• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3 
4 #include <linux/module.h>
5 #include <linux/sched.h>
6 #include <linux/mutex.h>
7 #include <linux/list.h>
8 #include <linux/stringify.h>
9 #include <linux/mm.h>
10 #include <linux/vmalloc.h>
11 #include <linux/memory.h>
12 #include <linux/stop_machine.h>
13 #include <linux/slab.h>
14 #include <linux/kdebug.h>
15 #include <linux/kprobes.h>
16 #include <linux/mmu_context.h>
17 #include <linux/bsearch.h>
18 #include <asm/text-patching.h>
19 #include <asm/alternative.h>
20 #include <asm/sections.h>
21 #include <asm/pgtable.h>
22 #include <asm/mce.h>
23 #include <asm/nmi.h>
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26 #include <asm/io.h>
27 #include <asm/fixmap.h>
28 
29 int __read_mostly alternatives_patched;
30 
31 EXPORT_SYMBOL_GPL(alternatives_patched);
32 
33 #define MAX_PATCH_LEN (255-1)
34 
35 static int __initdata_or_module debug_alternative;
36 
debug_alt(char * str)37 static int __init debug_alt(char *str)
38 {
39 	debug_alternative = 1;
40 	return 1;
41 }
42 __setup("debug-alternative", debug_alt);
43 
44 static int noreplace_smp;
45 
setup_noreplace_smp(char * str)46 static int __init setup_noreplace_smp(char *str)
47 {
48 	noreplace_smp = 1;
49 	return 1;
50 }
51 __setup("noreplace-smp", setup_noreplace_smp);
52 
53 #define DPRINTK(fmt, args...)						\
54 do {									\
55 	if (debug_alternative)						\
56 		printk(KERN_DEBUG "%s: " fmt "\n", __func__, ##args);	\
57 } while (0)
58 
59 #define DUMP_BYTES(buf, len, fmt, args...)				\
60 do {									\
61 	if (unlikely(debug_alternative)) {				\
62 		int j;							\
63 									\
64 		if (!(len))						\
65 			break;						\
66 									\
67 		printk(KERN_DEBUG fmt, ##args);				\
68 		for (j = 0; j < (len) - 1; j++)				\
69 			printk(KERN_CONT "%02hhx ", buf[j]);		\
70 		printk(KERN_CONT "%02hhx\n", buf[j]);			\
71 	}								\
72 } while (0)
73 
74 /*
75  * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
76  * that correspond to that nop. Getting from one nop to the next, we
77  * add to the array the offset that is equal to the sum of all sizes of
78  * nops preceding the one we are after.
79  *
80  * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
81  * nice symmetry of sizes of the previous nops.
82  */
83 #if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
84 static const unsigned char intelnops[] =
85 {
86 	GENERIC_NOP1,
87 	GENERIC_NOP2,
88 	GENERIC_NOP3,
89 	GENERIC_NOP4,
90 	GENERIC_NOP5,
91 	GENERIC_NOP6,
92 	GENERIC_NOP7,
93 	GENERIC_NOP8,
94 	GENERIC_NOP5_ATOMIC
95 };
96 static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
97 {
98 	NULL,
99 	intelnops,
100 	intelnops + 1,
101 	intelnops + 1 + 2,
102 	intelnops + 1 + 2 + 3,
103 	intelnops + 1 + 2 + 3 + 4,
104 	intelnops + 1 + 2 + 3 + 4 + 5,
105 	intelnops + 1 + 2 + 3 + 4 + 5 + 6,
106 	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
107 	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
108 };
109 #endif
110 
111 #ifdef K8_NOP1
112 static const unsigned char k8nops[] =
113 {
114 	K8_NOP1,
115 	K8_NOP2,
116 	K8_NOP3,
117 	K8_NOP4,
118 	K8_NOP5,
119 	K8_NOP6,
120 	K8_NOP7,
121 	K8_NOP8,
122 	K8_NOP5_ATOMIC
123 };
124 static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
125 {
126 	NULL,
127 	k8nops,
128 	k8nops + 1,
129 	k8nops + 1 + 2,
130 	k8nops + 1 + 2 + 3,
131 	k8nops + 1 + 2 + 3 + 4,
132 	k8nops + 1 + 2 + 3 + 4 + 5,
133 	k8nops + 1 + 2 + 3 + 4 + 5 + 6,
134 	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
135 	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
136 };
137 #endif
138 
139 #if defined(K7_NOP1) && !defined(CONFIG_X86_64)
140 static const unsigned char k7nops[] =
141 {
142 	K7_NOP1,
143 	K7_NOP2,
144 	K7_NOP3,
145 	K7_NOP4,
146 	K7_NOP5,
147 	K7_NOP6,
148 	K7_NOP7,
149 	K7_NOP8,
150 	K7_NOP5_ATOMIC
151 };
152 static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
153 {
154 	NULL,
155 	k7nops,
156 	k7nops + 1,
157 	k7nops + 1 + 2,
158 	k7nops + 1 + 2 + 3,
159 	k7nops + 1 + 2 + 3 + 4,
160 	k7nops + 1 + 2 + 3 + 4 + 5,
161 	k7nops + 1 + 2 + 3 + 4 + 5 + 6,
162 	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
163 	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
164 };
165 #endif
166 
167 #ifdef P6_NOP1
168 static const unsigned char p6nops[] =
169 {
170 	P6_NOP1,
171 	P6_NOP2,
172 	P6_NOP3,
173 	P6_NOP4,
174 	P6_NOP5,
175 	P6_NOP6,
176 	P6_NOP7,
177 	P6_NOP8,
178 	P6_NOP5_ATOMIC
179 };
180 static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
181 {
182 	NULL,
183 	p6nops,
184 	p6nops + 1,
185 	p6nops + 1 + 2,
186 	p6nops + 1 + 2 + 3,
187 	p6nops + 1 + 2 + 3 + 4,
188 	p6nops + 1 + 2 + 3 + 4 + 5,
189 	p6nops + 1 + 2 + 3 + 4 + 5 + 6,
190 	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
191 	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
192 };
193 #endif
194 
195 /* Initialize these to a safe default */
196 #ifdef CONFIG_X86_64
197 const unsigned char * const *ideal_nops = p6_nops;
198 #else
199 const unsigned char * const *ideal_nops = intel_nops;
200 #endif
201 
arch_init_ideal_nops(void)202 void __init arch_init_ideal_nops(void)
203 {
204 	switch (boot_cpu_data.x86_vendor) {
205 	case X86_VENDOR_INTEL:
206 		/*
207 		 * Due to a decoder implementation quirk, some
208 		 * specific Intel CPUs actually perform better with
209 		 * the "k8_nops" than with the SDM-recommended NOPs.
210 		 */
211 		if (boot_cpu_data.x86 == 6 &&
212 		    boot_cpu_data.x86_model >= 0x0f &&
213 		    boot_cpu_data.x86_model != 0x1c &&
214 		    boot_cpu_data.x86_model != 0x26 &&
215 		    boot_cpu_data.x86_model != 0x27 &&
216 		    boot_cpu_data.x86_model < 0x30) {
217 			ideal_nops = k8_nops;
218 		} else if (boot_cpu_has(X86_FEATURE_NOPL)) {
219 			   ideal_nops = p6_nops;
220 		} else {
221 #ifdef CONFIG_X86_64
222 			ideal_nops = k8_nops;
223 #else
224 			ideal_nops = intel_nops;
225 #endif
226 		}
227 		break;
228 
229 	case X86_VENDOR_HYGON:
230 		ideal_nops = p6_nops;
231 		return;
232 
233 	case X86_VENDOR_AMD:
234 		if (boot_cpu_data.x86 > 0xf) {
235 			ideal_nops = p6_nops;
236 			return;
237 		}
238 
239 		/* fall through */
240 
241 	default:
242 #ifdef CONFIG_X86_64
243 		ideal_nops = k8_nops;
244 #else
245 		if (boot_cpu_has(X86_FEATURE_K8))
246 			ideal_nops = k8_nops;
247 		else if (boot_cpu_has(X86_FEATURE_K7))
248 			ideal_nops = k7_nops;
249 		else
250 			ideal_nops = intel_nops;
251 #endif
252 	}
253 }
254 
255 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
add_nops(void * insns,unsigned int len)256 static void __init_or_module add_nops(void *insns, unsigned int len)
257 {
258 	while (len > 0) {
259 		unsigned int noplen = len;
260 		if (noplen > ASM_NOP_MAX)
261 			noplen = ASM_NOP_MAX;
262 		memcpy(insns, ideal_nops[noplen], noplen);
263 		insns += noplen;
264 		len -= noplen;
265 	}
266 }
267 
268 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
269 extern s32 __smp_locks[], __smp_locks_end[];
270 void text_poke_early(void *addr, const void *opcode, size_t len);
271 
272 /*
273  * Are we looking at a near JMP with a 1 or 4-byte displacement.
274  */
is_jmp(const u8 opcode)275 static inline bool is_jmp(const u8 opcode)
276 {
277 	return opcode == 0xeb || opcode == 0xe9;
278 }
279 
280 static void __init_or_module
recompute_jump(struct alt_instr * a,u8 * orig_insn,u8 * repl_insn,u8 * insn_buff)281 recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
282 {
283 	u8 *next_rip, *tgt_rip;
284 	s32 n_dspl, o_dspl;
285 	int repl_len;
286 
287 	if (a->replacementlen != 5)
288 		return;
289 
290 	o_dspl = *(s32 *)(insn_buff + 1);
291 
292 	/* next_rip of the replacement JMP */
293 	next_rip = repl_insn + a->replacementlen;
294 	/* target rip of the replacement JMP */
295 	tgt_rip  = next_rip + o_dspl;
296 	n_dspl = tgt_rip - orig_insn;
297 
298 	DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
299 
300 	if (tgt_rip - orig_insn >= 0) {
301 		if (n_dspl - 2 <= 127)
302 			goto two_byte_jmp;
303 		else
304 			goto five_byte_jmp;
305 	/* negative offset */
306 	} else {
307 		if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
308 			goto two_byte_jmp;
309 		else
310 			goto five_byte_jmp;
311 	}
312 
313 two_byte_jmp:
314 	n_dspl -= 2;
315 
316 	insn_buff[0] = 0xeb;
317 	insn_buff[1] = (s8)n_dspl;
318 	add_nops(insn_buff + 2, 3);
319 
320 	repl_len = 2;
321 	goto done;
322 
323 five_byte_jmp:
324 	n_dspl -= 5;
325 
326 	insn_buff[0] = 0xe9;
327 	*(s32 *)&insn_buff[1] = n_dspl;
328 
329 	repl_len = 5;
330 
331 done:
332 
333 	DPRINTK("final displ: 0x%08x, JMP 0x%lx",
334 		n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
335 }
336 
337 /*
338  * "noinline" to cause control flow change and thus invalidate I$ and
339  * cause refetch after modification.
340  */
optimize_nops(struct alt_instr * a,u8 * instr)341 static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
342 {
343 	unsigned long flags;
344 	int i;
345 
346 	for (i = 0; i < a->padlen; i++) {
347 		if (instr[i] != 0x90)
348 			return;
349 	}
350 
351 	local_irq_save(flags);
352 	add_nops(instr + (a->instrlen - a->padlen), a->padlen);
353 	local_irq_restore(flags);
354 
355 	DUMP_BYTES(instr, a->instrlen, "%px: [%d:%d) optimized NOPs: ",
356 		   instr, a->instrlen - a->padlen, a->padlen);
357 }
358 
359 /*
360  * Replace instructions with better alternatives for this CPU type. This runs
361  * before SMP is initialized to avoid SMP problems with self modifying code.
362  * This implies that asymmetric systems where APs have less capabilities than
363  * the boot processor are not handled. Tough. Make sure you disable such
364  * features by hand.
365  *
366  * Marked "noinline" to cause control flow change and thus insn cache
367  * to refetch changed I$ lines.
368  */
apply_alternatives(struct alt_instr * start,struct alt_instr * end)369 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
370 						  struct alt_instr *end)
371 {
372 	struct alt_instr *a;
373 	u8 *instr, *replacement;
374 	u8 insn_buff[MAX_PATCH_LEN];
375 
376 	DPRINTK("alt table %px, -> %px", start, end);
377 
378 	/*
379 	 * In the case CONFIG_X86_5LEVEL=y, KASAN_SHADOW_START is defined using
380 	 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
381 	 * During the process, KASAN becomes confused seeing partial LA57
382 	 * conversion and triggers a false-positive out-of-bound report.
383 	 *
384 	 * Disable KASAN until the patching is complete.
385 	 */
386 	kasan_disable_current();
387 
388 	/*
389 	 * The scan order should be from start to end. A later scanned
390 	 * alternative code can overwrite previously scanned alternative code.
391 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
392 	 * patch code.
393 	 *
394 	 * So be careful if you want to change the scan order to any other
395 	 * order.
396 	 */
397 	for (a = start; a < end; a++) {
398 		int insn_buff_sz = 0;
399 
400 		instr = (u8 *)&a->instr_offset + a->instr_offset;
401 		replacement = (u8 *)&a->repl_offset + a->repl_offset;
402 		BUG_ON(a->instrlen > sizeof(insn_buff));
403 		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
404 		if (!boot_cpu_has(a->cpuid)) {
405 			if (a->padlen > 1)
406 				optimize_nops(a, instr);
407 
408 			continue;
409 		}
410 
411 		DPRINTK("feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d), pad: %d",
412 			a->cpuid >> 5,
413 			a->cpuid & 0x1f,
414 			instr, instr, a->instrlen,
415 			replacement, a->replacementlen, a->padlen);
416 
417 		DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
418 		DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
419 
420 		memcpy(insn_buff, replacement, a->replacementlen);
421 		insn_buff_sz = a->replacementlen;
422 
423 		/*
424 		 * 0xe8 is a relative jump; fix the offset.
425 		 *
426 		 * Instruction length is checked before the opcode to avoid
427 		 * accessing uninitialized bytes for zero-length replacements.
428 		 */
429 		if (a->replacementlen == 5 && *insn_buff == 0xe8) {
430 			*(s32 *)(insn_buff + 1) += replacement - instr;
431 			DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
432 				*(s32 *)(insn_buff + 1),
433 				(unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
434 		}
435 
436 		if (a->replacementlen && is_jmp(replacement[0]))
437 			recompute_jump(a, instr, replacement, insn_buff);
438 
439 		if (a->instrlen > a->replacementlen) {
440 			add_nops(insn_buff + a->replacementlen,
441 				 a->instrlen - a->replacementlen);
442 			insn_buff_sz += a->instrlen - a->replacementlen;
443 		}
444 		DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
445 
446 		text_poke_early(instr, insn_buff, insn_buff_sz);
447 	}
448 
449 	kasan_enable_current();
450 }
451 
452 #ifdef CONFIG_SMP
alternatives_smp_lock(const s32 * start,const s32 * end,u8 * text,u8 * text_end)453 static void alternatives_smp_lock(const s32 *start, const s32 *end,
454 				  u8 *text, u8 *text_end)
455 {
456 	const s32 *poff;
457 
458 	for (poff = start; poff < end; poff++) {
459 		u8 *ptr = (u8 *)poff + *poff;
460 
461 		if (!*poff || ptr < text || ptr >= text_end)
462 			continue;
463 		/* turn DS segment override prefix into lock prefix */
464 		if (*ptr == 0x3e)
465 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
466 	}
467 }
468 
alternatives_smp_unlock(const s32 * start,const s32 * end,u8 * text,u8 * text_end)469 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
470 				    u8 *text, u8 *text_end)
471 {
472 	const s32 *poff;
473 
474 	for (poff = start; poff < end; poff++) {
475 		u8 *ptr = (u8 *)poff + *poff;
476 
477 		if (!*poff || ptr < text || ptr >= text_end)
478 			continue;
479 		/* turn lock prefix into DS segment override prefix */
480 		if (*ptr == 0xf0)
481 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
482 	}
483 }
484 
485 struct smp_alt_module {
486 	/* what is this ??? */
487 	struct module	*mod;
488 	char		*name;
489 
490 	/* ptrs to lock prefixes */
491 	const s32	*locks;
492 	const s32	*locks_end;
493 
494 	/* .text segment, needed to avoid patching init code ;) */
495 	u8		*text;
496 	u8		*text_end;
497 
498 	struct list_head next;
499 };
500 static LIST_HEAD(smp_alt_modules);
501 static bool uniproc_patched = false;	/* protected by text_mutex */
502 
alternatives_smp_module_add(struct module * mod,char * name,void * locks,void * locks_end,void * text,void * text_end)503 void __init_or_module alternatives_smp_module_add(struct module *mod,
504 						  char *name,
505 						  void *locks, void *locks_end,
506 						  void *text,  void *text_end)
507 {
508 	struct smp_alt_module *smp;
509 
510 	mutex_lock(&text_mutex);
511 	if (!uniproc_patched)
512 		goto unlock;
513 
514 	if (num_possible_cpus() == 1)
515 		/* Don't bother remembering, we'll never have to undo it. */
516 		goto smp_unlock;
517 
518 	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
519 	if (NULL == smp)
520 		/* we'll run the (safe but slow) SMP code then ... */
521 		goto unlock;
522 
523 	smp->mod	= mod;
524 	smp->name	= name;
525 	smp->locks	= locks;
526 	smp->locks_end	= locks_end;
527 	smp->text	= text;
528 	smp->text_end	= text_end;
529 	DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
530 		smp->locks, smp->locks_end,
531 		smp->text, smp->text_end, smp->name);
532 
533 	list_add_tail(&smp->next, &smp_alt_modules);
534 smp_unlock:
535 	alternatives_smp_unlock(locks, locks_end, text, text_end);
536 unlock:
537 	mutex_unlock(&text_mutex);
538 }
539 
alternatives_smp_module_del(struct module * mod)540 void __init_or_module alternatives_smp_module_del(struct module *mod)
541 {
542 	struct smp_alt_module *item;
543 
544 	mutex_lock(&text_mutex);
545 	list_for_each_entry(item, &smp_alt_modules, next) {
546 		if (mod != item->mod)
547 			continue;
548 		list_del(&item->next);
549 		kfree(item);
550 		break;
551 	}
552 	mutex_unlock(&text_mutex);
553 }
554 
alternatives_enable_smp(void)555 void alternatives_enable_smp(void)
556 {
557 	struct smp_alt_module *mod;
558 
559 	/* Why bother if there are no other CPUs? */
560 	BUG_ON(num_possible_cpus() == 1);
561 
562 	mutex_lock(&text_mutex);
563 
564 	if (uniproc_patched) {
565 		pr_info("switching to SMP code\n");
566 		BUG_ON(num_online_cpus() != 1);
567 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
568 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
569 		list_for_each_entry(mod, &smp_alt_modules, next)
570 			alternatives_smp_lock(mod->locks, mod->locks_end,
571 					      mod->text, mod->text_end);
572 		uniproc_patched = false;
573 	}
574 	mutex_unlock(&text_mutex);
575 }
576 
577 /*
578  * Return 1 if the address range is reserved for SMP-alternatives.
579  * Must hold text_mutex.
580  */
alternatives_text_reserved(void * start,void * end)581 int alternatives_text_reserved(void *start, void *end)
582 {
583 	struct smp_alt_module *mod;
584 	const s32 *poff;
585 	u8 *text_start = start;
586 	u8 *text_end = end;
587 
588 	lockdep_assert_held(&text_mutex);
589 
590 	list_for_each_entry(mod, &smp_alt_modules, next) {
591 		if (mod->text > text_end || mod->text_end < text_start)
592 			continue;
593 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
594 			const u8 *ptr = (const u8 *)poff + *poff;
595 
596 			if (text_start <= ptr && text_end > ptr)
597 				return 1;
598 		}
599 	}
600 
601 	return 0;
602 }
603 #endif /* CONFIG_SMP */
604 
605 #ifdef CONFIG_PARAVIRT
apply_paravirt(struct paravirt_patch_site * start,struct paravirt_patch_site * end)606 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
607 				     struct paravirt_patch_site *end)
608 {
609 	struct paravirt_patch_site *p;
610 	char insn_buff[MAX_PATCH_LEN];
611 
612 	for (p = start; p < end; p++) {
613 		unsigned int used;
614 
615 		BUG_ON(p->len > MAX_PATCH_LEN);
616 		/* prep the buffer with the original instructions */
617 		memcpy(insn_buff, p->instr, p->len);
618 		used = pv_ops.init.patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
619 
620 		BUG_ON(used > p->len);
621 
622 		/* Pad the rest with nops */
623 		add_nops(insn_buff + used, p->len - used);
624 		text_poke_early(p->instr, insn_buff, p->len);
625 	}
626 }
627 extern struct paravirt_patch_site __start_parainstructions[],
628 	__stop_parainstructions[];
629 #endif	/* CONFIG_PARAVIRT */
630 
631 /*
632  * Self-test for the INT3 based CALL emulation code.
633  *
634  * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
635  * properly and that there is a stack gap between the INT3 frame and the
636  * previous context. Without this gap doing a virtual PUSH on the interrupted
637  * stack would corrupt the INT3 IRET frame.
638  *
639  * See entry_{32,64}.S for more details.
640  */
int3_magic(unsigned int * ptr)641 static void __init __no_sanitize_address notrace int3_magic(unsigned int *ptr)
642 {
643 	*ptr = 1;
644 }
645 
646 extern __initdata unsigned long int3_selftest_ip; /* defined in asm below */
647 
648 static int __init
int3_exception_notify(struct notifier_block * self,unsigned long val,void * data)649 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
650 {
651 	struct die_args *args = data;
652 	struct pt_regs *regs = args->regs;
653 
654 	if (!regs || user_mode(regs))
655 		return NOTIFY_DONE;
656 
657 	if (val != DIE_INT3)
658 		return NOTIFY_DONE;
659 
660 	if (regs->ip - INT3_INSN_SIZE != int3_selftest_ip)
661 		return NOTIFY_DONE;
662 
663 	int3_emulate_call(regs, (unsigned long)&int3_magic);
664 	return NOTIFY_STOP;
665 }
666 
int3_selftest(void)667 static void __init int3_selftest(void)
668 {
669 	static __initdata struct notifier_block int3_exception_nb = {
670 		.notifier_call	= int3_exception_notify,
671 		.priority	= INT_MAX-1, /* last */
672 	};
673 	unsigned int val = 0;
674 
675 	BUG_ON(register_die_notifier(&int3_exception_nb));
676 
677 	/*
678 	 * Basically: int3_magic(&val); but really complicated :-)
679 	 *
680 	 * Stick the address of the INT3 instruction into int3_selftest_ip,
681 	 * then trigger the INT3, padded with NOPs to match a CALL instruction
682 	 * length.
683 	 */
684 	asm volatile ("1: int3; nop; nop; nop; nop\n\t"
685 		      ".pushsection .init.data,\"aw\"\n\t"
686 		      ".align " __ASM_SEL(4, 8) "\n\t"
687 		      ".type int3_selftest_ip, @object\n\t"
688 		      ".size int3_selftest_ip, " __ASM_SEL(4, 8) "\n\t"
689 		      "int3_selftest_ip:\n\t"
690 		      __ASM_SEL(.long, .quad) " 1b\n\t"
691 		      ".popsection\n\t"
692 		      : ASM_CALL_CONSTRAINT
693 		      : __ASM_SEL_RAW(a, D) (&val)
694 		      : "memory");
695 
696 	BUG_ON(val != 1);
697 
698 	unregister_die_notifier(&int3_exception_nb);
699 }
700 
alternative_instructions(void)701 void __init alternative_instructions(void)
702 {
703 	int3_selftest();
704 
705 	/*
706 	 * The patching is not fully atomic, so try to avoid local
707 	 * interruptions that might execute the to be patched code.
708 	 * Other CPUs are not running.
709 	 */
710 	stop_nmi();
711 
712 	/*
713 	 * Don't stop machine check exceptions while patching.
714 	 * MCEs only happen when something got corrupted and in this
715 	 * case we must do something about the corruption.
716 	 * Ignoring it is worse than an unlikely patching race.
717 	 * Also machine checks tend to be broadcast and if one CPU
718 	 * goes into machine check the others follow quickly, so we don't
719 	 * expect a machine check to cause undue problems during to code
720 	 * patching.
721 	 */
722 
723 	apply_alternatives(__alt_instructions, __alt_instructions_end);
724 
725 #ifdef CONFIG_SMP
726 	/* Patch to UP if other cpus not imminent. */
727 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
728 		uniproc_patched = true;
729 		alternatives_smp_module_add(NULL, "core kernel",
730 					    __smp_locks, __smp_locks_end,
731 					    _text, _etext);
732 	}
733 
734 	if (!uniproc_patched || num_possible_cpus() == 1) {
735 		free_init_pages("SMP alternatives",
736 				(unsigned long)__smp_locks,
737 				(unsigned long)__smp_locks_end);
738 	}
739 #endif
740 
741 	apply_paravirt(__parainstructions, __parainstructions_end);
742 
743 	restart_nmi();
744 	alternatives_patched = 1;
745 }
746 
747 /**
748  * text_poke_early - Update instructions on a live kernel at boot time
749  * @addr: address to modify
750  * @opcode: source of the copy
751  * @len: length to copy
752  *
753  * When you use this code to patch more than one byte of an instruction
754  * you need to make sure that other CPUs cannot execute this code in parallel.
755  * Also no thread must be currently preempted in the middle of these
756  * instructions. And on the local CPU you need to be protected against NMI or
757  * MCE handlers seeing an inconsistent instruction while you patch.
758  */
text_poke_early(void * addr,const void * opcode,size_t len)759 void __init_or_module text_poke_early(void *addr, const void *opcode,
760 				      size_t len)
761 {
762 	unsigned long flags;
763 
764 	if (boot_cpu_has(X86_FEATURE_NX) &&
765 	    is_module_text_address((unsigned long)addr)) {
766 		/*
767 		 * Modules text is marked initially as non-executable, so the
768 		 * code cannot be running and speculative code-fetches are
769 		 * prevented. Just change the code.
770 		 */
771 		memcpy(addr, opcode, len);
772 	} else {
773 		local_irq_save(flags);
774 		memcpy(addr, opcode, len);
775 		sync_core();
776 		local_irq_restore(flags);
777 
778 		/*
779 		 * Could also do a CLFLUSH here to speed up CPU recovery; but
780 		 * that causes hangs on some VIA CPUs.
781 		 */
782 	}
783 }
784 
785 __ro_after_init struct mm_struct *poking_mm;
786 __ro_after_init unsigned long poking_addr;
787 
__text_poke(void * addr,const void * opcode,size_t len)788 static void *__text_poke(void *addr, const void *opcode, size_t len)
789 {
790 	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
791 	struct page *pages[2] = {NULL};
792 	temp_mm_state_t prev;
793 	unsigned long flags;
794 	pte_t pte, *ptep;
795 	spinlock_t *ptl;
796 	pgprot_t pgprot;
797 
798 	/*
799 	 * While boot memory allocator is running we cannot use struct pages as
800 	 * they are not yet initialized. There is no way to recover.
801 	 */
802 	BUG_ON(!after_bootmem);
803 
804 	if (!core_kernel_text((unsigned long)addr)) {
805 		pages[0] = vmalloc_to_page(addr);
806 		if (cross_page_boundary)
807 			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
808 	} else {
809 		pages[0] = virt_to_page(addr);
810 		WARN_ON(!PageReserved(pages[0]));
811 		if (cross_page_boundary)
812 			pages[1] = virt_to_page(addr + PAGE_SIZE);
813 	}
814 	/*
815 	 * If something went wrong, crash and burn since recovery paths are not
816 	 * implemented.
817 	 */
818 	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
819 
820 	local_irq_save(flags);
821 
822 	/*
823 	 * Map the page without the global bit, as TLB flushing is done with
824 	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
825 	 */
826 	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
827 
828 	/*
829 	 * The lock is not really needed, but this allows to avoid open-coding.
830 	 */
831 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
832 
833 	/*
834 	 * This must not fail; preallocated in poking_init().
835 	 */
836 	VM_BUG_ON(!ptep);
837 
838 	pte = mk_pte(pages[0], pgprot);
839 	set_pte_at(poking_mm, poking_addr, ptep, pte);
840 
841 	if (cross_page_boundary) {
842 		pte = mk_pte(pages[1], pgprot);
843 		set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
844 	}
845 
846 	/*
847 	 * Loading the temporary mm behaves as a compiler barrier, which
848 	 * guarantees that the PTE will be set at the time memcpy() is done.
849 	 */
850 	prev = use_temporary_mm(poking_mm);
851 
852 	kasan_disable_current();
853 	memcpy((u8 *)poking_addr + offset_in_page(addr), opcode, len);
854 	kasan_enable_current();
855 
856 	/*
857 	 * Ensure that the PTE is only cleared after the instructions of memcpy
858 	 * were issued by using a compiler barrier.
859 	 */
860 	barrier();
861 
862 	pte_clear(poking_mm, poking_addr, ptep);
863 	if (cross_page_boundary)
864 		pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
865 
866 	/*
867 	 * Loading the previous page-table hierarchy requires a serializing
868 	 * instruction that already allows the core to see the updated version.
869 	 * Xen-PV is assumed to serialize execution in a similar manner.
870 	 */
871 	unuse_temporary_mm(prev);
872 
873 	/*
874 	 * Flushing the TLB might involve IPIs, which would require enabled
875 	 * IRQs, but not if the mm is not used, as it is in this point.
876 	 */
877 	flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
878 			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
879 			   PAGE_SHIFT, false);
880 
881 	/*
882 	 * If the text does not match what we just wrote then something is
883 	 * fundamentally screwy; there's nothing we can really do about that.
884 	 */
885 	BUG_ON(memcmp(addr, opcode, len));
886 
887 	pte_unmap_unlock(ptep, ptl);
888 	local_irq_restore(flags);
889 	return addr;
890 }
891 
892 /**
893  * text_poke - Update instructions on a live kernel
894  * @addr: address to modify
895  * @opcode: source of the copy
896  * @len: length to copy
897  *
898  * Only atomic text poke/set should be allowed when not doing early patching.
899  * It means the size must be writable atomically and the address must be aligned
900  * in a way that permits an atomic write. It also makes sure we fit on a single
901  * page.
902  *
903  * Note that the caller must ensure that if the modified code is part of a
904  * module, the module would not be removed during poking. This can be achieved
905  * by registering a module notifier, and ordering module removal and patching
906  * trough a mutex.
907  */
text_poke(void * addr,const void * opcode,size_t len)908 void *text_poke(void *addr, const void *opcode, size_t len)
909 {
910 	lockdep_assert_held(&text_mutex);
911 
912 	return __text_poke(addr, opcode, len);
913 }
914 
915 /**
916  * text_poke_kgdb - Update instructions on a live kernel by kgdb
917  * @addr: address to modify
918  * @opcode: source of the copy
919  * @len: length to copy
920  *
921  * Only atomic text poke/set should be allowed when not doing early patching.
922  * It means the size must be writable atomically and the address must be aligned
923  * in a way that permits an atomic write. It also makes sure we fit on a single
924  * page.
925  *
926  * Context: should only be used by kgdb, which ensures no other core is running,
927  *	    despite the fact it does not hold the text_mutex.
928  */
text_poke_kgdb(void * addr,const void * opcode,size_t len)929 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
930 {
931 	return __text_poke(addr, opcode, len);
932 }
933 
do_sync_core(void * info)934 static void do_sync_core(void *info)
935 {
936 	sync_core();
937 }
938 
939 static struct bp_patching_desc {
940 	struct text_poke_loc *vec;
941 	int nr_entries;
942 } bp_patching;
943 
patch_cmp(const void * key,const void * elt)944 static int patch_cmp(const void *key, const void *elt)
945 {
946 	struct text_poke_loc *tp = (struct text_poke_loc *) elt;
947 
948 	if (key < tp->addr)
949 		return -1;
950 	if (key > tp->addr)
951 		return 1;
952 	return 0;
953 }
954 NOKPROBE_SYMBOL(patch_cmp);
955 
poke_int3_handler(struct pt_regs * regs)956 int poke_int3_handler(struct pt_regs *regs)
957 {
958 	struct text_poke_loc *tp;
959 	unsigned char int3 = 0xcc;
960 	void *ip;
961 
962 	/*
963 	 * Having observed our INT3 instruction, we now must observe
964 	 * bp_patching.nr_entries.
965 	 *
966 	 * 	nr_entries != 0			INT3
967 	 * 	WMB				RMB
968 	 * 	write INT3			if (nr_entries)
969 	 *
970 	 * Idem for other elements in bp_patching.
971 	 */
972 	smp_rmb();
973 
974 	if (likely(!bp_patching.nr_entries))
975 		return 0;
976 
977 	if (user_mode(regs))
978 		return 0;
979 
980 	/*
981 	 * Discount the sizeof(int3). See text_poke_bp_batch().
982 	 */
983 	ip = (void *) regs->ip - sizeof(int3);
984 
985 	/*
986 	 * Skip the binary search if there is a single member in the vector.
987 	 */
988 	if (unlikely(bp_patching.nr_entries > 1)) {
989 		tp = bsearch(ip, bp_patching.vec, bp_patching.nr_entries,
990 			     sizeof(struct text_poke_loc),
991 			     patch_cmp);
992 		if (!tp)
993 			return 0;
994 	} else {
995 		tp = bp_patching.vec;
996 		if (tp->addr != ip)
997 			return 0;
998 	}
999 
1000 	/* set up the specified breakpoint detour */
1001 	regs->ip = (unsigned long) tp->detour;
1002 
1003 	return 1;
1004 }
1005 NOKPROBE_SYMBOL(poke_int3_handler);
1006 
1007 /**
1008  * text_poke_bp_batch() -- update instructions on live kernel on SMP
1009  * @tp:			vector of instructions to patch
1010  * @nr_entries:		number of entries in the vector
1011  *
1012  * Modify multi-byte instruction by using int3 breakpoint on SMP.
1013  * We completely avoid stop_machine() here, and achieve the
1014  * synchronization using int3 breakpoint.
1015  *
1016  * The way it is done:
1017  * 	- For each entry in the vector:
1018  *		- add a int3 trap to the address that will be patched
1019  *	- sync cores
1020  *	- For each entry in the vector:
1021  *		- update all but the first byte of the patched range
1022  *	- sync cores
1023  *	- For each entry in the vector:
1024  *		- replace the first byte (int3) by the first byte of
1025  *		  replacing opcode
1026  *	- sync cores
1027  */
text_poke_bp_batch(struct text_poke_loc * tp,unsigned int nr_entries)1028 void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
1029 {
1030 	int patched_all_but_first = 0;
1031 	unsigned char int3 = 0xcc;
1032 	unsigned int i;
1033 
1034 	lockdep_assert_held(&text_mutex);
1035 
1036 	bp_patching.vec = tp;
1037 	bp_patching.nr_entries = nr_entries;
1038 
1039 	/*
1040 	 * Corresponding read barrier in int3 notifier for making sure the
1041 	 * nr_entries and handler are correctly ordered wrt. patching.
1042 	 */
1043 	smp_wmb();
1044 
1045 	/*
1046 	 * First step: add a int3 trap to the address that will be patched.
1047 	 */
1048 	for (i = 0; i < nr_entries; i++)
1049 		text_poke(tp[i].addr, &int3, sizeof(int3));
1050 
1051 	on_each_cpu(do_sync_core, NULL, 1);
1052 
1053 	/*
1054 	 * Second step: update all but the first byte of the patched range.
1055 	 */
1056 	for (i = 0; i < nr_entries; i++) {
1057 		if (tp[i].len - sizeof(int3) > 0) {
1058 			text_poke((char *)tp[i].addr + sizeof(int3),
1059 				  (const char *)tp[i].opcode + sizeof(int3),
1060 				  tp[i].len - sizeof(int3));
1061 			patched_all_but_first++;
1062 		}
1063 	}
1064 
1065 	if (patched_all_but_first) {
1066 		/*
1067 		 * According to Intel, this core syncing is very likely
1068 		 * not necessary and we'd be safe even without it. But
1069 		 * better safe than sorry (plus there's not only Intel).
1070 		 */
1071 		on_each_cpu(do_sync_core, NULL, 1);
1072 	}
1073 
1074 	/*
1075 	 * Third step: replace the first byte (int3) by the first byte of
1076 	 * replacing opcode.
1077 	 */
1078 	for (i = 0; i < nr_entries; i++)
1079 		text_poke(tp[i].addr, tp[i].opcode, sizeof(int3));
1080 
1081 	on_each_cpu(do_sync_core, NULL, 1);
1082 	/*
1083 	 * sync_core() implies an smp_mb() and orders this store against
1084 	 * the writing of the new instruction.
1085 	 */
1086 	bp_patching.vec = NULL;
1087 	bp_patching.nr_entries = 0;
1088 }
1089 
1090 /**
1091  * text_poke_bp() -- update instructions on live kernel on SMP
1092  * @addr:	address to patch
1093  * @opcode:	opcode of new instruction
1094  * @len:	length to copy
1095  * @handler:	address to jump to when the temporary breakpoint is hit
1096  *
1097  * Update a single instruction with the vector in the stack, avoiding
1098  * dynamically allocated memory. This function should be used when it is
1099  * not possible to allocate memory.
1100  */
text_poke_bp(void * addr,const void * opcode,size_t len,void * handler)1101 void text_poke_bp(void *addr, const void *opcode, size_t len, void *handler)
1102 {
1103 	struct text_poke_loc tp = {
1104 		.detour = handler,
1105 		.addr = addr,
1106 		.len = len,
1107 	};
1108 
1109 	if (len > POKE_MAX_OPCODE_SIZE) {
1110 		WARN_ONCE(1, "len is larger than %d\n", POKE_MAX_OPCODE_SIZE);
1111 		return;
1112 	}
1113 
1114 	memcpy((void *)tp.opcode, opcode, len);
1115 
1116 	text_poke_bp_batch(&tp, 1);
1117 }
1118