1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <trace/hooks/net.h>
83
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85
86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
92 #define FLAG_ECE 0x40 /* ECE in this ACK */
93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
103
104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108
109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111
112 #define REXMIT_NONE 0 /* no loss recovery to do */
113 #define REXMIT_LOST 1 /* retransmit packets marked lost */
114 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
115
116 #if IS_ENABLED(CONFIG_TLS_DEVICE)
117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
118
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))119 void clean_acked_data_enable(struct inet_connection_sock *icsk,
120 void (*cad)(struct sock *sk, u32 ack_seq))
121 {
122 icsk->icsk_clean_acked = cad;
123 static_branch_deferred_inc(&clean_acked_data_enabled);
124 }
125 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
126
clean_acked_data_disable(struct inet_connection_sock * icsk)127 void clean_acked_data_disable(struct inet_connection_sock *icsk)
128 {
129 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
130 icsk->icsk_clean_acked = NULL;
131 }
132 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
133
clean_acked_data_flush(void)134 void clean_acked_data_flush(void)
135 {
136 static_key_deferred_flush(&clean_acked_data_enabled);
137 }
138 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
139 #endif
140
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)141 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
142 unsigned int len)
143 {
144 static bool __once __read_mostly;
145
146 if (!__once) {
147 struct net_device *dev;
148
149 __once = true;
150
151 rcu_read_lock();
152 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
153 if (!dev || len >= dev->mtu)
154 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
155 dev ? dev->name : "Unknown driver");
156 rcu_read_unlock();
157 }
158 }
159
160 /* Adapt the MSS value used to make delayed ack decision to the
161 * real world.
162 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)163 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
164 {
165 struct inet_connection_sock *icsk = inet_csk(sk);
166 const unsigned int lss = icsk->icsk_ack.last_seg_size;
167 unsigned int len;
168
169 icsk->icsk_ack.last_seg_size = 0;
170
171 /* skb->len may jitter because of SACKs, even if peer
172 * sends good full-sized frames.
173 */
174 len = skb_shinfo(skb)->gso_size ? : skb->len;
175 if (len >= icsk->icsk_ack.rcv_mss) {
176 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
177 tcp_sk(sk)->advmss);
178 /* Account for possibly-removed options */
179 if (unlikely(len > icsk->icsk_ack.rcv_mss +
180 MAX_TCP_OPTION_SPACE))
181 tcp_gro_dev_warn(sk, skb, len);
182 /* If the skb has a len of exactly 1*MSS and has the PSH bit
183 * set then it is likely the end of an application write. So
184 * more data may not be arriving soon, and yet the data sender
185 * may be waiting for an ACK if cwnd-bound or using TX zero
186 * copy. So we set ICSK_ACK_PUSHED here so that
187 * tcp_cleanup_rbuf() will send an ACK immediately if the app
188 * reads all of the data and is not ping-pong. If len > MSS
189 * then this logic does not matter (and does not hurt) because
190 * tcp_cleanup_rbuf() will always ACK immediately if the app
191 * reads data and there is more than an MSS of unACKed data.
192 */
193 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
194 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
195 } else {
196 /* Otherwise, we make more careful check taking into account,
197 * that SACKs block is variable.
198 *
199 * "len" is invariant segment length, including TCP header.
200 */
201 len += skb->data - skb_transport_header(skb);
202 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
203 /* If PSH is not set, packet should be
204 * full sized, provided peer TCP is not badly broken.
205 * This observation (if it is correct 8)) allows
206 * to handle super-low mtu links fairly.
207 */
208 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
209 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
210 /* Subtract also invariant (if peer is RFC compliant),
211 * tcp header plus fixed timestamp option length.
212 * Resulting "len" is MSS free of SACK jitter.
213 */
214 len -= tcp_sk(sk)->tcp_header_len;
215 icsk->icsk_ack.last_seg_size = len;
216 if (len == lss) {
217 icsk->icsk_ack.rcv_mss = len;
218 return;
219 }
220 }
221 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
222 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
223 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
224 }
225 }
226
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)227 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
228 {
229 struct inet_connection_sock *icsk = inet_csk(sk);
230 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
231
232 if (quickacks == 0)
233 quickacks = 2;
234 quickacks = min(quickacks, max_quickacks);
235 if (quickacks > icsk->icsk_ack.quick)
236 icsk->icsk_ack.quick = quickacks;
237 }
238
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)239 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
240 {
241 struct inet_connection_sock *icsk = inet_csk(sk);
242
243 tcp_incr_quickack(sk, max_quickacks);
244 inet_csk_exit_pingpong_mode(sk);
245 icsk->icsk_ack.ato = TCP_ATO_MIN;
246 }
247
248 /* Send ACKs quickly, if "quick" count is not exhausted
249 * and the session is not interactive.
250 */
251
tcp_in_quickack_mode(struct sock * sk)252 static bool tcp_in_quickack_mode(struct sock *sk)
253 {
254 const struct inet_connection_sock *icsk = inet_csk(sk);
255 const struct dst_entry *dst = __sk_dst_get(sk);
256
257 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
258 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
259 }
260
tcp_ecn_queue_cwr(struct tcp_sock * tp)261 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
262 {
263 if (tp->ecn_flags & TCP_ECN_OK)
264 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
265 }
266
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)267 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
268 {
269 if (tcp_hdr(skb)->cwr) {
270 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
271
272 /* If the sender is telling us it has entered CWR, then its
273 * cwnd may be very low (even just 1 packet), so we should ACK
274 * immediately.
275 */
276 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
277 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
278 }
279 }
280
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)281 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
282 {
283 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
284 }
285
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)286 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
287 {
288 struct tcp_sock *tp = tcp_sk(sk);
289
290 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
291 case INET_ECN_NOT_ECT:
292 /* Funny extension: if ECT is not set on a segment,
293 * and we already seen ECT on a previous segment,
294 * it is probably a retransmit.
295 */
296 if (tp->ecn_flags & TCP_ECN_SEEN)
297 tcp_enter_quickack_mode(sk, 2);
298 break;
299 case INET_ECN_CE:
300 if (tcp_ca_needs_ecn(sk))
301 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
302
303 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
304 /* Better not delay acks, sender can have a very low cwnd */
305 tcp_enter_quickack_mode(sk, 2);
306 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
307 }
308 tp->ecn_flags |= TCP_ECN_SEEN;
309 break;
310 default:
311 if (tcp_ca_needs_ecn(sk))
312 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
313 tp->ecn_flags |= TCP_ECN_SEEN;
314 break;
315 }
316 }
317
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)318 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
319 {
320 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
321 __tcp_ecn_check_ce(sk, skb);
322 }
323
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)324 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
325 {
326 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
327 tp->ecn_flags &= ~TCP_ECN_OK;
328 }
329
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)330 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
331 {
332 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
333 tp->ecn_flags &= ~TCP_ECN_OK;
334 }
335
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)336 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
337 {
338 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
339 return true;
340 return false;
341 }
342
343 /* Buffer size and advertised window tuning.
344 *
345 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
346 */
347
tcp_sndbuf_expand(struct sock * sk)348 static void tcp_sndbuf_expand(struct sock *sk)
349 {
350 const struct tcp_sock *tp = tcp_sk(sk);
351 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
352 int sndmem, per_mss;
353 u32 nr_segs;
354
355 /* Worst case is non GSO/TSO : each frame consumes one skb
356 * and skb->head is kmalloced using power of two area of memory
357 */
358 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
359 MAX_TCP_HEADER +
360 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
361
362 per_mss = roundup_pow_of_two(per_mss) +
363 SKB_DATA_ALIGN(sizeof(struct sk_buff));
364
365 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
366 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
367
368 /* Fast Recovery (RFC 5681 3.2) :
369 * Cubic needs 1.7 factor, rounded to 2 to include
370 * extra cushion (application might react slowly to EPOLLOUT)
371 */
372 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
373 sndmem *= nr_segs * per_mss;
374
375 if (sk->sk_sndbuf < sndmem)
376 WRITE_ONCE(sk->sk_sndbuf,
377 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
378 }
379
380 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
381 *
382 * All tcp_full_space() is split to two parts: "network" buffer, allocated
383 * forward and advertised in receiver window (tp->rcv_wnd) and
384 * "application buffer", required to isolate scheduling/application
385 * latencies from network.
386 * window_clamp is maximal advertised window. It can be less than
387 * tcp_full_space(), in this case tcp_full_space() - window_clamp
388 * is reserved for "application" buffer. The less window_clamp is
389 * the smoother our behaviour from viewpoint of network, but the lower
390 * throughput and the higher sensitivity of the connection to losses. 8)
391 *
392 * rcv_ssthresh is more strict window_clamp used at "slow start"
393 * phase to predict further behaviour of this connection.
394 * It is used for two goals:
395 * - to enforce header prediction at sender, even when application
396 * requires some significant "application buffer". It is check #1.
397 * - to prevent pruning of receive queue because of misprediction
398 * of receiver window. Check #2.
399 *
400 * The scheme does not work when sender sends good segments opening
401 * window and then starts to feed us spaghetti. But it should work
402 * in common situations. Otherwise, we have to rely on queue collapsing.
403 */
404
405 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb)406 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
407 {
408 struct tcp_sock *tp = tcp_sk(sk);
409 /* Optimize this! */
410 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
411 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
412
413 while (tp->rcv_ssthresh <= window) {
414 if (truesize <= skb->len)
415 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
416
417 truesize >>= 1;
418 window >>= 1;
419 }
420 return 0;
421 }
422
tcp_grow_window(struct sock * sk,const struct sk_buff * skb)423 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
424 {
425 struct tcp_sock *tp = tcp_sk(sk);
426 int room;
427
428 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
429
430 /* Check #1 */
431 if (room > 0 && !tcp_under_memory_pressure(sk)) {
432 int incr;
433
434 /* Check #2. Increase window, if skb with such overhead
435 * will fit to rcvbuf in future.
436 */
437 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
438 incr = 2 * tp->advmss;
439 else
440 incr = __tcp_grow_window(sk, skb);
441
442 if (incr) {
443 incr = max_t(int, incr, 2 * skb->len);
444 tp->rcv_ssthresh += min(room, incr);
445 inet_csk(sk)->icsk_ack.quick |= 1;
446 }
447 }
448 }
449
450 /* 3. Try to fixup all. It is made immediately after connection enters
451 * established state.
452 */
tcp_init_buffer_space(struct sock * sk)453 void tcp_init_buffer_space(struct sock *sk)
454 {
455 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
456 struct tcp_sock *tp = tcp_sk(sk);
457 int maxwin;
458
459 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
460 tcp_sndbuf_expand(sk);
461
462 tcp_mstamp_refresh(tp);
463 tp->rcvq_space.time = tp->tcp_mstamp;
464 tp->rcvq_space.seq = tp->copied_seq;
465
466 maxwin = tcp_full_space(sk);
467
468 if (tp->window_clamp >= maxwin) {
469 tp->window_clamp = maxwin;
470
471 if (tcp_app_win && maxwin > 4 * tp->advmss)
472 tp->window_clamp = max(maxwin -
473 (maxwin >> tcp_app_win),
474 4 * tp->advmss);
475 }
476
477 /* Force reservation of one segment. */
478 if (tcp_app_win &&
479 tp->window_clamp > 2 * tp->advmss &&
480 tp->window_clamp + tp->advmss > maxwin)
481 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
482
483 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
484 tp->snd_cwnd_stamp = tcp_jiffies32;
485 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
486 (u32)TCP_INIT_CWND * tp->advmss);
487 }
488
489 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)490 static void tcp_clamp_window(struct sock *sk)
491 {
492 struct tcp_sock *tp = tcp_sk(sk);
493 struct inet_connection_sock *icsk = inet_csk(sk);
494 struct net *net = sock_net(sk);
495
496 icsk->icsk_ack.quick = 0;
497
498 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
499 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
500 !tcp_under_memory_pressure(sk) &&
501 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
502 WRITE_ONCE(sk->sk_rcvbuf,
503 min(atomic_read(&sk->sk_rmem_alloc),
504 net->ipv4.sysctl_tcp_rmem[2]));
505 }
506 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
507 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
508 }
509
510 /* Initialize RCV_MSS value.
511 * RCV_MSS is an our guess about MSS used by the peer.
512 * We haven't any direct information about the MSS.
513 * It's better to underestimate the RCV_MSS rather than overestimate.
514 * Overestimations make us ACKing less frequently than needed.
515 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
516 */
tcp_initialize_rcv_mss(struct sock * sk)517 void tcp_initialize_rcv_mss(struct sock *sk)
518 {
519 const struct tcp_sock *tp = tcp_sk(sk);
520 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
521
522 hint = min(hint, tp->rcv_wnd / 2);
523 hint = min(hint, TCP_MSS_DEFAULT);
524 hint = max(hint, TCP_MIN_MSS);
525
526 inet_csk(sk)->icsk_ack.rcv_mss = hint;
527 }
528 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
529
530 /* Receiver "autotuning" code.
531 *
532 * The algorithm for RTT estimation w/o timestamps is based on
533 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
534 * <http://public.lanl.gov/radiant/pubs.html#DRS>
535 *
536 * More detail on this code can be found at
537 * <http://staff.psc.edu/jheffner/>,
538 * though this reference is out of date. A new paper
539 * is pending.
540 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)541 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
542 {
543 u32 new_sample = tp->rcv_rtt_est.rtt_us;
544 long m = sample;
545
546 if (new_sample != 0) {
547 /* If we sample in larger samples in the non-timestamp
548 * case, we could grossly overestimate the RTT especially
549 * with chatty applications or bulk transfer apps which
550 * are stalled on filesystem I/O.
551 *
552 * Also, since we are only going for a minimum in the
553 * non-timestamp case, we do not smooth things out
554 * else with timestamps disabled convergence takes too
555 * long.
556 */
557 if (!win_dep) {
558 m -= (new_sample >> 3);
559 new_sample += m;
560 } else {
561 m <<= 3;
562 if (m < new_sample)
563 new_sample = m;
564 }
565 } else {
566 /* No previous measure. */
567 new_sample = m << 3;
568 }
569
570 tp->rcv_rtt_est.rtt_us = new_sample;
571 }
572
tcp_rcv_rtt_measure(struct tcp_sock * tp)573 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
574 {
575 u32 delta_us;
576
577 if (tp->rcv_rtt_est.time == 0)
578 goto new_measure;
579 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
580 return;
581 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
582 if (!delta_us)
583 delta_us = 1;
584 tcp_rcv_rtt_update(tp, delta_us, 1);
585
586 new_measure:
587 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
588 tp->rcv_rtt_est.time = tp->tcp_mstamp;
589 }
590
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)591 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
592 const struct sk_buff *skb)
593 {
594 struct tcp_sock *tp = tcp_sk(sk);
595
596 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
597 return;
598 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
599
600 if (TCP_SKB_CB(skb)->end_seq -
601 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
602 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
603 u32 delta_us;
604
605 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
606 if (!delta)
607 delta = 1;
608 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
609 tcp_rcv_rtt_update(tp, delta_us, 0);
610 }
611 }
612 }
613
614 /*
615 * This function should be called every time data is copied to user space.
616 * It calculates the appropriate TCP receive buffer space.
617 */
tcp_rcv_space_adjust(struct sock * sk)618 void tcp_rcv_space_adjust(struct sock *sk)
619 {
620 struct tcp_sock *tp = tcp_sk(sk);
621 u32 copied;
622 int time;
623
624 trace_tcp_rcv_space_adjust(sk);
625
626 tcp_mstamp_refresh(tp);
627 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
628 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
629 return;
630
631 /* Number of bytes copied to user in last RTT */
632 copied = tp->copied_seq - tp->rcvq_space.seq;
633 if (copied <= tp->rcvq_space.space)
634 goto new_measure;
635
636 /* A bit of theory :
637 * copied = bytes received in previous RTT, our base window
638 * To cope with packet losses, we need a 2x factor
639 * To cope with slow start, and sender growing its cwin by 100 %
640 * every RTT, we need a 4x factor, because the ACK we are sending
641 * now is for the next RTT, not the current one :
642 * <prev RTT . ><current RTT .. ><next RTT .... >
643 */
644
645 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
646 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
647 int rcvmem, rcvbuf;
648 u64 rcvwin, grow;
649
650 /* minimal window to cope with packet losses, assuming
651 * steady state. Add some cushion because of small variations.
652 */
653 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
654
655 /* Accommodate for sender rate increase (eg. slow start) */
656 grow = rcvwin * (copied - tp->rcvq_space.space);
657 do_div(grow, tp->rcvq_space.space);
658 rcvwin += (grow << 1);
659
660 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
661 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
662 rcvmem += 128;
663
664 do_div(rcvwin, tp->advmss);
665 rcvbuf = min_t(u64, rcvwin * rcvmem,
666 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
667 if (rcvbuf > sk->sk_rcvbuf) {
668 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
669
670 /* Make the window clamp follow along. */
671 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
672 }
673 }
674 tp->rcvq_space.space = copied;
675
676 new_measure:
677 tp->rcvq_space.seq = tp->copied_seq;
678 tp->rcvq_space.time = tp->tcp_mstamp;
679 }
680
681 /* There is something which you must keep in mind when you analyze the
682 * behavior of the tp->ato delayed ack timeout interval. When a
683 * connection starts up, we want to ack as quickly as possible. The
684 * problem is that "good" TCP's do slow start at the beginning of data
685 * transmission. The means that until we send the first few ACK's the
686 * sender will sit on his end and only queue most of his data, because
687 * he can only send snd_cwnd unacked packets at any given time. For
688 * each ACK we send, he increments snd_cwnd and transmits more of his
689 * queue. -DaveM
690 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)691 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
692 {
693 struct tcp_sock *tp = tcp_sk(sk);
694 struct inet_connection_sock *icsk = inet_csk(sk);
695 u32 now;
696
697 inet_csk_schedule_ack(sk);
698
699 tcp_measure_rcv_mss(sk, skb);
700
701 tcp_rcv_rtt_measure(tp);
702
703 now = tcp_jiffies32;
704
705 if (!icsk->icsk_ack.ato) {
706 /* The _first_ data packet received, initialize
707 * delayed ACK engine.
708 */
709 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
710 icsk->icsk_ack.ato = TCP_ATO_MIN;
711 } else {
712 int m = now - icsk->icsk_ack.lrcvtime;
713
714 if (m <= TCP_ATO_MIN / 2) {
715 /* The fastest case is the first. */
716 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
717 } else if (m < icsk->icsk_ack.ato) {
718 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
719 if (icsk->icsk_ack.ato > icsk->icsk_rto)
720 icsk->icsk_ack.ato = icsk->icsk_rto;
721 } else if (m > icsk->icsk_rto) {
722 /* Too long gap. Apparently sender failed to
723 * restart window, so that we send ACKs quickly.
724 */
725 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
726 sk_mem_reclaim(sk);
727 }
728 }
729 icsk->icsk_ack.lrcvtime = now;
730
731 tcp_ecn_check_ce(sk, skb);
732
733 if (skb->len >= 128)
734 tcp_grow_window(sk, skb);
735 }
736
737 /* Called to compute a smoothed rtt estimate. The data fed to this
738 * routine either comes from timestamps, or from segments that were
739 * known _not_ to have been retransmitted [see Karn/Partridge
740 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
741 * piece by Van Jacobson.
742 * NOTE: the next three routines used to be one big routine.
743 * To save cycles in the RFC 1323 implementation it was better to break
744 * it up into three procedures. -- erics
745 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)746 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
747 {
748 struct tcp_sock *tp = tcp_sk(sk);
749 long m = mrtt_us; /* RTT */
750 u32 srtt = tp->srtt_us;
751
752 /* The following amusing code comes from Jacobson's
753 * article in SIGCOMM '88. Note that rtt and mdev
754 * are scaled versions of rtt and mean deviation.
755 * This is designed to be as fast as possible
756 * m stands for "measurement".
757 *
758 * On a 1990 paper the rto value is changed to:
759 * RTO = rtt + 4 * mdev
760 *
761 * Funny. This algorithm seems to be very broken.
762 * These formulae increase RTO, when it should be decreased, increase
763 * too slowly, when it should be increased quickly, decrease too quickly
764 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
765 * does not matter how to _calculate_ it. Seems, it was trap
766 * that VJ failed to avoid. 8)
767 */
768 if (srtt != 0) {
769 m -= (srtt >> 3); /* m is now error in rtt est */
770 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
771 if (m < 0) {
772 m = -m; /* m is now abs(error) */
773 m -= (tp->mdev_us >> 2); /* similar update on mdev */
774 /* This is similar to one of Eifel findings.
775 * Eifel blocks mdev updates when rtt decreases.
776 * This solution is a bit different: we use finer gain
777 * for mdev in this case (alpha*beta).
778 * Like Eifel it also prevents growth of rto,
779 * but also it limits too fast rto decreases,
780 * happening in pure Eifel.
781 */
782 if (m > 0)
783 m >>= 3;
784 } else {
785 m -= (tp->mdev_us >> 2); /* similar update on mdev */
786 }
787 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
788 if (tp->mdev_us > tp->mdev_max_us) {
789 tp->mdev_max_us = tp->mdev_us;
790 if (tp->mdev_max_us > tp->rttvar_us)
791 tp->rttvar_us = tp->mdev_max_us;
792 }
793 if (after(tp->snd_una, tp->rtt_seq)) {
794 if (tp->mdev_max_us < tp->rttvar_us)
795 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
796 tp->rtt_seq = tp->snd_nxt;
797 tp->mdev_max_us = tcp_rto_min_us(sk);
798
799 tcp_bpf_rtt(sk);
800 }
801 } else {
802 /* no previous measure. */
803 srtt = m << 3; /* take the measured time to be rtt */
804 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
805 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
806 tp->mdev_max_us = tp->rttvar_us;
807 tp->rtt_seq = tp->snd_nxt;
808
809 tcp_bpf_rtt(sk);
810 }
811 tp->srtt_us = max(1U, srtt);
812 }
813
tcp_update_pacing_rate(struct sock * sk)814 static void tcp_update_pacing_rate(struct sock *sk)
815 {
816 const struct tcp_sock *tp = tcp_sk(sk);
817 u64 rate;
818
819 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
820 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
821
822 /* current rate is (cwnd * mss) / srtt
823 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
824 * In Congestion Avoidance phase, set it to 120 % the current rate.
825 *
826 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
827 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
828 * end of slow start and should slow down.
829 */
830 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
831 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
832 else
833 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
834
835 rate *= max(tp->snd_cwnd, tp->packets_out);
836
837 if (likely(tp->srtt_us))
838 do_div(rate, tp->srtt_us);
839
840 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
841 * without any lock. We want to make sure compiler wont store
842 * intermediate values in this location.
843 */
844 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
845 sk->sk_max_pacing_rate));
846 }
847
848 /* Calculate rto without backoff. This is the second half of Van Jacobson's
849 * routine referred to above.
850 */
tcp_set_rto(struct sock * sk)851 static void tcp_set_rto(struct sock *sk)
852 {
853 const struct tcp_sock *tp = tcp_sk(sk);
854 /* Old crap is replaced with new one. 8)
855 *
856 * More seriously:
857 * 1. If rtt variance happened to be less 50msec, it is hallucination.
858 * It cannot be less due to utterly erratic ACK generation made
859 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
860 * to do with delayed acks, because at cwnd>2 true delack timeout
861 * is invisible. Actually, Linux-2.4 also generates erratic
862 * ACKs in some circumstances.
863 */
864 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
865
866 /* 2. Fixups made earlier cannot be right.
867 * If we do not estimate RTO correctly without them,
868 * all the algo is pure shit and should be replaced
869 * with correct one. It is exactly, which we pretend to do.
870 */
871
872 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
873 * guarantees that rto is higher.
874 */
875 tcp_bound_rto(sk);
876 }
877
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)878 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
879 {
880 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
881
882 if (!cwnd)
883 cwnd = TCP_INIT_CWND;
884 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
885 }
886
887 /* Take a notice that peer is sending D-SACKs */
tcp_dsack_seen(struct tcp_sock * tp)888 static void tcp_dsack_seen(struct tcp_sock *tp)
889 {
890 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
891 tp->rack.dsack_seen = 1;
892 tp->dsack_dups++;
893 }
894
895 /* It's reordering when higher sequence was delivered (i.e. sacked) before
896 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
897 * distance is approximated in full-mss packet distance ("reordering").
898 */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)899 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
900 const int ts)
901 {
902 struct tcp_sock *tp = tcp_sk(sk);
903 const u32 mss = tp->mss_cache;
904 u32 fack, metric;
905
906 fack = tcp_highest_sack_seq(tp);
907 if (!before(low_seq, fack))
908 return;
909
910 metric = fack - low_seq;
911 if ((metric > tp->reordering * mss) && mss) {
912 #if FASTRETRANS_DEBUG > 1
913 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
914 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
915 tp->reordering,
916 0,
917 tp->sacked_out,
918 tp->undo_marker ? tp->undo_retrans : 0);
919 #endif
920 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
921 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
922 }
923
924 /* This exciting event is worth to be remembered. 8) */
925 tp->reord_seen++;
926 NET_INC_STATS(sock_net(sk),
927 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
928 }
929
930 /* This must be called before lost_out is incremented */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)931 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
932 {
933 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
934 (tp->retransmit_skb_hint &&
935 before(TCP_SKB_CB(skb)->seq,
936 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
937 tp->retransmit_skb_hint = skb;
938 }
939
940 /* Sum the number of packets on the wire we have marked as lost.
941 * There are two cases we care about here:
942 * a) Packet hasn't been marked lost (nor retransmitted),
943 * and this is the first loss.
944 * b) Packet has been marked both lost and retransmitted,
945 * and this means we think it was lost again.
946 */
tcp_sum_lost(struct tcp_sock * tp,struct sk_buff * skb)947 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
948 {
949 __u8 sacked = TCP_SKB_CB(skb)->sacked;
950
951 if (!(sacked & TCPCB_LOST) ||
952 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
953 tp->lost += tcp_skb_pcount(skb);
954 }
955
tcp_skb_mark_lost(struct tcp_sock * tp,struct sk_buff * skb)956 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
957 {
958 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
959 tcp_verify_retransmit_hint(tp, skb);
960
961 tp->lost_out += tcp_skb_pcount(skb);
962 tcp_sum_lost(tp, skb);
963 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
964 }
965 }
966
tcp_skb_mark_lost_uncond_verify(struct tcp_sock * tp,struct sk_buff * skb)967 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
968 {
969 tcp_verify_retransmit_hint(tp, skb);
970
971 tcp_sum_lost(tp, skb);
972 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
973 tp->lost_out += tcp_skb_pcount(skb);
974 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
975 }
976 }
977
978 /* This procedure tags the retransmission queue when SACKs arrive.
979 *
980 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
981 * Packets in queue with these bits set are counted in variables
982 * sacked_out, retrans_out and lost_out, correspondingly.
983 *
984 * Valid combinations are:
985 * Tag InFlight Description
986 * 0 1 - orig segment is in flight.
987 * S 0 - nothing flies, orig reached receiver.
988 * L 0 - nothing flies, orig lost by net.
989 * R 2 - both orig and retransmit are in flight.
990 * L|R 1 - orig is lost, retransmit is in flight.
991 * S|R 1 - orig reached receiver, retrans is still in flight.
992 * (L|S|R is logically valid, it could occur when L|R is sacked,
993 * but it is equivalent to plain S and code short-curcuits it to S.
994 * L|S is logically invalid, it would mean -1 packet in flight 8))
995 *
996 * These 6 states form finite state machine, controlled by the following events:
997 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
998 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
999 * 3. Loss detection event of two flavors:
1000 * A. Scoreboard estimator decided the packet is lost.
1001 * A'. Reno "three dupacks" marks head of queue lost.
1002 * B. SACK arrives sacking SND.NXT at the moment, when the
1003 * segment was retransmitted.
1004 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1005 *
1006 * It is pleasant to note, that state diagram turns out to be commutative,
1007 * so that we are allowed not to be bothered by order of our actions,
1008 * when multiple events arrive simultaneously. (see the function below).
1009 *
1010 * Reordering detection.
1011 * --------------------
1012 * Reordering metric is maximal distance, which a packet can be displaced
1013 * in packet stream. With SACKs we can estimate it:
1014 *
1015 * 1. SACK fills old hole and the corresponding segment was not
1016 * ever retransmitted -> reordering. Alas, we cannot use it
1017 * when segment was retransmitted.
1018 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1019 * for retransmitted and already SACKed segment -> reordering..
1020 * Both of these heuristics are not used in Loss state, when we cannot
1021 * account for retransmits accurately.
1022 *
1023 * SACK block validation.
1024 * ----------------------
1025 *
1026 * SACK block range validation checks that the received SACK block fits to
1027 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1028 * Note that SND.UNA is not included to the range though being valid because
1029 * it means that the receiver is rather inconsistent with itself reporting
1030 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1031 * perfectly valid, however, in light of RFC2018 which explicitly states
1032 * that "SACK block MUST reflect the newest segment. Even if the newest
1033 * segment is going to be discarded ...", not that it looks very clever
1034 * in case of head skb. Due to potentional receiver driven attacks, we
1035 * choose to avoid immediate execution of a walk in write queue due to
1036 * reneging and defer head skb's loss recovery to standard loss recovery
1037 * procedure that will eventually trigger (nothing forbids us doing this).
1038 *
1039 * Implements also blockage to start_seq wrap-around. Problem lies in the
1040 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1041 * there's no guarantee that it will be before snd_nxt (n). The problem
1042 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1043 * wrap (s_w):
1044 *
1045 * <- outs wnd -> <- wrapzone ->
1046 * u e n u_w e_w s n_w
1047 * | | | | | | |
1048 * |<------------+------+----- TCP seqno space --------------+---------->|
1049 * ...-- <2^31 ->| |<--------...
1050 * ...---- >2^31 ------>| |<--------...
1051 *
1052 * Current code wouldn't be vulnerable but it's better still to discard such
1053 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1054 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1055 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1056 * equal to the ideal case (infinite seqno space without wrap caused issues).
1057 *
1058 * With D-SACK the lower bound is extended to cover sequence space below
1059 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1060 * again, D-SACK block must not to go across snd_una (for the same reason as
1061 * for the normal SACK blocks, explained above). But there all simplicity
1062 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1063 * fully below undo_marker they do not affect behavior in anyway and can
1064 * therefore be safely ignored. In rare cases (which are more or less
1065 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1066 * fragmentation and packet reordering past skb's retransmission. To consider
1067 * them correctly, the acceptable range must be extended even more though
1068 * the exact amount is rather hard to quantify. However, tp->max_window can
1069 * be used as an exaggerated estimate.
1070 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1071 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1072 u32 start_seq, u32 end_seq)
1073 {
1074 /* Too far in future, or reversed (interpretation is ambiguous) */
1075 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1076 return false;
1077
1078 /* Nasty start_seq wrap-around check (see comments above) */
1079 if (!before(start_seq, tp->snd_nxt))
1080 return false;
1081
1082 /* In outstanding window? ...This is valid exit for D-SACKs too.
1083 * start_seq == snd_una is non-sensical (see comments above)
1084 */
1085 if (after(start_seq, tp->snd_una))
1086 return true;
1087
1088 if (!is_dsack || !tp->undo_marker)
1089 return false;
1090
1091 /* ...Then it's D-SACK, and must reside below snd_una completely */
1092 if (after(end_seq, tp->snd_una))
1093 return false;
1094
1095 if (!before(start_seq, tp->undo_marker))
1096 return true;
1097
1098 /* Too old */
1099 if (!after(end_seq, tp->undo_marker))
1100 return false;
1101
1102 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1103 * start_seq < undo_marker and end_seq >= undo_marker.
1104 */
1105 return !before(start_seq, end_seq - tp->max_window);
1106 }
1107
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una)1108 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1109 struct tcp_sack_block_wire *sp, int num_sacks,
1110 u32 prior_snd_una)
1111 {
1112 struct tcp_sock *tp = tcp_sk(sk);
1113 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1114 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1115 bool dup_sack = false;
1116
1117 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1118 dup_sack = true;
1119 tcp_dsack_seen(tp);
1120 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1121 } else if (num_sacks > 1) {
1122 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1123 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1124
1125 if (!after(end_seq_0, end_seq_1) &&
1126 !before(start_seq_0, start_seq_1)) {
1127 dup_sack = true;
1128 tcp_dsack_seen(tp);
1129 NET_INC_STATS(sock_net(sk),
1130 LINUX_MIB_TCPDSACKOFORECV);
1131 }
1132 }
1133
1134 /* D-SACK for already forgotten data... Do dumb counting. */
1135 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1136 !after(end_seq_0, prior_snd_una) &&
1137 after(end_seq_0, tp->undo_marker))
1138 tp->undo_retrans--;
1139
1140 return dup_sack;
1141 }
1142
1143 struct tcp_sacktag_state {
1144 u32 reord;
1145 /* Timestamps for earliest and latest never-retransmitted segment
1146 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1147 * but congestion control should still get an accurate delay signal.
1148 */
1149 u64 first_sackt;
1150 u64 last_sackt;
1151 struct rate_sample *rate;
1152 int flag;
1153 unsigned int mss_now;
1154 };
1155
1156 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1157 * the incoming SACK may not exactly match but we can find smaller MSS
1158 * aligned portion of it that matches. Therefore we might need to fragment
1159 * which may fail and creates some hassle (caller must handle error case
1160 * returns).
1161 *
1162 * FIXME: this could be merged to shift decision code
1163 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1164 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1165 u32 start_seq, u32 end_seq)
1166 {
1167 int err;
1168 bool in_sack;
1169 unsigned int pkt_len;
1170 unsigned int mss;
1171
1172 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1173 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1174
1175 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1176 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1177 mss = tcp_skb_mss(skb);
1178 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1179
1180 if (!in_sack) {
1181 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1182 if (pkt_len < mss)
1183 pkt_len = mss;
1184 } else {
1185 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1186 if (pkt_len < mss)
1187 return -EINVAL;
1188 }
1189
1190 /* Round if necessary so that SACKs cover only full MSSes
1191 * and/or the remaining small portion (if present)
1192 */
1193 if (pkt_len > mss) {
1194 unsigned int new_len = (pkt_len / mss) * mss;
1195 if (!in_sack && new_len < pkt_len)
1196 new_len += mss;
1197 pkt_len = new_len;
1198 }
1199
1200 if (pkt_len >= skb->len && !in_sack)
1201 return 0;
1202
1203 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1204 pkt_len, mss, GFP_ATOMIC);
1205 if (err < 0)
1206 return err;
1207 }
1208
1209 return in_sack;
1210 }
1211
1212 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1213 static u8 tcp_sacktag_one(struct sock *sk,
1214 struct tcp_sacktag_state *state, u8 sacked,
1215 u32 start_seq, u32 end_seq,
1216 int dup_sack, int pcount,
1217 u64 xmit_time)
1218 {
1219 struct tcp_sock *tp = tcp_sk(sk);
1220
1221 /* Account D-SACK for retransmitted packet. */
1222 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1223 if (tp->undo_marker && tp->undo_retrans > 0 &&
1224 after(end_seq, tp->undo_marker))
1225 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1226 if ((sacked & TCPCB_SACKED_ACKED) &&
1227 before(start_seq, state->reord))
1228 state->reord = start_seq;
1229 }
1230
1231 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1232 if (!after(end_seq, tp->snd_una))
1233 return sacked;
1234
1235 if (!(sacked & TCPCB_SACKED_ACKED)) {
1236 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1237
1238 if (sacked & TCPCB_SACKED_RETRANS) {
1239 /* If the segment is not tagged as lost,
1240 * we do not clear RETRANS, believing
1241 * that retransmission is still in flight.
1242 */
1243 if (sacked & TCPCB_LOST) {
1244 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1245 tp->lost_out -= pcount;
1246 tp->retrans_out -= pcount;
1247 }
1248 } else {
1249 if (!(sacked & TCPCB_RETRANS)) {
1250 /* New sack for not retransmitted frame,
1251 * which was in hole. It is reordering.
1252 */
1253 if (before(start_seq,
1254 tcp_highest_sack_seq(tp)) &&
1255 before(start_seq, state->reord))
1256 state->reord = start_seq;
1257
1258 if (!after(end_seq, tp->high_seq))
1259 state->flag |= FLAG_ORIG_SACK_ACKED;
1260 if (state->first_sackt == 0)
1261 state->first_sackt = xmit_time;
1262 state->last_sackt = xmit_time;
1263 }
1264
1265 if (sacked & TCPCB_LOST) {
1266 sacked &= ~TCPCB_LOST;
1267 tp->lost_out -= pcount;
1268 }
1269 }
1270
1271 sacked |= TCPCB_SACKED_ACKED;
1272 state->flag |= FLAG_DATA_SACKED;
1273 tp->sacked_out += pcount;
1274 tp->delivered += pcount; /* Out-of-order packets delivered */
1275
1276 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1277 if (tp->lost_skb_hint &&
1278 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1279 tp->lost_cnt_hint += pcount;
1280 }
1281
1282 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1283 * frames and clear it. undo_retrans is decreased above, L|R frames
1284 * are accounted above as well.
1285 */
1286 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1287 sacked &= ~TCPCB_SACKED_RETRANS;
1288 tp->retrans_out -= pcount;
1289 }
1290
1291 return sacked;
1292 }
1293
1294 /* Shift newly-SACKed bytes from this skb to the immediately previous
1295 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1296 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1297 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1298 struct sk_buff *skb,
1299 struct tcp_sacktag_state *state,
1300 unsigned int pcount, int shifted, int mss,
1301 bool dup_sack)
1302 {
1303 struct tcp_sock *tp = tcp_sk(sk);
1304 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1305 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1306
1307 BUG_ON(!pcount);
1308
1309 /* Adjust counters and hints for the newly sacked sequence
1310 * range but discard the return value since prev is already
1311 * marked. We must tag the range first because the seq
1312 * advancement below implicitly advances
1313 * tcp_highest_sack_seq() when skb is highest_sack.
1314 */
1315 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1316 start_seq, end_seq, dup_sack, pcount,
1317 tcp_skb_timestamp_us(skb));
1318 tcp_rate_skb_delivered(sk, skb, state->rate);
1319
1320 if (skb == tp->lost_skb_hint)
1321 tp->lost_cnt_hint += pcount;
1322
1323 TCP_SKB_CB(prev)->end_seq += shifted;
1324 TCP_SKB_CB(skb)->seq += shifted;
1325
1326 tcp_skb_pcount_add(prev, pcount);
1327 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1328 tcp_skb_pcount_add(skb, -pcount);
1329
1330 /* When we're adding to gso_segs == 1, gso_size will be zero,
1331 * in theory this shouldn't be necessary but as long as DSACK
1332 * code can come after this skb later on it's better to keep
1333 * setting gso_size to something.
1334 */
1335 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1336 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1337
1338 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1339 if (tcp_skb_pcount(skb) <= 1)
1340 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1341
1342 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1343 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1344
1345 if (skb->len > 0) {
1346 BUG_ON(!tcp_skb_pcount(skb));
1347 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1348 return false;
1349 }
1350
1351 /* Whole SKB was eaten :-) */
1352
1353 if (skb == tp->retransmit_skb_hint)
1354 tp->retransmit_skb_hint = prev;
1355 if (skb == tp->lost_skb_hint) {
1356 tp->lost_skb_hint = prev;
1357 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1358 }
1359
1360 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1361 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1362 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1363 TCP_SKB_CB(prev)->end_seq++;
1364
1365 if (skb == tcp_highest_sack(sk))
1366 tcp_advance_highest_sack(sk, skb);
1367
1368 tcp_skb_collapse_tstamp(prev, skb);
1369 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1370 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1371
1372 tcp_rtx_queue_unlink_and_free(skb, sk);
1373
1374 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1375
1376 return true;
1377 }
1378
1379 /* I wish gso_size would have a bit more sane initialization than
1380 * something-or-zero which complicates things
1381 */
tcp_skb_seglen(const struct sk_buff * skb)1382 static int tcp_skb_seglen(const struct sk_buff *skb)
1383 {
1384 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1385 }
1386
1387 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1388 static int skb_can_shift(const struct sk_buff *skb)
1389 {
1390 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1391 }
1392
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1393 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1394 int pcount, int shiftlen)
1395 {
1396 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1397 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1398 * to make sure not storing more than 65535 * 8 bytes per skb,
1399 * even if current MSS is bigger.
1400 */
1401 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1402 return 0;
1403 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1404 return 0;
1405 return skb_shift(to, from, shiftlen);
1406 }
1407
1408 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1409 * skb.
1410 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1411 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1412 struct tcp_sacktag_state *state,
1413 u32 start_seq, u32 end_seq,
1414 bool dup_sack)
1415 {
1416 struct tcp_sock *tp = tcp_sk(sk);
1417 struct sk_buff *prev;
1418 int mss;
1419 int pcount = 0;
1420 int len;
1421 int in_sack;
1422
1423 /* Normally R but no L won't result in plain S */
1424 if (!dup_sack &&
1425 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1426 goto fallback;
1427 if (!skb_can_shift(skb))
1428 goto fallback;
1429 /* This frame is about to be dropped (was ACKed). */
1430 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1431 goto fallback;
1432
1433 /* Can only happen with delayed DSACK + discard craziness */
1434 prev = skb_rb_prev(skb);
1435 if (!prev)
1436 goto fallback;
1437
1438 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1439 goto fallback;
1440
1441 if (!tcp_skb_can_collapse_to(prev))
1442 goto fallback;
1443
1444 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1445 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1446
1447 if (in_sack) {
1448 len = skb->len;
1449 pcount = tcp_skb_pcount(skb);
1450 mss = tcp_skb_seglen(skb);
1451
1452 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1453 * drop this restriction as unnecessary
1454 */
1455 if (mss != tcp_skb_seglen(prev))
1456 goto fallback;
1457 } else {
1458 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1459 goto noop;
1460 /* CHECKME: This is non-MSS split case only?, this will
1461 * cause skipped skbs due to advancing loop btw, original
1462 * has that feature too
1463 */
1464 if (tcp_skb_pcount(skb) <= 1)
1465 goto noop;
1466
1467 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1468 if (!in_sack) {
1469 /* TODO: head merge to next could be attempted here
1470 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1471 * though it might not be worth of the additional hassle
1472 *
1473 * ...we can probably just fallback to what was done
1474 * previously. We could try merging non-SACKed ones
1475 * as well but it probably isn't going to buy off
1476 * because later SACKs might again split them, and
1477 * it would make skb timestamp tracking considerably
1478 * harder problem.
1479 */
1480 goto fallback;
1481 }
1482
1483 len = end_seq - TCP_SKB_CB(skb)->seq;
1484 BUG_ON(len < 0);
1485 BUG_ON(len > skb->len);
1486
1487 /* MSS boundaries should be honoured or else pcount will
1488 * severely break even though it makes things bit trickier.
1489 * Optimize common case to avoid most of the divides
1490 */
1491 mss = tcp_skb_mss(skb);
1492
1493 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1494 * drop this restriction as unnecessary
1495 */
1496 if (mss != tcp_skb_seglen(prev))
1497 goto fallback;
1498
1499 if (len == mss) {
1500 pcount = 1;
1501 } else if (len < mss) {
1502 goto noop;
1503 } else {
1504 pcount = len / mss;
1505 len = pcount * mss;
1506 }
1507 }
1508
1509 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1510 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1511 goto fallback;
1512
1513 if (!tcp_skb_shift(prev, skb, pcount, len))
1514 goto fallback;
1515 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1516 goto out;
1517
1518 /* Hole filled allows collapsing with the next as well, this is very
1519 * useful when hole on every nth skb pattern happens
1520 */
1521 skb = skb_rb_next(prev);
1522 if (!skb)
1523 goto out;
1524
1525 if (!skb_can_shift(skb) ||
1526 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1527 (mss != tcp_skb_seglen(skb)))
1528 goto out;
1529
1530 len = skb->len;
1531 pcount = tcp_skb_pcount(skb);
1532 if (tcp_skb_shift(prev, skb, pcount, len))
1533 tcp_shifted_skb(sk, prev, skb, state, pcount,
1534 len, mss, 0);
1535
1536 out:
1537 return prev;
1538
1539 noop:
1540 return skb;
1541
1542 fallback:
1543 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1544 return NULL;
1545 }
1546
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1547 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1548 struct tcp_sack_block *next_dup,
1549 struct tcp_sacktag_state *state,
1550 u32 start_seq, u32 end_seq,
1551 bool dup_sack_in)
1552 {
1553 struct tcp_sock *tp = tcp_sk(sk);
1554 struct sk_buff *tmp;
1555
1556 skb_rbtree_walk_from(skb) {
1557 int in_sack = 0;
1558 bool dup_sack = dup_sack_in;
1559
1560 /* queue is in-order => we can short-circuit the walk early */
1561 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1562 break;
1563
1564 if (next_dup &&
1565 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1566 in_sack = tcp_match_skb_to_sack(sk, skb,
1567 next_dup->start_seq,
1568 next_dup->end_seq);
1569 if (in_sack > 0)
1570 dup_sack = true;
1571 }
1572
1573 /* skb reference here is a bit tricky to get right, since
1574 * shifting can eat and free both this skb and the next,
1575 * so not even _safe variant of the loop is enough.
1576 */
1577 if (in_sack <= 0) {
1578 tmp = tcp_shift_skb_data(sk, skb, state,
1579 start_seq, end_seq, dup_sack);
1580 if (tmp) {
1581 if (tmp != skb) {
1582 skb = tmp;
1583 continue;
1584 }
1585
1586 in_sack = 0;
1587 } else {
1588 in_sack = tcp_match_skb_to_sack(sk, skb,
1589 start_seq,
1590 end_seq);
1591 }
1592 }
1593
1594 if (unlikely(in_sack < 0))
1595 break;
1596
1597 if (in_sack) {
1598 TCP_SKB_CB(skb)->sacked =
1599 tcp_sacktag_one(sk,
1600 state,
1601 TCP_SKB_CB(skb)->sacked,
1602 TCP_SKB_CB(skb)->seq,
1603 TCP_SKB_CB(skb)->end_seq,
1604 dup_sack,
1605 tcp_skb_pcount(skb),
1606 tcp_skb_timestamp_us(skb));
1607 tcp_rate_skb_delivered(sk, skb, state->rate);
1608 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1609 list_del_init(&skb->tcp_tsorted_anchor);
1610
1611 if (!before(TCP_SKB_CB(skb)->seq,
1612 tcp_highest_sack_seq(tp)))
1613 tcp_advance_highest_sack(sk, skb);
1614 }
1615 }
1616 return skb;
1617 }
1618
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1619 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1620 {
1621 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1622 struct sk_buff *skb;
1623
1624 while (*p) {
1625 parent = *p;
1626 skb = rb_to_skb(parent);
1627 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1628 p = &parent->rb_left;
1629 continue;
1630 }
1631 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1632 p = &parent->rb_right;
1633 continue;
1634 }
1635 return skb;
1636 }
1637 return NULL;
1638 }
1639
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1640 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1641 u32 skip_to_seq)
1642 {
1643 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1644 return skb;
1645
1646 return tcp_sacktag_bsearch(sk, skip_to_seq);
1647 }
1648
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1649 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1650 struct sock *sk,
1651 struct tcp_sack_block *next_dup,
1652 struct tcp_sacktag_state *state,
1653 u32 skip_to_seq)
1654 {
1655 if (!next_dup)
1656 return skb;
1657
1658 if (before(next_dup->start_seq, skip_to_seq)) {
1659 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1660 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1661 next_dup->start_seq, next_dup->end_seq,
1662 1);
1663 }
1664
1665 return skb;
1666 }
1667
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1668 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1669 {
1670 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1671 }
1672
1673 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1674 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1675 u32 prior_snd_una, struct tcp_sacktag_state *state)
1676 {
1677 struct tcp_sock *tp = tcp_sk(sk);
1678 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1679 TCP_SKB_CB(ack_skb)->sacked);
1680 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1681 struct tcp_sack_block sp[TCP_NUM_SACKS];
1682 struct tcp_sack_block *cache;
1683 struct sk_buff *skb;
1684 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1685 int used_sacks;
1686 bool found_dup_sack = false;
1687 int i, j;
1688 int first_sack_index;
1689
1690 state->flag = 0;
1691 state->reord = tp->snd_nxt;
1692
1693 if (!tp->sacked_out)
1694 tcp_highest_sack_reset(sk);
1695
1696 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1697 num_sacks, prior_snd_una);
1698 if (found_dup_sack) {
1699 state->flag |= FLAG_DSACKING_ACK;
1700 tp->delivered++; /* A spurious retransmission is delivered */
1701 }
1702
1703 /* Eliminate too old ACKs, but take into
1704 * account more or less fresh ones, they can
1705 * contain valid SACK info.
1706 */
1707 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1708 return 0;
1709
1710 if (!tp->packets_out)
1711 goto out;
1712
1713 used_sacks = 0;
1714 first_sack_index = 0;
1715 for (i = 0; i < num_sacks; i++) {
1716 bool dup_sack = !i && found_dup_sack;
1717
1718 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1719 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1720
1721 if (!tcp_is_sackblock_valid(tp, dup_sack,
1722 sp[used_sacks].start_seq,
1723 sp[used_sacks].end_seq)) {
1724 int mib_idx;
1725
1726 if (dup_sack) {
1727 if (!tp->undo_marker)
1728 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1729 else
1730 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1731 } else {
1732 /* Don't count olds caused by ACK reordering */
1733 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1734 !after(sp[used_sacks].end_seq, tp->snd_una))
1735 continue;
1736 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1737 }
1738
1739 NET_INC_STATS(sock_net(sk), mib_idx);
1740 if (i == 0)
1741 first_sack_index = -1;
1742 continue;
1743 }
1744
1745 /* Ignore very old stuff early */
1746 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1747 if (i == 0)
1748 first_sack_index = -1;
1749 continue;
1750 }
1751
1752 used_sacks++;
1753 }
1754
1755 /* order SACK blocks to allow in order walk of the retrans queue */
1756 for (i = used_sacks - 1; i > 0; i--) {
1757 for (j = 0; j < i; j++) {
1758 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1759 swap(sp[j], sp[j + 1]);
1760
1761 /* Track where the first SACK block goes to */
1762 if (j == first_sack_index)
1763 first_sack_index = j + 1;
1764 }
1765 }
1766 }
1767
1768 state->mss_now = tcp_current_mss(sk);
1769 skb = NULL;
1770 i = 0;
1771
1772 if (!tp->sacked_out) {
1773 /* It's already past, so skip checking against it */
1774 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1775 } else {
1776 cache = tp->recv_sack_cache;
1777 /* Skip empty blocks in at head of the cache */
1778 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1779 !cache->end_seq)
1780 cache++;
1781 }
1782
1783 while (i < used_sacks) {
1784 u32 start_seq = sp[i].start_seq;
1785 u32 end_seq = sp[i].end_seq;
1786 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1787 struct tcp_sack_block *next_dup = NULL;
1788
1789 if (found_dup_sack && ((i + 1) == first_sack_index))
1790 next_dup = &sp[i + 1];
1791
1792 /* Skip too early cached blocks */
1793 while (tcp_sack_cache_ok(tp, cache) &&
1794 !before(start_seq, cache->end_seq))
1795 cache++;
1796
1797 /* Can skip some work by looking recv_sack_cache? */
1798 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1799 after(end_seq, cache->start_seq)) {
1800
1801 /* Head todo? */
1802 if (before(start_seq, cache->start_seq)) {
1803 skb = tcp_sacktag_skip(skb, sk, start_seq);
1804 skb = tcp_sacktag_walk(skb, sk, next_dup,
1805 state,
1806 start_seq,
1807 cache->start_seq,
1808 dup_sack);
1809 }
1810
1811 /* Rest of the block already fully processed? */
1812 if (!after(end_seq, cache->end_seq))
1813 goto advance_sp;
1814
1815 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1816 state,
1817 cache->end_seq);
1818
1819 /* ...tail remains todo... */
1820 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1821 /* ...but better entrypoint exists! */
1822 skb = tcp_highest_sack(sk);
1823 if (!skb)
1824 break;
1825 cache++;
1826 goto walk;
1827 }
1828
1829 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1830 /* Check overlap against next cached too (past this one already) */
1831 cache++;
1832 continue;
1833 }
1834
1835 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1836 skb = tcp_highest_sack(sk);
1837 if (!skb)
1838 break;
1839 }
1840 skb = tcp_sacktag_skip(skb, sk, start_seq);
1841
1842 walk:
1843 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1844 start_seq, end_seq, dup_sack);
1845
1846 advance_sp:
1847 i++;
1848 }
1849
1850 /* Clear the head of the cache sack blocks so we can skip it next time */
1851 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1852 tp->recv_sack_cache[i].start_seq = 0;
1853 tp->recv_sack_cache[i].end_seq = 0;
1854 }
1855 for (j = 0; j < used_sacks; j++)
1856 tp->recv_sack_cache[i++] = sp[j];
1857
1858 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1859 tcp_check_sack_reordering(sk, state->reord, 0);
1860
1861 tcp_verify_left_out(tp);
1862 out:
1863
1864 #if FASTRETRANS_DEBUG > 0
1865 WARN_ON((int)tp->sacked_out < 0);
1866 WARN_ON((int)tp->lost_out < 0);
1867 WARN_ON((int)tp->retrans_out < 0);
1868 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1869 #endif
1870 return state->flag;
1871 }
1872
1873 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1874 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1875 */
tcp_limit_reno_sacked(struct tcp_sock * tp)1876 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1877 {
1878 u32 holes;
1879
1880 holes = max(tp->lost_out, 1U);
1881 holes = min(holes, tp->packets_out);
1882
1883 if ((tp->sacked_out + holes) > tp->packets_out) {
1884 tp->sacked_out = tp->packets_out - holes;
1885 return true;
1886 }
1887 return false;
1888 }
1889
1890 /* If we receive more dupacks than we expected counting segments
1891 * in assumption of absent reordering, interpret this as reordering.
1892 * The only another reason could be bug in receiver TCP.
1893 */
tcp_check_reno_reordering(struct sock * sk,const int addend)1894 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1895 {
1896 struct tcp_sock *tp = tcp_sk(sk);
1897
1898 if (!tcp_limit_reno_sacked(tp))
1899 return;
1900
1901 tp->reordering = min_t(u32, tp->packets_out + addend,
1902 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1903 tp->reord_seen++;
1904 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1905 }
1906
1907 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1908
tcp_add_reno_sack(struct sock * sk,int num_dupack)1909 static void tcp_add_reno_sack(struct sock *sk, int num_dupack)
1910 {
1911 if (num_dupack) {
1912 struct tcp_sock *tp = tcp_sk(sk);
1913 u32 prior_sacked = tp->sacked_out;
1914 s32 delivered;
1915
1916 tp->sacked_out += num_dupack;
1917 tcp_check_reno_reordering(sk, 0);
1918 delivered = tp->sacked_out - prior_sacked;
1919 if (delivered > 0)
1920 tp->delivered += delivered;
1921 tcp_verify_left_out(tp);
1922 }
1923 }
1924
1925 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1926
tcp_remove_reno_sacks(struct sock * sk,int acked)1927 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1928 {
1929 struct tcp_sock *tp = tcp_sk(sk);
1930
1931 if (acked > 0) {
1932 /* One ACK acked hole. The rest eat duplicate ACKs. */
1933 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1934 if (acked - 1 >= tp->sacked_out)
1935 tp->sacked_out = 0;
1936 else
1937 tp->sacked_out -= acked - 1;
1938 }
1939 tcp_check_reno_reordering(sk, acked);
1940 tcp_verify_left_out(tp);
1941 }
1942
tcp_reset_reno_sack(struct tcp_sock * tp)1943 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1944 {
1945 tp->sacked_out = 0;
1946 }
1947
tcp_clear_retrans(struct tcp_sock * tp)1948 void tcp_clear_retrans(struct tcp_sock *tp)
1949 {
1950 tp->retrans_out = 0;
1951 tp->lost_out = 0;
1952 tp->undo_marker = 0;
1953 tp->undo_retrans = -1;
1954 tp->sacked_out = 0;
1955 }
1956
tcp_init_undo(struct tcp_sock * tp)1957 static inline void tcp_init_undo(struct tcp_sock *tp)
1958 {
1959 tp->undo_marker = tp->snd_una;
1960 /* Retransmission still in flight may cause DSACKs later. */
1961 tp->undo_retrans = tp->retrans_out ? : -1;
1962 }
1963
tcp_is_rack(const struct sock * sk)1964 static bool tcp_is_rack(const struct sock *sk)
1965 {
1966 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
1967 TCP_RACK_LOSS_DETECTION;
1968 }
1969
1970 /* If we detect SACK reneging, forget all SACK information
1971 * and reset tags completely, otherwise preserve SACKs. If receiver
1972 * dropped its ofo queue, we will know this due to reneging detection.
1973 */
tcp_timeout_mark_lost(struct sock * sk)1974 static void tcp_timeout_mark_lost(struct sock *sk)
1975 {
1976 struct tcp_sock *tp = tcp_sk(sk);
1977 struct sk_buff *skb, *head;
1978 bool is_reneg; /* is receiver reneging on SACKs? */
1979
1980 head = tcp_rtx_queue_head(sk);
1981 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1982 if (is_reneg) {
1983 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1984 tp->sacked_out = 0;
1985 /* Mark SACK reneging until we recover from this loss event. */
1986 tp->is_sack_reneg = 1;
1987 } else if (tcp_is_reno(tp)) {
1988 tcp_reset_reno_sack(tp);
1989 }
1990
1991 skb = head;
1992 skb_rbtree_walk_from(skb) {
1993 if (is_reneg)
1994 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1995 else if (tcp_is_rack(sk) && skb != head &&
1996 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1997 continue; /* Don't mark recently sent ones lost yet */
1998 tcp_mark_skb_lost(sk, skb);
1999 }
2000 tcp_verify_left_out(tp);
2001 tcp_clear_all_retrans_hints(tp);
2002 }
2003
2004 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2005 void tcp_enter_loss(struct sock *sk)
2006 {
2007 const struct inet_connection_sock *icsk = inet_csk(sk);
2008 struct tcp_sock *tp = tcp_sk(sk);
2009 struct net *net = sock_net(sk);
2010 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2011 u8 reordering;
2012
2013 tcp_timeout_mark_lost(sk);
2014
2015 /* Reduce ssthresh if it has not yet been made inside this window. */
2016 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2017 !after(tp->high_seq, tp->snd_una) ||
2018 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2019 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2020 tp->prior_cwnd = tp->snd_cwnd;
2021 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2022 tcp_ca_event(sk, CA_EVENT_LOSS);
2023 tcp_init_undo(tp);
2024 }
2025 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1;
2026 tp->snd_cwnd_cnt = 0;
2027 tp->snd_cwnd_stamp = tcp_jiffies32;
2028
2029 /* Timeout in disordered state after receiving substantial DUPACKs
2030 * suggests that the degree of reordering is over-estimated.
2031 */
2032 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2033 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2034 tp->sacked_out >= reordering)
2035 tp->reordering = min_t(unsigned int, tp->reordering,
2036 reordering);
2037
2038 tcp_set_ca_state(sk, TCP_CA_Loss);
2039 tp->high_seq = tp->snd_nxt;
2040 tcp_ecn_queue_cwr(tp);
2041
2042 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2043 * loss recovery is underway except recurring timeout(s) on
2044 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2045 */
2046 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2047 (new_recovery || icsk->icsk_retransmits) &&
2048 !inet_csk(sk)->icsk_mtup.probe_size;
2049 }
2050
2051 /* If ACK arrived pointing to a remembered SACK, it means that our
2052 * remembered SACKs do not reflect real state of receiver i.e.
2053 * receiver _host_ is heavily congested (or buggy).
2054 *
2055 * To avoid big spurious retransmission bursts due to transient SACK
2056 * scoreboard oddities that look like reneging, we give the receiver a
2057 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2058 * restore sanity to the SACK scoreboard. If the apparent reneging
2059 * persists until this RTO then we'll clear the SACK scoreboard.
2060 */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2061 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2062 {
2063 if (*ack_flag & FLAG_SACK_RENEGING &&
2064 *ack_flag & FLAG_SND_UNA_ADVANCED) {
2065 struct tcp_sock *tp = tcp_sk(sk);
2066 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2067 msecs_to_jiffies(10));
2068
2069 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2070 delay, TCP_RTO_MAX);
2071 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2072 return true;
2073 }
2074 return false;
2075 }
2076
2077 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2078 * counter when SACK is enabled (without SACK, sacked_out is used for
2079 * that purpose).
2080 *
2081 * With reordering, holes may still be in flight, so RFC3517 recovery
2082 * uses pure sacked_out (total number of SACKed segments) even though
2083 * it violates the RFC that uses duplicate ACKs, often these are equal
2084 * but when e.g. out-of-window ACKs or packet duplication occurs,
2085 * they differ. Since neither occurs due to loss, TCP should really
2086 * ignore them.
2087 */
tcp_dupack_heuristics(const struct tcp_sock * tp)2088 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2089 {
2090 return tp->sacked_out + 1;
2091 }
2092
2093 /* Linux NewReno/SACK/ECN state machine.
2094 * --------------------------------------
2095 *
2096 * "Open" Normal state, no dubious events, fast path.
2097 * "Disorder" In all the respects it is "Open",
2098 * but requires a bit more attention. It is entered when
2099 * we see some SACKs or dupacks. It is split of "Open"
2100 * mainly to move some processing from fast path to slow one.
2101 * "CWR" CWND was reduced due to some Congestion Notification event.
2102 * It can be ECN, ICMP source quench, local device congestion.
2103 * "Recovery" CWND was reduced, we are fast-retransmitting.
2104 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2105 *
2106 * tcp_fastretrans_alert() is entered:
2107 * - each incoming ACK, if state is not "Open"
2108 * - when arrived ACK is unusual, namely:
2109 * * SACK
2110 * * Duplicate ACK.
2111 * * ECN ECE.
2112 *
2113 * Counting packets in flight is pretty simple.
2114 *
2115 * in_flight = packets_out - left_out + retrans_out
2116 *
2117 * packets_out is SND.NXT-SND.UNA counted in packets.
2118 *
2119 * retrans_out is number of retransmitted segments.
2120 *
2121 * left_out is number of segments left network, but not ACKed yet.
2122 *
2123 * left_out = sacked_out + lost_out
2124 *
2125 * sacked_out: Packets, which arrived to receiver out of order
2126 * and hence not ACKed. With SACKs this number is simply
2127 * amount of SACKed data. Even without SACKs
2128 * it is easy to give pretty reliable estimate of this number,
2129 * counting duplicate ACKs.
2130 *
2131 * lost_out: Packets lost by network. TCP has no explicit
2132 * "loss notification" feedback from network (for now).
2133 * It means that this number can be only _guessed_.
2134 * Actually, it is the heuristics to predict lossage that
2135 * distinguishes different algorithms.
2136 *
2137 * F.e. after RTO, when all the queue is considered as lost,
2138 * lost_out = packets_out and in_flight = retrans_out.
2139 *
2140 * Essentially, we have now a few algorithms detecting
2141 * lost packets.
2142 *
2143 * If the receiver supports SACK:
2144 *
2145 * RFC6675/3517: It is the conventional algorithm. A packet is
2146 * considered lost if the number of higher sequence packets
2147 * SACKed is greater than or equal the DUPACK thoreshold
2148 * (reordering). This is implemented in tcp_mark_head_lost and
2149 * tcp_update_scoreboard.
2150 *
2151 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2152 * (2017-) that checks timing instead of counting DUPACKs.
2153 * Essentially a packet is considered lost if it's not S/ACKed
2154 * after RTT + reordering_window, where both metrics are
2155 * dynamically measured and adjusted. This is implemented in
2156 * tcp_rack_mark_lost.
2157 *
2158 * If the receiver does not support SACK:
2159 *
2160 * NewReno (RFC6582): in Recovery we assume that one segment
2161 * is lost (classic Reno). While we are in Recovery and
2162 * a partial ACK arrives, we assume that one more packet
2163 * is lost (NewReno). This heuristics are the same in NewReno
2164 * and SACK.
2165 *
2166 * Really tricky (and requiring careful tuning) part of algorithm
2167 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2168 * The first determines the moment _when_ we should reduce CWND and,
2169 * hence, slow down forward transmission. In fact, it determines the moment
2170 * when we decide that hole is caused by loss, rather than by a reorder.
2171 *
2172 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2173 * holes, caused by lost packets.
2174 *
2175 * And the most logically complicated part of algorithm is undo
2176 * heuristics. We detect false retransmits due to both too early
2177 * fast retransmit (reordering) and underestimated RTO, analyzing
2178 * timestamps and D-SACKs. When we detect that some segments were
2179 * retransmitted by mistake and CWND reduction was wrong, we undo
2180 * window reduction and abort recovery phase. This logic is hidden
2181 * inside several functions named tcp_try_undo_<something>.
2182 */
2183
2184 /* This function decides, when we should leave Disordered state
2185 * and enter Recovery phase, reducing congestion window.
2186 *
2187 * Main question: may we further continue forward transmission
2188 * with the same cwnd?
2189 */
tcp_time_to_recover(struct sock * sk,int flag)2190 static bool tcp_time_to_recover(struct sock *sk, int flag)
2191 {
2192 struct tcp_sock *tp = tcp_sk(sk);
2193
2194 /* Trick#1: The loss is proven. */
2195 if (tp->lost_out)
2196 return true;
2197
2198 /* Not-A-Trick#2 : Classic rule... */
2199 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2200 return true;
2201
2202 return false;
2203 }
2204
2205 /* Detect loss in event "A" above by marking head of queue up as lost.
2206 * For non-SACK(Reno) senders, the first "packets" number of segments
2207 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2208 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2209 * the maximum SACKed segments to pass before reaching this limit.
2210 */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2211 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2212 {
2213 struct tcp_sock *tp = tcp_sk(sk);
2214 struct sk_buff *skb;
2215 int cnt, oldcnt, lost;
2216 unsigned int mss;
2217 /* Use SACK to deduce losses of new sequences sent during recovery */
2218 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2219
2220 WARN_ON(packets > tp->packets_out);
2221 skb = tp->lost_skb_hint;
2222 if (skb) {
2223 /* Head already handled? */
2224 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2225 return;
2226 cnt = tp->lost_cnt_hint;
2227 } else {
2228 skb = tcp_rtx_queue_head(sk);
2229 cnt = 0;
2230 }
2231
2232 skb_rbtree_walk_from(skb) {
2233 /* TODO: do this better */
2234 /* this is not the most efficient way to do this... */
2235 tp->lost_skb_hint = skb;
2236 tp->lost_cnt_hint = cnt;
2237
2238 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2239 break;
2240
2241 oldcnt = cnt;
2242 if (tcp_is_reno(tp) ||
2243 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2244 cnt += tcp_skb_pcount(skb);
2245
2246 if (cnt > packets) {
2247 if (tcp_is_sack(tp) ||
2248 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2249 (oldcnt >= packets))
2250 break;
2251
2252 mss = tcp_skb_mss(skb);
2253 /* If needed, chop off the prefix to mark as lost. */
2254 lost = (packets - oldcnt) * mss;
2255 if (lost < skb->len &&
2256 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2257 lost, mss, GFP_ATOMIC) < 0)
2258 break;
2259 cnt = packets;
2260 }
2261
2262 tcp_skb_mark_lost(tp, skb);
2263
2264 if (mark_head)
2265 break;
2266 }
2267 tcp_verify_left_out(tp);
2268 }
2269
2270 /* Account newly detected lost packet(s) */
2271
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2272 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2273 {
2274 struct tcp_sock *tp = tcp_sk(sk);
2275
2276 if (tcp_is_sack(tp)) {
2277 int sacked_upto = tp->sacked_out - tp->reordering;
2278 if (sacked_upto >= 0)
2279 tcp_mark_head_lost(sk, sacked_upto, 0);
2280 else if (fast_rexmit)
2281 tcp_mark_head_lost(sk, 1, 1);
2282 }
2283 }
2284
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2285 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2286 {
2287 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2288 before(tp->rx_opt.rcv_tsecr, when);
2289 }
2290
2291 /* skb is spurious retransmitted if the returned timestamp echo
2292 * reply is prior to the skb transmission time
2293 */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2294 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2295 const struct sk_buff *skb)
2296 {
2297 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2298 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2299 }
2300
2301 /* Nothing was retransmitted or returned timestamp is less
2302 * than timestamp of the first retransmission.
2303 */
tcp_packet_delayed(const struct tcp_sock * tp)2304 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2305 {
2306 return tp->retrans_stamp &&
2307 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2308 }
2309
2310 /* Undo procedures. */
2311
2312 /* We can clear retrans_stamp when there are no retransmissions in the
2313 * window. It would seem that it is trivially available for us in
2314 * tp->retrans_out, however, that kind of assumptions doesn't consider
2315 * what will happen if errors occur when sending retransmission for the
2316 * second time. ...It could the that such segment has only
2317 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2318 * the head skb is enough except for some reneging corner cases that
2319 * are not worth the effort.
2320 *
2321 * Main reason for all this complexity is the fact that connection dying
2322 * time now depends on the validity of the retrans_stamp, in particular,
2323 * that successive retransmissions of a segment must not advance
2324 * retrans_stamp under any conditions.
2325 */
tcp_any_retrans_done(const struct sock * sk)2326 static bool tcp_any_retrans_done(const struct sock *sk)
2327 {
2328 const struct tcp_sock *tp = tcp_sk(sk);
2329 struct sk_buff *skb;
2330
2331 if (tp->retrans_out)
2332 return true;
2333
2334 skb = tcp_rtx_queue_head(sk);
2335 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2336 return true;
2337
2338 return false;
2339 }
2340
DBGUNDO(struct sock * sk,const char * msg)2341 static void DBGUNDO(struct sock *sk, const char *msg)
2342 {
2343 #if FASTRETRANS_DEBUG > 1
2344 struct tcp_sock *tp = tcp_sk(sk);
2345 struct inet_sock *inet = inet_sk(sk);
2346
2347 if (sk->sk_family == AF_INET) {
2348 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2349 msg,
2350 &inet->inet_daddr, ntohs(inet->inet_dport),
2351 tp->snd_cwnd, tcp_left_out(tp),
2352 tp->snd_ssthresh, tp->prior_ssthresh,
2353 tp->packets_out);
2354 }
2355 #if IS_ENABLED(CONFIG_IPV6)
2356 else if (sk->sk_family == AF_INET6) {
2357 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2358 msg,
2359 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2360 tp->snd_cwnd, tcp_left_out(tp),
2361 tp->snd_ssthresh, tp->prior_ssthresh,
2362 tp->packets_out);
2363 }
2364 #endif
2365 #endif
2366 }
2367
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2368 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2369 {
2370 struct tcp_sock *tp = tcp_sk(sk);
2371
2372 if (unmark_loss) {
2373 struct sk_buff *skb;
2374
2375 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2376 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2377 }
2378 tp->lost_out = 0;
2379 tcp_clear_all_retrans_hints(tp);
2380 }
2381
2382 if (tp->prior_ssthresh) {
2383 const struct inet_connection_sock *icsk = inet_csk(sk);
2384
2385 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2386
2387 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2388 tp->snd_ssthresh = tp->prior_ssthresh;
2389 tcp_ecn_withdraw_cwr(tp);
2390 }
2391 }
2392 tp->snd_cwnd_stamp = tcp_jiffies32;
2393 tp->undo_marker = 0;
2394 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2395 }
2396
tcp_may_undo(const struct tcp_sock * tp)2397 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2398 {
2399 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2400 }
2401
tcp_is_non_sack_preventing_reopen(struct sock * sk)2402 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2403 {
2404 struct tcp_sock *tp = tcp_sk(sk);
2405
2406 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2407 /* Hold old state until something *above* high_seq
2408 * is ACKed. For Reno it is MUST to prevent false
2409 * fast retransmits (RFC2582). SACK TCP is safe. */
2410 if (!tcp_any_retrans_done(sk))
2411 tp->retrans_stamp = 0;
2412 return true;
2413 }
2414 return false;
2415 }
2416
2417 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2418 static bool tcp_try_undo_recovery(struct sock *sk)
2419 {
2420 struct tcp_sock *tp = tcp_sk(sk);
2421
2422 if (tcp_may_undo(tp)) {
2423 int mib_idx;
2424
2425 /* Happy end! We did not retransmit anything
2426 * or our original transmission succeeded.
2427 */
2428 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2429 tcp_undo_cwnd_reduction(sk, false);
2430 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2431 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2432 else
2433 mib_idx = LINUX_MIB_TCPFULLUNDO;
2434
2435 NET_INC_STATS(sock_net(sk), mib_idx);
2436 } else if (tp->rack.reo_wnd_persist) {
2437 tp->rack.reo_wnd_persist--;
2438 }
2439 if (tcp_is_non_sack_preventing_reopen(sk))
2440 return true;
2441 tcp_set_ca_state(sk, TCP_CA_Open);
2442 tp->is_sack_reneg = 0;
2443 return false;
2444 }
2445
2446 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2447 static bool tcp_try_undo_dsack(struct sock *sk)
2448 {
2449 struct tcp_sock *tp = tcp_sk(sk);
2450
2451 if (tp->undo_marker && !tp->undo_retrans) {
2452 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2453 tp->rack.reo_wnd_persist + 1);
2454 DBGUNDO(sk, "D-SACK");
2455 tcp_undo_cwnd_reduction(sk, false);
2456 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2457 return true;
2458 }
2459 return false;
2460 }
2461
2462 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2463 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2464 {
2465 struct tcp_sock *tp = tcp_sk(sk);
2466
2467 if (frto_undo || tcp_may_undo(tp)) {
2468 tcp_undo_cwnd_reduction(sk, true);
2469
2470 DBGUNDO(sk, "partial loss");
2471 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2472 if (frto_undo)
2473 NET_INC_STATS(sock_net(sk),
2474 LINUX_MIB_TCPSPURIOUSRTOS);
2475 inet_csk(sk)->icsk_retransmits = 0;
2476 if (tcp_is_non_sack_preventing_reopen(sk))
2477 return true;
2478 if (frto_undo || tcp_is_sack(tp)) {
2479 tcp_set_ca_state(sk, TCP_CA_Open);
2480 tp->is_sack_reneg = 0;
2481 }
2482 return true;
2483 }
2484 return false;
2485 }
2486
2487 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2488 * It computes the number of packets to send (sndcnt) based on packets newly
2489 * delivered:
2490 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2491 * cwnd reductions across a full RTT.
2492 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2493 * But when the retransmits are acked without further losses, PRR
2494 * slow starts cwnd up to ssthresh to speed up the recovery.
2495 */
tcp_init_cwnd_reduction(struct sock * sk)2496 static void tcp_init_cwnd_reduction(struct sock *sk)
2497 {
2498 struct tcp_sock *tp = tcp_sk(sk);
2499
2500 tp->high_seq = tp->snd_nxt;
2501 tp->tlp_high_seq = 0;
2502 tp->snd_cwnd_cnt = 0;
2503 tp->prior_cwnd = tp->snd_cwnd;
2504 tp->prr_delivered = 0;
2505 tp->prr_out = 0;
2506 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2507 tcp_ecn_queue_cwr(tp);
2508 }
2509
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int flag)2510 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2511 {
2512 struct tcp_sock *tp = tcp_sk(sk);
2513 int sndcnt = 0;
2514 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2515
2516 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2517 return;
2518
2519 tp->prr_delivered += newly_acked_sacked;
2520 if (delta < 0) {
2521 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2522 tp->prior_cwnd - 1;
2523 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2524 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2525 FLAG_RETRANS_DATA_ACKED) {
2526 sndcnt = min_t(int, delta,
2527 max_t(int, tp->prr_delivered - tp->prr_out,
2528 newly_acked_sacked) + 1);
2529 } else {
2530 sndcnt = min(delta, newly_acked_sacked);
2531 }
2532 /* Force a fast retransmit upon entering fast recovery */
2533 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2534 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2535 }
2536
tcp_end_cwnd_reduction(struct sock * sk)2537 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2538 {
2539 struct tcp_sock *tp = tcp_sk(sk);
2540
2541 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2542 return;
2543
2544 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2545 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2546 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2547 tp->snd_cwnd = tp->snd_ssthresh;
2548 tp->snd_cwnd_stamp = tcp_jiffies32;
2549 }
2550 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2551 }
2552
2553 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2554 void tcp_enter_cwr(struct sock *sk)
2555 {
2556 struct tcp_sock *tp = tcp_sk(sk);
2557
2558 tp->prior_ssthresh = 0;
2559 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2560 tp->undo_marker = 0;
2561 tcp_init_cwnd_reduction(sk);
2562 tcp_set_ca_state(sk, TCP_CA_CWR);
2563 }
2564 }
2565 EXPORT_SYMBOL(tcp_enter_cwr);
2566
tcp_try_keep_open(struct sock * sk)2567 static void tcp_try_keep_open(struct sock *sk)
2568 {
2569 struct tcp_sock *tp = tcp_sk(sk);
2570 int state = TCP_CA_Open;
2571
2572 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2573 state = TCP_CA_Disorder;
2574
2575 if (inet_csk(sk)->icsk_ca_state != state) {
2576 tcp_set_ca_state(sk, state);
2577 tp->high_seq = tp->snd_nxt;
2578 }
2579 }
2580
tcp_try_to_open(struct sock * sk,int flag)2581 static void tcp_try_to_open(struct sock *sk, int flag)
2582 {
2583 struct tcp_sock *tp = tcp_sk(sk);
2584
2585 tcp_verify_left_out(tp);
2586
2587 if (!tcp_any_retrans_done(sk))
2588 tp->retrans_stamp = 0;
2589
2590 if (flag & FLAG_ECE)
2591 tcp_enter_cwr(sk);
2592
2593 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2594 tcp_try_keep_open(sk);
2595 }
2596 }
2597
tcp_mtup_probe_failed(struct sock * sk)2598 static void tcp_mtup_probe_failed(struct sock *sk)
2599 {
2600 struct inet_connection_sock *icsk = inet_csk(sk);
2601
2602 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2603 icsk->icsk_mtup.probe_size = 0;
2604 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2605 }
2606
tcp_mtup_probe_success(struct sock * sk)2607 static void tcp_mtup_probe_success(struct sock *sk)
2608 {
2609 struct tcp_sock *tp = tcp_sk(sk);
2610 struct inet_connection_sock *icsk = inet_csk(sk);
2611 u64 val;
2612
2613 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2614
2615 val = (u64)tp->snd_cwnd * tcp_mss_to_mtu(sk, tp->mss_cache);
2616 do_div(val, icsk->icsk_mtup.probe_size);
2617 WARN_ON_ONCE((u32)val != val);
2618 tp->snd_cwnd = max_t(u32, 1U, val);
2619
2620 tp->snd_cwnd_cnt = 0;
2621 tp->snd_cwnd_stamp = tcp_jiffies32;
2622 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2623
2624 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2625 icsk->icsk_mtup.probe_size = 0;
2626 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2627 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2628 }
2629
2630 /* Do a simple retransmit without using the backoff mechanisms in
2631 * tcp_timer. This is used for path mtu discovery.
2632 * The socket is already locked here.
2633 */
tcp_simple_retransmit(struct sock * sk)2634 void tcp_simple_retransmit(struct sock *sk)
2635 {
2636 const struct inet_connection_sock *icsk = inet_csk(sk);
2637 struct tcp_sock *tp = tcp_sk(sk);
2638 struct sk_buff *skb;
2639 unsigned int mss = tcp_current_mss(sk);
2640
2641 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2642 if (tcp_skb_seglen(skb) > mss &&
2643 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2644 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2645 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2646 tp->retrans_out -= tcp_skb_pcount(skb);
2647 }
2648 tcp_skb_mark_lost_uncond_verify(tp, skb);
2649 }
2650 }
2651
2652 tcp_clear_retrans_hints_partial(tp);
2653
2654 if (!tp->lost_out)
2655 return;
2656
2657 if (tcp_is_reno(tp))
2658 tcp_limit_reno_sacked(tp);
2659
2660 tcp_verify_left_out(tp);
2661
2662 /* Don't muck with the congestion window here.
2663 * Reason is that we do not increase amount of _data_
2664 * in network, but units changed and effective
2665 * cwnd/ssthresh really reduced now.
2666 */
2667 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2668 tp->high_seq = tp->snd_nxt;
2669 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2670 tp->prior_ssthresh = 0;
2671 tp->undo_marker = 0;
2672 tcp_set_ca_state(sk, TCP_CA_Loss);
2673 }
2674 tcp_xmit_retransmit_queue(sk);
2675 }
2676 EXPORT_SYMBOL(tcp_simple_retransmit);
2677
tcp_enter_recovery(struct sock * sk,bool ece_ack)2678 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2679 {
2680 struct tcp_sock *tp = tcp_sk(sk);
2681 int mib_idx;
2682
2683 if (tcp_is_reno(tp))
2684 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2685 else
2686 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2687
2688 NET_INC_STATS(sock_net(sk), mib_idx);
2689
2690 tp->prior_ssthresh = 0;
2691 tcp_init_undo(tp);
2692
2693 if (!tcp_in_cwnd_reduction(sk)) {
2694 if (!ece_ack)
2695 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2696 tcp_init_cwnd_reduction(sk);
2697 }
2698 tcp_set_ca_state(sk, TCP_CA_Recovery);
2699 }
2700
2701 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2702 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2703 */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2704 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2705 int *rexmit)
2706 {
2707 struct tcp_sock *tp = tcp_sk(sk);
2708 bool recovered = !before(tp->snd_una, tp->high_seq);
2709
2710 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2711 tcp_try_undo_loss(sk, false))
2712 return;
2713
2714 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2715 /* Step 3.b. A timeout is spurious if not all data are
2716 * lost, i.e., never-retransmitted data are (s)acked.
2717 */
2718 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2719 tcp_try_undo_loss(sk, true))
2720 return;
2721
2722 if (after(tp->snd_nxt, tp->high_seq)) {
2723 if (flag & FLAG_DATA_SACKED || num_dupack)
2724 tp->frto = 0; /* Step 3.a. loss was real */
2725 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2726 tp->high_seq = tp->snd_nxt;
2727 /* Step 2.b. Try send new data (but deferred until cwnd
2728 * is updated in tcp_ack()). Otherwise fall back to
2729 * the conventional recovery.
2730 */
2731 if (!tcp_write_queue_empty(sk) &&
2732 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2733 *rexmit = REXMIT_NEW;
2734 return;
2735 }
2736 tp->frto = 0;
2737 }
2738 }
2739
2740 if (recovered) {
2741 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2742 tcp_try_undo_recovery(sk);
2743 return;
2744 }
2745 if (tcp_is_reno(tp)) {
2746 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2747 * delivered. Lower inflight to clock out (re)tranmissions.
2748 */
2749 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2750 tcp_add_reno_sack(sk, num_dupack);
2751 else if (flag & FLAG_SND_UNA_ADVANCED)
2752 tcp_reset_reno_sack(tp);
2753 }
2754 *rexmit = REXMIT_LOST;
2755 }
2756
2757 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una)2758 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2759 {
2760 struct tcp_sock *tp = tcp_sk(sk);
2761
2762 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2763 /* Plain luck! Hole if filled with delayed
2764 * packet, rather than with a retransmit. Check reordering.
2765 */
2766 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2767
2768 /* We are getting evidence that the reordering degree is higher
2769 * than we realized. If there are no retransmits out then we
2770 * can undo. Otherwise we clock out new packets but do not
2771 * mark more packets lost or retransmit more.
2772 */
2773 if (tp->retrans_out)
2774 return true;
2775
2776 if (!tcp_any_retrans_done(sk))
2777 tp->retrans_stamp = 0;
2778
2779 DBGUNDO(sk, "partial recovery");
2780 tcp_undo_cwnd_reduction(sk, true);
2781 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2782 tcp_try_keep_open(sk);
2783 return true;
2784 }
2785 return false;
2786 }
2787
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2788 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2789 {
2790 struct tcp_sock *tp = tcp_sk(sk);
2791
2792 if (tcp_rtx_queue_empty(sk))
2793 return;
2794
2795 if (unlikely(tcp_is_reno(tp))) {
2796 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2797 } else if (tcp_is_rack(sk)) {
2798 u32 prior_retrans = tp->retrans_out;
2799
2800 if (tcp_rack_mark_lost(sk))
2801 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2802 if (prior_retrans > tp->retrans_out)
2803 *ack_flag |= FLAG_LOST_RETRANS;
2804 }
2805 }
2806
tcp_force_fast_retransmit(struct sock * sk)2807 static bool tcp_force_fast_retransmit(struct sock *sk)
2808 {
2809 struct tcp_sock *tp = tcp_sk(sk);
2810
2811 return after(tcp_highest_sack_seq(tp),
2812 tp->snd_una + tp->reordering * tp->mss_cache);
2813 }
2814
2815 /* Process an event, which can update packets-in-flight not trivially.
2816 * Main goal of this function is to calculate new estimate for left_out,
2817 * taking into account both packets sitting in receiver's buffer and
2818 * packets lost by network.
2819 *
2820 * Besides that it updates the congestion state when packet loss or ECN
2821 * is detected. But it does not reduce the cwnd, it is done by the
2822 * congestion control later.
2823 *
2824 * It does _not_ decide what to send, it is made in function
2825 * tcp_xmit_retransmit_queue().
2826 */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)2827 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2828 int num_dupack, int *ack_flag, int *rexmit)
2829 {
2830 struct inet_connection_sock *icsk = inet_csk(sk);
2831 struct tcp_sock *tp = tcp_sk(sk);
2832 int fast_rexmit = 0, flag = *ack_flag;
2833 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2834 tcp_force_fast_retransmit(sk));
2835
2836 if (!tp->packets_out && tp->sacked_out)
2837 tp->sacked_out = 0;
2838
2839 /* Now state machine starts.
2840 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2841 if (flag & FLAG_ECE)
2842 tp->prior_ssthresh = 0;
2843
2844 /* B. In all the states check for reneging SACKs. */
2845 if (tcp_check_sack_reneging(sk, ack_flag))
2846 return;
2847
2848 /* C. Check consistency of the current state. */
2849 tcp_verify_left_out(tp);
2850
2851 /* D. Check state exit conditions. State can be terminated
2852 * when high_seq is ACKed. */
2853 if (icsk->icsk_ca_state == TCP_CA_Open) {
2854 WARN_ON(tp->retrans_out != 0);
2855 tp->retrans_stamp = 0;
2856 } else if (!before(tp->snd_una, tp->high_seq)) {
2857 switch (icsk->icsk_ca_state) {
2858 case TCP_CA_CWR:
2859 /* CWR is to be held something *above* high_seq
2860 * is ACKed for CWR bit to reach receiver. */
2861 if (tp->snd_una != tp->high_seq) {
2862 tcp_end_cwnd_reduction(sk);
2863 tcp_set_ca_state(sk, TCP_CA_Open);
2864 }
2865 break;
2866
2867 case TCP_CA_Recovery:
2868 if (tcp_is_reno(tp))
2869 tcp_reset_reno_sack(tp);
2870 if (tcp_try_undo_recovery(sk))
2871 return;
2872 tcp_end_cwnd_reduction(sk);
2873 break;
2874 }
2875 }
2876
2877 /* E. Process state. */
2878 switch (icsk->icsk_ca_state) {
2879 case TCP_CA_Recovery:
2880 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2881 if (tcp_is_reno(tp))
2882 tcp_add_reno_sack(sk, num_dupack);
2883 } else {
2884 if (tcp_try_undo_partial(sk, prior_snd_una))
2885 return;
2886 /* Partial ACK arrived. Force fast retransmit. */
2887 do_lost = tcp_is_reno(tp) ||
2888 tcp_force_fast_retransmit(sk);
2889 }
2890 if (tcp_try_undo_dsack(sk)) {
2891 tcp_try_keep_open(sk);
2892 return;
2893 }
2894 tcp_identify_packet_loss(sk, ack_flag);
2895 break;
2896 case TCP_CA_Loss:
2897 tcp_process_loss(sk, flag, num_dupack, rexmit);
2898 tcp_identify_packet_loss(sk, ack_flag);
2899 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2900 (*ack_flag & FLAG_LOST_RETRANS)))
2901 return;
2902 /* Change state if cwnd is undone or retransmits are lost */
2903 /* fall through */
2904 default:
2905 if (tcp_is_reno(tp)) {
2906 if (flag & FLAG_SND_UNA_ADVANCED)
2907 tcp_reset_reno_sack(tp);
2908 tcp_add_reno_sack(sk, num_dupack);
2909 }
2910
2911 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2912 tcp_try_undo_dsack(sk);
2913
2914 tcp_identify_packet_loss(sk, ack_flag);
2915 if (!tcp_time_to_recover(sk, flag)) {
2916 tcp_try_to_open(sk, flag);
2917 return;
2918 }
2919
2920 /* MTU probe failure: don't reduce cwnd */
2921 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2922 icsk->icsk_mtup.probe_size &&
2923 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2924 tcp_mtup_probe_failed(sk);
2925 /* Restores the reduction we did in tcp_mtup_probe() */
2926 tp->snd_cwnd++;
2927 tcp_simple_retransmit(sk);
2928 return;
2929 }
2930
2931 /* Otherwise enter Recovery state */
2932 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2933 fast_rexmit = 1;
2934 }
2935
2936 if (!tcp_is_rack(sk) && do_lost)
2937 tcp_update_scoreboard(sk, fast_rexmit);
2938 *rexmit = REXMIT_LOST;
2939 }
2940
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)2941 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2942 {
2943 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
2944 struct tcp_sock *tp = tcp_sk(sk);
2945
2946 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2947 /* If the remote keeps returning delayed ACKs, eventually
2948 * the min filter would pick it up and overestimate the
2949 * prop. delay when it expires. Skip suspected delayed ACKs.
2950 */
2951 return;
2952 }
2953 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2954 rtt_us ? : jiffies_to_usecs(1));
2955 }
2956
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)2957 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2958 long seq_rtt_us, long sack_rtt_us,
2959 long ca_rtt_us, struct rate_sample *rs)
2960 {
2961 const struct tcp_sock *tp = tcp_sk(sk);
2962
2963 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2964 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2965 * Karn's algorithm forbids taking RTT if some retransmitted data
2966 * is acked (RFC6298).
2967 */
2968 if (seq_rtt_us < 0)
2969 seq_rtt_us = sack_rtt_us;
2970
2971 /* RTTM Rule: A TSecr value received in a segment is used to
2972 * update the averaged RTT measurement only if the segment
2973 * acknowledges some new data, i.e., only if it advances the
2974 * left edge of the send window.
2975 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2976 */
2977 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2978 flag & FLAG_ACKED) {
2979 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2980
2981 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2982 if (!delta)
2983 delta = 1;
2984 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2985 ca_rtt_us = seq_rtt_us;
2986 }
2987 }
2988 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2989 if (seq_rtt_us < 0)
2990 return false;
2991
2992 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2993 * always taken together with ACK, SACK, or TS-opts. Any negative
2994 * values will be skipped with the seq_rtt_us < 0 check above.
2995 */
2996 tcp_update_rtt_min(sk, ca_rtt_us, flag);
2997 tcp_rtt_estimator(sk, seq_rtt_us);
2998 tcp_set_rto(sk);
2999
3000 /* RFC6298: only reset backoff on valid RTT measurement. */
3001 inet_csk(sk)->icsk_backoff = 0;
3002 return true;
3003 }
3004
3005 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3006 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3007 {
3008 struct rate_sample rs;
3009 long rtt_us = -1L;
3010
3011 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3012 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3013
3014 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3015 }
3016
3017
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3018 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3019 {
3020 const struct inet_connection_sock *icsk = inet_csk(sk);
3021
3022 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3023 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3024 }
3025
3026 /* Restart timer after forward progress on connection.
3027 * RFC2988 recommends to restart timer to now+rto.
3028 */
tcp_rearm_rto(struct sock * sk)3029 void tcp_rearm_rto(struct sock *sk)
3030 {
3031 const struct inet_connection_sock *icsk = inet_csk(sk);
3032 struct tcp_sock *tp = tcp_sk(sk);
3033
3034 /* If the retrans timer is currently being used by Fast Open
3035 * for SYN-ACK retrans purpose, stay put.
3036 */
3037 if (rcu_access_pointer(tp->fastopen_rsk))
3038 return;
3039
3040 if (!tp->packets_out) {
3041 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3042 } else {
3043 u32 rto = inet_csk(sk)->icsk_rto;
3044 /* Offset the time elapsed after installing regular RTO */
3045 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3046 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3047 s64 delta_us = tcp_rto_delta_us(sk);
3048 /* delta_us may not be positive if the socket is locked
3049 * when the retrans timer fires and is rescheduled.
3050 */
3051 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3052 }
3053 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3054 TCP_RTO_MAX, tcp_rtx_queue_head(sk));
3055 }
3056 }
3057
3058 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3059 static void tcp_set_xmit_timer(struct sock *sk)
3060 {
3061 if (!tcp_schedule_loss_probe(sk, true))
3062 tcp_rearm_rto(sk);
3063 }
3064
3065 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3066 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3067 {
3068 struct tcp_sock *tp = tcp_sk(sk);
3069 u32 packets_acked;
3070
3071 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3072
3073 packets_acked = tcp_skb_pcount(skb);
3074 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3075 return 0;
3076 packets_acked -= tcp_skb_pcount(skb);
3077
3078 if (packets_acked) {
3079 BUG_ON(tcp_skb_pcount(skb) == 0);
3080 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3081 }
3082
3083 return packets_acked;
3084 }
3085
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,u32 prior_snd_una)3086 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3087 u32 prior_snd_una)
3088 {
3089 const struct skb_shared_info *shinfo;
3090
3091 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3092 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3093 return;
3094
3095 shinfo = skb_shinfo(skb);
3096 if (!before(shinfo->tskey, prior_snd_una) &&
3097 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3098 tcp_skb_tsorted_save(skb) {
3099 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3100 } tcp_skb_tsorted_restore(skb);
3101 }
3102 }
3103
3104 /* Remove acknowledged frames from the retransmission queue. If our packet
3105 * is before the ack sequence we can discard it as it's confirmed to have
3106 * arrived at the other end.
3107 */
tcp_clean_rtx_queue(struct sock * sk,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack)3108 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3109 u32 prior_snd_una,
3110 struct tcp_sacktag_state *sack)
3111 {
3112 const struct inet_connection_sock *icsk = inet_csk(sk);
3113 u64 first_ackt, last_ackt;
3114 struct tcp_sock *tp = tcp_sk(sk);
3115 u32 prior_sacked = tp->sacked_out;
3116 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3117 struct sk_buff *skb, *next;
3118 bool fully_acked = true;
3119 long sack_rtt_us = -1L;
3120 long seq_rtt_us = -1L;
3121 long ca_rtt_us = -1L;
3122 u32 pkts_acked = 0;
3123 u32 last_in_flight = 0;
3124 bool rtt_update;
3125 int flag = 0;
3126
3127 first_ackt = 0;
3128
3129 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3130 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3131 const u32 start_seq = scb->seq;
3132 u8 sacked = scb->sacked;
3133 u32 acked_pcount;
3134
3135 tcp_ack_tstamp(sk, skb, prior_snd_una);
3136
3137 /* Determine how many packets and what bytes were acked, tso and else */
3138 if (after(scb->end_seq, tp->snd_una)) {
3139 if (tcp_skb_pcount(skb) == 1 ||
3140 !after(tp->snd_una, scb->seq))
3141 break;
3142
3143 acked_pcount = tcp_tso_acked(sk, skb);
3144 if (!acked_pcount)
3145 break;
3146 fully_acked = false;
3147 } else {
3148 acked_pcount = tcp_skb_pcount(skb);
3149 }
3150
3151 if (unlikely(sacked & TCPCB_RETRANS)) {
3152 if (sacked & TCPCB_SACKED_RETRANS)
3153 tp->retrans_out -= acked_pcount;
3154 flag |= FLAG_RETRANS_DATA_ACKED;
3155 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3156 last_ackt = tcp_skb_timestamp_us(skb);
3157 WARN_ON_ONCE(last_ackt == 0);
3158 if (!first_ackt)
3159 first_ackt = last_ackt;
3160
3161 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3162 if (before(start_seq, reord))
3163 reord = start_seq;
3164 if (!after(scb->end_seq, tp->high_seq))
3165 flag |= FLAG_ORIG_SACK_ACKED;
3166 }
3167
3168 if (sacked & TCPCB_SACKED_ACKED) {
3169 tp->sacked_out -= acked_pcount;
3170 } else if (tcp_is_sack(tp)) {
3171 tp->delivered += acked_pcount;
3172 if (!tcp_skb_spurious_retrans(tp, skb))
3173 tcp_rack_advance(tp, sacked, scb->end_seq,
3174 tcp_skb_timestamp_us(skb));
3175 }
3176 if (sacked & TCPCB_LOST)
3177 tp->lost_out -= acked_pcount;
3178
3179 tp->packets_out -= acked_pcount;
3180 pkts_acked += acked_pcount;
3181 tcp_rate_skb_delivered(sk, skb, sack->rate);
3182
3183 /* Initial outgoing SYN's get put onto the write_queue
3184 * just like anything else we transmit. It is not
3185 * true data, and if we misinform our callers that
3186 * this ACK acks real data, we will erroneously exit
3187 * connection startup slow start one packet too
3188 * quickly. This is severely frowned upon behavior.
3189 */
3190 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3191 flag |= FLAG_DATA_ACKED;
3192 } else {
3193 flag |= FLAG_SYN_ACKED;
3194 tp->retrans_stamp = 0;
3195 }
3196
3197 if (!fully_acked)
3198 break;
3199
3200 next = skb_rb_next(skb);
3201 if (unlikely(skb == tp->retransmit_skb_hint))
3202 tp->retransmit_skb_hint = NULL;
3203 if (unlikely(skb == tp->lost_skb_hint))
3204 tp->lost_skb_hint = NULL;
3205 tcp_highest_sack_replace(sk, skb, next);
3206 tcp_rtx_queue_unlink_and_free(skb, sk);
3207 }
3208
3209 if (!skb)
3210 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3211
3212 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3213 tp->snd_up = tp->snd_una;
3214
3215 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3216 flag |= FLAG_SACK_RENEGING;
3217
3218 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3219 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3220 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3221
3222 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3223 last_in_flight && !prior_sacked && fully_acked &&
3224 sack->rate->prior_delivered + 1 == tp->delivered &&
3225 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3226 /* Conservatively mark a delayed ACK. It's typically
3227 * from a lone runt packet over the round trip to
3228 * a receiver w/o out-of-order or CE events.
3229 */
3230 flag |= FLAG_ACK_MAYBE_DELAYED;
3231 }
3232 }
3233 if (sack->first_sackt) {
3234 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3235 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3236 }
3237 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3238 ca_rtt_us, sack->rate);
3239
3240 if (flag & FLAG_ACKED) {
3241 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3242 if (unlikely(icsk->icsk_mtup.probe_size &&
3243 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3244 tcp_mtup_probe_success(sk);
3245 }
3246
3247 if (tcp_is_reno(tp)) {
3248 tcp_remove_reno_sacks(sk, pkts_acked);
3249
3250 /* If any of the cumulatively ACKed segments was
3251 * retransmitted, non-SACK case cannot confirm that
3252 * progress was due to original transmission due to
3253 * lack of TCPCB_SACKED_ACKED bits even if some of
3254 * the packets may have been never retransmitted.
3255 */
3256 if (flag & FLAG_RETRANS_DATA_ACKED)
3257 flag &= ~FLAG_ORIG_SACK_ACKED;
3258 } else {
3259 int delta;
3260
3261 /* Non-retransmitted hole got filled? That's reordering */
3262 if (before(reord, prior_fack))
3263 tcp_check_sack_reordering(sk, reord, 0);
3264
3265 delta = prior_sacked - tp->sacked_out;
3266 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3267 }
3268 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3269 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3270 tcp_skb_timestamp_us(skb))) {
3271 /* Do not re-arm RTO if the sack RTT is measured from data sent
3272 * after when the head was last (re)transmitted. Otherwise the
3273 * timeout may continue to extend in loss recovery.
3274 */
3275 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3276 }
3277
3278 if (icsk->icsk_ca_ops->pkts_acked) {
3279 struct ack_sample sample = { .pkts_acked = pkts_acked,
3280 .rtt_us = sack->rate->rtt_us,
3281 .in_flight = last_in_flight };
3282
3283 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3284 }
3285
3286 #if FASTRETRANS_DEBUG > 0
3287 WARN_ON((int)tp->sacked_out < 0);
3288 WARN_ON((int)tp->lost_out < 0);
3289 WARN_ON((int)tp->retrans_out < 0);
3290 if (!tp->packets_out && tcp_is_sack(tp)) {
3291 icsk = inet_csk(sk);
3292 if (tp->lost_out) {
3293 pr_debug("Leak l=%u %d\n",
3294 tp->lost_out, icsk->icsk_ca_state);
3295 tp->lost_out = 0;
3296 }
3297 if (tp->sacked_out) {
3298 pr_debug("Leak s=%u %d\n",
3299 tp->sacked_out, icsk->icsk_ca_state);
3300 tp->sacked_out = 0;
3301 }
3302 if (tp->retrans_out) {
3303 pr_debug("Leak r=%u %d\n",
3304 tp->retrans_out, icsk->icsk_ca_state);
3305 tp->retrans_out = 0;
3306 }
3307 }
3308 #endif
3309 return flag;
3310 }
3311
tcp_ack_probe(struct sock * sk)3312 static void tcp_ack_probe(struct sock *sk)
3313 {
3314 struct inet_connection_sock *icsk = inet_csk(sk);
3315 struct sk_buff *head = tcp_send_head(sk);
3316 const struct tcp_sock *tp = tcp_sk(sk);
3317
3318 /* Was it a usable window open? */
3319 if (!head)
3320 return;
3321 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3322 icsk->icsk_backoff = 0;
3323 icsk->icsk_probes_tstamp = 0;
3324 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3325 /* Socket must be waked up by subsequent tcp_data_snd_check().
3326 * This function is not for random using!
3327 */
3328 } else {
3329 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3330
3331 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3332 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3333 when, TCP_RTO_MAX, NULL);
3334 }
3335 }
3336
tcp_ack_is_dubious(const struct sock * sk,const int flag)3337 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3338 {
3339 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3340 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3341 }
3342
3343 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3344 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3345 {
3346 /* If reordering is high then always grow cwnd whenever data is
3347 * delivered regardless of its ordering. Otherwise stay conservative
3348 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3349 * new SACK or ECE mark may first advance cwnd here and later reduce
3350 * cwnd in tcp_fastretrans_alert() based on more states.
3351 */
3352 if (tcp_sk(sk)->reordering >
3353 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3354 return flag & FLAG_FORWARD_PROGRESS;
3355
3356 return flag & FLAG_DATA_ACKED;
3357 }
3358
3359 /* The "ultimate" congestion control function that aims to replace the rigid
3360 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3361 * It's called toward the end of processing an ACK with precise rate
3362 * information. All transmission or retransmission are delayed afterwards.
3363 */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3364 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3365 int flag, const struct rate_sample *rs)
3366 {
3367 const struct inet_connection_sock *icsk = inet_csk(sk);
3368
3369 if (icsk->icsk_ca_ops->cong_control) {
3370 icsk->icsk_ca_ops->cong_control(sk, rs);
3371 return;
3372 }
3373
3374 if (tcp_in_cwnd_reduction(sk)) {
3375 /* Reduce cwnd if state mandates */
3376 tcp_cwnd_reduction(sk, acked_sacked, flag);
3377 } else if (tcp_may_raise_cwnd(sk, flag)) {
3378 /* Advance cwnd if state allows */
3379 tcp_cong_avoid(sk, ack, acked_sacked);
3380 }
3381 tcp_update_pacing_rate(sk);
3382 }
3383
3384 /* Check that window update is acceptable.
3385 * The function assumes that snd_una<=ack<=snd_next.
3386 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3387 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3388 const u32 ack, const u32 ack_seq,
3389 const u32 nwin)
3390 {
3391 return after(ack, tp->snd_una) ||
3392 after(ack_seq, tp->snd_wl1) ||
3393 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3394 }
3395
3396 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3397 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3398 {
3399 u32 delta = ack - tp->snd_una;
3400
3401 sock_owned_by_me((struct sock *)tp);
3402 tp->bytes_acked += delta;
3403 tp->snd_una = ack;
3404 }
3405
3406 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3407 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3408 {
3409 u32 delta = seq - tp->rcv_nxt;
3410
3411 sock_owned_by_me((struct sock *)tp);
3412 tp->bytes_received += delta;
3413 WRITE_ONCE(tp->rcv_nxt, seq);
3414 }
3415
3416 /* Update our send window.
3417 *
3418 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3419 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3420 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3421 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3422 u32 ack_seq)
3423 {
3424 struct tcp_sock *tp = tcp_sk(sk);
3425 int flag = 0;
3426 u32 nwin = ntohs(tcp_hdr(skb)->window);
3427
3428 if (likely(!tcp_hdr(skb)->syn))
3429 nwin <<= tp->rx_opt.snd_wscale;
3430
3431 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3432 flag |= FLAG_WIN_UPDATE;
3433 tcp_update_wl(tp, ack_seq);
3434
3435 if (tp->snd_wnd != nwin) {
3436 tp->snd_wnd = nwin;
3437
3438 /* Note, it is the only place, where
3439 * fast path is recovered for sending TCP.
3440 */
3441 tp->pred_flags = 0;
3442 tcp_fast_path_check(sk);
3443
3444 if (!tcp_write_queue_empty(sk))
3445 tcp_slow_start_after_idle_check(sk);
3446
3447 if (nwin > tp->max_window) {
3448 tp->max_window = nwin;
3449 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3450 }
3451 }
3452 }
3453
3454 tcp_snd_una_update(tp, ack);
3455
3456 return flag;
3457 }
3458
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3459 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3460 u32 *last_oow_ack_time)
3461 {
3462 /* Paired with the WRITE_ONCE() in this function. */
3463 u32 val = READ_ONCE(*last_oow_ack_time);
3464
3465 if (val) {
3466 s32 elapsed = (s32)(tcp_jiffies32 - val);
3467
3468 if (0 <= elapsed &&
3469 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3470 NET_INC_STATS(net, mib_idx);
3471 return true; /* rate-limited: don't send yet! */
3472 }
3473 }
3474
3475 /* Paired with the prior READ_ONCE() and with itself,
3476 * as we might be lockless.
3477 */
3478 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3479
3480 return false; /* not rate-limited: go ahead, send dupack now! */
3481 }
3482
3483 /* Return true if we're currently rate-limiting out-of-window ACKs and
3484 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3485 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3486 * attacks that send repeated SYNs or ACKs for the same connection. To
3487 * do this, we do not send a duplicate SYNACK or ACK if the remote
3488 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3489 */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3490 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3491 int mib_idx, u32 *last_oow_ack_time)
3492 {
3493 /* Data packets without SYNs are not likely part of an ACK loop. */
3494 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3495 !tcp_hdr(skb)->syn)
3496 return false;
3497
3498 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3499 }
3500
3501 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3502 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3503 {
3504 /* unprotected vars, we dont care of overwrites */
3505 static u32 challenge_timestamp;
3506 static unsigned int challenge_count;
3507 struct tcp_sock *tp = tcp_sk(sk);
3508 struct net *net = sock_net(sk);
3509 u32 count, now;
3510
3511 /* First check our per-socket dupack rate limit. */
3512 if (__tcp_oow_rate_limited(net,
3513 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3514 &tp->last_oow_ack_time))
3515 return;
3516
3517 /* Then check host-wide RFC 5961 rate limit. */
3518 now = jiffies / HZ;
3519 if (now != READ_ONCE(challenge_timestamp)) {
3520 u32 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3521 u32 half = (ack_limit + 1) >> 1;
3522
3523 WRITE_ONCE(challenge_timestamp, now);
3524 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3525 }
3526 count = READ_ONCE(challenge_count);
3527 if (count > 0) {
3528 WRITE_ONCE(challenge_count, count - 1);
3529 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3530 tcp_send_ack(sk);
3531 }
3532 }
3533
tcp_store_ts_recent(struct tcp_sock * tp)3534 static void tcp_store_ts_recent(struct tcp_sock *tp)
3535 {
3536 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3537 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3538 }
3539
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3540 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3541 {
3542 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3543 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3544 * extra check below makes sure this can only happen
3545 * for pure ACK frames. -DaveM
3546 *
3547 * Not only, also it occurs for expired timestamps.
3548 */
3549
3550 if (tcp_paws_check(&tp->rx_opt, 0))
3551 tcp_store_ts_recent(tp);
3552 }
3553 }
3554
3555 /* This routine deals with acks during a TLP episode and ends an episode by
3556 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3557 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3558 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3559 {
3560 struct tcp_sock *tp = tcp_sk(sk);
3561
3562 if (before(ack, tp->tlp_high_seq))
3563 return;
3564
3565 if (!tp->tlp_retrans) {
3566 /* TLP of new data has been acknowledged */
3567 tp->tlp_high_seq = 0;
3568 } else if (flag & FLAG_DSACKING_ACK) {
3569 /* This DSACK means original and TLP probe arrived; no loss */
3570 tp->tlp_high_seq = 0;
3571 } else if (after(ack, tp->tlp_high_seq)) {
3572 /* ACK advances: there was a loss, so reduce cwnd. Reset
3573 * tlp_high_seq in tcp_init_cwnd_reduction()
3574 */
3575 tcp_init_cwnd_reduction(sk);
3576 tcp_set_ca_state(sk, TCP_CA_CWR);
3577 tcp_end_cwnd_reduction(sk);
3578 tcp_try_keep_open(sk);
3579 NET_INC_STATS(sock_net(sk),
3580 LINUX_MIB_TCPLOSSPROBERECOVERY);
3581 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3582 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3583 /* Pure dupack: original and TLP probe arrived; no loss */
3584 tp->tlp_high_seq = 0;
3585 }
3586 }
3587
tcp_in_ack_event(struct sock * sk,u32 flags)3588 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3589 {
3590 const struct inet_connection_sock *icsk = inet_csk(sk);
3591
3592 if (icsk->icsk_ca_ops->in_ack_event)
3593 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3594 }
3595
3596 /* Congestion control has updated the cwnd already. So if we're in
3597 * loss recovery then now we do any new sends (for FRTO) or
3598 * retransmits (for CA_Loss or CA_recovery) that make sense.
3599 */
tcp_xmit_recovery(struct sock * sk,int rexmit)3600 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3601 {
3602 struct tcp_sock *tp = tcp_sk(sk);
3603
3604 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3605 return;
3606
3607 if (unlikely(rexmit == 2)) {
3608 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3609 TCP_NAGLE_OFF);
3610 if (after(tp->snd_nxt, tp->high_seq))
3611 return;
3612 tp->frto = 0;
3613 }
3614 tcp_xmit_retransmit_queue(sk);
3615 }
3616
3617 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3618 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3619 {
3620 const struct net *net = sock_net(sk);
3621 struct tcp_sock *tp = tcp_sk(sk);
3622 u32 delivered;
3623
3624 delivered = tp->delivered - prior_delivered;
3625 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3626 if (flag & FLAG_ECE) {
3627 tp->delivered_ce += delivered;
3628 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3629 }
3630 return delivered;
3631 }
3632
3633 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3634 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3635 {
3636 struct inet_connection_sock *icsk = inet_csk(sk);
3637 struct tcp_sock *tp = tcp_sk(sk);
3638 struct tcp_sacktag_state sack_state;
3639 struct rate_sample rs = { .prior_delivered = 0 };
3640 u32 prior_snd_una = tp->snd_una;
3641 bool is_sack_reneg = tp->is_sack_reneg;
3642 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3643 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3644 int num_dupack = 0;
3645 int prior_packets = tp->packets_out;
3646 u32 delivered = tp->delivered;
3647 u32 lost = tp->lost;
3648 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3649 u32 prior_fack;
3650
3651 sack_state.first_sackt = 0;
3652 sack_state.rate = &rs;
3653
3654 /* We very likely will need to access rtx queue. */
3655 prefetch(sk->tcp_rtx_queue.rb_node);
3656
3657 /* If the ack is older than previous acks
3658 * then we can probably ignore it.
3659 */
3660 if (before(ack, prior_snd_una)) {
3661 u32 max_window;
3662
3663 /* do not accept ACK for bytes we never sent. */
3664 max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3665 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3666 if (before(ack, prior_snd_una - max_window)) {
3667 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3668 tcp_send_challenge_ack(sk, skb);
3669 return -1;
3670 }
3671 goto old_ack;
3672 }
3673
3674 /* If the ack includes data we haven't sent yet, discard
3675 * this segment (RFC793 Section 3.9).
3676 */
3677 if (after(ack, tp->snd_nxt))
3678 return -1;
3679
3680 if (after(ack, prior_snd_una)) {
3681 flag |= FLAG_SND_UNA_ADVANCED;
3682 icsk->icsk_retransmits = 0;
3683
3684 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3685 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3686 if (icsk->icsk_clean_acked)
3687 icsk->icsk_clean_acked(sk, ack);
3688 #endif
3689 }
3690
3691 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3692 rs.prior_in_flight = tcp_packets_in_flight(tp);
3693
3694 /* ts_recent update must be made after we are sure that the packet
3695 * is in window.
3696 */
3697 if (flag & FLAG_UPDATE_TS_RECENT)
3698 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3699
3700 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3701 FLAG_SND_UNA_ADVANCED) {
3702 /* Window is constant, pure forward advance.
3703 * No more checks are required.
3704 * Note, we use the fact that SND.UNA>=SND.WL2.
3705 */
3706 tcp_update_wl(tp, ack_seq);
3707 tcp_snd_una_update(tp, ack);
3708 flag |= FLAG_WIN_UPDATE;
3709
3710 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3711
3712 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3713 } else {
3714 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3715
3716 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3717 flag |= FLAG_DATA;
3718 else
3719 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3720
3721 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3722
3723 if (TCP_SKB_CB(skb)->sacked)
3724 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3725 &sack_state);
3726
3727 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3728 flag |= FLAG_ECE;
3729 ack_ev_flags |= CA_ACK_ECE;
3730 }
3731
3732 if (flag & FLAG_WIN_UPDATE)
3733 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3734
3735 tcp_in_ack_event(sk, ack_ev_flags);
3736 }
3737
3738 /* This is a deviation from RFC3168 since it states that:
3739 * "When the TCP data sender is ready to set the CWR bit after reducing
3740 * the congestion window, it SHOULD set the CWR bit only on the first
3741 * new data packet that it transmits."
3742 * We accept CWR on pure ACKs to be more robust
3743 * with widely-deployed TCP implementations that do this.
3744 */
3745 tcp_ecn_accept_cwr(sk, skb);
3746
3747 /* We passed data and got it acked, remove any soft error
3748 * log. Something worked...
3749 */
3750 sk->sk_err_soft = 0;
3751 icsk->icsk_probes_out = 0;
3752 tp->rcv_tstamp = tcp_jiffies32;
3753 if (!prior_packets)
3754 goto no_queue;
3755
3756 /* See if we can take anything off of the retransmit queue. */
3757 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3758
3759 tcp_rack_update_reo_wnd(sk, &rs);
3760
3761 if (tp->tlp_high_seq)
3762 tcp_process_tlp_ack(sk, ack, flag);
3763
3764 if (tcp_ack_is_dubious(sk, flag)) {
3765 if (!(flag & (FLAG_SND_UNA_ADVANCED |
3766 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3767 num_dupack = 1;
3768 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3769 if (!(flag & FLAG_DATA))
3770 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3771 }
3772 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3773 &rexmit);
3774 }
3775
3776 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
3777 if (flag & FLAG_SET_XMIT_TIMER)
3778 tcp_set_xmit_timer(sk);
3779
3780 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3781 sk_dst_confirm(sk);
3782
3783 delivered = tcp_newly_delivered(sk, delivered, flag);
3784 lost = tp->lost - lost; /* freshly marked lost */
3785 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3786 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3787 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3788 tcp_xmit_recovery(sk, rexmit);
3789 return 1;
3790
3791 no_queue:
3792 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3793 if (flag & FLAG_DSACKING_ACK) {
3794 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3795 &rexmit);
3796 tcp_newly_delivered(sk, delivered, flag);
3797 }
3798 /* If this ack opens up a zero window, clear backoff. It was
3799 * being used to time the probes, and is probably far higher than
3800 * it needs to be for normal retransmission.
3801 */
3802 tcp_ack_probe(sk);
3803
3804 if (tp->tlp_high_seq)
3805 tcp_process_tlp_ack(sk, ack, flag);
3806 return 1;
3807
3808 old_ack:
3809 /* If data was SACKed, tag it and see if we should send more data.
3810 * If data was DSACKed, see if we can undo a cwnd reduction.
3811 */
3812 if (TCP_SKB_CB(skb)->sacked) {
3813 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3814 &sack_state);
3815 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3816 &rexmit);
3817 tcp_newly_delivered(sk, delivered, flag);
3818 tcp_xmit_recovery(sk, rexmit);
3819 }
3820
3821 return 0;
3822 }
3823
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3824 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3825 bool syn, struct tcp_fastopen_cookie *foc,
3826 bool exp_opt)
3827 {
3828 /* Valid only in SYN or SYN-ACK with an even length. */
3829 if (!foc || !syn || len < 0 || (len & 1))
3830 return;
3831
3832 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3833 len <= TCP_FASTOPEN_COOKIE_MAX)
3834 memcpy(foc->val, cookie, len);
3835 else if (len != 0)
3836 len = -1;
3837 foc->len = len;
3838 foc->exp = exp_opt;
3839 }
3840
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)3841 static void smc_parse_options(const struct tcphdr *th,
3842 struct tcp_options_received *opt_rx,
3843 const unsigned char *ptr,
3844 int opsize)
3845 {
3846 #if IS_ENABLED(CONFIG_SMC)
3847 if (static_branch_unlikely(&tcp_have_smc)) {
3848 if (th->syn && !(opsize & 1) &&
3849 opsize >= TCPOLEN_EXP_SMC_BASE &&
3850 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3851 opt_rx->smc_ok = 1;
3852 }
3853 #endif
3854 }
3855
3856 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3857 * value on success.
3858 */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)3859 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3860 {
3861 const unsigned char *ptr = (const unsigned char *)(th + 1);
3862 int length = (th->doff * 4) - sizeof(struct tcphdr);
3863 u16 mss = 0;
3864
3865 while (length > 0) {
3866 int opcode = *ptr++;
3867 int opsize;
3868
3869 switch (opcode) {
3870 case TCPOPT_EOL:
3871 return mss;
3872 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3873 length--;
3874 continue;
3875 default:
3876 if (length < 2)
3877 return mss;
3878 opsize = *ptr++;
3879 if (opsize < 2) /* "silly options" */
3880 return mss;
3881 if (opsize > length)
3882 return mss; /* fail on partial options */
3883 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3884 u16 in_mss = get_unaligned_be16(ptr);
3885
3886 if (in_mss) {
3887 if (user_mss && user_mss < in_mss)
3888 in_mss = user_mss;
3889 mss = in_mss;
3890 }
3891 }
3892 ptr += opsize - 2;
3893 length -= opsize;
3894 }
3895 }
3896 return mss;
3897 }
3898
3899 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3900 * But, this can also be called on packets in the established flow when
3901 * the fast version below fails.
3902 */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)3903 void tcp_parse_options(const struct net *net,
3904 const struct sk_buff *skb,
3905 struct tcp_options_received *opt_rx, int estab,
3906 struct tcp_fastopen_cookie *foc)
3907 {
3908 const unsigned char *ptr;
3909 const struct tcphdr *th = tcp_hdr(skb);
3910 int length = (th->doff * 4) - sizeof(struct tcphdr);
3911
3912 ptr = (const unsigned char *)(th + 1);
3913 opt_rx->saw_tstamp = 0;
3914
3915 while (length > 0) {
3916 int opcode = *ptr++;
3917 int opsize;
3918
3919 switch (opcode) {
3920 case TCPOPT_EOL:
3921 return;
3922 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3923 length--;
3924 continue;
3925 default:
3926 if (length < 2)
3927 return;
3928 opsize = *ptr++;
3929 if (opsize < 2) /* "silly options" */
3930 return;
3931 if (opsize > length)
3932 return; /* don't parse partial options */
3933 switch (opcode) {
3934 case TCPOPT_MSS:
3935 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3936 u16 in_mss = get_unaligned_be16(ptr);
3937 if (in_mss) {
3938 if (opt_rx->user_mss &&
3939 opt_rx->user_mss < in_mss)
3940 in_mss = opt_rx->user_mss;
3941 opt_rx->mss_clamp = in_mss;
3942 }
3943 }
3944 break;
3945 case TCPOPT_WINDOW:
3946 if (opsize == TCPOLEN_WINDOW && th->syn &&
3947 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
3948 __u8 snd_wscale = *(__u8 *)ptr;
3949 opt_rx->wscale_ok = 1;
3950 if (snd_wscale > TCP_MAX_WSCALE) {
3951 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3952 __func__,
3953 snd_wscale,
3954 TCP_MAX_WSCALE);
3955 snd_wscale = TCP_MAX_WSCALE;
3956 }
3957 opt_rx->snd_wscale = snd_wscale;
3958 }
3959 break;
3960 case TCPOPT_TIMESTAMP:
3961 if ((opsize == TCPOLEN_TIMESTAMP) &&
3962 ((estab && opt_rx->tstamp_ok) ||
3963 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
3964 opt_rx->saw_tstamp = 1;
3965 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3966 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3967 }
3968 break;
3969 case TCPOPT_SACK_PERM:
3970 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3971 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
3972 opt_rx->sack_ok = TCP_SACK_SEEN;
3973 tcp_sack_reset(opt_rx);
3974 }
3975 break;
3976
3977 case TCPOPT_SACK:
3978 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3979 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3980 opt_rx->sack_ok) {
3981 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3982 }
3983 break;
3984 #ifdef CONFIG_TCP_MD5SIG
3985 case TCPOPT_MD5SIG:
3986 /*
3987 * The MD5 Hash has already been
3988 * checked (see tcp_v{4,6}_do_rcv()).
3989 */
3990 break;
3991 #endif
3992 case TCPOPT_FASTOPEN:
3993 tcp_parse_fastopen_option(
3994 opsize - TCPOLEN_FASTOPEN_BASE,
3995 ptr, th->syn, foc, false);
3996 break;
3997
3998 case TCPOPT_EXP:
3999 /* Fast Open option shares code 254 using a
4000 * 16 bits magic number.
4001 */
4002 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4003 get_unaligned_be16(ptr) ==
4004 TCPOPT_FASTOPEN_MAGIC)
4005 tcp_parse_fastopen_option(opsize -
4006 TCPOLEN_EXP_FASTOPEN_BASE,
4007 ptr + 2, th->syn, foc, true);
4008 else
4009 smc_parse_options(th, opt_rx, ptr,
4010 opsize);
4011 break;
4012
4013 }
4014 ptr += opsize-2;
4015 length -= opsize;
4016 }
4017 }
4018 }
4019 EXPORT_SYMBOL(tcp_parse_options);
4020
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4021 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4022 {
4023 const __be32 *ptr = (const __be32 *)(th + 1);
4024
4025 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4026 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4027 tp->rx_opt.saw_tstamp = 1;
4028 ++ptr;
4029 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4030 ++ptr;
4031 if (*ptr)
4032 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4033 else
4034 tp->rx_opt.rcv_tsecr = 0;
4035 return true;
4036 }
4037 return false;
4038 }
4039
4040 /* Fast parse options. This hopes to only see timestamps.
4041 * If it is wrong it falls back on tcp_parse_options().
4042 */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4043 static bool tcp_fast_parse_options(const struct net *net,
4044 const struct sk_buff *skb,
4045 const struct tcphdr *th, struct tcp_sock *tp)
4046 {
4047 /* In the spirit of fast parsing, compare doff directly to constant
4048 * values. Because equality is used, short doff can be ignored here.
4049 */
4050 if (th->doff == (sizeof(*th) / 4)) {
4051 tp->rx_opt.saw_tstamp = 0;
4052 return false;
4053 } else if (tp->rx_opt.tstamp_ok &&
4054 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4055 if (tcp_parse_aligned_timestamp(tp, th))
4056 return true;
4057 }
4058
4059 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4060 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4061 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4062
4063 return true;
4064 }
4065
4066 #ifdef CONFIG_TCP_MD5SIG
4067 /*
4068 * Parse MD5 Signature option
4069 */
tcp_parse_md5sig_option(const struct tcphdr * th)4070 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4071 {
4072 int length = (th->doff << 2) - sizeof(*th);
4073 const u8 *ptr = (const u8 *)(th + 1);
4074
4075 /* If not enough data remaining, we can short cut */
4076 while (length >= TCPOLEN_MD5SIG) {
4077 int opcode = *ptr++;
4078 int opsize;
4079
4080 switch (opcode) {
4081 case TCPOPT_EOL:
4082 return NULL;
4083 case TCPOPT_NOP:
4084 length--;
4085 continue;
4086 default:
4087 opsize = *ptr++;
4088 if (opsize < 2 || opsize > length)
4089 return NULL;
4090 if (opcode == TCPOPT_MD5SIG)
4091 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4092 }
4093 ptr += opsize - 2;
4094 length -= opsize;
4095 }
4096 return NULL;
4097 }
4098 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4099 #endif
4100
4101 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4102 *
4103 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4104 * it can pass through stack. So, the following predicate verifies that
4105 * this segment is not used for anything but congestion avoidance or
4106 * fast retransmit. Moreover, we even are able to eliminate most of such
4107 * second order effects, if we apply some small "replay" window (~RTO)
4108 * to timestamp space.
4109 *
4110 * All these measures still do not guarantee that we reject wrapped ACKs
4111 * on networks with high bandwidth, when sequence space is recycled fastly,
4112 * but it guarantees that such events will be very rare and do not affect
4113 * connection seriously. This doesn't look nice, but alas, PAWS is really
4114 * buggy extension.
4115 *
4116 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4117 * states that events when retransmit arrives after original data are rare.
4118 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4119 * the biggest problem on large power networks even with minor reordering.
4120 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4121 * up to bandwidth of 18Gigabit/sec. 8) ]
4122 */
4123
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4124 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4125 {
4126 const struct tcp_sock *tp = tcp_sk(sk);
4127 const struct tcphdr *th = tcp_hdr(skb);
4128 u32 seq = TCP_SKB_CB(skb)->seq;
4129 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4130
4131 return (/* 1. Pure ACK with correct sequence number. */
4132 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4133
4134 /* 2. ... and duplicate ACK. */
4135 ack == tp->snd_una &&
4136
4137 /* 3. ... and does not update window. */
4138 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4139
4140 /* 4. ... and sits in replay window. */
4141 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4142 }
4143
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4144 static inline bool tcp_paws_discard(const struct sock *sk,
4145 const struct sk_buff *skb)
4146 {
4147 const struct tcp_sock *tp = tcp_sk(sk);
4148
4149 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4150 !tcp_disordered_ack(sk, skb);
4151 }
4152
4153 /* Check segment sequence number for validity.
4154 *
4155 * Segment controls are considered valid, if the segment
4156 * fits to the window after truncation to the window. Acceptability
4157 * of data (and SYN, FIN, of course) is checked separately.
4158 * See tcp_data_queue(), for example.
4159 *
4160 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4161 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4162 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4163 * (borrowed from freebsd)
4164 */
4165
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4166 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4167 {
4168 return !before(end_seq, tp->rcv_wup) &&
4169 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4170 }
4171
4172 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)4173 void tcp_reset(struct sock *sk)
4174 {
4175 trace_tcp_receive_reset(sk);
4176
4177 /* We want the right error as BSD sees it (and indeed as we do). */
4178 switch (sk->sk_state) {
4179 case TCP_SYN_SENT:
4180 sk->sk_err = ECONNREFUSED;
4181 break;
4182 case TCP_CLOSE_WAIT:
4183 sk->sk_err = EPIPE;
4184 break;
4185 case TCP_CLOSE:
4186 return;
4187 default:
4188 sk->sk_err = ECONNRESET;
4189 }
4190 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4191 smp_wmb();
4192
4193 tcp_write_queue_purge(sk);
4194 tcp_done(sk);
4195
4196 if (!sock_flag(sk, SOCK_DEAD))
4197 sk->sk_error_report(sk);
4198 }
4199
4200 /*
4201 * Process the FIN bit. This now behaves as it is supposed to work
4202 * and the FIN takes effect when it is validly part of sequence
4203 * space. Not before when we get holes.
4204 *
4205 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4206 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4207 * TIME-WAIT)
4208 *
4209 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4210 * close and we go into CLOSING (and later onto TIME-WAIT)
4211 *
4212 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4213 */
tcp_fin(struct sock * sk)4214 void tcp_fin(struct sock *sk)
4215 {
4216 struct tcp_sock *tp = tcp_sk(sk);
4217
4218 inet_csk_schedule_ack(sk);
4219
4220 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4221 sock_set_flag(sk, SOCK_DONE);
4222
4223 switch (sk->sk_state) {
4224 case TCP_SYN_RECV:
4225 case TCP_ESTABLISHED:
4226 /* Move to CLOSE_WAIT */
4227 tcp_set_state(sk, TCP_CLOSE_WAIT);
4228 inet_csk_enter_pingpong_mode(sk);
4229 break;
4230
4231 case TCP_CLOSE_WAIT:
4232 case TCP_CLOSING:
4233 /* Received a retransmission of the FIN, do
4234 * nothing.
4235 */
4236 break;
4237 case TCP_LAST_ACK:
4238 /* RFC793: Remain in the LAST-ACK state. */
4239 break;
4240
4241 case TCP_FIN_WAIT1:
4242 /* This case occurs when a simultaneous close
4243 * happens, we must ack the received FIN and
4244 * enter the CLOSING state.
4245 */
4246 tcp_send_ack(sk);
4247 tcp_set_state(sk, TCP_CLOSING);
4248 break;
4249 case TCP_FIN_WAIT2:
4250 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4251 tcp_send_ack(sk);
4252 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4253 break;
4254 default:
4255 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4256 * cases we should never reach this piece of code.
4257 */
4258 pr_err("%s: Impossible, sk->sk_state=%d\n",
4259 __func__, sk->sk_state);
4260 break;
4261 }
4262
4263 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4264 * Probably, we should reset in this case. For now drop them.
4265 */
4266 skb_rbtree_purge(&tp->out_of_order_queue);
4267 if (tcp_is_sack(tp))
4268 tcp_sack_reset(&tp->rx_opt);
4269 sk_mem_reclaim(sk);
4270
4271 if (!sock_flag(sk, SOCK_DEAD)) {
4272 sk->sk_state_change(sk);
4273
4274 /* Do not send POLL_HUP for half duplex close. */
4275 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4276 sk->sk_state == TCP_CLOSE)
4277 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4278 else
4279 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4280 }
4281 }
4282
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4283 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4284 u32 end_seq)
4285 {
4286 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4287 if (before(seq, sp->start_seq))
4288 sp->start_seq = seq;
4289 if (after(end_seq, sp->end_seq))
4290 sp->end_seq = end_seq;
4291 return true;
4292 }
4293 return false;
4294 }
4295
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4296 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4297 {
4298 struct tcp_sock *tp = tcp_sk(sk);
4299
4300 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4301 int mib_idx;
4302
4303 if (before(seq, tp->rcv_nxt))
4304 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4305 else
4306 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4307
4308 NET_INC_STATS(sock_net(sk), mib_idx);
4309
4310 tp->rx_opt.dsack = 1;
4311 tp->duplicate_sack[0].start_seq = seq;
4312 tp->duplicate_sack[0].end_seq = end_seq;
4313 }
4314 }
4315
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4316 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4317 {
4318 struct tcp_sock *tp = tcp_sk(sk);
4319
4320 if (!tp->rx_opt.dsack)
4321 tcp_dsack_set(sk, seq, end_seq);
4322 else
4323 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4324 }
4325
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4326 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4327 {
4328 /* When the ACK path fails or drops most ACKs, the sender would
4329 * timeout and spuriously retransmit the same segment repeatedly.
4330 * The receiver remembers and reflects via DSACKs. Leverage the
4331 * DSACK state and change the txhash to re-route speculatively.
4332 */
4333 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4334 sk_rethink_txhash(sk);
4335 }
4336
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4337 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4338 {
4339 struct tcp_sock *tp = tcp_sk(sk);
4340
4341 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4342 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4343 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4344 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4345
4346 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4347 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4348
4349 tcp_rcv_spurious_retrans(sk, skb);
4350 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4351 end_seq = tp->rcv_nxt;
4352 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4353 }
4354 }
4355
4356 tcp_send_ack(sk);
4357 }
4358
4359 /* These routines update the SACK block as out-of-order packets arrive or
4360 * in-order packets close up the sequence space.
4361 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4362 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4363 {
4364 int this_sack;
4365 struct tcp_sack_block *sp = &tp->selective_acks[0];
4366 struct tcp_sack_block *swalk = sp + 1;
4367
4368 /* See if the recent change to the first SACK eats into
4369 * or hits the sequence space of other SACK blocks, if so coalesce.
4370 */
4371 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4372 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4373 int i;
4374
4375 /* Zap SWALK, by moving every further SACK up by one slot.
4376 * Decrease num_sacks.
4377 */
4378 tp->rx_opt.num_sacks--;
4379 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4380 sp[i] = sp[i + 1];
4381 continue;
4382 }
4383 this_sack++, swalk++;
4384 }
4385 }
4386
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4387 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4388 {
4389 struct tcp_sock *tp = tcp_sk(sk);
4390 struct tcp_sack_block *sp = &tp->selective_acks[0];
4391 int cur_sacks = tp->rx_opt.num_sacks;
4392 int this_sack;
4393
4394 if (!cur_sacks)
4395 goto new_sack;
4396
4397 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4398 if (tcp_sack_extend(sp, seq, end_seq)) {
4399 /* Rotate this_sack to the first one. */
4400 for (; this_sack > 0; this_sack--, sp--)
4401 swap(*sp, *(sp - 1));
4402 if (cur_sacks > 1)
4403 tcp_sack_maybe_coalesce(tp);
4404 return;
4405 }
4406 }
4407
4408 /* Could not find an adjacent existing SACK, build a new one,
4409 * put it at the front, and shift everyone else down. We
4410 * always know there is at least one SACK present already here.
4411 *
4412 * If the sack array is full, forget about the last one.
4413 */
4414 if (this_sack >= TCP_NUM_SACKS) {
4415 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4416 tcp_send_ack(sk);
4417 this_sack--;
4418 tp->rx_opt.num_sacks--;
4419 sp--;
4420 }
4421 for (; this_sack > 0; this_sack--, sp--)
4422 *sp = *(sp - 1);
4423
4424 new_sack:
4425 /* Build the new head SACK, and we're done. */
4426 sp->start_seq = seq;
4427 sp->end_seq = end_seq;
4428 tp->rx_opt.num_sacks++;
4429 }
4430
4431 /* RCV.NXT advances, some SACKs should be eaten. */
4432
tcp_sack_remove(struct tcp_sock * tp)4433 static void tcp_sack_remove(struct tcp_sock *tp)
4434 {
4435 struct tcp_sack_block *sp = &tp->selective_acks[0];
4436 int num_sacks = tp->rx_opt.num_sacks;
4437 int this_sack;
4438
4439 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4440 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4441 tp->rx_opt.num_sacks = 0;
4442 return;
4443 }
4444
4445 for (this_sack = 0; this_sack < num_sacks;) {
4446 /* Check if the start of the sack is covered by RCV.NXT. */
4447 if (!before(tp->rcv_nxt, sp->start_seq)) {
4448 int i;
4449
4450 /* RCV.NXT must cover all the block! */
4451 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4452
4453 /* Zap this SACK, by moving forward any other SACKS. */
4454 for (i = this_sack+1; i < num_sacks; i++)
4455 tp->selective_acks[i-1] = tp->selective_acks[i];
4456 num_sacks--;
4457 continue;
4458 }
4459 this_sack++;
4460 sp++;
4461 }
4462 tp->rx_opt.num_sacks = num_sacks;
4463 }
4464
4465 /**
4466 * tcp_try_coalesce - try to merge skb to prior one
4467 * @sk: socket
4468 * @dest: destination queue
4469 * @to: prior buffer
4470 * @from: buffer to add in queue
4471 * @fragstolen: pointer to boolean
4472 *
4473 * Before queueing skb @from after @to, try to merge them
4474 * to reduce overall memory use and queue lengths, if cost is small.
4475 * Packets in ofo or receive queues can stay a long time.
4476 * Better try to coalesce them right now to avoid future collapses.
4477 * Returns true if caller should free @from instead of queueing it
4478 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4479 static bool tcp_try_coalesce(struct sock *sk,
4480 struct sk_buff *to,
4481 struct sk_buff *from,
4482 bool *fragstolen)
4483 {
4484 int delta;
4485
4486 *fragstolen = false;
4487
4488 /* Its possible this segment overlaps with prior segment in queue */
4489 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4490 return false;
4491
4492 #ifdef CONFIG_TLS_DEVICE
4493 if (from->decrypted != to->decrypted)
4494 return false;
4495 #endif
4496
4497 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4498 return false;
4499
4500 atomic_add(delta, &sk->sk_rmem_alloc);
4501 sk_mem_charge(sk, delta);
4502 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4503 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4504 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4505 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4506
4507 if (TCP_SKB_CB(from)->has_rxtstamp) {
4508 TCP_SKB_CB(to)->has_rxtstamp = true;
4509 to->tstamp = from->tstamp;
4510 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4511 }
4512
4513 return true;
4514 }
4515
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4516 static bool tcp_ooo_try_coalesce(struct sock *sk,
4517 struct sk_buff *to,
4518 struct sk_buff *from,
4519 bool *fragstolen)
4520 {
4521 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4522
4523 /* In case tcp_drop() is called later, update to->gso_segs */
4524 if (res) {
4525 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4526 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4527
4528 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4529 }
4530 return res;
4531 }
4532
tcp_drop(struct sock * sk,struct sk_buff * skb)4533 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4534 {
4535 trace_android_vh_kfree_skb(skb);
4536 sk_drops_add(sk, skb);
4537 __kfree_skb(skb);
4538 }
4539
4540 /* This one checks to see if we can put data from the
4541 * out_of_order queue into the receive_queue.
4542 */
tcp_ofo_queue(struct sock * sk)4543 static void tcp_ofo_queue(struct sock *sk)
4544 {
4545 struct tcp_sock *tp = tcp_sk(sk);
4546 __u32 dsack_high = tp->rcv_nxt;
4547 bool fin, fragstolen, eaten;
4548 struct sk_buff *skb, *tail;
4549 struct rb_node *p;
4550
4551 p = rb_first(&tp->out_of_order_queue);
4552 while (p) {
4553 skb = rb_to_skb(p);
4554 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4555 break;
4556
4557 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4558 __u32 dsack = dsack_high;
4559 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4560 dsack_high = TCP_SKB_CB(skb)->end_seq;
4561 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4562 }
4563 p = rb_next(p);
4564 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4565
4566 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4567 tcp_drop(sk, skb);
4568 continue;
4569 }
4570
4571 tail = skb_peek_tail(&sk->sk_receive_queue);
4572 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4573 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4574 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4575 if (!eaten)
4576 __skb_queue_tail(&sk->sk_receive_queue, skb);
4577 else
4578 kfree_skb_partial(skb, fragstolen);
4579
4580 if (unlikely(fin)) {
4581 tcp_fin(sk);
4582 /* tcp_fin() purges tp->out_of_order_queue,
4583 * so we must end this loop right now.
4584 */
4585 break;
4586 }
4587 }
4588 }
4589
4590 static bool tcp_prune_ofo_queue(struct sock *sk);
4591 static int tcp_prune_queue(struct sock *sk);
4592
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4593 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4594 unsigned int size)
4595 {
4596 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4597 !sk_rmem_schedule(sk, skb, size)) {
4598
4599 if (tcp_prune_queue(sk) < 0)
4600 return -1;
4601
4602 while (!sk_rmem_schedule(sk, skb, size)) {
4603 if (!tcp_prune_ofo_queue(sk))
4604 return -1;
4605 }
4606 }
4607 return 0;
4608 }
4609
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4610 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4611 {
4612 struct tcp_sock *tp = tcp_sk(sk);
4613 struct rb_node **p, *parent;
4614 struct sk_buff *skb1;
4615 u32 seq, end_seq;
4616 bool fragstolen;
4617
4618 tcp_ecn_check_ce(sk, skb);
4619
4620 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4621 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4622 sk->sk_data_ready(sk);
4623 tcp_drop(sk, skb);
4624 return;
4625 }
4626
4627 /* Disable header prediction. */
4628 tp->pred_flags = 0;
4629 inet_csk_schedule_ack(sk);
4630
4631 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4632 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4633 seq = TCP_SKB_CB(skb)->seq;
4634 end_seq = TCP_SKB_CB(skb)->end_seq;
4635
4636 p = &tp->out_of_order_queue.rb_node;
4637 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4638 /* Initial out of order segment, build 1 SACK. */
4639 if (tcp_is_sack(tp)) {
4640 tp->rx_opt.num_sacks = 1;
4641 tp->selective_acks[0].start_seq = seq;
4642 tp->selective_acks[0].end_seq = end_seq;
4643 }
4644 rb_link_node(&skb->rbnode, NULL, p);
4645 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4646 tp->ooo_last_skb = skb;
4647 goto end;
4648 }
4649
4650 /* In the typical case, we are adding an skb to the end of the list.
4651 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4652 */
4653 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4654 skb, &fragstolen)) {
4655 coalesce_done:
4656 /* For non sack flows, do not grow window to force DUPACK
4657 * and trigger fast retransmit.
4658 */
4659 if (tcp_is_sack(tp))
4660 tcp_grow_window(sk, skb);
4661 kfree_skb_partial(skb, fragstolen);
4662 skb = NULL;
4663 goto add_sack;
4664 }
4665 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4666 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4667 parent = &tp->ooo_last_skb->rbnode;
4668 p = &parent->rb_right;
4669 goto insert;
4670 }
4671
4672 /* Find place to insert this segment. Handle overlaps on the way. */
4673 parent = NULL;
4674 while (*p) {
4675 parent = *p;
4676 skb1 = rb_to_skb(parent);
4677 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4678 p = &parent->rb_left;
4679 continue;
4680 }
4681 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4682 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4683 /* All the bits are present. Drop. */
4684 NET_INC_STATS(sock_net(sk),
4685 LINUX_MIB_TCPOFOMERGE);
4686 tcp_drop(sk, skb);
4687 skb = NULL;
4688 tcp_dsack_set(sk, seq, end_seq);
4689 goto add_sack;
4690 }
4691 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4692 /* Partial overlap. */
4693 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4694 } else {
4695 /* skb's seq == skb1's seq and skb covers skb1.
4696 * Replace skb1 with skb.
4697 */
4698 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4699 &tp->out_of_order_queue);
4700 tcp_dsack_extend(sk,
4701 TCP_SKB_CB(skb1)->seq,
4702 TCP_SKB_CB(skb1)->end_seq);
4703 NET_INC_STATS(sock_net(sk),
4704 LINUX_MIB_TCPOFOMERGE);
4705 tcp_drop(sk, skb1);
4706 goto merge_right;
4707 }
4708 } else if (tcp_ooo_try_coalesce(sk, skb1,
4709 skb, &fragstolen)) {
4710 goto coalesce_done;
4711 }
4712 p = &parent->rb_right;
4713 }
4714 insert:
4715 /* Insert segment into RB tree. */
4716 rb_link_node(&skb->rbnode, parent, p);
4717 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4718
4719 merge_right:
4720 /* Remove other segments covered by skb. */
4721 while ((skb1 = skb_rb_next(skb)) != NULL) {
4722 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4723 break;
4724 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4725 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4726 end_seq);
4727 break;
4728 }
4729 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4730 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4731 TCP_SKB_CB(skb1)->end_seq);
4732 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4733 tcp_drop(sk, skb1);
4734 }
4735 /* If there is no skb after us, we are the last_skb ! */
4736 if (!skb1)
4737 tp->ooo_last_skb = skb;
4738
4739 add_sack:
4740 if (tcp_is_sack(tp))
4741 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4742 end:
4743 if (skb) {
4744 /* For non sack flows, do not grow window to force DUPACK
4745 * and trigger fast retransmit.
4746 */
4747 if (tcp_is_sack(tp))
4748 tcp_grow_window(sk, skb);
4749 skb_condense(skb);
4750 skb_set_owner_r(skb, sk);
4751 }
4752 }
4753
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)4754 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4755 bool *fragstolen)
4756 {
4757 int eaten;
4758 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4759
4760 eaten = (tail &&
4761 tcp_try_coalesce(sk, tail,
4762 skb, fragstolen)) ? 1 : 0;
4763 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4764 if (!eaten) {
4765 __skb_queue_tail(&sk->sk_receive_queue, skb);
4766 skb_set_owner_r(skb, sk);
4767 }
4768 return eaten;
4769 }
4770
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4771 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4772 {
4773 struct sk_buff *skb;
4774 int err = -ENOMEM;
4775 int data_len = 0;
4776 bool fragstolen;
4777
4778 if (size == 0)
4779 return 0;
4780
4781 if (size > PAGE_SIZE) {
4782 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4783
4784 data_len = npages << PAGE_SHIFT;
4785 size = data_len + (size & ~PAGE_MASK);
4786 }
4787 skb = alloc_skb_with_frags(size - data_len, data_len,
4788 PAGE_ALLOC_COSTLY_ORDER,
4789 &err, sk->sk_allocation);
4790 if (!skb)
4791 goto err;
4792
4793 skb_put(skb, size - data_len);
4794 skb->data_len = data_len;
4795 skb->len = size;
4796
4797 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4798 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4799 goto err_free;
4800 }
4801
4802 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4803 if (err)
4804 goto err_free;
4805
4806 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4807 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4808 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4809
4810 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4811 WARN_ON_ONCE(fragstolen); /* should not happen */
4812 __kfree_skb(skb);
4813 }
4814 return size;
4815
4816 err_free:
4817 kfree_skb(skb);
4818 err:
4819 return err;
4820
4821 }
4822
tcp_data_ready(struct sock * sk)4823 void tcp_data_ready(struct sock *sk)
4824 {
4825 const struct tcp_sock *tp = tcp_sk(sk);
4826 int avail = tp->rcv_nxt - tp->copied_seq;
4827
4828 if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4829 !sock_flag(sk, SOCK_DONE) &&
4830 tcp_receive_window(tp) > inet_csk(sk)->icsk_ack.rcv_mss)
4831 return;
4832
4833 sk->sk_data_ready(sk);
4834 }
4835
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4836 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4837 {
4838 struct tcp_sock *tp = tcp_sk(sk);
4839 bool fragstolen;
4840 int eaten;
4841
4842 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4843 __kfree_skb(skb);
4844 return;
4845 }
4846 skb_dst_drop(skb);
4847 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4848
4849 tp->rx_opt.dsack = 0;
4850
4851 /* Queue data for delivery to the user.
4852 * Packets in sequence go to the receive queue.
4853 * Out of sequence packets to the out_of_order_queue.
4854 */
4855 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4856 if (tcp_receive_window(tp) == 0) {
4857 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4858 goto out_of_window;
4859 }
4860
4861 /* Ok. In sequence. In window. */
4862 queue_and_out:
4863 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4864 sk_forced_mem_schedule(sk, skb->truesize);
4865 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4866 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4867 sk->sk_data_ready(sk);
4868 goto drop;
4869 }
4870
4871 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4872 if (skb->len)
4873 tcp_event_data_recv(sk, skb);
4874 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4875 tcp_fin(sk);
4876
4877 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4878 tcp_ofo_queue(sk);
4879
4880 /* RFC5681. 4.2. SHOULD send immediate ACK, when
4881 * gap in queue is filled.
4882 */
4883 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4884 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4885 }
4886
4887 if (tp->rx_opt.num_sacks)
4888 tcp_sack_remove(tp);
4889
4890 tcp_fast_path_check(sk);
4891
4892 if (eaten > 0)
4893 kfree_skb_partial(skb, fragstolen);
4894 if (!sock_flag(sk, SOCK_DEAD))
4895 tcp_data_ready(sk);
4896 return;
4897 }
4898
4899 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4900 tcp_rcv_spurious_retrans(sk, skb);
4901 /* A retransmit, 2nd most common case. Force an immediate ack. */
4902 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4903 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4904
4905 out_of_window:
4906 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4907 inet_csk_schedule_ack(sk);
4908 drop:
4909 tcp_drop(sk, skb);
4910 return;
4911 }
4912
4913 /* Out of window. F.e. zero window probe. */
4914 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4915 goto out_of_window;
4916
4917 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4918 /* Partial packet, seq < rcv_next < end_seq */
4919 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4920
4921 /* If window is closed, drop tail of packet. But after
4922 * remembering D-SACK for its head made in previous line.
4923 */
4924 if (!tcp_receive_window(tp)) {
4925 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4926 goto out_of_window;
4927 }
4928 goto queue_and_out;
4929 }
4930
4931 tcp_data_queue_ofo(sk, skb);
4932 }
4933
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)4934 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4935 {
4936 if (list)
4937 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4938
4939 return skb_rb_next(skb);
4940 }
4941
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)4942 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4943 struct sk_buff_head *list,
4944 struct rb_root *root)
4945 {
4946 struct sk_buff *next = tcp_skb_next(skb, list);
4947
4948 if (list)
4949 __skb_unlink(skb, list);
4950 else
4951 rb_erase(&skb->rbnode, root);
4952
4953 __kfree_skb(skb);
4954 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4955
4956 return next;
4957 }
4958
4959 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)4960 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4961 {
4962 struct rb_node **p = &root->rb_node;
4963 struct rb_node *parent = NULL;
4964 struct sk_buff *skb1;
4965
4966 while (*p) {
4967 parent = *p;
4968 skb1 = rb_to_skb(parent);
4969 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4970 p = &parent->rb_left;
4971 else
4972 p = &parent->rb_right;
4973 }
4974 rb_link_node(&skb->rbnode, parent, p);
4975 rb_insert_color(&skb->rbnode, root);
4976 }
4977
4978 /* Collapse contiguous sequence of skbs head..tail with
4979 * sequence numbers start..end.
4980 *
4981 * If tail is NULL, this means until the end of the queue.
4982 *
4983 * Segments with FIN/SYN are not collapsed (only because this
4984 * simplifies code)
4985 */
4986 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)4987 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4988 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4989 {
4990 struct sk_buff *skb = head, *n;
4991 struct sk_buff_head tmp;
4992 bool end_of_skbs;
4993
4994 /* First, check that queue is collapsible and find
4995 * the point where collapsing can be useful.
4996 */
4997 restart:
4998 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4999 n = tcp_skb_next(skb, list);
5000
5001 /* No new bits? It is possible on ofo queue. */
5002 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5003 skb = tcp_collapse_one(sk, skb, list, root);
5004 if (!skb)
5005 break;
5006 goto restart;
5007 }
5008
5009 /* The first skb to collapse is:
5010 * - not SYN/FIN and
5011 * - bloated or contains data before "start" or
5012 * overlaps to the next one.
5013 */
5014 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5015 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5016 before(TCP_SKB_CB(skb)->seq, start))) {
5017 end_of_skbs = false;
5018 break;
5019 }
5020
5021 if (n && n != tail &&
5022 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5023 end_of_skbs = false;
5024 break;
5025 }
5026
5027 /* Decided to skip this, advance start seq. */
5028 start = TCP_SKB_CB(skb)->end_seq;
5029 }
5030 if (end_of_skbs ||
5031 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5032 return;
5033
5034 __skb_queue_head_init(&tmp);
5035
5036 while (before(start, end)) {
5037 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5038 struct sk_buff *nskb;
5039
5040 nskb = alloc_skb(copy, GFP_ATOMIC);
5041 if (!nskb)
5042 break;
5043
5044 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5045 #ifdef CONFIG_TLS_DEVICE
5046 nskb->decrypted = skb->decrypted;
5047 #endif
5048 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5049 if (list)
5050 __skb_queue_before(list, skb, nskb);
5051 else
5052 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5053 skb_set_owner_r(nskb, sk);
5054
5055 /* Copy data, releasing collapsed skbs. */
5056 while (copy > 0) {
5057 int offset = start - TCP_SKB_CB(skb)->seq;
5058 int size = TCP_SKB_CB(skb)->end_seq - start;
5059
5060 BUG_ON(offset < 0);
5061 if (size > 0) {
5062 size = min(copy, size);
5063 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5064 BUG();
5065 TCP_SKB_CB(nskb)->end_seq += size;
5066 copy -= size;
5067 start += size;
5068 }
5069 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5070 skb = tcp_collapse_one(sk, skb, list, root);
5071 if (!skb ||
5072 skb == tail ||
5073 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5074 goto end;
5075 #ifdef CONFIG_TLS_DEVICE
5076 if (skb->decrypted != nskb->decrypted)
5077 goto end;
5078 #endif
5079 }
5080 }
5081 }
5082 end:
5083 skb_queue_walk_safe(&tmp, skb, n)
5084 tcp_rbtree_insert(root, skb);
5085 }
5086
5087 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5088 * and tcp_collapse() them until all the queue is collapsed.
5089 */
tcp_collapse_ofo_queue(struct sock * sk)5090 static void tcp_collapse_ofo_queue(struct sock *sk)
5091 {
5092 struct tcp_sock *tp = tcp_sk(sk);
5093 u32 range_truesize, sum_tiny = 0;
5094 struct sk_buff *skb, *head;
5095 u32 start, end;
5096
5097 skb = skb_rb_first(&tp->out_of_order_queue);
5098 new_range:
5099 if (!skb) {
5100 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5101 return;
5102 }
5103 start = TCP_SKB_CB(skb)->seq;
5104 end = TCP_SKB_CB(skb)->end_seq;
5105 range_truesize = skb->truesize;
5106
5107 for (head = skb;;) {
5108 skb = skb_rb_next(skb);
5109
5110 /* Range is terminated when we see a gap or when
5111 * we are at the queue end.
5112 */
5113 if (!skb ||
5114 after(TCP_SKB_CB(skb)->seq, end) ||
5115 before(TCP_SKB_CB(skb)->end_seq, start)) {
5116 /* Do not attempt collapsing tiny skbs */
5117 if (range_truesize != head->truesize ||
5118 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5119 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5120 head, skb, start, end);
5121 } else {
5122 sum_tiny += range_truesize;
5123 if (sum_tiny > sk->sk_rcvbuf >> 3)
5124 return;
5125 }
5126 goto new_range;
5127 }
5128
5129 range_truesize += skb->truesize;
5130 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5131 start = TCP_SKB_CB(skb)->seq;
5132 if (after(TCP_SKB_CB(skb)->end_seq, end))
5133 end = TCP_SKB_CB(skb)->end_seq;
5134 }
5135 }
5136
5137 /*
5138 * Clean the out-of-order queue to make room.
5139 * We drop high sequences packets to :
5140 * 1) Let a chance for holes to be filled.
5141 * 2) not add too big latencies if thousands of packets sit there.
5142 * (But if application shrinks SO_RCVBUF, we could still end up
5143 * freeing whole queue here)
5144 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5145 *
5146 * Return true if queue has shrunk.
5147 */
tcp_prune_ofo_queue(struct sock * sk)5148 static bool tcp_prune_ofo_queue(struct sock *sk)
5149 {
5150 struct tcp_sock *tp = tcp_sk(sk);
5151 struct rb_node *node, *prev;
5152 int goal;
5153
5154 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5155 return false;
5156
5157 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5158 goal = sk->sk_rcvbuf >> 3;
5159 node = &tp->ooo_last_skb->rbnode;
5160 do {
5161 prev = rb_prev(node);
5162 rb_erase(node, &tp->out_of_order_queue);
5163 goal -= rb_to_skb(node)->truesize;
5164 tcp_drop(sk, rb_to_skb(node));
5165 if (!prev || goal <= 0) {
5166 sk_mem_reclaim(sk);
5167 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5168 !tcp_under_memory_pressure(sk))
5169 break;
5170 goal = sk->sk_rcvbuf >> 3;
5171 }
5172 node = prev;
5173 } while (node);
5174 tp->ooo_last_skb = rb_to_skb(prev);
5175
5176 /* Reset SACK state. A conforming SACK implementation will
5177 * do the same at a timeout based retransmit. When a connection
5178 * is in a sad state like this, we care only about integrity
5179 * of the connection not performance.
5180 */
5181 if (tp->rx_opt.sack_ok)
5182 tcp_sack_reset(&tp->rx_opt);
5183 return true;
5184 }
5185
5186 /* Reduce allocated memory if we can, trying to get
5187 * the socket within its memory limits again.
5188 *
5189 * Return less than zero if we should start dropping frames
5190 * until the socket owning process reads some of the data
5191 * to stabilize the situation.
5192 */
tcp_prune_queue(struct sock * sk)5193 static int tcp_prune_queue(struct sock *sk)
5194 {
5195 struct tcp_sock *tp = tcp_sk(sk);
5196
5197 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5198
5199 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5200 tcp_clamp_window(sk);
5201 else if (tcp_under_memory_pressure(sk))
5202 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5203
5204 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5205 return 0;
5206
5207 tcp_collapse_ofo_queue(sk);
5208 if (!skb_queue_empty(&sk->sk_receive_queue))
5209 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5210 skb_peek(&sk->sk_receive_queue),
5211 NULL,
5212 tp->copied_seq, tp->rcv_nxt);
5213 sk_mem_reclaim(sk);
5214
5215 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5216 return 0;
5217
5218 /* Collapsing did not help, destructive actions follow.
5219 * This must not ever occur. */
5220
5221 tcp_prune_ofo_queue(sk);
5222
5223 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5224 return 0;
5225
5226 /* If we are really being abused, tell the caller to silently
5227 * drop receive data on the floor. It will get retransmitted
5228 * and hopefully then we'll have sufficient space.
5229 */
5230 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5231
5232 /* Massive buffer overcommit. */
5233 tp->pred_flags = 0;
5234 return -1;
5235 }
5236
tcp_should_expand_sndbuf(const struct sock * sk)5237 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5238 {
5239 const struct tcp_sock *tp = tcp_sk(sk);
5240
5241 /* If the user specified a specific send buffer setting, do
5242 * not modify it.
5243 */
5244 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5245 return false;
5246
5247 /* If we are under global TCP memory pressure, do not expand. */
5248 if (tcp_under_memory_pressure(sk))
5249 return false;
5250
5251 /* If we are under soft global TCP memory pressure, do not expand. */
5252 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5253 return false;
5254
5255 /* If we filled the congestion window, do not expand. */
5256 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5257 return false;
5258
5259 return true;
5260 }
5261
5262 /* When incoming ACK allowed to free some skb from write_queue,
5263 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5264 * on the exit from tcp input handler.
5265 *
5266 * PROBLEM: sndbuf expansion does not work well with largesend.
5267 */
tcp_new_space(struct sock * sk)5268 static void tcp_new_space(struct sock *sk)
5269 {
5270 struct tcp_sock *tp = tcp_sk(sk);
5271
5272 if (tcp_should_expand_sndbuf(sk)) {
5273 tcp_sndbuf_expand(sk);
5274 tp->snd_cwnd_stamp = tcp_jiffies32;
5275 }
5276
5277 sk->sk_write_space(sk);
5278 }
5279
5280 /* Caller made space either from:
5281 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5282 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5283 *
5284 * We might be able to generate EPOLLOUT to the application if:
5285 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5286 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5287 * small enough that tcp_stream_memory_free() decides it
5288 * is time to generate EPOLLOUT.
5289 */
tcp_check_space(struct sock * sk)5290 void tcp_check_space(struct sock *sk)
5291 {
5292 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5293 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5294 /* pairs with tcp_poll() */
5295 smp_mb();
5296 if (sk->sk_socket &&
5297 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5298 tcp_new_space(sk);
5299 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5300 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5301 }
5302 }
5303 }
5304
tcp_data_snd_check(struct sock * sk)5305 static inline void tcp_data_snd_check(struct sock *sk)
5306 {
5307 tcp_push_pending_frames(sk);
5308 tcp_check_space(sk);
5309 }
5310
5311 /*
5312 * Check if sending an ack is needed.
5313 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5314 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5315 {
5316 struct tcp_sock *tp = tcp_sk(sk);
5317 unsigned long rtt, delay;
5318
5319 /* More than one full frame received... */
5320 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5321 /* ... and right edge of window advances far enough.
5322 * (tcp_recvmsg() will send ACK otherwise).
5323 * If application uses SO_RCVLOWAT, we want send ack now if
5324 * we have not received enough bytes to satisfy the condition.
5325 */
5326 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5327 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5328 /* We ACK each frame or... */
5329 tcp_in_quickack_mode(sk) ||
5330 /* Protocol state mandates a one-time immediate ACK */
5331 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5332 send_now:
5333 tcp_send_ack(sk);
5334 return;
5335 }
5336
5337 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5338 tcp_send_delayed_ack(sk);
5339 return;
5340 }
5341
5342 if (!tcp_is_sack(tp) ||
5343 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5344 goto send_now;
5345
5346 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5347 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5348 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5349 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5350 tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5351 tp->compressed_ack = 0;
5352 }
5353
5354 if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5355 goto send_now;
5356
5357 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5358 return;
5359
5360 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5361
5362 rtt = tp->rcv_rtt_est.rtt_us;
5363 if (tp->srtt_us && tp->srtt_us < rtt)
5364 rtt = tp->srtt_us;
5365
5366 delay = min_t(unsigned long,
5367 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5368 rtt * (NSEC_PER_USEC >> 3)/20);
5369 sock_hold(sk);
5370 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5371 HRTIMER_MODE_REL_PINNED_SOFT);
5372 }
5373
tcp_ack_snd_check(struct sock * sk)5374 static inline void tcp_ack_snd_check(struct sock *sk)
5375 {
5376 if (!inet_csk_ack_scheduled(sk)) {
5377 /* We sent a data segment already. */
5378 return;
5379 }
5380 __tcp_ack_snd_check(sk, 1);
5381 }
5382
5383 /*
5384 * This routine is only called when we have urgent data
5385 * signaled. Its the 'slow' part of tcp_urg. It could be
5386 * moved inline now as tcp_urg is only called from one
5387 * place. We handle URGent data wrong. We have to - as
5388 * BSD still doesn't use the correction from RFC961.
5389 * For 1003.1g we should support a new option TCP_STDURG to permit
5390 * either form (or just set the sysctl tcp_stdurg).
5391 */
5392
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5393 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5394 {
5395 struct tcp_sock *tp = tcp_sk(sk);
5396 u32 ptr = ntohs(th->urg_ptr);
5397
5398 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5399 ptr--;
5400 ptr += ntohl(th->seq);
5401
5402 /* Ignore urgent data that we've already seen and read. */
5403 if (after(tp->copied_seq, ptr))
5404 return;
5405
5406 /* Do not replay urg ptr.
5407 *
5408 * NOTE: interesting situation not covered by specs.
5409 * Misbehaving sender may send urg ptr, pointing to segment,
5410 * which we already have in ofo queue. We are not able to fetch
5411 * such data and will stay in TCP_URG_NOTYET until will be eaten
5412 * by recvmsg(). Seems, we are not obliged to handle such wicked
5413 * situations. But it is worth to think about possibility of some
5414 * DoSes using some hypothetical application level deadlock.
5415 */
5416 if (before(ptr, tp->rcv_nxt))
5417 return;
5418
5419 /* Do we already have a newer (or duplicate) urgent pointer? */
5420 if (tp->urg_data && !after(ptr, tp->urg_seq))
5421 return;
5422
5423 /* Tell the world about our new urgent pointer. */
5424 sk_send_sigurg(sk);
5425
5426 /* We may be adding urgent data when the last byte read was
5427 * urgent. To do this requires some care. We cannot just ignore
5428 * tp->copied_seq since we would read the last urgent byte again
5429 * as data, nor can we alter copied_seq until this data arrives
5430 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5431 *
5432 * NOTE. Double Dutch. Rendering to plain English: author of comment
5433 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5434 * and expect that both A and B disappear from stream. This is _wrong_.
5435 * Though this happens in BSD with high probability, this is occasional.
5436 * Any application relying on this is buggy. Note also, that fix "works"
5437 * only in this artificial test. Insert some normal data between A and B and we will
5438 * decline of BSD again. Verdict: it is better to remove to trap
5439 * buggy users.
5440 */
5441 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5442 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5443 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5444 tp->copied_seq++;
5445 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5446 __skb_unlink(skb, &sk->sk_receive_queue);
5447 __kfree_skb(skb);
5448 }
5449 }
5450
5451 tp->urg_data = TCP_URG_NOTYET;
5452 WRITE_ONCE(tp->urg_seq, ptr);
5453
5454 /* Disable header prediction. */
5455 tp->pred_flags = 0;
5456 }
5457
5458 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5459 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5460 {
5461 struct tcp_sock *tp = tcp_sk(sk);
5462
5463 /* Check if we get a new urgent pointer - normally not. */
5464 if (th->urg)
5465 tcp_check_urg(sk, th);
5466
5467 /* Do we wait for any urgent data? - normally not... */
5468 if (tp->urg_data == TCP_URG_NOTYET) {
5469 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5470 th->syn;
5471
5472 /* Is the urgent pointer pointing into this packet? */
5473 if (ptr < skb->len) {
5474 u8 tmp;
5475 if (skb_copy_bits(skb, ptr, &tmp, 1))
5476 BUG();
5477 tp->urg_data = TCP_URG_VALID | tmp;
5478 if (!sock_flag(sk, SOCK_DEAD))
5479 sk->sk_data_ready(sk);
5480 }
5481 }
5482 }
5483
5484 /* Accept RST for rcv_nxt - 1 after a FIN.
5485 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5486 * FIN is sent followed by a RST packet. The RST is sent with the same
5487 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5488 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5489 * ACKs on the closed socket. In addition middleboxes can drop either the
5490 * challenge ACK or a subsequent RST.
5491 */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5492 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5493 {
5494 struct tcp_sock *tp = tcp_sk(sk);
5495
5496 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5497 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5498 TCPF_CLOSING));
5499 }
5500
5501 /* Does PAWS and seqno based validation of an incoming segment, flags will
5502 * play significant role here.
5503 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5504 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5505 const struct tcphdr *th, int syn_inerr)
5506 {
5507 struct tcp_sock *tp = tcp_sk(sk);
5508 bool rst_seq_match = false;
5509
5510 /* RFC1323: H1. Apply PAWS check first. */
5511 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5512 tp->rx_opt.saw_tstamp &&
5513 tcp_paws_discard(sk, skb)) {
5514 if (!th->rst) {
5515 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5516 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5517 LINUX_MIB_TCPACKSKIPPEDPAWS,
5518 &tp->last_oow_ack_time))
5519 tcp_send_dupack(sk, skb);
5520 goto discard;
5521 }
5522 /* Reset is accepted even if it did not pass PAWS. */
5523 }
5524
5525 /* Step 1: check sequence number */
5526 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5527 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5528 * (RST) segments are validated by checking their SEQ-fields."
5529 * And page 69: "If an incoming segment is not acceptable,
5530 * an acknowledgment should be sent in reply (unless the RST
5531 * bit is set, if so drop the segment and return)".
5532 */
5533 if (!th->rst) {
5534 if (th->syn)
5535 goto syn_challenge;
5536 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5537 LINUX_MIB_TCPACKSKIPPEDSEQ,
5538 &tp->last_oow_ack_time))
5539 tcp_send_dupack(sk, skb);
5540 } else if (tcp_reset_check(sk, skb)) {
5541 tcp_reset(sk);
5542 }
5543 goto discard;
5544 }
5545
5546 /* Step 2: check RST bit */
5547 if (th->rst) {
5548 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5549 * FIN and SACK too if available):
5550 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5551 * the right-most SACK block,
5552 * then
5553 * RESET the connection
5554 * else
5555 * Send a challenge ACK
5556 */
5557 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5558 tcp_reset_check(sk, skb)) {
5559 rst_seq_match = true;
5560 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5561 struct tcp_sack_block *sp = &tp->selective_acks[0];
5562 int max_sack = sp[0].end_seq;
5563 int this_sack;
5564
5565 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5566 ++this_sack) {
5567 max_sack = after(sp[this_sack].end_seq,
5568 max_sack) ?
5569 sp[this_sack].end_seq : max_sack;
5570 }
5571
5572 if (TCP_SKB_CB(skb)->seq == max_sack)
5573 rst_seq_match = true;
5574 }
5575
5576 if (rst_seq_match)
5577 tcp_reset(sk);
5578 else {
5579 /* Disable TFO if RST is out-of-order
5580 * and no data has been received
5581 * for current active TFO socket
5582 */
5583 if (tp->syn_fastopen && !tp->data_segs_in &&
5584 sk->sk_state == TCP_ESTABLISHED)
5585 tcp_fastopen_active_disable(sk);
5586 tcp_send_challenge_ack(sk, skb);
5587 }
5588 goto discard;
5589 }
5590
5591 /* step 3: check security and precedence [ignored] */
5592
5593 /* step 4: Check for a SYN
5594 * RFC 5961 4.2 : Send a challenge ack
5595 */
5596 if (th->syn) {
5597 syn_challenge:
5598 if (syn_inerr)
5599 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5600 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5601 tcp_send_challenge_ack(sk, skb);
5602 goto discard;
5603 }
5604
5605 return true;
5606
5607 discard:
5608 tcp_drop(sk, skb);
5609 return false;
5610 }
5611
5612 /*
5613 * TCP receive function for the ESTABLISHED state.
5614 *
5615 * It is split into a fast path and a slow path. The fast path is
5616 * disabled when:
5617 * - A zero window was announced from us - zero window probing
5618 * is only handled properly in the slow path.
5619 * - Out of order segments arrived.
5620 * - Urgent data is expected.
5621 * - There is no buffer space left
5622 * - Unexpected TCP flags/window values/header lengths are received
5623 * (detected by checking the TCP header against pred_flags)
5624 * - Data is sent in both directions. Fast path only supports pure senders
5625 * or pure receivers (this means either the sequence number or the ack
5626 * value must stay constant)
5627 * - Unexpected TCP option.
5628 *
5629 * When these conditions are not satisfied it drops into a standard
5630 * receive procedure patterned after RFC793 to handle all cases.
5631 * The first three cases are guaranteed by proper pred_flags setting,
5632 * the rest is checked inline. Fast processing is turned on in
5633 * tcp_data_queue when everything is OK.
5634 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5635 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5636 {
5637 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5638 struct tcp_sock *tp = tcp_sk(sk);
5639 unsigned int len = skb->len;
5640
5641 /* TCP congestion window tracking */
5642 trace_tcp_probe(sk, skb);
5643
5644 tcp_mstamp_refresh(tp);
5645 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5646 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5647 /*
5648 * Header prediction.
5649 * The code loosely follows the one in the famous
5650 * "30 instruction TCP receive" Van Jacobson mail.
5651 *
5652 * Van's trick is to deposit buffers into socket queue
5653 * on a device interrupt, to call tcp_recv function
5654 * on the receive process context and checksum and copy
5655 * the buffer to user space. smart...
5656 *
5657 * Our current scheme is not silly either but we take the
5658 * extra cost of the net_bh soft interrupt processing...
5659 * We do checksum and copy also but from device to kernel.
5660 */
5661
5662 tp->rx_opt.saw_tstamp = 0;
5663
5664 /* pred_flags is 0xS?10 << 16 + snd_wnd
5665 * if header_prediction is to be made
5666 * 'S' will always be tp->tcp_header_len >> 2
5667 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5668 * turn it off (when there are holes in the receive
5669 * space for instance)
5670 * PSH flag is ignored.
5671 */
5672
5673 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5674 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5675 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5676 int tcp_header_len = tp->tcp_header_len;
5677
5678 /* Timestamp header prediction: tcp_header_len
5679 * is automatically equal to th->doff*4 due to pred_flags
5680 * match.
5681 */
5682
5683 /* Check timestamp */
5684 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5685 /* No? Slow path! */
5686 if (!tcp_parse_aligned_timestamp(tp, th))
5687 goto slow_path;
5688
5689 /* If PAWS failed, check it more carefully in slow path */
5690 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5691 goto slow_path;
5692
5693 /* DO NOT update ts_recent here, if checksum fails
5694 * and timestamp was corrupted part, it will result
5695 * in a hung connection since we will drop all
5696 * future packets due to the PAWS test.
5697 */
5698 }
5699
5700 if (len <= tcp_header_len) {
5701 /* Bulk data transfer: sender */
5702 if (len == tcp_header_len) {
5703 /* Predicted packet is in window by definition.
5704 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5705 * Hence, check seq<=rcv_wup reduces to:
5706 */
5707 if (tcp_header_len ==
5708 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5709 tp->rcv_nxt == tp->rcv_wup)
5710 tcp_store_ts_recent(tp);
5711
5712 /* We know that such packets are checksummed
5713 * on entry.
5714 */
5715 tcp_ack(sk, skb, 0);
5716 __kfree_skb(skb);
5717 tcp_data_snd_check(sk);
5718 /* When receiving pure ack in fast path, update
5719 * last ts ecr directly instead of calling
5720 * tcp_rcv_rtt_measure_ts()
5721 */
5722 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5723 return;
5724 } else { /* Header too small */
5725 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5726 goto discard;
5727 }
5728 } else {
5729 int eaten = 0;
5730 bool fragstolen = false;
5731
5732 if (tcp_checksum_complete(skb))
5733 goto csum_error;
5734
5735 if ((int)skb->truesize > sk->sk_forward_alloc)
5736 goto step5;
5737
5738 /* Predicted packet is in window by definition.
5739 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5740 * Hence, check seq<=rcv_wup reduces to:
5741 */
5742 if (tcp_header_len ==
5743 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5744 tp->rcv_nxt == tp->rcv_wup)
5745 tcp_store_ts_recent(tp);
5746
5747 tcp_rcv_rtt_measure_ts(sk, skb);
5748
5749 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5750
5751 /* Bulk data transfer: receiver */
5752 __skb_pull(skb, tcp_header_len);
5753 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5754
5755 tcp_event_data_recv(sk, skb);
5756
5757 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5758 /* Well, only one small jumplet in fast path... */
5759 tcp_ack(sk, skb, FLAG_DATA);
5760 tcp_data_snd_check(sk);
5761 if (!inet_csk_ack_scheduled(sk))
5762 goto no_ack;
5763 } else {
5764 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5765 }
5766
5767 __tcp_ack_snd_check(sk, 0);
5768 no_ack:
5769 if (eaten)
5770 kfree_skb_partial(skb, fragstolen);
5771 tcp_data_ready(sk);
5772 return;
5773 }
5774 }
5775
5776 slow_path:
5777 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5778 goto csum_error;
5779
5780 if (!th->ack && !th->rst && !th->syn)
5781 goto discard;
5782
5783 /*
5784 * Standard slow path.
5785 */
5786
5787 if (!tcp_validate_incoming(sk, skb, th, 1))
5788 return;
5789
5790 step5:
5791 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5792 goto discard;
5793
5794 tcp_rcv_rtt_measure_ts(sk, skb);
5795
5796 /* Process urgent data. */
5797 tcp_urg(sk, skb, th);
5798
5799 /* step 7: process the segment text */
5800 tcp_data_queue(sk, skb);
5801
5802 tcp_data_snd_check(sk);
5803 tcp_ack_snd_check(sk);
5804 return;
5805
5806 csum_error:
5807 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5808 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5809
5810 discard:
5811 tcp_drop(sk, skb);
5812 }
5813 EXPORT_SYMBOL(tcp_rcv_established);
5814
tcp_init_transfer(struct sock * sk,int bpf_op)5815 void tcp_init_transfer(struct sock *sk, int bpf_op)
5816 {
5817 struct inet_connection_sock *icsk = inet_csk(sk);
5818 struct tcp_sock *tp = tcp_sk(sk);
5819
5820 tcp_mtup_init(sk);
5821 icsk->icsk_af_ops->rebuild_header(sk);
5822 tcp_init_metrics(sk);
5823
5824 /* Initialize the congestion window to start the transfer.
5825 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5826 * retransmitted. In light of RFC6298 more aggressive 1sec
5827 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5828 * retransmission has occurred.
5829 */
5830 if (tp->total_retrans > 1 && tp->undo_marker)
5831 tp->snd_cwnd = 1;
5832 else
5833 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5834 tp->snd_cwnd_stamp = tcp_jiffies32;
5835
5836 tcp_call_bpf(sk, bpf_op, 0, NULL);
5837 tcp_init_congestion_control(sk);
5838 tcp_init_buffer_space(sk);
5839 }
5840
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)5841 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5842 {
5843 struct tcp_sock *tp = tcp_sk(sk);
5844 struct inet_connection_sock *icsk = inet_csk(sk);
5845
5846 tcp_set_state(sk, TCP_ESTABLISHED);
5847 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5848
5849 if (skb) {
5850 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5851 security_inet_conn_established(sk, skb);
5852 sk_mark_napi_id(sk, skb);
5853 }
5854
5855 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5856
5857 /* Prevent spurious tcp_cwnd_restart() on first data
5858 * packet.
5859 */
5860 tp->lsndtime = tcp_jiffies32;
5861
5862 if (sock_flag(sk, SOCK_KEEPOPEN))
5863 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5864
5865 if (!tp->rx_opt.snd_wscale)
5866 __tcp_fast_path_on(tp, tp->snd_wnd);
5867 else
5868 tp->pred_flags = 0;
5869 }
5870
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)5871 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5872 struct tcp_fastopen_cookie *cookie)
5873 {
5874 struct tcp_sock *tp = tcp_sk(sk);
5875 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5876 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5877 bool syn_drop = false;
5878
5879 if (mss == tp->rx_opt.user_mss) {
5880 struct tcp_options_received opt;
5881
5882 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5883 tcp_clear_options(&opt);
5884 opt.user_mss = opt.mss_clamp = 0;
5885 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5886 mss = opt.mss_clamp;
5887 }
5888
5889 if (!tp->syn_fastopen) {
5890 /* Ignore an unsolicited cookie */
5891 cookie->len = -1;
5892 } else if (tp->total_retrans) {
5893 /* SYN timed out and the SYN-ACK neither has a cookie nor
5894 * acknowledges data. Presumably the remote received only
5895 * the retransmitted (regular) SYNs: either the original
5896 * SYN-data or the corresponding SYN-ACK was dropped.
5897 */
5898 syn_drop = (cookie->len < 0 && data);
5899 } else if (cookie->len < 0 && !tp->syn_data) {
5900 /* We requested a cookie but didn't get it. If we did not use
5901 * the (old) exp opt format then try so next time (try_exp=1).
5902 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5903 */
5904 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5905 }
5906
5907 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5908
5909 if (data) { /* Retransmit unacked data in SYN */
5910 skb_rbtree_walk_from(data) {
5911 if (__tcp_retransmit_skb(sk, data, 1))
5912 break;
5913 }
5914 tcp_rearm_rto(sk);
5915 NET_INC_STATS(sock_net(sk),
5916 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5917 return true;
5918 }
5919 tp->syn_data_acked = tp->syn_data;
5920 if (tp->syn_data_acked) {
5921 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5922 /* SYN-data is counted as two separate packets in tcp_ack() */
5923 if (tp->delivered > 1)
5924 --tp->delivered;
5925 }
5926
5927 tcp_fastopen_add_skb(sk, synack);
5928
5929 return false;
5930 }
5931
smc_check_reset_syn(struct tcp_sock * tp)5932 static void smc_check_reset_syn(struct tcp_sock *tp)
5933 {
5934 #if IS_ENABLED(CONFIG_SMC)
5935 if (static_branch_unlikely(&tcp_have_smc)) {
5936 if (tp->syn_smc && !tp->rx_opt.smc_ok)
5937 tp->syn_smc = 0;
5938 }
5939 #endif
5940 }
5941
tcp_try_undo_spurious_syn(struct sock * sk)5942 static void tcp_try_undo_spurious_syn(struct sock *sk)
5943 {
5944 struct tcp_sock *tp = tcp_sk(sk);
5945 u32 syn_stamp;
5946
5947 /* undo_marker is set when SYN or SYNACK times out. The timeout is
5948 * spurious if the ACK's timestamp option echo value matches the
5949 * original SYN timestamp.
5950 */
5951 syn_stamp = tp->retrans_stamp;
5952 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5953 syn_stamp == tp->rx_opt.rcv_tsecr)
5954 tp->undo_marker = 0;
5955 }
5956
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5957 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5958 const struct tcphdr *th)
5959 {
5960 struct inet_connection_sock *icsk = inet_csk(sk);
5961 struct tcp_sock *tp = tcp_sk(sk);
5962 struct tcp_fastopen_cookie foc = { .len = -1 };
5963 int saved_clamp = tp->rx_opt.mss_clamp;
5964 bool fastopen_fail;
5965
5966 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5967 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5968 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5969
5970 if (th->ack) {
5971 /* rfc793:
5972 * "If the state is SYN-SENT then
5973 * first check the ACK bit
5974 * If the ACK bit is set
5975 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5976 * a reset (unless the RST bit is set, if so drop
5977 * the segment and return)"
5978 */
5979 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5980 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5981 goto reset_and_undo;
5982
5983 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5984 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5985 tcp_time_stamp(tp))) {
5986 NET_INC_STATS(sock_net(sk),
5987 LINUX_MIB_PAWSACTIVEREJECTED);
5988 goto reset_and_undo;
5989 }
5990
5991 /* Now ACK is acceptable.
5992 *
5993 * "If the RST bit is set
5994 * If the ACK was acceptable then signal the user "error:
5995 * connection reset", drop the segment, enter CLOSED state,
5996 * delete TCB, and return."
5997 */
5998
5999 if (th->rst) {
6000 tcp_reset(sk);
6001 goto discard;
6002 }
6003
6004 /* rfc793:
6005 * "fifth, if neither of the SYN or RST bits is set then
6006 * drop the segment and return."
6007 *
6008 * See note below!
6009 * --ANK(990513)
6010 */
6011 if (!th->syn)
6012 goto discard_and_undo;
6013
6014 /* rfc793:
6015 * "If the SYN bit is on ...
6016 * are acceptable then ...
6017 * (our SYN has been ACKed), change the connection
6018 * state to ESTABLISHED..."
6019 */
6020
6021 tcp_ecn_rcv_synack(tp, th);
6022
6023 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6024 tcp_try_undo_spurious_syn(sk);
6025 tcp_ack(sk, skb, FLAG_SLOWPATH);
6026
6027 /* Ok.. it's good. Set up sequence numbers and
6028 * move to established.
6029 */
6030 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6031 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6032
6033 /* RFC1323: The window in SYN & SYN/ACK segments is
6034 * never scaled.
6035 */
6036 tp->snd_wnd = ntohs(th->window);
6037
6038 if (!tp->rx_opt.wscale_ok) {
6039 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6040 tp->window_clamp = min(tp->window_clamp, 65535U);
6041 }
6042
6043 if (tp->rx_opt.saw_tstamp) {
6044 tp->rx_opt.tstamp_ok = 1;
6045 tp->tcp_header_len =
6046 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6047 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6048 tcp_store_ts_recent(tp);
6049 } else {
6050 tp->tcp_header_len = sizeof(struct tcphdr);
6051 }
6052
6053 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6054 tcp_initialize_rcv_mss(sk);
6055
6056 /* Remember, tcp_poll() does not lock socket!
6057 * Change state from SYN-SENT only after copied_seq
6058 * is initialized. */
6059 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6060
6061 smc_check_reset_syn(tp);
6062
6063 smp_mb();
6064
6065 tcp_finish_connect(sk, skb);
6066
6067 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6068 tcp_rcv_fastopen_synack(sk, skb, &foc);
6069
6070 if (!sock_flag(sk, SOCK_DEAD)) {
6071 sk->sk_state_change(sk);
6072 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6073 }
6074 if (fastopen_fail)
6075 return -1;
6076 if (sk->sk_write_pending ||
6077 icsk->icsk_accept_queue.rskq_defer_accept ||
6078 inet_csk_in_pingpong_mode(sk)) {
6079 /* Save one ACK. Data will be ready after
6080 * several ticks, if write_pending is set.
6081 *
6082 * It may be deleted, but with this feature tcpdumps
6083 * look so _wonderfully_ clever, that I was not able
6084 * to stand against the temptation 8) --ANK
6085 */
6086 inet_csk_schedule_ack(sk);
6087 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6088 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6089 TCP_DELACK_MAX, TCP_RTO_MAX);
6090
6091 discard:
6092 tcp_drop(sk, skb);
6093 return 0;
6094 } else {
6095 tcp_send_ack(sk);
6096 }
6097 return -1;
6098 }
6099
6100 /* No ACK in the segment */
6101
6102 if (th->rst) {
6103 /* rfc793:
6104 * "If the RST bit is set
6105 *
6106 * Otherwise (no ACK) drop the segment and return."
6107 */
6108
6109 goto discard_and_undo;
6110 }
6111
6112 /* PAWS check. */
6113 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6114 tcp_paws_reject(&tp->rx_opt, 0))
6115 goto discard_and_undo;
6116
6117 if (th->syn) {
6118 /* We see SYN without ACK. It is attempt of
6119 * simultaneous connect with crossed SYNs.
6120 * Particularly, it can be connect to self.
6121 */
6122 tcp_set_state(sk, TCP_SYN_RECV);
6123
6124 if (tp->rx_opt.saw_tstamp) {
6125 tp->rx_opt.tstamp_ok = 1;
6126 tcp_store_ts_recent(tp);
6127 tp->tcp_header_len =
6128 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6129 } else {
6130 tp->tcp_header_len = sizeof(struct tcphdr);
6131 }
6132
6133 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6134 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6135 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6136
6137 /* RFC1323: The window in SYN & SYN/ACK segments is
6138 * never scaled.
6139 */
6140 tp->snd_wnd = ntohs(th->window);
6141 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6142 tp->max_window = tp->snd_wnd;
6143
6144 tcp_ecn_rcv_syn(tp, th);
6145
6146 tcp_mtup_init(sk);
6147 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6148 tcp_initialize_rcv_mss(sk);
6149
6150 tcp_send_synack(sk);
6151 #if 0
6152 /* Note, we could accept data and URG from this segment.
6153 * There are no obstacles to make this (except that we must
6154 * either change tcp_recvmsg() to prevent it from returning data
6155 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6156 *
6157 * However, if we ignore data in ACKless segments sometimes,
6158 * we have no reasons to accept it sometimes.
6159 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6160 * is not flawless. So, discard packet for sanity.
6161 * Uncomment this return to process the data.
6162 */
6163 return -1;
6164 #else
6165 goto discard;
6166 #endif
6167 }
6168 /* "fifth, if neither of the SYN or RST bits is set then
6169 * drop the segment and return."
6170 */
6171
6172 discard_and_undo:
6173 tcp_clear_options(&tp->rx_opt);
6174 tp->rx_opt.mss_clamp = saved_clamp;
6175 goto discard;
6176
6177 reset_and_undo:
6178 tcp_clear_options(&tp->rx_opt);
6179 tp->rx_opt.mss_clamp = saved_clamp;
6180 return 1;
6181 }
6182
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6183 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6184 {
6185 struct tcp_sock *tp = tcp_sk(sk);
6186 struct request_sock *req;
6187
6188 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6189 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6190 */
6191 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6192 tcp_try_undo_recovery(sk);
6193
6194 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6195 tp->retrans_stamp = 0;
6196 inet_csk(sk)->icsk_retransmits = 0;
6197
6198 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6199 * we no longer need req so release it.
6200 */
6201 req = rcu_dereference_protected(tp->fastopen_rsk,
6202 lockdep_sock_is_held(sk));
6203 reqsk_fastopen_remove(sk, req, false);
6204
6205 /* Re-arm the timer because data may have been sent out.
6206 * This is similar to the regular data transmission case
6207 * when new data has just been ack'ed.
6208 *
6209 * (TFO) - we could try to be more aggressive and
6210 * retransmitting any data sooner based on when they
6211 * are sent out.
6212 */
6213 tcp_rearm_rto(sk);
6214 }
6215
6216 /*
6217 * This function implements the receiving procedure of RFC 793 for
6218 * all states except ESTABLISHED and TIME_WAIT.
6219 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6220 * address independent.
6221 */
6222
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6223 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6224 {
6225 struct tcp_sock *tp = tcp_sk(sk);
6226 struct inet_connection_sock *icsk = inet_csk(sk);
6227 const struct tcphdr *th = tcp_hdr(skb);
6228 struct request_sock *req;
6229 int queued = 0;
6230 bool acceptable;
6231
6232 switch (sk->sk_state) {
6233 case TCP_CLOSE:
6234 goto discard;
6235
6236 case TCP_LISTEN:
6237 if (th->ack)
6238 return 1;
6239
6240 if (th->rst)
6241 goto discard;
6242
6243 if (th->syn) {
6244 if (th->fin)
6245 goto discard;
6246 /* It is possible that we process SYN packets from backlog,
6247 * so we need to make sure to disable BH and RCU right there.
6248 */
6249 rcu_read_lock();
6250 local_bh_disable();
6251 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6252 local_bh_enable();
6253 rcu_read_unlock();
6254
6255 if (!acceptable)
6256 return 1;
6257 consume_skb(skb);
6258 return 0;
6259 }
6260 goto discard;
6261
6262 case TCP_SYN_SENT:
6263 tp->rx_opt.saw_tstamp = 0;
6264 tcp_mstamp_refresh(tp);
6265 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6266 if (queued >= 0)
6267 return queued;
6268
6269 /* Do step6 onward by hand. */
6270 tcp_urg(sk, skb, th);
6271 __kfree_skb(skb);
6272 tcp_data_snd_check(sk);
6273 return 0;
6274 }
6275
6276 tcp_mstamp_refresh(tp);
6277 tp->rx_opt.saw_tstamp = 0;
6278 req = rcu_dereference_protected(tp->fastopen_rsk,
6279 lockdep_sock_is_held(sk));
6280 if (req) {
6281 bool req_stolen;
6282
6283 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6284 sk->sk_state != TCP_FIN_WAIT1);
6285
6286 if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6287 goto discard;
6288 }
6289
6290 if (!th->ack && !th->rst && !th->syn)
6291 goto discard;
6292
6293 if (!tcp_validate_incoming(sk, skb, th, 0))
6294 return 0;
6295
6296 /* step 5: check the ACK field */
6297 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6298 FLAG_UPDATE_TS_RECENT |
6299 FLAG_NO_CHALLENGE_ACK) > 0;
6300
6301 if (!acceptable) {
6302 if (sk->sk_state == TCP_SYN_RECV)
6303 return 1; /* send one RST */
6304 tcp_send_challenge_ack(sk, skb);
6305 goto discard;
6306 }
6307 switch (sk->sk_state) {
6308 case TCP_SYN_RECV:
6309 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6310 if (!tp->srtt_us)
6311 tcp_synack_rtt_meas(sk, req);
6312
6313 if (req) {
6314 tcp_rcv_synrecv_state_fastopen(sk);
6315 } else {
6316 tcp_try_undo_spurious_syn(sk);
6317 tp->retrans_stamp = 0;
6318 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6319 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6320 }
6321 smp_mb();
6322 tcp_set_state(sk, TCP_ESTABLISHED);
6323 sk->sk_state_change(sk);
6324
6325 /* Note, that this wakeup is only for marginal crossed SYN case.
6326 * Passively open sockets are not waked up, because
6327 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6328 */
6329 if (sk->sk_socket)
6330 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6331
6332 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6333 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6334 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6335
6336 if (tp->rx_opt.tstamp_ok)
6337 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6338
6339 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6340 tcp_update_pacing_rate(sk);
6341
6342 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6343 tp->lsndtime = tcp_jiffies32;
6344
6345 tcp_initialize_rcv_mss(sk);
6346 tcp_fast_path_on(tp);
6347 break;
6348
6349 case TCP_FIN_WAIT1: {
6350 int tmo;
6351
6352 if (req)
6353 tcp_rcv_synrecv_state_fastopen(sk);
6354
6355 if (tp->snd_una != tp->write_seq)
6356 break;
6357
6358 tcp_set_state(sk, TCP_FIN_WAIT2);
6359 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6360
6361 sk_dst_confirm(sk);
6362
6363 if (!sock_flag(sk, SOCK_DEAD)) {
6364 /* Wake up lingering close() */
6365 sk->sk_state_change(sk);
6366 break;
6367 }
6368
6369 if (tp->linger2 < 0) {
6370 tcp_done(sk);
6371 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6372 return 1;
6373 }
6374 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6375 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6376 /* Receive out of order FIN after close() */
6377 if (tp->syn_fastopen && th->fin)
6378 tcp_fastopen_active_disable(sk);
6379 tcp_done(sk);
6380 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6381 return 1;
6382 }
6383
6384 tmo = tcp_fin_time(sk);
6385 if (tmo > TCP_TIMEWAIT_LEN) {
6386 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6387 } else if (th->fin || sock_owned_by_user(sk)) {
6388 /* Bad case. We could lose such FIN otherwise.
6389 * It is not a big problem, but it looks confusing
6390 * and not so rare event. We still can lose it now,
6391 * if it spins in bh_lock_sock(), but it is really
6392 * marginal case.
6393 */
6394 inet_csk_reset_keepalive_timer(sk, tmo);
6395 } else {
6396 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6397 goto discard;
6398 }
6399 break;
6400 }
6401
6402 case TCP_CLOSING:
6403 if (tp->snd_una == tp->write_seq) {
6404 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6405 goto discard;
6406 }
6407 break;
6408
6409 case TCP_LAST_ACK:
6410 if (tp->snd_una == tp->write_seq) {
6411 tcp_update_metrics(sk);
6412 tcp_done(sk);
6413 goto discard;
6414 }
6415 break;
6416 }
6417
6418 /* step 6: check the URG bit */
6419 tcp_urg(sk, skb, th);
6420
6421 /* step 7: process the segment text */
6422 switch (sk->sk_state) {
6423 case TCP_CLOSE_WAIT:
6424 case TCP_CLOSING:
6425 case TCP_LAST_ACK:
6426 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6427 break;
6428 /* fall through */
6429 case TCP_FIN_WAIT1:
6430 case TCP_FIN_WAIT2:
6431 /* RFC 793 says to queue data in these states,
6432 * RFC 1122 says we MUST send a reset.
6433 * BSD 4.4 also does reset.
6434 */
6435 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6436 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6437 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6438 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6439 tcp_reset(sk);
6440 return 1;
6441 }
6442 }
6443 /* Fall through */
6444 case TCP_ESTABLISHED:
6445 tcp_data_queue(sk, skb);
6446 queued = 1;
6447 break;
6448 }
6449
6450 /* tcp_data could move socket to TIME-WAIT */
6451 if (sk->sk_state != TCP_CLOSE) {
6452 tcp_data_snd_check(sk);
6453 tcp_ack_snd_check(sk);
6454 }
6455
6456 if (!queued) {
6457 discard:
6458 tcp_drop(sk, skb);
6459 }
6460 return 0;
6461 }
6462 EXPORT_SYMBOL(tcp_rcv_state_process);
6463
pr_drop_req(struct request_sock * req,__u16 port,int family)6464 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6465 {
6466 struct inet_request_sock *ireq = inet_rsk(req);
6467
6468 if (family == AF_INET)
6469 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6470 &ireq->ir_rmt_addr, port);
6471 #if IS_ENABLED(CONFIG_IPV6)
6472 else if (family == AF_INET6)
6473 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6474 &ireq->ir_v6_rmt_addr, port);
6475 #endif
6476 }
6477
6478 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6479 *
6480 * If we receive a SYN packet with these bits set, it means a
6481 * network is playing bad games with TOS bits. In order to
6482 * avoid possible false congestion notifications, we disable
6483 * TCP ECN negotiation.
6484 *
6485 * Exception: tcp_ca wants ECN. This is required for DCTCP
6486 * congestion control: Linux DCTCP asserts ECT on all packets,
6487 * including SYN, which is most optimal solution; however,
6488 * others, such as FreeBSD do not.
6489 *
6490 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6491 * set, indicating the use of a future TCP extension (such as AccECN). See
6492 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6493 * extensions.
6494 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6495 static void tcp_ecn_create_request(struct request_sock *req,
6496 const struct sk_buff *skb,
6497 const struct sock *listen_sk,
6498 const struct dst_entry *dst)
6499 {
6500 const struct tcphdr *th = tcp_hdr(skb);
6501 const struct net *net = sock_net(listen_sk);
6502 bool th_ecn = th->ece && th->cwr;
6503 bool ect, ecn_ok;
6504 u32 ecn_ok_dst;
6505
6506 if (!th_ecn)
6507 return;
6508
6509 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6510 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6511 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6512
6513 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6514 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6515 tcp_bpf_ca_needs_ecn((struct sock *)req))
6516 inet_rsk(req)->ecn_ok = 1;
6517 }
6518
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6519 static void tcp_openreq_init(struct request_sock *req,
6520 const struct tcp_options_received *rx_opt,
6521 struct sk_buff *skb, const struct sock *sk)
6522 {
6523 struct inet_request_sock *ireq = inet_rsk(req);
6524
6525 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6526 req->cookie_ts = 0;
6527 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6528 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6529 tcp_rsk(req)->snt_synack = 0;
6530 tcp_rsk(req)->last_oow_ack_time = 0;
6531 req->mss = rx_opt->mss_clamp;
6532 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6533 ireq->tstamp_ok = rx_opt->tstamp_ok;
6534 ireq->sack_ok = rx_opt->sack_ok;
6535 ireq->snd_wscale = rx_opt->snd_wscale;
6536 ireq->wscale_ok = rx_opt->wscale_ok;
6537 ireq->acked = 0;
6538 ireq->ecn_ok = 0;
6539 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6540 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6541 ireq->ir_mark = inet_request_mark(sk, skb);
6542 #if IS_ENABLED(CONFIG_SMC)
6543 ireq->smc_ok = rx_opt->smc_ok;
6544 #endif
6545 }
6546
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6547 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6548 struct sock *sk_listener,
6549 bool attach_listener)
6550 {
6551 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6552 attach_listener);
6553
6554 if (req) {
6555 struct inet_request_sock *ireq = inet_rsk(req);
6556
6557 ireq->ireq_opt = NULL;
6558 #if IS_ENABLED(CONFIG_IPV6)
6559 ireq->pktopts = NULL;
6560 #endif
6561 atomic64_set(&ireq->ir_cookie, 0);
6562 ireq->ireq_state = TCP_NEW_SYN_RECV;
6563 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6564 ireq->ireq_family = sk_listener->sk_family;
6565 }
6566
6567 return req;
6568 }
6569 EXPORT_SYMBOL(inet_reqsk_alloc);
6570
6571 /*
6572 * Return true if a syncookie should be sent
6573 */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6574 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6575 {
6576 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6577 const char *msg = "Dropping request";
6578 struct net *net = sock_net(sk);
6579 bool want_cookie = false;
6580 u8 syncookies;
6581
6582 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6583
6584 #ifdef CONFIG_SYN_COOKIES
6585 if (syncookies) {
6586 msg = "Sending cookies";
6587 want_cookie = true;
6588 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6589 } else
6590 #endif
6591 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6592
6593 if (!queue->synflood_warned && syncookies != 2 &&
6594 xchg(&queue->synflood_warned, 1) == 0)
6595 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6596 proto, sk->sk_num, msg);
6597
6598 return want_cookie;
6599 }
6600
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6601 static void tcp_reqsk_record_syn(const struct sock *sk,
6602 struct request_sock *req,
6603 const struct sk_buff *skb)
6604 {
6605 if (tcp_sk(sk)->save_syn) {
6606 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6607 u32 *copy;
6608
6609 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6610 if (copy) {
6611 copy[0] = len;
6612 memcpy(©[1], skb_network_header(skb), len);
6613 req->saved_syn = copy;
6614 }
6615 }
6616 }
6617
6618 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6619 * used for SYN cookie generation.
6620 */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)6621 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6622 const struct tcp_request_sock_ops *af_ops,
6623 struct sock *sk, struct tcphdr *th)
6624 {
6625 struct tcp_sock *tp = tcp_sk(sk);
6626 u16 mss;
6627
6628 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6629 !inet_csk_reqsk_queue_is_full(sk))
6630 return 0;
6631
6632 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6633 return 0;
6634
6635 if (sk_acceptq_is_full(sk)) {
6636 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6637 return 0;
6638 }
6639
6640 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6641 if (!mss)
6642 mss = af_ops->mss_clamp;
6643
6644 return mss;
6645 }
6646 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6647
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6648 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6649 const struct tcp_request_sock_ops *af_ops,
6650 struct sock *sk, struct sk_buff *skb)
6651 {
6652 struct tcp_fastopen_cookie foc = { .len = -1 };
6653 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6654 struct tcp_options_received tmp_opt;
6655 struct tcp_sock *tp = tcp_sk(sk);
6656 struct net *net = sock_net(sk);
6657 struct sock *fastopen_sk = NULL;
6658 struct request_sock *req;
6659 bool want_cookie = false;
6660 struct dst_entry *dst;
6661 struct flowi fl;
6662 u8 syncookies;
6663
6664 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6665
6666 /* TW buckets are converted to open requests without
6667 * limitations, they conserve resources and peer is
6668 * evidently real one.
6669 */
6670 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6671 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6672 if (!want_cookie)
6673 goto drop;
6674 }
6675
6676 if (sk_acceptq_is_full(sk)) {
6677 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6678 goto drop;
6679 }
6680
6681 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6682 if (!req)
6683 goto drop;
6684
6685 tcp_rsk(req)->af_specific = af_ops;
6686 tcp_rsk(req)->ts_off = 0;
6687
6688 tcp_clear_options(&tmp_opt);
6689 tmp_opt.mss_clamp = af_ops->mss_clamp;
6690 tmp_opt.user_mss = tp->rx_opt.user_mss;
6691 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6692 want_cookie ? NULL : &foc);
6693
6694 if (want_cookie && !tmp_opt.saw_tstamp)
6695 tcp_clear_options(&tmp_opt);
6696
6697 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6698 tmp_opt.smc_ok = 0;
6699
6700 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6701 tcp_openreq_init(req, &tmp_opt, skb, sk);
6702 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6703
6704 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6705 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6706
6707 af_ops->init_req(req, sk, skb);
6708
6709 if (security_inet_conn_request(sk, skb, req))
6710 goto drop_and_free;
6711
6712 if (tmp_opt.tstamp_ok)
6713 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6714
6715 dst = af_ops->route_req(sk, &fl, req);
6716 if (!dst)
6717 goto drop_and_free;
6718
6719 if (!want_cookie && !isn) {
6720 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
6721
6722 /* Kill the following clause, if you dislike this way. */
6723 if (!syncookies &&
6724 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6725 (max_syn_backlog >> 2)) &&
6726 !tcp_peer_is_proven(req, dst)) {
6727 /* Without syncookies last quarter of
6728 * backlog is filled with destinations,
6729 * proven to be alive.
6730 * It means that we continue to communicate
6731 * to destinations, already remembered
6732 * to the moment of synflood.
6733 */
6734 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6735 rsk_ops->family);
6736 goto drop_and_release;
6737 }
6738
6739 isn = af_ops->init_seq(skb);
6740 }
6741
6742 tcp_ecn_create_request(req, skb, sk, dst);
6743
6744 if (want_cookie) {
6745 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6746 req->cookie_ts = tmp_opt.tstamp_ok;
6747 if (!tmp_opt.tstamp_ok)
6748 inet_rsk(req)->ecn_ok = 0;
6749 }
6750
6751 tcp_rsk(req)->snt_isn = isn;
6752 tcp_rsk(req)->txhash = net_tx_rndhash();
6753 tcp_openreq_init_rwin(req, sk, dst);
6754 sk_rx_queue_set(req_to_sk(req), skb);
6755 if (!want_cookie) {
6756 tcp_reqsk_record_syn(sk, req, skb);
6757 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6758 }
6759 if (fastopen_sk) {
6760 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6761 &foc, TCP_SYNACK_FASTOPEN);
6762 /* Add the child socket directly into the accept queue */
6763 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6764 reqsk_fastopen_remove(fastopen_sk, req, false);
6765 bh_unlock_sock(fastopen_sk);
6766 sock_put(fastopen_sk);
6767 goto drop_and_free;
6768 }
6769 sk->sk_data_ready(sk);
6770 bh_unlock_sock(fastopen_sk);
6771 sock_put(fastopen_sk);
6772 } else {
6773 tcp_rsk(req)->tfo_listener = false;
6774 if (!want_cookie)
6775 inet_csk_reqsk_queue_hash_add(sk, req,
6776 tcp_timeout_init((struct sock *)req));
6777 af_ops->send_synack(sk, dst, &fl, req, &foc,
6778 !want_cookie ? TCP_SYNACK_NORMAL :
6779 TCP_SYNACK_COOKIE);
6780 if (want_cookie) {
6781 reqsk_free(req);
6782 return 0;
6783 }
6784 }
6785 reqsk_put(req);
6786 return 0;
6787
6788 drop_and_release:
6789 dst_release(dst);
6790 drop_and_free:
6791 __reqsk_free(req);
6792 drop:
6793 tcp_listendrop(sk);
6794 return 0;
6795 }
6796 EXPORT_SYMBOL(tcp_conn_request);
6797