1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11 /*
12 * This file implements UBIFS initialization and VFS superblock operations. Some
13 * initialization stuff which is rather large and complex is placed at
14 * corresponding subsystems, but most of it is here.
15 */
16
17 #include <linux/init.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/kthread.h>
22 #include <linux/parser.h>
23 #include <linux/seq_file.h>
24 #include <linux/mount.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include "ubifs.h"
28
29 /*
30 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
31 * allocating too much.
32 */
33 #define UBIFS_KMALLOC_OK (128*1024)
34
35 /* Slab cache for UBIFS inodes */
36 static struct kmem_cache *ubifs_inode_slab;
37
38 /* UBIFS TNC shrinker description */
39 static struct shrinker ubifs_shrinker_info = {
40 .scan_objects = ubifs_shrink_scan,
41 .count_objects = ubifs_shrink_count,
42 .seeks = DEFAULT_SEEKS,
43 };
44
45 /**
46 * validate_inode - validate inode.
47 * @c: UBIFS file-system description object
48 * @inode: the inode to validate
49 *
50 * This is a helper function for 'ubifs_iget()' which validates various fields
51 * of a newly built inode to make sure they contain sane values and prevent
52 * possible vulnerabilities. Returns zero if the inode is all right and
53 * a non-zero error code if not.
54 */
validate_inode(struct ubifs_info * c,const struct inode * inode)55 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
56 {
57 int err;
58 const struct ubifs_inode *ui = ubifs_inode(inode);
59
60 if (inode->i_size > c->max_inode_sz) {
61 ubifs_err(c, "inode is too large (%lld)",
62 (long long)inode->i_size);
63 return 1;
64 }
65
66 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
67 ubifs_err(c, "unknown compression type %d", ui->compr_type);
68 return 2;
69 }
70
71 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
72 return 3;
73
74 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
75 return 4;
76
77 if (ui->xattr && !S_ISREG(inode->i_mode))
78 return 5;
79
80 if (!ubifs_compr_present(c, ui->compr_type)) {
81 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
82 inode->i_ino, ubifs_compr_name(c, ui->compr_type));
83 }
84
85 err = dbg_check_dir(c, inode);
86 return err;
87 }
88
ubifs_iget(struct super_block * sb,unsigned long inum)89 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
90 {
91 int err;
92 union ubifs_key key;
93 struct ubifs_ino_node *ino;
94 struct ubifs_info *c = sb->s_fs_info;
95 struct inode *inode;
96 struct ubifs_inode *ui;
97
98 dbg_gen("inode %lu", inum);
99
100 inode = iget_locked(sb, inum);
101 if (!inode)
102 return ERR_PTR(-ENOMEM);
103 if (!(inode->i_state & I_NEW))
104 return inode;
105 ui = ubifs_inode(inode);
106
107 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
108 if (!ino) {
109 err = -ENOMEM;
110 goto out;
111 }
112
113 ino_key_init(c, &key, inode->i_ino);
114
115 err = ubifs_tnc_lookup(c, &key, ino);
116 if (err)
117 goto out_ino;
118
119 inode->i_flags |= S_NOCMTIME;
120
121 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
122 inode->i_flags |= S_NOATIME;
123
124 set_nlink(inode, le32_to_cpu(ino->nlink));
125 i_uid_write(inode, le32_to_cpu(ino->uid));
126 i_gid_write(inode, le32_to_cpu(ino->gid));
127 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
128 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
129 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
130 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
131 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
132 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
133 inode->i_mode = le32_to_cpu(ino->mode);
134 inode->i_size = le64_to_cpu(ino->size);
135
136 ui->data_len = le32_to_cpu(ino->data_len);
137 ui->flags = le32_to_cpu(ino->flags);
138 ui->compr_type = le16_to_cpu(ino->compr_type);
139 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
140 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
141 ui->xattr_size = le32_to_cpu(ino->xattr_size);
142 ui->xattr_names = le32_to_cpu(ino->xattr_names);
143 ui->synced_i_size = ui->ui_size = inode->i_size;
144
145 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
146
147 err = validate_inode(c, inode);
148 if (err)
149 goto out_invalid;
150
151 switch (inode->i_mode & S_IFMT) {
152 case S_IFREG:
153 inode->i_mapping->a_ops = &ubifs_file_address_operations;
154 inode->i_op = &ubifs_file_inode_operations;
155 inode->i_fop = &ubifs_file_operations;
156 if (ui->xattr) {
157 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
158 if (!ui->data) {
159 err = -ENOMEM;
160 goto out_ino;
161 }
162 memcpy(ui->data, ino->data, ui->data_len);
163 ((char *)ui->data)[ui->data_len] = '\0';
164 } else if (ui->data_len != 0) {
165 err = 10;
166 goto out_invalid;
167 }
168 break;
169 case S_IFDIR:
170 inode->i_op = &ubifs_dir_inode_operations;
171 inode->i_fop = &ubifs_dir_operations;
172 if (ui->data_len != 0) {
173 err = 11;
174 goto out_invalid;
175 }
176 break;
177 case S_IFLNK:
178 inode->i_op = &ubifs_symlink_inode_operations;
179 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
180 err = 12;
181 goto out_invalid;
182 }
183 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
184 if (!ui->data) {
185 err = -ENOMEM;
186 goto out_ino;
187 }
188 memcpy(ui->data, ino->data, ui->data_len);
189 ((char *)ui->data)[ui->data_len] = '\0';
190 break;
191 case S_IFBLK:
192 case S_IFCHR:
193 {
194 dev_t rdev;
195 union ubifs_dev_desc *dev;
196
197 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
198 if (!ui->data) {
199 err = -ENOMEM;
200 goto out_ino;
201 }
202
203 dev = (union ubifs_dev_desc *)ino->data;
204 if (ui->data_len == sizeof(dev->new))
205 rdev = new_decode_dev(le32_to_cpu(dev->new));
206 else if (ui->data_len == sizeof(dev->huge))
207 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
208 else {
209 err = 13;
210 goto out_invalid;
211 }
212 memcpy(ui->data, ino->data, ui->data_len);
213 inode->i_op = &ubifs_file_inode_operations;
214 init_special_inode(inode, inode->i_mode, rdev);
215 break;
216 }
217 case S_IFSOCK:
218 case S_IFIFO:
219 inode->i_op = &ubifs_file_inode_operations;
220 init_special_inode(inode, inode->i_mode, 0);
221 if (ui->data_len != 0) {
222 err = 14;
223 goto out_invalid;
224 }
225 break;
226 default:
227 err = 15;
228 goto out_invalid;
229 }
230
231 kfree(ino);
232 ubifs_set_inode_flags(inode);
233 unlock_new_inode(inode);
234 return inode;
235
236 out_invalid:
237 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
238 ubifs_dump_node(c, ino);
239 ubifs_dump_inode(c, inode);
240 err = -EINVAL;
241 out_ino:
242 kfree(ino);
243 out:
244 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
245 iget_failed(inode);
246 return ERR_PTR(err);
247 }
248
ubifs_alloc_inode(struct super_block * sb)249 static struct inode *ubifs_alloc_inode(struct super_block *sb)
250 {
251 struct ubifs_inode *ui;
252
253 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
254 if (!ui)
255 return NULL;
256
257 memset((void *)ui + sizeof(struct inode), 0,
258 sizeof(struct ubifs_inode) - sizeof(struct inode));
259 mutex_init(&ui->ui_mutex);
260 init_rwsem(&ui->xattr_sem);
261 spin_lock_init(&ui->ui_lock);
262 return &ui->vfs_inode;
263 };
264
ubifs_free_inode(struct inode * inode)265 static void ubifs_free_inode(struct inode *inode)
266 {
267 struct ubifs_inode *ui = ubifs_inode(inode);
268
269 kfree(ui->data);
270 fscrypt_free_inode(inode);
271
272 kmem_cache_free(ubifs_inode_slab, ui);
273 }
274
275 /*
276 * Note, Linux write-back code calls this without 'i_mutex'.
277 */
ubifs_write_inode(struct inode * inode,struct writeback_control * wbc)278 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
279 {
280 int err = 0;
281 struct ubifs_info *c = inode->i_sb->s_fs_info;
282 struct ubifs_inode *ui = ubifs_inode(inode);
283
284 ubifs_assert(c, !ui->xattr);
285 if (is_bad_inode(inode))
286 return 0;
287
288 mutex_lock(&ui->ui_mutex);
289 /*
290 * Due to races between write-back forced by budgeting
291 * (see 'sync_some_inodes()') and background write-back, the inode may
292 * have already been synchronized, do not do this again. This might
293 * also happen if it was synchronized in an VFS operation, e.g.
294 * 'ubifs_link()'.
295 */
296 if (!ui->dirty) {
297 mutex_unlock(&ui->ui_mutex);
298 return 0;
299 }
300
301 /*
302 * As an optimization, do not write orphan inodes to the media just
303 * because this is not needed.
304 */
305 dbg_gen("inode %lu, mode %#x, nlink %u",
306 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
307 if (inode->i_nlink) {
308 err = ubifs_jnl_write_inode(c, inode);
309 if (err)
310 ubifs_err(c, "can't write inode %lu, error %d",
311 inode->i_ino, err);
312 else
313 err = dbg_check_inode_size(c, inode, ui->ui_size);
314 }
315
316 ui->dirty = 0;
317 mutex_unlock(&ui->ui_mutex);
318 ubifs_release_dirty_inode_budget(c, ui);
319 return err;
320 }
321
ubifs_drop_inode(struct inode * inode)322 static int ubifs_drop_inode(struct inode *inode)
323 {
324 int drop = generic_drop_inode(inode);
325
326 if (!drop)
327 drop = fscrypt_drop_inode(inode);
328
329 return drop;
330 }
331
ubifs_evict_inode(struct inode * inode)332 static void ubifs_evict_inode(struct inode *inode)
333 {
334 int err;
335 struct ubifs_info *c = inode->i_sb->s_fs_info;
336 struct ubifs_inode *ui = ubifs_inode(inode);
337
338 if (ui->xattr)
339 /*
340 * Extended attribute inode deletions are fully handled in
341 * 'ubifs_removexattr()'. These inodes are special and have
342 * limited usage, so there is nothing to do here.
343 */
344 goto out;
345
346 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
347 ubifs_assert(c, !atomic_read(&inode->i_count));
348
349 truncate_inode_pages_final(&inode->i_data);
350
351 if (inode->i_nlink)
352 goto done;
353
354 if (is_bad_inode(inode))
355 goto out;
356
357 ui->ui_size = inode->i_size = 0;
358 err = ubifs_jnl_delete_inode(c, inode);
359 if (err)
360 /*
361 * Worst case we have a lost orphan inode wasting space, so a
362 * simple error message is OK here.
363 */
364 ubifs_err(c, "can't delete inode %lu, error %d",
365 inode->i_ino, err);
366
367 out:
368 if (ui->dirty)
369 ubifs_release_dirty_inode_budget(c, ui);
370 else {
371 /* We've deleted something - clean the "no space" flags */
372 c->bi.nospace = c->bi.nospace_rp = 0;
373 smp_wmb();
374 }
375 done:
376 clear_inode(inode);
377 fscrypt_put_encryption_info(inode);
378 }
379
ubifs_dirty_inode(struct inode * inode,int flags)380 static void ubifs_dirty_inode(struct inode *inode, int flags)
381 {
382 struct ubifs_info *c = inode->i_sb->s_fs_info;
383 struct ubifs_inode *ui = ubifs_inode(inode);
384
385 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
386 if (!ui->dirty) {
387 ui->dirty = 1;
388 dbg_gen("inode %lu", inode->i_ino);
389 }
390 }
391
ubifs_statfs(struct dentry * dentry,struct kstatfs * buf)392 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
393 {
394 struct ubifs_info *c = dentry->d_sb->s_fs_info;
395 unsigned long long free;
396 __le32 *uuid = (__le32 *)c->uuid;
397
398 free = ubifs_get_free_space(c);
399 dbg_gen("free space %lld bytes (%lld blocks)",
400 free, free >> UBIFS_BLOCK_SHIFT);
401
402 buf->f_type = UBIFS_SUPER_MAGIC;
403 buf->f_bsize = UBIFS_BLOCK_SIZE;
404 buf->f_blocks = c->block_cnt;
405 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
406 if (free > c->report_rp_size)
407 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
408 else
409 buf->f_bavail = 0;
410 buf->f_files = 0;
411 buf->f_ffree = 0;
412 buf->f_namelen = UBIFS_MAX_NLEN;
413 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
414 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
415 ubifs_assert(c, buf->f_bfree <= c->block_cnt);
416 return 0;
417 }
418
ubifs_show_options(struct seq_file * s,struct dentry * root)419 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
420 {
421 struct ubifs_info *c = root->d_sb->s_fs_info;
422
423 if (c->mount_opts.unmount_mode == 2)
424 seq_puts(s, ",fast_unmount");
425 else if (c->mount_opts.unmount_mode == 1)
426 seq_puts(s, ",norm_unmount");
427
428 if (c->mount_opts.bulk_read == 2)
429 seq_puts(s, ",bulk_read");
430 else if (c->mount_opts.bulk_read == 1)
431 seq_puts(s, ",no_bulk_read");
432
433 if (c->mount_opts.chk_data_crc == 2)
434 seq_puts(s, ",chk_data_crc");
435 else if (c->mount_opts.chk_data_crc == 1)
436 seq_puts(s, ",no_chk_data_crc");
437
438 if (c->mount_opts.override_compr) {
439 seq_printf(s, ",compr=%s",
440 ubifs_compr_name(c, c->mount_opts.compr_type));
441 }
442
443 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
444 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
445
446 return 0;
447 }
448
ubifs_sync_fs(struct super_block * sb,int wait)449 static int ubifs_sync_fs(struct super_block *sb, int wait)
450 {
451 int i, err;
452 struct ubifs_info *c = sb->s_fs_info;
453
454 /*
455 * Zero @wait is just an advisory thing to help the file system shove
456 * lots of data into the queues, and there will be the second
457 * '->sync_fs()' call, with non-zero @wait.
458 */
459 if (!wait)
460 return 0;
461
462 /*
463 * Synchronize write buffers, because 'ubifs_run_commit()' does not
464 * do this if it waits for an already running commit.
465 */
466 for (i = 0; i < c->jhead_cnt; i++) {
467 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
468 if (err)
469 return err;
470 }
471
472 /*
473 * Strictly speaking, it is not necessary to commit the journal here,
474 * synchronizing write-buffers would be enough. But committing makes
475 * UBIFS free space predictions much more accurate, so we want to let
476 * the user be able to get more accurate results of 'statfs()' after
477 * they synchronize the file system.
478 */
479 err = ubifs_run_commit(c);
480 if (err)
481 return err;
482
483 return ubi_sync(c->vi.ubi_num);
484 }
485
486 /**
487 * init_constants_early - initialize UBIFS constants.
488 * @c: UBIFS file-system description object
489 *
490 * This function initialize UBIFS constants which do not need the superblock to
491 * be read. It also checks that the UBI volume satisfies basic UBIFS
492 * requirements. Returns zero in case of success and a negative error code in
493 * case of failure.
494 */
init_constants_early(struct ubifs_info * c)495 static int init_constants_early(struct ubifs_info *c)
496 {
497 if (c->vi.corrupted) {
498 ubifs_warn(c, "UBI volume is corrupted - read-only mode");
499 c->ro_media = 1;
500 }
501
502 if (c->di.ro_mode) {
503 ubifs_msg(c, "read-only UBI device");
504 c->ro_media = 1;
505 }
506
507 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
508 ubifs_msg(c, "static UBI volume - read-only mode");
509 c->ro_media = 1;
510 }
511
512 c->leb_cnt = c->vi.size;
513 c->leb_size = c->vi.usable_leb_size;
514 c->leb_start = c->di.leb_start;
515 c->half_leb_size = c->leb_size / 2;
516 c->min_io_size = c->di.min_io_size;
517 c->min_io_shift = fls(c->min_io_size) - 1;
518 c->max_write_size = c->di.max_write_size;
519 c->max_write_shift = fls(c->max_write_size) - 1;
520
521 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
522 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
523 c->leb_size, UBIFS_MIN_LEB_SZ);
524 return -EINVAL;
525 }
526
527 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
528 ubifs_errc(c, "too few LEBs (%d), min. is %d",
529 c->leb_cnt, UBIFS_MIN_LEB_CNT);
530 return -EINVAL;
531 }
532
533 if (!is_power_of_2(c->min_io_size)) {
534 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
535 return -EINVAL;
536 }
537
538 /*
539 * Maximum write size has to be greater or equivalent to min. I/O
540 * size, and be multiple of min. I/O size.
541 */
542 if (c->max_write_size < c->min_io_size ||
543 c->max_write_size % c->min_io_size ||
544 !is_power_of_2(c->max_write_size)) {
545 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
546 c->max_write_size, c->min_io_size);
547 return -EINVAL;
548 }
549
550 /*
551 * UBIFS aligns all node to 8-byte boundary, so to make function in
552 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
553 * less than 8.
554 */
555 if (c->min_io_size < 8) {
556 c->min_io_size = 8;
557 c->min_io_shift = 3;
558 if (c->max_write_size < c->min_io_size) {
559 c->max_write_size = c->min_io_size;
560 c->max_write_shift = c->min_io_shift;
561 }
562 }
563
564 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
565 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
566
567 /*
568 * Initialize node length ranges which are mostly needed for node
569 * length validation.
570 */
571 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
572 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
573 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
574 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
575 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
576 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
577 c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
578 c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
579 UBIFS_MAX_HMAC_LEN;
580 c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
581 c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
582
583 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
584 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
585 c->ranges[UBIFS_ORPH_NODE].min_len =
586 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
587 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
588 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
589 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
590 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
591 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
592 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
593 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
594 /*
595 * Minimum indexing node size is amended later when superblock is
596 * read and the key length is known.
597 */
598 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
599 /*
600 * Maximum indexing node size is amended later when superblock is
601 * read and the fanout is known.
602 */
603 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
604
605 /*
606 * Initialize dead and dark LEB space watermarks. See gc.c for comments
607 * about these values.
608 */
609 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
610 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
611
612 /*
613 * Calculate how many bytes would be wasted at the end of LEB if it was
614 * fully filled with data nodes of maximum size. This is used in
615 * calculations when reporting free space.
616 */
617 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
618
619 /* Buffer size for bulk-reads */
620 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
621 if (c->max_bu_buf_len > c->leb_size)
622 c->max_bu_buf_len = c->leb_size;
623
624 /* Log is ready, preserve one LEB for commits. */
625 c->min_log_bytes = c->leb_size;
626
627 return 0;
628 }
629
630 /**
631 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
632 * @c: UBIFS file-system description object
633 * @lnum: LEB the write-buffer was synchronized to
634 * @free: how many free bytes left in this LEB
635 * @pad: how many bytes were padded
636 *
637 * This is a callback function which is called by the I/O unit when the
638 * write-buffer is synchronized. We need this to correctly maintain space
639 * accounting in bud logical eraseblocks. This function returns zero in case of
640 * success and a negative error code in case of failure.
641 *
642 * This function actually belongs to the journal, but we keep it here because
643 * we want to keep it static.
644 */
bud_wbuf_callback(struct ubifs_info * c,int lnum,int free,int pad)645 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
646 {
647 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
648 }
649
650 /*
651 * init_constants_sb - initialize UBIFS constants.
652 * @c: UBIFS file-system description object
653 *
654 * This is a helper function which initializes various UBIFS constants after
655 * the superblock has been read. It also checks various UBIFS parameters and
656 * makes sure they are all right. Returns zero in case of success and a
657 * negative error code in case of failure.
658 */
init_constants_sb(struct ubifs_info * c)659 static int init_constants_sb(struct ubifs_info *c)
660 {
661 int tmp, err;
662 long long tmp64;
663
664 c->main_bytes = (long long)c->main_lebs * c->leb_size;
665 c->max_znode_sz = sizeof(struct ubifs_znode) +
666 c->fanout * sizeof(struct ubifs_zbranch);
667
668 tmp = ubifs_idx_node_sz(c, 1);
669 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
670 c->min_idx_node_sz = ALIGN(tmp, 8);
671
672 tmp = ubifs_idx_node_sz(c, c->fanout);
673 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
674 c->max_idx_node_sz = ALIGN(tmp, 8);
675
676 /* Make sure LEB size is large enough to fit full commit */
677 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
678 tmp = ALIGN(tmp, c->min_io_size);
679 if (tmp > c->leb_size) {
680 ubifs_err(c, "too small LEB size %d, at least %d needed",
681 c->leb_size, tmp);
682 return -EINVAL;
683 }
684
685 /*
686 * Make sure that the log is large enough to fit reference nodes for
687 * all buds plus one reserved LEB.
688 */
689 tmp64 = c->max_bud_bytes + c->leb_size - 1;
690 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
691 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
692 tmp /= c->leb_size;
693 tmp += 1;
694 if (c->log_lebs < tmp) {
695 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
696 c->log_lebs, tmp);
697 return -EINVAL;
698 }
699
700 /*
701 * When budgeting we assume worst-case scenarios when the pages are not
702 * be compressed and direntries are of the maximum size.
703 *
704 * Note, data, which may be stored in inodes is budgeted separately, so
705 * it is not included into 'c->bi.inode_budget'.
706 */
707 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
708 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
709 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
710
711 /*
712 * When the amount of flash space used by buds becomes
713 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
714 * The writers are unblocked when the commit is finished. To avoid
715 * writers to be blocked UBIFS initiates background commit in advance,
716 * when number of bud bytes becomes above the limit defined below.
717 */
718 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
719
720 /*
721 * Ensure minimum journal size. All the bytes in the journal heads are
722 * considered to be used, when calculating the current journal usage.
723 * Consequently, if the journal is too small, UBIFS will treat it as
724 * always full.
725 */
726 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
727 if (c->bg_bud_bytes < tmp64)
728 c->bg_bud_bytes = tmp64;
729 if (c->max_bud_bytes < tmp64 + c->leb_size)
730 c->max_bud_bytes = tmp64 + c->leb_size;
731
732 err = ubifs_calc_lpt_geom(c);
733 if (err)
734 return err;
735
736 /* Initialize effective LEB size used in budgeting calculations */
737 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
738 return 0;
739 }
740
741 /*
742 * init_constants_master - initialize UBIFS constants.
743 * @c: UBIFS file-system description object
744 *
745 * This is a helper function which initializes various UBIFS constants after
746 * the master node has been read. It also checks various UBIFS parameters and
747 * makes sure they are all right.
748 */
init_constants_master(struct ubifs_info * c)749 static void init_constants_master(struct ubifs_info *c)
750 {
751 long long tmp64;
752
753 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
754 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
755
756 /*
757 * Calculate total amount of FS blocks. This number is not used
758 * internally because it does not make much sense for UBIFS, but it is
759 * necessary to report something for the 'statfs()' call.
760 *
761 * Subtract the LEB reserved for GC, the LEB which is reserved for
762 * deletions, minimum LEBs for the index, and assume only one journal
763 * head is available.
764 */
765 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
766 tmp64 *= (long long)c->leb_size - c->leb_overhead;
767 tmp64 = ubifs_reported_space(c, tmp64);
768 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
769 }
770
771 /**
772 * take_gc_lnum - reserve GC LEB.
773 * @c: UBIFS file-system description object
774 *
775 * This function ensures that the LEB reserved for garbage collection is marked
776 * as "taken" in lprops. We also have to set free space to LEB size and dirty
777 * space to zero, because lprops may contain out-of-date information if the
778 * file-system was un-mounted before it has been committed. This function
779 * returns zero in case of success and a negative error code in case of
780 * failure.
781 */
take_gc_lnum(struct ubifs_info * c)782 static int take_gc_lnum(struct ubifs_info *c)
783 {
784 int err;
785
786 if (c->gc_lnum == -1) {
787 ubifs_err(c, "no LEB for GC");
788 return -EINVAL;
789 }
790
791 /* And we have to tell lprops that this LEB is taken */
792 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
793 LPROPS_TAKEN, 0, 0);
794 return err;
795 }
796
797 /**
798 * alloc_wbufs - allocate write-buffers.
799 * @c: UBIFS file-system description object
800 *
801 * This helper function allocates and initializes UBIFS write-buffers. Returns
802 * zero in case of success and %-ENOMEM in case of failure.
803 */
alloc_wbufs(struct ubifs_info * c)804 static int alloc_wbufs(struct ubifs_info *c)
805 {
806 int i, err;
807
808 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
809 GFP_KERNEL);
810 if (!c->jheads)
811 return -ENOMEM;
812
813 /* Initialize journal heads */
814 for (i = 0; i < c->jhead_cnt; i++) {
815 INIT_LIST_HEAD(&c->jheads[i].buds_list);
816 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
817 if (err)
818 goto out_wbuf;
819
820 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
821 c->jheads[i].wbuf.jhead = i;
822 c->jheads[i].grouped = 1;
823 c->jheads[i].log_hash = ubifs_hash_get_desc(c);
824 if (IS_ERR(c->jheads[i].log_hash)) {
825 err = PTR_ERR(c->jheads[i].log_hash);
826 goto out_log_hash;
827 }
828 }
829
830 /*
831 * Garbage Collector head does not need to be synchronized by timer.
832 * Also GC head nodes are not grouped.
833 */
834 c->jheads[GCHD].wbuf.no_timer = 1;
835 c->jheads[GCHD].grouped = 0;
836
837 return 0;
838
839 out_log_hash:
840 kfree(c->jheads[i].wbuf.buf);
841 kfree(c->jheads[i].wbuf.inodes);
842
843 out_wbuf:
844 while (i--) {
845 kfree(c->jheads[i].wbuf.buf);
846 kfree(c->jheads[i].wbuf.inodes);
847 kfree(c->jheads[i].log_hash);
848 }
849 kfree(c->jheads);
850 c->jheads = NULL;
851
852 return err;
853 }
854
855 /**
856 * free_wbufs - free write-buffers.
857 * @c: UBIFS file-system description object
858 */
free_wbufs(struct ubifs_info * c)859 static void free_wbufs(struct ubifs_info *c)
860 {
861 int i;
862
863 if (c->jheads) {
864 for (i = 0; i < c->jhead_cnt; i++) {
865 kfree(c->jheads[i].wbuf.buf);
866 kfree(c->jheads[i].wbuf.inodes);
867 kfree(c->jheads[i].log_hash);
868 }
869 kfree(c->jheads);
870 c->jheads = NULL;
871 }
872 }
873
874 /**
875 * free_orphans - free orphans.
876 * @c: UBIFS file-system description object
877 */
free_orphans(struct ubifs_info * c)878 static void free_orphans(struct ubifs_info *c)
879 {
880 struct ubifs_orphan *orph;
881
882 while (c->orph_dnext) {
883 orph = c->orph_dnext;
884 c->orph_dnext = orph->dnext;
885 list_del(&orph->list);
886 kfree(orph);
887 }
888
889 while (!list_empty(&c->orph_list)) {
890 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
891 list_del(&orph->list);
892 kfree(orph);
893 ubifs_err(c, "orphan list not empty at unmount");
894 }
895
896 vfree(c->orph_buf);
897 c->orph_buf = NULL;
898 }
899
900 /**
901 * free_buds - free per-bud objects.
902 * @c: UBIFS file-system description object
903 */
free_buds(struct ubifs_info * c)904 static void free_buds(struct ubifs_info *c)
905 {
906 struct ubifs_bud *bud, *n;
907
908 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
909 kfree(bud);
910 }
911
912 /**
913 * check_volume_empty - check if the UBI volume is empty.
914 * @c: UBIFS file-system description object
915 *
916 * This function checks if the UBIFS volume is empty by looking if its LEBs are
917 * mapped or not. The result of checking is stored in the @c->empty variable.
918 * Returns zero in case of success and a negative error code in case of
919 * failure.
920 */
check_volume_empty(struct ubifs_info * c)921 static int check_volume_empty(struct ubifs_info *c)
922 {
923 int lnum, err;
924
925 c->empty = 1;
926 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
927 err = ubifs_is_mapped(c, lnum);
928 if (unlikely(err < 0))
929 return err;
930 if (err == 1) {
931 c->empty = 0;
932 break;
933 }
934
935 cond_resched();
936 }
937
938 return 0;
939 }
940
941 /*
942 * UBIFS mount options.
943 *
944 * Opt_fast_unmount: do not run a journal commit before un-mounting
945 * Opt_norm_unmount: run a journal commit before un-mounting
946 * Opt_bulk_read: enable bulk-reads
947 * Opt_no_bulk_read: disable bulk-reads
948 * Opt_chk_data_crc: check CRCs when reading data nodes
949 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
950 * Opt_override_compr: override default compressor
951 * Opt_assert: set ubifs_assert() action
952 * Opt_auth_key: The key name used for authentication
953 * Opt_auth_hash_name: The hash type used for authentication
954 * Opt_err: just end of array marker
955 */
956 enum {
957 Opt_fast_unmount,
958 Opt_norm_unmount,
959 Opt_bulk_read,
960 Opt_no_bulk_read,
961 Opt_chk_data_crc,
962 Opt_no_chk_data_crc,
963 Opt_override_compr,
964 Opt_assert,
965 Opt_auth_key,
966 Opt_auth_hash_name,
967 Opt_ignore,
968 Opt_err,
969 };
970
971 static const match_table_t tokens = {
972 {Opt_fast_unmount, "fast_unmount"},
973 {Opt_norm_unmount, "norm_unmount"},
974 {Opt_bulk_read, "bulk_read"},
975 {Opt_no_bulk_read, "no_bulk_read"},
976 {Opt_chk_data_crc, "chk_data_crc"},
977 {Opt_no_chk_data_crc, "no_chk_data_crc"},
978 {Opt_override_compr, "compr=%s"},
979 {Opt_auth_key, "auth_key=%s"},
980 {Opt_auth_hash_name, "auth_hash_name=%s"},
981 {Opt_ignore, "ubi=%s"},
982 {Opt_ignore, "vol=%s"},
983 {Opt_assert, "assert=%s"},
984 {Opt_err, NULL},
985 };
986
987 /**
988 * parse_standard_option - parse a standard mount option.
989 * @option: the option to parse
990 *
991 * Normally, standard mount options like "sync" are passed to file-systems as
992 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
993 * be present in the options string. This function tries to deal with this
994 * situation and parse standard options. Returns 0 if the option was not
995 * recognized, and the corresponding integer flag if it was.
996 *
997 * UBIFS is only interested in the "sync" option, so do not check for anything
998 * else.
999 */
parse_standard_option(const char * option)1000 static int parse_standard_option(const char *option)
1001 {
1002
1003 pr_notice("UBIFS: parse %s\n", option);
1004 if (!strcmp(option, "sync"))
1005 return SB_SYNCHRONOUS;
1006 return 0;
1007 }
1008
1009 /**
1010 * ubifs_parse_options - parse mount parameters.
1011 * @c: UBIFS file-system description object
1012 * @options: parameters to parse
1013 * @is_remount: non-zero if this is FS re-mount
1014 *
1015 * This function parses UBIFS mount options and returns zero in case success
1016 * and a negative error code in case of failure.
1017 */
ubifs_parse_options(struct ubifs_info * c,char * options,int is_remount)1018 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1019 int is_remount)
1020 {
1021 char *p;
1022 substring_t args[MAX_OPT_ARGS];
1023
1024 if (!options)
1025 return 0;
1026
1027 while ((p = strsep(&options, ","))) {
1028 int token;
1029
1030 if (!*p)
1031 continue;
1032
1033 token = match_token(p, tokens, args);
1034 switch (token) {
1035 /*
1036 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1037 * We accept them in order to be backward-compatible. But this
1038 * should be removed at some point.
1039 */
1040 case Opt_fast_unmount:
1041 c->mount_opts.unmount_mode = 2;
1042 break;
1043 case Opt_norm_unmount:
1044 c->mount_opts.unmount_mode = 1;
1045 break;
1046 case Opt_bulk_read:
1047 c->mount_opts.bulk_read = 2;
1048 c->bulk_read = 1;
1049 break;
1050 case Opt_no_bulk_read:
1051 c->mount_opts.bulk_read = 1;
1052 c->bulk_read = 0;
1053 break;
1054 case Opt_chk_data_crc:
1055 c->mount_opts.chk_data_crc = 2;
1056 c->no_chk_data_crc = 0;
1057 break;
1058 case Opt_no_chk_data_crc:
1059 c->mount_opts.chk_data_crc = 1;
1060 c->no_chk_data_crc = 1;
1061 break;
1062 case Opt_override_compr:
1063 {
1064 char *name = match_strdup(&args[0]);
1065
1066 if (!name)
1067 return -ENOMEM;
1068 if (!strcmp(name, "none"))
1069 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1070 else if (!strcmp(name, "lzo"))
1071 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1072 else if (!strcmp(name, "zlib"))
1073 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1074 else if (!strcmp(name, "zstd"))
1075 c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
1076 else {
1077 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1078 kfree(name);
1079 return -EINVAL;
1080 }
1081 kfree(name);
1082 c->mount_opts.override_compr = 1;
1083 c->default_compr = c->mount_opts.compr_type;
1084 break;
1085 }
1086 case Opt_assert:
1087 {
1088 char *act = match_strdup(&args[0]);
1089
1090 if (!act)
1091 return -ENOMEM;
1092 if (!strcmp(act, "report"))
1093 c->assert_action = ASSACT_REPORT;
1094 else if (!strcmp(act, "read-only"))
1095 c->assert_action = ASSACT_RO;
1096 else if (!strcmp(act, "panic"))
1097 c->assert_action = ASSACT_PANIC;
1098 else {
1099 ubifs_err(c, "unknown assert action \"%s\"", act);
1100 kfree(act);
1101 return -EINVAL;
1102 }
1103 kfree(act);
1104 break;
1105 }
1106 case Opt_auth_key:
1107 if (!is_remount) {
1108 c->auth_key_name = kstrdup(args[0].from,
1109 GFP_KERNEL);
1110 if (!c->auth_key_name)
1111 return -ENOMEM;
1112 }
1113 break;
1114 case Opt_auth_hash_name:
1115 if (!is_remount) {
1116 c->auth_hash_name = kstrdup(args[0].from,
1117 GFP_KERNEL);
1118 if (!c->auth_hash_name)
1119 return -ENOMEM;
1120 }
1121 break;
1122 case Opt_ignore:
1123 break;
1124 default:
1125 {
1126 unsigned long flag;
1127 struct super_block *sb = c->vfs_sb;
1128
1129 flag = parse_standard_option(p);
1130 if (!flag) {
1131 ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1132 p);
1133 return -EINVAL;
1134 }
1135 sb->s_flags |= flag;
1136 break;
1137 }
1138 }
1139 }
1140
1141 return 0;
1142 }
1143
1144 /*
1145 * ubifs_release_options - release mount parameters which have been dumped.
1146 * @c: UBIFS file-system description object
1147 */
ubifs_release_options(struct ubifs_info * c)1148 static void ubifs_release_options(struct ubifs_info *c)
1149 {
1150 kfree(c->auth_key_name);
1151 c->auth_key_name = NULL;
1152 kfree(c->auth_hash_name);
1153 c->auth_hash_name = NULL;
1154 }
1155
1156 /**
1157 * destroy_journal - destroy journal data structures.
1158 * @c: UBIFS file-system description object
1159 *
1160 * This function destroys journal data structures including those that may have
1161 * been created by recovery functions.
1162 */
destroy_journal(struct ubifs_info * c)1163 static void destroy_journal(struct ubifs_info *c)
1164 {
1165 while (!list_empty(&c->unclean_leb_list)) {
1166 struct ubifs_unclean_leb *ucleb;
1167
1168 ucleb = list_entry(c->unclean_leb_list.next,
1169 struct ubifs_unclean_leb, list);
1170 list_del(&ucleb->list);
1171 kfree(ucleb);
1172 }
1173 while (!list_empty(&c->old_buds)) {
1174 struct ubifs_bud *bud;
1175
1176 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1177 list_del(&bud->list);
1178 kfree(bud);
1179 }
1180 ubifs_destroy_idx_gc(c);
1181 ubifs_destroy_size_tree(c);
1182 ubifs_tnc_close(c);
1183 free_buds(c);
1184 }
1185
1186 /**
1187 * bu_init - initialize bulk-read information.
1188 * @c: UBIFS file-system description object
1189 */
bu_init(struct ubifs_info * c)1190 static void bu_init(struct ubifs_info *c)
1191 {
1192 ubifs_assert(c, c->bulk_read == 1);
1193
1194 if (c->bu.buf)
1195 return; /* Already initialized */
1196
1197 again:
1198 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1199 if (!c->bu.buf) {
1200 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1201 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1202 goto again;
1203 }
1204
1205 /* Just disable bulk-read */
1206 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1207 c->max_bu_buf_len);
1208 c->mount_opts.bulk_read = 1;
1209 c->bulk_read = 0;
1210 return;
1211 }
1212 }
1213
1214 /**
1215 * check_free_space - check if there is enough free space to mount.
1216 * @c: UBIFS file-system description object
1217 *
1218 * This function makes sure UBIFS has enough free space to be mounted in
1219 * read/write mode. UBIFS must always have some free space to allow deletions.
1220 */
check_free_space(struct ubifs_info * c)1221 static int check_free_space(struct ubifs_info *c)
1222 {
1223 ubifs_assert(c, c->dark_wm > 0);
1224 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1225 ubifs_err(c, "insufficient free space to mount in R/W mode");
1226 ubifs_dump_budg(c, &c->bi);
1227 ubifs_dump_lprops(c);
1228 return -ENOSPC;
1229 }
1230 return 0;
1231 }
1232
1233 /**
1234 * mount_ubifs - mount UBIFS file-system.
1235 * @c: UBIFS file-system description object
1236 *
1237 * This function mounts UBIFS file system. Returns zero in case of success and
1238 * a negative error code in case of failure.
1239 */
mount_ubifs(struct ubifs_info * c)1240 static int mount_ubifs(struct ubifs_info *c)
1241 {
1242 int err;
1243 long long x, y;
1244 size_t sz;
1245
1246 c->ro_mount = !!sb_rdonly(c->vfs_sb);
1247 /* Suppress error messages while probing if SB_SILENT is set */
1248 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1249
1250 err = init_constants_early(c);
1251 if (err)
1252 return err;
1253
1254 err = ubifs_debugging_init(c);
1255 if (err)
1256 return err;
1257
1258 err = check_volume_empty(c);
1259 if (err)
1260 goto out_free;
1261
1262 if (c->empty && (c->ro_mount || c->ro_media)) {
1263 /*
1264 * This UBI volume is empty, and read-only, or the file system
1265 * is mounted read-only - we cannot format it.
1266 */
1267 ubifs_err(c, "can't format empty UBI volume: read-only %s",
1268 c->ro_media ? "UBI volume" : "mount");
1269 err = -EROFS;
1270 goto out_free;
1271 }
1272
1273 if (c->ro_media && !c->ro_mount) {
1274 ubifs_err(c, "cannot mount read-write - read-only media");
1275 err = -EROFS;
1276 goto out_free;
1277 }
1278
1279 /*
1280 * The requirement for the buffer is that it should fit indexing B-tree
1281 * height amount of integers. We assume the height if the TNC tree will
1282 * never exceed 64.
1283 */
1284 err = -ENOMEM;
1285 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1286 GFP_KERNEL);
1287 if (!c->bottom_up_buf)
1288 goto out_free;
1289
1290 c->sbuf = vmalloc(c->leb_size);
1291 if (!c->sbuf)
1292 goto out_free;
1293
1294 if (!c->ro_mount) {
1295 c->ileb_buf = vmalloc(c->leb_size);
1296 if (!c->ileb_buf)
1297 goto out_free;
1298 }
1299
1300 if (c->bulk_read == 1)
1301 bu_init(c);
1302
1303 if (!c->ro_mount) {
1304 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1305 UBIFS_CIPHER_BLOCK_SIZE,
1306 GFP_KERNEL);
1307 if (!c->write_reserve_buf)
1308 goto out_free;
1309 }
1310
1311 c->mounting = 1;
1312
1313 if (c->auth_key_name) {
1314 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1315 err = ubifs_init_authentication(c);
1316 if (err)
1317 goto out_free;
1318 } else {
1319 ubifs_err(c, "auth_key_name, but UBIFS is built without"
1320 " authentication support");
1321 err = -EINVAL;
1322 goto out_free;
1323 }
1324 }
1325
1326 err = ubifs_read_superblock(c);
1327 if (err)
1328 goto out_auth;
1329
1330 c->probing = 0;
1331
1332 /*
1333 * Make sure the compressor which is set as default in the superblock
1334 * or overridden by mount options is actually compiled in.
1335 */
1336 if (!ubifs_compr_present(c, c->default_compr)) {
1337 ubifs_err(c, "'compressor \"%s\" is not compiled in",
1338 ubifs_compr_name(c, c->default_compr));
1339 err = -ENOTSUPP;
1340 goto out_auth;
1341 }
1342
1343 err = init_constants_sb(c);
1344 if (err)
1345 goto out_auth;
1346
1347 sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1348 c->cbuf = kmalloc(sz, GFP_NOFS);
1349 if (!c->cbuf) {
1350 err = -ENOMEM;
1351 goto out_auth;
1352 }
1353
1354 err = alloc_wbufs(c);
1355 if (err)
1356 goto out_cbuf;
1357
1358 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1359 if (!c->ro_mount) {
1360 /* Create background thread */
1361 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1362 if (IS_ERR(c->bgt)) {
1363 err = PTR_ERR(c->bgt);
1364 c->bgt = NULL;
1365 ubifs_err(c, "cannot spawn \"%s\", error %d",
1366 c->bgt_name, err);
1367 goto out_wbufs;
1368 }
1369 wake_up_process(c->bgt);
1370 }
1371
1372 err = ubifs_read_master(c);
1373 if (err)
1374 goto out_master;
1375
1376 init_constants_master(c);
1377
1378 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1379 ubifs_msg(c, "recovery needed");
1380 c->need_recovery = 1;
1381 }
1382
1383 if (c->need_recovery && !c->ro_mount) {
1384 err = ubifs_recover_inl_heads(c, c->sbuf);
1385 if (err)
1386 goto out_master;
1387 }
1388
1389 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1390 if (err)
1391 goto out_master;
1392
1393 if (!c->ro_mount && c->space_fixup) {
1394 err = ubifs_fixup_free_space(c);
1395 if (err)
1396 goto out_lpt;
1397 }
1398
1399 if (!c->ro_mount && !c->need_recovery) {
1400 /*
1401 * Set the "dirty" flag so that if we reboot uncleanly we
1402 * will notice this immediately on the next mount.
1403 */
1404 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1405 err = ubifs_write_master(c);
1406 if (err)
1407 goto out_lpt;
1408 }
1409
1410 /*
1411 * Handle offline signed images: Now that the master node is
1412 * written and its validation no longer depends on the hash
1413 * in the superblock, we can update the offline signed
1414 * superblock with a HMAC version,
1415 */
1416 if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1417 err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1418 if (err)
1419 goto out_lpt;
1420 c->superblock_need_write = 1;
1421 }
1422
1423 if (!c->ro_mount && c->superblock_need_write) {
1424 err = ubifs_write_sb_node(c, c->sup_node);
1425 if (err)
1426 goto out_lpt;
1427 c->superblock_need_write = 0;
1428 }
1429
1430 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1431 if (err)
1432 goto out_lpt;
1433
1434 err = ubifs_replay_journal(c);
1435 if (err)
1436 goto out_journal;
1437
1438 /* Calculate 'min_idx_lebs' after journal replay */
1439 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1440
1441 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1442 if (err)
1443 goto out_orphans;
1444
1445 if (!c->ro_mount) {
1446 int lnum;
1447
1448 err = check_free_space(c);
1449 if (err)
1450 goto out_orphans;
1451
1452 /* Check for enough log space */
1453 lnum = c->lhead_lnum + 1;
1454 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1455 lnum = UBIFS_LOG_LNUM;
1456 if (lnum == c->ltail_lnum) {
1457 err = ubifs_consolidate_log(c);
1458 if (err)
1459 goto out_orphans;
1460 }
1461
1462 if (c->need_recovery) {
1463 if (!ubifs_authenticated(c)) {
1464 err = ubifs_recover_size(c, true);
1465 if (err)
1466 goto out_orphans;
1467 }
1468
1469 err = ubifs_rcvry_gc_commit(c);
1470 if (err)
1471 goto out_orphans;
1472
1473 if (ubifs_authenticated(c)) {
1474 err = ubifs_recover_size(c, false);
1475 if (err)
1476 goto out_orphans;
1477 }
1478 } else {
1479 err = take_gc_lnum(c);
1480 if (err)
1481 goto out_orphans;
1482
1483 /*
1484 * GC LEB may contain garbage if there was an unclean
1485 * reboot, and it should be un-mapped.
1486 */
1487 err = ubifs_leb_unmap(c, c->gc_lnum);
1488 if (err)
1489 goto out_orphans;
1490 }
1491
1492 err = dbg_check_lprops(c);
1493 if (err)
1494 goto out_orphans;
1495 } else if (c->need_recovery) {
1496 err = ubifs_recover_size(c, false);
1497 if (err)
1498 goto out_orphans;
1499 } else {
1500 /*
1501 * Even if we mount read-only, we have to set space in GC LEB
1502 * to proper value because this affects UBIFS free space
1503 * reporting. We do not want to have a situation when
1504 * re-mounting from R/O to R/W changes amount of free space.
1505 */
1506 err = take_gc_lnum(c);
1507 if (err)
1508 goto out_orphans;
1509 }
1510
1511 spin_lock(&ubifs_infos_lock);
1512 list_add_tail(&c->infos_list, &ubifs_infos);
1513 spin_unlock(&ubifs_infos_lock);
1514
1515 if (c->need_recovery) {
1516 if (c->ro_mount)
1517 ubifs_msg(c, "recovery deferred");
1518 else {
1519 c->need_recovery = 0;
1520 ubifs_msg(c, "recovery completed");
1521 /*
1522 * GC LEB has to be empty and taken at this point. But
1523 * the journal head LEBs may also be accounted as
1524 * "empty taken" if they are empty.
1525 */
1526 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1527 }
1528 } else
1529 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1530
1531 err = dbg_check_filesystem(c);
1532 if (err)
1533 goto out_infos;
1534
1535 dbg_debugfs_init_fs(c);
1536
1537 c->mounting = 0;
1538
1539 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1540 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1541 c->ro_mount ? ", R/O mode" : "");
1542 x = (long long)c->main_lebs * c->leb_size;
1543 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1544 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1545 c->leb_size, c->leb_size >> 10, c->min_io_size,
1546 c->max_write_size);
1547 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1548 x, x >> 20, c->main_lebs,
1549 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1550 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1551 c->report_rp_size, c->report_rp_size >> 10);
1552 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1553 c->fmt_version, c->ro_compat_version,
1554 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1555 c->big_lpt ? ", big LPT model" : ", small LPT model");
1556
1557 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr));
1558 dbg_gen("data journal heads: %d",
1559 c->jhead_cnt - NONDATA_JHEADS_CNT);
1560 dbg_gen("log LEBs: %d (%d - %d)",
1561 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1562 dbg_gen("LPT area LEBs: %d (%d - %d)",
1563 c->lpt_lebs, c->lpt_first, c->lpt_last);
1564 dbg_gen("orphan area LEBs: %d (%d - %d)",
1565 c->orph_lebs, c->orph_first, c->orph_last);
1566 dbg_gen("main area LEBs: %d (%d - %d)",
1567 c->main_lebs, c->main_first, c->leb_cnt - 1);
1568 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1569 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1570 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1571 c->bi.old_idx_sz >> 20);
1572 dbg_gen("key hash type: %d", c->key_hash_type);
1573 dbg_gen("tree fanout: %d", c->fanout);
1574 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1575 dbg_gen("max. znode size %d", c->max_znode_sz);
1576 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1577 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1578 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1579 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1580 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1581 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1582 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1583 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1584 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1585 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1586 dbg_gen("dead watermark: %d", c->dead_wm);
1587 dbg_gen("dark watermark: %d", c->dark_wm);
1588 dbg_gen("LEB overhead: %d", c->leb_overhead);
1589 x = (long long)c->main_lebs * c->dark_wm;
1590 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1591 x, x >> 10, x >> 20);
1592 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1593 c->max_bud_bytes, c->max_bud_bytes >> 10,
1594 c->max_bud_bytes >> 20);
1595 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1596 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1597 c->bg_bud_bytes >> 20);
1598 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1599 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1600 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1601 dbg_gen("commit number: %llu", c->cmt_no);
1602 dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1603 dbg_gen("max orphans: %d", c->max_orphans);
1604
1605 return 0;
1606
1607 out_infos:
1608 spin_lock(&ubifs_infos_lock);
1609 list_del(&c->infos_list);
1610 spin_unlock(&ubifs_infos_lock);
1611 out_orphans:
1612 free_orphans(c);
1613 out_journal:
1614 destroy_journal(c);
1615 out_lpt:
1616 ubifs_lpt_free(c, 0);
1617 out_master:
1618 kfree(c->mst_node);
1619 kfree(c->rcvrd_mst_node);
1620 if (c->bgt)
1621 kthread_stop(c->bgt);
1622 out_wbufs:
1623 free_wbufs(c);
1624 out_cbuf:
1625 kfree(c->cbuf);
1626 out_auth:
1627 ubifs_exit_authentication(c);
1628 out_free:
1629 kfree(c->write_reserve_buf);
1630 kfree(c->bu.buf);
1631 vfree(c->ileb_buf);
1632 vfree(c->sbuf);
1633 kfree(c->bottom_up_buf);
1634 kfree(c->sup_node);
1635 ubifs_debugging_exit(c);
1636 return err;
1637 }
1638
1639 /**
1640 * ubifs_umount - un-mount UBIFS file-system.
1641 * @c: UBIFS file-system description object
1642 *
1643 * Note, this function is called to free allocated resourced when un-mounting,
1644 * as well as free resources when an error occurred while we were half way
1645 * through mounting (error path cleanup function). So it has to make sure the
1646 * resource was actually allocated before freeing it.
1647 */
ubifs_umount(struct ubifs_info * c)1648 static void ubifs_umount(struct ubifs_info *c)
1649 {
1650 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1651 c->vi.vol_id);
1652
1653 dbg_debugfs_exit_fs(c);
1654 spin_lock(&ubifs_infos_lock);
1655 list_del(&c->infos_list);
1656 spin_unlock(&ubifs_infos_lock);
1657
1658 if (c->bgt)
1659 kthread_stop(c->bgt);
1660
1661 destroy_journal(c);
1662 free_wbufs(c);
1663 free_orphans(c);
1664 ubifs_lpt_free(c, 0);
1665 ubifs_exit_authentication(c);
1666
1667 ubifs_release_options(c);
1668 kfree(c->cbuf);
1669 kfree(c->rcvrd_mst_node);
1670 kfree(c->mst_node);
1671 kfree(c->write_reserve_buf);
1672 kfree(c->bu.buf);
1673 vfree(c->ileb_buf);
1674 vfree(c->sbuf);
1675 kfree(c->bottom_up_buf);
1676 kfree(c->sup_node);
1677 ubifs_debugging_exit(c);
1678 }
1679
1680 /**
1681 * ubifs_remount_rw - re-mount in read-write mode.
1682 * @c: UBIFS file-system description object
1683 *
1684 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1685 * mode. This function allocates the needed resources and re-mounts UBIFS in
1686 * read-write mode.
1687 */
ubifs_remount_rw(struct ubifs_info * c)1688 static int ubifs_remount_rw(struct ubifs_info *c)
1689 {
1690 int err, lnum;
1691
1692 if (c->rw_incompat) {
1693 ubifs_err(c, "the file-system is not R/W-compatible");
1694 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1695 c->fmt_version, c->ro_compat_version,
1696 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1697 return -EROFS;
1698 }
1699
1700 mutex_lock(&c->umount_mutex);
1701 dbg_save_space_info(c);
1702 c->remounting_rw = 1;
1703 c->ro_mount = 0;
1704
1705 if (c->space_fixup) {
1706 err = ubifs_fixup_free_space(c);
1707 if (err)
1708 goto out;
1709 }
1710
1711 err = check_free_space(c);
1712 if (err)
1713 goto out;
1714
1715 if (c->need_recovery) {
1716 ubifs_msg(c, "completing deferred recovery");
1717 err = ubifs_write_rcvrd_mst_node(c);
1718 if (err)
1719 goto out;
1720 if (!ubifs_authenticated(c)) {
1721 err = ubifs_recover_size(c, true);
1722 if (err)
1723 goto out;
1724 }
1725 err = ubifs_clean_lebs(c, c->sbuf);
1726 if (err)
1727 goto out;
1728 err = ubifs_recover_inl_heads(c, c->sbuf);
1729 if (err)
1730 goto out;
1731 } else {
1732 /* A readonly mount is not allowed to have orphans */
1733 ubifs_assert(c, c->tot_orphans == 0);
1734 err = ubifs_clear_orphans(c);
1735 if (err)
1736 goto out;
1737 }
1738
1739 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1740 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1741 err = ubifs_write_master(c);
1742 if (err)
1743 goto out;
1744 }
1745
1746 if (c->superblock_need_write) {
1747 struct ubifs_sb_node *sup = c->sup_node;
1748
1749 err = ubifs_write_sb_node(c, sup);
1750 if (err)
1751 goto out;
1752
1753 c->superblock_need_write = 0;
1754 }
1755
1756 c->ileb_buf = vmalloc(c->leb_size);
1757 if (!c->ileb_buf) {
1758 err = -ENOMEM;
1759 goto out;
1760 }
1761
1762 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1763 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1764 if (!c->write_reserve_buf) {
1765 err = -ENOMEM;
1766 goto out;
1767 }
1768
1769 err = ubifs_lpt_init(c, 0, 1);
1770 if (err)
1771 goto out;
1772
1773 /* Create background thread */
1774 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1775 if (IS_ERR(c->bgt)) {
1776 err = PTR_ERR(c->bgt);
1777 c->bgt = NULL;
1778 ubifs_err(c, "cannot spawn \"%s\", error %d",
1779 c->bgt_name, err);
1780 goto out;
1781 }
1782 wake_up_process(c->bgt);
1783
1784 c->orph_buf = vmalloc(c->leb_size);
1785 if (!c->orph_buf) {
1786 err = -ENOMEM;
1787 goto out;
1788 }
1789
1790 /* Check for enough log space */
1791 lnum = c->lhead_lnum + 1;
1792 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1793 lnum = UBIFS_LOG_LNUM;
1794 if (lnum == c->ltail_lnum) {
1795 err = ubifs_consolidate_log(c);
1796 if (err)
1797 goto out;
1798 }
1799
1800 if (c->need_recovery) {
1801 err = ubifs_rcvry_gc_commit(c);
1802 if (err)
1803 goto out;
1804
1805 if (ubifs_authenticated(c)) {
1806 err = ubifs_recover_size(c, false);
1807 if (err)
1808 goto out;
1809 }
1810 } else {
1811 err = ubifs_leb_unmap(c, c->gc_lnum);
1812 }
1813 if (err)
1814 goto out;
1815
1816 dbg_gen("re-mounted read-write");
1817 c->remounting_rw = 0;
1818
1819 if (c->need_recovery) {
1820 c->need_recovery = 0;
1821 ubifs_msg(c, "deferred recovery completed");
1822 } else {
1823 /*
1824 * Do not run the debugging space check if the were doing
1825 * recovery, because when we saved the information we had the
1826 * file-system in a state where the TNC and lprops has been
1827 * modified in memory, but all the I/O operations (including a
1828 * commit) were deferred. So the file-system was in
1829 * "non-committed" state. Now the file-system is in committed
1830 * state, and of course the amount of free space will change
1831 * because, for example, the old index size was imprecise.
1832 */
1833 err = dbg_check_space_info(c);
1834 }
1835
1836 mutex_unlock(&c->umount_mutex);
1837 return err;
1838
1839 out:
1840 c->ro_mount = 1;
1841 vfree(c->orph_buf);
1842 c->orph_buf = NULL;
1843 if (c->bgt) {
1844 kthread_stop(c->bgt);
1845 c->bgt = NULL;
1846 }
1847 kfree(c->write_reserve_buf);
1848 c->write_reserve_buf = NULL;
1849 vfree(c->ileb_buf);
1850 c->ileb_buf = NULL;
1851 ubifs_lpt_free(c, 1);
1852 c->remounting_rw = 0;
1853 mutex_unlock(&c->umount_mutex);
1854 return err;
1855 }
1856
1857 /**
1858 * ubifs_remount_ro - re-mount in read-only mode.
1859 * @c: UBIFS file-system description object
1860 *
1861 * We assume VFS has stopped writing. Possibly the background thread could be
1862 * running a commit, however kthread_stop will wait in that case.
1863 */
ubifs_remount_ro(struct ubifs_info * c)1864 static void ubifs_remount_ro(struct ubifs_info *c)
1865 {
1866 int i, err;
1867
1868 ubifs_assert(c, !c->need_recovery);
1869 ubifs_assert(c, !c->ro_mount);
1870
1871 mutex_lock(&c->umount_mutex);
1872 if (c->bgt) {
1873 kthread_stop(c->bgt);
1874 c->bgt = NULL;
1875 }
1876
1877 dbg_save_space_info(c);
1878
1879 for (i = 0; i < c->jhead_cnt; i++) {
1880 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1881 if (err)
1882 ubifs_ro_mode(c, err);
1883 }
1884
1885 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1886 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1887 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1888 err = ubifs_write_master(c);
1889 if (err)
1890 ubifs_ro_mode(c, err);
1891
1892 vfree(c->orph_buf);
1893 c->orph_buf = NULL;
1894 kfree(c->write_reserve_buf);
1895 c->write_reserve_buf = NULL;
1896 vfree(c->ileb_buf);
1897 c->ileb_buf = NULL;
1898 ubifs_lpt_free(c, 1);
1899 c->ro_mount = 1;
1900 err = dbg_check_space_info(c);
1901 if (err)
1902 ubifs_ro_mode(c, err);
1903 mutex_unlock(&c->umount_mutex);
1904 }
1905
ubifs_put_super(struct super_block * sb)1906 static void ubifs_put_super(struct super_block *sb)
1907 {
1908 int i;
1909 struct ubifs_info *c = sb->s_fs_info;
1910
1911 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1912
1913 /*
1914 * The following asserts are only valid if there has not been a failure
1915 * of the media. For example, there will be dirty inodes if we failed
1916 * to write them back because of I/O errors.
1917 */
1918 if (!c->ro_error) {
1919 ubifs_assert(c, c->bi.idx_growth == 0);
1920 ubifs_assert(c, c->bi.dd_growth == 0);
1921 ubifs_assert(c, c->bi.data_growth == 0);
1922 }
1923
1924 /*
1925 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1926 * and file system un-mount. Namely, it prevents the shrinker from
1927 * picking this superblock for shrinking - it will be just skipped if
1928 * the mutex is locked.
1929 */
1930 mutex_lock(&c->umount_mutex);
1931 if (!c->ro_mount) {
1932 /*
1933 * First of all kill the background thread to make sure it does
1934 * not interfere with un-mounting and freeing resources.
1935 */
1936 if (c->bgt) {
1937 kthread_stop(c->bgt);
1938 c->bgt = NULL;
1939 }
1940
1941 /*
1942 * On fatal errors c->ro_error is set to 1, in which case we do
1943 * not write the master node.
1944 */
1945 if (!c->ro_error) {
1946 int err;
1947
1948 /* Synchronize write-buffers */
1949 for (i = 0; i < c->jhead_cnt; i++) {
1950 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1951 if (err)
1952 ubifs_ro_mode(c, err);
1953 }
1954
1955 /*
1956 * We are being cleanly unmounted which means the
1957 * orphans were killed - indicate this in the master
1958 * node. Also save the reserved GC LEB number.
1959 */
1960 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1961 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1962 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1963 err = ubifs_write_master(c);
1964 if (err)
1965 /*
1966 * Recovery will attempt to fix the master area
1967 * next mount, so we just print a message and
1968 * continue to unmount normally.
1969 */
1970 ubifs_err(c, "failed to write master node, error %d",
1971 err);
1972 } else {
1973 for (i = 0; i < c->jhead_cnt; i++)
1974 /* Make sure write-buffer timers are canceled */
1975 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1976 }
1977 }
1978
1979 ubifs_umount(c);
1980 ubi_close_volume(c->ubi);
1981 mutex_unlock(&c->umount_mutex);
1982 }
1983
ubifs_remount_fs(struct super_block * sb,int * flags,char * data)1984 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1985 {
1986 int err;
1987 struct ubifs_info *c = sb->s_fs_info;
1988
1989 sync_filesystem(sb);
1990 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1991
1992 err = ubifs_parse_options(c, data, 1);
1993 if (err) {
1994 ubifs_err(c, "invalid or unknown remount parameter");
1995 return err;
1996 }
1997
1998 if (c->ro_mount && !(*flags & SB_RDONLY)) {
1999 if (c->ro_error) {
2000 ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2001 return -EROFS;
2002 }
2003 if (c->ro_media) {
2004 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2005 return -EROFS;
2006 }
2007 err = ubifs_remount_rw(c);
2008 if (err)
2009 return err;
2010 } else if (!c->ro_mount && (*flags & SB_RDONLY)) {
2011 if (c->ro_error) {
2012 ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2013 return -EROFS;
2014 }
2015 ubifs_remount_ro(c);
2016 }
2017
2018 if (c->bulk_read == 1)
2019 bu_init(c);
2020 else {
2021 dbg_gen("disable bulk-read");
2022 mutex_lock(&c->bu_mutex);
2023 kfree(c->bu.buf);
2024 c->bu.buf = NULL;
2025 mutex_unlock(&c->bu_mutex);
2026 }
2027
2028 if (!c->need_recovery)
2029 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
2030
2031 return 0;
2032 }
2033
2034 const struct super_operations ubifs_super_operations = {
2035 .alloc_inode = ubifs_alloc_inode,
2036 .free_inode = ubifs_free_inode,
2037 .put_super = ubifs_put_super,
2038 .write_inode = ubifs_write_inode,
2039 .drop_inode = ubifs_drop_inode,
2040 .evict_inode = ubifs_evict_inode,
2041 .statfs = ubifs_statfs,
2042 .dirty_inode = ubifs_dirty_inode,
2043 .remount_fs = ubifs_remount_fs,
2044 .show_options = ubifs_show_options,
2045 .sync_fs = ubifs_sync_fs,
2046 };
2047
2048 /**
2049 * open_ubi - parse UBI device name string and open the UBI device.
2050 * @name: UBI volume name
2051 * @mode: UBI volume open mode
2052 *
2053 * The primary method of mounting UBIFS is by specifying the UBI volume
2054 * character device node path. However, UBIFS may also be mounted withoug any
2055 * character device node using one of the following methods:
2056 *
2057 * o ubiX_Y - mount UBI device number X, volume Y;
2058 * o ubiY - mount UBI device number 0, volume Y;
2059 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2060 * o ubi:NAME - mount UBI device 0, volume with name NAME.
2061 *
2062 * Alternative '!' separator may be used instead of ':' (because some shells
2063 * like busybox may interpret ':' as an NFS host name separator). This function
2064 * returns UBI volume description object in case of success and a negative
2065 * error code in case of failure.
2066 */
open_ubi(const char * name,int mode)2067 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2068 {
2069 struct ubi_volume_desc *ubi;
2070 int dev, vol;
2071 char *endptr;
2072
2073 if (!name || !*name)
2074 return ERR_PTR(-EINVAL);
2075
2076 /* First, try to open using the device node path method */
2077 ubi = ubi_open_volume_path(name, mode);
2078 if (!IS_ERR(ubi))
2079 return ubi;
2080
2081 /* Try the "nodev" method */
2082 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2083 return ERR_PTR(-EINVAL);
2084
2085 /* ubi:NAME method */
2086 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2087 return ubi_open_volume_nm(0, name + 4, mode);
2088
2089 if (!isdigit(name[3]))
2090 return ERR_PTR(-EINVAL);
2091
2092 dev = simple_strtoul(name + 3, &endptr, 0);
2093
2094 /* ubiY method */
2095 if (*endptr == '\0')
2096 return ubi_open_volume(0, dev, mode);
2097
2098 /* ubiX_Y method */
2099 if (*endptr == '_' && isdigit(endptr[1])) {
2100 vol = simple_strtoul(endptr + 1, &endptr, 0);
2101 if (*endptr != '\0')
2102 return ERR_PTR(-EINVAL);
2103 return ubi_open_volume(dev, vol, mode);
2104 }
2105
2106 /* ubiX:NAME method */
2107 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2108 return ubi_open_volume_nm(dev, ++endptr, mode);
2109
2110 return ERR_PTR(-EINVAL);
2111 }
2112
alloc_ubifs_info(struct ubi_volume_desc * ubi)2113 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2114 {
2115 struct ubifs_info *c;
2116
2117 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2118 if (c) {
2119 spin_lock_init(&c->cnt_lock);
2120 spin_lock_init(&c->cs_lock);
2121 spin_lock_init(&c->buds_lock);
2122 spin_lock_init(&c->space_lock);
2123 spin_lock_init(&c->orphan_lock);
2124 init_rwsem(&c->commit_sem);
2125 mutex_init(&c->lp_mutex);
2126 mutex_init(&c->tnc_mutex);
2127 mutex_init(&c->log_mutex);
2128 mutex_init(&c->umount_mutex);
2129 mutex_init(&c->bu_mutex);
2130 mutex_init(&c->write_reserve_mutex);
2131 init_waitqueue_head(&c->cmt_wq);
2132 c->buds = RB_ROOT;
2133 c->old_idx = RB_ROOT;
2134 c->size_tree = RB_ROOT;
2135 c->orph_tree = RB_ROOT;
2136 INIT_LIST_HEAD(&c->infos_list);
2137 INIT_LIST_HEAD(&c->idx_gc);
2138 INIT_LIST_HEAD(&c->replay_list);
2139 INIT_LIST_HEAD(&c->replay_buds);
2140 INIT_LIST_HEAD(&c->uncat_list);
2141 INIT_LIST_HEAD(&c->empty_list);
2142 INIT_LIST_HEAD(&c->freeable_list);
2143 INIT_LIST_HEAD(&c->frdi_idx_list);
2144 INIT_LIST_HEAD(&c->unclean_leb_list);
2145 INIT_LIST_HEAD(&c->old_buds);
2146 INIT_LIST_HEAD(&c->orph_list);
2147 INIT_LIST_HEAD(&c->orph_new);
2148 c->no_chk_data_crc = 1;
2149 c->assert_action = ASSACT_RO;
2150
2151 c->highest_inum = UBIFS_FIRST_INO;
2152 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2153
2154 ubi_get_volume_info(ubi, &c->vi);
2155 ubi_get_device_info(c->vi.ubi_num, &c->di);
2156 }
2157 return c;
2158 }
2159
ubifs_fill_super(struct super_block * sb,void * data,int silent)2160 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2161 {
2162 struct ubifs_info *c = sb->s_fs_info;
2163 struct inode *root;
2164 int err;
2165
2166 c->vfs_sb = sb;
2167 /* Re-open the UBI device in read-write mode */
2168 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2169 if (IS_ERR(c->ubi)) {
2170 err = PTR_ERR(c->ubi);
2171 goto out;
2172 }
2173
2174 err = ubifs_parse_options(c, data, 0);
2175 if (err)
2176 goto out_close;
2177
2178 /*
2179 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2180 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2181 * which means the user would have to wait not just for their own I/O
2182 * but the read-ahead I/O as well i.e. completely pointless.
2183 *
2184 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2185 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2186 * writeback happening.
2187 */
2188 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2189 c->vi.vol_id);
2190 if (err)
2191 goto out_close;
2192
2193 sb->s_fs_info = c;
2194 sb->s_magic = UBIFS_SUPER_MAGIC;
2195 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2196 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2197 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2198 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2199 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2200 sb->s_op = &ubifs_super_operations;
2201 #ifdef CONFIG_UBIFS_FS_XATTR
2202 sb->s_xattr = ubifs_xattr_handlers;
2203 #endif
2204 fscrypt_set_ops(sb, &ubifs_crypt_operations);
2205
2206 mutex_lock(&c->umount_mutex);
2207 err = mount_ubifs(c);
2208 if (err) {
2209 ubifs_assert(c, err < 0);
2210 goto out_unlock;
2211 }
2212
2213 /* Read the root inode */
2214 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2215 if (IS_ERR(root)) {
2216 err = PTR_ERR(root);
2217 goto out_umount;
2218 }
2219
2220 sb->s_root = d_make_root(root);
2221 if (!sb->s_root) {
2222 err = -ENOMEM;
2223 goto out_umount;
2224 }
2225
2226 mutex_unlock(&c->umount_mutex);
2227 return 0;
2228
2229 out_umount:
2230 ubifs_umount(c);
2231 out_unlock:
2232 mutex_unlock(&c->umount_mutex);
2233 out_close:
2234 ubifs_release_options(c);
2235 ubi_close_volume(c->ubi);
2236 out:
2237 return err;
2238 }
2239
sb_test(struct super_block * sb,void * data)2240 static int sb_test(struct super_block *sb, void *data)
2241 {
2242 struct ubifs_info *c1 = data;
2243 struct ubifs_info *c = sb->s_fs_info;
2244
2245 return c->vi.cdev == c1->vi.cdev;
2246 }
2247
sb_set(struct super_block * sb,void * data)2248 static int sb_set(struct super_block *sb, void *data)
2249 {
2250 sb->s_fs_info = data;
2251 return set_anon_super(sb, NULL);
2252 }
2253
ubifs_mount(struct file_system_type * fs_type,int flags,const char * name,void * data)2254 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2255 const char *name, void *data)
2256 {
2257 struct ubi_volume_desc *ubi;
2258 struct ubifs_info *c;
2259 struct super_block *sb;
2260 int err;
2261
2262 dbg_gen("name %s, flags %#x", name, flags);
2263
2264 /*
2265 * Get UBI device number and volume ID. Mount it read-only so far
2266 * because this might be a new mount point, and UBI allows only one
2267 * read-write user at a time.
2268 */
2269 ubi = open_ubi(name, UBI_READONLY);
2270 if (IS_ERR(ubi)) {
2271 if (!(flags & SB_SILENT))
2272 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2273 current->pid, name, (int)PTR_ERR(ubi));
2274 return ERR_CAST(ubi);
2275 }
2276
2277 c = alloc_ubifs_info(ubi);
2278 if (!c) {
2279 err = -ENOMEM;
2280 goto out_close;
2281 }
2282
2283 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2284
2285 sb = sget(fs_type, sb_test, sb_set, flags, c);
2286 if (IS_ERR(sb)) {
2287 err = PTR_ERR(sb);
2288 kfree(c);
2289 goto out_close;
2290 }
2291
2292 if (sb->s_root) {
2293 struct ubifs_info *c1 = sb->s_fs_info;
2294 kfree(c);
2295 /* A new mount point for already mounted UBIFS */
2296 dbg_gen("this ubi volume is already mounted");
2297 if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2298 err = -EBUSY;
2299 goto out_deact;
2300 }
2301 } else {
2302 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2303 if (err)
2304 goto out_deact;
2305 /* We do not support atime */
2306 sb->s_flags |= SB_ACTIVE;
2307 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2308 ubifs_msg(c, "full atime support is enabled.");
2309 else
2310 sb->s_flags |= SB_NOATIME;
2311 }
2312
2313 /* 'fill_super()' opens ubi again so we must close it here */
2314 ubi_close_volume(ubi);
2315
2316 return dget(sb->s_root);
2317
2318 out_deact:
2319 deactivate_locked_super(sb);
2320 out_close:
2321 ubi_close_volume(ubi);
2322 return ERR_PTR(err);
2323 }
2324
kill_ubifs_super(struct super_block * s)2325 static void kill_ubifs_super(struct super_block *s)
2326 {
2327 struct ubifs_info *c = s->s_fs_info;
2328 kill_anon_super(s);
2329 kfree(c);
2330 }
2331
2332 static struct file_system_type ubifs_fs_type = {
2333 .name = "ubifs",
2334 .owner = THIS_MODULE,
2335 .mount = ubifs_mount,
2336 .kill_sb = kill_ubifs_super,
2337 };
2338 MODULE_ALIAS_FS("ubifs");
2339
2340 /*
2341 * Inode slab cache constructor.
2342 */
inode_slab_ctor(void * obj)2343 static void inode_slab_ctor(void *obj)
2344 {
2345 struct ubifs_inode *ui = obj;
2346 inode_init_once(&ui->vfs_inode);
2347 }
2348
ubifs_init(void)2349 static int __init ubifs_init(void)
2350 {
2351 int err;
2352
2353 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2354
2355 /* Make sure node sizes are 8-byte aligned */
2356 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2357 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2358 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2359 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2360 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2361 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2362 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2363 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2364 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2365 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2366 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2367
2368 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2369 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2370 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2371 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2372 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2373 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2374
2375 /* Check min. node size */
2376 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2377 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2378 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2379 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2380
2381 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2382 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2383 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2384 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2385
2386 /* Defined node sizes */
2387 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2388 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2389 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2390 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2391
2392 /*
2393 * We use 2 bit wide bit-fields to store compression type, which should
2394 * be amended if more compressors are added. The bit-fields are:
2395 * @compr_type in 'struct ubifs_inode', @default_compr in
2396 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2397 */
2398 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2399
2400 /*
2401 * We require that PAGE_SIZE is greater-than-or-equal-to
2402 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2403 */
2404 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2405 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2406 current->pid, (unsigned int)PAGE_SIZE);
2407 return -EINVAL;
2408 }
2409
2410 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2411 sizeof(struct ubifs_inode), 0,
2412 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2413 SLAB_ACCOUNT, &inode_slab_ctor);
2414 if (!ubifs_inode_slab)
2415 return -ENOMEM;
2416
2417 err = register_shrinker(&ubifs_shrinker_info);
2418 if (err)
2419 goto out_slab;
2420
2421 err = ubifs_compressors_init();
2422 if (err)
2423 goto out_shrinker;
2424
2425 dbg_debugfs_init();
2426
2427 err = register_filesystem(&ubifs_fs_type);
2428 if (err) {
2429 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2430 current->pid, err);
2431 goto out_dbg;
2432 }
2433 return 0;
2434
2435 out_dbg:
2436 dbg_debugfs_exit();
2437 ubifs_compressors_exit();
2438 out_shrinker:
2439 unregister_shrinker(&ubifs_shrinker_info);
2440 out_slab:
2441 kmem_cache_destroy(ubifs_inode_slab);
2442 return err;
2443 }
2444 /* late_initcall to let compressors initialize first */
2445 late_initcall(ubifs_init);
2446
ubifs_exit(void)2447 static void __exit ubifs_exit(void)
2448 {
2449 WARN_ON(!list_empty(&ubifs_infos));
2450 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2451
2452 dbg_debugfs_exit();
2453 ubifs_compressors_exit();
2454 unregister_shrinker(&ubifs_shrinker_info);
2455
2456 /*
2457 * Make sure all delayed rcu free inodes are flushed before we
2458 * destroy cache.
2459 */
2460 rcu_barrier();
2461 kmem_cache_destroy(ubifs_inode_slab);
2462 unregister_filesystem(&ubifs_fs_type);
2463 }
2464 module_exit(ubifs_exit);
2465
2466 MODULE_LICENSE("GPL");
2467 MODULE_VERSION(__stringify(UBIFS_VERSION));
2468 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2469 MODULE_DESCRIPTION("UBIFS - UBI File System");
2470