• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 
42 #include <linux/compiler.h>
43 #include <linux/gfp.h>
44 #include <linux/module.h>
45 #include <linux/static_key.h>
46 
47 #include <trace/events/tcp.h>
48 
49 /* Refresh clocks of a TCP socket,
50  * ensuring monotically increasing values.
51  */
tcp_mstamp_refresh(struct tcp_sock * tp)52 void tcp_mstamp_refresh(struct tcp_sock *tp)
53 {
54 	u64 val = tcp_clock_ns();
55 
56 	tp->tcp_clock_cache = val;
57 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
58 }
59 
60 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
61 			   int push_one, gfp_t gfp);
62 
63 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)64 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
65 {
66 	struct inet_connection_sock *icsk = inet_csk(sk);
67 	struct tcp_sock *tp = tcp_sk(sk);
68 	unsigned int prior_packets = tp->packets_out;
69 
70 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
71 
72 	__skb_unlink(skb, &sk->sk_write_queue);
73 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
74 
75 	if (tp->highest_sack == NULL)
76 		tp->highest_sack = skb;
77 
78 	tp->packets_out += tcp_skb_pcount(skb);
79 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 		tcp_rearm_rto(sk);
81 
82 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 		      tcp_skb_pcount(skb));
84 	tcp_check_space(sk);
85 }
86 
87 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
88  * window scaling factor due to loss of precision.
89  * If window has been shrunk, what should we make? It is not clear at all.
90  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92  * invalid. OK, let's make this for now:
93  */
tcp_acceptable_seq(const struct sock * sk)94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 	const struct tcp_sock *tp = tcp_sk(sk);
97 
98 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
99 	    (tp->rx_opt.wscale_ok &&
100 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
101 		return tp->snd_nxt;
102 	else
103 		return tcp_wnd_end(tp);
104 }
105 
106 /* Calculate mss to advertise in SYN segment.
107  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
108  *
109  * 1. It is independent of path mtu.
110  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
111  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
112  *    attached devices, because some buggy hosts are confused by
113  *    large MSS.
114  * 4. We do not make 3, we advertise MSS, calculated from first
115  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
116  *    This may be overridden via information stored in routing table.
117  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
118  *    probably even Jumbo".
119  */
tcp_advertise_mss(struct sock * sk)120 static __u16 tcp_advertise_mss(struct sock *sk)
121 {
122 	struct tcp_sock *tp = tcp_sk(sk);
123 	const struct dst_entry *dst = __sk_dst_get(sk);
124 	int mss = tp->advmss;
125 
126 	if (dst) {
127 		unsigned int metric = dst_metric_advmss(dst);
128 
129 		if (metric < mss) {
130 			mss = metric;
131 			tp->advmss = mss;
132 		}
133 	}
134 
135 	return (__u16)mss;
136 }
137 
138 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
139  * This is the first part of cwnd validation mechanism.
140  */
tcp_cwnd_restart(struct sock * sk,s32 delta)141 void tcp_cwnd_restart(struct sock *sk, s32 delta)
142 {
143 	struct tcp_sock *tp = tcp_sk(sk);
144 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
145 	u32 cwnd = tp->snd_cwnd;
146 
147 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
148 
149 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
150 	restart_cwnd = min(restart_cwnd, cwnd);
151 
152 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
153 		cwnd >>= 1;
154 	tp->snd_cwnd = max(cwnd, restart_cwnd);
155 	tp->snd_cwnd_stamp = tcp_jiffies32;
156 	tp->snd_cwnd_used = 0;
157 }
158 
159 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)160 static void tcp_event_data_sent(struct tcp_sock *tp,
161 				struct sock *sk)
162 {
163 	struct inet_connection_sock *icsk = inet_csk(sk);
164 	const u32 now = tcp_jiffies32;
165 
166 	if (tcp_packets_in_flight(tp) == 0)
167 		tcp_ca_event(sk, CA_EVENT_TX_START);
168 
169 	/* If this is the first data packet sent in response to the
170 	 * previous received data,
171 	 * and it is a reply for ato after last received packet,
172 	 * increase pingpong count.
173 	 */
174 	if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
175 	    (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 		inet_csk_inc_pingpong_cnt(sk);
177 
178 	tp->lsndtime = now;
179 }
180 
181 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,u32 rcv_nxt)182 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
183 {
184 	struct tcp_sock *tp = tcp_sk(sk);
185 
186 	if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) {
187 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
188 			      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
189 		tp->compressed_ack = TCP_FASTRETRANS_THRESH;
190 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
191 			__sock_put(sk);
192 	}
193 
194 	if (unlikely(rcv_nxt != tp->rcv_nxt))
195 		return;  /* Special ACK sent by DCTCP to reflect ECN */
196 	tcp_dec_quickack_mode(sk);
197 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
198 }
199 
200 /* Determine a window scaling and initial window to offer.
201  * Based on the assumption that the given amount of space
202  * will be offered. Store the results in the tp structure.
203  * NOTE: for smooth operation initial space offering should
204  * be a multiple of mss if possible. We assume here that mss >= 1.
205  * This MUST be enforced by all callers.
206  */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)207 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
208 			       __u32 *rcv_wnd, __u32 *window_clamp,
209 			       int wscale_ok, __u8 *rcv_wscale,
210 			       __u32 init_rcv_wnd)
211 {
212 	unsigned int space = (__space < 0 ? 0 : __space);
213 
214 	/* If no clamp set the clamp to the max possible scaled window */
215 	if (*window_clamp == 0)
216 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
217 	space = min(*window_clamp, space);
218 
219 	/* Quantize space offering to a multiple of mss if possible. */
220 	if (space > mss)
221 		space = rounddown(space, mss);
222 
223 	/* NOTE: offering an initial window larger than 32767
224 	 * will break some buggy TCP stacks. If the admin tells us
225 	 * it is likely we could be speaking with such a buggy stack
226 	 * we will truncate our initial window offering to 32K-1
227 	 * unless the remote has sent us a window scaling option,
228 	 * which we interpret as a sign the remote TCP is not
229 	 * misinterpreting the window field as a signed quantity.
230 	 */
231 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
232 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
233 	else
234 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
235 
236 	if (init_rcv_wnd)
237 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
238 
239 	*rcv_wscale = 0;
240 	if (wscale_ok) {
241 		/* Set window scaling on max possible window */
242 		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
243 		space = max_t(u32, space, sysctl_rmem_max);
244 		space = min_t(u32, space, *window_clamp);
245 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
246 				      0, TCP_MAX_WSCALE);
247 	}
248 	/* Set the clamp no higher than max representable value */
249 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
250 }
251 EXPORT_SYMBOL(tcp_select_initial_window);
252 
253 /* Chose a new window to advertise, update state in tcp_sock for the
254  * socket, and return result with RFC1323 scaling applied.  The return
255  * value can be stuffed directly into th->window for an outgoing
256  * frame.
257  */
tcp_select_window(struct sock * sk)258 static u16 tcp_select_window(struct sock *sk)
259 {
260 	struct tcp_sock *tp = tcp_sk(sk);
261 	u32 old_win = tp->rcv_wnd;
262 	u32 cur_win = tcp_receive_window(tp);
263 	u32 new_win = __tcp_select_window(sk);
264 
265 	/* Never shrink the offered window */
266 	if (new_win < cur_win) {
267 		/* Danger Will Robinson!
268 		 * Don't update rcv_wup/rcv_wnd here or else
269 		 * we will not be able to advertise a zero
270 		 * window in time.  --DaveM
271 		 *
272 		 * Relax Will Robinson.
273 		 */
274 		if (new_win == 0)
275 			NET_INC_STATS(sock_net(sk),
276 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
277 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
278 	}
279 	tp->rcv_wnd = new_win;
280 	tp->rcv_wup = tp->rcv_nxt;
281 
282 	/* Make sure we do not exceed the maximum possible
283 	 * scaled window.
284 	 */
285 	if (!tp->rx_opt.rcv_wscale &&
286 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
287 		new_win = min(new_win, MAX_TCP_WINDOW);
288 	else
289 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
290 
291 	/* RFC1323 scaling applied */
292 	new_win >>= tp->rx_opt.rcv_wscale;
293 
294 	/* If we advertise zero window, disable fast path. */
295 	if (new_win == 0) {
296 		tp->pred_flags = 0;
297 		if (old_win)
298 			NET_INC_STATS(sock_net(sk),
299 				      LINUX_MIB_TCPTOZEROWINDOWADV);
300 	} else if (old_win == 0) {
301 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
302 	}
303 
304 	return new_win;
305 }
306 
307 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)308 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
309 {
310 	const struct tcp_sock *tp = tcp_sk(sk);
311 
312 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
313 	if (!(tp->ecn_flags & TCP_ECN_OK))
314 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
315 	else if (tcp_ca_needs_ecn(sk) ||
316 		 tcp_bpf_ca_needs_ecn(sk))
317 		INET_ECN_xmit(sk);
318 }
319 
320 /* Packet ECN state for a SYN.  */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)321 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
322 {
323 	struct tcp_sock *tp = tcp_sk(sk);
324 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
325 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
326 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
327 
328 	if (!use_ecn) {
329 		const struct dst_entry *dst = __sk_dst_get(sk);
330 
331 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
332 			use_ecn = true;
333 	}
334 
335 	tp->ecn_flags = 0;
336 
337 	if (use_ecn) {
338 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
339 		tp->ecn_flags = TCP_ECN_OK;
340 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
341 			INET_ECN_xmit(sk);
342 	}
343 }
344 
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)345 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
346 {
347 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
348 		/* tp->ecn_flags are cleared at a later point in time when
349 		 * SYN ACK is ultimatively being received.
350 		 */
351 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
352 }
353 
354 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)355 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
356 {
357 	if (inet_rsk(req)->ecn_ok)
358 		th->ece = 1;
359 }
360 
361 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
362  * be sent.
363  */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)364 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
365 			 struct tcphdr *th, int tcp_header_len)
366 {
367 	struct tcp_sock *tp = tcp_sk(sk);
368 
369 	if (tp->ecn_flags & TCP_ECN_OK) {
370 		/* Not-retransmitted data segment: set ECT and inject CWR. */
371 		if (skb->len != tcp_header_len &&
372 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
373 			INET_ECN_xmit(sk);
374 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
375 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
376 				th->cwr = 1;
377 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
378 			}
379 		} else if (!tcp_ca_needs_ecn(sk)) {
380 			/* ACK or retransmitted segment: clear ECT|CE */
381 			INET_ECN_dontxmit(sk);
382 		}
383 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
384 			th->ece = 1;
385 	}
386 }
387 
388 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
389  * auto increment end seqno.
390  */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)391 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
392 {
393 	skb->ip_summed = CHECKSUM_PARTIAL;
394 
395 	TCP_SKB_CB(skb)->tcp_flags = flags;
396 	TCP_SKB_CB(skb)->sacked = 0;
397 
398 	tcp_skb_pcount_set(skb, 1);
399 
400 	TCP_SKB_CB(skb)->seq = seq;
401 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
402 		seq++;
403 	TCP_SKB_CB(skb)->end_seq = seq;
404 }
405 
tcp_urg_mode(const struct tcp_sock * tp)406 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
407 {
408 	return tp->snd_una != tp->snd_up;
409 }
410 
411 #define OPTION_SACK_ADVERTISE	(1 << 0)
412 #define OPTION_TS		(1 << 1)
413 #define OPTION_MD5		(1 << 2)
414 #define OPTION_WSCALE		(1 << 3)
415 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
416 #define OPTION_SMC		(1 << 9)
417 
smc_options_write(__be32 * ptr,u16 * options)418 static void smc_options_write(__be32 *ptr, u16 *options)
419 {
420 #if IS_ENABLED(CONFIG_SMC)
421 	if (static_branch_unlikely(&tcp_have_smc)) {
422 		if (unlikely(OPTION_SMC & *options)) {
423 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
424 				       (TCPOPT_NOP  << 16) |
425 				       (TCPOPT_EXP <<  8) |
426 				       (TCPOLEN_EXP_SMC_BASE));
427 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
428 		}
429 	}
430 #endif
431 }
432 
433 struct tcp_out_options {
434 	u16 options;		/* bit field of OPTION_* */
435 	u16 mss;		/* 0 to disable */
436 	u8 ws;			/* window scale, 0 to disable */
437 	u8 num_sack_blocks;	/* number of SACK blocks to include */
438 	u8 hash_size;		/* bytes in hash_location */
439 	__u8 *hash_location;	/* temporary pointer, overloaded */
440 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
441 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
442 };
443 
444 /* Write previously computed TCP options to the packet.
445  *
446  * Beware: Something in the Internet is very sensitive to the ordering of
447  * TCP options, we learned this through the hard way, so be careful here.
448  * Luckily we can at least blame others for their non-compliance but from
449  * inter-operability perspective it seems that we're somewhat stuck with
450  * the ordering which we have been using if we want to keep working with
451  * those broken things (not that it currently hurts anybody as there isn't
452  * particular reason why the ordering would need to be changed).
453  *
454  * At least SACK_PERM as the first option is known to lead to a disaster
455  * (but it may well be that other scenarios fail similarly).
456  */
tcp_options_write(__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)457 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
458 			      struct tcp_out_options *opts)
459 {
460 	u16 options = opts->options;	/* mungable copy */
461 
462 	if (unlikely(OPTION_MD5 & options)) {
463 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
464 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
465 		/* overload cookie hash location */
466 		opts->hash_location = (__u8 *)ptr;
467 		ptr += 4;
468 	}
469 
470 	if (unlikely(opts->mss)) {
471 		*ptr++ = htonl((TCPOPT_MSS << 24) |
472 			       (TCPOLEN_MSS << 16) |
473 			       opts->mss);
474 	}
475 
476 	if (likely(OPTION_TS & options)) {
477 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
478 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
479 				       (TCPOLEN_SACK_PERM << 16) |
480 				       (TCPOPT_TIMESTAMP << 8) |
481 				       TCPOLEN_TIMESTAMP);
482 			options &= ~OPTION_SACK_ADVERTISE;
483 		} else {
484 			*ptr++ = htonl((TCPOPT_NOP << 24) |
485 				       (TCPOPT_NOP << 16) |
486 				       (TCPOPT_TIMESTAMP << 8) |
487 				       TCPOLEN_TIMESTAMP);
488 		}
489 		*ptr++ = htonl(opts->tsval);
490 		*ptr++ = htonl(opts->tsecr);
491 	}
492 
493 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
494 		*ptr++ = htonl((TCPOPT_NOP << 24) |
495 			       (TCPOPT_NOP << 16) |
496 			       (TCPOPT_SACK_PERM << 8) |
497 			       TCPOLEN_SACK_PERM);
498 	}
499 
500 	if (unlikely(OPTION_WSCALE & options)) {
501 		*ptr++ = htonl((TCPOPT_NOP << 24) |
502 			       (TCPOPT_WINDOW << 16) |
503 			       (TCPOLEN_WINDOW << 8) |
504 			       opts->ws);
505 	}
506 
507 	if (unlikely(opts->num_sack_blocks)) {
508 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
509 			tp->duplicate_sack : tp->selective_acks;
510 		int this_sack;
511 
512 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
513 			       (TCPOPT_NOP  << 16) |
514 			       (TCPOPT_SACK <<  8) |
515 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
516 						     TCPOLEN_SACK_PERBLOCK)));
517 
518 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
519 		     ++this_sack) {
520 			*ptr++ = htonl(sp[this_sack].start_seq);
521 			*ptr++ = htonl(sp[this_sack].end_seq);
522 		}
523 
524 		tp->rx_opt.dsack = 0;
525 	}
526 
527 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
528 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
529 		u8 *p = (u8 *)ptr;
530 		u32 len; /* Fast Open option length */
531 
532 		if (foc->exp) {
533 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
534 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
535 				     TCPOPT_FASTOPEN_MAGIC);
536 			p += TCPOLEN_EXP_FASTOPEN_BASE;
537 		} else {
538 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
539 			*p++ = TCPOPT_FASTOPEN;
540 			*p++ = len;
541 		}
542 
543 		memcpy(p, foc->val, foc->len);
544 		if ((len & 3) == 2) {
545 			p[foc->len] = TCPOPT_NOP;
546 			p[foc->len + 1] = TCPOPT_NOP;
547 		}
548 		ptr += (len + 3) >> 2;
549 	}
550 
551 	smc_options_write(ptr, &options);
552 }
553 
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)554 static void smc_set_option(const struct tcp_sock *tp,
555 			   struct tcp_out_options *opts,
556 			   unsigned int *remaining)
557 {
558 #if IS_ENABLED(CONFIG_SMC)
559 	if (static_branch_unlikely(&tcp_have_smc)) {
560 		if (tp->syn_smc) {
561 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
562 				opts->options |= OPTION_SMC;
563 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
564 			}
565 		}
566 	}
567 #endif
568 }
569 
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)570 static void smc_set_option_cond(const struct tcp_sock *tp,
571 				const struct inet_request_sock *ireq,
572 				struct tcp_out_options *opts,
573 				unsigned int *remaining)
574 {
575 #if IS_ENABLED(CONFIG_SMC)
576 	if (static_branch_unlikely(&tcp_have_smc)) {
577 		if (tp->syn_smc && ireq->smc_ok) {
578 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
579 				opts->options |= OPTION_SMC;
580 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
581 			}
582 		}
583 	}
584 #endif
585 }
586 
587 /* Compute TCP options for SYN packets. This is not the final
588  * network wire format yet.
589  */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)590 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
591 				struct tcp_out_options *opts,
592 				struct tcp_md5sig_key **md5)
593 {
594 	struct tcp_sock *tp = tcp_sk(sk);
595 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
596 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
597 
598 	*md5 = NULL;
599 #ifdef CONFIG_TCP_MD5SIG
600 	if (static_branch_unlikely(&tcp_md5_needed) &&
601 	    rcu_access_pointer(tp->md5sig_info)) {
602 		*md5 = tp->af_specific->md5_lookup(sk, sk);
603 		if (*md5) {
604 			opts->options |= OPTION_MD5;
605 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
606 		}
607 	}
608 #endif
609 
610 	/* We always get an MSS option.  The option bytes which will be seen in
611 	 * normal data packets should timestamps be used, must be in the MSS
612 	 * advertised.  But we subtract them from tp->mss_cache so that
613 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
614 	 * fact here if necessary.  If we don't do this correctly, as a
615 	 * receiver we won't recognize data packets as being full sized when we
616 	 * should, and thus we won't abide by the delayed ACK rules correctly.
617 	 * SACKs don't matter, we never delay an ACK when we have any of those
618 	 * going out.  */
619 	opts->mss = tcp_advertise_mss(sk);
620 	remaining -= TCPOLEN_MSS_ALIGNED;
621 
622 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
623 		opts->options |= OPTION_TS;
624 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
625 		opts->tsecr = tp->rx_opt.ts_recent;
626 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
627 	}
628 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
629 		opts->ws = tp->rx_opt.rcv_wscale;
630 		opts->options |= OPTION_WSCALE;
631 		remaining -= TCPOLEN_WSCALE_ALIGNED;
632 	}
633 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
634 		opts->options |= OPTION_SACK_ADVERTISE;
635 		if (unlikely(!(OPTION_TS & opts->options)))
636 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
637 	}
638 
639 	if (fastopen && fastopen->cookie.len >= 0) {
640 		u32 need = fastopen->cookie.len;
641 
642 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
643 					       TCPOLEN_FASTOPEN_BASE;
644 		need = (need + 3) & ~3U;  /* Align to 32 bits */
645 		if (remaining >= need) {
646 			opts->options |= OPTION_FAST_OPEN_COOKIE;
647 			opts->fastopen_cookie = &fastopen->cookie;
648 			remaining -= need;
649 			tp->syn_fastopen = 1;
650 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
651 		}
652 	}
653 
654 	smc_set_option(tp, opts, &remaining);
655 
656 	return MAX_TCP_OPTION_SPACE - remaining;
657 }
658 
659 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_md5sig_key * md5,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type)660 static unsigned int tcp_synack_options(const struct sock *sk,
661 				       struct request_sock *req,
662 				       unsigned int mss, struct sk_buff *skb,
663 				       struct tcp_out_options *opts,
664 				       const struct tcp_md5sig_key *md5,
665 				       struct tcp_fastopen_cookie *foc,
666 				       enum tcp_synack_type synack_type)
667 {
668 	struct inet_request_sock *ireq = inet_rsk(req);
669 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
670 
671 #ifdef CONFIG_TCP_MD5SIG
672 	if (md5) {
673 		opts->options |= OPTION_MD5;
674 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
675 
676 		/* We can't fit any SACK blocks in a packet with MD5 + TS
677 		 * options. There was discussion about disabling SACK
678 		 * rather than TS in order to fit in better with old,
679 		 * buggy kernels, but that was deemed to be unnecessary.
680 		 */
681 		if (synack_type != TCP_SYNACK_COOKIE)
682 			ireq->tstamp_ok &= !ireq->sack_ok;
683 	}
684 #endif
685 
686 	/* We always send an MSS option. */
687 	opts->mss = mss;
688 	remaining -= TCPOLEN_MSS_ALIGNED;
689 
690 	if (likely(ireq->wscale_ok)) {
691 		opts->ws = ireq->rcv_wscale;
692 		opts->options |= OPTION_WSCALE;
693 		remaining -= TCPOLEN_WSCALE_ALIGNED;
694 	}
695 	if (likely(ireq->tstamp_ok)) {
696 		opts->options |= OPTION_TS;
697 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
698 		opts->tsecr = req->ts_recent;
699 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
700 	}
701 	if (likely(ireq->sack_ok)) {
702 		opts->options |= OPTION_SACK_ADVERTISE;
703 		if (unlikely(!ireq->tstamp_ok))
704 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
705 	}
706 	if (foc != NULL && foc->len >= 0) {
707 		u32 need = foc->len;
708 
709 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
710 				   TCPOLEN_FASTOPEN_BASE;
711 		need = (need + 3) & ~3U;  /* Align to 32 bits */
712 		if (remaining >= need) {
713 			opts->options |= OPTION_FAST_OPEN_COOKIE;
714 			opts->fastopen_cookie = foc;
715 			remaining -= need;
716 		}
717 	}
718 
719 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
720 
721 	return MAX_TCP_OPTION_SPACE - remaining;
722 }
723 
724 /* Compute TCP options for ESTABLISHED sockets. This is not the
725  * final wire format yet.
726  */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)727 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
728 					struct tcp_out_options *opts,
729 					struct tcp_md5sig_key **md5)
730 {
731 	struct tcp_sock *tp = tcp_sk(sk);
732 	unsigned int size = 0;
733 	unsigned int eff_sacks;
734 
735 	opts->options = 0;
736 
737 	*md5 = NULL;
738 #ifdef CONFIG_TCP_MD5SIG
739 	if (static_branch_unlikely(&tcp_md5_needed) &&
740 	    rcu_access_pointer(tp->md5sig_info)) {
741 		*md5 = tp->af_specific->md5_lookup(sk, sk);
742 		if (*md5) {
743 			opts->options |= OPTION_MD5;
744 			size += TCPOLEN_MD5SIG_ALIGNED;
745 		}
746 	}
747 #endif
748 
749 	if (likely(tp->rx_opt.tstamp_ok)) {
750 		opts->options |= OPTION_TS;
751 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
752 		opts->tsecr = tp->rx_opt.ts_recent;
753 		size += TCPOLEN_TSTAMP_ALIGNED;
754 	}
755 
756 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
757 	if (unlikely(eff_sacks)) {
758 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
759 		opts->num_sack_blocks =
760 			min_t(unsigned int, eff_sacks,
761 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
762 			      TCPOLEN_SACK_PERBLOCK);
763 		if (likely(opts->num_sack_blocks))
764 			size += TCPOLEN_SACK_BASE_ALIGNED +
765 				opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
766 	}
767 
768 	return size;
769 }
770 
771 
772 /* TCP SMALL QUEUES (TSQ)
773  *
774  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
775  * to reduce RTT and bufferbloat.
776  * We do this using a special skb destructor (tcp_wfree).
777  *
778  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
779  * needs to be reallocated in a driver.
780  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
781  *
782  * Since transmit from skb destructor is forbidden, we use a tasklet
783  * to process all sockets that eventually need to send more skbs.
784  * We use one tasklet per cpu, with its own queue of sockets.
785  */
786 struct tsq_tasklet {
787 	struct tasklet_struct	tasklet;
788 	struct list_head	head; /* queue of tcp sockets */
789 };
790 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
791 
tcp_tsq_write(struct sock * sk)792 static void tcp_tsq_write(struct sock *sk)
793 {
794 	if ((1 << sk->sk_state) &
795 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
796 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
797 		struct tcp_sock *tp = tcp_sk(sk);
798 
799 		if (tp->lost_out > tp->retrans_out &&
800 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
801 			tcp_mstamp_refresh(tp);
802 			tcp_xmit_retransmit_queue(sk);
803 		}
804 
805 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
806 			       0, GFP_ATOMIC);
807 	}
808 }
809 
tcp_tsq_handler(struct sock * sk)810 static void tcp_tsq_handler(struct sock *sk)
811 {
812 	bh_lock_sock(sk);
813 	if (!sock_owned_by_user(sk))
814 		tcp_tsq_write(sk);
815 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
816 		sock_hold(sk);
817 	bh_unlock_sock(sk);
818 }
819 /*
820  * One tasklet per cpu tries to send more skbs.
821  * We run in tasklet context but need to disable irqs when
822  * transferring tsq->head because tcp_wfree() might
823  * interrupt us (non NAPI drivers)
824  */
tcp_tasklet_func(unsigned long data)825 static void tcp_tasklet_func(unsigned long data)
826 {
827 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
828 	LIST_HEAD(list);
829 	unsigned long flags;
830 	struct list_head *q, *n;
831 	struct tcp_sock *tp;
832 	struct sock *sk;
833 
834 	local_irq_save(flags);
835 	list_splice_init(&tsq->head, &list);
836 	local_irq_restore(flags);
837 
838 	list_for_each_safe(q, n, &list) {
839 		tp = list_entry(q, struct tcp_sock, tsq_node);
840 		list_del(&tp->tsq_node);
841 
842 		sk = (struct sock *)tp;
843 		smp_mb__before_atomic();
844 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
845 
846 		tcp_tsq_handler(sk);
847 		sk_free(sk);
848 	}
849 }
850 
851 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
852 			  TCPF_WRITE_TIMER_DEFERRED |	\
853 			  TCPF_DELACK_TIMER_DEFERRED |	\
854 			  TCPF_MTU_REDUCED_DEFERRED)
855 /**
856  * tcp_release_cb - tcp release_sock() callback
857  * @sk: socket
858  *
859  * called from release_sock() to perform protocol dependent
860  * actions before socket release.
861  */
tcp_release_cb(struct sock * sk)862 void tcp_release_cb(struct sock *sk)
863 {
864 	unsigned long flags, nflags;
865 
866 	/* perform an atomic operation only if at least one flag is set */
867 	do {
868 		flags = sk->sk_tsq_flags;
869 		if (!(flags & TCP_DEFERRED_ALL))
870 			return;
871 		nflags = flags & ~TCP_DEFERRED_ALL;
872 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
873 
874 	if (flags & TCPF_TSQ_DEFERRED) {
875 		tcp_tsq_write(sk);
876 		__sock_put(sk);
877 	}
878 	/* Here begins the tricky part :
879 	 * We are called from release_sock() with :
880 	 * 1) BH disabled
881 	 * 2) sk_lock.slock spinlock held
882 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
883 	 *
884 	 * But following code is meant to be called from BH handlers,
885 	 * so we should keep BH disabled, but early release socket ownership
886 	 */
887 	sock_release_ownership(sk);
888 
889 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
890 		tcp_write_timer_handler(sk);
891 		__sock_put(sk);
892 	}
893 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
894 		tcp_delack_timer_handler(sk);
895 		__sock_put(sk);
896 	}
897 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
898 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
899 		__sock_put(sk);
900 	}
901 }
902 EXPORT_SYMBOL(tcp_release_cb);
903 
tcp_tasklet_init(void)904 void __init tcp_tasklet_init(void)
905 {
906 	int i;
907 
908 	for_each_possible_cpu(i) {
909 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
910 
911 		INIT_LIST_HEAD(&tsq->head);
912 		tasklet_init(&tsq->tasklet,
913 			     tcp_tasklet_func,
914 			     (unsigned long)tsq);
915 	}
916 }
917 
918 /*
919  * Write buffer destructor automatically called from kfree_skb.
920  * We can't xmit new skbs from this context, as we might already
921  * hold qdisc lock.
922  */
tcp_wfree(struct sk_buff * skb)923 void tcp_wfree(struct sk_buff *skb)
924 {
925 	struct sock *sk = skb->sk;
926 	struct tcp_sock *tp = tcp_sk(sk);
927 	unsigned long flags, nval, oval;
928 
929 	/* Keep one reference on sk_wmem_alloc.
930 	 * Will be released by sk_free() from here or tcp_tasklet_func()
931 	 */
932 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
933 
934 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
935 	 * Wait until our queues (qdisc + devices) are drained.
936 	 * This gives :
937 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
938 	 * - chance for incoming ACK (processed by another cpu maybe)
939 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
940 	 */
941 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
942 		goto out;
943 
944 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
945 		struct tsq_tasklet *tsq;
946 		bool empty;
947 
948 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
949 			goto out;
950 
951 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
952 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
953 		if (nval != oval)
954 			continue;
955 
956 		/* queue this socket to tasklet queue */
957 		local_irq_save(flags);
958 		tsq = this_cpu_ptr(&tsq_tasklet);
959 		empty = list_empty(&tsq->head);
960 		list_add(&tp->tsq_node, &tsq->head);
961 		if (empty)
962 			tasklet_schedule(&tsq->tasklet);
963 		local_irq_restore(flags);
964 		return;
965 	}
966 out:
967 	sk_free(sk);
968 }
969 
970 /* Note: Called under soft irq.
971  * We can call TCP stack right away, unless socket is owned by user.
972  */
tcp_pace_kick(struct hrtimer * timer)973 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
974 {
975 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
976 	struct sock *sk = (struct sock *)tp;
977 
978 	tcp_tsq_handler(sk);
979 	sock_put(sk);
980 
981 	return HRTIMER_NORESTART;
982 }
983 
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)984 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
985 				      u64 prior_wstamp)
986 {
987 	struct tcp_sock *tp = tcp_sk(sk);
988 
989 	if (sk->sk_pacing_status != SK_PACING_NONE) {
990 		unsigned long rate = sk->sk_pacing_rate;
991 
992 		/* Original sch_fq does not pace first 10 MSS
993 		 * Note that tp->data_segs_out overflows after 2^32 packets,
994 		 * this is a minor annoyance.
995 		 */
996 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
997 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
998 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
999 
1000 			/* take into account OS jitter */
1001 			len_ns -= min_t(u64, len_ns / 2, credit);
1002 			tp->tcp_wstamp_ns += len_ns;
1003 		}
1004 	}
1005 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1006 }
1007 
1008 /* This routine actually transmits TCP packets queued in by
1009  * tcp_do_sendmsg().  This is used by both the initial
1010  * transmission and possible later retransmissions.
1011  * All SKB's seen here are completely headerless.  It is our
1012  * job to build the TCP header, and pass the packet down to
1013  * IP so it can do the same plus pass the packet off to the
1014  * device.
1015  *
1016  * We are working here with either a clone of the original
1017  * SKB, or a fresh unique copy made by the retransmit engine.
1018  */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1019 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1020 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1021 {
1022 	const struct inet_connection_sock *icsk = inet_csk(sk);
1023 	struct inet_sock *inet;
1024 	struct tcp_sock *tp;
1025 	struct tcp_skb_cb *tcb;
1026 	struct tcp_out_options opts;
1027 	unsigned int tcp_options_size, tcp_header_size;
1028 	struct sk_buff *oskb = NULL;
1029 	struct tcp_md5sig_key *md5;
1030 	struct tcphdr *th;
1031 	u64 prior_wstamp;
1032 	int err;
1033 
1034 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1035 	tp = tcp_sk(sk);
1036 	prior_wstamp = tp->tcp_wstamp_ns;
1037 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1038 	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1039 	if (clone_it) {
1040 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1041 			- tp->snd_una;
1042 		oskb = skb;
1043 
1044 		tcp_skb_tsorted_save(oskb) {
1045 			if (unlikely(skb_cloned(oskb)))
1046 				skb = pskb_copy(oskb, gfp_mask);
1047 			else
1048 				skb = skb_clone(oskb, gfp_mask);
1049 		} tcp_skb_tsorted_restore(oskb);
1050 
1051 		if (unlikely(!skb))
1052 			return -ENOBUFS;
1053 		/* retransmit skbs might have a non zero value in skb->dev
1054 		 * because skb->dev is aliased with skb->rbnode.rb_left
1055 		 */
1056 		skb->dev = NULL;
1057 	}
1058 
1059 	inet = inet_sk(sk);
1060 	tcb = TCP_SKB_CB(skb);
1061 	memset(&opts, 0, sizeof(opts));
1062 
1063 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1064 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1065 	} else {
1066 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1067 							   &md5);
1068 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1069 		 * at receiver : This slightly improve GRO performance.
1070 		 * Note that we do not force the PSH flag for non GSO packets,
1071 		 * because they might be sent under high congestion events,
1072 		 * and in this case it is better to delay the delivery of 1-MSS
1073 		 * packets and thus the corresponding ACK packet that would
1074 		 * release the following packet.
1075 		 */
1076 		if (tcp_skb_pcount(skb) > 1)
1077 			tcb->tcp_flags |= TCPHDR_PSH;
1078 	}
1079 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1080 
1081 	/* if no packet is in qdisc/device queue, then allow XPS to select
1082 	 * another queue. We can be called from tcp_tsq_handler()
1083 	 * which holds one reference to sk.
1084 	 *
1085 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1086 	 * One way to get this would be to set skb->truesize = 2 on them.
1087 	 */
1088 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1089 
1090 	/* If we had to use memory reserve to allocate this skb,
1091 	 * this might cause drops if packet is looped back :
1092 	 * Other socket might not have SOCK_MEMALLOC.
1093 	 * Packets not looped back do not care about pfmemalloc.
1094 	 */
1095 	skb->pfmemalloc = 0;
1096 
1097 	skb_push(skb, tcp_header_size);
1098 	skb_reset_transport_header(skb);
1099 
1100 	skb_orphan(skb);
1101 	skb->sk = sk;
1102 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1103 	skb_set_hash_from_sk(skb, sk);
1104 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1105 
1106 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1107 
1108 	/* Build TCP header and checksum it. */
1109 	th = (struct tcphdr *)skb->data;
1110 	th->source		= inet->inet_sport;
1111 	th->dest		= inet->inet_dport;
1112 	th->seq			= htonl(tcb->seq);
1113 	th->ack_seq		= htonl(rcv_nxt);
1114 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1115 					tcb->tcp_flags);
1116 
1117 	th->check		= 0;
1118 	th->urg_ptr		= 0;
1119 
1120 	/* The urg_mode check is necessary during a below snd_una win probe */
1121 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1122 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1123 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1124 			th->urg = 1;
1125 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1126 			th->urg_ptr = htons(0xFFFF);
1127 			th->urg = 1;
1128 		}
1129 	}
1130 
1131 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1132 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1133 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1134 		th->window      = htons(tcp_select_window(sk));
1135 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1136 	} else {
1137 		/* RFC1323: The window in SYN & SYN/ACK segments
1138 		 * is never scaled.
1139 		 */
1140 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1141 	}
1142 #ifdef CONFIG_TCP_MD5SIG
1143 	/* Calculate the MD5 hash, as we have all we need now */
1144 	if (md5) {
1145 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1146 		tp->af_specific->calc_md5_hash(opts.hash_location,
1147 					       md5, sk, skb);
1148 	}
1149 #endif
1150 
1151 	icsk->icsk_af_ops->send_check(sk, skb);
1152 
1153 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1154 		tcp_event_ack_sent(sk, rcv_nxt);
1155 
1156 	if (skb->len != tcp_header_size) {
1157 		tcp_event_data_sent(tp, sk);
1158 		tp->data_segs_out += tcp_skb_pcount(skb);
1159 		tp->bytes_sent += skb->len - tcp_header_size;
1160 	}
1161 
1162 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1163 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1164 			      tcp_skb_pcount(skb));
1165 
1166 	tp->segs_out += tcp_skb_pcount(skb);
1167 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1168 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1169 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1170 
1171 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1172 
1173 	/* Cleanup our debris for IP stacks */
1174 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1175 			       sizeof(struct inet6_skb_parm)));
1176 
1177 	tcp_add_tx_delay(skb, tp);
1178 
1179 	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1180 
1181 	if (unlikely(err > 0)) {
1182 		tcp_enter_cwr(sk);
1183 		err = net_xmit_eval(err);
1184 	}
1185 	if (!err && oskb) {
1186 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1187 		tcp_rate_skb_sent(sk, oskb);
1188 	}
1189 	return err;
1190 }
1191 
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1192 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1193 			    gfp_t gfp_mask)
1194 {
1195 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1196 				  tcp_sk(sk)->rcv_nxt);
1197 }
1198 
1199 /* This routine just queues the buffer for sending.
1200  *
1201  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1202  * otherwise socket can stall.
1203  */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1204 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1205 {
1206 	struct tcp_sock *tp = tcp_sk(sk);
1207 
1208 	/* Advance write_seq and place onto the write_queue. */
1209 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1210 	__skb_header_release(skb);
1211 	tcp_add_write_queue_tail(sk, skb);
1212 	sk_wmem_queued_add(sk, skb->truesize);
1213 	sk_mem_charge(sk, skb->truesize);
1214 }
1215 
1216 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1217 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1218 {
1219 	if (skb->len <= mss_now) {
1220 		/* Avoid the costly divide in the normal
1221 		 * non-TSO case.
1222 		 */
1223 		tcp_skb_pcount_set(skb, 1);
1224 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1225 	} else {
1226 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1227 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1228 	}
1229 }
1230 
1231 /* Pcount in the middle of the write queue got changed, we need to do various
1232  * tweaks to fix counters
1233  */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1234 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1235 {
1236 	struct tcp_sock *tp = tcp_sk(sk);
1237 
1238 	tp->packets_out -= decr;
1239 
1240 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1241 		tp->sacked_out -= decr;
1242 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1243 		tp->retrans_out -= decr;
1244 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1245 		tp->lost_out -= decr;
1246 
1247 	/* Reno case is special. Sigh... */
1248 	if (tcp_is_reno(tp) && decr > 0)
1249 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1250 
1251 	if (tp->lost_skb_hint &&
1252 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1253 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1254 		tp->lost_cnt_hint -= decr;
1255 
1256 	tcp_verify_left_out(tp);
1257 }
1258 
tcp_has_tx_tstamp(const struct sk_buff * skb)1259 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1260 {
1261 	return TCP_SKB_CB(skb)->txstamp_ack ||
1262 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1263 }
1264 
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1265 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1266 {
1267 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1268 
1269 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1270 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1271 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1272 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1273 
1274 		shinfo->tx_flags &= ~tsflags;
1275 		shinfo2->tx_flags |= tsflags;
1276 		swap(shinfo->tskey, shinfo2->tskey);
1277 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1278 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1279 	}
1280 }
1281 
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1282 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1283 {
1284 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1285 	TCP_SKB_CB(skb)->eor = 0;
1286 }
1287 
1288 /* Insert buff after skb on the write or rtx queue of sk.  */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1289 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1290 					 struct sk_buff *buff,
1291 					 struct sock *sk,
1292 					 enum tcp_queue tcp_queue)
1293 {
1294 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1295 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1296 	else
1297 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1298 }
1299 
1300 /* Function to create two new TCP segments.  Shrinks the given segment
1301  * to the specified size and appends a new segment with the rest of the
1302  * packet to the list.  This won't be called frequently, I hope.
1303  * Remember, these are still headerless SKBs at this point.
1304  */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1305 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1306 		 struct sk_buff *skb, u32 len,
1307 		 unsigned int mss_now, gfp_t gfp)
1308 {
1309 	struct tcp_sock *tp = tcp_sk(sk);
1310 	struct sk_buff *buff;
1311 	int nsize, old_factor;
1312 	long limit;
1313 	int nlen;
1314 	u8 flags;
1315 
1316 	if (WARN_ON(len > skb->len))
1317 		return -EINVAL;
1318 
1319 	nsize = skb_headlen(skb) - len;
1320 	if (nsize < 0)
1321 		nsize = 0;
1322 
1323 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1324 	 * We need some allowance to not penalize applications setting small
1325 	 * SO_SNDBUF values.
1326 	 * Also allow first and last skb in retransmit queue to be split.
1327 	 */
1328 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1329 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1330 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1331 		     skb != tcp_rtx_queue_head(sk) &&
1332 		     skb != tcp_rtx_queue_tail(sk))) {
1333 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1334 		return -ENOMEM;
1335 	}
1336 
1337 	if (skb_unclone(skb, gfp))
1338 		return -ENOMEM;
1339 
1340 	/* Get a new skb... force flag on. */
1341 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1342 	if (!buff)
1343 		return -ENOMEM; /* We'll just try again later. */
1344 	skb_copy_decrypted(buff, skb);
1345 
1346 	sk_wmem_queued_add(sk, buff->truesize);
1347 	sk_mem_charge(sk, buff->truesize);
1348 	nlen = skb->len - len - nsize;
1349 	buff->truesize += nlen;
1350 	skb->truesize -= nlen;
1351 
1352 	/* Correct the sequence numbers. */
1353 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1354 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1355 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1356 
1357 	/* PSH and FIN should only be set in the second packet. */
1358 	flags = TCP_SKB_CB(skb)->tcp_flags;
1359 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1360 	TCP_SKB_CB(buff)->tcp_flags = flags;
1361 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1362 	tcp_skb_fragment_eor(skb, buff);
1363 
1364 	skb_split(skb, buff, len);
1365 
1366 	buff->ip_summed = CHECKSUM_PARTIAL;
1367 
1368 	buff->tstamp = skb->tstamp;
1369 	tcp_fragment_tstamp(skb, buff);
1370 
1371 	old_factor = tcp_skb_pcount(skb);
1372 
1373 	/* Fix up tso_factor for both original and new SKB.  */
1374 	tcp_set_skb_tso_segs(skb, mss_now);
1375 	tcp_set_skb_tso_segs(buff, mss_now);
1376 
1377 	/* Update delivered info for the new segment */
1378 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1379 
1380 	/* If this packet has been sent out already, we must
1381 	 * adjust the various packet counters.
1382 	 */
1383 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1384 		int diff = old_factor - tcp_skb_pcount(skb) -
1385 			tcp_skb_pcount(buff);
1386 
1387 		if (diff)
1388 			tcp_adjust_pcount(sk, skb, diff);
1389 	}
1390 
1391 	/* Link BUFF into the send queue. */
1392 	__skb_header_release(buff);
1393 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1394 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1395 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1396 
1397 	return 0;
1398 }
1399 
1400 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1401  * data is not copied, but immediately discarded.
1402  */
__pskb_trim_head(struct sk_buff * skb,int len)1403 static int __pskb_trim_head(struct sk_buff *skb, int len)
1404 {
1405 	struct skb_shared_info *shinfo;
1406 	int i, k, eat;
1407 
1408 	eat = min_t(int, len, skb_headlen(skb));
1409 	if (eat) {
1410 		__skb_pull(skb, eat);
1411 		len -= eat;
1412 		if (!len)
1413 			return 0;
1414 	}
1415 	eat = len;
1416 	k = 0;
1417 	shinfo = skb_shinfo(skb);
1418 	for (i = 0; i < shinfo->nr_frags; i++) {
1419 		int size = skb_frag_size(&shinfo->frags[i]);
1420 
1421 		if (size <= eat) {
1422 			skb_frag_unref(skb, i);
1423 			eat -= size;
1424 		} else {
1425 			shinfo->frags[k] = shinfo->frags[i];
1426 			if (eat) {
1427 				skb_frag_off_add(&shinfo->frags[k], eat);
1428 				skb_frag_size_sub(&shinfo->frags[k], eat);
1429 				eat = 0;
1430 			}
1431 			k++;
1432 		}
1433 	}
1434 	shinfo->nr_frags = k;
1435 
1436 	skb->data_len -= len;
1437 	skb->len = skb->data_len;
1438 	return len;
1439 }
1440 
1441 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1442 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1443 {
1444 	u32 delta_truesize;
1445 
1446 	if (skb_unclone(skb, GFP_ATOMIC))
1447 		return -ENOMEM;
1448 
1449 	delta_truesize = __pskb_trim_head(skb, len);
1450 
1451 	TCP_SKB_CB(skb)->seq += len;
1452 	skb->ip_summed = CHECKSUM_PARTIAL;
1453 
1454 	if (delta_truesize) {
1455 		skb->truesize	   -= delta_truesize;
1456 		sk_wmem_queued_add(sk, -delta_truesize);
1457 		sk_mem_uncharge(sk, delta_truesize);
1458 		sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1459 	}
1460 
1461 	/* Any change of skb->len requires recalculation of tso factor. */
1462 	if (tcp_skb_pcount(skb) > 1)
1463 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1464 
1465 	return 0;
1466 }
1467 
1468 /* Calculate MSS not accounting any TCP options.  */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1469 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1470 {
1471 	const struct tcp_sock *tp = tcp_sk(sk);
1472 	const struct inet_connection_sock *icsk = inet_csk(sk);
1473 	int mss_now;
1474 
1475 	/* Calculate base mss without TCP options:
1476 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1477 	 */
1478 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1479 
1480 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1481 	if (icsk->icsk_af_ops->net_frag_header_len) {
1482 		const struct dst_entry *dst = __sk_dst_get(sk);
1483 
1484 		if (dst && dst_allfrag(dst))
1485 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1486 	}
1487 
1488 	/* Clamp it (mss_clamp does not include tcp options) */
1489 	if (mss_now > tp->rx_opt.mss_clamp)
1490 		mss_now = tp->rx_opt.mss_clamp;
1491 
1492 	/* Now subtract optional transport overhead */
1493 	mss_now -= icsk->icsk_ext_hdr_len;
1494 
1495 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1496 	mss_now = max(mss_now,
1497 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1498 	return mss_now;
1499 }
1500 
1501 /* Calculate MSS. Not accounting for SACKs here.  */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1502 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1503 {
1504 	/* Subtract TCP options size, not including SACKs */
1505 	return __tcp_mtu_to_mss(sk, pmtu) -
1506 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1507 }
1508 EXPORT_SYMBOL(tcp_mtu_to_mss);
1509 
1510 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1511 int tcp_mss_to_mtu(struct sock *sk, int mss)
1512 {
1513 	const struct tcp_sock *tp = tcp_sk(sk);
1514 	const struct inet_connection_sock *icsk = inet_csk(sk);
1515 	int mtu;
1516 
1517 	mtu = mss +
1518 	      tp->tcp_header_len +
1519 	      icsk->icsk_ext_hdr_len +
1520 	      icsk->icsk_af_ops->net_header_len;
1521 
1522 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1523 	if (icsk->icsk_af_ops->net_frag_header_len) {
1524 		const struct dst_entry *dst = __sk_dst_get(sk);
1525 
1526 		if (dst && dst_allfrag(dst))
1527 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1528 	}
1529 	return mtu;
1530 }
1531 EXPORT_SYMBOL(tcp_mss_to_mtu);
1532 
1533 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1534 void tcp_mtup_init(struct sock *sk)
1535 {
1536 	struct tcp_sock *tp = tcp_sk(sk);
1537 	struct inet_connection_sock *icsk = inet_csk(sk);
1538 	struct net *net = sock_net(sk);
1539 
1540 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1541 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1542 			       icsk->icsk_af_ops->net_header_len;
1543 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1544 	icsk->icsk_mtup.probe_size = 0;
1545 	if (icsk->icsk_mtup.enabled)
1546 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1547 }
1548 EXPORT_SYMBOL(tcp_mtup_init);
1549 
1550 /* This function synchronize snd mss to current pmtu/exthdr set.
1551 
1552    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1553    for TCP options, but includes only bare TCP header.
1554 
1555    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1556    It is minimum of user_mss and mss received with SYN.
1557    It also does not include TCP options.
1558 
1559    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1560 
1561    tp->mss_cache is current effective sending mss, including
1562    all tcp options except for SACKs. It is evaluated,
1563    taking into account current pmtu, but never exceeds
1564    tp->rx_opt.mss_clamp.
1565 
1566    NOTE1. rfc1122 clearly states that advertised MSS
1567    DOES NOT include either tcp or ip options.
1568 
1569    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1570    are READ ONLY outside this function.		--ANK (980731)
1571  */
tcp_sync_mss(struct sock * sk,u32 pmtu)1572 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1573 {
1574 	struct tcp_sock *tp = tcp_sk(sk);
1575 	struct inet_connection_sock *icsk = inet_csk(sk);
1576 	int mss_now;
1577 
1578 	if (icsk->icsk_mtup.search_high > pmtu)
1579 		icsk->icsk_mtup.search_high = pmtu;
1580 
1581 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1582 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1583 
1584 	/* And store cached results */
1585 	icsk->icsk_pmtu_cookie = pmtu;
1586 	if (icsk->icsk_mtup.enabled)
1587 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1588 	tp->mss_cache = mss_now;
1589 
1590 	return mss_now;
1591 }
1592 EXPORT_SYMBOL(tcp_sync_mss);
1593 
1594 /* Compute the current effective MSS, taking SACKs and IP options,
1595  * and even PMTU discovery events into account.
1596  */
tcp_current_mss(struct sock * sk)1597 unsigned int tcp_current_mss(struct sock *sk)
1598 {
1599 	const struct tcp_sock *tp = tcp_sk(sk);
1600 	const struct dst_entry *dst = __sk_dst_get(sk);
1601 	u32 mss_now;
1602 	unsigned int header_len;
1603 	struct tcp_out_options opts;
1604 	struct tcp_md5sig_key *md5;
1605 
1606 	mss_now = tp->mss_cache;
1607 
1608 	if (dst) {
1609 		u32 mtu = dst_mtu(dst);
1610 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1611 			mss_now = tcp_sync_mss(sk, mtu);
1612 	}
1613 
1614 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1615 		     sizeof(struct tcphdr);
1616 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1617 	 * some common options. If this is an odd packet (because we have SACK
1618 	 * blocks etc) then our calculated header_len will be different, and
1619 	 * we have to adjust mss_now correspondingly */
1620 	if (header_len != tp->tcp_header_len) {
1621 		int delta = (int) header_len - tp->tcp_header_len;
1622 		mss_now -= delta;
1623 	}
1624 
1625 	return mss_now;
1626 }
1627 
1628 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1629  * As additional protections, we do not touch cwnd in retransmission phases,
1630  * and if application hit its sndbuf limit recently.
1631  */
tcp_cwnd_application_limited(struct sock * sk)1632 static void tcp_cwnd_application_limited(struct sock *sk)
1633 {
1634 	struct tcp_sock *tp = tcp_sk(sk);
1635 
1636 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1637 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1638 		/* Limited by application or receiver window. */
1639 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1640 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1641 		if (win_used < tp->snd_cwnd) {
1642 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1643 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1644 		}
1645 		tp->snd_cwnd_used = 0;
1646 	}
1647 	tp->snd_cwnd_stamp = tcp_jiffies32;
1648 }
1649 
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1650 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1651 {
1652 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1653 	struct tcp_sock *tp = tcp_sk(sk);
1654 
1655 	/* Track the strongest available signal of the degree to which the cwnd
1656 	 * is fully utilized. If cwnd-limited then remember that fact for the
1657 	 * current window. If not cwnd-limited then track the maximum number of
1658 	 * outstanding packets in the current window. (If cwnd-limited then we
1659 	 * chose to not update tp->max_packets_out to avoid an extra else
1660 	 * clause with no functional impact.)
1661 	 */
1662 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1663 	    is_cwnd_limited ||
1664 	    (!tp->is_cwnd_limited &&
1665 	     tp->packets_out > tp->max_packets_out)) {
1666 		tp->is_cwnd_limited = is_cwnd_limited;
1667 		tp->max_packets_out = tp->packets_out;
1668 		tp->cwnd_usage_seq = tp->snd_nxt;
1669 	}
1670 
1671 	if (tcp_is_cwnd_limited(sk)) {
1672 		/* Network is feed fully. */
1673 		tp->snd_cwnd_used = 0;
1674 		tp->snd_cwnd_stamp = tcp_jiffies32;
1675 	} else {
1676 		/* Network starves. */
1677 		if (tp->packets_out > tp->snd_cwnd_used)
1678 			tp->snd_cwnd_used = tp->packets_out;
1679 
1680 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1681 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1682 		    !ca_ops->cong_control)
1683 			tcp_cwnd_application_limited(sk);
1684 
1685 		/* The following conditions together indicate the starvation
1686 		 * is caused by insufficient sender buffer:
1687 		 * 1) just sent some data (see tcp_write_xmit)
1688 		 * 2) not cwnd limited (this else condition)
1689 		 * 3) no more data to send (tcp_write_queue_empty())
1690 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1691 		 */
1692 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1693 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1694 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1695 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1696 	}
1697 }
1698 
1699 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1700 static bool tcp_minshall_check(const struct tcp_sock *tp)
1701 {
1702 	return after(tp->snd_sml, tp->snd_una) &&
1703 		!after(tp->snd_sml, tp->snd_nxt);
1704 }
1705 
1706 /* Update snd_sml if this skb is under mss
1707  * Note that a TSO packet might end with a sub-mss segment
1708  * The test is really :
1709  * if ((skb->len % mss) != 0)
1710  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1711  * But we can avoid doing the divide again given we already have
1712  *  skb_pcount = skb->len / mss_now
1713  */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1714 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1715 				const struct sk_buff *skb)
1716 {
1717 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1718 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1719 }
1720 
1721 /* Return false, if packet can be sent now without violation Nagle's rules:
1722  * 1. It is full sized. (provided by caller in %partial bool)
1723  * 2. Or it contains FIN. (already checked by caller)
1724  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1725  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1726  *    With Minshall's modification: all sent small packets are ACKed.
1727  */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1728 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1729 			    int nonagle)
1730 {
1731 	return partial &&
1732 		((nonagle & TCP_NAGLE_CORK) ||
1733 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1734 }
1735 
1736 /* Return how many segs we'd like on a TSO packet,
1737  * to send one TSO packet per ms
1738  */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)1739 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1740 			    int min_tso_segs)
1741 {
1742 	u32 bytes, segs;
1743 
1744 	bytes = min_t(unsigned long,
1745 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1746 		      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1747 
1748 	/* Goal is to send at least one packet per ms,
1749 	 * not one big TSO packet every 100 ms.
1750 	 * This preserves ACK clocking and is consistent
1751 	 * with tcp_tso_should_defer() heuristic.
1752 	 */
1753 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1754 
1755 	return segs;
1756 }
1757 
1758 /* Return the number of segments we want in the skb we are transmitting.
1759  * See if congestion control module wants to decide; otherwise, autosize.
1760  */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)1761 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1762 {
1763 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1764 	u32 min_tso, tso_segs;
1765 
1766 	min_tso = ca_ops->min_tso_segs ?
1767 			ca_ops->min_tso_segs(sk) :
1768 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1769 
1770 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1771 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1772 }
1773 
1774 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)1775 static unsigned int tcp_mss_split_point(const struct sock *sk,
1776 					const struct sk_buff *skb,
1777 					unsigned int mss_now,
1778 					unsigned int max_segs,
1779 					int nonagle)
1780 {
1781 	const struct tcp_sock *tp = tcp_sk(sk);
1782 	u32 partial, needed, window, max_len;
1783 
1784 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1785 	max_len = mss_now * max_segs;
1786 
1787 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1788 		return max_len;
1789 
1790 	needed = min(skb->len, window);
1791 
1792 	if (max_len <= needed)
1793 		return max_len;
1794 
1795 	partial = needed % mss_now;
1796 	/* If last segment is not a full MSS, check if Nagle rules allow us
1797 	 * to include this last segment in this skb.
1798 	 * Otherwise, we'll split the skb at last MSS boundary
1799 	 */
1800 	if (tcp_nagle_check(partial != 0, tp, nonagle))
1801 		return needed - partial;
1802 
1803 	return needed;
1804 }
1805 
1806 /* Can at least one segment of SKB be sent right now, according to the
1807  * congestion window rules?  If so, return how many segments are allowed.
1808  */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)1809 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1810 					 const struct sk_buff *skb)
1811 {
1812 	u32 in_flight, cwnd, halfcwnd;
1813 
1814 	/* Don't be strict about the congestion window for the final FIN.  */
1815 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1816 	    tcp_skb_pcount(skb) == 1)
1817 		return 1;
1818 
1819 	in_flight = tcp_packets_in_flight(tp);
1820 	cwnd = tp->snd_cwnd;
1821 	if (in_flight >= cwnd)
1822 		return 0;
1823 
1824 	/* For better scheduling, ensure we have at least
1825 	 * 2 GSO packets in flight.
1826 	 */
1827 	halfcwnd = max(cwnd >> 1, 1U);
1828 	return min(halfcwnd, cwnd - in_flight);
1829 }
1830 
1831 /* Initialize TSO state of a skb.
1832  * This must be invoked the first time we consider transmitting
1833  * SKB onto the wire.
1834  */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)1835 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1836 {
1837 	int tso_segs = tcp_skb_pcount(skb);
1838 
1839 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1840 		tcp_set_skb_tso_segs(skb, mss_now);
1841 		tso_segs = tcp_skb_pcount(skb);
1842 	}
1843 	return tso_segs;
1844 }
1845 
1846 
1847 /* Return true if the Nagle test allows this packet to be
1848  * sent now.
1849  */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)1850 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1851 				  unsigned int cur_mss, int nonagle)
1852 {
1853 	/* Nagle rule does not apply to frames, which sit in the middle of the
1854 	 * write_queue (they have no chances to get new data).
1855 	 *
1856 	 * This is implemented in the callers, where they modify the 'nonagle'
1857 	 * argument based upon the location of SKB in the send queue.
1858 	 */
1859 	if (nonagle & TCP_NAGLE_PUSH)
1860 		return true;
1861 
1862 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1863 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1864 		return true;
1865 
1866 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1867 		return true;
1868 
1869 	return false;
1870 }
1871 
1872 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)1873 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1874 			     const struct sk_buff *skb,
1875 			     unsigned int cur_mss)
1876 {
1877 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1878 
1879 	if (skb->len > cur_mss)
1880 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1881 
1882 	return !after(end_seq, tcp_wnd_end(tp));
1883 }
1884 
1885 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1886  * which is put after SKB on the list.  It is very much like
1887  * tcp_fragment() except that it may make several kinds of assumptions
1888  * in order to speed up the splitting operation.  In particular, we
1889  * know that all the data is in scatter-gather pages, and that the
1890  * packet has never been sent out before (and thus is not cloned).
1891  */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)1892 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1893 			unsigned int mss_now, gfp_t gfp)
1894 {
1895 	int nlen = skb->len - len;
1896 	struct sk_buff *buff;
1897 	u8 flags;
1898 
1899 	/* All of a TSO frame must be composed of paged data.  */
1900 	if (skb->len != skb->data_len)
1901 		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
1902 				    skb, len, mss_now, gfp);
1903 
1904 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1905 	if (unlikely(!buff))
1906 		return -ENOMEM;
1907 	skb_copy_decrypted(buff, skb);
1908 
1909 	sk_wmem_queued_add(sk, buff->truesize);
1910 	sk_mem_charge(sk, buff->truesize);
1911 	buff->truesize += nlen;
1912 	skb->truesize -= nlen;
1913 
1914 	/* Correct the sequence numbers. */
1915 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1916 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1917 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1918 
1919 	/* PSH and FIN should only be set in the second packet. */
1920 	flags = TCP_SKB_CB(skb)->tcp_flags;
1921 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1922 	TCP_SKB_CB(buff)->tcp_flags = flags;
1923 
1924 	/* This packet was never sent out yet, so no SACK bits. */
1925 	TCP_SKB_CB(buff)->sacked = 0;
1926 
1927 	tcp_skb_fragment_eor(skb, buff);
1928 
1929 	buff->ip_summed = CHECKSUM_PARTIAL;
1930 	skb_split(skb, buff, len);
1931 	tcp_fragment_tstamp(skb, buff);
1932 
1933 	/* Fix up tso_factor for both original and new SKB.  */
1934 	tcp_set_skb_tso_segs(skb, mss_now);
1935 	tcp_set_skb_tso_segs(buff, mss_now);
1936 
1937 	/* Link BUFF into the send queue. */
1938 	__skb_header_release(buff);
1939 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
1940 
1941 	return 0;
1942 }
1943 
1944 /* Try to defer sending, if possible, in order to minimize the amount
1945  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1946  *
1947  * This algorithm is from John Heffner.
1948  */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)1949 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1950 				 bool *is_cwnd_limited,
1951 				 bool *is_rwnd_limited,
1952 				 u32 max_segs)
1953 {
1954 	const struct inet_connection_sock *icsk = inet_csk(sk);
1955 	u32 send_win, cong_win, limit, in_flight;
1956 	struct tcp_sock *tp = tcp_sk(sk);
1957 	struct sk_buff *head;
1958 	int win_divisor;
1959 	s64 delta;
1960 
1961 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1962 		goto send_now;
1963 
1964 	/* Avoid bursty behavior by allowing defer
1965 	 * only if the last write was recent (1 ms).
1966 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
1967 	 * packets waiting in a qdisc or device for EDT delivery.
1968 	 */
1969 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
1970 	if (delta > 0)
1971 		goto send_now;
1972 
1973 	in_flight = tcp_packets_in_flight(tp);
1974 
1975 	BUG_ON(tcp_skb_pcount(skb) <= 1);
1976 	BUG_ON(tp->snd_cwnd <= in_flight);
1977 
1978 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1979 
1980 	/* From in_flight test above, we know that cwnd > in_flight.  */
1981 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1982 
1983 	limit = min(send_win, cong_win);
1984 
1985 	/* If a full-sized TSO skb can be sent, do it. */
1986 	if (limit >= max_segs * tp->mss_cache)
1987 		goto send_now;
1988 
1989 	/* Middle in queue won't get any more data, full sendable already? */
1990 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1991 		goto send_now;
1992 
1993 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1994 	if (win_divisor) {
1995 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1996 
1997 		/* If at least some fraction of a window is available,
1998 		 * just use it.
1999 		 */
2000 		chunk /= win_divisor;
2001 		if (limit >= chunk)
2002 			goto send_now;
2003 	} else {
2004 		/* Different approach, try not to defer past a single
2005 		 * ACK.  Receiver should ACK every other full sized
2006 		 * frame, so if we have space for more than 3 frames
2007 		 * then send now.
2008 		 */
2009 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2010 			goto send_now;
2011 	}
2012 
2013 	/* TODO : use tsorted_sent_queue ? */
2014 	head = tcp_rtx_queue_head(sk);
2015 	if (!head)
2016 		goto send_now;
2017 	delta = tp->tcp_clock_cache - head->tstamp;
2018 	/* If next ACK is likely to come too late (half srtt), do not defer */
2019 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2020 		goto send_now;
2021 
2022 	/* Ok, it looks like it is advisable to defer.
2023 	 * Three cases are tracked :
2024 	 * 1) We are cwnd-limited
2025 	 * 2) We are rwnd-limited
2026 	 * 3) We are application limited.
2027 	 */
2028 	if (cong_win < send_win) {
2029 		if (cong_win <= skb->len) {
2030 			*is_cwnd_limited = true;
2031 			return true;
2032 		}
2033 	} else {
2034 		if (send_win <= skb->len) {
2035 			*is_rwnd_limited = true;
2036 			return true;
2037 		}
2038 	}
2039 
2040 	/* If this packet won't get more data, do not wait. */
2041 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2042 	    TCP_SKB_CB(skb)->eor)
2043 		goto send_now;
2044 
2045 	return true;
2046 
2047 send_now:
2048 	return false;
2049 }
2050 
tcp_mtu_check_reprobe(struct sock * sk)2051 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2052 {
2053 	struct inet_connection_sock *icsk = inet_csk(sk);
2054 	struct tcp_sock *tp = tcp_sk(sk);
2055 	struct net *net = sock_net(sk);
2056 	u32 interval;
2057 	s32 delta;
2058 
2059 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2060 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2061 	if (unlikely(delta >= interval * HZ)) {
2062 		int mss = tcp_current_mss(sk);
2063 
2064 		/* Update current search range */
2065 		icsk->icsk_mtup.probe_size = 0;
2066 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2067 			sizeof(struct tcphdr) +
2068 			icsk->icsk_af_ops->net_header_len;
2069 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2070 
2071 		/* Update probe time stamp */
2072 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2073 	}
2074 }
2075 
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2076 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2077 {
2078 	struct sk_buff *skb, *next;
2079 
2080 	skb = tcp_send_head(sk);
2081 	tcp_for_write_queue_from_safe(skb, next, sk) {
2082 		if (len <= skb->len)
2083 			break;
2084 
2085 		if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2086 			return false;
2087 
2088 		len -= skb->len;
2089 	}
2090 
2091 	return true;
2092 }
2093 
2094 /* Create a new MTU probe if we are ready.
2095  * MTU probe is regularly attempting to increase the path MTU by
2096  * deliberately sending larger packets.  This discovers routing
2097  * changes resulting in larger path MTUs.
2098  *
2099  * Returns 0 if we should wait to probe (no cwnd available),
2100  *         1 if a probe was sent,
2101  *         -1 otherwise
2102  */
tcp_mtu_probe(struct sock * sk)2103 static int tcp_mtu_probe(struct sock *sk)
2104 {
2105 	struct inet_connection_sock *icsk = inet_csk(sk);
2106 	struct tcp_sock *tp = tcp_sk(sk);
2107 	struct sk_buff *skb, *nskb, *next;
2108 	struct net *net = sock_net(sk);
2109 	int probe_size;
2110 	int size_needed;
2111 	int copy, len;
2112 	int mss_now;
2113 	int interval;
2114 
2115 	/* Not currently probing/verifying,
2116 	 * not in recovery,
2117 	 * have enough cwnd, and
2118 	 * not SACKing (the variable headers throw things off)
2119 	 */
2120 	if (likely(!icsk->icsk_mtup.enabled ||
2121 		   icsk->icsk_mtup.probe_size ||
2122 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2123 		   tp->snd_cwnd < 11 ||
2124 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2125 		return -1;
2126 
2127 	/* Use binary search for probe_size between tcp_mss_base,
2128 	 * and current mss_clamp. if (search_high - search_low)
2129 	 * smaller than a threshold, backoff from probing.
2130 	 */
2131 	mss_now = tcp_current_mss(sk);
2132 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2133 				    icsk->icsk_mtup.search_low) >> 1);
2134 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2135 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2136 	/* When misfortune happens, we are reprobing actively,
2137 	 * and then reprobe timer has expired. We stick with current
2138 	 * probing process by not resetting search range to its orignal.
2139 	 */
2140 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2141 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2142 		/* Check whether enough time has elaplased for
2143 		 * another round of probing.
2144 		 */
2145 		tcp_mtu_check_reprobe(sk);
2146 		return -1;
2147 	}
2148 
2149 	/* Have enough data in the send queue to probe? */
2150 	if (tp->write_seq - tp->snd_nxt < size_needed)
2151 		return -1;
2152 
2153 	if (tp->snd_wnd < size_needed)
2154 		return -1;
2155 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2156 		return 0;
2157 
2158 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2159 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2160 		if (!tcp_packets_in_flight(tp))
2161 			return -1;
2162 		else
2163 			return 0;
2164 	}
2165 
2166 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2167 		return -1;
2168 
2169 	/* We're allowed to probe.  Build it now. */
2170 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2171 	if (!nskb)
2172 		return -1;
2173 	sk_wmem_queued_add(sk, nskb->truesize);
2174 	sk_mem_charge(sk, nskb->truesize);
2175 
2176 	skb = tcp_send_head(sk);
2177 	skb_copy_decrypted(nskb, skb);
2178 
2179 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2180 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2181 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2182 	TCP_SKB_CB(nskb)->sacked = 0;
2183 	nskb->csum = 0;
2184 	nskb->ip_summed = CHECKSUM_PARTIAL;
2185 
2186 	tcp_insert_write_queue_before(nskb, skb, sk);
2187 	tcp_highest_sack_replace(sk, skb, nskb);
2188 
2189 	len = 0;
2190 	tcp_for_write_queue_from_safe(skb, next, sk) {
2191 		copy = min_t(int, skb->len, probe_size - len);
2192 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2193 
2194 		if (skb->len <= copy) {
2195 			/* We've eaten all the data from this skb.
2196 			 * Throw it away. */
2197 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2198 			/* If this is the last SKB we copy and eor is set
2199 			 * we need to propagate it to the new skb.
2200 			 */
2201 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2202 			tcp_skb_collapse_tstamp(nskb, skb);
2203 			tcp_unlink_write_queue(skb, sk);
2204 			sk_wmem_free_skb(sk, skb);
2205 		} else {
2206 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2207 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2208 			if (!skb_shinfo(skb)->nr_frags) {
2209 				skb_pull(skb, copy);
2210 			} else {
2211 				__pskb_trim_head(skb, copy);
2212 				tcp_set_skb_tso_segs(skb, mss_now);
2213 			}
2214 			TCP_SKB_CB(skb)->seq += copy;
2215 		}
2216 
2217 		len += copy;
2218 
2219 		if (len >= probe_size)
2220 			break;
2221 	}
2222 	tcp_init_tso_segs(nskb, nskb->len);
2223 
2224 	/* We're ready to send.  If this fails, the probe will
2225 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2226 	 */
2227 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2228 		/* Decrement cwnd here because we are sending
2229 		 * effectively two packets. */
2230 		tp->snd_cwnd--;
2231 		tcp_event_new_data_sent(sk, nskb);
2232 
2233 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2234 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2235 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2236 
2237 		return 1;
2238 	}
2239 
2240 	return -1;
2241 }
2242 
tcp_pacing_check(struct sock * sk)2243 static bool tcp_pacing_check(struct sock *sk)
2244 {
2245 	struct tcp_sock *tp = tcp_sk(sk);
2246 
2247 	if (!tcp_needs_internal_pacing(sk))
2248 		return false;
2249 
2250 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2251 		return false;
2252 
2253 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2254 		hrtimer_start(&tp->pacing_timer,
2255 			      ns_to_ktime(tp->tcp_wstamp_ns),
2256 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2257 		sock_hold(sk);
2258 	}
2259 	return true;
2260 }
2261 
tcp_rtx_queue_empty_or_single_skb(const struct sock * sk)2262 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2263 {
2264 	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2265 
2266 	/* No skb in the rtx queue. */
2267 	if (!node)
2268 		return true;
2269 
2270 	/* Only one skb in rtx queue. */
2271 	return !node->rb_left && !node->rb_right;
2272 }
2273 
2274 /* TCP Small Queues :
2275  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2276  * (These limits are doubled for retransmits)
2277  * This allows for :
2278  *  - better RTT estimation and ACK scheduling
2279  *  - faster recovery
2280  *  - high rates
2281  * Alas, some drivers / subsystems require a fair amount
2282  * of queued bytes to ensure line rate.
2283  * One example is wifi aggregation (802.11 AMPDU)
2284  */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2285 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2286 				  unsigned int factor)
2287 {
2288 	unsigned long limit;
2289 
2290 	limit = max_t(unsigned long,
2291 		      2 * skb->truesize,
2292 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2293 	if (sk->sk_pacing_status == SK_PACING_NONE)
2294 		limit = min_t(unsigned long, limit,
2295 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2296 	limit <<= factor;
2297 
2298 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2299 	    tcp_sk(sk)->tcp_tx_delay) {
2300 		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2301 
2302 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2303 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2304 		 * USEC_PER_SEC is approximated by 2^20.
2305 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2306 		 */
2307 		extra_bytes >>= (20 - 1);
2308 		limit += extra_bytes;
2309 	}
2310 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2311 		/* Always send skb if rtx queue is empty or has one skb.
2312 		 * No need to wait for TX completion to call us back,
2313 		 * after softirq/tasklet schedule.
2314 		 * This helps when TX completions are delayed too much.
2315 		 */
2316 		if (tcp_rtx_queue_empty_or_single_skb(sk))
2317 			return false;
2318 
2319 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2320 		/* It is possible TX completion already happened
2321 		 * before we set TSQ_THROTTLED, so we must
2322 		 * test again the condition.
2323 		 */
2324 		smp_mb__after_atomic();
2325 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2326 			return true;
2327 	}
2328 	return false;
2329 }
2330 
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2331 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2332 {
2333 	const u32 now = tcp_jiffies32;
2334 	enum tcp_chrono old = tp->chrono_type;
2335 
2336 	if (old > TCP_CHRONO_UNSPEC)
2337 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2338 	tp->chrono_start = now;
2339 	tp->chrono_type = new;
2340 }
2341 
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2342 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2343 {
2344 	struct tcp_sock *tp = tcp_sk(sk);
2345 
2346 	/* If there are multiple conditions worthy of tracking in a
2347 	 * chronograph then the highest priority enum takes precedence
2348 	 * over the other conditions. So that if something "more interesting"
2349 	 * starts happening, stop the previous chrono and start a new one.
2350 	 */
2351 	if (type > tp->chrono_type)
2352 		tcp_chrono_set(tp, type);
2353 }
2354 
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2355 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2356 {
2357 	struct tcp_sock *tp = tcp_sk(sk);
2358 
2359 
2360 	/* There are multiple conditions worthy of tracking in a
2361 	 * chronograph, so that the highest priority enum takes
2362 	 * precedence over the other conditions (see tcp_chrono_start).
2363 	 * If a condition stops, we only stop chrono tracking if
2364 	 * it's the "most interesting" or current chrono we are
2365 	 * tracking and starts busy chrono if we have pending data.
2366 	 */
2367 	if (tcp_rtx_and_write_queues_empty(sk))
2368 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2369 	else if (type == tp->chrono_type)
2370 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2371 }
2372 
2373 /* This routine writes packets to the network.  It advances the
2374  * send_head.  This happens as incoming acks open up the remote
2375  * window for us.
2376  *
2377  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2378  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2379  * account rare use of URG, this is not a big flaw.
2380  *
2381  * Send at most one packet when push_one > 0. Temporarily ignore
2382  * cwnd limit to force at most one packet out when push_one == 2.
2383 
2384  * Returns true, if no segments are in flight and we have queued segments,
2385  * but cannot send anything now because of SWS or another problem.
2386  */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2387 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2388 			   int push_one, gfp_t gfp)
2389 {
2390 	struct tcp_sock *tp = tcp_sk(sk);
2391 	struct sk_buff *skb;
2392 	unsigned int tso_segs, sent_pkts;
2393 	int cwnd_quota;
2394 	int result;
2395 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2396 	u32 max_segs;
2397 
2398 	sent_pkts = 0;
2399 
2400 	tcp_mstamp_refresh(tp);
2401 	if (!push_one) {
2402 		/* Do MTU probing. */
2403 		result = tcp_mtu_probe(sk);
2404 		if (!result) {
2405 			return false;
2406 		} else if (result > 0) {
2407 			sent_pkts = 1;
2408 		}
2409 	}
2410 
2411 	max_segs = tcp_tso_segs(sk, mss_now);
2412 	while ((skb = tcp_send_head(sk))) {
2413 		unsigned int limit;
2414 
2415 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2416 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2417 			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2418 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2419 			tcp_init_tso_segs(skb, mss_now);
2420 			goto repair; /* Skip network transmission */
2421 		}
2422 
2423 		if (tcp_pacing_check(sk))
2424 			break;
2425 
2426 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2427 		BUG_ON(!tso_segs);
2428 
2429 		cwnd_quota = tcp_cwnd_test(tp, skb);
2430 		if (!cwnd_quota) {
2431 			if (push_one == 2)
2432 				/* Force out a loss probe pkt. */
2433 				cwnd_quota = 1;
2434 			else
2435 				break;
2436 		}
2437 
2438 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2439 			is_rwnd_limited = true;
2440 			break;
2441 		}
2442 
2443 		if (tso_segs == 1) {
2444 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2445 						     (tcp_skb_is_last(sk, skb) ?
2446 						      nonagle : TCP_NAGLE_PUSH))))
2447 				break;
2448 		} else {
2449 			if (!push_one &&
2450 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2451 						 &is_rwnd_limited, max_segs))
2452 				break;
2453 		}
2454 
2455 		limit = mss_now;
2456 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2457 			limit = tcp_mss_split_point(sk, skb, mss_now,
2458 						    min_t(unsigned int,
2459 							  cwnd_quota,
2460 							  max_segs),
2461 						    nonagle);
2462 
2463 		if (skb->len > limit &&
2464 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2465 			break;
2466 
2467 		if (tcp_small_queue_check(sk, skb, 0))
2468 			break;
2469 
2470 		/* Argh, we hit an empty skb(), presumably a thread
2471 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2472 		 * We do not want to send a pure-ack packet and have
2473 		 * a strange looking rtx queue with empty packet(s).
2474 		 */
2475 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2476 			break;
2477 
2478 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2479 			break;
2480 
2481 repair:
2482 		/* Advance the send_head.  This one is sent out.
2483 		 * This call will increment packets_out.
2484 		 */
2485 		tcp_event_new_data_sent(sk, skb);
2486 
2487 		tcp_minshall_update(tp, mss_now, skb);
2488 		sent_pkts += tcp_skb_pcount(skb);
2489 
2490 		if (push_one)
2491 			break;
2492 	}
2493 
2494 	if (is_rwnd_limited)
2495 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2496 	else
2497 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2498 
2499 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2500 	if (likely(sent_pkts || is_cwnd_limited))
2501 		tcp_cwnd_validate(sk, is_cwnd_limited);
2502 
2503 	if (likely(sent_pkts)) {
2504 		if (tcp_in_cwnd_reduction(sk))
2505 			tp->prr_out += sent_pkts;
2506 
2507 		/* Send one loss probe per tail loss episode. */
2508 		if (push_one != 2)
2509 			tcp_schedule_loss_probe(sk, false);
2510 		return false;
2511 	}
2512 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2513 }
2514 
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2515 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2516 {
2517 	struct inet_connection_sock *icsk = inet_csk(sk);
2518 	struct tcp_sock *tp = tcp_sk(sk);
2519 	u32 timeout, timeout_us, rto_delta_us;
2520 	int early_retrans;
2521 
2522 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2523 	 * finishes.
2524 	 */
2525 	if (rcu_access_pointer(tp->fastopen_rsk))
2526 		return false;
2527 
2528 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2529 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2530 	 * not in loss recovery, that are either limited by cwnd or application.
2531 	 */
2532 	if ((early_retrans != 3 && early_retrans != 4) ||
2533 	    !tp->packets_out || !tcp_is_sack(tp) ||
2534 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2535 	     icsk->icsk_ca_state != TCP_CA_CWR))
2536 		return false;
2537 
2538 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2539 	 * for delayed ack when there's one outstanding packet. If no RTT
2540 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2541 	 */
2542 	if (tp->srtt_us) {
2543 		timeout_us = tp->srtt_us >> 2;
2544 		if (tp->packets_out == 1)
2545 			timeout_us += tcp_rto_min_us(sk);
2546 		else
2547 			timeout_us += TCP_TIMEOUT_MIN_US;
2548 		timeout = usecs_to_jiffies(timeout_us);
2549 	} else {
2550 		timeout = TCP_TIMEOUT_INIT;
2551 	}
2552 
2553 	/* If the RTO formula yields an earlier time, then use that time. */
2554 	rto_delta_us = advancing_rto ?
2555 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2556 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2557 	if (rto_delta_us > 0)
2558 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2559 
2560 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2561 			     TCP_RTO_MAX, NULL);
2562 	return true;
2563 }
2564 
2565 /* Thanks to skb fast clones, we can detect if a prior transmit of
2566  * a packet is still in a qdisc or driver queue.
2567  * In this case, there is very little point doing a retransmit !
2568  */
skb_still_in_host_queue(const struct sock * sk,const struct sk_buff * skb)2569 static bool skb_still_in_host_queue(const struct sock *sk,
2570 				    const struct sk_buff *skb)
2571 {
2572 	if (unlikely(skb_fclone_busy(sk, skb))) {
2573 		NET_INC_STATS(sock_net(sk),
2574 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2575 		return true;
2576 	}
2577 	return false;
2578 }
2579 
2580 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2581  * retransmit the last segment.
2582  */
tcp_send_loss_probe(struct sock * sk)2583 void tcp_send_loss_probe(struct sock *sk)
2584 {
2585 	struct tcp_sock *tp = tcp_sk(sk);
2586 	struct sk_buff *skb;
2587 	int pcount;
2588 	int mss = tcp_current_mss(sk);
2589 
2590 	/* At most one outstanding TLP */
2591 	if (tp->tlp_high_seq)
2592 		goto rearm_timer;
2593 
2594 	tp->tlp_retrans = 0;
2595 	skb = tcp_send_head(sk);
2596 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2597 		pcount = tp->packets_out;
2598 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2599 		if (tp->packets_out > pcount)
2600 			goto probe_sent;
2601 		goto rearm_timer;
2602 	}
2603 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2604 	if (unlikely(!skb)) {
2605 		WARN_ONCE(tp->packets_out,
2606 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2607 			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2608 		inet_csk(sk)->icsk_pending = 0;
2609 		return;
2610 	}
2611 
2612 	if (skb_still_in_host_queue(sk, skb))
2613 		goto rearm_timer;
2614 
2615 	pcount = tcp_skb_pcount(skb);
2616 	if (WARN_ON(!pcount))
2617 		goto rearm_timer;
2618 
2619 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2620 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2621 					  (pcount - 1) * mss, mss,
2622 					  GFP_ATOMIC)))
2623 			goto rearm_timer;
2624 		skb = skb_rb_next(skb);
2625 	}
2626 
2627 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2628 		goto rearm_timer;
2629 
2630 	if (__tcp_retransmit_skb(sk, skb, 1))
2631 		goto rearm_timer;
2632 
2633 	tp->tlp_retrans = 1;
2634 
2635 probe_sent:
2636 	/* Record snd_nxt for loss detection. */
2637 	tp->tlp_high_seq = tp->snd_nxt;
2638 
2639 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2640 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2641 	inet_csk(sk)->icsk_pending = 0;
2642 rearm_timer:
2643 	tcp_rearm_rto(sk);
2644 }
2645 
2646 /* Push out any pending frames which were held back due to
2647  * TCP_CORK or attempt at coalescing tiny packets.
2648  * The socket must be locked by the caller.
2649  */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2650 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2651 			       int nonagle)
2652 {
2653 	/* If we are closed, the bytes will have to remain here.
2654 	 * In time closedown will finish, we empty the write queue and
2655 	 * all will be happy.
2656 	 */
2657 	if (unlikely(sk->sk_state == TCP_CLOSE))
2658 		return;
2659 
2660 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2661 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2662 		tcp_check_probe_timer(sk);
2663 }
2664 
2665 /* Send _single_ skb sitting at the send head. This function requires
2666  * true push pending frames to setup probe timer etc.
2667  */
tcp_push_one(struct sock * sk,unsigned int mss_now)2668 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2669 {
2670 	struct sk_buff *skb = tcp_send_head(sk);
2671 
2672 	BUG_ON(!skb || skb->len < mss_now);
2673 
2674 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2675 }
2676 
2677 /* This function returns the amount that we can raise the
2678  * usable window based on the following constraints
2679  *
2680  * 1. The window can never be shrunk once it is offered (RFC 793)
2681  * 2. We limit memory per socket
2682  *
2683  * RFC 1122:
2684  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2685  *  RECV.NEXT + RCV.WIN fixed until:
2686  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2687  *
2688  * i.e. don't raise the right edge of the window until you can raise
2689  * it at least MSS bytes.
2690  *
2691  * Unfortunately, the recommended algorithm breaks header prediction,
2692  * since header prediction assumes th->window stays fixed.
2693  *
2694  * Strictly speaking, keeping th->window fixed violates the receiver
2695  * side SWS prevention criteria. The problem is that under this rule
2696  * a stream of single byte packets will cause the right side of the
2697  * window to always advance by a single byte.
2698  *
2699  * Of course, if the sender implements sender side SWS prevention
2700  * then this will not be a problem.
2701  *
2702  * BSD seems to make the following compromise:
2703  *
2704  *	If the free space is less than the 1/4 of the maximum
2705  *	space available and the free space is less than 1/2 mss,
2706  *	then set the window to 0.
2707  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2708  *	Otherwise, just prevent the window from shrinking
2709  *	and from being larger than the largest representable value.
2710  *
2711  * This prevents incremental opening of the window in the regime
2712  * where TCP is limited by the speed of the reader side taking
2713  * data out of the TCP receive queue. It does nothing about
2714  * those cases where the window is constrained on the sender side
2715  * because the pipeline is full.
2716  *
2717  * BSD also seems to "accidentally" limit itself to windows that are a
2718  * multiple of MSS, at least until the free space gets quite small.
2719  * This would appear to be a side effect of the mbuf implementation.
2720  * Combining these two algorithms results in the observed behavior
2721  * of having a fixed window size at almost all times.
2722  *
2723  * Below we obtain similar behavior by forcing the offered window to
2724  * a multiple of the mss when it is feasible to do so.
2725  *
2726  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2727  * Regular options like TIMESTAMP are taken into account.
2728  */
__tcp_select_window(struct sock * sk)2729 u32 __tcp_select_window(struct sock *sk)
2730 {
2731 	struct inet_connection_sock *icsk = inet_csk(sk);
2732 	struct tcp_sock *tp = tcp_sk(sk);
2733 	/* MSS for the peer's data.  Previous versions used mss_clamp
2734 	 * here.  I don't know if the value based on our guesses
2735 	 * of peer's MSS is better for the performance.  It's more correct
2736 	 * but may be worse for the performance because of rcv_mss
2737 	 * fluctuations.  --SAW  1998/11/1
2738 	 */
2739 	int mss = icsk->icsk_ack.rcv_mss;
2740 	int free_space = tcp_space(sk);
2741 	int allowed_space = tcp_full_space(sk);
2742 	int full_space = min_t(int, tp->window_clamp, allowed_space);
2743 	int window;
2744 
2745 	if (unlikely(mss > full_space)) {
2746 		mss = full_space;
2747 		if (mss <= 0)
2748 			return 0;
2749 	}
2750 	if (free_space < (full_space >> 1)) {
2751 		icsk->icsk_ack.quick = 0;
2752 
2753 		if (tcp_under_memory_pressure(sk))
2754 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2755 					       4U * tp->advmss);
2756 
2757 		/* free_space might become our new window, make sure we don't
2758 		 * increase it due to wscale.
2759 		 */
2760 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2761 
2762 		/* if free space is less than mss estimate, or is below 1/16th
2763 		 * of the maximum allowed, try to move to zero-window, else
2764 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2765 		 * new incoming data is dropped due to memory limits.
2766 		 * With large window, mss test triggers way too late in order
2767 		 * to announce zero window in time before rmem limit kicks in.
2768 		 */
2769 		if (free_space < (allowed_space >> 4) || free_space < mss)
2770 			return 0;
2771 	}
2772 
2773 	if (free_space > tp->rcv_ssthresh)
2774 		free_space = tp->rcv_ssthresh;
2775 
2776 	/* Don't do rounding if we are using window scaling, since the
2777 	 * scaled window will not line up with the MSS boundary anyway.
2778 	 */
2779 	if (tp->rx_opt.rcv_wscale) {
2780 		window = free_space;
2781 
2782 		/* Advertise enough space so that it won't get scaled away.
2783 		 * Import case: prevent zero window announcement if
2784 		 * 1<<rcv_wscale > mss.
2785 		 */
2786 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2787 	} else {
2788 		window = tp->rcv_wnd;
2789 		/* Get the largest window that is a nice multiple of mss.
2790 		 * Window clamp already applied above.
2791 		 * If our current window offering is within 1 mss of the
2792 		 * free space we just keep it. This prevents the divide
2793 		 * and multiply from happening most of the time.
2794 		 * We also don't do any window rounding when the free space
2795 		 * is too small.
2796 		 */
2797 		if (window <= free_space - mss || window > free_space)
2798 			window = rounddown(free_space, mss);
2799 		else if (mss == full_space &&
2800 			 free_space > window + (full_space >> 1))
2801 			window = free_space;
2802 	}
2803 
2804 	return window;
2805 }
2806 
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)2807 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2808 			     const struct sk_buff *next_skb)
2809 {
2810 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2811 		const struct skb_shared_info *next_shinfo =
2812 			skb_shinfo(next_skb);
2813 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2814 
2815 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2816 		shinfo->tskey = next_shinfo->tskey;
2817 		TCP_SKB_CB(skb)->txstamp_ack |=
2818 			TCP_SKB_CB(next_skb)->txstamp_ack;
2819 	}
2820 }
2821 
2822 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)2823 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2824 {
2825 	struct tcp_sock *tp = tcp_sk(sk);
2826 	struct sk_buff *next_skb = skb_rb_next(skb);
2827 	int next_skb_size;
2828 
2829 	next_skb_size = next_skb->len;
2830 
2831 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2832 
2833 	if (next_skb_size) {
2834 		if (next_skb_size <= skb_availroom(skb))
2835 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2836 				      next_skb_size);
2837 		else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
2838 			return false;
2839 	}
2840 	tcp_highest_sack_replace(sk, next_skb, skb);
2841 
2842 	/* Update sequence range on original skb. */
2843 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2844 
2845 	/* Merge over control information. This moves PSH/FIN etc. over */
2846 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2847 
2848 	/* All done, get rid of second SKB and account for it so
2849 	 * packet counting does not break.
2850 	 */
2851 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2852 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2853 
2854 	/* changed transmit queue under us so clear hints */
2855 	tcp_clear_retrans_hints_partial(tp);
2856 	if (next_skb == tp->retransmit_skb_hint)
2857 		tp->retransmit_skb_hint = skb;
2858 
2859 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2860 
2861 	tcp_skb_collapse_tstamp(skb, next_skb);
2862 
2863 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
2864 	return true;
2865 }
2866 
2867 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)2868 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2869 {
2870 	if (tcp_skb_pcount(skb) > 1)
2871 		return false;
2872 	if (skb_cloned(skb))
2873 		return false;
2874 	/* Some heuristics for collapsing over SACK'd could be invented */
2875 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2876 		return false;
2877 
2878 	return true;
2879 }
2880 
2881 /* Collapse packets in the retransmit queue to make to create
2882  * less packets on the wire. This is only done on retransmission.
2883  */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)2884 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2885 				     int space)
2886 {
2887 	struct tcp_sock *tp = tcp_sk(sk);
2888 	struct sk_buff *skb = to, *tmp;
2889 	bool first = true;
2890 
2891 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
2892 		return;
2893 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2894 		return;
2895 
2896 	skb_rbtree_walk_from_safe(skb, tmp) {
2897 		if (!tcp_can_collapse(sk, skb))
2898 			break;
2899 
2900 		if (!tcp_skb_can_collapse_to(to))
2901 			break;
2902 
2903 		space -= skb->len;
2904 
2905 		if (first) {
2906 			first = false;
2907 			continue;
2908 		}
2909 
2910 		if (space < 0)
2911 			break;
2912 
2913 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2914 			break;
2915 
2916 		if (!tcp_collapse_retrans(sk, to))
2917 			break;
2918 	}
2919 }
2920 
2921 /* This retransmits one SKB.  Policy decisions and retransmit queue
2922  * state updates are done by the caller.  Returns non-zero if an
2923  * error occurred which prevented the send.
2924  */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)2925 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2926 {
2927 	struct inet_connection_sock *icsk = inet_csk(sk);
2928 	struct tcp_sock *tp = tcp_sk(sk);
2929 	unsigned int cur_mss;
2930 	int diff, len, err;
2931 	int avail_wnd;
2932 
2933 	/* Inconclusive MTU probe */
2934 	if (icsk->icsk_mtup.probe_size)
2935 		icsk->icsk_mtup.probe_size = 0;
2936 
2937 	/* Do not sent more than we queued. 1/4 is reserved for possible
2938 	 * copying overhead: fragmentation, tunneling, mangling etc.
2939 	 */
2940 	if (refcount_read(&sk->sk_wmem_alloc) >
2941 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2942 		  sk->sk_sndbuf))
2943 		return -EAGAIN;
2944 
2945 	if (skb_still_in_host_queue(sk, skb))
2946 		return -EBUSY;
2947 
2948 start:
2949 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2950 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2951 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
2952 			TCP_SKB_CB(skb)->seq++;
2953 			goto start;
2954 		}
2955 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2956 			WARN_ON_ONCE(1);
2957 			return -EINVAL;
2958 		}
2959 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2960 			return -ENOMEM;
2961 	}
2962 
2963 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2964 		return -EHOSTUNREACH; /* Routing failure or similar. */
2965 
2966 	cur_mss = tcp_current_mss(sk);
2967 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2968 
2969 	/* If receiver has shrunk his window, and skb is out of
2970 	 * new window, do not retransmit it. The exception is the
2971 	 * case, when window is shrunk to zero. In this case
2972 	 * our retransmit of one segment serves as a zero window probe.
2973 	 */
2974 	if (avail_wnd <= 0) {
2975 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
2976 			return -EAGAIN;
2977 		avail_wnd = cur_mss;
2978 	}
2979 
2980 	len = cur_mss * segs;
2981 	if (len > avail_wnd) {
2982 		len = rounddown(avail_wnd, cur_mss);
2983 		if (!len)
2984 			len = avail_wnd;
2985 	}
2986 	if (skb->len > len) {
2987 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2988 				 cur_mss, GFP_ATOMIC))
2989 			return -ENOMEM; /* We'll try again later. */
2990 	} else {
2991 		if (skb_unclone(skb, GFP_ATOMIC))
2992 			return -ENOMEM;
2993 
2994 		diff = tcp_skb_pcount(skb);
2995 		tcp_set_skb_tso_segs(skb, cur_mss);
2996 		diff -= tcp_skb_pcount(skb);
2997 		if (diff)
2998 			tcp_adjust_pcount(sk, skb, diff);
2999 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3000 		if (skb->len < avail_wnd)
3001 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3002 	}
3003 
3004 	/* RFC3168, section 6.1.1.1. ECN fallback */
3005 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3006 		tcp_ecn_clear_syn(sk, skb);
3007 
3008 	/* Update global and local TCP statistics. */
3009 	segs = tcp_skb_pcount(skb);
3010 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3011 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3012 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3013 	tp->total_retrans += segs;
3014 	tp->bytes_retrans += skb->len;
3015 
3016 	/* make sure skb->data is aligned on arches that require it
3017 	 * and check if ack-trimming & collapsing extended the headroom
3018 	 * beyond what csum_start can cover.
3019 	 */
3020 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3021 		     skb_headroom(skb) >= 0xFFFF)) {
3022 		struct sk_buff *nskb;
3023 
3024 		tcp_skb_tsorted_save(skb) {
3025 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3026 			if (nskb) {
3027 				nskb->dev = NULL;
3028 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3029 			} else {
3030 				err = -ENOBUFS;
3031 			}
3032 		} tcp_skb_tsorted_restore(skb);
3033 
3034 		if (!err) {
3035 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3036 			tcp_rate_skb_sent(sk, skb);
3037 		}
3038 	} else {
3039 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3040 	}
3041 
3042 	/* To avoid taking spuriously low RTT samples based on a timestamp
3043 	 * for a transmit that never happened, always mark EVER_RETRANS
3044 	 */
3045 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3046 
3047 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3048 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3049 				  TCP_SKB_CB(skb)->seq, segs, err);
3050 
3051 	if (likely(!err)) {
3052 		trace_tcp_retransmit_skb(sk, skb);
3053 	} else if (err != -EBUSY) {
3054 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3055 	}
3056 	return err;
3057 }
3058 
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3059 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3060 {
3061 	struct tcp_sock *tp = tcp_sk(sk);
3062 	int err = __tcp_retransmit_skb(sk, skb, segs);
3063 
3064 	if (err == 0) {
3065 #if FASTRETRANS_DEBUG > 0
3066 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3067 			net_dbg_ratelimited("retrans_out leaked\n");
3068 		}
3069 #endif
3070 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3071 		tp->retrans_out += tcp_skb_pcount(skb);
3072 	}
3073 
3074 	/* Save stamp of the first (attempted) retransmit. */
3075 	if (!tp->retrans_stamp)
3076 		tp->retrans_stamp = tcp_skb_timestamp(skb);
3077 
3078 	if (tp->undo_retrans < 0)
3079 		tp->undo_retrans = 0;
3080 	tp->undo_retrans += tcp_skb_pcount(skb);
3081 	return err;
3082 }
3083 
3084 /* This gets called after a retransmit timeout, and the initially
3085  * retransmitted data is acknowledged.  It tries to continue
3086  * resending the rest of the retransmit queue, until either
3087  * we've sent it all or the congestion window limit is reached.
3088  */
tcp_xmit_retransmit_queue(struct sock * sk)3089 void tcp_xmit_retransmit_queue(struct sock *sk)
3090 {
3091 	const struct inet_connection_sock *icsk = inet_csk(sk);
3092 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3093 	struct tcp_sock *tp = tcp_sk(sk);
3094 	u32 max_segs;
3095 	int mib_idx;
3096 
3097 	if (!tp->packets_out)
3098 		return;
3099 
3100 	rtx_head = tcp_rtx_queue_head(sk);
3101 	skb = tp->retransmit_skb_hint ?: rtx_head;
3102 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3103 	skb_rbtree_walk_from(skb) {
3104 		__u8 sacked;
3105 		int segs;
3106 
3107 		if (tcp_pacing_check(sk))
3108 			break;
3109 
3110 		/* we could do better than to assign each time */
3111 		if (!hole)
3112 			tp->retransmit_skb_hint = skb;
3113 
3114 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3115 		if (segs <= 0)
3116 			return;
3117 		sacked = TCP_SKB_CB(skb)->sacked;
3118 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3119 		 * we need to make sure not sending too bigs TSO packets
3120 		 */
3121 		segs = min_t(int, segs, max_segs);
3122 
3123 		if (tp->retrans_out >= tp->lost_out) {
3124 			break;
3125 		} else if (!(sacked & TCPCB_LOST)) {
3126 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3127 				hole = skb;
3128 			continue;
3129 
3130 		} else {
3131 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3132 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3133 			else
3134 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3135 		}
3136 
3137 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3138 			continue;
3139 
3140 		if (tcp_small_queue_check(sk, skb, 1))
3141 			return;
3142 
3143 		if (tcp_retransmit_skb(sk, skb, segs))
3144 			return;
3145 
3146 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3147 
3148 		if (tcp_in_cwnd_reduction(sk))
3149 			tp->prr_out += tcp_skb_pcount(skb);
3150 
3151 		if (skb == rtx_head &&
3152 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3153 			tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3154 					     inet_csk(sk)->icsk_rto,
3155 					     TCP_RTO_MAX,
3156 					     skb);
3157 	}
3158 }
3159 
3160 /* We allow to exceed memory limits for FIN packets to expedite
3161  * connection tear down and (memory) recovery.
3162  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3163  * or even be forced to close flow without any FIN.
3164  * In general, we want to allow one skb per socket to avoid hangs
3165  * with edge trigger epoll()
3166  */
sk_forced_mem_schedule(struct sock * sk,int size)3167 void sk_forced_mem_schedule(struct sock *sk, int size)
3168 {
3169 	int delta, amt;
3170 
3171 	delta = size - sk->sk_forward_alloc;
3172 	if (delta <= 0)
3173 		return;
3174 	amt = sk_mem_pages(delta);
3175 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3176 	sk_memory_allocated_add(sk, amt);
3177 
3178 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3179 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3180 }
3181 
3182 /* Send a FIN. The caller locks the socket for us.
3183  * We should try to send a FIN packet really hard, but eventually give up.
3184  */
tcp_send_fin(struct sock * sk)3185 void tcp_send_fin(struct sock *sk)
3186 {
3187 	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3188 	struct tcp_sock *tp = tcp_sk(sk);
3189 
3190 	/* Optimization, tack on the FIN if we have one skb in write queue and
3191 	 * this skb was not yet sent, or we are under memory pressure.
3192 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3193 	 * as TCP stack thinks it has already been transmitted.
3194 	 */
3195 	if (!tskb && tcp_under_memory_pressure(sk))
3196 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3197 
3198 	if (tskb) {
3199 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3200 		TCP_SKB_CB(tskb)->end_seq++;
3201 		tp->write_seq++;
3202 		if (tcp_write_queue_empty(sk)) {
3203 			/* This means tskb was already sent.
3204 			 * Pretend we included the FIN on previous transmit.
3205 			 * We need to set tp->snd_nxt to the value it would have
3206 			 * if FIN had been sent. This is because retransmit path
3207 			 * does not change tp->snd_nxt.
3208 			 */
3209 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3210 			return;
3211 		}
3212 	} else {
3213 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3214 		if (unlikely(!skb))
3215 			return;
3216 
3217 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3218 		skb_reserve(skb, MAX_TCP_HEADER);
3219 		sk_forced_mem_schedule(sk, skb->truesize);
3220 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3221 		tcp_init_nondata_skb(skb, tp->write_seq,
3222 				     TCPHDR_ACK | TCPHDR_FIN);
3223 		tcp_queue_skb(sk, skb);
3224 	}
3225 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3226 }
3227 
3228 /* We get here when a process closes a file descriptor (either due to
3229  * an explicit close() or as a byproduct of exit()'ing) and there
3230  * was unread data in the receive queue.  This behavior is recommended
3231  * by RFC 2525, section 2.17.  -DaveM
3232  */
tcp_send_active_reset(struct sock * sk,gfp_t priority)3233 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3234 {
3235 	struct sk_buff *skb;
3236 
3237 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3238 
3239 	/* NOTE: No TCP options attached and we never retransmit this. */
3240 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3241 	if (!skb) {
3242 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3243 		return;
3244 	}
3245 
3246 	/* Reserve space for headers and prepare control bits. */
3247 	skb_reserve(skb, MAX_TCP_HEADER);
3248 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3249 			     TCPHDR_ACK | TCPHDR_RST);
3250 	tcp_mstamp_refresh(tcp_sk(sk));
3251 	/* Send it off. */
3252 	if (tcp_transmit_skb(sk, skb, 0, priority))
3253 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3254 
3255 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3256 	 * skb here is different to the troublesome skb, so use NULL
3257 	 */
3258 	trace_tcp_send_reset(sk, NULL);
3259 }
3260 
3261 /* Send a crossed SYN-ACK during socket establishment.
3262  * WARNING: This routine must only be called when we have already sent
3263  * a SYN packet that crossed the incoming SYN that caused this routine
3264  * to get called. If this assumption fails then the initial rcv_wnd
3265  * and rcv_wscale values will not be correct.
3266  */
tcp_send_synack(struct sock * sk)3267 int tcp_send_synack(struct sock *sk)
3268 {
3269 	struct sk_buff *skb;
3270 
3271 	skb = tcp_rtx_queue_head(sk);
3272 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3273 		pr_err("%s: wrong queue state\n", __func__);
3274 		return -EFAULT;
3275 	}
3276 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3277 		if (skb_cloned(skb)) {
3278 			struct sk_buff *nskb;
3279 
3280 			tcp_skb_tsorted_save(skb) {
3281 				nskb = skb_copy(skb, GFP_ATOMIC);
3282 			} tcp_skb_tsorted_restore(skb);
3283 			if (!nskb)
3284 				return -ENOMEM;
3285 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3286 			tcp_highest_sack_replace(sk, skb, nskb);
3287 			tcp_rtx_queue_unlink_and_free(skb, sk);
3288 			__skb_header_release(nskb);
3289 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3290 			sk_wmem_queued_add(sk, nskb->truesize);
3291 			sk_mem_charge(sk, nskb->truesize);
3292 			skb = nskb;
3293 		}
3294 
3295 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3296 		tcp_ecn_send_synack(sk, skb);
3297 	}
3298 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3299 }
3300 
3301 /**
3302  * tcp_make_synack - Prepare a SYN-ACK.
3303  * sk: listener socket
3304  * dst: dst entry attached to the SYNACK
3305  * req: request_sock pointer
3306  *
3307  * Allocate one skb and build a SYNACK packet.
3308  * @dst is consumed : Caller should not use it again.
3309  */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type)3310 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3311 				struct request_sock *req,
3312 				struct tcp_fastopen_cookie *foc,
3313 				enum tcp_synack_type synack_type)
3314 {
3315 	struct inet_request_sock *ireq = inet_rsk(req);
3316 	const struct tcp_sock *tp = tcp_sk(sk);
3317 	struct tcp_md5sig_key *md5 = NULL;
3318 	struct tcp_out_options opts;
3319 	struct sk_buff *skb;
3320 	int tcp_header_size;
3321 	struct tcphdr *th;
3322 	int mss;
3323 	u64 now;
3324 
3325 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3326 	if (unlikely(!skb)) {
3327 		dst_release(dst);
3328 		return NULL;
3329 	}
3330 	/* Reserve space for headers. */
3331 	skb_reserve(skb, MAX_TCP_HEADER);
3332 
3333 	switch (synack_type) {
3334 	case TCP_SYNACK_NORMAL:
3335 		skb_set_owner_w(skb, req_to_sk(req));
3336 		break;
3337 	case TCP_SYNACK_COOKIE:
3338 		/* Under synflood, we do not attach skb to a socket,
3339 		 * to avoid false sharing.
3340 		 */
3341 		break;
3342 	case TCP_SYNACK_FASTOPEN:
3343 		/* sk is a const pointer, because we want to express multiple
3344 		 * cpu might call us concurrently.
3345 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3346 		 */
3347 		skb_set_owner_w(skb, (struct sock *)sk);
3348 		break;
3349 	}
3350 	skb_dst_set(skb, dst);
3351 
3352 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3353 
3354 	memset(&opts, 0, sizeof(opts));
3355 	now = tcp_clock_ns();
3356 #ifdef CONFIG_SYN_COOKIES
3357 	if (unlikely(req->cookie_ts))
3358 		skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
3359 	else
3360 #endif
3361 	{
3362 		skb->skb_mstamp_ns = now;
3363 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3364 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3365 	}
3366 
3367 #ifdef CONFIG_TCP_MD5SIG
3368 	rcu_read_lock();
3369 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3370 #endif
3371 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3372 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3373 					     foc, synack_type) + sizeof(*th);
3374 
3375 	skb_push(skb, tcp_header_size);
3376 	skb_reset_transport_header(skb);
3377 
3378 	th = (struct tcphdr *)skb->data;
3379 	memset(th, 0, sizeof(struct tcphdr));
3380 	th->syn = 1;
3381 	th->ack = 1;
3382 	tcp_ecn_make_synack(req, th);
3383 	th->source = htons(ireq->ir_num);
3384 	th->dest = ireq->ir_rmt_port;
3385 	skb->mark = ireq->ir_mark;
3386 	skb->ip_summed = CHECKSUM_PARTIAL;
3387 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3388 	/* XXX data is queued and acked as is. No buffer/window check */
3389 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3390 
3391 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3392 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3393 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3394 	th->doff = (tcp_header_size >> 2);
3395 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3396 
3397 #ifdef CONFIG_TCP_MD5SIG
3398 	/* Okay, we have all we need - do the md5 hash if needed */
3399 	if (md5)
3400 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3401 					       md5, req_to_sk(req), skb);
3402 	rcu_read_unlock();
3403 #endif
3404 
3405 	skb->skb_mstamp_ns = now;
3406 	tcp_add_tx_delay(skb, tp);
3407 
3408 	return skb;
3409 }
3410 EXPORT_SYMBOL(tcp_make_synack);
3411 
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3412 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3413 {
3414 	struct inet_connection_sock *icsk = inet_csk(sk);
3415 	const struct tcp_congestion_ops *ca;
3416 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3417 
3418 	if (ca_key == TCP_CA_UNSPEC)
3419 		return;
3420 
3421 	rcu_read_lock();
3422 	ca = tcp_ca_find_key(ca_key);
3423 	if (likely(ca && try_module_get(ca->owner))) {
3424 		module_put(icsk->icsk_ca_ops->owner);
3425 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3426 		icsk->icsk_ca_ops = ca;
3427 	}
3428 	rcu_read_unlock();
3429 }
3430 
3431 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3432 static void tcp_connect_init(struct sock *sk)
3433 {
3434 	const struct dst_entry *dst = __sk_dst_get(sk);
3435 	struct tcp_sock *tp = tcp_sk(sk);
3436 	__u8 rcv_wscale;
3437 	u32 rcv_wnd;
3438 
3439 	/* We'll fix this up when we get a response from the other end.
3440 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3441 	 */
3442 	tp->tcp_header_len = sizeof(struct tcphdr);
3443 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3444 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3445 
3446 #ifdef CONFIG_TCP_MD5SIG
3447 	if (tp->af_specific->md5_lookup(sk, sk))
3448 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3449 #endif
3450 
3451 	/* If user gave his TCP_MAXSEG, record it to clamp */
3452 	if (tp->rx_opt.user_mss)
3453 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3454 	tp->max_window = 0;
3455 	tcp_mtup_init(sk);
3456 	tcp_sync_mss(sk, dst_mtu(dst));
3457 
3458 	tcp_ca_dst_init(sk, dst);
3459 
3460 	if (!tp->window_clamp)
3461 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3462 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3463 
3464 	tcp_initialize_rcv_mss(sk);
3465 
3466 	/* limit the window selection if the user enforce a smaller rx buffer */
3467 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3468 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3469 		tp->window_clamp = tcp_full_space(sk);
3470 
3471 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3472 	if (rcv_wnd == 0)
3473 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3474 
3475 	tcp_select_initial_window(sk, tcp_full_space(sk),
3476 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3477 				  &tp->rcv_wnd,
3478 				  &tp->window_clamp,
3479 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3480 				  &rcv_wscale,
3481 				  rcv_wnd);
3482 
3483 	tp->rx_opt.rcv_wscale = rcv_wscale;
3484 	tp->rcv_ssthresh = tp->rcv_wnd;
3485 
3486 	sk->sk_err = 0;
3487 	sock_reset_flag(sk, SOCK_DONE);
3488 	tp->snd_wnd = 0;
3489 	tcp_init_wl(tp, 0);
3490 	tcp_write_queue_purge(sk);
3491 	tp->snd_una = tp->write_seq;
3492 	tp->snd_sml = tp->write_seq;
3493 	tp->snd_up = tp->write_seq;
3494 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3495 
3496 	if (likely(!tp->repair))
3497 		tp->rcv_nxt = 0;
3498 	else
3499 		tp->rcv_tstamp = tcp_jiffies32;
3500 	tp->rcv_wup = tp->rcv_nxt;
3501 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3502 
3503 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3504 	inet_csk(sk)->icsk_retransmits = 0;
3505 	tcp_clear_retrans(tp);
3506 }
3507 
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3508 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3509 {
3510 	struct tcp_sock *tp = tcp_sk(sk);
3511 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3512 
3513 	tcb->end_seq += skb->len;
3514 	__skb_header_release(skb);
3515 	sk_wmem_queued_add(sk, skb->truesize);
3516 	sk_mem_charge(sk, skb->truesize);
3517 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3518 	tp->packets_out += tcp_skb_pcount(skb);
3519 }
3520 
3521 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3522  * queue a data-only packet after the regular SYN, such that regular SYNs
3523  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3524  * only the SYN sequence, the data are retransmitted in the first ACK.
3525  * If cookie is not cached or other error occurs, falls back to send a
3526  * regular SYN with Fast Open cookie request option.
3527  */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3528 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3529 {
3530 	struct inet_connection_sock *icsk = inet_csk(sk);
3531 	struct tcp_sock *tp = tcp_sk(sk);
3532 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3533 	int space, err = 0;
3534 	struct sk_buff *syn_data;
3535 
3536 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3537 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3538 		goto fallback;
3539 
3540 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3541 	 * user-MSS. Reserve maximum option space for middleboxes that add
3542 	 * private TCP options. The cost is reduced data space in SYN :(
3543 	 */
3544 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3545 	/* Sync mss_cache after updating the mss_clamp */
3546 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3547 
3548 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3549 		MAX_TCP_OPTION_SPACE;
3550 
3551 	space = min_t(size_t, space, fo->size);
3552 
3553 	/* limit to order-0 allocations */
3554 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3555 
3556 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3557 	if (!syn_data)
3558 		goto fallback;
3559 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3560 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3561 	if (space) {
3562 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3563 					    &fo->data->msg_iter);
3564 		if (unlikely(!copied)) {
3565 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3566 			kfree_skb(syn_data);
3567 			goto fallback;
3568 		}
3569 		if (copied != space) {
3570 			skb_trim(syn_data, copied);
3571 			space = copied;
3572 		}
3573 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3574 	}
3575 	/* No more data pending in inet_wait_for_connect() */
3576 	if (space == fo->size)
3577 		fo->data = NULL;
3578 	fo->copied = space;
3579 
3580 	tcp_connect_queue_skb(sk, syn_data);
3581 	if (syn_data->len)
3582 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3583 
3584 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3585 
3586 	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3587 
3588 	/* Now full SYN+DATA was cloned and sent (or not),
3589 	 * remove the SYN from the original skb (syn_data)
3590 	 * we keep in write queue in case of a retransmit, as we
3591 	 * also have the SYN packet (with no data) in the same queue.
3592 	 */
3593 	TCP_SKB_CB(syn_data)->seq++;
3594 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3595 	if (!err) {
3596 		tp->syn_data = (fo->copied > 0);
3597 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3598 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3599 		goto done;
3600 	}
3601 
3602 	/* data was not sent, put it in write_queue */
3603 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3604 	tp->packets_out -= tcp_skb_pcount(syn_data);
3605 
3606 fallback:
3607 	/* Send a regular SYN with Fast Open cookie request option */
3608 	if (fo->cookie.len > 0)
3609 		fo->cookie.len = 0;
3610 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3611 	if (err)
3612 		tp->syn_fastopen = 0;
3613 done:
3614 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3615 	return err;
3616 }
3617 
3618 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3619 int tcp_connect(struct sock *sk)
3620 {
3621 	struct tcp_sock *tp = tcp_sk(sk);
3622 	struct sk_buff *buff;
3623 	int err;
3624 
3625 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3626 
3627 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3628 		return -EHOSTUNREACH; /* Routing failure or similar. */
3629 
3630 	tcp_connect_init(sk);
3631 
3632 	if (unlikely(tp->repair)) {
3633 		tcp_finish_connect(sk, NULL);
3634 		return 0;
3635 	}
3636 
3637 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3638 	if (unlikely(!buff))
3639 		return -ENOBUFS;
3640 
3641 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3642 	tcp_mstamp_refresh(tp);
3643 	tp->retrans_stamp = tcp_time_stamp(tp);
3644 	tcp_connect_queue_skb(sk, buff);
3645 	tcp_ecn_send_syn(sk, buff);
3646 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3647 
3648 	/* Send off SYN; include data in Fast Open. */
3649 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3650 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3651 	if (err == -ECONNREFUSED)
3652 		return err;
3653 
3654 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3655 	 * in order to make this packet get counted in tcpOutSegs.
3656 	 */
3657 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3658 	tp->pushed_seq = tp->write_seq;
3659 	buff = tcp_send_head(sk);
3660 	if (unlikely(buff)) {
3661 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3662 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3663 	}
3664 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3665 
3666 	/* Timer for repeating the SYN until an answer. */
3667 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3668 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3669 	return 0;
3670 }
3671 EXPORT_SYMBOL(tcp_connect);
3672 
3673 /* Send out a delayed ack, the caller does the policy checking
3674  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3675  * for details.
3676  */
tcp_send_delayed_ack(struct sock * sk)3677 void tcp_send_delayed_ack(struct sock *sk)
3678 {
3679 	struct inet_connection_sock *icsk = inet_csk(sk);
3680 	int ato = icsk->icsk_ack.ato;
3681 	unsigned long timeout;
3682 
3683 	if (ato > TCP_DELACK_MIN) {
3684 		const struct tcp_sock *tp = tcp_sk(sk);
3685 		int max_ato = HZ / 2;
3686 
3687 		if (inet_csk_in_pingpong_mode(sk) ||
3688 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3689 			max_ato = TCP_DELACK_MAX;
3690 
3691 		/* Slow path, intersegment interval is "high". */
3692 
3693 		/* If some rtt estimate is known, use it to bound delayed ack.
3694 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3695 		 * directly.
3696 		 */
3697 		if (tp->srtt_us) {
3698 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3699 					TCP_DELACK_MIN);
3700 
3701 			if (rtt < max_ato)
3702 				max_ato = rtt;
3703 		}
3704 
3705 		ato = min(ato, max_ato);
3706 	}
3707 
3708 	/* Stay within the limit we were given */
3709 	timeout = jiffies + ato;
3710 
3711 	/* Use new timeout only if there wasn't a older one earlier. */
3712 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3713 		/* If delack timer was blocked or is about to expire,
3714 		 * send ACK now.
3715 		 */
3716 		if (icsk->icsk_ack.blocked ||
3717 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3718 			tcp_send_ack(sk);
3719 			return;
3720 		}
3721 
3722 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3723 			timeout = icsk->icsk_ack.timeout;
3724 	}
3725 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3726 	icsk->icsk_ack.timeout = timeout;
3727 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3728 }
3729 
3730 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)3731 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3732 {
3733 	struct sk_buff *buff;
3734 
3735 	/* If we have been reset, we may not send again. */
3736 	if (sk->sk_state == TCP_CLOSE)
3737 		return;
3738 
3739 	/* We are not putting this on the write queue, so
3740 	 * tcp_transmit_skb() will set the ownership to this
3741 	 * sock.
3742 	 */
3743 	buff = alloc_skb(MAX_TCP_HEADER,
3744 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3745 	if (unlikely(!buff)) {
3746 		inet_csk_schedule_ack(sk);
3747 		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3748 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3749 					  TCP_DELACK_MAX, TCP_RTO_MAX);
3750 		return;
3751 	}
3752 
3753 	/* Reserve space for headers and prepare control bits. */
3754 	skb_reserve(buff, MAX_TCP_HEADER);
3755 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3756 
3757 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3758 	 * too much.
3759 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3760 	 */
3761 	skb_set_tcp_pure_ack(buff);
3762 
3763 	/* Send it off, this clears delayed acks for us. */
3764 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3765 }
3766 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3767 
tcp_send_ack(struct sock * sk)3768 void tcp_send_ack(struct sock *sk)
3769 {
3770 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3771 }
3772 
3773 /* This routine sends a packet with an out of date sequence
3774  * number. It assumes the other end will try to ack it.
3775  *
3776  * Question: what should we make while urgent mode?
3777  * 4.4BSD forces sending single byte of data. We cannot send
3778  * out of window data, because we have SND.NXT==SND.MAX...
3779  *
3780  * Current solution: to send TWO zero-length segments in urgent mode:
3781  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3782  * out-of-date with SND.UNA-1 to probe window.
3783  */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)3784 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3785 {
3786 	struct tcp_sock *tp = tcp_sk(sk);
3787 	struct sk_buff *skb;
3788 
3789 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3790 	skb = alloc_skb(MAX_TCP_HEADER,
3791 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3792 	if (!skb)
3793 		return -1;
3794 
3795 	/* Reserve space for headers and set control bits. */
3796 	skb_reserve(skb, MAX_TCP_HEADER);
3797 	/* Use a previous sequence.  This should cause the other
3798 	 * end to send an ack.  Don't queue or clone SKB, just
3799 	 * send it.
3800 	 */
3801 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3802 	NET_INC_STATS(sock_net(sk), mib);
3803 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3804 }
3805 
3806 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)3807 void tcp_send_window_probe(struct sock *sk)
3808 {
3809 	if (sk->sk_state == TCP_ESTABLISHED) {
3810 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3811 		tcp_mstamp_refresh(tcp_sk(sk));
3812 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3813 	}
3814 }
3815 
3816 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)3817 int tcp_write_wakeup(struct sock *sk, int mib)
3818 {
3819 	struct tcp_sock *tp = tcp_sk(sk);
3820 	struct sk_buff *skb;
3821 
3822 	if (sk->sk_state == TCP_CLOSE)
3823 		return -1;
3824 
3825 	skb = tcp_send_head(sk);
3826 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3827 		int err;
3828 		unsigned int mss = tcp_current_mss(sk);
3829 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3830 
3831 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3832 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3833 
3834 		/* We are probing the opening of a window
3835 		 * but the window size is != 0
3836 		 * must have been a result SWS avoidance ( sender )
3837 		 */
3838 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3839 		    skb->len > mss) {
3840 			seg_size = min(seg_size, mss);
3841 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3842 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3843 					 skb, seg_size, mss, GFP_ATOMIC))
3844 				return -1;
3845 		} else if (!tcp_skb_pcount(skb))
3846 			tcp_set_skb_tso_segs(skb, mss);
3847 
3848 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3849 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3850 		if (!err)
3851 			tcp_event_new_data_sent(sk, skb);
3852 		return err;
3853 	} else {
3854 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3855 			tcp_xmit_probe_skb(sk, 1, mib);
3856 		return tcp_xmit_probe_skb(sk, 0, mib);
3857 	}
3858 }
3859 
3860 /* A window probe timeout has occurred.  If window is not closed send
3861  * a partial packet else a zero probe.
3862  */
tcp_send_probe0(struct sock * sk)3863 void tcp_send_probe0(struct sock *sk)
3864 {
3865 	struct inet_connection_sock *icsk = inet_csk(sk);
3866 	struct tcp_sock *tp = tcp_sk(sk);
3867 	struct net *net = sock_net(sk);
3868 	unsigned long timeout;
3869 	int err;
3870 
3871 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3872 
3873 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
3874 		/* Cancel probe timer, if it is not required. */
3875 		icsk->icsk_probes_out = 0;
3876 		icsk->icsk_backoff = 0;
3877 		icsk->icsk_probes_tstamp = 0;
3878 		return;
3879 	}
3880 
3881 	icsk->icsk_probes_out++;
3882 	if (err <= 0) {
3883 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
3884 			icsk->icsk_backoff++;
3885 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
3886 	} else {
3887 		/* If packet was not sent due to local congestion,
3888 		 * Let senders fight for local resources conservatively.
3889 		 */
3890 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
3891 	}
3892 
3893 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
3894 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX, NULL);
3895 }
3896 
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)3897 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3898 {
3899 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3900 	struct flowi fl;
3901 	int res;
3902 
3903 	tcp_rsk(req)->txhash = net_tx_rndhash();
3904 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3905 	if (!res) {
3906 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3907 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3908 		if (unlikely(tcp_passive_fastopen(sk)))
3909 			tcp_sk(sk)->total_retrans++;
3910 		trace_tcp_retransmit_synack(sk, req);
3911 	}
3912 	return res;
3913 }
3914 EXPORT_SYMBOL(tcp_rtx_synack);
3915