• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  No idle tick implementation for low and high resolution timers
8  *
9  *  Started by: Thomas Gleixner and Ingo Molnar
10  */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/module.h>
24 #include <linux/irq_work.h>
25 #include <linux/posix-timers.h>
26 #include <linux/context_tracking.h>
27 #include <linux/mm.h>
28 
29 #include <asm/irq_regs.h>
30 
31 #include "tick-internal.h"
32 
33 #include <trace/events/timer.h>
34 
35 /*
36  * Per-CPU nohz control structure
37  */
38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
39 
tick_get_tick_sched(int cpu)40 struct tick_sched *tick_get_tick_sched(int cpu)
41 {
42 	return &per_cpu(tick_cpu_sched, cpu);
43 }
44 
45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
46 /*
47  * The time, when the last jiffy update happened. Protected by jiffies_lock.
48  */
49 static ktime_t last_jiffies_update;
50 
51 /*
52  * Must be called with interrupts disabled !
53  */
tick_do_update_jiffies64(ktime_t now)54 static void tick_do_update_jiffies64(ktime_t now)
55 {
56 	unsigned long ticks = 1;
57 	ktime_t delta;
58 
59 	/*
60 	 * Do a quick check without holding jiffies_lock. The READ_ONCE()
61 	 * pairs with the update done later in this function.
62 	 *
63 	 * This is also an intentional data race which is even safe on
64 	 * 32bit in theory. If there is a concurrent update then the check
65 	 * might give a random answer. It does not matter because if it
66 	 * returns then the concurrent update is already taking care, if it
67 	 * falls through then it will pointlessly contend on jiffies_lock.
68 	 *
69 	 * Though there is one nasty case on 32bit due to store tearing of
70 	 * the 64bit value. If the first 32bit store makes the quick check
71 	 * return on all other CPUs and the writing CPU context gets
72 	 * delayed to complete the second store (scheduled out on virt)
73 	 * then jiffies can become stale for up to ~2^32 nanoseconds
74 	 * without noticing. After that point all CPUs will wait for
75 	 * jiffies lock.
76 	 *
77 	 * OTOH, this is not any different than the situation with NOHZ=off
78 	 * where one CPU is responsible for updating jiffies and
79 	 * timekeeping. If that CPU goes out for lunch then all other CPUs
80 	 * will operate on stale jiffies until it decides to come back.
81 	 */
82 	if (ktime_before(now, READ_ONCE(tick_next_period)))
83 		return;
84 
85 	/* Reevaluate with jiffies_lock held */
86 	raw_spin_lock(&jiffies_lock);
87 	if (ktime_before(now, tick_next_period)) {
88 		raw_spin_unlock(&jiffies_lock);
89 		return;
90 	}
91 
92 	write_seqcount_begin(&jiffies_seq);
93 
94 	delta = ktime_sub(now, tick_next_period);
95 	if (unlikely(delta >= TICK_NSEC)) {
96 		/* Slow path for long idle sleep times */
97 		s64 incr = TICK_NSEC;
98 
99 		ticks += ktime_divns(delta, incr);
100 
101 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
102 						   incr * ticks);
103 	} else {
104 		last_jiffies_update = ktime_add_ns(last_jiffies_update,
105 						   TICK_NSEC);
106 	}
107 
108 	do_timer(ticks);
109 
110 	/*
111 	 * Keep the tick_next_period variable up to date.  WRITE_ONCE()
112 	 * pairs with the READ_ONCE() in the lockless quick check above.
113 	 */
114 	WRITE_ONCE(tick_next_period,
115 		   ktime_add_ns(last_jiffies_update, TICK_NSEC));
116 
117 	write_seqcount_end(&jiffies_seq);
118 	raw_spin_unlock(&jiffies_lock);
119 	update_wall_time();
120 }
121 
122 /*
123  * Initialize and return retrieve the jiffies update.
124  */
tick_init_jiffy_update(void)125 static ktime_t tick_init_jiffy_update(void)
126 {
127 	ktime_t period;
128 
129 	raw_spin_lock(&jiffies_lock);
130 	write_seqcount_begin(&jiffies_seq);
131 	/* Did we start the jiffies update yet ? */
132 	if (last_jiffies_update == 0) {
133 		u32 rem;
134 
135 		/*
136 		 * Ensure that the tick is aligned to a multiple of
137 		 * TICK_NSEC.
138 		 */
139 		div_u64_rem(tick_next_period, TICK_NSEC, &rem);
140 		if (rem)
141 			tick_next_period += TICK_NSEC - rem;
142 
143 		last_jiffies_update = tick_next_period;
144 	}
145 	period = last_jiffies_update;
146 	write_seqcount_end(&jiffies_seq);
147 	raw_spin_unlock(&jiffies_lock);
148 	return period;
149 }
150 
tick_sched_do_timer(struct tick_sched * ts,ktime_t now)151 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
152 {
153 	int cpu = smp_processor_id();
154 
155 #ifdef CONFIG_NO_HZ_COMMON
156 	/*
157 	 * Check if the do_timer duty was dropped. We don't care about
158 	 * concurrency: This happens only when the CPU in charge went
159 	 * into a long sleep. If two CPUs happen to assign themselves to
160 	 * this duty, then the jiffies update is still serialized by
161 	 * jiffies_lock.
162 	 *
163 	 * If nohz_full is enabled, this should not happen because the
164 	 * tick_do_timer_cpu never relinquishes.
165 	 */
166 	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
167 #ifdef CONFIG_NO_HZ_FULL
168 		WARN_ON_ONCE(tick_nohz_full_running);
169 #endif
170 		tick_do_timer_cpu = cpu;
171 	}
172 #endif
173 
174 	/* Check, if the jiffies need an update */
175 	if (tick_do_timer_cpu == cpu)
176 		tick_do_update_jiffies64(now);
177 
178 	if (ts->inidle)
179 		ts->got_idle_tick = 1;
180 }
181 
tick_sched_handle(struct tick_sched * ts,struct pt_regs * regs)182 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
183 {
184 #ifdef CONFIG_NO_HZ_COMMON
185 	/*
186 	 * When we are idle and the tick is stopped, we have to touch
187 	 * the watchdog as we might not schedule for a really long
188 	 * time. This happens on complete idle SMP systems while
189 	 * waiting on the login prompt. We also increment the "start of
190 	 * idle" jiffy stamp so the idle accounting adjustment we do
191 	 * when we go busy again does not account too much ticks.
192 	 */
193 	if (ts->tick_stopped) {
194 		touch_softlockup_watchdog_sched();
195 		if (is_idle_task(current))
196 			ts->idle_jiffies++;
197 		/*
198 		 * In case the current tick fired too early past its expected
199 		 * expiration, make sure we don't bypass the next clock reprogramming
200 		 * to the same deadline.
201 		 */
202 		ts->next_tick = 0;
203 	}
204 #endif
205 	update_process_times(user_mode(regs));
206 	profile_tick(CPU_PROFILING);
207 }
208 #endif
209 
210 #ifdef CONFIG_NO_HZ_FULL
211 cpumask_var_t tick_nohz_full_mask;
212 bool tick_nohz_full_running;
213 static atomic_t tick_dep_mask;
214 
check_tick_dependency(atomic_t * dep)215 static bool check_tick_dependency(atomic_t *dep)
216 {
217 	int val = atomic_read(dep);
218 
219 	if (val & TICK_DEP_MASK_POSIX_TIMER) {
220 		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
221 		return true;
222 	}
223 
224 	if (val & TICK_DEP_MASK_PERF_EVENTS) {
225 		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
226 		return true;
227 	}
228 
229 	if (val & TICK_DEP_MASK_SCHED) {
230 		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
231 		return true;
232 	}
233 
234 	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
235 		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
236 		return true;
237 	}
238 
239 	if (val & TICK_DEP_MASK_RCU) {
240 		trace_tick_stop(0, TICK_DEP_MASK_RCU);
241 		return true;
242 	}
243 
244 	return false;
245 }
246 
can_stop_full_tick(int cpu,struct tick_sched * ts)247 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
248 {
249 	lockdep_assert_irqs_disabled();
250 
251 	if (unlikely(!cpu_online(cpu)))
252 		return false;
253 
254 	if (check_tick_dependency(&tick_dep_mask))
255 		return false;
256 
257 	if (check_tick_dependency(&ts->tick_dep_mask))
258 		return false;
259 
260 	if (check_tick_dependency(&current->tick_dep_mask))
261 		return false;
262 
263 	if (check_tick_dependency(&current->signal->tick_dep_mask))
264 		return false;
265 
266 	return true;
267 }
268 
nohz_full_kick_func(struct irq_work * work)269 static void nohz_full_kick_func(struct irq_work *work)
270 {
271 	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
272 }
273 
274 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
275 	.func = nohz_full_kick_func,
276 };
277 
278 /*
279  * Kick this CPU if it's full dynticks in order to force it to
280  * re-evaluate its dependency on the tick and restart it if necessary.
281  * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
282  * is NMI safe.
283  */
tick_nohz_full_kick(void)284 static void tick_nohz_full_kick(void)
285 {
286 	if (!tick_nohz_full_cpu(smp_processor_id()))
287 		return;
288 
289 	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
290 }
291 
292 /*
293  * Kick the CPU if it's full dynticks in order to force it to
294  * re-evaluate its dependency on the tick and restart it if necessary.
295  */
tick_nohz_full_kick_cpu(int cpu)296 void tick_nohz_full_kick_cpu(int cpu)
297 {
298 	if (!tick_nohz_full_cpu(cpu))
299 		return;
300 
301 	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
302 }
303 
304 /*
305  * Kick all full dynticks CPUs in order to force these to re-evaluate
306  * their dependency on the tick and restart it if necessary.
307  */
tick_nohz_full_kick_all(void)308 static void tick_nohz_full_kick_all(void)
309 {
310 	int cpu;
311 
312 	if (!tick_nohz_full_running)
313 		return;
314 
315 	preempt_disable();
316 	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
317 		tick_nohz_full_kick_cpu(cpu);
318 	preempt_enable();
319 }
320 
tick_nohz_dep_set_all(atomic_t * dep,enum tick_dep_bits bit)321 static void tick_nohz_dep_set_all(atomic_t *dep,
322 				  enum tick_dep_bits bit)
323 {
324 	int prev;
325 
326 	prev = atomic_fetch_or(BIT(bit), dep);
327 	if (!prev)
328 		tick_nohz_full_kick_all();
329 }
330 
331 /*
332  * Set a global tick dependency. Used by perf events that rely on freq and
333  * by unstable clock.
334  */
tick_nohz_dep_set(enum tick_dep_bits bit)335 void tick_nohz_dep_set(enum tick_dep_bits bit)
336 {
337 	tick_nohz_dep_set_all(&tick_dep_mask, bit);
338 }
339 
tick_nohz_dep_clear(enum tick_dep_bits bit)340 void tick_nohz_dep_clear(enum tick_dep_bits bit)
341 {
342 	atomic_andnot(BIT(bit), &tick_dep_mask);
343 }
344 
345 /*
346  * Set per-CPU tick dependency. Used by scheduler and perf events in order to
347  * manage events throttling.
348  */
tick_nohz_dep_set_cpu(int cpu,enum tick_dep_bits bit)349 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
350 {
351 	int prev;
352 	struct tick_sched *ts;
353 
354 	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
355 
356 	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
357 	if (!prev) {
358 		preempt_disable();
359 		/* Perf needs local kick that is NMI safe */
360 		if (cpu == smp_processor_id()) {
361 			tick_nohz_full_kick();
362 		} else {
363 			/* Remote irq work not NMI-safe */
364 			if (!WARN_ON_ONCE(in_nmi()))
365 				tick_nohz_full_kick_cpu(cpu);
366 		}
367 		preempt_enable();
368 	}
369 }
370 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
371 
tick_nohz_dep_clear_cpu(int cpu,enum tick_dep_bits bit)372 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
373 {
374 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
375 
376 	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
377 }
378 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
379 
380 /*
381  * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
382  * per task timers.
383  */
tick_nohz_dep_set_task(struct task_struct * tsk,enum tick_dep_bits bit)384 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
385 {
386 	/*
387 	 * We could optimize this with just kicking the target running the task
388 	 * if that noise matters for nohz full users.
389 	 */
390 	tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
391 }
392 
tick_nohz_dep_clear_task(struct task_struct * tsk,enum tick_dep_bits bit)393 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
394 {
395 	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
396 }
397 
398 /*
399  * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
400  * per process timers.
401  */
tick_nohz_dep_set_signal(struct signal_struct * sig,enum tick_dep_bits bit)402 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
403 {
404 	tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
405 }
406 
tick_nohz_dep_clear_signal(struct signal_struct * sig,enum tick_dep_bits bit)407 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
408 {
409 	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
410 }
411 
412 /*
413  * Re-evaluate the need for the tick as we switch the current task.
414  * It might need the tick due to per task/process properties:
415  * perf events, posix CPU timers, ...
416  */
__tick_nohz_task_switch(void)417 void __tick_nohz_task_switch(void)
418 {
419 	unsigned long flags;
420 	struct tick_sched *ts;
421 
422 	local_irq_save(flags);
423 
424 	if (!tick_nohz_full_cpu(smp_processor_id()))
425 		goto out;
426 
427 	ts = this_cpu_ptr(&tick_cpu_sched);
428 
429 	if (ts->tick_stopped) {
430 		if (atomic_read(&current->tick_dep_mask) ||
431 		    atomic_read(&current->signal->tick_dep_mask))
432 			tick_nohz_full_kick();
433 	}
434 out:
435 	local_irq_restore(flags);
436 }
437 
438 /* Get the boot-time nohz CPU list from the kernel parameters. */
tick_nohz_full_setup(cpumask_var_t cpumask)439 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
440 {
441 	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
442 	cpumask_copy(tick_nohz_full_mask, cpumask);
443 	tick_nohz_full_running = true;
444 }
445 
tick_nohz_cpu_hotpluggable(unsigned int cpu)446 bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
447 {
448 	/*
449 	 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
450 	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
451 	 * CPUs. It must remain online when nohz full is enabled.
452 	 */
453 	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
454 		return false;
455 	return true;
456 }
457 
tick_nohz_cpu_down(unsigned int cpu)458 static int tick_nohz_cpu_down(unsigned int cpu)
459 {
460 	return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
461 }
462 
tick_nohz_init(void)463 void __init tick_nohz_init(void)
464 {
465 	int cpu, ret;
466 
467 	if (!tick_nohz_full_running)
468 		return;
469 
470 	/*
471 	 * Full dynticks uses irq work to drive the tick rescheduling on safe
472 	 * locking contexts. But then we need irq work to raise its own
473 	 * interrupts to avoid circular dependency on the tick
474 	 */
475 	if (!arch_irq_work_has_interrupt()) {
476 		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
477 		cpumask_clear(tick_nohz_full_mask);
478 		tick_nohz_full_running = false;
479 		return;
480 	}
481 
482 	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
483 			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
484 		cpu = smp_processor_id();
485 
486 		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
487 			pr_warn("NO_HZ: Clearing %d from nohz_full range "
488 				"for timekeeping\n", cpu);
489 			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
490 		}
491 	}
492 
493 	for_each_cpu(cpu, tick_nohz_full_mask)
494 		context_tracking_cpu_set(cpu);
495 
496 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
497 					"kernel/nohz:predown", NULL,
498 					tick_nohz_cpu_down);
499 	WARN_ON(ret < 0);
500 	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
501 		cpumask_pr_args(tick_nohz_full_mask));
502 }
503 #endif
504 
505 /*
506  * NOHZ - aka dynamic tick functionality
507  */
508 #ifdef CONFIG_NO_HZ_COMMON
509 /*
510  * NO HZ enabled ?
511  */
512 bool tick_nohz_enabled __read_mostly  = true;
513 unsigned long tick_nohz_active  __read_mostly;
514 /*
515  * Enable / Disable tickless mode
516  */
setup_tick_nohz(char * str)517 static int __init setup_tick_nohz(char *str)
518 {
519 	return (kstrtobool(str, &tick_nohz_enabled) == 0);
520 }
521 
522 __setup("nohz=", setup_tick_nohz);
523 
tick_nohz_tick_stopped(void)524 bool tick_nohz_tick_stopped(void)
525 {
526 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
527 
528 	return ts->tick_stopped;
529 }
530 
tick_nohz_tick_stopped_cpu(int cpu)531 bool tick_nohz_tick_stopped_cpu(int cpu)
532 {
533 	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
534 
535 	return ts->tick_stopped;
536 }
537 
538 /**
539  * tick_nohz_update_jiffies - update jiffies when idle was interrupted
540  *
541  * Called from interrupt entry when the CPU was idle
542  *
543  * In case the sched_tick was stopped on this CPU, we have to check if jiffies
544  * must be updated. Otherwise an interrupt handler could use a stale jiffy
545  * value. We do this unconditionally on any CPU, as we don't know whether the
546  * CPU, which has the update task assigned is in a long sleep.
547  */
tick_nohz_update_jiffies(ktime_t now)548 static void tick_nohz_update_jiffies(ktime_t now)
549 {
550 	unsigned long flags;
551 
552 	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
553 
554 	local_irq_save(flags);
555 	tick_do_update_jiffies64(now);
556 	local_irq_restore(flags);
557 
558 	touch_softlockup_watchdog_sched();
559 }
560 
561 /*
562  * Updates the per-CPU time idle statistics counters
563  */
564 static void
update_ts_time_stats(int cpu,struct tick_sched * ts,ktime_t now,u64 * last_update_time)565 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
566 {
567 	ktime_t delta;
568 
569 	if (ts->idle_active) {
570 		delta = ktime_sub(now, ts->idle_entrytime);
571 		if (nr_iowait_cpu(cpu) > 0)
572 			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
573 		else
574 			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
575 		ts->idle_entrytime = now;
576 	}
577 
578 	if (last_update_time)
579 		*last_update_time = ktime_to_us(now);
580 
581 }
582 
tick_nohz_stop_idle(struct tick_sched * ts,ktime_t now)583 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
584 {
585 	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
586 	ts->idle_active = 0;
587 
588 	sched_clock_idle_wakeup_event();
589 }
590 
tick_nohz_start_idle(struct tick_sched * ts)591 static void tick_nohz_start_idle(struct tick_sched *ts)
592 {
593 	ts->idle_entrytime = ktime_get();
594 	ts->idle_active = 1;
595 	sched_clock_idle_sleep_event();
596 }
597 
598 /**
599  * get_cpu_idle_time_us - get the total idle time of a CPU
600  * @cpu: CPU number to query
601  * @last_update_time: variable to store update time in. Do not update
602  * counters if NULL.
603  *
604  * Return the cumulative idle time (since boot) for a given
605  * CPU, in microseconds.
606  *
607  * This time is measured via accounting rather than sampling,
608  * and is as accurate as ktime_get() is.
609  *
610  * This function returns -1 if NOHZ is not enabled.
611  */
get_cpu_idle_time_us(int cpu,u64 * last_update_time)612 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
613 {
614 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
615 	ktime_t now, idle;
616 
617 	if (!tick_nohz_active)
618 		return -1;
619 
620 	now = ktime_get();
621 	if (last_update_time) {
622 		update_ts_time_stats(cpu, ts, now, last_update_time);
623 		idle = ts->idle_sleeptime;
624 	} else {
625 		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
626 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
627 
628 			idle = ktime_add(ts->idle_sleeptime, delta);
629 		} else {
630 			idle = ts->idle_sleeptime;
631 		}
632 	}
633 
634 	return ktime_to_us(idle);
635 
636 }
637 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
638 
639 /**
640  * get_cpu_iowait_time_us - get the total iowait time of a CPU
641  * @cpu: CPU number to query
642  * @last_update_time: variable to store update time in. Do not update
643  * counters if NULL.
644  *
645  * Return the cumulative iowait time (since boot) for a given
646  * CPU, in microseconds.
647  *
648  * This time is measured via accounting rather than sampling,
649  * and is as accurate as ktime_get() is.
650  *
651  * This function returns -1 if NOHZ is not enabled.
652  */
get_cpu_iowait_time_us(int cpu,u64 * last_update_time)653 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
654 {
655 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
656 	ktime_t now, iowait;
657 
658 	if (!tick_nohz_active)
659 		return -1;
660 
661 	now = ktime_get();
662 	if (last_update_time) {
663 		update_ts_time_stats(cpu, ts, now, last_update_time);
664 		iowait = ts->iowait_sleeptime;
665 	} else {
666 		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
667 			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
668 
669 			iowait = ktime_add(ts->iowait_sleeptime, delta);
670 		} else {
671 			iowait = ts->iowait_sleeptime;
672 		}
673 	}
674 
675 	return ktime_to_us(iowait);
676 }
677 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
678 
tick_nohz_restart(struct tick_sched * ts,ktime_t now)679 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
680 {
681 	hrtimer_cancel(&ts->sched_timer);
682 	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
683 
684 	/* Forward the time to expire in the future */
685 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
686 
687 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
688 		hrtimer_start_expires(&ts->sched_timer,
689 				      HRTIMER_MODE_ABS_PINNED_HARD);
690 	} else {
691 		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
692 	}
693 
694 	/*
695 	 * Reset to make sure next tick stop doesn't get fooled by past
696 	 * cached clock deadline.
697 	 */
698 	ts->next_tick = 0;
699 }
700 
local_timer_softirq_pending(void)701 static inline bool local_timer_softirq_pending(void)
702 {
703 	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
704 }
705 
tick_nohz_next_event(struct tick_sched * ts,int cpu)706 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
707 {
708 	u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
709 	unsigned long basejiff;
710 	unsigned int seq;
711 
712 	/* Read jiffies and the time when jiffies were updated last */
713 	do {
714 		seq = read_seqcount_begin(&jiffies_seq);
715 		basemono = last_jiffies_update;
716 		basejiff = jiffies;
717 	} while (read_seqcount_retry(&jiffies_seq, seq));
718 	ts->last_jiffies = basejiff;
719 	ts->timer_expires_base = basemono;
720 
721 	/*
722 	 * Keep the periodic tick, when RCU, architecture or irq_work
723 	 * requests it.
724 	 * Aside of that check whether the local timer softirq is
725 	 * pending. If so its a bad idea to call get_next_timer_interrupt()
726 	 * because there is an already expired timer, so it will request
727 	 * immeditate expiry, which rearms the hardware timer with a
728 	 * minimal delta which brings us back to this place
729 	 * immediately. Lather, rinse and repeat...
730 	 */
731 	if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
732 	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
733 		next_tick = basemono + TICK_NSEC;
734 	} else {
735 		/*
736 		 * Get the next pending timer. If high resolution
737 		 * timers are enabled this only takes the timer wheel
738 		 * timers into account. If high resolution timers are
739 		 * disabled this also looks at the next expiring
740 		 * hrtimer.
741 		 */
742 		next_tmr = get_next_timer_interrupt(basejiff, basemono);
743 		ts->next_timer = next_tmr;
744 		/* Take the next rcu event into account */
745 		next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
746 	}
747 
748 	/*
749 	 * If the tick is due in the next period, keep it ticking or
750 	 * force prod the timer.
751 	 */
752 	delta = next_tick - basemono;
753 	if (delta <= (u64)TICK_NSEC) {
754 		/*
755 		 * Tell the timer code that the base is not idle, i.e. undo
756 		 * the effect of get_next_timer_interrupt():
757 		 */
758 		timer_clear_idle();
759 		/*
760 		 * We've not stopped the tick yet, and there's a timer in the
761 		 * next period, so no point in stopping it either, bail.
762 		 */
763 		if (!ts->tick_stopped) {
764 			ts->timer_expires = 0;
765 			goto out;
766 		}
767 	}
768 
769 	/*
770 	 * If this CPU is the one which had the do_timer() duty last, we limit
771 	 * the sleep time to the timekeeping max_deferment value.
772 	 * Otherwise we can sleep as long as we want.
773 	 */
774 	delta = timekeeping_max_deferment();
775 	if (cpu != tick_do_timer_cpu &&
776 	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
777 		delta = KTIME_MAX;
778 
779 	/* Calculate the next expiry time */
780 	if (delta < (KTIME_MAX - basemono))
781 		expires = basemono + delta;
782 	else
783 		expires = KTIME_MAX;
784 
785 	ts->timer_expires = min_t(u64, expires, next_tick);
786 
787 out:
788 	return ts->timer_expires;
789 }
790 
tick_nohz_stop_tick(struct tick_sched * ts,int cpu)791 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
792 {
793 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
794 	u64 basemono = ts->timer_expires_base;
795 	u64 expires = ts->timer_expires;
796 	ktime_t tick = expires;
797 
798 	/* Make sure we won't be trying to stop it twice in a row. */
799 	ts->timer_expires_base = 0;
800 
801 	/*
802 	 * If this CPU is the one which updates jiffies, then give up
803 	 * the assignment and let it be taken by the CPU which runs
804 	 * the tick timer next, which might be this CPU as well. If we
805 	 * don't drop this here the jiffies might be stale and
806 	 * do_timer() never invoked. Keep track of the fact that it
807 	 * was the one which had the do_timer() duty last.
808 	 */
809 	if (cpu == tick_do_timer_cpu) {
810 		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
811 		ts->do_timer_last = 1;
812 	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
813 		ts->do_timer_last = 0;
814 	}
815 
816 	/* Skip reprogram of event if its not changed */
817 	if (ts->tick_stopped && (expires == ts->next_tick)) {
818 		/* Sanity check: make sure clockevent is actually programmed */
819 		if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
820 			return;
821 
822 		WARN_ON_ONCE(1);
823 		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
824 			    basemono, ts->next_tick, dev->next_event,
825 			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
826 	}
827 
828 	/*
829 	 * nohz_stop_sched_tick can be called several times before
830 	 * the nohz_restart_sched_tick is called. This happens when
831 	 * interrupts arrive which do not cause a reschedule. In the
832 	 * first call we save the current tick time, so we can restart
833 	 * the scheduler tick in nohz_restart_sched_tick.
834 	 */
835 	if (!ts->tick_stopped) {
836 		calc_load_nohz_start();
837 		quiet_vmstat();
838 
839 		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
840 		ts->tick_stopped = 1;
841 		trace_tick_stop(1, TICK_DEP_MASK_NONE);
842 	}
843 
844 	ts->next_tick = tick;
845 
846 	/*
847 	 * If the expiration time == KTIME_MAX, then we simply stop
848 	 * the tick timer.
849 	 */
850 	if (unlikely(expires == KTIME_MAX)) {
851 		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
852 			hrtimer_cancel(&ts->sched_timer);
853 		return;
854 	}
855 
856 	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
857 		hrtimer_start(&ts->sched_timer, tick,
858 			      HRTIMER_MODE_ABS_PINNED_HARD);
859 	} else {
860 		hrtimer_set_expires(&ts->sched_timer, tick);
861 		tick_program_event(tick, 1);
862 	}
863 }
864 
tick_nohz_retain_tick(struct tick_sched * ts)865 static void tick_nohz_retain_tick(struct tick_sched *ts)
866 {
867 	ts->timer_expires_base = 0;
868 }
869 
870 #ifdef CONFIG_NO_HZ_FULL
tick_nohz_stop_sched_tick(struct tick_sched * ts,int cpu)871 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
872 {
873 	if (tick_nohz_next_event(ts, cpu))
874 		tick_nohz_stop_tick(ts, cpu);
875 	else
876 		tick_nohz_retain_tick(ts);
877 }
878 #endif /* CONFIG_NO_HZ_FULL */
879 
tick_nohz_restart_sched_tick(struct tick_sched * ts,ktime_t now)880 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
881 {
882 	/* Update jiffies first */
883 	tick_do_update_jiffies64(now);
884 
885 	/*
886 	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
887 	 * the clock forward checks in the enqueue path:
888 	 */
889 	timer_clear_idle();
890 
891 	calc_load_nohz_stop();
892 	touch_softlockup_watchdog_sched();
893 	/*
894 	 * Cancel the scheduled timer and restore the tick
895 	 */
896 	ts->tick_stopped  = 0;
897 	ts->idle_exittime = now;
898 
899 	tick_nohz_restart(ts, now);
900 }
901 
tick_nohz_full_update_tick(struct tick_sched * ts)902 static void tick_nohz_full_update_tick(struct tick_sched *ts)
903 {
904 #ifdef CONFIG_NO_HZ_FULL
905 	int cpu = smp_processor_id();
906 
907 	if (!tick_nohz_full_cpu(cpu))
908 		return;
909 
910 	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
911 		return;
912 
913 	if (can_stop_full_tick(cpu, ts))
914 		tick_nohz_stop_sched_tick(ts, cpu);
915 	else if (ts->tick_stopped)
916 		tick_nohz_restart_sched_tick(ts, ktime_get());
917 #endif
918 }
919 
can_stop_idle_tick(int cpu,struct tick_sched * ts)920 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
921 {
922 	/*
923 	 * If this CPU is offline and it is the one which updates
924 	 * jiffies, then give up the assignment and let it be taken by
925 	 * the CPU which runs the tick timer next. If we don't drop
926 	 * this here the jiffies might be stale and do_timer() never
927 	 * invoked.
928 	 */
929 	if (unlikely(!cpu_online(cpu))) {
930 		if (cpu == tick_do_timer_cpu)
931 			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
932 		/*
933 		 * Make sure the CPU doesn't get fooled by obsolete tick
934 		 * deadline if it comes back online later.
935 		 */
936 		ts->next_tick = 0;
937 		return false;
938 	}
939 
940 	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
941 		return false;
942 
943 	if (need_resched())
944 		return false;
945 
946 	if (unlikely(local_softirq_pending())) {
947 		static int ratelimit;
948 
949 		if (ratelimit < 10 &&
950 		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
951 			pr_warn("NOHZ: local_softirq_pending %02x\n",
952 				(unsigned int) local_softirq_pending());
953 			ratelimit++;
954 		}
955 		return false;
956 	}
957 
958 	if (tick_nohz_full_enabled()) {
959 		/*
960 		 * Keep the tick alive to guarantee timekeeping progression
961 		 * if there are full dynticks CPUs around
962 		 */
963 		if (tick_do_timer_cpu == cpu)
964 			return false;
965 
966 		/* Should not happen for nohz-full */
967 		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
968 			return false;
969 	}
970 
971 	return true;
972 }
973 
__tick_nohz_idle_stop_tick(struct tick_sched * ts)974 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
975 {
976 	ktime_t expires;
977 	int cpu = smp_processor_id();
978 
979 	/*
980 	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
981 	 * tick timer expiration time is known already.
982 	 */
983 	if (ts->timer_expires_base)
984 		expires = ts->timer_expires;
985 	else if (can_stop_idle_tick(cpu, ts))
986 		expires = tick_nohz_next_event(ts, cpu);
987 	else
988 		return;
989 
990 	ts->idle_calls++;
991 
992 	if (expires > 0LL) {
993 		int was_stopped = ts->tick_stopped;
994 
995 		tick_nohz_stop_tick(ts, cpu);
996 
997 		ts->idle_sleeps++;
998 		ts->idle_expires = expires;
999 
1000 		if (!was_stopped && ts->tick_stopped) {
1001 			ts->idle_jiffies = ts->last_jiffies;
1002 			nohz_balance_enter_idle(cpu);
1003 		}
1004 	} else {
1005 		tick_nohz_retain_tick(ts);
1006 	}
1007 }
1008 
1009 /**
1010  * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1011  *
1012  * When the next event is more than a tick into the future, stop the idle tick
1013  */
tick_nohz_idle_stop_tick(void)1014 void tick_nohz_idle_stop_tick(void)
1015 {
1016 	__tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1017 }
1018 
tick_nohz_idle_retain_tick(void)1019 void tick_nohz_idle_retain_tick(void)
1020 {
1021 	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1022 	/*
1023 	 * Undo the effect of get_next_timer_interrupt() called from
1024 	 * tick_nohz_next_event().
1025 	 */
1026 	timer_clear_idle();
1027 }
1028 
1029 /**
1030  * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1031  *
1032  * Called when we start the idle loop.
1033  */
tick_nohz_idle_enter(void)1034 void tick_nohz_idle_enter(void)
1035 {
1036 	struct tick_sched *ts;
1037 
1038 	lockdep_assert_irqs_enabled();
1039 
1040 	local_irq_disable();
1041 
1042 	ts = this_cpu_ptr(&tick_cpu_sched);
1043 
1044 	WARN_ON_ONCE(ts->timer_expires_base);
1045 
1046 	ts->inidle = 1;
1047 	tick_nohz_start_idle(ts);
1048 
1049 	local_irq_enable();
1050 }
1051 
1052 /**
1053  * tick_nohz_irq_exit - update next tick event from interrupt exit
1054  *
1055  * When an interrupt fires while we are idle and it doesn't cause
1056  * a reschedule, it may still add, modify or delete a timer, enqueue
1057  * an RCU callback, etc...
1058  * So we need to re-calculate and reprogram the next tick event.
1059  */
tick_nohz_irq_exit(void)1060 void tick_nohz_irq_exit(void)
1061 {
1062 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1063 
1064 	if (ts->inidle)
1065 		tick_nohz_start_idle(ts);
1066 	else
1067 		tick_nohz_full_update_tick(ts);
1068 }
1069 
1070 /**
1071  * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1072  */
tick_nohz_idle_got_tick(void)1073 bool tick_nohz_idle_got_tick(void)
1074 {
1075 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1076 
1077 	if (ts->got_idle_tick) {
1078 		ts->got_idle_tick = 0;
1079 		return true;
1080 	}
1081 	return false;
1082 }
1083 
1084 /**
1085  * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1086  * or the tick, whatever that expires first. Note that, if the tick has been
1087  * stopped, it returns the next hrtimer.
1088  *
1089  * Called from power state control code with interrupts disabled
1090  */
tick_nohz_get_next_hrtimer(void)1091 ktime_t tick_nohz_get_next_hrtimer(void)
1092 {
1093 	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1094 }
1095 
1096 /**
1097  * tick_nohz_get_sleep_length - return the expected length of the current sleep
1098  * @delta_next: duration until the next event if the tick cannot be stopped
1099  *
1100  * Called from power state control code with interrupts disabled
1101  */
tick_nohz_get_sleep_length(ktime_t * delta_next)1102 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1103 {
1104 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1105 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1106 	int cpu = smp_processor_id();
1107 	/*
1108 	 * The idle entry time is expected to be a sufficient approximation of
1109 	 * the current time at this point.
1110 	 */
1111 	ktime_t now = ts->idle_entrytime;
1112 	ktime_t next_event;
1113 
1114 	WARN_ON_ONCE(!ts->inidle);
1115 
1116 	*delta_next = ktime_sub(dev->next_event, now);
1117 
1118 	if (!can_stop_idle_tick(cpu, ts))
1119 		return *delta_next;
1120 
1121 	next_event = tick_nohz_next_event(ts, cpu);
1122 	if (!next_event)
1123 		return *delta_next;
1124 
1125 	/*
1126 	 * If the next highres timer to expire is earlier than next_event, the
1127 	 * idle governor needs to know that.
1128 	 */
1129 	next_event = min_t(u64, next_event,
1130 			   hrtimer_next_event_without(&ts->sched_timer));
1131 
1132 	return ktime_sub(next_event, now);
1133 }
1134 
1135 /**
1136  * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1137  * for a particular CPU.
1138  *
1139  * Called from the schedutil frequency scaling governor in scheduler context.
1140  */
tick_nohz_get_idle_calls_cpu(int cpu)1141 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1142 {
1143 	struct tick_sched *ts = tick_get_tick_sched(cpu);
1144 
1145 	return ts->idle_calls;
1146 }
1147 
1148 /**
1149  * tick_nohz_get_idle_calls - return the current idle calls counter value
1150  *
1151  * Called from the schedutil frequency scaling governor in scheduler context.
1152  */
tick_nohz_get_idle_calls(void)1153 unsigned long tick_nohz_get_idle_calls(void)
1154 {
1155 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1156 
1157 	return ts->idle_calls;
1158 }
1159 
tick_nohz_account_idle_ticks(struct tick_sched * ts)1160 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1161 {
1162 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1163 	unsigned long ticks;
1164 
1165 	if (vtime_accounting_cpu_enabled())
1166 		return;
1167 	/*
1168 	 * We stopped the tick in idle. Update process times would miss the
1169 	 * time we slept as update_process_times does only a 1 tick
1170 	 * accounting. Enforce that this is accounted to idle !
1171 	 */
1172 	ticks = jiffies - ts->idle_jiffies;
1173 	/*
1174 	 * We might be one off. Do not randomly account a huge number of ticks!
1175 	 */
1176 	if (ticks && ticks < LONG_MAX)
1177 		account_idle_ticks(ticks);
1178 #endif
1179 }
1180 
__tick_nohz_idle_restart_tick(struct tick_sched * ts,ktime_t now)1181 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1182 {
1183 	tick_nohz_restart_sched_tick(ts, now);
1184 	tick_nohz_account_idle_ticks(ts);
1185 }
1186 
tick_nohz_idle_restart_tick(void)1187 void tick_nohz_idle_restart_tick(void)
1188 {
1189 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1190 
1191 	if (ts->tick_stopped)
1192 		__tick_nohz_idle_restart_tick(ts, ktime_get());
1193 }
1194 
1195 /**
1196  * tick_nohz_idle_exit - restart the idle tick from the idle task
1197  *
1198  * Restart the idle tick when the CPU is woken up from idle
1199  * This also exit the RCU extended quiescent state. The CPU
1200  * can use RCU again after this function is called.
1201  */
tick_nohz_idle_exit(void)1202 void tick_nohz_idle_exit(void)
1203 {
1204 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1205 	bool idle_active, tick_stopped;
1206 	ktime_t now;
1207 
1208 	local_irq_disable();
1209 
1210 	WARN_ON_ONCE(!ts->inidle);
1211 	WARN_ON_ONCE(ts->timer_expires_base);
1212 
1213 	ts->inidle = 0;
1214 	idle_active = ts->idle_active;
1215 	tick_stopped = ts->tick_stopped;
1216 
1217 	if (idle_active || tick_stopped)
1218 		now = ktime_get();
1219 
1220 	if (idle_active)
1221 		tick_nohz_stop_idle(ts, now);
1222 
1223 	if (tick_stopped)
1224 		__tick_nohz_idle_restart_tick(ts, now);
1225 
1226 	local_irq_enable();
1227 }
1228 
1229 /*
1230  * The nohz low res interrupt handler
1231  */
tick_nohz_handler(struct clock_event_device * dev)1232 static void tick_nohz_handler(struct clock_event_device *dev)
1233 {
1234 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1235 	struct pt_regs *regs = get_irq_regs();
1236 	ktime_t now = ktime_get();
1237 
1238 	dev->next_event = KTIME_MAX;
1239 
1240 	tick_sched_do_timer(ts, now);
1241 	tick_sched_handle(ts, regs);
1242 
1243 	/* No need to reprogram if we are running tickless  */
1244 	if (unlikely(ts->tick_stopped))
1245 		return;
1246 
1247 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1248 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1249 }
1250 
tick_nohz_activate(struct tick_sched * ts,int mode)1251 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1252 {
1253 	if (!tick_nohz_enabled)
1254 		return;
1255 	ts->nohz_mode = mode;
1256 	/* One update is enough */
1257 	if (!test_and_set_bit(0, &tick_nohz_active))
1258 		timers_update_nohz();
1259 }
1260 
1261 /**
1262  * tick_nohz_switch_to_nohz - switch to nohz mode
1263  */
tick_nohz_switch_to_nohz(void)1264 static void tick_nohz_switch_to_nohz(void)
1265 {
1266 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1267 	ktime_t next;
1268 
1269 	if (!tick_nohz_enabled)
1270 		return;
1271 
1272 	if (tick_switch_to_oneshot(tick_nohz_handler))
1273 		return;
1274 
1275 	/*
1276 	 * Recycle the hrtimer in ts, so we can share the
1277 	 * hrtimer_forward with the highres code.
1278 	 */
1279 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1280 	/* Get the next period */
1281 	next = tick_init_jiffy_update();
1282 
1283 	hrtimer_set_expires(&ts->sched_timer, next);
1284 	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1285 	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1286 	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1287 }
1288 
tick_nohz_irq_enter(void)1289 static inline void tick_nohz_irq_enter(void)
1290 {
1291 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1292 	ktime_t now;
1293 
1294 	if (!ts->idle_active && !ts->tick_stopped)
1295 		return;
1296 	now = ktime_get();
1297 	if (ts->idle_active)
1298 		tick_nohz_stop_idle(ts, now);
1299 	if (ts->tick_stopped)
1300 		tick_nohz_update_jiffies(now);
1301 }
1302 
1303 #else
1304 
tick_nohz_switch_to_nohz(void)1305 static inline void tick_nohz_switch_to_nohz(void) { }
tick_nohz_irq_enter(void)1306 static inline void tick_nohz_irq_enter(void) { }
tick_nohz_activate(struct tick_sched * ts,int mode)1307 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1308 
1309 #endif /* CONFIG_NO_HZ_COMMON */
1310 
1311 /*
1312  * Called from irq_enter to notify about the possible interruption of idle()
1313  */
tick_irq_enter(void)1314 void tick_irq_enter(void)
1315 {
1316 	tick_check_oneshot_broadcast_this_cpu();
1317 	tick_nohz_irq_enter();
1318 }
1319 
1320 /*
1321  * High resolution timer specific code
1322  */
1323 #ifdef CONFIG_HIGH_RES_TIMERS
1324 /*
1325  * We rearm the timer until we get disabled by the idle code.
1326  * Called with interrupts disabled.
1327  */
tick_sched_timer(struct hrtimer * timer)1328 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1329 {
1330 	struct tick_sched *ts =
1331 		container_of(timer, struct tick_sched, sched_timer);
1332 	struct pt_regs *regs = get_irq_regs();
1333 	ktime_t now = ktime_get();
1334 
1335 	tick_sched_do_timer(ts, now);
1336 
1337 	/*
1338 	 * Do not call, when we are not in irq context and have
1339 	 * no valid regs pointer
1340 	 */
1341 	if (regs)
1342 		tick_sched_handle(ts, regs);
1343 	else
1344 		ts->next_tick = 0;
1345 
1346 	/* No need to reprogram if we are in idle or full dynticks mode */
1347 	if (unlikely(ts->tick_stopped))
1348 		return HRTIMER_NORESTART;
1349 
1350 	hrtimer_forward(timer, now, TICK_NSEC);
1351 
1352 	return HRTIMER_RESTART;
1353 }
1354 
1355 static int sched_skew_tick;
1356 
skew_tick(char * str)1357 static int __init skew_tick(char *str)
1358 {
1359 	get_option(&str, &sched_skew_tick);
1360 
1361 	return 0;
1362 }
1363 early_param("skew_tick", skew_tick);
1364 
1365 /**
1366  * tick_setup_sched_timer - setup the tick emulation timer
1367  */
tick_setup_sched_timer(void)1368 void tick_setup_sched_timer(void)
1369 {
1370 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1371 	ktime_t now = ktime_get();
1372 
1373 	/*
1374 	 * Emulate tick processing via per-CPU hrtimers:
1375 	 */
1376 	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1377 	ts->sched_timer.function = tick_sched_timer;
1378 
1379 	/* Get the next period (per-CPU) */
1380 	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1381 
1382 	/* Offset the tick to avert jiffies_lock contention. */
1383 	if (sched_skew_tick) {
1384 		u64 offset = TICK_NSEC >> 1;
1385 		do_div(offset, num_possible_cpus());
1386 		offset *= smp_processor_id();
1387 		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1388 	}
1389 
1390 	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1391 	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1392 	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1393 }
1394 #endif /* HIGH_RES_TIMERS */
1395 
1396 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
tick_cancel_sched_timer(int cpu)1397 void tick_cancel_sched_timer(int cpu)
1398 {
1399 	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1400 	ktime_t idle_sleeptime, iowait_sleeptime;
1401 	unsigned long idle_calls, idle_sleeps;
1402 
1403 # ifdef CONFIG_HIGH_RES_TIMERS
1404 	if (ts->sched_timer.base)
1405 		hrtimer_cancel(&ts->sched_timer);
1406 # endif
1407 
1408 	idle_sleeptime = ts->idle_sleeptime;
1409 	iowait_sleeptime = ts->iowait_sleeptime;
1410 	idle_calls = ts->idle_calls;
1411 	idle_sleeps = ts->idle_sleeps;
1412 	memset(ts, 0, sizeof(*ts));
1413 	ts->idle_sleeptime = idle_sleeptime;
1414 	ts->iowait_sleeptime = iowait_sleeptime;
1415 	ts->idle_calls = idle_calls;
1416 	ts->idle_sleeps = idle_sleeps;
1417 }
1418 #endif
1419 
1420 /**
1421  * Async notification about clocksource changes
1422  */
tick_clock_notify(void)1423 void tick_clock_notify(void)
1424 {
1425 	int cpu;
1426 
1427 	for_each_possible_cpu(cpu)
1428 		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1429 }
1430 
1431 /*
1432  * Async notification about clock event changes
1433  */
tick_oneshot_notify(void)1434 void tick_oneshot_notify(void)
1435 {
1436 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1437 
1438 	set_bit(0, &ts->check_clocks);
1439 }
1440 
1441 /**
1442  * Check, if a change happened, which makes oneshot possible.
1443  *
1444  * Called cyclic from the hrtimer softirq (driven by the timer
1445  * softirq) allow_nohz signals, that we can switch into low-res nohz
1446  * mode, because high resolution timers are disabled (either compile
1447  * or runtime). Called with interrupts disabled.
1448  */
tick_check_oneshot_change(int allow_nohz)1449 int tick_check_oneshot_change(int allow_nohz)
1450 {
1451 	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1452 
1453 	if (!test_and_clear_bit(0, &ts->check_clocks))
1454 		return 0;
1455 
1456 	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1457 		return 0;
1458 
1459 	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1460 		return 0;
1461 
1462 	if (!allow_nohz)
1463 		return 1;
1464 
1465 	tick_nohz_switch_to_nohz();
1466 	return 0;
1467 }
1468