_check_space(struct sock * sk)5290 void tcp_check_space(struct sock *sk)
5291 {
5292 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5293 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5294 		/* pairs with tcp_poll() */
5295 		smp_mb();
5296 		if (sk->sk_socket &&
5297 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5298 			tcp_new_space(sk);
5299 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5300 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5301 		}
5302 	}
5303 }
5304 
tcp_data_snd_check(struct sock * sk)5305 static inline void tcp_data_snd_check(struct sock *sk)
5306 {
5307 	tcp_push_pending_frames(sk);
5308 	tcp_check_space(sk);
5309 }
5310 
5311 /*
5312  * Check if sending an ack is needed.
5313  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5314 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5315 {
5316 	struct tcp_sock *tp = tcp_sk(sk);
5317 	unsigned long rtt, delay;
5318 
5319 	    /* More than one full frame received... */
5320 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5321 	     /* ... and right edge of window advances far enough.
5322 	      * (tcp_recvmsg() will send ACK otherwise).
5323 	      * If application uses SO_RCVLOWAT, we want send ack now if
5324 	      * we have not received enough bytes to satisfy the condition.
5325 	      */
5326 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5327 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5328 	    /* We ACK each frame or... */
5329 	    tcp_in_quickack_mode(sk) ||
5330 	    /* Protocol state mandates a one-time immediate ACK */
5331 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5332 send_now:
5333 		tcp_send_ack(sk);
5334 		return;
5335 	}
5336 
5337 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5338 		tcp_send_delayed_ack(sk);
5339 		return;
5340 	}
5341 
5342 	if (!tcp_is_sack(tp) ||
5343 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5344 		goto send_now;
5345 
5346 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5347 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5348 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5349 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5350 				      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5351 		tp->compressed_ack = 0;
5352 	}
5353 
5354 	if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5355 		goto send_now;
5356 
5357 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5358 		return;
5359 
5360 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5361 
5362 	rtt = tp->rcv_rtt_est.rtt_us;
5363 	if (tp->srtt_us && tp->srtt_us < rtt)
5364 		rtt = tp->srtt_us;
5365 
5366 	delay = min_t(unsigned long,
5367 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5368 		      rtt * (NSEC_PER_USEC >> 3)/20);
5369 	sock_hold(sk);
5370 	hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5371 		      HRTIMER_MODE_REL_PINNED_SOFT);
5372 }
5373 
tcp_ack_snd_check(struct sock * sk)5374 static inline void tcp_ack_snd_check(struct sock *sk)
5375 {
5376 	if (!inet_csk_ack_scheduled(sk)) {
5377 		/* We sent a data segment already. */
5378 		return;
5379 	}
5380 	__tcp_ack_snd_check(sk, 1);
5381 }
5382 
5383 /*
5384  *	This routine is only called when we have urgent data
5385  *	signaled. Its the 'slow' part of tcp_urg. It could be
5386  *	moved inline now as tcp_urg is only called from one
5387  *	place. We handle URGent data wrong. We have to - as
5388  *	BSD still doesn't use the correction from RFC961.
5389  *	For 1003.1g we should support a new option TCP_STDURG to permit
5390  *	either form (or just set the sysctl tcp_stdurg).
5391  */
5392 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5393 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5394 {
5395 	struct tcp_sock *tp = tcp_sk(sk);
5396 	u32 ptr = ntohs(th->urg_ptr);
5397 
5398 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5399 		ptr--;
5400 	ptr += ntohl(th->seq);
5401 
5402 	/* Ignore urgent data that we've already seen and read. */
5403 	if (after(tp->copied_seq, ptr))
5404 		return;
5405 
5406 	/* Do not replay urg ptr.
5407 	 *
5408 	 * NOTE: interesting situation not covered by specs.
5409 	 * Misbehaving sender may send urg ptr, pointing to segment,
5410 	 * which we already have in ofo queue. We are not able to fetch
5411 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5412 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5413 	 * situations. But it is worth to think about possibility of some
5414 	 * DoSes using some hypothetical application level deadlock.
5415 	 */
5416 	if (before(ptr, tp->rcv_nxt))
5417 		return;
5418 
5419 	/* Do we already have a newer (or duplicate) urgent pointer? */
5420 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5421 		return;
5422 
5423 	/* Tell the world about our new urgent pointer. */
5424 	sk_send_sigurg(sk);
5425 
5426 	/* We may be adding urgent data when the last byte read was
5427 	 * urgent. To do this requires some care. We cannot just ignore
5428 	 * tp->copied_seq since we would read the last urgent byte again
5429 	 * as data, nor can we alter copied_seq until this data arrives
5430 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5431 	 *
5432 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5433 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5434 	 * and expect that both A and B disappear from stream. This is _wrong_.
5435 	 * Though this happens in BSD with high probability, this is occasional.
5436 	 * Any application relying on this is buggy. Note also, that fix "works"
5437 	 * only in this artificial test. Insert some normal data between A and B and we will
5438 	 * decline of BSD again. Verdict: it is better to remove to trap
5439 	 * buggy users.
5440 	 */
5441 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5442 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5443 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5444 		tp->copied_seq++;
5445 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5446 			__skb_unlink(skb, &sk->sk_receive_queue);
5447 			__kfree_skb(skb);
5448 		}
5449 	}
5450 
5451 	tp->urg_data = TCP_URG_NOTYET;
5452 	WRITE_ONCE(tp->urg_seq, ptr);
5453 
5454 	/* Disable header prediction. */
5455 	tp->pred_flags = 0;
5456 }
5457 
5458 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5459 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5460 {
5461 	struct tcp_sock *tp = tcp_sk(sk);
5462 
5463 	/* Check if we get a new urgent pointer - normally not. */
5464 	if (th->urg)
5465 		tcp_check_urg(sk, th);
5466 
5467 	/* Do we wait for any urgent data? - normally not... */
5468 	if (tp->urg_data == TCP_URG_NOTYET) {
5469 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5470 			  th->syn;
5471 
5472 		/* Is the urgent pointer pointing into this packet? */
5473 		if (ptr < skb->len) {
5474 			u8 tmp;
5475 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5476 				BUG();
5477 			tp->urg_data = TCP_URG_VALID | tmp;
5478 			if (!sock_flag(sk, SOCK_DEAD))
5479 				sk->sk_data_ready(sk);
5480 		}
5481 	}
5482 }
5483 
5484 /* Accept RST for rcv_nxt - 1 after a FIN.
5485  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5486  * FIN is sent followed by a RST packet. The RST is sent with the same
5487  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5488  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5489  * ACKs on the closed socket. In addition middleboxes can drop either the
5490  * challenge ACK or a subsequent RST.
5491  */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5492 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5493 {
5494 	struct tcp_sock *tp = tcp_sk(sk);
5495 
5496 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5497 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5498 					       TCPF_CLOSING));
5499 }
5500 
5501 /* Does PAWS and seqno based validation of an incoming segment, flags will
5502  * play significant role here.
5503  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5504 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5505 				  const struct tcphdr *th, int syn_inerr)
5506 {
5507 	struct tcp_sock *tp = tcp_sk(sk);
5508 	bool rst_seq_match = false;
5509 
5510 	/* RFC1323: H1. Apply PAWS check first. */
5511 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5512 	    tp->rx_opt.saw_tstamp &&
5513 	    tcp_paws_discard(sk, skb)) {
5514 		if (!th->rst) {
5515 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5516 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5517 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5518 						  &tp->last_oow_ack_time))
5519 				tcp_send_dupack(sk, skb);
5520 			goto discard;
5521 		}
5522 		/* Reset is accepted even if it did not pass PAWS. */
5523 	}
5524 
5525 	/* Step 1: check sequence number */
5526 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5527 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5528 		 * (RST) segments are validated by checking their SEQ-fields."
5529 		 * And page 69: "If an incoming segment is not acceptable,
5530 		 * an acknowledgment should be sent in reply (unless the RST
5531 		 * bit is set, if so drop the segment and return)".
5532 		 */
5533 		if (!th->rst) {
5534 			if (th->syn)
5535 				goto syn_challenge;
5536 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5537 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5538 						  &tp->last_oow_ack_time))
5539 				tcp_send_dupack(sk, skb);
5540 		} else if (tcp_reset_check(sk, skb)) {
5541 			tcp_reset(sk);
5542 		}
5543 		goto discard;
5544 	}
5545 
5546 	/* Step 2: check RST bit */
5547 	if (th->rst) {
5548 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5549 		 * FIN and SACK too if available):
5550 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5551 		 * the right-most SACK block,
5552 		 * then
5553 		 *     RESET the connection
5554 		 * else
5555 		 *     Send a challenge ACK
5556 		 */
5557 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5558 		    tcp_reset_check(sk, skb)) {
5559 			rst_seq_match = true;
5560 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5561 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5562 			int max_sack = sp[0].end_seq;
5563 			int this_sack;
5564 
5565 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5566 			     ++this_sack) {
5567 				max_sack = after(sp[this_sack].end_seq,
5568 						 max_sack) ?
5569 					sp[this_sack].end_seq : max_sack;
5570 			}
5571 
5572 			if (TCP_SKB_CB(skb)->seq == max_sack)
5573 				rst_seq_match = true;
5574 		}
5575 
5576 		if (rst_seq_match)
5577 			tcp_reset(sk);
5578 		else {
5579 			/* Disable TFO if RST is out-of-order
5580 			 * and no data has been received
5581 			 * for current active TFO socket
5582 			 */
5583 			if (tp->syn_fastopen && !tp->data_segs_in &&
5584 			    sk->sk_state == TCP_ESTABLISHED)
5585 				tcp_fastopen_active_disable(sk);
5586 			tcp_send_challenge_ack(sk, skb);
5587 		}
5588 		goto discard;
5589 	}
5590 
5591 	/* step 3: check security and precedence [ignored] */
5592 
5593 	/* step 4: Check for a SYN
5594 	 * RFC 5961 4.2 : Send a challenge ack
5595 	 */
5596 	if (th->syn) {
5597 syn_challenge:
5598 		if (syn_inerr)
5599 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5600 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5601 		tcp_send_challenge_ack(sk, skb);
5602 		goto discard;
5603 	}
5604 
5605 	return true;
5606 
5607 discard:
5608 	tcp_drop(sk, skb);
5609 	return false;
5610 }
5611 
5612 /*
5613  *	TCP receive function for the ESTABLISHED state.
5614  *
5615  *	It is split into a fast path and a slow path. The fast path is
5616  * 	disabled when:
5617  *	- A zero window was announced from us - zero window probing
5618  *        is only handled properly in the slow path.
5619  *	- Out of order segments arrived.
5620  *	- Urgent data is expected.
5621  *	- There is no buffer space left
5622  *	- Unexpected TCP flags/window values/header lengths are received
5623  *	  (detected by checking the TCP header against pred_flags)
5624  *	- Data is sent in both directions. Fast path only supports pure senders
5625  *	  or pure receivers (this means either the sequence number or the ack
5626  *	  value must stay constant)
5627  *	- Unexpected TCP option.
5628  *
5629  *	When these conditions are not satisfied it drops into a standard
5630  *	receive procedure patterned after RFC793 to handle all cases.
5631  *	The first three cases are guaranteed by proper pred_flags setting,
5632  *	the rest is checked inline. Fast processing is turned on in
5633  *	tcp_data_queue when everything is OK.
5634  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5635 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5636 {
5637 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5638 	struct tcp_sock *tp = tcp_sk(sk);
5639 	unsigned int len = skb->len;
5640 
5641 	/* TCP congestion window tracking */
5642 	trace_tcp_probe(sk, skb);
5643 
5644 	tcp_mstamp_refresh(tp);
5645 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5646 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5647 	/*
5648 	 *	Header prediction.
5649 	 *	The code loosely follows the one in the famous
5650 	 *	"30 instruction TCP receive" Van Jacobson mail.
5651 	 *
5652 	 *	Van's trick is to deposit buffers into socket queue
5653 	 *	on a device interrupt, to call tcp_recv function
5654 	 *	on the receive process context and checksum and copy
5655 	 *	the buffer to user space. smart...
5656 	 *
5657 	 *	Our current scheme is not silly either but we take the
5658 	 *	extra cost of the net_bh soft interrupt processing...
5659 	 *	We do checksum and copy also but from device to kernel.
5660 	 */
5661 
5662 	tp->rx_opt.saw_tstamp = 0;
5663 
5664 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5665 	 *	if header_prediction is to be made
5666 	 *	'S' will always be tp->tcp_header_len >> 2
5667 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5668 	 *  turn it off	(when there are holes in the receive
5669 	 *	 space for instance)
5670 	 *	PSH flag is ignored.
5671 	 */
5672 
5673 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5674 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5675 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5676 		int tcp_header_len = tp->tcp_header_len;
5677 
5678 		/* Timestamp header prediction: tcp_header_len
5679 		 * is automatically equal to th->doff*4 due to pred_flags
5680 		 * match.
5681 		 */
5682 
5683 		/* Check timestamp */
5684 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5685 			/* No? Slow path! */
5686 			if (!tcp_parse_aligned_timestamp(tp, th))
5687 				goto slow_path;
5688 
5689 			/* If PAWS failed, check it more carefully in slow path */
5690 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5691 				goto slow_path;
5692 
5693 			/* DO NOT update ts_recent here, if checksum fails
5694 			 * and timestamp was corrupted part, it will result
5695 			 * in a hung connection since we will drop all
5696 			 * future packets due to the PAWS test.
5697 			 */
5698 		}
5699 
5700 		if (len <= tcp_header_len) {
5701 			/* Bulk data transfer: sender */
5702 			if (len == tcp_header_len) {
5703 				/* Predicted packet is in window by definition.
5704 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5705 				 * Hence, check seq<=rcv_wup reduces to:
5706 				 */
5707 				if (tcp_header_len ==
5708 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5709 				    tp->rcv_nxt == tp->rcv_wup)
5710 					tcp_store_ts_recent(tp);
5711 
5712 				/* We know that such packets are checksummed
5713 				 * on entry.
5714 				 */
5715 				tcp_ack(sk, skb, 0);
5716 				__kfree_skb(skb);
5717 				tcp_data_snd_check(sk);
5718 				/* When receiving pure ack in fast path, update
5719 				 * last ts ecr directly instead of calling
5720 				 * tcp_rcv_rtt_measure_ts()
5721 				 */
5722 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5723 				return;
5724 			} else { /* Header too small */
5725 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5726 				goto discard;
5727 			}
5728 		} else {
5729 			int eaten = 0;
5730 			bool fragstolen = false;
5731 
5732 			if (tcp_checksum_complete(skb))
5733 				goto csum_error;
5734 
5735 			if ((int)skb->truesize > sk->sk_forward_alloc)
5736 				goto step5;
5737 
5738 			/* Predicted packet is in window by definition.
5739 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5740 			 * Hence, check seq<=rcv_wup reduces to:
5741 			 */
5742 			if (tcp_header_len ==
5743 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5744 			    tp->rcv_nxt == tp->rcv_wup)
5745 				tcp_store_ts_recent(tp);
5746 
5747 			tcp_rcv_rtt_measure_ts(sk, skb);
5748 
5749 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5750 
5751 			/* Bulk data transfer: receiver */
5752 			__skb_pull(skb, tcp_header_len);
5753 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5754 
5755 			tcp_event_data_recv(sk, skb);
5756 
5757 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5758 				/* Well, only one small jumplet in fast path... */
5759 				tcp_ack(sk, skb, FLAG_DATA);
5760 				tcp_data_snd_check(sk);
5761 				if (!inet_csk_ack_scheduled(sk))
5762 					goto no_ack;
5763 			} else {
5764 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5765 			}
5766 
5767 			__tcp_ack_snd_check(sk, 0);
5768 no_ack:
5769 			if (eaten)
5770 				kfree_skb_partial(skb, fragstolen);
5771 			tcp_data_ready(sk);
5772 			return;
5773 		}
5774 	}
5775 
5776 slow_path:
5777 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5778 		goto csum_error;
5779 
5780 	if (!th->ack && !th->rst && !th->syn)
5781 		goto discard;
5782 
5783 	/*
5784 	 *	Standard slow path.
5785 	 */
5786 
5787 	if (!tcp_validate_incoming(sk, skb, th, 1))
5788 		return;
5789 
5790 step5:
5791 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5792 		goto discard;
5793 
5794 	tcp_rcv_rtt_measure_ts(sk, skb);
5795 
5796 	/* Process urgent data. */
5797 	tcp_urg(sk, skb, th);
5798 
5799 	/* step 7: process the segment text */
5800 	tcp_data_queue(sk, skb);
5801 
5802 	tcp_data_snd_check(sk);
5803 	tcp_ack_snd_check(sk);
5804 	return;
5805 
5806 csum_error:
5807 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5808 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5809 
5810 discard:
5811 	tcp_drop(sk, skb);
5812 }
5813 EXPORT_SYMBOL(tcp_rcv_established);
5814 
tcp_init_transfer(struct sock * sk,int bpf_op)5815 void tcp_init_transfer(struct sock *sk, int bpf_op)
5816 {
5817 	struct inet_connection_sock *icsk = inet_csk(sk);
5818 	struct tcp_sock *tp = tcp_sk(sk);
5819 
5820 	tcp_mtup_init(sk);
5821 	icsk->icsk_af_ops->rebuild_header(sk);
5822 	tcp_init_metrics(sk);
5823 
5824 	/* Initialize the congestion window to start the transfer.
5825 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5826 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5827 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5828 	 * retransmission has occurred.
5829 	 */
5830 	if (tp->total_retrans > 1 && tp->undo_marker)
5831 		tp->snd_cwnd = 1;
5832 	else
5833 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5834 	tp->snd_cwnd_stamp = tcp_jiffies32;
5835 
5836 	tcp_call_bpf(sk, bpf_op, 0, NULL);
5837 	tcp_init_congestion_control(sk);
5838 	tcp_init_buffer_space(sk);
5839 }
5840 
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)5841 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5842 {
5843 	struct tcp_sock *tp = tcp_sk(sk);
5844 	struct inet_connection_sock *icsk = inet_csk(sk);
5845 
5846 	tcp_set_state(sk, TCP_ESTABLISHED);
5847 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5848 
5849 	if (skb) {
5850 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5851 		security_inet_conn_established(sk, skb);
5852 		sk_mark_napi_id(sk, skb);
5853 	}
5854 
5855 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5856 
5857 	/* Prevent spurious tcp_cwnd_restart() on first data
5858 	 * packet.
5859 	 */
5860 	tp->lsndtime = tcp_jiffies32;
5861 
5862 	if (sock_flag(sk, SOCK_KEEPOPEN))
5863 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5864 
5865 	if (!tp->rx_opt.snd_wscale)
5866 		__tcp_fast_path_on(tp, tp->snd_wnd);
5867 	else
5868 		tp->pred_flags = 0;
5869 }
5870 
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)5871 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5872 				    struct tcp_fastopen_cookie *cookie)
5873 {
5874 	struct tcp_sock *tp = tcp_sk(sk);
5875 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5876 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5877 	bool syn_drop = false;
5878 
5879 	if (mss == tp->rx_opt.user_mss) {
5880 		struct tcp_options_received opt;
5881 
5882 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5883 		tcp_clear_options(&opt);
5884 		opt.user_mss = opt.mss_clamp = 0;
5885 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5886 		mss = opt.mss_clamp;
5887 	}
5888 
5889 	if (!tp->syn_fastopen) {
5890 		/* Ignore an unsolicited cookie */
5891 		cookie->len = -1;
5892 	} else if (tp->total_retrans) {
5893 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5894 		 * acknowledges data. Presumably the remote received only
5895 		 * the retransmitted (regular) SYNs: either the original
5896 		 * SYN-data or the corresponding SYN-ACK was dropped.
5897 		 */
5898 		syn_drop = (cookie->len < 0 && data);
5899 	} else if (cookie->len < 0 && !tp->syn_data) {
5900 		/* We requested a cookie but didn't get it. If we did not use
5901 		 * the (old) exp opt format then try so next time (try_exp=1).
5902 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5903 		 */
5904 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5905 	}
5906 
5907 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5908 
5909 	if (data) { /* Retransmit unacked data in SYN */
5910 		skb_rbtree_walk_from(data) {
5911 			if (__tcp_retransmit_skb(sk, data, 1))
5912 				break;
5913 		}
5914 		tcp_rearm_rto(sk);
5915 		NET_INC_STATS(sock_net(sk),
5916 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5917 		return true;
5918 	}
5919 	tp->syn_data_acked = tp->syn_data;
5920 	if (tp->syn_data_acked) {
5921 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5922 		/* SYN-data is counted as two separate packets in tcp_ack() */
5923 		if (tp->delivered > 1)
5924 			--tp->delivered;
5925 	}
5926 
5927 	tcp_fastopen_add_skb(sk, synack);
5928 
5929 	return false;
5930 }
5931 
smc_check_reset_syn(struct tcp_sock * tp)5932 static void smc_check_reset_syn(struct tcp_sock *tp)
5933 {
5934 #if IS_ENABLED(CONFIG_SMC)
5935 	if (static_branch_unlikely(&tcp_have_smc)) {
5936 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5937 			tp->syn_smc = 0;
5938 	}
5939 #endif
5940 }
5941 
tcp_try_undo_spurious_syn(struct sock * sk)5942 static void tcp_try_undo_spurious_syn(struct sock *sk)
5943 {
5944 	struct tcp_sock *tp = tcp_sk(sk);
5945 	u32 syn_stamp;
5946 
5947 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
5948 	 * spurious if the ACK's timestamp option echo value matches the
5949 	 * original SYN timestamp.
5950 	 */
5951 	syn_stamp = tp->retrans_stamp;
5952 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5953 	    syn_stamp == tp->rx_opt.rcv_tsecr)
5954 		tp->undo_marker = 0;
5955 }
5956 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5957 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5958 					 const struct tcphdr *th)
5959 {
5960 	struct inet_connection_sock *icsk = inet_csk(sk);
5961 	struct tcp_sock *tp = tcp_sk(sk);
5962 	struct tcp_fastopen_cookie foc = { .len = -1 };
5963 	int saved_clamp = tp->rx_opt.mss_clamp;
5964 	bool fastopen_fail;
5965 
5966 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5967 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5968 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5969 
5970 	if (th->ack) {
5971 		/* rfc793:
5972 		 * "If the state is SYN-SENT then
5973 		 *    first check the ACK bit
5974 		 *      If the ACK bit is set
5975 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5976 		 *        a reset (unless the RST bit is set, if so drop
5977 		 *        the segment and return)"
5978 		 */
5979 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5980 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5981 			goto reset_and_undo;
5982 
5983 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5984 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5985 			     tcp_time_stamp(tp))) {
5986 			NET_INC_STATS(sock_net(sk),
5987 					LINUX_MIB_PAWSACTIVEREJECTED);
5988 			goto reset_and_undo;
5989 		}
5990 
5991 		/* Now ACK is acceptable.
5992 		 *
5993 		 * "If the RST bit is set
5994 		 *    If the ACK was acceptable then signal the user "error:
5995 		 *    connection reset", drop the segment, enter CLOSED state,
5996 		 *    delete TCB, and return."
5997 		 */
5998 
5999 		if (th->rst) {
6000 			tcp_reset(sk);
6001 			goto discard;
6002 		}
6003 
6004 		/* rfc793:
6005 		 *   "fifth, if neither of the SYN or RST bits is set then
6006 		 *    drop the segment and return."
6007 		 *
6008 		 *    See note below!
6009 		 *                                        --ANK(990513)
6010 		 */
6011 		if (!th->syn)
6012 			goto discard_and_undo;
6013 
6014 		/* rfc793:
6015 		 *   "If the SYN bit is on ...
6016 		 *    are acceptable then ...
6017 		 *    (our SYN has been ACKed), change the connection
6018 		 *    state to ESTABLISHED..."
6019 		 */
6020 
6021 		tcp_ecn_rcv_synack(tp, th);
6022 
6023 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6024 		tcp_try_undo_spurious_syn(sk);
6025 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6026 
6027 		/* Ok.. it's good. Set up sequence numbers and
6028 		 * move to established.
6029 		 */
6030 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6031 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6032 
6033 		/* RFC1323: The window in SYN & SYN/ACK segments is
6034 		 * never scaled.
6035 		 */
6036 		tp->snd_wnd = ntohs(th->window);
6037 
6038 		if (!tp->rx_opt.wscale_ok) {
6039 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6040 			tp->window_clamp = min(tp->window_clamp, 65535U);
6041 		}
6042 
6043 		if (tp->rx_opt.saw_tstamp) {
6044 			tp->rx_opt.tstamp_ok	   = 1;
6045 			tp->tcp_header_len =
6046 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6047 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6048 			tcp_store_ts_recent(tp);
6049 		} else {
6050 			tp->tcp_header_len = sizeof(struct tcphdr);
6051 		}
6052 
6053 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6054 		tcp_initialize_rcv_mss(sk);
6055 
6056 		/* Remember, tcp_poll() does not lock socket!
6057 		 * Change state from SYN-SENT only after copied_seq
6058 		 * is initialized. */
6059 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6060 
6061 		smc_check_reset_syn(tp);
6062 
6063 		smp_mb();
6064 
6065 		tcp_finish_connect(sk, skb);
6066 
6067 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6068 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6069 
6070 		if (!sock_flag(sk, SOCK_DEAD)) {
6071 			sk->sk_state_change(sk);
6072 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6073 		}
6074 		if (fastopen_fail)
6075 			return -1;
6076 		if (sk->sk_write_pending ||
6077 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6078 		    inet_csk_in_pingpong_mode(sk)) {
6079 			/* Save one ACK. Data will be ready after
6080 			 * several ticks, if write_pending is set.
6081 			 *
6082 			 * It may be deleted, but with this feature tcpdumps
6083 			 * look so _wonderfully_ clever, that I was not able
6084 			 * to stand against the temptation 8)     --ANK
6085 			 */
6086 			inet_csk_schedule_ack(sk);
6087 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6088 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6089 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6090 
6091 discard:
6092 			tcp_drop(sk, skb);
6093 			return 0;
6094 		} else {
6095 			tcp_send_ack(sk);
6096 		}
6097 		return -1;
6098 	}
6099 
6100 	/* No ACK in the segment */
6101 
6102 	if (th->rst) {
6103 		/* rfc793:
6104 		 * "If the RST bit is set
6105 		 *
6106 		 *      Otherwise (no ACK) drop the segment and return."
6107 		 */
6108 
6109 		goto discard_and_undo;
6110 	}
6111 
6112 	/* PAWS check. */
6113 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6114 	    tcp_paws_reject(&tp->rx_opt, 0))
6115 		goto discard_and_undo;
6116 
6117 	if (th->syn) {
6118 		/* We see SYN without ACK. It is attempt of
6119 		 * simultaneous connect with crossed SYNs.
6120 		 * Particularly, it can be connect to self.
6121 		 */
6122 		tcp_set_state(sk, TCP_SYN_RECV);
6123 
6124 		if (tp->rx_opt.saw_tstamp) {
6125 			tp->rx_opt.tstamp_ok = 1;
6126 			tcp_store_ts_recent(tp);
6127 			tp->tcp_header_len =
6128 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6129 		} else {
6130 			tp->tcp_header_len = sizeof(struct tcphdr);
6131 		}
6132 
6133 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6134 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6135 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6136 
6137 		/* RFC1323: The window in SYN & SYN/ACK segments is
6138 		 * never scaled.
6139 		 */
6140 		tp->snd_wnd    = ntohs(th->window);
6141 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6142 		tp->max_window = tp->snd_wnd;
6143 
6144 		tcp_ecn_rcv_syn(tp, th);
6145 
6146 		tcp_mtup_init(sk);
6147 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6148 		tcp_initialize_rcv_mss(sk);
6149 
6150 		tcp_send_synack(sk);
6151 #if 0
6152 		/* Note, we could accept data and URG from this segment.
6153 		 * There are no obstacles to make this (except that we must
6154 		 * either change tcp_recvmsg() to prevent it from returning data
6155 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6156 		 *
6157 		 * However, if we ignore data in ACKless segments sometimes,
6158 		 * we have no reasons to accept it sometimes.
6159 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6160 		 * is not flawless. So, discard packet for sanity.
6161 		 * Uncomment this return to process the data.
6162 		 */
6163 		return -1;
6164 #else
6165 		goto discard;
6166 #endif
6167 	}
6168 	/* "fifth, if neither of the SYN or RST bits is set then
6169 	 * drop the segment and return."
6170 	 */
6171 
6172 discard_and_undo:
6173 	tcp_clear_options(&tp->rx_opt);
6174 	tp->rx_opt.mss_clamp = saved_clamp;
6175 	goto discard;
6176 
6177 reset_and_undo:
6178 	tcp_clear_options(&tp->rx_opt);
6179 	tp->rx_opt.mss_clamp = saved_clamp;
6180 	return 1;
6181 }
6182 
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6183 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6184 {
6185 	struct tcp_sock *tp = tcp_sk(sk);
6186 	struct request_sock *req;
6187 
6188 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6189 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6190 	 */
6191 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6192 		tcp_try_undo_recovery(sk);
6193 
6194 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6195 	tp->retrans_stamp = 0;
6196 	inet_csk(sk)->icsk_retransmits = 0;
6197 
6198 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6199 	 * we no longer need req so release it.
6200 	 */
6201 	req = rcu_dereference_protected(tp->fastopen_rsk,
6202 					lockdep_sock_is_held(sk));
6203 	reqsk_fastopen_remove(sk, req, false);
6204 
6205 	/* Re-arm the timer because data may have been sent out.
6206 	 * This is similar to the regular data transmission case
6207 	 * when new data has just been ack'ed.
6208 	 *
6209 	 * (TFO) - we could try to be more aggressive and
6210 	 * retransmitting any data sooner based on when they
6211 	 * are sent out.
6212 	 */
6213 	tcp_rearm_rto(sk);
6214 }
6215 
6216 /*
6217  *	This function implements the receiving procedure of RFC 793 for
6218  *	all states except ESTABLISHED and TIME_WAIT.
6219  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6220  *	address independent.
6221  */
6222 
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6223 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6224 {
6225 	struct tcp_sock *tp = tcp_sk(sk);
6226 	struct inet_connection_sock *icsk = inet_csk(sk);
6227 	const struct tcphdr *th = tcp_hdr(skb);
6228 	struct request_sock *req;
6229 	int queued = 0;
6230 	bool acceptable;
6231 
6232 	switch (sk->sk_state) {
6233 	case TCP_CLOSE:
6234 		goto discard;
6235 
6236 	case TCP_LISTEN:
6237 		if (th->ack)
6238 			return 1;
6239 
6240 		if (th->rst)
6241 			goto discard;
6242 
6243 		if (th->syn) {
6244 			if (th->fin)
6245 				goto discard;
6246 			/* It is possible that we process SYN packets from backlog,
6247 			 * so we need to make sure to disable BH and RCU right there.
6248 			 */
6249 			rcu_read_lock();
6250 			local_bh_disable();
6251 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6252 			local_bh_enable();
6253 			rcu_read_unlock();
6254 
6255 			if (!acceptable)
6256 				return 1;
6257 			consume_skb(skb);
6258 			return 0;
6259 		}
6260 		goto discard;
6261 
6262 	case TCP_SYN_SENT:
6263 		tp->rx_opt.saw_tstamp = 0;
6264 		tcp_mstamp_refresh(tp);
6265 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6266 		if (queued >= 0)
6267 			return queued;
6268 
6269 		/* Do step6 onward by hand. */
6270 		tcp_urg(sk, skb, th);
6271 		__kfree_skb(skb);
6272 		tcp_data_snd_check(sk);
6273 		return 0;
6274 	}
6275 
6276 	tcp_mstamp_refresh(tp);
6277 	tp->rx_opt.saw_tstamp = 0;
6278 	req = rcu_dereference_protected(tp->fastopen_rsk,
6279 					lockdep_sock_is_held(sk));
6280 	if (req) {
6281 		bool req_stolen;
6282 
6283 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6284 		    sk->sk_state != TCP_FIN_WAIT1);
6285 
6286 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6287 			goto discard;
6288 	}
6289 
6290 	if (!th->ack && !th->rst && !th->syn)
6291 		goto discard;
6292 
6293 	if (!tcp_validate_incoming(sk, skb, th, 0))
6294 		return 0;
6295 
6296 	/* step 5: check the ACK field */
6297 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6298 				      FLAG_UPDATE_TS_RECENT |
6299 				      FLAG_NO_CHALLENGE_ACK) > 0;
6300 
6301 	if (!acceptable) {
6302 		if (sk->sk_state == TCP_SYN_RECV)
6303 			return 1;	/* send one RST */
6304 		tcp_send_challenge_ack(sk, skb);
6305 		goto discard;
6306 	}
6307 	switch (sk->sk_state) {
6308 	case TCP_SYN_RECV:
6309 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6310 		if (!tp->srtt_us)
6311 			tcp_synack_rtt_meas(sk, req);
6312 
6313 		if (req) {
6314 			tcp_rcv_synrecv_state_fastopen(sk);
6315 		} else {
6316 			tcp_try_undo_spurious_syn(sk);
6317 			tp->retrans_stamp = 0;
6318 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6319 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6320 		}
6321 		smp_mb();
6322 		tcp_set_state(sk, TCP_ESTABLISHED);
6323 		sk->sk_state_change(sk);
6324 
6325 		/* Note, that this wakeup is only for marginal crossed SYN case.
6326 		 * Passively open sockets are not waked up, because
6327 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6328 		 */
6329 		if (sk->sk_socket)
6330 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6331 
6332 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6333 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6334 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6335 
6336 		if (tp->rx_opt.tstamp_ok)
6337 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6338 
6339 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6340 			tcp_update_pacing_rate(sk);
6341 
6342 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6343 		tp->lsndtime = tcp_jiffies32;
6344 
6345 		tcp_initialize_rcv_mss(sk);
6346 		tcp_fast_path_on(tp);
6347 		break;
6348 
6349 	case TCP_FIN_WAIT1: {
6350 		int tmo;
6351 
6352 		if (req)
6353 			tcp_rcv_synrecv_state_fastopen(sk);
6354 
6355 		if (tp->snd_una != tp->write_seq)
6356 			break;
6357 
6358 		tcp_set_state(sk, TCP_FIN_WAIT2);
6359 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6360 
6361 		sk_dst_confirm(sk);
6362 
6363 		if (!sock_flag(sk, SOCK_DEAD)) {
6364 			/* Wake up lingering close() */
6365 			sk->sk_state_change(sk);
6366 			break;
6367 		}
6368 
6369 		if (tp->linger2 < 0) {
6370 			tcp_done(sk);
6371 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6372 			return 1;
6373 		}
6374 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6375 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6376 			/* Receive out of order FIN after close() */
6377 			if (tp->syn_fastopen && th->fin)
6378 				tcp_fastopen_active_disable(sk);
6379 			tcp_done(sk);
6380 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6381 			return 1;
6382 		}
6383 
6384 		tmo = tcp_fin_time(sk);
6385 		if (tmo > TCP_TIMEWAIT_LEN) {
6386 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6387 		} else if (th->fin || sock_owned_by_user(sk)) {
6388 			/* Bad case. We could lose such FIN otherwise.
6389 			 * It is not a big problem, but it looks confusing
6390 			 * and not so rare event. We still can lose it now,
6391 			 * if it spins in bh_lock_sock(), but it is really
6392 			 * marginal case.
6393 			 */
6394 			inet_csk_reset_keepalive_timer(sk, tmo);
6395 		} else {
6396 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6397 			goto discard;
6398 		}
6399 		break;
6400 	}
6401 
6402 	case TCP_CLOSING:
6403 		if (tp->snd_una == tp->write_seq) {
6404 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6405 			goto discard;
6406 		}
6407 		break;
6408 
6409 	case TCP_LAST_ACK:
6410 		if (tp->snd_una == tp->write_seq) {
6411 			tcp_update_metrics(sk);
6412 			tcp_done(sk);
6413 			goto discard;
6414 		}
6415 		break;
6416 	}
6417 
6418 	/* step 6: check the URG bit */
6419 	tcp_urg(sk, skb, th);
6420 
6421 	/* step 7: process the segment text */
6422 	switch (sk->sk_state) {
6423 	case TCP_CLOSE_WAIT:
6424 	case TCP_CLOSING:
6425 	case TCP_LAST_ACK:
6426 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6427 			break;
6428 		/* fall through */
6429 	case TCP_FIN_WAIT1:
6430 	case TCP_FIN_WAIT2:
6431 		/* RFC 793 says to queue data in these states,
6432 		 * RFC 1122 says we MUST send a reset.
6433 		 * BSD 4.4 also does reset.
6434 		 */
6435 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6436 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6437 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6438 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6439 				tcp_reset(sk);
6440 				return 1;
6441 			}
6442 		}
6443 		/* Fall through */
6444 	case TCP_ESTABLISHED:
6445 		tcp_data_queue(sk, skb);
6446 		queued = 1;
6447 		break;
6448 	}
6449 
6450 	/* tcp_data could move socket to TIME-WAIT */
6451 	if (sk->sk_state != TCP_CLOSE) {
6452 		tcp_data_snd_check(sk);
6453 		tcp_ack_snd_check(sk);
6454 	}
6455 
6456 	if (!queued) {
6457 discard:
6458 		tcp_drop(sk, skb);
6459 	}
6460 	return 0;
6461 }
6462 EXPORT_SYMBOL(tcp_rcv_state_process);
6463 
pr_drop_req(struct request_sock * req,__u16 port,int family)6464 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6465 {
6466 	struct inet_request_sock *ireq = inet_rsk(req);
6467 
6468 	if (family == AF_INET)
6469 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6470 				    &ireq->ir_rmt_addr, port);
6471 #if IS_ENABLED(CONFIG_IPV6)
6472 	else if (family == AF_INET6)
6473 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6474 				    &ireq->ir_v6_rmt_addr, port);
6475 #endif
6476 }
6477 
6478 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6479  *
6480  * If we receive a SYN packet with these bits set, it means a
6481  * network is playing bad games with TOS bits. In order to
6482  * avoid possible false congestion notifications, we disable
6483  * TCP ECN negotiation.
6484  *
6485  * Exception: tcp_ca wants ECN. This is required for DCTCP
6486  * congestion control: Linux DCTCP asserts ECT on all packets,
6487  * including SYN, which is most optimal solution; however,
6488  * others, such as FreeBSD do not.
6489  *
6490  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6491  * set, indicating the use of a future TCP extension (such as AccECN). See
6492  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6493  * extensions.
6494  */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6495 static void tcp_ecn_create_request(struct request_sock *req,
6496 				   const struct sk_buff *skb,
6497 				   const struct sock *listen_sk,
6498 				   const struct dst_entry *dst)
6499 {
6500 	const struct tcphdr *th = tcp_hdr(skb);
6501 	const struct net *net = sock_net(listen_sk);
6502 	bool th_ecn = th->ece && th->cwr;
6503 	bool ect, ecn_ok;
6504 	u32 ecn_ok_dst;
6505 
6506 	if (!th_ecn)
6507 		return;
6508 
6509 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6510 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6511 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6512 
6513 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6514 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6515 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6516 		inet_rsk(req)->ecn_ok = 1;
6517 }
6518 
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6519 static void tcp_openreq_init(struct request_sock *req,
6520 			     const struct tcp_options_received *rx_opt,
6521 			     struct sk_buff *skb, const struct sock *sk)
6522 {
6523 	struct inet_request_sock *ireq = inet_rsk(req);
6524 
6525 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6526 	req->cookie_ts = 0;
6527 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6528 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6529 	tcp_rsk(req)->snt_synack = 0;
6530 	tcp_rsk(req)->last_oow_ack_time = 0;
6531 	req->mss = rx_opt->mss_clamp;
6532 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6533 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6534 	ireq->sack_ok = rx_opt->sack_ok;
6535 	ireq->snd_wscale = rx_opt->snd_wscale;
6536 	ireq->wscale_ok = rx_opt->wscale_ok;
6537 	ireq->acked = 0;
6538 	ireq->ecn_ok = 0;
6539 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6540 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6541 	ireq->ir_mark = inet_request_mark(sk, skb);
6542 #if IS_ENABLED(CONFIG_SMC)
6543 	ireq->smc_ok = rx_opt->smc_ok;
6544 #endif
6545 }
6546 
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6547 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6548 				      struct sock *sk_listener,
6549 				      bool attach_listener)
6550 {
6551 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6552 					       attach_listener);
6553 
6554 	if (req) {
6555 		struct inet_request_sock *ireq = inet_rsk(req);
6556 
6557 		ireq->ireq_opt = NULL;
6558 #if IS_ENABLED(CONFIG_IPV6)
6559 		ireq->pktopts = NULL;
6560 #endif
6561 		atomic64_set(&ireq->ir_cookie, 0);
6562 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6563 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6564 		ireq->ireq_family = sk_listener->sk_family;
6565 	}
6566 
6567 	return req;
6568 }
6569 EXPORT_SYMBOL(inet_reqsk_alloc);
6570 
6571 /*
6572  * Return true if a syncookie should be sent
6573  */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6574 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6575 {
6576 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6577 	const char *msg = "Dropping request";
6578 	struct net *net = sock_net(sk);
6579 	bool want_cookie = false;
6580 	u8 syncookies;
6581 
6582 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6583 
6584 #ifdef CONFIG_SYN_COOKIES
6585 	if (syncookies) {
6586 		msg = "Sending cookies";
6587 		want_cookie = true;
6588 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6589 	} else
6590 #endif
6591 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6592 
6593 	if (!queue->synflood_warned && syncookies != 2 &&
6594 	    xchg(&queue->synflood_warned, 1) == 0)
6595 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6596 				     proto, sk->sk_num, msg);
6597 
6598 	return want_cookie;
6599 }
6600 
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6601 static void tcp_reqsk_record_syn(const struct sock *sk,
6602 				 struct request_sock *req,
6603 				 const struct sk_buff *skb)
6604 {
6605 	if (tcp_sk(sk)->save_syn) {
6606 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6607 		u32 *copy;
6608 
6609 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6610 		if (copy) {
6611 			copy[0] = len;
6612 			memcpy(&copy[1], skb_network_header(skb), len);
6613 			req->saved_syn = copy;
6614 		}
6615 	}
6616 }
6617 
6618 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6619  * used for SYN cookie generation.
6620  */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)6621 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6622 			  const struct tcp_request_sock_ops *af_ops,
6623 			  struct sock *sk, struct tcphdr *th)
6624 {
6625 	struct tcp_sock *tp = tcp_sk(sk);
6626 	u16 mss;
6627 
6628 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6629 	    !inet_csk_reqsk_queue_is_full(sk))
6630 		return 0;
6631 
6632 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6633 		return 0;
6634 
6635 	if (sk_acceptq_is_full(sk)) {
6636 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6637 		return 0;
6638 	}
6639 
6640 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6641 	if (!mss)
6642 		mss = af_ops->mss_clamp;
6643 
6644 	return mss;
6645 }
6646 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6647 
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6648 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6649 		     const struct tcp_request_sock_ops *af_ops,
6650 		     struct sock *sk, struct sk_buff *skb)
6651 {
6652 	struct tcp_fastopen_cookie foc = { .len = -1 };
6653 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6654 	struct tcp_options_received tmp_opt;
6655 	struct tcp_sock *tp = tcp_sk(sk);
6656 	struct net *net = sock_net(sk);
6657 	struct sock *fastopen_sk = NULL;
6658 	struct request_sock *req;
6659 	bool want_cookie = false;
6660 	struct dst_entry *dst;
6661 	struct flowi fl;
6662 	u8 syncookies;
6663 
6664 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6665 
6666 	/* TW buckets are converted to open requests without
6667 	 * limitations, they conserve resources and peer is
6668 	 * evidently real one.
6669 	 */
6670 	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6671 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6672 		if (!want_cookie)
6673 			goto drop;
6674 	}
6675 
6676 	if (sk_acceptq_is_full(sk)) {
6677 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6678 		goto drop;
6679 	}
6680 
6681 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6682 	if (!req)
6683 		goto drop;
6684 
6685 	tcp_rsk(req)->af_specific = af_ops;
6686 	tcp_rsk(req)->ts_off = 0;
6687 
6688 	tcp_clear_options(&tmp_opt);
6689 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6690 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6691 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6692 			  want_cookie ? NULL : &foc);
6693 
6694 	if (want_cookie && !tmp_opt.saw_tstamp)
6695 		tcp_clear_options(&tmp_opt);
6696 
6697 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6698 		tmp_opt.smc_ok = 0;
6699 
6700 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6701 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6702 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6703 
6704 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6705 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6706 
6707 	af_ops->init_req(req, sk, skb);
6708 
6709 	if (security_inet_conn_request(sk, skb, req))
6710 		goto drop_and_free;
6711 
6712 	if (tmp_opt.tstamp_ok)
6713 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6714 
6715 	dst = af_ops->route_req(sk, &fl, req);
6716 	if (!dst)
6717 		goto drop_and_free;
6718 
6719 	if (!want_cookie && !isn) {
6720 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
6721 
6722 		/* Kill the following clause, if you dislike this way. */
6723 		if (!syncookies &&
6724 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6725 		     (max_syn_backlog >> 2)) &&
6726 		    !tcp_peer_is_proven(req, dst)) {
6727 			/* Without syncookies last quarter of
6728 			 * backlog is filled with destinations,
6729 			 * proven to be alive.
6730 			 * It means that we continue to communicate
6731 			 * to destinations, already remembered
6732 			 * to the moment of synflood.
6733 			 */
6734 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6735 				    rsk_ops->family);
6736 			goto drop_and_release;
6737 		}
6738 
6739 		isn = af_ops->init_seq(skb);
6740 	}
6741 
6742 	tcp_ecn_create_request(req, skb, sk, dst);
6743 
6744 	if (want_cookie) {
6745 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6746 		req->cookie_ts = tmp_opt.tstamp_ok;
6747 		if (!tmp_opt.tstamp_ok)
6748 			inet_rsk(req)->ecn_ok = 0;
6749 	}
6750 
6751 	tcp_rsk(req)->snt_isn = isn;
6752 	tcp_rsk(req)->txhash = net_tx_rndhash();
6753 	tcp_openreq_init_rwin(req, sk, dst);
6754 	sk_rx_queue_set(req_to_sk(req), skb);
6755 	if (!want_cookie) {
6756 		tcp_reqsk_record_syn(sk, req, skb);
6757 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6758 	}
6759 	if (fastopen_sk) {
6760 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6761 				    &foc, TCP_SYNACK_FASTOPEN);
6762 		/* Add the child socket directly into the accept queue */
6763 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6764 			reqsk_fastopen_remove(fastopen_sk, req, false);
6765 			bh_unlock_sock(fastopen_sk);
6766 			sock_put(fastopen_sk);
6767 			goto drop_and_free;
6768 		}
6769 		sk->sk_data_ready(sk);
6770 		bh_unlock_sock(fastopen_sk);
6771 		sock_put(fastopen_sk);
6772 	} else {
6773 		tcp_rsk(req)->tfo_listener = false;
6774 		if (!want_cookie)
6775 			inet_csk_reqsk_queue_hash_add(sk, req,
6776 				tcp_timeout_init((struct sock *)req));
6777 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6778 				    !want_cookie ? TCP_SYNACK_NORMAL :
6779 						   TCP_SYNACK_COOKIE);
6780 		if (want_cookie) {
6781 			reqsk_free(req);
6782 			return 0;
6783 		}
6784 	}
6785 	reqsk_put(req);
6786 	return 0;
6787 
6788 drop_and_release:
6789 	dst_release(dst);
6790 drop_and_free:
6791 	__reqsk_free(req);
6792 drop:
6793 	tcp_listendrop(sk);
6794 	return 0;
6795 }
6796 EXPORT_SYMBOL(tcp_conn_request);
6797