1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3
4 #include <linux/module.h>
5 #include <linux/sched.h>
6 #include <linux/mutex.h>
7 #include <linux/list.h>
8 #include <linux/stringify.h>
9 #include <linux/mm.h>
10 #include <linux/vmalloc.h>
11 #include <linux/memory.h>
12 #include <linux/stop_machine.h>
13 #include <linux/slab.h>
14 #include <linux/kdebug.h>
15 #include <linux/kprobes.h>
16 #include <linux/mmu_context.h>
17 #include <linux/bsearch.h>
18 #include <asm/text-patching.h>
19 #include <asm/alternative.h>
20 #include <asm/sections.h>
21 #include <asm/pgtable.h>
22 #include <asm/mce.h>
23 #include <asm/nmi.h>
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26 #include <asm/io.h>
27 #include <asm/fixmap.h>
28
29 int __read_mostly alternatives_patched;
30
31 EXPORT_SYMBOL_GPL(alternatives_patched);
32
33 #define MAX_PATCH_LEN (255-1)
34
35 static int __initdata_or_module debug_alternative;
36
debug_alt(char * str)37 static int __init debug_alt(char *str)
38 {
39 debug_alternative = 1;
40 return 1;
41 }
42 __setup("debug-alternative", debug_alt);
43
44 static int noreplace_smp;
45
setup_noreplace_smp(char * str)46 static int __init setup_noreplace_smp(char *str)
47 {
48 noreplace_smp = 1;
49 return 1;
50 }
51 __setup("noreplace-smp", setup_noreplace_smp);
52
53 #define DPRINTK(fmt, args...) \
54 do { \
55 if (debug_alternative) \
56 printk(KERN_DEBUG "%s: " fmt "\n", __func__, ##args); \
57 } while (0)
58
59 #define DUMP_BYTES(buf, len, fmt, args...) \
60 do { \
61 if (unlikely(debug_alternative)) { \
62 int j; \
63 \
64 if (!(len)) \
65 break; \
66 \
67 printk(KERN_DEBUG fmt, ##args); \
68 for (j = 0; j < (len) - 1; j++) \
69 printk(KERN_CONT "%02hhx ", buf[j]); \
70 printk(KERN_CONT "%02hhx\n", buf[j]); \
71 } \
72 } while (0)
73
74 /*
75 * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
76 * that correspond to that nop. Getting from one nop to the next, we
77 * add to the array the offset that is equal to the sum of all sizes of
78 * nops preceding the one we are after.
79 *
80 * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
81 * nice symmetry of sizes of the previous nops.
82 */
83 #if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
84 static const unsigned char intelnops[] =
85 {
86 GENERIC_NOP1,
87 GENERIC_NOP2,
88 GENERIC_NOP3,
89 GENERIC_NOP4,
90 GENERIC_NOP5,
91 GENERIC_NOP6,
92 GENERIC_NOP7,
93 GENERIC_NOP8,
94 GENERIC_NOP5_ATOMIC
95 };
96 static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
97 {
98 NULL,
99 intelnops,
100 intelnops + 1,
101 intelnops + 1 + 2,
102 intelnops + 1 + 2 + 3,
103 intelnops + 1 + 2 + 3 + 4,
104 intelnops + 1 + 2 + 3 + 4 + 5,
105 intelnops + 1 + 2 + 3 + 4 + 5 + 6,
106 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
107 intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
108 };
109 #endif
110
111 #ifdef K8_NOP1
112 static const unsigned char k8nops[] =
113 {
114 K8_NOP1,
115 K8_NOP2,
116 K8_NOP3,
117 K8_NOP4,
118 K8_NOP5,
119 K8_NOP6,
120 K8_NOP7,
121 K8_NOP8,
122 K8_NOP5_ATOMIC
123 };
124 static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
125 {
126 NULL,
127 k8nops,
128 k8nops + 1,
129 k8nops + 1 + 2,
130 k8nops + 1 + 2 + 3,
131 k8nops + 1 + 2 + 3 + 4,
132 k8nops + 1 + 2 + 3 + 4 + 5,
133 k8nops + 1 + 2 + 3 + 4 + 5 + 6,
134 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
135 k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
136 };
137 #endif
138
139 #if defined(K7_NOP1) && !defined(CONFIG_X86_64)
140 static const unsigned char k7nops[] =
141 {
142 K7_NOP1,
143 K7_NOP2,
144 K7_NOP3,
145 K7_NOP4,
146 K7_NOP5,
147 K7_NOP6,
148 K7_NOP7,
149 K7_NOP8,
150 K7_NOP5_ATOMIC
151 };
152 static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
153 {
154 NULL,
155 k7nops,
156 k7nops + 1,
157 k7nops + 1 + 2,
158 k7nops + 1 + 2 + 3,
159 k7nops + 1 + 2 + 3 + 4,
160 k7nops + 1 + 2 + 3 + 4 + 5,
161 k7nops + 1 + 2 + 3 + 4 + 5 + 6,
162 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
163 k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
164 };
165 #endif
166
167 #ifdef P6_NOP1
168 static const unsigned char p6nops[] =
169 {
170 P6_NOP1,
171 P6_NOP2,
172 P6_NOP3,
173 P6_NOP4,
174 P6_NOP5,
175 P6_NOP6,
176 P6_NOP7,
177 P6_NOP8,
178 P6_NOP5_ATOMIC
179 };
180 static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
181 {
182 NULL,
183 p6nops,
184 p6nops + 1,
185 p6nops + 1 + 2,
186 p6nops + 1 + 2 + 3,
187 p6nops + 1 + 2 + 3 + 4,
188 p6nops + 1 + 2 + 3 + 4 + 5,
189 p6nops + 1 + 2 + 3 + 4 + 5 + 6,
190 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
191 p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
192 };
193 #endif
194
195 /* Initialize these to a safe default */
196 #ifdef CONFIG_X86_64
197 const unsigned char * const *ideal_nops = p6_nops;
198 #else
199 const unsigned char * const *ideal_nops = intel_nops;
200 #endif
201
arch_init_ideal_nops(void)202 void __init arch_init_ideal_nops(void)
203 {
204 switch (boot_cpu_data.x86_vendor) {
205 case X86_VENDOR_INTEL:
206 /*
207 * Due to a decoder implementation quirk, some
208 * specific Intel CPUs actually perform better with
209 * the "k8_nops" than with the SDM-recommended NOPs.
210 */
211 if (boot_cpu_data.x86 == 6 &&
212 boot_cpu_data.x86_model >= 0x0f &&
213 boot_cpu_data.x86_model != 0x1c &&
214 boot_cpu_data.x86_model != 0x26 &&
215 boot_cpu_data.x86_model != 0x27 &&
216 boot_cpu_data.x86_model < 0x30) {
217 ideal_nops = k8_nops;
218 } else if (boot_cpu_has(X86_FEATURE_NOPL)) {
219 ideal_nops = p6_nops;
220 } else {
221 #ifdef CONFIG_X86_64
222 ideal_nops = k8_nops;
223 #else
224 ideal_nops = intel_nops;
225 #endif
226 }
227 break;
228
229 case X86_VENDOR_HYGON:
230 ideal_nops = p6_nops;
231 return;
232
233 case X86_VENDOR_AMD:
234 if (boot_cpu_data.x86 > 0xf) {
235 ideal_nops = p6_nops;
236 return;
237 }
238
239 /* fall through */
240
241 default:
242 #ifdef CONFIG_X86_64
243 ideal_nops = k8_nops;
244 #else
245 if (boot_cpu_has(X86_FEATURE_K8))
246 ideal_nops = k8_nops;
247 else if (boot_cpu_has(X86_FEATURE_K7))
248 ideal_nops = k7_nops;
249 else
250 ideal_nops = intel_nops;
251 #endif
252 }
253 }
254
255 /* Use this to add nops to a buffer, then text_poke the whole buffer. */
add_nops(void * insns,unsigned int len)256 static void __init_or_module add_nops(void *insns, unsigned int len)
257 {
258 while (len > 0) {
259 unsigned int noplen = len;
260 if (noplen > ASM_NOP_MAX)
261 noplen = ASM_NOP_MAX;
262 memcpy(insns, ideal_nops[noplen], noplen);
263 insns += noplen;
264 len -= noplen;
265 }
266 }
267
268 extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
269 extern s32 __smp_locks[], __smp_locks_end[];
270 void text_poke_early(void *addr, const void *opcode, size_t len);
271
272 /*
273 * Are we looking at a near JMP with a 1 or 4-byte displacement.
274 */
is_jmp(const u8 opcode)275 static inline bool is_jmp(const u8 opcode)
276 {
277 return opcode == 0xeb || opcode == 0xe9;
278 }
279
280 static void __init_or_module
recompute_jump(struct alt_instr * a,u8 * orig_insn,u8 * repl_insn,u8 * insn_buff)281 recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
282 {
283 u8 *next_rip, *tgt_rip;
284 s32 n_dspl, o_dspl;
285 int repl_len;
286
287 if (a->replacementlen != 5)
288 return;
289
290 o_dspl = *(s32 *)(insn_buff + 1);
291
292 /* next_rip of the replacement JMP */
293 next_rip = repl_insn + a->replacementlen;
294 /* target rip of the replacement JMP */
295 tgt_rip = next_rip + o_dspl;
296 n_dspl = tgt_rip - orig_insn;
297
298 DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
299
300 if (tgt_rip - orig_insn >= 0) {
301 if (n_dspl - 2 <= 127)
302 goto two_byte_jmp;
303 else
304 goto five_byte_jmp;
305 /* negative offset */
306 } else {
307 if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
308 goto two_byte_jmp;
309 else
310 goto five_byte_jmp;
311 }
312
313 two_byte_jmp:
314 n_dspl -= 2;
315
316 insn_buff[0] = 0xeb;
317 insn_buff[1] = (s8)n_dspl;
318 add_nops(insn_buff + 2, 3);
319
320 repl_len = 2;
321 goto done;
322
323 five_byte_jmp:
324 n_dspl -= 5;
325
326 insn_buff[0] = 0xe9;
327 *(s32 *)&insn_buff[1] = n_dspl;
328
329 repl_len = 5;
330
331 done:
332
333 DPRINTK("final displ: 0x%08x, JMP 0x%lx",
334 n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
335 }
336
337 /*
338 * "noinline" to cause control flow change and thus invalidate I$ and
339 * cause refetch after modification.
340 */
optimize_nops(struct alt_instr * a,u8 * instr)341 static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
342 {
343 unsigned long flags;
344 int i;
345
346 for (i = 0; i < a->padlen; i++) {
347 if (instr[i] != 0x90)
348 return;
349 }
350
351 local_irq_save(flags);
352 add_nops(instr + (a->instrlen - a->padlen), a->padlen);
353 local_irq_restore(flags);
354
355 DUMP_BYTES(instr, a->instrlen, "%px: [%d:%d) optimized NOPs: ",
356 instr, a->instrlen - a->padlen, a->padlen);
357 }
358
359 /*
360 * Replace instructions with better alternatives for this CPU type. This runs
361 * before SMP is initialized to avoid SMP problems with self modifying code.
362 * This implies that asymmetric systems where APs have less capabilities than
363 * the boot processor are not handled. Tough. Make sure you disable such
364 * features by hand.
365 *
366 * Marked "noinline" to cause control flow change and thus insn cache
367 * to refetch changed I$ lines.
368 */
apply_alternatives(struct alt_instr * start,struct alt_instr * end)369 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
370 struct alt_instr *end)
371 {
372 struct alt_instr *a;
373 u8 *instr, *replacement;
374 u8 insn_buff[MAX_PATCH_LEN];
375
376 DPRINTK("alt table %px, -> %px", start, end);
377
378 /*
379 * In the case CONFIG_X86_5LEVEL=y, KASAN_SHADOW_START is defined using
380 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
381 * During the process, KASAN becomes confused seeing partial LA57
382 * conversion and triggers a false-positive out-of-bound report.
383 *
384 * Disable KASAN until the patching is complete.
385 */
386 kasan_disable_current();
387
388 /*
389 * The scan order should be from start to end. A later scanned
390 * alternative code can overwrite previously scanned alternative code.
391 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
392 * patch code.
393 *
394 * So be careful if you want to change the scan order to any other
395 * order.
396 */
397 for (a = start; a < end; a++) {
398 int insn_buff_sz = 0;
399
400 instr = (u8 *)&a->instr_offset + a->instr_offset;
401 replacement = (u8 *)&a->repl_offset + a->repl_offset;
402 BUG_ON(a->instrlen > sizeof(insn_buff));
403 BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
404 if (!boot_cpu_has(a->cpuid)) {
405 if (a->padlen > 1)
406 optimize_nops(a, instr);
407
408 continue;
409 }
410
411 DPRINTK("feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d), pad: %d",
412 a->cpuid >> 5,
413 a->cpuid & 0x1f,
414 instr, instr, a->instrlen,
415 replacement, a->replacementlen, a->padlen);
416
417 DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
418 DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
419
420 memcpy(insn_buff, replacement, a->replacementlen);
421 insn_buff_sz = a->replacementlen;
422
423 /*
424 * 0xe8 is a relative jump; fix the offset.
425 *
426 * Instruction length is checked before the opcode to avoid
427 * accessing uninitialized bytes for zero-length replacements.
428 */
429 if (a->replacementlen == 5 && *insn_buff == 0xe8) {
430 *(s32 *)(insn_buff + 1) += replacement - instr;
431 DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
432 *(s32 *)(insn_buff + 1),
433 (unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
434 }
435
436 if (a->replacementlen && is_jmp(replacement[0]))
437 recompute_jump(a, instr, replacement, insn_buff);
438
439 if (a->instrlen > a->replacementlen) {
440 add_nops(insn_buff + a->replacementlen,
441 a->instrlen - a->replacementlen);
442 insn_buff_sz += a->instrlen - a->replacementlen;
443 }
444 DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
445
446 text_poke_early(instr, insn_buff, insn_buff_sz);
447 }
448
449 kasan_enable_current();
450 }
451
452 #ifdef CONFIG_SMP
alternatives_smp_lock(const s32 * start,const s32 * end,u8 * text,u8 * text_end)453 static void alternatives_smp_lock(const s32 *start, const s32 *end,
454 u8 *text, u8 *text_end)
455 {
456 const s32 *poff;
457
458 for (poff = start; poff < end; poff++) {
459 u8 *ptr = (u8 *)poff + *poff;
460
461 if (!*poff || ptr < text || ptr >= text_end)
462 continue;
463 /* turn DS segment override prefix into lock prefix */
464 if (*ptr == 0x3e)
465 text_poke(ptr, ((unsigned char []){0xf0}), 1);
466 }
467 }
468
alternatives_smp_unlock(const s32 * start,const s32 * end,u8 * text,u8 * text_end)469 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
470 u8 *text, u8 *text_end)
471 {
472 const s32 *poff;
473
474 for (poff = start; poff < end; poff++) {
475 u8 *ptr = (u8 *)poff + *poff;
476
477 if (!*poff || ptr < text || ptr >= text_end)
478 continue;
479 /* turn lock prefix into DS segment override prefix */
480 if (*ptr == 0xf0)
481 text_poke(ptr, ((unsigned char []){0x3E}), 1);
482 }
483 }
484
485 struct smp_alt_module {
486 /* what is this ??? */
487 struct module *mod;
488 char *name;
489
490 /* ptrs to lock prefixes */
491 const s32 *locks;
492 const s32 *locks_end;
493
494 /* .text segment, needed to avoid patching init code ;) */
495 u8 *text;
496 u8 *text_end;
497
498 struct list_head next;
499 };
500 static LIST_HEAD(smp_alt_modules);
501 static bool uniproc_patched = false; /* protected by text_mutex */
502
alternatives_smp_module_add(struct module * mod,char * name,void * locks,void * locks_end,void * text,void * text_end)503 void __init_or_module alternatives_smp_module_add(struct module *mod,
504 char *name,
505 void *locks, void *locks_end,
506 void *text, void *text_end)
507 {
508 struct smp_alt_module *smp;
509
510 mutex_lock(&text_mutex);
511 if (!uniproc_patched)
512 goto unlock;
513
514 if (num_possible_cpus() == 1)
515 /* Don't bother remembering, we'll never have to undo it. */
516 goto smp_unlock;
517
518 smp = kzalloc(sizeof(*smp), GFP_KERNEL);
519 if (NULL == smp)
520 /* we'll run the (safe but slow) SMP code then ... */
521 goto unlock;
522
523 smp->mod = mod;
524 smp->name = name;
525 smp->locks = locks;
526 smp->locks_end = locks_end;
527 smp->text = text;
528 smp->text_end = text_end;
529 DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
530 smp->locks, smp->locks_end,
531 smp->text, smp->text_end, smp->name);
532
533 list_add_tail(&smp->next, &smp_alt_modules);
534 smp_unlock:
535 alternatives_smp_unlock(locks, locks_end, text, text_end);
536 unlock:
537 mutex_unlock(&text_mutex);
538 }
539
alternatives_smp_module_del(struct module * mod)540 void __init_or_module alternatives_smp_module_del(struct module *mod)
541 {
542 struct smp_alt_module *item;
543
544 mutex_lock(&text_mutex);
545 list_for_each_entry(item, &smp_alt_modules, next) {
546 if (mod != item->mod)
547 continue;
548 list_del(&item->next);
549 kfree(item);
550 break;
551 }
552 mutex_unlock(&text_mutex);
553 }
554
alternatives_enable_smp(void)555 void alternatives_enable_smp(void)
556 {
557 struct smp_alt_module *mod;
558
559 /* Why bother if there are no other CPUs? */
560 BUG_ON(num_possible_cpus() == 1);
561
562 mutex_lock(&text_mutex);
563
564 if (uniproc_patched) {
565 pr_info("switching to SMP code\n");
566 BUG_ON(num_online_cpus() != 1);
567 clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
568 clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
569 list_for_each_entry(mod, &smp_alt_modules, next)
570 alternatives_smp_lock(mod->locks, mod->locks_end,
571 mod->text, mod->text_end);
572 uniproc_patched = false;
573 }
574 mutex_unlock(&text_mutex);
575 }
576
577 /*
578 * Return 1 if the address range is reserved for SMP-alternatives.
579 * Must hold text_mutex.
580 */
alternatives_text_reserved(void * start,void * end)581 int alternatives_text_reserved(void *start, void *end)
582 {
583 struct smp_alt_module *mod;
584 const s32 *poff;
585 u8 *text_start = start;
586 u8 *text_end = end;
587
588 lockdep_assert_held(&text_mutex);
589
590 list_for_each_entry(mod, &smp_alt_modules, next) {
591 if (mod->text > text_end || mod->text_end < text_start)
592 continue;
593 for (poff = mod->locks; poff < mod->locks_end; poff++) {
594 const u8 *ptr = (const u8 *)poff + *poff;
595
596 if (text_start <= ptr && text_end > ptr)
597 return 1;
598 }
599 }
600
601 return 0;
602 }
603 #endif /* CONFIG_SMP */
604
605 #ifdef CONFIG_PARAVIRT
apply_paravirt(struct paravirt_patch_site * start,struct paravirt_patch_site * end)606 void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
607 struct paravirt_patch_site *end)
608 {
609 struct paravirt_patch_site *p;
610 char insn_buff[MAX_PATCH_LEN];
611
612 for (p = start; p < end; p++) {
613 unsigned int used;
614
615 BUG_ON(p->len > MAX_PATCH_LEN);
616 /* prep the buffer with the original instructions */
617 memcpy(insn_buff, p->instr, p->len);
618 used = pv_ops.init.patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
619
620 BUG_ON(used > p->len);
621
622 /* Pad the rest with nops */
623 add_nops(insn_buff + used, p->len - used);
624 text_poke_early(p->instr, insn_buff, p->len);
625 }
626 }
627 extern struct paravirt_patch_site __start_parainstructions[],
628 __stop_parainstructions[];
629 #endif /* CONFIG_PARAVIRT */
630
631 /*
632 * Self-test for the INT3 based CALL emulation code.
633 *
634 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
635 * properly and that there is a stack gap between the INT3 frame and the
636 * previous context. Without this gap doing a virtual PUSH on the interrupted
637 * stack would corrupt the INT3 IRET frame.
638 *
639 * See entry_{32,64}.S for more details.
640 */
int3_magic(unsigned int * ptr)641 static void __init __no_sanitize_address notrace int3_magic(unsigned int *ptr)
642 {
643 *ptr = 1;
644 }
645
646 extern __initdata unsigned long int3_selftest_ip; /* defined in asm below */
647
648 static int __init
int3_exception_notify(struct notifier_block * self,unsigned long val,void * data)649 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
650 {
651 struct die_args *args = data;
652 struct pt_regs *regs = args->regs;
653
654 if (!regs || user_mode(regs))
655 return NOTIFY_DONE;
656
657 if (val != DIE_INT3)
658 return NOTIFY_DONE;
659
660 if (regs->ip - INT3_INSN_SIZE != int3_selftest_ip)
661 return NOTIFY_DONE;
662
663 int3_emulate_call(regs, (unsigned long)&int3_magic);
664 return NOTIFY_STOP;
665 }
666
int3_selftest(void)667 static void __init int3_selftest(void)
668 {
669 static __initdata struct notifier_block int3_exception_nb = {
670 .notifier_call = int3_exception_notify,
671 .priority = INT_MAX-1, /* last */
672 };
673 unsigned int val = 0;
674
675 BUG_ON(register_die_notifier(&int3_exception_nb));
676
677 /*
678 * Basically: int3_magic(&val); but really complicated :-)
679 *
680 * Stick the address of the INT3 instruction into int3_selftest_ip,
681 * then trigger the INT3, padded with NOPs to match a CALL instruction
682 * length.
683 */
684 asm volatile ("1: int3; nop; nop; nop; nop\n\t"
685 ".pushsection .init.data,\"aw\"\n\t"
686 ".align " __ASM_SEL(4, 8) "\n\t"
687 ".type int3_selftest_ip, @object\n\t"
688 ".size int3_selftest_ip, " __ASM_SEL(4, 8) "\n\t"
689 "int3_selftest_ip:\n\t"
690 __ASM_SEL(.long, .quad) " 1b\n\t"
691 ".popsection\n\t"
692 : ASM_CALL_CONSTRAINT
693 : __ASM_SEL_RAW(a, D) (&val)
694 : "memory");
695
696 BUG_ON(val != 1);
697
698 unregister_die_notifier(&int3_exception_nb);
699 }
700
alternative_instructions(void)701 void __init alternative_instructions(void)
702 {
703 int3_selftest();
704
705 /*
706 * The patching is not fully atomic, so try to avoid local
707 * interruptions that might execute the to be patched code.
708 * Other CPUs are not running.
709 */
710 stop_nmi();
711
712 /*
713 * Don't stop machine check exceptions while patching.
714 * MCEs only happen when something got corrupted and in this
715 * case we must do something about the corruption.
716 * Ignoring it is worse than an unlikely patching race.
717 * Also machine checks tend to be broadcast and if one CPU
718 * goes into machine check the others follow quickly, so we don't
719 * expect a machine check to cause undue problems during to code
720 * patching.
721 */
722
723 apply_alternatives(__alt_instructions, __alt_instructions_end);
724
725 #ifdef CONFIG_SMP
726 /* Patch to UP if other cpus not imminent. */
727 if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
728 uniproc_patched = true;
729 alternatives_smp_module_add(NULL, "core kernel",
730 __smp_locks, __smp_locks_end,
731 _text, _etext);
732 }
733
734 if (!uniproc_patched || num_possible_cpus() == 1) {
735 free_init_pages("SMP alternatives",
736 (unsigned long)__smp_locks,
737 (unsigned long)__smp_locks_end);
738 }
739 #endif
740
741 apply_paravirt(__parainstructions, __parainstructions_end);
742
743 restart_nmi();
744 alternatives_patched = 1;
745 }
746
747 /**
748 * text_poke_early - Update instructions on a live kernel at boot time
749 * @addr: address to modify
750 * @opcode: source of the copy
751 * @len: length to copy
752 *
753 * When you use this code to patch more than one byte of an instruction
754 * you need to make sure that other CPUs cannot execute this code in parallel.
755 * Also no thread must be currently preempted in the middle of these
756 * instructions. And on the local CPU you need to be protected against NMI or
757 * MCE handlers seeing an inconsistent instruction while you patch.
758 */
text_poke_early(void * addr,const void * opcode,size_t len)759 void __init_or_module text_poke_early(void *addr, const void *opcode,
760 size_t len)
761 {
762 unsigned long flags;
763
764 if (boot_cpu_has(X86_FEATURE_NX) &&
765 is_module_text_address((unsigned long)addr)) {
766 /*
767 * Modules text is marked initially as non-executable, so the
768 * code cannot be running and speculative code-fetches are
769 * prevented. Just change the code.
770 */
771 memcpy(addr, opcode, len);
772 } else {
773 local_irq_save(flags);
774 memcpy(addr, opcode, len);
775 sync_core();
776 local_irq_restore(flags);
777
778 /*
779 * Could also do a CLFLUSH here to speed up CPU recovery; but
780 * that causes hangs on some VIA CPUs.
781 */
782 }
783 }
784
785 __ro_after_init struct mm_struct *poking_mm;
786 __ro_after_init unsigned long poking_addr;
787
__text_poke(void * addr,const void * opcode,size_t len)788 static void *__text_poke(void *addr, const void *opcode, size_t len)
789 {
790 bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
791 struct page *pages[2] = {NULL};
792 temp_mm_state_t prev;
793 unsigned long flags;
794 pte_t pte, *ptep;
795 spinlock_t *ptl;
796 pgprot_t pgprot;
797
798 /*
799 * While boot memory allocator is running we cannot use struct pages as
800 * they are not yet initialized. There is no way to recover.
801 */
802 BUG_ON(!after_bootmem);
803
804 if (!core_kernel_text((unsigned long)addr)) {
805 pages[0] = vmalloc_to_page(addr);
806 if (cross_page_boundary)
807 pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
808 } else {
809 pages[0] = virt_to_page(addr);
810 WARN_ON(!PageReserved(pages[0]));
811 if (cross_page_boundary)
812 pages[1] = virt_to_page(addr + PAGE_SIZE);
813 }
814 /*
815 * If something went wrong, crash and burn since recovery paths are not
816 * implemented.
817 */
818 BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
819
820 local_irq_save(flags);
821
822 /*
823 * Map the page without the global bit, as TLB flushing is done with
824 * flush_tlb_mm_range(), which is intended for non-global PTEs.
825 */
826 pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
827
828 /*
829 * The lock is not really needed, but this allows to avoid open-coding.
830 */
831 ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
832
833 /*
834 * This must not fail; preallocated in poking_init().
835 */
836 VM_BUG_ON(!ptep);
837
838 pte = mk_pte(pages[0], pgprot);
839 set_pte_at(poking_mm, poking_addr, ptep, pte);
840
841 if (cross_page_boundary) {
842 pte = mk_pte(pages[1], pgprot);
843 set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
844 }
845
846 /*
847 * Loading the temporary mm behaves as a compiler barrier, which
848 * guarantees that the PTE will be set at the time memcpy() is done.
849 */
850 prev = use_temporary_mm(poking_mm);
851
852 kasan_disable_current();
853 memcpy((u8 *)poking_addr + offset_in_page(addr), opcode, len);
854 kasan_enable_current();
855
856 /*
857 * Ensure that the PTE is only cleared after the instructions of memcpy
858 * were issued by using a compiler barrier.
859 */
860 barrier();
861
862 pte_clear(poking_mm, poking_addr, ptep);
863 if (cross_page_boundary)
864 pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
865
866 /*
867 * Loading the previous page-table hierarchy requires a serializing
868 * instruction that already allows the core to see the updated version.
869 * Xen-PV is assumed to serialize execution in a similar manner.
870 */
871 unuse_temporary_mm(prev);
872
873 /*
874 * Flushing the TLB might involve IPIs, which would require enabled
875 * IRQs, but not if the mm is not used, as it is in this point.
876 */
877 flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
878 (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
879 PAGE_SHIFT, false);
880
881 /*
882 * If the text does not match what we just wrote then something is
883 * fundamentally screwy; there's nothing we can really do about that.
884 */
885 BUG_ON(memcmp(addr, opcode, len));
886
887 pte_unmap_unlock(ptep, ptl);
888 local_irq_restore(flags);
889 return addr;
890 }
891
892 /**
893 * text_poke - Update instructions on a live kernel
894 * @addr: address to modify
895 * @opcode: source of the copy
896 * @len: length to copy
897 *
898 * Only atomic text poke/set should be allowed when not doing early patching.
899 * It means the size must be writable atomically and the address must be aligned
900 * in a way that permits an atomic write. It also makes sure we fit on a single
901 * page.
902 *
903 * Note that the caller must ensure that if the modified code is part of a
904 * module, the module would not be removed during poking. This can be achieved
905 * by registering a module notifier, and ordering module removal and patching
906 * trough a mutex.
907 */
text_poke(void * addr,const void * opcode,size_t len)908 void *text_poke(void *addr, const void *opcode, size_t len)
909 {
910 lockdep_assert_held(&text_mutex);
911
912 return __text_poke(addr, opcode, len);
913 }
914
915 /**
916 * text_poke_kgdb - Update instructions on a live kernel by kgdb
917 * @addr: address to modify
918 * @opcode: source of the copy
919 * @len: length to copy
920 *
921 * Only atomic text poke/set should be allowed when not doing early patching.
922 * It means the size must be writable atomically and the address must be aligned
923 * in a way that permits an atomic write. It also makes sure we fit on a single
924 * page.
925 *
926 * Context: should only be used by kgdb, which ensures no other core is running,
927 * despite the fact it does not hold the text_mutex.
928 */
text_poke_kgdb(void * addr,const void * opcode,size_t len)929 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
930 {
931 return __text_poke(addr, opcode, len);
932 }
933
do_sync_core(void * info)934 static void do_sync_core(void *info)
935 {
936 sync_core();
937 }
938
939 static struct bp_patching_desc {
940 struct text_poke_loc *vec;
941 int nr_entries;
942 } bp_patching;
943
patch_cmp(const void * key,const void * elt)944 static int patch_cmp(const void *key, const void *elt)
945 {
946 struct text_poke_loc *tp = (struct text_poke_loc *) elt;
947
948 if (key < tp->addr)
949 return -1;
950 if (key > tp->addr)
951 return 1;
952 return 0;
953 }
954 NOKPROBE_SYMBOL(patch_cmp);
955
poke_int3_handler(struct pt_regs * regs)956 int poke_int3_handler(struct pt_regs *regs)
957 {
958 struct text_poke_loc *tp;
959 unsigned char int3 = 0xcc;
960 void *ip;
961
962 /*
963 * Having observed our INT3 instruction, we now must observe
964 * bp_patching.nr_entries.
965 *
966 * nr_entries != 0 INT3
967 * WMB RMB
968 * write INT3 if (nr_entries)
969 *
970 * Idem for other elements in bp_patching.
971 */
972 smp_rmb();
973
974 if (likely(!bp_patching.nr_entries))
975 return 0;
976
977 if (user_mode(regs))
978 return 0;
979
980 /*
981 * Discount the sizeof(int3). See text_poke_bp_batch().
982 */
983 ip = (void *) regs->ip - sizeof(int3);
984
985 /*
986 * Skip the binary search if there is a single member in the vector.
987 */
988 if (unlikely(bp_patching.nr_entries > 1)) {
989 tp = bsearch(ip, bp_patching.vec, bp_patching.nr_entries,
990 sizeof(struct text_poke_loc),
991 patch_cmp);
992 if (!tp)
993 return 0;
994 } else {
995 tp = bp_patching.vec;
996 if (tp->addr != ip)
997 return 0;
998 }
999
1000 /* set up the specified breakpoint detour */
1001 regs->ip = (unsigned long) tp->detour;
1002
1003 return 1;
1004 }
1005 NOKPROBE_SYMBOL(poke_int3_handler);
1006
1007 /**
1008 * text_poke_bp_batch() -- update instructions on live kernel on SMP
1009 * @tp: vector of instructions to patch
1010 * @nr_entries: number of entries in the vector
1011 *
1012 * Modify multi-byte instruction by using int3 breakpoint on SMP.
1013 * We completely avoid stop_machine() here, and achieve the
1014 * synchronization using int3 breakpoint.
1015 *
1016 * The way it is done:
1017 * - For each entry in the vector:
1018 * - add a int3 trap to the address that will be patched
1019 * - sync cores
1020 * - For each entry in the vector:
1021 * - update all but the first byte of the patched range
1022 * - sync cores
1023 * - For each entry in the vector:
1024 * - replace the first byte (int3) by the first byte of
1025 * replacing opcode
1026 * - sync cores
1027 */
text_poke_bp_batch(struct text_poke_loc * tp,unsigned int nr_entries)1028 void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
1029 {
1030 int patched_all_but_first = 0;
1031 unsigned char int3 = 0xcc;
1032 unsigned int i;
1033
1034 lockdep_assert_held(&text_mutex);
1035
1036 bp_patching.vec = tp;
1037 bp_patching.nr_entries = nr_entries;
1038
1039 /*
1040 * Corresponding read barrier in int3 notifier for making sure the
1041 * nr_entries and handler are correctly ordered wrt. patching.
1042 */
1043 smp_wmb();
1044
1045 /*
1046 * First step: add a int3 trap to the address that will be patched.
1047 */
1048 for (i = 0; i < nr_entries; i++)
1049 text_poke(tp[i].addr, &int3, sizeof(int3));
1050
1051 on_each_cpu(do_sync_core, NULL, 1);
1052
1053 /*
1054 * Second step: update all but the first byte of the patched range.
1055 */
1056 for (i = 0; i < nr_entries; i++) {
1057 if (tp[i].len - sizeof(int3) > 0) {
1058 text_poke((char *)tp[i].addr + sizeof(int3),
1059 (const char *)tp[i].opcode + sizeof(int3),
1060 tp[i].len - sizeof(int3));
1061 patched_all_but_first++;
1062 }
1063 }
1064
1065 if (patched_all_but_first) {
1066 /*
1067 * According to Intel, this core syncing is very likely
1068 * not necessary and we'd be safe even without it. But
1069 * better safe than sorry (plus there's not only Intel).
1070 */
1071 on_each_cpu(do_sync_core, NULL, 1);
1072 }
1073
1074 /*
1075 * Third step: replace the first byte (int3) by the first byte of
1076 * replacing opcode.
1077 */
1078 for (i = 0; i < nr_entries; i++)
1079 text_poke(tp[i].addr, tp[i].opcode, sizeof(int3));
1080
1081 on_each_cpu(do_sync_core, NULL, 1);
1082 /*
1083 * sync_core() implies an smp_mb() and orders this store against
1084 * the writing of the new instruction.
1085 */
1086 bp_patching.vec = NULL;
1087 bp_patching.nr_entries = 0;
1088 }
1089
1090 /**
1091 * text_poke_bp() -- update instructions on live kernel on SMP
1092 * @addr: address to patch
1093 * @opcode: opcode of new instruction
1094 * @len: length to copy
1095 * @handler: address to jump to when the temporary breakpoint is hit
1096 *
1097 * Update a single instruction with the vector in the stack, avoiding
1098 * dynamically allocated memory. This function should be used when it is
1099 * not possible to allocate memory.
1100 */
text_poke_bp(void * addr,const void * opcode,size_t len,void * handler)1101 void text_poke_bp(void *addr, const void *opcode, size_t len, void *handler)
1102 {
1103 struct text_poke_loc tp = {
1104 .detour = handler,
1105 .addr = addr,
1106 .len = len,
1107 };
1108
1109 if (len > POKE_MAX_OPCODE_SIZE) {
1110 WARN_ONCE(1, "len is larger than %d\n", POKE_MAX_OPCODE_SIZE);
1111 return;
1112 }
1113
1114 memcpy((void *)tp.opcode, opcode, len);
1115
1116 text_poke_bp_batch(&tp, 1);
1117 }
1118