• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements VFS file and inode operations for regular files, device
13  * nodes and symlinks as well as address space operations.
14  *
15  * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
16  * the page is dirty and is used for optimization purposes - dirty pages are
17  * not budgeted so the flag shows that 'ubifs_write_end()' should not release
18  * the budget for this page. The @PG_checked flag is set if full budgeting is
19  * required for the page e.g., when it corresponds to a file hole or it is
20  * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
21  * it is OK to fail in this function, and the budget is released in
22  * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
23  * information about how the page was budgeted, to make it possible to release
24  * the budget properly.
25  *
26  * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
27  * implement. However, this is not true for 'ubifs_writepage()', which may be
28  * called with @i_mutex unlocked. For example, when flusher thread is doing
29  * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
30  * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
31  * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
32  * 'ubifs_writepage()' we are only guaranteed that the page is locked.
33  *
34  * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
35  * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
36  * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
37  * set as well. However, UBIFS disables readahead.
38  */
39 
40 #include "ubifs.h"
41 #include <linux/mount.h>
42 #include <linux/slab.h>
43 #include <linux/migrate.h>
44 
read_block(struct inode * inode,void * addr,unsigned int block,struct ubifs_data_node * dn)45 static int read_block(struct inode *inode, void *addr, unsigned int block,
46 		      struct ubifs_data_node *dn)
47 {
48 	struct ubifs_info *c = inode->i_sb->s_fs_info;
49 	int err, len, out_len;
50 	union ubifs_key key;
51 	unsigned int dlen;
52 
53 	data_key_init(c, &key, inode->i_ino, block);
54 	err = ubifs_tnc_lookup(c, &key, dn);
55 	if (err) {
56 		if (err == -ENOENT)
57 			/* Not found, so it must be a hole */
58 			memset(addr, 0, UBIFS_BLOCK_SIZE);
59 		return err;
60 	}
61 
62 	ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
63 		     ubifs_inode(inode)->creat_sqnum);
64 	len = le32_to_cpu(dn->size);
65 	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
66 		goto dump;
67 
68 	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
69 
70 	if (IS_ENCRYPTED(inode)) {
71 		err = ubifs_decrypt(inode, dn, &dlen, block);
72 		if (err)
73 			goto dump;
74 	}
75 
76 	out_len = UBIFS_BLOCK_SIZE;
77 	err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
78 			       le16_to_cpu(dn->compr_type));
79 	if (err || len != out_len)
80 		goto dump;
81 
82 	/*
83 	 * Data length can be less than a full block, even for blocks that are
84 	 * not the last in the file (e.g., as a result of making a hole and
85 	 * appending data). Ensure that the remainder is zeroed out.
86 	 */
87 	if (len < UBIFS_BLOCK_SIZE)
88 		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
89 
90 	return 0;
91 
92 dump:
93 	ubifs_err(c, "bad data node (block %u, inode %lu)",
94 		  block, inode->i_ino);
95 	ubifs_dump_node(c, dn);
96 	return -EINVAL;
97 }
98 
do_readpage(struct page * page)99 static int do_readpage(struct page *page)
100 {
101 	void *addr;
102 	int err = 0, i;
103 	unsigned int block, beyond;
104 	struct ubifs_data_node *dn;
105 	struct inode *inode = page->mapping->host;
106 	struct ubifs_info *c = inode->i_sb->s_fs_info;
107 	loff_t i_size = i_size_read(inode);
108 
109 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
110 		inode->i_ino, page->index, i_size, page->flags);
111 	ubifs_assert(c, !PageChecked(page));
112 	ubifs_assert(c, !PagePrivate(page));
113 
114 	addr = kmap(page);
115 
116 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
117 	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
118 	if (block >= beyond) {
119 		/* Reading beyond inode */
120 		SetPageChecked(page);
121 		memset(addr, 0, PAGE_SIZE);
122 		goto out;
123 	}
124 
125 	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
126 	if (!dn) {
127 		err = -ENOMEM;
128 		goto error;
129 	}
130 
131 	i = 0;
132 	while (1) {
133 		int ret;
134 
135 		if (block >= beyond) {
136 			/* Reading beyond inode */
137 			err = -ENOENT;
138 			memset(addr, 0, UBIFS_BLOCK_SIZE);
139 		} else {
140 			ret = read_block(inode, addr, block, dn);
141 			if (ret) {
142 				err = ret;
143 				if (err != -ENOENT)
144 					break;
145 			} else if (block + 1 == beyond) {
146 				int dlen = le32_to_cpu(dn->size);
147 				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
148 
149 				if (ilen && ilen < dlen)
150 					memset(addr + ilen, 0, dlen - ilen);
151 			}
152 		}
153 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
154 			break;
155 		block += 1;
156 		addr += UBIFS_BLOCK_SIZE;
157 	}
158 	if (err) {
159 		struct ubifs_info *c = inode->i_sb->s_fs_info;
160 		if (err == -ENOENT) {
161 			/* Not found, so it must be a hole */
162 			SetPageChecked(page);
163 			dbg_gen("hole");
164 			goto out_free;
165 		}
166 		ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
167 			  page->index, inode->i_ino, err);
168 		goto error;
169 	}
170 
171 out_free:
172 	kfree(dn);
173 out:
174 	SetPageUptodate(page);
175 	ClearPageError(page);
176 	flush_dcache_page(page);
177 	kunmap(page);
178 	return 0;
179 
180 error:
181 	kfree(dn);
182 	ClearPageUptodate(page);
183 	SetPageError(page);
184 	flush_dcache_page(page);
185 	kunmap(page);
186 	return err;
187 }
188 
189 /**
190  * release_new_page_budget - release budget of a new page.
191  * @c: UBIFS file-system description object
192  *
193  * This is a helper function which releases budget corresponding to the budget
194  * of one new page of data.
195  */
release_new_page_budget(struct ubifs_info * c)196 static void release_new_page_budget(struct ubifs_info *c)
197 {
198 	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
199 
200 	ubifs_release_budget(c, &req);
201 }
202 
203 /**
204  * release_existing_page_budget - release budget of an existing page.
205  * @c: UBIFS file-system description object
206  *
207  * This is a helper function which releases budget corresponding to the budget
208  * of changing one one page of data which already exists on the flash media.
209  */
release_existing_page_budget(struct ubifs_info * c)210 static void release_existing_page_budget(struct ubifs_info *c)
211 {
212 	struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
213 
214 	ubifs_release_budget(c, &req);
215 }
216 
write_begin_slow(struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,unsigned flags)217 static int write_begin_slow(struct address_space *mapping,
218 			    loff_t pos, unsigned len, struct page **pagep,
219 			    unsigned flags)
220 {
221 	struct inode *inode = mapping->host;
222 	struct ubifs_info *c = inode->i_sb->s_fs_info;
223 	pgoff_t index = pos >> PAGE_SHIFT;
224 	struct ubifs_budget_req req = { .new_page = 1 };
225 	int err, appending = !!(pos + len > inode->i_size);
226 	struct page *page;
227 
228 	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
229 		inode->i_ino, pos, len, inode->i_size);
230 
231 	/*
232 	 * At the slow path we have to budget before locking the page, because
233 	 * budgeting may force write-back, which would wait on locked pages and
234 	 * deadlock if we had the page locked. At this point we do not know
235 	 * anything about the page, so assume that this is a new page which is
236 	 * written to a hole. This corresponds to largest budget. Later the
237 	 * budget will be amended if this is not true.
238 	 */
239 	if (appending)
240 		/* We are appending data, budget for inode change */
241 		req.dirtied_ino = 1;
242 
243 	err = ubifs_budget_space(c, &req);
244 	if (unlikely(err))
245 		return err;
246 
247 	page = grab_cache_page_write_begin(mapping, index, flags);
248 	if (unlikely(!page)) {
249 		ubifs_release_budget(c, &req);
250 		return -ENOMEM;
251 	}
252 
253 	if (!PageUptodate(page)) {
254 		if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
255 			SetPageChecked(page);
256 		else {
257 			err = do_readpage(page);
258 			if (err) {
259 				unlock_page(page);
260 				put_page(page);
261 				ubifs_release_budget(c, &req);
262 				return err;
263 			}
264 		}
265 	}
266 
267 	if (PagePrivate(page))
268 		/*
269 		 * The page is dirty, which means it was budgeted twice:
270 		 *   o first time the budget was allocated by the task which
271 		 *     made the page dirty and set the PG_private flag;
272 		 *   o and then we budgeted for it for the second time at the
273 		 *     very beginning of this function.
274 		 *
275 		 * So what we have to do is to release the page budget we
276 		 * allocated.
277 		 */
278 		release_new_page_budget(c);
279 	else if (!PageChecked(page))
280 		/*
281 		 * We are changing a page which already exists on the media.
282 		 * This means that changing the page does not make the amount
283 		 * of indexing information larger, and this part of the budget
284 		 * which we have already acquired may be released.
285 		 */
286 		ubifs_convert_page_budget(c);
287 
288 	if (appending) {
289 		struct ubifs_inode *ui = ubifs_inode(inode);
290 
291 		/*
292 		 * 'ubifs_write_end()' is optimized from the fast-path part of
293 		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
294 		 * if data is appended.
295 		 */
296 		mutex_lock(&ui->ui_mutex);
297 		if (ui->dirty)
298 			/*
299 			 * The inode is dirty already, so we may free the
300 			 * budget we allocated.
301 			 */
302 			ubifs_release_dirty_inode_budget(c, ui);
303 	}
304 
305 	*pagep = page;
306 	return 0;
307 }
308 
309 /**
310  * allocate_budget - allocate budget for 'ubifs_write_begin()'.
311  * @c: UBIFS file-system description object
312  * @page: page to allocate budget for
313  * @ui: UBIFS inode object the page belongs to
314  * @appending: non-zero if the page is appended
315  *
316  * This is a helper function for 'ubifs_write_begin()' which allocates budget
317  * for the operation. The budget is allocated differently depending on whether
318  * this is appending, whether the page is dirty or not, and so on. This
319  * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
320  * in case of success and %-ENOSPC in case of failure.
321  */
allocate_budget(struct ubifs_info * c,struct page * page,struct ubifs_inode * ui,int appending)322 static int allocate_budget(struct ubifs_info *c, struct page *page,
323 			   struct ubifs_inode *ui, int appending)
324 {
325 	struct ubifs_budget_req req = { .fast = 1 };
326 
327 	if (PagePrivate(page)) {
328 		if (!appending)
329 			/*
330 			 * The page is dirty and we are not appending, which
331 			 * means no budget is needed at all.
332 			 */
333 			return 0;
334 
335 		mutex_lock(&ui->ui_mutex);
336 		if (ui->dirty)
337 			/*
338 			 * The page is dirty and we are appending, so the inode
339 			 * has to be marked as dirty. However, it is already
340 			 * dirty, so we do not need any budget. We may return,
341 			 * but @ui->ui_mutex hast to be left locked because we
342 			 * should prevent write-back from flushing the inode
343 			 * and freeing the budget. The lock will be released in
344 			 * 'ubifs_write_end()'.
345 			 */
346 			return 0;
347 
348 		/*
349 		 * The page is dirty, we are appending, the inode is clean, so
350 		 * we need to budget the inode change.
351 		 */
352 		req.dirtied_ino = 1;
353 	} else {
354 		if (PageChecked(page))
355 			/*
356 			 * The page corresponds to a hole and does not
357 			 * exist on the media. So changing it makes
358 			 * make the amount of indexing information
359 			 * larger, and we have to budget for a new
360 			 * page.
361 			 */
362 			req.new_page = 1;
363 		else
364 			/*
365 			 * Not a hole, the change will not add any new
366 			 * indexing information, budget for page
367 			 * change.
368 			 */
369 			req.dirtied_page = 1;
370 
371 		if (appending) {
372 			mutex_lock(&ui->ui_mutex);
373 			if (!ui->dirty)
374 				/*
375 				 * The inode is clean but we will have to mark
376 				 * it as dirty because we are appending. This
377 				 * needs a budget.
378 				 */
379 				req.dirtied_ino = 1;
380 		}
381 	}
382 
383 	return ubifs_budget_space(c, &req);
384 }
385 
386 /*
387  * This function is called when a page of data is going to be written. Since
388  * the page of data will not necessarily go to the flash straight away, UBIFS
389  * has to reserve space on the media for it, which is done by means of
390  * budgeting.
391  *
392  * This is the hot-path of the file-system and we are trying to optimize it as
393  * much as possible. For this reasons it is split on 2 parts - slow and fast.
394  *
395  * There many budgeting cases:
396  *     o a new page is appended - we have to budget for a new page and for
397  *       changing the inode; however, if the inode is already dirty, there is
398  *       no need to budget for it;
399  *     o an existing clean page is changed - we have budget for it; if the page
400  *       does not exist on the media (a hole), we have to budget for a new
401  *       page; otherwise, we may budget for changing an existing page; the
402  *       difference between these cases is that changing an existing page does
403  *       not introduce anything new to the FS indexing information, so it does
404  *       not grow, and smaller budget is acquired in this case;
405  *     o an existing dirty page is changed - no need to budget at all, because
406  *       the page budget has been acquired by earlier, when the page has been
407  *       marked dirty.
408  *
409  * UBIFS budgeting sub-system may force write-back if it thinks there is no
410  * space to reserve. This imposes some locking restrictions and makes it
411  * impossible to take into account the above cases, and makes it impossible to
412  * optimize budgeting.
413  *
414  * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
415  * there is a plenty of flash space and the budget will be acquired quickly,
416  * without forcing write-back. The slow path does not make this assumption.
417  */
ubifs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)418 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
419 			     loff_t pos, unsigned len, unsigned flags,
420 			     struct page **pagep, void **fsdata)
421 {
422 	struct inode *inode = mapping->host;
423 	struct ubifs_info *c = inode->i_sb->s_fs_info;
424 	struct ubifs_inode *ui = ubifs_inode(inode);
425 	pgoff_t index = pos >> PAGE_SHIFT;
426 	int err, appending = !!(pos + len > inode->i_size);
427 	int skipped_read = 0;
428 	struct page *page;
429 
430 	ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size);
431 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
432 
433 	if (unlikely(c->ro_error))
434 		return -EROFS;
435 
436 	/* Try out the fast-path part first */
437 	page = grab_cache_page_write_begin(mapping, index, flags);
438 	if (unlikely(!page))
439 		return -ENOMEM;
440 
441 	if (!PageUptodate(page)) {
442 		/* The page is not loaded from the flash */
443 		if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
444 			/*
445 			 * We change whole page so no need to load it. But we
446 			 * do not know whether this page exists on the media or
447 			 * not, so we assume the latter because it requires
448 			 * larger budget. The assumption is that it is better
449 			 * to budget a bit more than to read the page from the
450 			 * media. Thus, we are setting the @PG_checked flag
451 			 * here.
452 			 */
453 			SetPageChecked(page);
454 			skipped_read = 1;
455 		} else {
456 			err = do_readpage(page);
457 			if (err) {
458 				unlock_page(page);
459 				put_page(page);
460 				return err;
461 			}
462 		}
463 	}
464 
465 	err = allocate_budget(c, page, ui, appending);
466 	if (unlikely(err)) {
467 		ubifs_assert(c, err == -ENOSPC);
468 		/*
469 		 * If we skipped reading the page because we were going to
470 		 * write all of it, then it is not up to date.
471 		 */
472 		if (skipped_read)
473 			ClearPageChecked(page);
474 		/*
475 		 * Budgeting failed which means it would have to force
476 		 * write-back but didn't, because we set the @fast flag in the
477 		 * request. Write-back cannot be done now, while we have the
478 		 * page locked, because it would deadlock. Unlock and free
479 		 * everything and fall-back to slow-path.
480 		 */
481 		if (appending) {
482 			ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
483 			mutex_unlock(&ui->ui_mutex);
484 		}
485 		unlock_page(page);
486 		put_page(page);
487 
488 		return write_begin_slow(mapping, pos, len, pagep, flags);
489 	}
490 
491 	/*
492 	 * Whee, we acquired budgeting quickly - without involving
493 	 * garbage-collection, committing or forcing write-back. We return
494 	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
495 	 * otherwise. This is an optimization (slightly hacky though).
496 	 */
497 	*pagep = page;
498 	return 0;
499 
500 }
501 
502 /**
503  * cancel_budget - cancel budget.
504  * @c: UBIFS file-system description object
505  * @page: page to cancel budget for
506  * @ui: UBIFS inode object the page belongs to
507  * @appending: non-zero if the page is appended
508  *
509  * This is a helper function for a page write operation. It unlocks the
510  * @ui->ui_mutex in case of appending.
511  */
cancel_budget(struct ubifs_info * c,struct page * page,struct ubifs_inode * ui,int appending)512 static void cancel_budget(struct ubifs_info *c, struct page *page,
513 			  struct ubifs_inode *ui, int appending)
514 {
515 	if (appending) {
516 		if (!ui->dirty)
517 			ubifs_release_dirty_inode_budget(c, ui);
518 		mutex_unlock(&ui->ui_mutex);
519 	}
520 	if (!PagePrivate(page)) {
521 		if (PageChecked(page))
522 			release_new_page_budget(c);
523 		else
524 			release_existing_page_budget(c);
525 	}
526 }
527 
ubifs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)528 static int ubifs_write_end(struct file *file, struct address_space *mapping,
529 			   loff_t pos, unsigned len, unsigned copied,
530 			   struct page *page, void *fsdata)
531 {
532 	struct inode *inode = mapping->host;
533 	struct ubifs_inode *ui = ubifs_inode(inode);
534 	struct ubifs_info *c = inode->i_sb->s_fs_info;
535 	loff_t end_pos = pos + len;
536 	int appending = !!(end_pos > inode->i_size);
537 
538 	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
539 		inode->i_ino, pos, page->index, len, copied, inode->i_size);
540 
541 	if (unlikely(copied < len && len == PAGE_SIZE)) {
542 		/*
543 		 * VFS copied less data to the page that it intended and
544 		 * declared in its '->write_begin()' call via the @len
545 		 * argument. If the page was not up-to-date, and @len was
546 		 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
547 		 * not load it from the media (for optimization reasons). This
548 		 * means that part of the page contains garbage. So read the
549 		 * page now.
550 		 */
551 		dbg_gen("copied %d instead of %d, read page and repeat",
552 			copied, len);
553 		cancel_budget(c, page, ui, appending);
554 		ClearPageChecked(page);
555 
556 		/*
557 		 * Return 0 to force VFS to repeat the whole operation, or the
558 		 * error code if 'do_readpage()' fails.
559 		 */
560 		copied = do_readpage(page);
561 		goto out;
562 	}
563 
564 	if (len == PAGE_SIZE)
565 		SetPageUptodate(page);
566 
567 	if (!PagePrivate(page)) {
568 		SetPagePrivate(page);
569 		atomic_long_inc(&c->dirty_pg_cnt);
570 		__set_page_dirty_nobuffers(page);
571 	}
572 
573 	if (appending) {
574 		i_size_write(inode, end_pos);
575 		ui->ui_size = end_pos;
576 		/*
577 		 * Note, we do not set @I_DIRTY_PAGES (which means that the
578 		 * inode has dirty pages), this has been done in
579 		 * '__set_page_dirty_nobuffers()'.
580 		 */
581 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
582 		ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
583 		mutex_unlock(&ui->ui_mutex);
584 	}
585 
586 out:
587 	unlock_page(page);
588 	put_page(page);
589 	return copied;
590 }
591 
592 /**
593  * populate_page - copy data nodes into a page for bulk-read.
594  * @c: UBIFS file-system description object
595  * @page: page
596  * @bu: bulk-read information
597  * @n: next zbranch slot
598  *
599  * This function returns %0 on success and a negative error code on failure.
600  */
populate_page(struct ubifs_info * c,struct page * page,struct bu_info * bu,int * n)601 static int populate_page(struct ubifs_info *c, struct page *page,
602 			 struct bu_info *bu, int *n)
603 {
604 	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
605 	struct inode *inode = page->mapping->host;
606 	loff_t i_size = i_size_read(inode);
607 	unsigned int page_block;
608 	void *addr, *zaddr;
609 	pgoff_t end_index;
610 
611 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
612 		inode->i_ino, page->index, i_size, page->flags);
613 
614 	addr = zaddr = kmap(page);
615 
616 	end_index = (i_size - 1) >> PAGE_SHIFT;
617 	if (!i_size || page->index > end_index) {
618 		hole = 1;
619 		memset(addr, 0, PAGE_SIZE);
620 		goto out_hole;
621 	}
622 
623 	page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
624 	while (1) {
625 		int err, len, out_len, dlen;
626 
627 		if (nn >= bu->cnt) {
628 			hole = 1;
629 			memset(addr, 0, UBIFS_BLOCK_SIZE);
630 		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
631 			struct ubifs_data_node *dn;
632 
633 			dn = bu->buf + (bu->zbranch[nn].offs - offs);
634 
635 			ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
636 				     ubifs_inode(inode)->creat_sqnum);
637 
638 			len = le32_to_cpu(dn->size);
639 			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
640 				goto out_err;
641 
642 			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
643 			out_len = UBIFS_BLOCK_SIZE;
644 
645 			if (IS_ENCRYPTED(inode)) {
646 				err = ubifs_decrypt(inode, dn, &dlen, page_block);
647 				if (err)
648 					goto out_err;
649 			}
650 
651 			err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
652 					       le16_to_cpu(dn->compr_type));
653 			if (err || len != out_len)
654 				goto out_err;
655 
656 			if (len < UBIFS_BLOCK_SIZE)
657 				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
658 
659 			nn += 1;
660 			read = (i << UBIFS_BLOCK_SHIFT) + len;
661 		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
662 			nn += 1;
663 			continue;
664 		} else {
665 			hole = 1;
666 			memset(addr, 0, UBIFS_BLOCK_SIZE);
667 		}
668 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
669 			break;
670 		addr += UBIFS_BLOCK_SIZE;
671 		page_block += 1;
672 	}
673 
674 	if (end_index == page->index) {
675 		int len = i_size & (PAGE_SIZE - 1);
676 
677 		if (len && len < read)
678 			memset(zaddr + len, 0, read - len);
679 	}
680 
681 out_hole:
682 	if (hole) {
683 		SetPageChecked(page);
684 		dbg_gen("hole");
685 	}
686 
687 	SetPageUptodate(page);
688 	ClearPageError(page);
689 	flush_dcache_page(page);
690 	kunmap(page);
691 	*n = nn;
692 	return 0;
693 
694 out_err:
695 	ClearPageUptodate(page);
696 	SetPageError(page);
697 	flush_dcache_page(page);
698 	kunmap(page);
699 	ubifs_err(c, "bad data node (block %u, inode %lu)",
700 		  page_block, inode->i_ino);
701 	return -EINVAL;
702 }
703 
704 /**
705  * ubifs_do_bulk_read - do bulk-read.
706  * @c: UBIFS file-system description object
707  * @bu: bulk-read information
708  * @page1: first page to read
709  *
710  * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
711  */
ubifs_do_bulk_read(struct ubifs_info * c,struct bu_info * bu,struct page * page1)712 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
713 			      struct page *page1)
714 {
715 	pgoff_t offset = page1->index, end_index;
716 	struct address_space *mapping = page1->mapping;
717 	struct inode *inode = mapping->host;
718 	struct ubifs_inode *ui = ubifs_inode(inode);
719 	int err, page_idx, page_cnt, ret = 0, n = 0;
720 	int allocate = bu->buf ? 0 : 1;
721 	loff_t isize;
722 	gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
723 
724 	err = ubifs_tnc_get_bu_keys(c, bu);
725 	if (err)
726 		goto out_warn;
727 
728 	if (bu->eof) {
729 		/* Turn off bulk-read at the end of the file */
730 		ui->read_in_a_row = 1;
731 		ui->bulk_read = 0;
732 	}
733 
734 	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
735 	if (!page_cnt) {
736 		/*
737 		 * This happens when there are multiple blocks per page and the
738 		 * blocks for the first page we are looking for, are not
739 		 * together. If all the pages were like this, bulk-read would
740 		 * reduce performance, so we turn it off for a while.
741 		 */
742 		goto out_bu_off;
743 	}
744 
745 	if (bu->cnt) {
746 		if (allocate) {
747 			/*
748 			 * Allocate bulk-read buffer depending on how many data
749 			 * nodes we are going to read.
750 			 */
751 			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
752 				      bu->zbranch[bu->cnt - 1].len -
753 				      bu->zbranch[0].offs;
754 			ubifs_assert(c, bu->buf_len > 0);
755 			ubifs_assert(c, bu->buf_len <= c->leb_size);
756 			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
757 			if (!bu->buf)
758 				goto out_bu_off;
759 		}
760 
761 		err = ubifs_tnc_bulk_read(c, bu);
762 		if (err)
763 			goto out_warn;
764 	}
765 
766 	err = populate_page(c, page1, bu, &n);
767 	if (err)
768 		goto out_warn;
769 
770 	unlock_page(page1);
771 	ret = 1;
772 
773 	isize = i_size_read(inode);
774 	if (isize == 0)
775 		goto out_free;
776 	end_index = ((isize - 1) >> PAGE_SHIFT);
777 
778 	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
779 		pgoff_t page_offset = offset + page_idx;
780 		struct page *page;
781 
782 		if (page_offset > end_index)
783 			break;
784 		page = pagecache_get_page(mapping, page_offset,
785 				 FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT,
786 				 ra_gfp_mask);
787 		if (!page)
788 			break;
789 		if (!PageUptodate(page))
790 			err = populate_page(c, page, bu, &n);
791 		unlock_page(page);
792 		put_page(page);
793 		if (err)
794 			break;
795 	}
796 
797 	ui->last_page_read = offset + page_idx - 1;
798 
799 out_free:
800 	if (allocate)
801 		kfree(bu->buf);
802 	return ret;
803 
804 out_warn:
805 	ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
806 	goto out_free;
807 
808 out_bu_off:
809 	ui->read_in_a_row = ui->bulk_read = 0;
810 	goto out_free;
811 }
812 
813 /**
814  * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
815  * @page: page from which to start bulk-read.
816  *
817  * Some flash media are capable of reading sequentially at faster rates. UBIFS
818  * bulk-read facility is designed to take advantage of that, by reading in one
819  * go consecutive data nodes that are also located consecutively in the same
820  * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
821  */
ubifs_bulk_read(struct page * page)822 static int ubifs_bulk_read(struct page *page)
823 {
824 	struct inode *inode = page->mapping->host;
825 	struct ubifs_info *c = inode->i_sb->s_fs_info;
826 	struct ubifs_inode *ui = ubifs_inode(inode);
827 	pgoff_t index = page->index, last_page_read = ui->last_page_read;
828 	struct bu_info *bu;
829 	int err = 0, allocated = 0;
830 
831 	ui->last_page_read = index;
832 	if (!c->bulk_read)
833 		return 0;
834 
835 	/*
836 	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
837 	 * so don't bother if we cannot lock the mutex.
838 	 */
839 	if (!mutex_trylock(&ui->ui_mutex))
840 		return 0;
841 
842 	if (index != last_page_read + 1) {
843 		/* Turn off bulk-read if we stop reading sequentially */
844 		ui->read_in_a_row = 1;
845 		if (ui->bulk_read)
846 			ui->bulk_read = 0;
847 		goto out_unlock;
848 	}
849 
850 	if (!ui->bulk_read) {
851 		ui->read_in_a_row += 1;
852 		if (ui->read_in_a_row < 3)
853 			goto out_unlock;
854 		/* Three reads in a row, so switch on bulk-read */
855 		ui->bulk_read = 1;
856 	}
857 
858 	/*
859 	 * If possible, try to use pre-allocated bulk-read information, which
860 	 * is protected by @c->bu_mutex.
861 	 */
862 	if (mutex_trylock(&c->bu_mutex))
863 		bu = &c->bu;
864 	else {
865 		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
866 		if (!bu)
867 			goto out_unlock;
868 
869 		bu->buf = NULL;
870 		allocated = 1;
871 	}
872 
873 	bu->buf_len = c->max_bu_buf_len;
874 	data_key_init(c, &bu->key, inode->i_ino,
875 		      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
876 	err = ubifs_do_bulk_read(c, bu, page);
877 
878 	if (!allocated)
879 		mutex_unlock(&c->bu_mutex);
880 	else
881 		kfree(bu);
882 
883 out_unlock:
884 	mutex_unlock(&ui->ui_mutex);
885 	return err;
886 }
887 
ubifs_readpage(struct file * file,struct page * page)888 static int ubifs_readpage(struct file *file, struct page *page)
889 {
890 	if (ubifs_bulk_read(page))
891 		return 0;
892 	do_readpage(page);
893 	unlock_page(page);
894 	return 0;
895 }
896 
do_writepage(struct page * page,int len)897 static int do_writepage(struct page *page, int len)
898 {
899 	int err = 0, i, blen;
900 	unsigned int block;
901 	void *addr;
902 	union ubifs_key key;
903 	struct inode *inode = page->mapping->host;
904 	struct ubifs_info *c = inode->i_sb->s_fs_info;
905 
906 #ifdef UBIFS_DEBUG
907 	struct ubifs_inode *ui = ubifs_inode(inode);
908 	spin_lock(&ui->ui_lock);
909 	ubifs_assert(c, page->index <= ui->synced_i_size >> PAGE_SHIFT);
910 	spin_unlock(&ui->ui_lock);
911 #endif
912 
913 	/* Update radix tree tags */
914 	set_page_writeback(page);
915 
916 	addr = kmap(page);
917 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
918 	i = 0;
919 	while (len) {
920 		blen = min_t(int, len, UBIFS_BLOCK_SIZE);
921 		data_key_init(c, &key, inode->i_ino, block);
922 		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
923 		if (err)
924 			break;
925 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
926 			break;
927 		block += 1;
928 		addr += blen;
929 		len -= blen;
930 	}
931 	if (err) {
932 		SetPageError(page);
933 		ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
934 			  page->index, inode->i_ino, err);
935 		ubifs_ro_mode(c, err);
936 	}
937 
938 	ubifs_assert(c, PagePrivate(page));
939 	if (PageChecked(page))
940 		release_new_page_budget(c);
941 	else
942 		release_existing_page_budget(c);
943 
944 	atomic_long_dec(&c->dirty_pg_cnt);
945 	ClearPagePrivate(page);
946 	ClearPageChecked(page);
947 
948 	kunmap(page);
949 	unlock_page(page);
950 	end_page_writeback(page);
951 	return err;
952 }
953 
954 /*
955  * When writing-back dirty inodes, VFS first writes-back pages belonging to the
956  * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
957  * situation when a we have an inode with size 0, then a megabyte of data is
958  * appended to the inode, then write-back starts and flushes some amount of the
959  * dirty pages, the journal becomes full, commit happens and finishes, and then
960  * an unclean reboot happens. When the file system is mounted next time, the
961  * inode size would still be 0, but there would be many pages which are beyond
962  * the inode size, they would be indexed and consume flash space. Because the
963  * journal has been committed, the replay would not be able to detect this
964  * situation and correct the inode size. This means UBIFS would have to scan
965  * whole index and correct all inode sizes, which is long an unacceptable.
966  *
967  * To prevent situations like this, UBIFS writes pages back only if they are
968  * within the last synchronized inode size, i.e. the size which has been
969  * written to the flash media last time. Otherwise, UBIFS forces inode
970  * write-back, thus making sure the on-flash inode contains current inode size,
971  * and then keeps writing pages back.
972  *
973  * Some locking issues explanation. 'ubifs_writepage()' first is called with
974  * the page locked, and it locks @ui_mutex. However, write-back does take inode
975  * @i_mutex, which means other VFS operations may be run on this inode at the
976  * same time. And the problematic one is truncation to smaller size, from where
977  * we have to call 'truncate_setsize()', which first changes @inode->i_size,
978  * then drops the truncated pages. And while dropping the pages, it takes the
979  * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
980  * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
981  * This means that @inode->i_size is changed while @ui_mutex is unlocked.
982  *
983  * XXX(truncate): with the new truncate sequence this is not true anymore,
984  * and the calls to truncate_setsize can be move around freely.  They should
985  * be moved to the very end of the truncate sequence.
986  *
987  * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
988  * inode size. How do we do this if @inode->i_size may became smaller while we
989  * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
990  * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
991  * internally and updates it under @ui_mutex.
992  *
993  * Q: why we do not worry that if we race with truncation, we may end up with a
994  * situation when the inode is truncated while we are in the middle of
995  * 'do_writepage()', so we do write beyond inode size?
996  * A: If we are in the middle of 'do_writepage()', truncation would be locked
997  * on the page lock and it would not write the truncated inode node to the
998  * journal before we have finished.
999  */
ubifs_writepage(struct page * page,struct writeback_control * wbc)1000 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1001 {
1002 	struct inode *inode = page->mapping->host;
1003 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1004 	struct ubifs_inode *ui = ubifs_inode(inode);
1005 	loff_t i_size =  i_size_read(inode), synced_i_size;
1006 	pgoff_t end_index = i_size >> PAGE_SHIFT;
1007 	int err, len = i_size & (PAGE_SIZE - 1);
1008 	void *kaddr;
1009 
1010 	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1011 		inode->i_ino, page->index, page->flags);
1012 	ubifs_assert(c, PagePrivate(page));
1013 
1014 	/* Is the page fully outside @i_size? (truncate in progress) */
1015 	if (page->index > end_index || (page->index == end_index && !len)) {
1016 		err = 0;
1017 		goto out_unlock;
1018 	}
1019 
1020 	spin_lock(&ui->ui_lock);
1021 	synced_i_size = ui->synced_i_size;
1022 	spin_unlock(&ui->ui_lock);
1023 
1024 	/* Is the page fully inside @i_size? */
1025 	if (page->index < end_index) {
1026 		if (page->index >= synced_i_size >> PAGE_SHIFT) {
1027 			err = inode->i_sb->s_op->write_inode(inode, NULL);
1028 			if (err)
1029 				goto out_redirty;
1030 			/*
1031 			 * The inode has been written, but the write-buffer has
1032 			 * not been synchronized, so in case of an unclean
1033 			 * reboot we may end up with some pages beyond inode
1034 			 * size, but they would be in the journal (because
1035 			 * commit flushes write buffers) and recovery would deal
1036 			 * with this.
1037 			 */
1038 		}
1039 		return do_writepage(page, PAGE_SIZE);
1040 	}
1041 
1042 	/*
1043 	 * The page straddles @i_size. It must be zeroed out on each and every
1044 	 * writepage invocation because it may be mmapped. "A file is mapped
1045 	 * in multiples of the page size. For a file that is not a multiple of
1046 	 * the page size, the remaining memory is zeroed when mapped, and
1047 	 * writes to that region are not written out to the file."
1048 	 */
1049 	kaddr = kmap_atomic(page);
1050 	memset(kaddr + len, 0, PAGE_SIZE - len);
1051 	flush_dcache_page(page);
1052 	kunmap_atomic(kaddr);
1053 
1054 	if (i_size > synced_i_size) {
1055 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1056 		if (err)
1057 			goto out_redirty;
1058 	}
1059 
1060 	return do_writepage(page, len);
1061 out_redirty:
1062 	/*
1063 	 * redirty_page_for_writepage() won't call ubifs_dirty_inode() because
1064 	 * it passes I_DIRTY_PAGES flag while calling __mark_inode_dirty(), so
1065 	 * there is no need to do space budget for dirty inode.
1066 	 */
1067 	redirty_page_for_writepage(wbc, page);
1068 out_unlock:
1069 	unlock_page(page);
1070 	return err;
1071 }
1072 
1073 /**
1074  * do_attr_changes - change inode attributes.
1075  * @inode: inode to change attributes for
1076  * @attr: describes attributes to change
1077  */
do_attr_changes(struct inode * inode,const struct iattr * attr)1078 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1079 {
1080 	if (attr->ia_valid & ATTR_UID)
1081 		inode->i_uid = attr->ia_uid;
1082 	if (attr->ia_valid & ATTR_GID)
1083 		inode->i_gid = attr->ia_gid;
1084 	if (attr->ia_valid & ATTR_ATIME)
1085 		inode->i_atime = attr->ia_atime;
1086 	if (attr->ia_valid & ATTR_MTIME)
1087 		inode->i_mtime = attr->ia_mtime;
1088 	if (attr->ia_valid & ATTR_CTIME)
1089 		inode->i_ctime = attr->ia_ctime;
1090 	if (attr->ia_valid & ATTR_MODE) {
1091 		umode_t mode = attr->ia_mode;
1092 
1093 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1094 			mode &= ~S_ISGID;
1095 		inode->i_mode = mode;
1096 	}
1097 }
1098 
1099 /**
1100  * do_truncation - truncate an inode.
1101  * @c: UBIFS file-system description object
1102  * @inode: inode to truncate
1103  * @attr: inode attribute changes description
1104  *
1105  * This function implements VFS '->setattr()' call when the inode is truncated
1106  * to a smaller size. Returns zero in case of success and a negative error code
1107  * in case of failure.
1108  */
do_truncation(struct ubifs_info * c,struct inode * inode,const struct iattr * attr)1109 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1110 			 const struct iattr *attr)
1111 {
1112 	int err;
1113 	struct ubifs_budget_req req;
1114 	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1115 	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1116 	struct ubifs_inode *ui = ubifs_inode(inode);
1117 
1118 	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1119 	memset(&req, 0, sizeof(struct ubifs_budget_req));
1120 
1121 	/*
1122 	 * If this is truncation to a smaller size, and we do not truncate on a
1123 	 * block boundary, budget for changing one data block, because the last
1124 	 * block will be re-written.
1125 	 */
1126 	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1127 		req.dirtied_page = 1;
1128 
1129 	req.dirtied_ino = 1;
1130 	/* A funny way to budget for truncation node */
1131 	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1132 	err = ubifs_budget_space(c, &req);
1133 	if (err) {
1134 		/*
1135 		 * Treat truncations to zero as deletion and always allow them,
1136 		 * just like we do for '->unlink()'.
1137 		 */
1138 		if (new_size || err != -ENOSPC)
1139 			return err;
1140 		budgeted = 0;
1141 	}
1142 
1143 	truncate_setsize(inode, new_size);
1144 
1145 	if (offset) {
1146 		pgoff_t index = new_size >> PAGE_SHIFT;
1147 		struct page *page;
1148 
1149 		page = find_lock_page(inode->i_mapping, index);
1150 		if (page) {
1151 			if (PageDirty(page)) {
1152 				/*
1153 				 * 'ubifs_jnl_truncate()' will try to truncate
1154 				 * the last data node, but it contains
1155 				 * out-of-date data because the page is dirty.
1156 				 * Write the page now, so that
1157 				 * 'ubifs_jnl_truncate()' will see an already
1158 				 * truncated (and up to date) data node.
1159 				 */
1160 				ubifs_assert(c, PagePrivate(page));
1161 
1162 				clear_page_dirty_for_io(page);
1163 				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1164 					offset = new_size &
1165 						 (PAGE_SIZE - 1);
1166 				err = do_writepage(page, offset);
1167 				put_page(page);
1168 				if (err)
1169 					goto out_budg;
1170 				/*
1171 				 * We could now tell 'ubifs_jnl_truncate()' not
1172 				 * to read the last block.
1173 				 */
1174 			} else {
1175 				/*
1176 				 * We could 'kmap()' the page and pass the data
1177 				 * to 'ubifs_jnl_truncate()' to save it from
1178 				 * having to read it.
1179 				 */
1180 				unlock_page(page);
1181 				put_page(page);
1182 			}
1183 		}
1184 	}
1185 
1186 	mutex_lock(&ui->ui_mutex);
1187 	ui->ui_size = inode->i_size;
1188 	/* Truncation changes inode [mc]time */
1189 	inode->i_mtime = inode->i_ctime = current_time(inode);
1190 	/* Other attributes may be changed at the same time as well */
1191 	do_attr_changes(inode, attr);
1192 	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1193 	mutex_unlock(&ui->ui_mutex);
1194 
1195 out_budg:
1196 	if (budgeted)
1197 		ubifs_release_budget(c, &req);
1198 	else {
1199 		c->bi.nospace = c->bi.nospace_rp = 0;
1200 		smp_wmb();
1201 	}
1202 	return err;
1203 }
1204 
1205 /**
1206  * do_setattr - change inode attributes.
1207  * @c: UBIFS file-system description object
1208  * @inode: inode to change attributes for
1209  * @attr: inode attribute changes description
1210  *
1211  * This function implements VFS '->setattr()' call for all cases except
1212  * truncations to smaller size. Returns zero in case of success and a negative
1213  * error code in case of failure.
1214  */
do_setattr(struct ubifs_info * c,struct inode * inode,const struct iattr * attr)1215 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1216 		      const struct iattr *attr)
1217 {
1218 	int err, release;
1219 	loff_t new_size = attr->ia_size;
1220 	struct ubifs_inode *ui = ubifs_inode(inode);
1221 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1222 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1223 
1224 	err = ubifs_budget_space(c, &req);
1225 	if (err)
1226 		return err;
1227 
1228 	if (attr->ia_valid & ATTR_SIZE) {
1229 		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1230 		truncate_setsize(inode, new_size);
1231 	}
1232 
1233 	mutex_lock(&ui->ui_mutex);
1234 	if (attr->ia_valid & ATTR_SIZE) {
1235 		/* Truncation changes inode [mc]time */
1236 		inode->i_mtime = inode->i_ctime = current_time(inode);
1237 		/* 'truncate_setsize()' changed @i_size, update @ui_size */
1238 		ui->ui_size = inode->i_size;
1239 	}
1240 
1241 	do_attr_changes(inode, attr);
1242 
1243 	release = ui->dirty;
1244 	if (attr->ia_valid & ATTR_SIZE)
1245 		/*
1246 		 * Inode length changed, so we have to make sure
1247 		 * @I_DIRTY_DATASYNC is set.
1248 		 */
1249 		 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1250 	else
1251 		mark_inode_dirty_sync(inode);
1252 	mutex_unlock(&ui->ui_mutex);
1253 
1254 	if (release)
1255 		ubifs_release_budget(c, &req);
1256 	if (IS_SYNC(inode))
1257 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1258 	return err;
1259 }
1260 
ubifs_setattr(struct dentry * dentry,struct iattr * attr)1261 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1262 {
1263 	int err;
1264 	struct inode *inode = d_inode(dentry);
1265 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1266 
1267 	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1268 		inode->i_ino, inode->i_mode, attr->ia_valid);
1269 	err = setattr_prepare(dentry, attr);
1270 	if (err)
1271 		return err;
1272 
1273 	err = dbg_check_synced_i_size(c, inode);
1274 	if (err)
1275 		return err;
1276 
1277 	err = fscrypt_prepare_setattr(dentry, attr);
1278 	if (err)
1279 		return err;
1280 
1281 	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1282 		/* Truncation to a smaller size */
1283 		err = do_truncation(c, inode, attr);
1284 	else
1285 		err = do_setattr(c, inode, attr);
1286 
1287 	return err;
1288 }
1289 
ubifs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)1290 static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1291 				 unsigned int length)
1292 {
1293 	struct inode *inode = page->mapping->host;
1294 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1295 
1296 	ubifs_assert(c, PagePrivate(page));
1297 	if (offset || length < PAGE_SIZE)
1298 		/* Partial page remains dirty */
1299 		return;
1300 
1301 	if (PageChecked(page))
1302 		release_new_page_budget(c);
1303 	else
1304 		release_existing_page_budget(c);
1305 
1306 	atomic_long_dec(&c->dirty_pg_cnt);
1307 	ClearPagePrivate(page);
1308 	ClearPageChecked(page);
1309 }
1310 
ubifs_fsync(struct file * file,loff_t start,loff_t end,int datasync)1311 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1312 {
1313 	struct inode *inode = file->f_mapping->host;
1314 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1315 	int err;
1316 
1317 	dbg_gen("syncing inode %lu", inode->i_ino);
1318 
1319 	if (c->ro_mount)
1320 		/*
1321 		 * For some really strange reasons VFS does not filter out
1322 		 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1323 		 */
1324 		return 0;
1325 
1326 	err = file_write_and_wait_range(file, start, end);
1327 	if (err)
1328 		return err;
1329 	inode_lock(inode);
1330 
1331 	/* Synchronize the inode unless this is a 'datasync()' call. */
1332 	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1333 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1334 		if (err)
1335 			goto out;
1336 	}
1337 
1338 	/*
1339 	 * Nodes related to this inode may still sit in a write-buffer. Flush
1340 	 * them.
1341 	 */
1342 	err = ubifs_sync_wbufs_by_inode(c, inode);
1343 out:
1344 	inode_unlock(inode);
1345 	return err;
1346 }
1347 
1348 /**
1349  * mctime_update_needed - check if mtime or ctime update is needed.
1350  * @inode: the inode to do the check for
1351  * @now: current time
1352  *
1353  * This helper function checks if the inode mtime/ctime should be updated or
1354  * not. If current values of the time-stamps are within the UBIFS inode time
1355  * granularity, they are not updated. This is an optimization.
1356  */
mctime_update_needed(const struct inode * inode,const struct timespec64 * now)1357 static inline int mctime_update_needed(const struct inode *inode,
1358 				       const struct timespec64 *now)
1359 {
1360 	if (!timespec64_equal(&inode->i_mtime, now) ||
1361 	    !timespec64_equal(&inode->i_ctime, now))
1362 		return 1;
1363 	return 0;
1364 }
1365 
1366 /**
1367  * ubifs_update_time - update time of inode.
1368  * @inode: inode to update
1369  *
1370  * This function updates time of the inode.
1371  */
ubifs_update_time(struct inode * inode,struct timespec64 * time,int flags)1372 int ubifs_update_time(struct inode *inode, struct timespec64 *time,
1373 			     int flags)
1374 {
1375 	struct ubifs_inode *ui = ubifs_inode(inode);
1376 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1377 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1378 			.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1379 	int err, release;
1380 
1381 	if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1382 		return generic_update_time(inode, time, flags);
1383 
1384 	err = ubifs_budget_space(c, &req);
1385 	if (err)
1386 		return err;
1387 
1388 	mutex_lock(&ui->ui_mutex);
1389 	if (flags & S_ATIME)
1390 		inode->i_atime = *time;
1391 	if (flags & S_CTIME)
1392 		inode->i_ctime = *time;
1393 	if (flags & S_MTIME)
1394 		inode->i_mtime = *time;
1395 
1396 	release = ui->dirty;
1397 	__mark_inode_dirty(inode, I_DIRTY_SYNC);
1398 	mutex_unlock(&ui->ui_mutex);
1399 	if (release)
1400 		ubifs_release_budget(c, &req);
1401 	return 0;
1402 }
1403 
1404 /**
1405  * update_mctime - update mtime and ctime of an inode.
1406  * @inode: inode to update
1407  *
1408  * This function updates mtime and ctime of the inode if it is not equivalent to
1409  * current time. Returns zero in case of success and a negative error code in
1410  * case of failure.
1411  */
update_mctime(struct inode * inode)1412 static int update_mctime(struct inode *inode)
1413 {
1414 	struct timespec64 now = current_time(inode);
1415 	struct ubifs_inode *ui = ubifs_inode(inode);
1416 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1417 
1418 	if (mctime_update_needed(inode, &now)) {
1419 		int err, release;
1420 		struct ubifs_budget_req req = { .dirtied_ino = 1,
1421 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1422 
1423 		err = ubifs_budget_space(c, &req);
1424 		if (err)
1425 			return err;
1426 
1427 		mutex_lock(&ui->ui_mutex);
1428 		inode->i_mtime = inode->i_ctime = current_time(inode);
1429 		release = ui->dirty;
1430 		mark_inode_dirty_sync(inode);
1431 		mutex_unlock(&ui->ui_mutex);
1432 		if (release)
1433 			ubifs_release_budget(c, &req);
1434 	}
1435 
1436 	return 0;
1437 }
1438 
ubifs_write_iter(struct kiocb * iocb,struct iov_iter * from)1439 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1440 {
1441 	int err = update_mctime(file_inode(iocb->ki_filp));
1442 	if (err)
1443 		return err;
1444 
1445 	return generic_file_write_iter(iocb, from);
1446 }
1447 
ubifs_set_page_dirty(struct page * page)1448 static int ubifs_set_page_dirty(struct page *page)
1449 {
1450 	int ret;
1451 	struct inode *inode = page->mapping->host;
1452 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1453 
1454 	ret = __set_page_dirty_nobuffers(page);
1455 	/*
1456 	 * An attempt to dirty a page without budgeting for it - should not
1457 	 * happen.
1458 	 */
1459 	ubifs_assert(c, ret == 0);
1460 	return ret;
1461 }
1462 
1463 #ifdef CONFIG_MIGRATION
ubifs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)1464 static int ubifs_migrate_page(struct address_space *mapping,
1465 		struct page *newpage, struct page *page, enum migrate_mode mode)
1466 {
1467 	int rc;
1468 
1469 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
1470 	if (rc != MIGRATEPAGE_SUCCESS)
1471 		return rc;
1472 
1473 	if (PagePrivate(page)) {
1474 		ClearPagePrivate(page);
1475 		SetPagePrivate(newpage);
1476 	}
1477 
1478 	if (mode != MIGRATE_SYNC_NO_COPY)
1479 		migrate_page_copy(newpage, page);
1480 	else
1481 		migrate_page_states(newpage, page);
1482 	return MIGRATEPAGE_SUCCESS;
1483 }
1484 #endif
1485 
ubifs_releasepage(struct page * page,gfp_t unused_gfp_flags)1486 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1487 {
1488 	struct inode *inode = page->mapping->host;
1489 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1490 
1491 	/*
1492 	 * An attempt to release a dirty page without budgeting for it - should
1493 	 * not happen.
1494 	 */
1495 	if (PageWriteback(page))
1496 		return 0;
1497 	ubifs_assert(c, PagePrivate(page));
1498 	ubifs_assert(c, 0);
1499 	ClearPagePrivate(page);
1500 	ClearPageChecked(page);
1501 	return 1;
1502 }
1503 
1504 /*
1505  * mmap()d file has taken write protection fault and is being made writable.
1506  * UBIFS must ensure page is budgeted for.
1507  */
ubifs_vm_page_mkwrite(struct vm_fault * vmf)1508 static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1509 {
1510 	struct page *page = vmf->page;
1511 	struct inode *inode = file_inode(vmf->vma->vm_file);
1512 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1513 	struct timespec64 now = current_time(inode);
1514 	struct ubifs_budget_req req = { .new_page = 1 };
1515 	int err, update_time;
1516 
1517 	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, page->index,
1518 		i_size_read(inode));
1519 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
1520 
1521 	if (unlikely(c->ro_error))
1522 		return VM_FAULT_SIGBUS; /* -EROFS */
1523 
1524 	/*
1525 	 * We have not locked @page so far so we may budget for changing the
1526 	 * page. Note, we cannot do this after we locked the page, because
1527 	 * budgeting may cause write-back which would cause deadlock.
1528 	 *
1529 	 * At the moment we do not know whether the page is dirty or not, so we
1530 	 * assume that it is not and budget for a new page. We could look at
1531 	 * the @PG_private flag and figure this out, but we may race with write
1532 	 * back and the page state may change by the time we lock it, so this
1533 	 * would need additional care. We do not bother with this at the
1534 	 * moment, although it might be good idea to do. Instead, we allocate
1535 	 * budget for a new page and amend it later on if the page was in fact
1536 	 * dirty.
1537 	 *
1538 	 * The budgeting-related logic of this function is similar to what we
1539 	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1540 	 * for more comments.
1541 	 */
1542 	update_time = mctime_update_needed(inode, &now);
1543 	if (update_time)
1544 		/*
1545 		 * We have to change inode time stamp which requires extra
1546 		 * budgeting.
1547 		 */
1548 		req.dirtied_ino = 1;
1549 
1550 	err = ubifs_budget_space(c, &req);
1551 	if (unlikely(err)) {
1552 		if (err == -ENOSPC)
1553 			ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1554 				   inode->i_ino);
1555 		return VM_FAULT_SIGBUS;
1556 	}
1557 
1558 	lock_page(page);
1559 	if (unlikely(page->mapping != inode->i_mapping ||
1560 		     page_offset(page) > i_size_read(inode))) {
1561 		/* Page got truncated out from underneath us */
1562 		goto sigbus;
1563 	}
1564 
1565 	if (PagePrivate(page))
1566 		release_new_page_budget(c);
1567 	else {
1568 		if (!PageChecked(page))
1569 			ubifs_convert_page_budget(c);
1570 		SetPagePrivate(page);
1571 		atomic_long_inc(&c->dirty_pg_cnt);
1572 		__set_page_dirty_nobuffers(page);
1573 	}
1574 
1575 	if (update_time) {
1576 		int release;
1577 		struct ubifs_inode *ui = ubifs_inode(inode);
1578 
1579 		mutex_lock(&ui->ui_mutex);
1580 		inode->i_mtime = inode->i_ctime = current_time(inode);
1581 		release = ui->dirty;
1582 		mark_inode_dirty_sync(inode);
1583 		mutex_unlock(&ui->ui_mutex);
1584 		if (release)
1585 			ubifs_release_dirty_inode_budget(c, ui);
1586 	}
1587 
1588 	wait_for_stable_page(page);
1589 	return VM_FAULT_LOCKED;
1590 
1591 sigbus:
1592 	unlock_page(page);
1593 	ubifs_release_budget(c, &req);
1594 	return VM_FAULT_SIGBUS;
1595 }
1596 
1597 static const struct vm_operations_struct ubifs_file_vm_ops = {
1598 	.fault        = filemap_fault,
1599 	.map_pages = filemap_map_pages,
1600 	.page_mkwrite = ubifs_vm_page_mkwrite,
1601 };
1602 
ubifs_file_mmap(struct file * file,struct vm_area_struct * vma)1603 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1604 {
1605 	int err;
1606 
1607 	err = generic_file_mmap(file, vma);
1608 	if (err)
1609 		return err;
1610 	vma->vm_ops = &ubifs_file_vm_ops;
1611 
1612 	if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1613 		file_accessed(file);
1614 
1615 	return 0;
1616 }
1617 
ubifs_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1618 static const char *ubifs_get_link(struct dentry *dentry,
1619 					    struct inode *inode,
1620 					    struct delayed_call *done)
1621 {
1622 	struct ubifs_inode *ui = ubifs_inode(inode);
1623 
1624 	if (!IS_ENCRYPTED(inode))
1625 		return ui->data;
1626 
1627 	if (!dentry)
1628 		return ERR_PTR(-ECHILD);
1629 
1630 	return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1631 }
1632 
ubifs_symlink_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1633 static int ubifs_symlink_getattr(const struct path *path, struct kstat *stat,
1634 				 u32 request_mask, unsigned int query_flags)
1635 {
1636 	ubifs_getattr(path, stat, request_mask, query_flags);
1637 
1638 	if (IS_ENCRYPTED(d_inode(path->dentry)))
1639 		return fscrypt_symlink_getattr(path, stat);
1640 	return 0;
1641 }
1642 
1643 const struct address_space_operations ubifs_file_address_operations = {
1644 	.readpage       = ubifs_readpage,
1645 	.writepage      = ubifs_writepage,
1646 	.write_begin    = ubifs_write_begin,
1647 	.write_end      = ubifs_write_end,
1648 	.invalidatepage = ubifs_invalidatepage,
1649 	.set_page_dirty = ubifs_set_page_dirty,
1650 #ifdef CONFIG_MIGRATION
1651 	.migratepage	= ubifs_migrate_page,
1652 #endif
1653 	.releasepage    = ubifs_releasepage,
1654 };
1655 
1656 const struct inode_operations ubifs_file_inode_operations = {
1657 	.setattr     = ubifs_setattr,
1658 	.getattr     = ubifs_getattr,
1659 #ifdef CONFIG_UBIFS_FS_XATTR
1660 	.listxattr   = ubifs_listxattr,
1661 #endif
1662 	.update_time = ubifs_update_time,
1663 };
1664 
1665 const struct inode_operations ubifs_symlink_inode_operations = {
1666 	.get_link    = ubifs_get_link,
1667 	.setattr     = ubifs_setattr,
1668 	.getattr     = ubifs_symlink_getattr,
1669 #ifdef CONFIG_UBIFS_FS_XATTR
1670 	.listxattr   = ubifs_listxattr,
1671 #endif
1672 	.update_time = ubifs_update_time,
1673 };
1674 
1675 const struct file_operations ubifs_file_operations = {
1676 	.llseek         = generic_file_llseek,
1677 	.read_iter      = generic_file_read_iter,
1678 	.write_iter     = ubifs_write_iter,
1679 	.mmap           = ubifs_file_mmap,
1680 	.fsync          = ubifs_fsync,
1681 	.unlocked_ioctl = ubifs_ioctl,
1682 	.splice_read	= generic_file_splice_read,
1683 	.splice_write	= iter_file_splice_write,
1684 	.open		= fscrypt_file_open,
1685 #ifdef CONFIG_COMPAT
1686 	.compat_ioctl   = ubifs_compat_ioctl,
1687 #endif
1688 };
1689