• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements UBIFS initialization and VFS superblock operations. Some
13  * initialization stuff which is rather large and complex is placed at
14  * corresponding subsystems, but most of it is here.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/kthread.h>
22 #include <linux/parser.h>
23 #include <linux/seq_file.h>
24 #include <linux/mount.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include "ubifs.h"
28 
29 /*
30  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
31  * allocating too much.
32  */
33 #define UBIFS_KMALLOC_OK (128*1024)
34 
35 /* Slab cache for UBIFS inodes */
36 static struct kmem_cache *ubifs_inode_slab;
37 
38 /* UBIFS TNC shrinker description */
39 static struct shrinker ubifs_shrinker_info = {
40 	.scan_objects = ubifs_shrink_scan,
41 	.count_objects = ubifs_shrink_count,
42 	.seeks = DEFAULT_SEEKS,
43 };
44 
45 /**
46  * validate_inode - validate inode.
47  * @c: UBIFS file-system description object
48  * @inode: the inode to validate
49  *
50  * This is a helper function for 'ubifs_iget()' which validates various fields
51  * of a newly built inode to make sure they contain sane values and prevent
52  * possible vulnerabilities. Returns zero if the inode is all right and
53  * a non-zero error code if not.
54  */
validate_inode(struct ubifs_info * c,const struct inode * inode)55 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
56 {
57 	int err;
58 	const struct ubifs_inode *ui = ubifs_inode(inode);
59 
60 	if (inode->i_size > c->max_inode_sz) {
61 		ubifs_err(c, "inode is too large (%lld)",
62 			  (long long)inode->i_size);
63 		return 1;
64 	}
65 
66 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
67 		ubifs_err(c, "unknown compression type %d", ui->compr_type);
68 		return 2;
69 	}
70 
71 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
72 		return 3;
73 
74 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
75 		return 4;
76 
77 	if (ui->xattr && !S_ISREG(inode->i_mode))
78 		return 5;
79 
80 	if (!ubifs_compr_present(c, ui->compr_type)) {
81 		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
82 			   inode->i_ino, ubifs_compr_name(c, ui->compr_type));
83 	}
84 
85 	err = dbg_check_dir(c, inode);
86 	return err;
87 }
88 
ubifs_iget(struct super_block * sb,unsigned long inum)89 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
90 {
91 	int err;
92 	union ubifs_key key;
93 	struct ubifs_ino_node *ino;
94 	struct ubifs_info *c = sb->s_fs_info;
95 	struct inode *inode;
96 	struct ubifs_inode *ui;
97 
98 	dbg_gen("inode %lu", inum);
99 
100 	inode = iget_locked(sb, inum);
101 	if (!inode)
102 		return ERR_PTR(-ENOMEM);
103 	if (!(inode->i_state & I_NEW))
104 		return inode;
105 	ui = ubifs_inode(inode);
106 
107 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
108 	if (!ino) {
109 		err = -ENOMEM;
110 		goto out;
111 	}
112 
113 	ino_key_init(c, &key, inode->i_ino);
114 
115 	err = ubifs_tnc_lookup(c, &key, ino);
116 	if (err)
117 		goto out_ino;
118 
119 	inode->i_flags |= S_NOCMTIME;
120 
121 	if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
122 		inode->i_flags |= S_NOATIME;
123 
124 	set_nlink(inode, le32_to_cpu(ino->nlink));
125 	i_uid_write(inode, le32_to_cpu(ino->uid));
126 	i_gid_write(inode, le32_to_cpu(ino->gid));
127 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
128 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
129 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
130 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
131 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
132 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
133 	inode->i_mode = le32_to_cpu(ino->mode);
134 	inode->i_size = le64_to_cpu(ino->size);
135 
136 	ui->data_len    = le32_to_cpu(ino->data_len);
137 	ui->flags       = le32_to_cpu(ino->flags);
138 	ui->compr_type  = le16_to_cpu(ino->compr_type);
139 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
140 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
141 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
142 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
143 	ui->synced_i_size = ui->ui_size = inode->i_size;
144 
145 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
146 
147 	err = validate_inode(c, inode);
148 	if (err)
149 		goto out_invalid;
150 
151 	switch (inode->i_mode & S_IFMT) {
152 	case S_IFREG:
153 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
154 		inode->i_op = &ubifs_file_inode_operations;
155 		inode->i_fop = &ubifs_file_operations;
156 		if (ui->xattr) {
157 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
158 			if (!ui->data) {
159 				err = -ENOMEM;
160 				goto out_ino;
161 			}
162 			memcpy(ui->data, ino->data, ui->data_len);
163 			((char *)ui->data)[ui->data_len] = '\0';
164 		} else if (ui->data_len != 0) {
165 			err = 10;
166 			goto out_invalid;
167 		}
168 		break;
169 	case S_IFDIR:
170 		inode->i_op  = &ubifs_dir_inode_operations;
171 		inode->i_fop = &ubifs_dir_operations;
172 		if (ui->data_len != 0) {
173 			err = 11;
174 			goto out_invalid;
175 		}
176 		break;
177 	case S_IFLNK:
178 		inode->i_op = &ubifs_symlink_inode_operations;
179 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
180 			err = 12;
181 			goto out_invalid;
182 		}
183 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
184 		if (!ui->data) {
185 			err = -ENOMEM;
186 			goto out_ino;
187 		}
188 		memcpy(ui->data, ino->data, ui->data_len);
189 		((char *)ui->data)[ui->data_len] = '\0';
190 		break;
191 	case S_IFBLK:
192 	case S_IFCHR:
193 	{
194 		dev_t rdev;
195 		union ubifs_dev_desc *dev;
196 
197 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
198 		if (!ui->data) {
199 			err = -ENOMEM;
200 			goto out_ino;
201 		}
202 
203 		dev = (union ubifs_dev_desc *)ino->data;
204 		if (ui->data_len == sizeof(dev->new))
205 			rdev = new_decode_dev(le32_to_cpu(dev->new));
206 		else if (ui->data_len == sizeof(dev->huge))
207 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
208 		else {
209 			err = 13;
210 			goto out_invalid;
211 		}
212 		memcpy(ui->data, ino->data, ui->data_len);
213 		inode->i_op = &ubifs_file_inode_operations;
214 		init_special_inode(inode, inode->i_mode, rdev);
215 		break;
216 	}
217 	case S_IFSOCK:
218 	case S_IFIFO:
219 		inode->i_op = &ubifs_file_inode_operations;
220 		init_special_inode(inode, inode->i_mode, 0);
221 		if (ui->data_len != 0) {
222 			err = 14;
223 			goto out_invalid;
224 		}
225 		break;
226 	default:
227 		err = 15;
228 		goto out_invalid;
229 	}
230 
231 	kfree(ino);
232 	ubifs_set_inode_flags(inode);
233 	unlock_new_inode(inode);
234 	return inode;
235 
236 out_invalid:
237 	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
238 	ubifs_dump_node(c, ino);
239 	ubifs_dump_inode(c, inode);
240 	err = -EINVAL;
241 out_ino:
242 	kfree(ino);
243 out:
244 	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
245 	iget_failed(inode);
246 	return ERR_PTR(err);
247 }
248 
ubifs_alloc_inode(struct super_block * sb)249 static struct inode *ubifs_alloc_inode(struct super_block *sb)
250 {
251 	struct ubifs_inode *ui;
252 
253 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
254 	if (!ui)
255 		return NULL;
256 
257 	memset((void *)ui + sizeof(struct inode), 0,
258 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
259 	mutex_init(&ui->ui_mutex);
260 	init_rwsem(&ui->xattr_sem);
261 	spin_lock_init(&ui->ui_lock);
262 	return &ui->vfs_inode;
263 };
264 
ubifs_free_inode(struct inode * inode)265 static void ubifs_free_inode(struct inode *inode)
266 {
267 	struct ubifs_inode *ui = ubifs_inode(inode);
268 
269 	kfree(ui->data);
270 	fscrypt_free_inode(inode);
271 
272 	kmem_cache_free(ubifs_inode_slab, ui);
273 }
274 
275 /*
276  * Note, Linux write-back code calls this without 'i_mutex'.
277  */
ubifs_write_inode(struct inode * inode,struct writeback_control * wbc)278 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
279 {
280 	int err = 0;
281 	struct ubifs_info *c = inode->i_sb->s_fs_info;
282 	struct ubifs_inode *ui = ubifs_inode(inode);
283 
284 	ubifs_assert(c, !ui->xattr);
285 	if (is_bad_inode(inode))
286 		return 0;
287 
288 	mutex_lock(&ui->ui_mutex);
289 	/*
290 	 * Due to races between write-back forced by budgeting
291 	 * (see 'sync_some_inodes()') and background write-back, the inode may
292 	 * have already been synchronized, do not do this again. This might
293 	 * also happen if it was synchronized in an VFS operation, e.g.
294 	 * 'ubifs_link()'.
295 	 */
296 	if (!ui->dirty) {
297 		mutex_unlock(&ui->ui_mutex);
298 		return 0;
299 	}
300 
301 	/*
302 	 * As an optimization, do not write orphan inodes to the media just
303 	 * because this is not needed.
304 	 */
305 	dbg_gen("inode %lu, mode %#x, nlink %u",
306 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
307 	if (inode->i_nlink) {
308 		err = ubifs_jnl_write_inode(c, inode);
309 		if (err)
310 			ubifs_err(c, "can't write inode %lu, error %d",
311 				  inode->i_ino, err);
312 		else
313 			err = dbg_check_inode_size(c, inode, ui->ui_size);
314 	}
315 
316 	ui->dirty = 0;
317 	mutex_unlock(&ui->ui_mutex);
318 	ubifs_release_dirty_inode_budget(c, ui);
319 	return err;
320 }
321 
ubifs_drop_inode(struct inode * inode)322 static int ubifs_drop_inode(struct inode *inode)
323 {
324 	int drop = generic_drop_inode(inode);
325 
326 	if (!drop)
327 		drop = fscrypt_drop_inode(inode);
328 
329 	return drop;
330 }
331 
ubifs_evict_inode(struct inode * inode)332 static void ubifs_evict_inode(struct inode *inode)
333 {
334 	int err;
335 	struct ubifs_info *c = inode->i_sb->s_fs_info;
336 	struct ubifs_inode *ui = ubifs_inode(inode);
337 
338 	if (ui->xattr)
339 		/*
340 		 * Extended attribute inode deletions are fully handled in
341 		 * 'ubifs_removexattr()'. These inodes are special and have
342 		 * limited usage, so there is nothing to do here.
343 		 */
344 		goto out;
345 
346 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
347 	ubifs_assert(c, !atomic_read(&inode->i_count));
348 
349 	truncate_inode_pages_final(&inode->i_data);
350 
351 	if (inode->i_nlink)
352 		goto done;
353 
354 	if (is_bad_inode(inode))
355 		goto out;
356 
357 	ui->ui_size = inode->i_size = 0;
358 	err = ubifs_jnl_delete_inode(c, inode);
359 	if (err)
360 		/*
361 		 * Worst case we have a lost orphan inode wasting space, so a
362 		 * simple error message is OK here.
363 		 */
364 		ubifs_err(c, "can't delete inode %lu, error %d",
365 			  inode->i_ino, err);
366 
367 out:
368 	if (ui->dirty)
369 		ubifs_release_dirty_inode_budget(c, ui);
370 	else {
371 		/* We've deleted something - clean the "no space" flags */
372 		c->bi.nospace = c->bi.nospace_rp = 0;
373 		smp_wmb();
374 	}
375 done:
376 	clear_inode(inode);
377 	fscrypt_put_encryption_info(inode);
378 }
379 
ubifs_dirty_inode(struct inode * inode,int flags)380 static void ubifs_dirty_inode(struct inode *inode, int flags)
381 {
382 	struct ubifs_info *c = inode->i_sb->s_fs_info;
383 	struct ubifs_inode *ui = ubifs_inode(inode);
384 
385 	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
386 	if (!ui->dirty) {
387 		ui->dirty = 1;
388 		dbg_gen("inode %lu",  inode->i_ino);
389 	}
390 }
391 
ubifs_statfs(struct dentry * dentry,struct kstatfs * buf)392 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
393 {
394 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
395 	unsigned long long free;
396 	__le32 *uuid = (__le32 *)c->uuid;
397 
398 	free = ubifs_get_free_space(c);
399 	dbg_gen("free space %lld bytes (%lld blocks)",
400 		free, free >> UBIFS_BLOCK_SHIFT);
401 
402 	buf->f_type = UBIFS_SUPER_MAGIC;
403 	buf->f_bsize = UBIFS_BLOCK_SIZE;
404 	buf->f_blocks = c->block_cnt;
405 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
406 	if (free > c->report_rp_size)
407 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
408 	else
409 		buf->f_bavail = 0;
410 	buf->f_files = 0;
411 	buf->f_ffree = 0;
412 	buf->f_namelen = UBIFS_MAX_NLEN;
413 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
414 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
415 	ubifs_assert(c, buf->f_bfree <= c->block_cnt);
416 	return 0;
417 }
418 
ubifs_show_options(struct seq_file * s,struct dentry * root)419 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
420 {
421 	struct ubifs_info *c = root->d_sb->s_fs_info;
422 
423 	if (c->mount_opts.unmount_mode == 2)
424 		seq_puts(s, ",fast_unmount");
425 	else if (c->mount_opts.unmount_mode == 1)
426 		seq_puts(s, ",norm_unmount");
427 
428 	if (c->mount_opts.bulk_read == 2)
429 		seq_puts(s, ",bulk_read");
430 	else if (c->mount_opts.bulk_read == 1)
431 		seq_puts(s, ",no_bulk_read");
432 
433 	if (c->mount_opts.chk_data_crc == 2)
434 		seq_puts(s, ",chk_data_crc");
435 	else if (c->mount_opts.chk_data_crc == 1)
436 		seq_puts(s, ",no_chk_data_crc");
437 
438 	if (c->mount_opts.override_compr) {
439 		seq_printf(s, ",compr=%s",
440 			   ubifs_compr_name(c, c->mount_opts.compr_type));
441 	}
442 
443 	seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
444 	seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
445 
446 	return 0;
447 }
448 
ubifs_sync_fs(struct super_block * sb,int wait)449 static int ubifs_sync_fs(struct super_block *sb, int wait)
450 {
451 	int i, err;
452 	struct ubifs_info *c = sb->s_fs_info;
453 
454 	/*
455 	 * Zero @wait is just an advisory thing to help the file system shove
456 	 * lots of data into the queues, and there will be the second
457 	 * '->sync_fs()' call, with non-zero @wait.
458 	 */
459 	if (!wait)
460 		return 0;
461 
462 	/*
463 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
464 	 * do this if it waits for an already running commit.
465 	 */
466 	for (i = 0; i < c->jhead_cnt; i++) {
467 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
468 		if (err)
469 			return err;
470 	}
471 
472 	/*
473 	 * Strictly speaking, it is not necessary to commit the journal here,
474 	 * synchronizing write-buffers would be enough. But committing makes
475 	 * UBIFS free space predictions much more accurate, so we want to let
476 	 * the user be able to get more accurate results of 'statfs()' after
477 	 * they synchronize the file system.
478 	 */
479 	err = ubifs_run_commit(c);
480 	if (err)
481 		return err;
482 
483 	return ubi_sync(c->vi.ubi_num);
484 }
485 
486 /**
487  * init_constants_early - initialize UBIFS constants.
488  * @c: UBIFS file-system description object
489  *
490  * This function initialize UBIFS constants which do not need the superblock to
491  * be read. It also checks that the UBI volume satisfies basic UBIFS
492  * requirements. Returns zero in case of success and a negative error code in
493  * case of failure.
494  */
init_constants_early(struct ubifs_info * c)495 static int init_constants_early(struct ubifs_info *c)
496 {
497 	if (c->vi.corrupted) {
498 		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
499 		c->ro_media = 1;
500 	}
501 
502 	if (c->di.ro_mode) {
503 		ubifs_msg(c, "read-only UBI device");
504 		c->ro_media = 1;
505 	}
506 
507 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
508 		ubifs_msg(c, "static UBI volume - read-only mode");
509 		c->ro_media = 1;
510 	}
511 
512 	c->leb_cnt = c->vi.size;
513 	c->leb_size = c->vi.usable_leb_size;
514 	c->leb_start = c->di.leb_start;
515 	c->half_leb_size = c->leb_size / 2;
516 	c->min_io_size = c->di.min_io_size;
517 	c->min_io_shift = fls(c->min_io_size) - 1;
518 	c->max_write_size = c->di.max_write_size;
519 	c->max_write_shift = fls(c->max_write_size) - 1;
520 
521 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
522 		ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
523 			   c->leb_size, UBIFS_MIN_LEB_SZ);
524 		return -EINVAL;
525 	}
526 
527 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
528 		ubifs_errc(c, "too few LEBs (%d), min. is %d",
529 			   c->leb_cnt, UBIFS_MIN_LEB_CNT);
530 		return -EINVAL;
531 	}
532 
533 	if (!is_power_of_2(c->min_io_size)) {
534 		ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
535 		return -EINVAL;
536 	}
537 
538 	/*
539 	 * Maximum write size has to be greater or equivalent to min. I/O
540 	 * size, and be multiple of min. I/O size.
541 	 */
542 	if (c->max_write_size < c->min_io_size ||
543 	    c->max_write_size % c->min_io_size ||
544 	    !is_power_of_2(c->max_write_size)) {
545 		ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
546 			   c->max_write_size, c->min_io_size);
547 		return -EINVAL;
548 	}
549 
550 	/*
551 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
552 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
553 	 * less than 8.
554 	 */
555 	if (c->min_io_size < 8) {
556 		c->min_io_size = 8;
557 		c->min_io_shift = 3;
558 		if (c->max_write_size < c->min_io_size) {
559 			c->max_write_size = c->min_io_size;
560 			c->max_write_shift = c->min_io_shift;
561 		}
562 	}
563 
564 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
565 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
566 
567 	/*
568 	 * Initialize node length ranges which are mostly needed for node
569 	 * length validation.
570 	 */
571 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
572 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
573 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
574 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
575 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
576 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
577 	c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
578 	c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
579 				UBIFS_MAX_HMAC_LEN;
580 	c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
581 	c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
582 
583 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
584 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
585 	c->ranges[UBIFS_ORPH_NODE].min_len =
586 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
587 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
588 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
589 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
590 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
591 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
592 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
593 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
594 	/*
595 	 * Minimum indexing node size is amended later when superblock is
596 	 * read and the key length is known.
597 	 */
598 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
599 	/*
600 	 * Maximum indexing node size is amended later when superblock is
601 	 * read and the fanout is known.
602 	 */
603 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
604 
605 	/*
606 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
607 	 * about these values.
608 	 */
609 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
610 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
611 
612 	/*
613 	 * Calculate how many bytes would be wasted at the end of LEB if it was
614 	 * fully filled with data nodes of maximum size. This is used in
615 	 * calculations when reporting free space.
616 	 */
617 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
618 
619 	/* Buffer size for bulk-reads */
620 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
621 	if (c->max_bu_buf_len > c->leb_size)
622 		c->max_bu_buf_len = c->leb_size;
623 
624 	/* Log is ready, preserve one LEB for commits. */
625 	c->min_log_bytes = c->leb_size;
626 
627 	return 0;
628 }
629 
630 /**
631  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
632  * @c: UBIFS file-system description object
633  * @lnum: LEB the write-buffer was synchronized to
634  * @free: how many free bytes left in this LEB
635  * @pad: how many bytes were padded
636  *
637  * This is a callback function which is called by the I/O unit when the
638  * write-buffer is synchronized. We need this to correctly maintain space
639  * accounting in bud logical eraseblocks. This function returns zero in case of
640  * success and a negative error code in case of failure.
641  *
642  * This function actually belongs to the journal, but we keep it here because
643  * we want to keep it static.
644  */
bud_wbuf_callback(struct ubifs_info * c,int lnum,int free,int pad)645 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
646 {
647 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
648 }
649 
650 /*
651  * init_constants_sb - initialize UBIFS constants.
652  * @c: UBIFS file-system description object
653  *
654  * This is a helper function which initializes various UBIFS constants after
655  * the superblock has been read. It also checks various UBIFS parameters and
656  * makes sure they are all right. Returns zero in case of success and a
657  * negative error code in case of failure.
658  */
init_constants_sb(struct ubifs_info * c)659 static int init_constants_sb(struct ubifs_info *c)
660 {
661 	int tmp, err;
662 	long long tmp64;
663 
664 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
665 	c->max_znode_sz = sizeof(struct ubifs_znode) +
666 				c->fanout * sizeof(struct ubifs_zbranch);
667 
668 	tmp = ubifs_idx_node_sz(c, 1);
669 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
670 	c->min_idx_node_sz = ALIGN(tmp, 8);
671 
672 	tmp = ubifs_idx_node_sz(c, c->fanout);
673 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
674 	c->max_idx_node_sz = ALIGN(tmp, 8);
675 
676 	/* Make sure LEB size is large enough to fit full commit */
677 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
678 	tmp = ALIGN(tmp, c->min_io_size);
679 	if (tmp > c->leb_size) {
680 		ubifs_err(c, "too small LEB size %d, at least %d needed",
681 			  c->leb_size, tmp);
682 		return -EINVAL;
683 	}
684 
685 	/*
686 	 * Make sure that the log is large enough to fit reference nodes for
687 	 * all buds plus one reserved LEB.
688 	 */
689 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
690 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
691 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
692 	tmp /= c->leb_size;
693 	tmp += 1;
694 	if (c->log_lebs < tmp) {
695 		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
696 			  c->log_lebs, tmp);
697 		return -EINVAL;
698 	}
699 
700 	/*
701 	 * When budgeting we assume worst-case scenarios when the pages are not
702 	 * be compressed and direntries are of the maximum size.
703 	 *
704 	 * Note, data, which may be stored in inodes is budgeted separately, so
705 	 * it is not included into 'c->bi.inode_budget'.
706 	 */
707 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
708 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
709 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
710 
711 	/*
712 	 * When the amount of flash space used by buds becomes
713 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
714 	 * The writers are unblocked when the commit is finished. To avoid
715 	 * writers to be blocked UBIFS initiates background commit in advance,
716 	 * when number of bud bytes becomes above the limit defined below.
717 	 */
718 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
719 
720 	/*
721 	 * Ensure minimum journal size. All the bytes in the journal heads are
722 	 * considered to be used, when calculating the current journal usage.
723 	 * Consequently, if the journal is too small, UBIFS will treat it as
724 	 * always full.
725 	 */
726 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
727 	if (c->bg_bud_bytes < tmp64)
728 		c->bg_bud_bytes = tmp64;
729 	if (c->max_bud_bytes < tmp64 + c->leb_size)
730 		c->max_bud_bytes = tmp64 + c->leb_size;
731 
732 	err = ubifs_calc_lpt_geom(c);
733 	if (err)
734 		return err;
735 
736 	/* Initialize effective LEB size used in budgeting calculations */
737 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
738 	return 0;
739 }
740 
741 /*
742  * init_constants_master - initialize UBIFS constants.
743  * @c: UBIFS file-system description object
744  *
745  * This is a helper function which initializes various UBIFS constants after
746  * the master node has been read. It also checks various UBIFS parameters and
747  * makes sure they are all right.
748  */
init_constants_master(struct ubifs_info * c)749 static void init_constants_master(struct ubifs_info *c)
750 {
751 	long long tmp64;
752 
753 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
754 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
755 
756 	/*
757 	 * Calculate total amount of FS blocks. This number is not used
758 	 * internally because it does not make much sense for UBIFS, but it is
759 	 * necessary to report something for the 'statfs()' call.
760 	 *
761 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
762 	 * deletions, minimum LEBs for the index, and assume only one journal
763 	 * head is available.
764 	 */
765 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
766 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
767 	tmp64 = ubifs_reported_space(c, tmp64);
768 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
769 }
770 
771 /**
772  * take_gc_lnum - reserve GC LEB.
773  * @c: UBIFS file-system description object
774  *
775  * This function ensures that the LEB reserved for garbage collection is marked
776  * as "taken" in lprops. We also have to set free space to LEB size and dirty
777  * space to zero, because lprops may contain out-of-date information if the
778  * file-system was un-mounted before it has been committed. This function
779  * returns zero in case of success and a negative error code in case of
780  * failure.
781  */
take_gc_lnum(struct ubifs_info * c)782 static int take_gc_lnum(struct ubifs_info *c)
783 {
784 	int err;
785 
786 	if (c->gc_lnum == -1) {
787 		ubifs_err(c, "no LEB for GC");
788 		return -EINVAL;
789 	}
790 
791 	/* And we have to tell lprops that this LEB is taken */
792 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
793 				  LPROPS_TAKEN, 0, 0);
794 	return err;
795 }
796 
797 /**
798  * alloc_wbufs - allocate write-buffers.
799  * @c: UBIFS file-system description object
800  *
801  * This helper function allocates and initializes UBIFS write-buffers. Returns
802  * zero in case of success and %-ENOMEM in case of failure.
803  */
alloc_wbufs(struct ubifs_info * c)804 static int alloc_wbufs(struct ubifs_info *c)
805 {
806 	int i, err;
807 
808 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
809 			    GFP_KERNEL);
810 	if (!c->jheads)
811 		return -ENOMEM;
812 
813 	/* Initialize journal heads */
814 	for (i = 0; i < c->jhead_cnt; i++) {
815 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
816 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
817 		if (err)
818 			goto out_wbuf;
819 
820 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
821 		c->jheads[i].wbuf.jhead = i;
822 		c->jheads[i].grouped = 1;
823 		c->jheads[i].log_hash = ubifs_hash_get_desc(c);
824 		if (IS_ERR(c->jheads[i].log_hash)) {
825 			err = PTR_ERR(c->jheads[i].log_hash);
826 			goto out_log_hash;
827 		}
828 	}
829 
830 	/*
831 	 * Garbage Collector head does not need to be synchronized by timer.
832 	 * Also GC head nodes are not grouped.
833 	 */
834 	c->jheads[GCHD].wbuf.no_timer = 1;
835 	c->jheads[GCHD].grouped = 0;
836 
837 	return 0;
838 
839 out_log_hash:
840 	kfree(c->jheads[i].wbuf.buf);
841 	kfree(c->jheads[i].wbuf.inodes);
842 
843 out_wbuf:
844 	while (i--) {
845 		kfree(c->jheads[i].wbuf.buf);
846 		kfree(c->jheads[i].wbuf.inodes);
847 		kfree(c->jheads[i].log_hash);
848 	}
849 	kfree(c->jheads);
850 	c->jheads = NULL;
851 
852 	return err;
853 }
854 
855 /**
856  * free_wbufs - free write-buffers.
857  * @c: UBIFS file-system description object
858  */
free_wbufs(struct ubifs_info * c)859 static void free_wbufs(struct ubifs_info *c)
860 {
861 	int i;
862 
863 	if (c->jheads) {
864 		for (i = 0; i < c->jhead_cnt; i++) {
865 			kfree(c->jheads[i].wbuf.buf);
866 			kfree(c->jheads[i].wbuf.inodes);
867 			kfree(c->jheads[i].log_hash);
868 		}
869 		kfree(c->jheads);
870 		c->jheads = NULL;
871 	}
872 }
873 
874 /**
875  * free_orphans - free orphans.
876  * @c: UBIFS file-system description object
877  */
free_orphans(struct ubifs_info * c)878 static void free_orphans(struct ubifs_info *c)
879 {
880 	struct ubifs_orphan *orph;
881 
882 	while (c->orph_dnext) {
883 		orph = c->orph_dnext;
884 		c->orph_dnext = orph->dnext;
885 		list_del(&orph->list);
886 		kfree(orph);
887 	}
888 
889 	while (!list_empty(&c->orph_list)) {
890 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
891 		list_del(&orph->list);
892 		kfree(orph);
893 		ubifs_err(c, "orphan list not empty at unmount");
894 	}
895 
896 	vfree(c->orph_buf);
897 	c->orph_buf = NULL;
898 }
899 
900 /**
901  * free_buds - free per-bud objects.
902  * @c: UBIFS file-system description object
903  */
free_buds(struct ubifs_info * c)904 static void free_buds(struct ubifs_info *c)
905 {
906 	struct ubifs_bud *bud, *n;
907 
908 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
909 		kfree(bud);
910 }
911 
912 /**
913  * check_volume_empty - check if the UBI volume is empty.
914  * @c: UBIFS file-system description object
915  *
916  * This function checks if the UBIFS volume is empty by looking if its LEBs are
917  * mapped or not. The result of checking is stored in the @c->empty variable.
918  * Returns zero in case of success and a negative error code in case of
919  * failure.
920  */
check_volume_empty(struct ubifs_info * c)921 static int check_volume_empty(struct ubifs_info *c)
922 {
923 	int lnum, err;
924 
925 	c->empty = 1;
926 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
927 		err = ubifs_is_mapped(c, lnum);
928 		if (unlikely(err < 0))
929 			return err;
930 		if (err == 1) {
931 			c->empty = 0;
932 			break;
933 		}
934 
935 		cond_resched();
936 	}
937 
938 	return 0;
939 }
940 
941 /*
942  * UBIFS mount options.
943  *
944  * Opt_fast_unmount: do not run a journal commit before un-mounting
945  * Opt_norm_unmount: run a journal commit before un-mounting
946  * Opt_bulk_read: enable bulk-reads
947  * Opt_no_bulk_read: disable bulk-reads
948  * Opt_chk_data_crc: check CRCs when reading data nodes
949  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
950  * Opt_override_compr: override default compressor
951  * Opt_assert: set ubifs_assert() action
952  * Opt_auth_key: The key name used for authentication
953  * Opt_auth_hash_name: The hash type used for authentication
954  * Opt_err: just end of array marker
955  */
956 enum {
957 	Opt_fast_unmount,
958 	Opt_norm_unmount,
959 	Opt_bulk_read,
960 	Opt_no_bulk_read,
961 	Opt_chk_data_crc,
962 	Opt_no_chk_data_crc,
963 	Opt_override_compr,
964 	Opt_assert,
965 	Opt_auth_key,
966 	Opt_auth_hash_name,
967 	Opt_ignore,
968 	Opt_err,
969 };
970 
971 static const match_table_t tokens = {
972 	{Opt_fast_unmount, "fast_unmount"},
973 	{Opt_norm_unmount, "norm_unmount"},
974 	{Opt_bulk_read, "bulk_read"},
975 	{Opt_no_bulk_read, "no_bulk_read"},
976 	{Opt_chk_data_crc, "chk_data_crc"},
977 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
978 	{Opt_override_compr, "compr=%s"},
979 	{Opt_auth_key, "auth_key=%s"},
980 	{Opt_auth_hash_name, "auth_hash_name=%s"},
981 	{Opt_ignore, "ubi=%s"},
982 	{Opt_ignore, "vol=%s"},
983 	{Opt_assert, "assert=%s"},
984 	{Opt_err, NULL},
985 };
986 
987 /**
988  * parse_standard_option - parse a standard mount option.
989  * @option: the option to parse
990  *
991  * Normally, standard mount options like "sync" are passed to file-systems as
992  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
993  * be present in the options string. This function tries to deal with this
994  * situation and parse standard options. Returns 0 if the option was not
995  * recognized, and the corresponding integer flag if it was.
996  *
997  * UBIFS is only interested in the "sync" option, so do not check for anything
998  * else.
999  */
parse_standard_option(const char * option)1000 static int parse_standard_option(const char *option)
1001 {
1002 
1003 	pr_notice("UBIFS: parse %s\n", option);
1004 	if (!strcmp(option, "sync"))
1005 		return SB_SYNCHRONOUS;
1006 	return 0;
1007 }
1008 
1009 /**
1010  * ubifs_parse_options - parse mount parameters.
1011  * @c: UBIFS file-system description object
1012  * @options: parameters to parse
1013  * @is_remount: non-zero if this is FS re-mount
1014  *
1015  * This function parses UBIFS mount options and returns zero in case success
1016  * and a negative error code in case of failure.
1017  */
ubifs_parse_options(struct ubifs_info * c,char * options,int is_remount)1018 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1019 			       int is_remount)
1020 {
1021 	char *p;
1022 	substring_t args[MAX_OPT_ARGS];
1023 
1024 	if (!options)
1025 		return 0;
1026 
1027 	while ((p = strsep(&options, ","))) {
1028 		int token;
1029 
1030 		if (!*p)
1031 			continue;
1032 
1033 		token = match_token(p, tokens, args);
1034 		switch (token) {
1035 		/*
1036 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1037 		 * We accept them in order to be backward-compatible. But this
1038 		 * should be removed at some point.
1039 		 */
1040 		case Opt_fast_unmount:
1041 			c->mount_opts.unmount_mode = 2;
1042 			break;
1043 		case Opt_norm_unmount:
1044 			c->mount_opts.unmount_mode = 1;
1045 			break;
1046 		case Opt_bulk_read:
1047 			c->mount_opts.bulk_read = 2;
1048 			c->bulk_read = 1;
1049 			break;
1050 		case Opt_no_bulk_read:
1051 			c->mount_opts.bulk_read = 1;
1052 			c->bulk_read = 0;
1053 			break;
1054 		case Opt_chk_data_crc:
1055 			c->mount_opts.chk_data_crc = 2;
1056 			c->no_chk_data_crc = 0;
1057 			break;
1058 		case Opt_no_chk_data_crc:
1059 			c->mount_opts.chk_data_crc = 1;
1060 			c->no_chk_data_crc = 1;
1061 			break;
1062 		case Opt_override_compr:
1063 		{
1064 			char *name = match_strdup(&args[0]);
1065 
1066 			if (!name)
1067 				return -ENOMEM;
1068 			if (!strcmp(name, "none"))
1069 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1070 			else if (!strcmp(name, "lzo"))
1071 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1072 			else if (!strcmp(name, "zlib"))
1073 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1074 			else if (!strcmp(name, "zstd"))
1075 				c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
1076 			else {
1077 				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1078 				kfree(name);
1079 				return -EINVAL;
1080 			}
1081 			kfree(name);
1082 			c->mount_opts.override_compr = 1;
1083 			c->default_compr = c->mount_opts.compr_type;
1084 			break;
1085 		}
1086 		case Opt_assert:
1087 		{
1088 			char *act = match_strdup(&args[0]);
1089 
1090 			if (!act)
1091 				return -ENOMEM;
1092 			if (!strcmp(act, "report"))
1093 				c->assert_action = ASSACT_REPORT;
1094 			else if (!strcmp(act, "read-only"))
1095 				c->assert_action = ASSACT_RO;
1096 			else if (!strcmp(act, "panic"))
1097 				c->assert_action = ASSACT_PANIC;
1098 			else {
1099 				ubifs_err(c, "unknown assert action \"%s\"", act);
1100 				kfree(act);
1101 				return -EINVAL;
1102 			}
1103 			kfree(act);
1104 			break;
1105 		}
1106 		case Opt_auth_key:
1107 			if (!is_remount) {
1108 				c->auth_key_name = kstrdup(args[0].from,
1109 								GFP_KERNEL);
1110 				if (!c->auth_key_name)
1111 					return -ENOMEM;
1112 			}
1113 			break;
1114 		case Opt_auth_hash_name:
1115 			if (!is_remount) {
1116 				c->auth_hash_name = kstrdup(args[0].from,
1117 								GFP_KERNEL);
1118 				if (!c->auth_hash_name)
1119 					return -ENOMEM;
1120 			}
1121 			break;
1122 		case Opt_ignore:
1123 			break;
1124 		default:
1125 		{
1126 			unsigned long flag;
1127 			struct super_block *sb = c->vfs_sb;
1128 
1129 			flag = parse_standard_option(p);
1130 			if (!flag) {
1131 				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1132 					  p);
1133 				return -EINVAL;
1134 			}
1135 			sb->s_flags |= flag;
1136 			break;
1137 		}
1138 		}
1139 	}
1140 
1141 	return 0;
1142 }
1143 
1144 /*
1145  * ubifs_release_options - release mount parameters which have been dumped.
1146  * @c: UBIFS file-system description object
1147  */
ubifs_release_options(struct ubifs_info * c)1148 static void ubifs_release_options(struct ubifs_info *c)
1149 {
1150 	kfree(c->auth_key_name);
1151 	c->auth_key_name = NULL;
1152 	kfree(c->auth_hash_name);
1153 	c->auth_hash_name = NULL;
1154 }
1155 
1156 /**
1157  * destroy_journal - destroy journal data structures.
1158  * @c: UBIFS file-system description object
1159  *
1160  * This function destroys journal data structures including those that may have
1161  * been created by recovery functions.
1162  */
destroy_journal(struct ubifs_info * c)1163 static void destroy_journal(struct ubifs_info *c)
1164 {
1165 	while (!list_empty(&c->unclean_leb_list)) {
1166 		struct ubifs_unclean_leb *ucleb;
1167 
1168 		ucleb = list_entry(c->unclean_leb_list.next,
1169 				   struct ubifs_unclean_leb, list);
1170 		list_del(&ucleb->list);
1171 		kfree(ucleb);
1172 	}
1173 	while (!list_empty(&c->old_buds)) {
1174 		struct ubifs_bud *bud;
1175 
1176 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1177 		list_del(&bud->list);
1178 		kfree(bud);
1179 	}
1180 	ubifs_destroy_idx_gc(c);
1181 	ubifs_destroy_size_tree(c);
1182 	ubifs_tnc_close(c);
1183 	free_buds(c);
1184 }
1185 
1186 /**
1187  * bu_init - initialize bulk-read information.
1188  * @c: UBIFS file-system description object
1189  */
bu_init(struct ubifs_info * c)1190 static void bu_init(struct ubifs_info *c)
1191 {
1192 	ubifs_assert(c, c->bulk_read == 1);
1193 
1194 	if (c->bu.buf)
1195 		return; /* Already initialized */
1196 
1197 again:
1198 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1199 	if (!c->bu.buf) {
1200 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1201 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1202 			goto again;
1203 		}
1204 
1205 		/* Just disable bulk-read */
1206 		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1207 			   c->max_bu_buf_len);
1208 		c->mount_opts.bulk_read = 1;
1209 		c->bulk_read = 0;
1210 		return;
1211 	}
1212 }
1213 
1214 /**
1215  * check_free_space - check if there is enough free space to mount.
1216  * @c: UBIFS file-system description object
1217  *
1218  * This function makes sure UBIFS has enough free space to be mounted in
1219  * read/write mode. UBIFS must always have some free space to allow deletions.
1220  */
check_free_space(struct ubifs_info * c)1221 static int check_free_space(struct ubifs_info *c)
1222 {
1223 	ubifs_assert(c, c->dark_wm > 0);
1224 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1225 		ubifs_err(c, "insufficient free space to mount in R/W mode");
1226 		ubifs_dump_budg(c, &c->bi);
1227 		ubifs_dump_lprops(c);
1228 		return -ENOSPC;
1229 	}
1230 	return 0;
1231 }
1232 
1233 /**
1234  * mount_ubifs - mount UBIFS file-system.
1235  * @c: UBIFS file-system description object
1236  *
1237  * This function mounts UBIFS file system. Returns zero in case of success and
1238  * a negative error code in case of failure.
1239  */
mount_ubifs(struct ubifs_info * c)1240 static int mount_ubifs(struct ubifs_info *c)
1241 {
1242 	int err;
1243 	long long x, y;
1244 	size_t sz;
1245 
1246 	c->ro_mount = !!sb_rdonly(c->vfs_sb);
1247 	/* Suppress error messages while probing if SB_SILENT is set */
1248 	c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1249 
1250 	err = init_constants_early(c);
1251 	if (err)
1252 		return err;
1253 
1254 	err = ubifs_debugging_init(c);
1255 	if (err)
1256 		return err;
1257 
1258 	err = check_volume_empty(c);
1259 	if (err)
1260 		goto out_free;
1261 
1262 	if (c->empty && (c->ro_mount || c->ro_media)) {
1263 		/*
1264 		 * This UBI volume is empty, and read-only, or the file system
1265 		 * is mounted read-only - we cannot format it.
1266 		 */
1267 		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1268 			  c->ro_media ? "UBI volume" : "mount");
1269 		err = -EROFS;
1270 		goto out_free;
1271 	}
1272 
1273 	if (c->ro_media && !c->ro_mount) {
1274 		ubifs_err(c, "cannot mount read-write - read-only media");
1275 		err = -EROFS;
1276 		goto out_free;
1277 	}
1278 
1279 	/*
1280 	 * The requirement for the buffer is that it should fit indexing B-tree
1281 	 * height amount of integers. We assume the height if the TNC tree will
1282 	 * never exceed 64.
1283 	 */
1284 	err = -ENOMEM;
1285 	c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1286 					 GFP_KERNEL);
1287 	if (!c->bottom_up_buf)
1288 		goto out_free;
1289 
1290 	c->sbuf = vmalloc(c->leb_size);
1291 	if (!c->sbuf)
1292 		goto out_free;
1293 
1294 	if (!c->ro_mount) {
1295 		c->ileb_buf = vmalloc(c->leb_size);
1296 		if (!c->ileb_buf)
1297 			goto out_free;
1298 	}
1299 
1300 	if (c->bulk_read == 1)
1301 		bu_init(c);
1302 
1303 	if (!c->ro_mount) {
1304 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1305 					       UBIFS_CIPHER_BLOCK_SIZE,
1306 					       GFP_KERNEL);
1307 		if (!c->write_reserve_buf)
1308 			goto out_free;
1309 	}
1310 
1311 	c->mounting = 1;
1312 
1313 	if (c->auth_key_name) {
1314 		if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1315 			err = ubifs_init_authentication(c);
1316 			if (err)
1317 				goto out_free;
1318 		} else {
1319 			ubifs_err(c, "auth_key_name, but UBIFS is built without"
1320 				  " authentication support");
1321 			err = -EINVAL;
1322 			goto out_free;
1323 		}
1324 	}
1325 
1326 	err = ubifs_read_superblock(c);
1327 	if (err)
1328 		goto out_auth;
1329 
1330 	c->probing = 0;
1331 
1332 	/*
1333 	 * Make sure the compressor which is set as default in the superblock
1334 	 * or overridden by mount options is actually compiled in.
1335 	 */
1336 	if (!ubifs_compr_present(c, c->default_compr)) {
1337 		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1338 			  ubifs_compr_name(c, c->default_compr));
1339 		err = -ENOTSUPP;
1340 		goto out_auth;
1341 	}
1342 
1343 	err = init_constants_sb(c);
1344 	if (err)
1345 		goto out_auth;
1346 
1347 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1348 	c->cbuf = kmalloc(sz, GFP_NOFS);
1349 	if (!c->cbuf) {
1350 		err = -ENOMEM;
1351 		goto out_auth;
1352 	}
1353 
1354 	err = alloc_wbufs(c);
1355 	if (err)
1356 		goto out_cbuf;
1357 
1358 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1359 	if (!c->ro_mount) {
1360 		/* Create background thread */
1361 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1362 		if (IS_ERR(c->bgt)) {
1363 			err = PTR_ERR(c->bgt);
1364 			c->bgt = NULL;
1365 			ubifs_err(c, "cannot spawn \"%s\", error %d",
1366 				  c->bgt_name, err);
1367 			goto out_wbufs;
1368 		}
1369 		wake_up_process(c->bgt);
1370 	}
1371 
1372 	err = ubifs_read_master(c);
1373 	if (err)
1374 		goto out_master;
1375 
1376 	init_constants_master(c);
1377 
1378 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1379 		ubifs_msg(c, "recovery needed");
1380 		c->need_recovery = 1;
1381 	}
1382 
1383 	if (c->need_recovery && !c->ro_mount) {
1384 		err = ubifs_recover_inl_heads(c, c->sbuf);
1385 		if (err)
1386 			goto out_master;
1387 	}
1388 
1389 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1390 	if (err)
1391 		goto out_master;
1392 
1393 	if (!c->ro_mount && c->space_fixup) {
1394 		err = ubifs_fixup_free_space(c);
1395 		if (err)
1396 			goto out_lpt;
1397 	}
1398 
1399 	if (!c->ro_mount && !c->need_recovery) {
1400 		/*
1401 		 * Set the "dirty" flag so that if we reboot uncleanly we
1402 		 * will notice this immediately on the next mount.
1403 		 */
1404 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1405 		err = ubifs_write_master(c);
1406 		if (err)
1407 			goto out_lpt;
1408 	}
1409 
1410 	/*
1411 	 * Handle offline signed images: Now that the master node is
1412 	 * written and its validation no longer depends on the hash
1413 	 * in the superblock, we can update the offline signed
1414 	 * superblock with a HMAC version,
1415 	 */
1416 	if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1417 		err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1418 		if (err)
1419 			goto out_lpt;
1420 		c->superblock_need_write = 1;
1421 	}
1422 
1423 	if (!c->ro_mount && c->superblock_need_write) {
1424 		err = ubifs_write_sb_node(c, c->sup_node);
1425 		if (err)
1426 			goto out_lpt;
1427 		c->superblock_need_write = 0;
1428 	}
1429 
1430 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1431 	if (err)
1432 		goto out_lpt;
1433 
1434 	err = ubifs_replay_journal(c);
1435 	if (err)
1436 		goto out_journal;
1437 
1438 	/* Calculate 'min_idx_lebs' after journal replay */
1439 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1440 
1441 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1442 	if (err)
1443 		goto out_orphans;
1444 
1445 	if (!c->ro_mount) {
1446 		int lnum;
1447 
1448 		err = check_free_space(c);
1449 		if (err)
1450 			goto out_orphans;
1451 
1452 		/* Check for enough log space */
1453 		lnum = c->lhead_lnum + 1;
1454 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1455 			lnum = UBIFS_LOG_LNUM;
1456 		if (lnum == c->ltail_lnum) {
1457 			err = ubifs_consolidate_log(c);
1458 			if (err)
1459 				goto out_orphans;
1460 		}
1461 
1462 		if (c->need_recovery) {
1463 			if (!ubifs_authenticated(c)) {
1464 				err = ubifs_recover_size(c, true);
1465 				if (err)
1466 					goto out_orphans;
1467 			}
1468 
1469 			err = ubifs_rcvry_gc_commit(c);
1470 			if (err)
1471 				goto out_orphans;
1472 
1473 			if (ubifs_authenticated(c)) {
1474 				err = ubifs_recover_size(c, false);
1475 				if (err)
1476 					goto out_orphans;
1477 			}
1478 		} else {
1479 			err = take_gc_lnum(c);
1480 			if (err)
1481 				goto out_orphans;
1482 
1483 			/*
1484 			 * GC LEB may contain garbage if there was an unclean
1485 			 * reboot, and it should be un-mapped.
1486 			 */
1487 			err = ubifs_leb_unmap(c, c->gc_lnum);
1488 			if (err)
1489 				goto out_orphans;
1490 		}
1491 
1492 		err = dbg_check_lprops(c);
1493 		if (err)
1494 			goto out_orphans;
1495 	} else if (c->need_recovery) {
1496 		err = ubifs_recover_size(c, false);
1497 		if (err)
1498 			goto out_orphans;
1499 	} else {
1500 		/*
1501 		 * Even if we mount read-only, we have to set space in GC LEB
1502 		 * to proper value because this affects UBIFS free space
1503 		 * reporting. We do not want to have a situation when
1504 		 * re-mounting from R/O to R/W changes amount of free space.
1505 		 */
1506 		err = take_gc_lnum(c);
1507 		if (err)
1508 			goto out_orphans;
1509 	}
1510 
1511 	spin_lock(&ubifs_infos_lock);
1512 	list_add_tail(&c->infos_list, &ubifs_infos);
1513 	spin_unlock(&ubifs_infos_lock);
1514 
1515 	if (c->need_recovery) {
1516 		if (c->ro_mount)
1517 			ubifs_msg(c, "recovery deferred");
1518 		else {
1519 			c->need_recovery = 0;
1520 			ubifs_msg(c, "recovery completed");
1521 			/*
1522 			 * GC LEB has to be empty and taken at this point. But
1523 			 * the journal head LEBs may also be accounted as
1524 			 * "empty taken" if they are empty.
1525 			 */
1526 			ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1527 		}
1528 	} else
1529 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1530 
1531 	err = dbg_check_filesystem(c);
1532 	if (err)
1533 		goto out_infos;
1534 
1535 	dbg_debugfs_init_fs(c);
1536 
1537 	c->mounting = 0;
1538 
1539 	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1540 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1541 		  c->ro_mount ? ", R/O mode" : "");
1542 	x = (long long)c->main_lebs * c->leb_size;
1543 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1544 	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1545 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1546 		  c->max_write_size);
1547 	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1548 		  x, x >> 20, c->main_lebs,
1549 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1550 	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1551 		  c->report_rp_size, c->report_rp_size >> 10);
1552 	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1553 		  c->fmt_version, c->ro_compat_version,
1554 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1555 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1556 
1557 	dbg_gen("default compressor:  %s", ubifs_compr_name(c, c->default_compr));
1558 	dbg_gen("data journal heads:  %d",
1559 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1560 	dbg_gen("log LEBs:            %d (%d - %d)",
1561 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1562 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1563 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1564 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1565 		c->orph_lebs, c->orph_first, c->orph_last);
1566 	dbg_gen("main area LEBs:      %d (%d - %d)",
1567 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1568 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1569 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1570 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1571 		c->bi.old_idx_sz >> 20);
1572 	dbg_gen("key hash type:       %d", c->key_hash_type);
1573 	dbg_gen("tree fanout:         %d", c->fanout);
1574 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1575 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1576 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1577 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1578 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1579 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1580 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1581 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1582 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1583 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1584 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1585 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1586 	dbg_gen("dead watermark:      %d", c->dead_wm);
1587 	dbg_gen("dark watermark:      %d", c->dark_wm);
1588 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1589 	x = (long long)c->main_lebs * c->dark_wm;
1590 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1591 		x, x >> 10, x >> 20);
1592 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1593 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1594 		c->max_bud_bytes >> 20);
1595 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1596 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1597 		c->bg_bud_bytes >> 20);
1598 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1599 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1600 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1601 	dbg_gen("commit number:       %llu", c->cmt_no);
1602 	dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1603 	dbg_gen("max orphans:           %d", c->max_orphans);
1604 
1605 	return 0;
1606 
1607 out_infos:
1608 	spin_lock(&ubifs_infos_lock);
1609 	list_del(&c->infos_list);
1610 	spin_unlock(&ubifs_infos_lock);
1611 out_orphans:
1612 	free_orphans(c);
1613 out_journal:
1614 	destroy_journal(c);
1615 out_lpt:
1616 	ubifs_lpt_free(c, 0);
1617 out_master:
1618 	kfree(c->mst_node);
1619 	kfree(c->rcvrd_mst_node);
1620 	if (c->bgt)
1621 		kthread_stop(c->bgt);
1622 out_wbufs:
1623 	free_wbufs(c);
1624 out_cbuf:
1625 	kfree(c->cbuf);
1626 out_auth:
1627 	ubifs_exit_authentication(c);
1628 out_free:
1629 	kfree(c->write_reserve_buf);
1630 	kfree(c->bu.buf);
1631 	vfree(c->ileb_buf);
1632 	vfree(c->sbuf);
1633 	kfree(c->bottom_up_buf);
1634 	kfree(c->sup_node);
1635 	ubifs_debugging_exit(c);
1636 	return err;
1637 }
1638 
1639 /**
1640  * ubifs_umount - un-mount UBIFS file-system.
1641  * @c: UBIFS file-system description object
1642  *
1643  * Note, this function is called to free allocated resourced when un-mounting,
1644  * as well as free resources when an error occurred while we were half way
1645  * through mounting (error path cleanup function). So it has to make sure the
1646  * resource was actually allocated before freeing it.
1647  */
ubifs_umount(struct ubifs_info * c)1648 static void ubifs_umount(struct ubifs_info *c)
1649 {
1650 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1651 		c->vi.vol_id);
1652 
1653 	dbg_debugfs_exit_fs(c);
1654 	spin_lock(&ubifs_infos_lock);
1655 	list_del(&c->infos_list);
1656 	spin_unlock(&ubifs_infos_lock);
1657 
1658 	if (c->bgt)
1659 		kthread_stop(c->bgt);
1660 
1661 	destroy_journal(c);
1662 	free_wbufs(c);
1663 	free_orphans(c);
1664 	ubifs_lpt_free(c, 0);
1665 	ubifs_exit_authentication(c);
1666 
1667 	ubifs_release_options(c);
1668 	kfree(c->cbuf);
1669 	kfree(c->rcvrd_mst_node);
1670 	kfree(c->mst_node);
1671 	kfree(c->write_reserve_buf);
1672 	kfree(c->bu.buf);
1673 	vfree(c->ileb_buf);
1674 	vfree(c->sbuf);
1675 	kfree(c->bottom_up_buf);
1676 	kfree(c->sup_node);
1677 	ubifs_debugging_exit(c);
1678 }
1679 
1680 /**
1681  * ubifs_remount_rw - re-mount in read-write mode.
1682  * @c: UBIFS file-system description object
1683  *
1684  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1685  * mode. This function allocates the needed resources and re-mounts UBIFS in
1686  * read-write mode.
1687  */
ubifs_remount_rw(struct ubifs_info * c)1688 static int ubifs_remount_rw(struct ubifs_info *c)
1689 {
1690 	int err, lnum;
1691 
1692 	if (c->rw_incompat) {
1693 		ubifs_err(c, "the file-system is not R/W-compatible");
1694 		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1695 			  c->fmt_version, c->ro_compat_version,
1696 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1697 		return -EROFS;
1698 	}
1699 
1700 	mutex_lock(&c->umount_mutex);
1701 	dbg_save_space_info(c);
1702 	c->remounting_rw = 1;
1703 	c->ro_mount = 0;
1704 
1705 	if (c->space_fixup) {
1706 		err = ubifs_fixup_free_space(c);
1707 		if (err)
1708 			goto out;
1709 	}
1710 
1711 	err = check_free_space(c);
1712 	if (err)
1713 		goto out;
1714 
1715 	if (c->need_recovery) {
1716 		ubifs_msg(c, "completing deferred recovery");
1717 		err = ubifs_write_rcvrd_mst_node(c);
1718 		if (err)
1719 			goto out;
1720 		if (!ubifs_authenticated(c)) {
1721 			err = ubifs_recover_size(c, true);
1722 			if (err)
1723 				goto out;
1724 		}
1725 		err = ubifs_clean_lebs(c, c->sbuf);
1726 		if (err)
1727 			goto out;
1728 		err = ubifs_recover_inl_heads(c, c->sbuf);
1729 		if (err)
1730 			goto out;
1731 	} else {
1732 		/* A readonly mount is not allowed to have orphans */
1733 		ubifs_assert(c, c->tot_orphans == 0);
1734 		err = ubifs_clear_orphans(c);
1735 		if (err)
1736 			goto out;
1737 	}
1738 
1739 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1740 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1741 		err = ubifs_write_master(c);
1742 		if (err)
1743 			goto out;
1744 	}
1745 
1746 	if (c->superblock_need_write) {
1747 		struct ubifs_sb_node *sup = c->sup_node;
1748 
1749 		err = ubifs_write_sb_node(c, sup);
1750 		if (err)
1751 			goto out;
1752 
1753 		c->superblock_need_write = 0;
1754 	}
1755 
1756 	c->ileb_buf = vmalloc(c->leb_size);
1757 	if (!c->ileb_buf) {
1758 		err = -ENOMEM;
1759 		goto out;
1760 	}
1761 
1762 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1763 				       UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1764 	if (!c->write_reserve_buf) {
1765 		err = -ENOMEM;
1766 		goto out;
1767 	}
1768 
1769 	err = ubifs_lpt_init(c, 0, 1);
1770 	if (err)
1771 		goto out;
1772 
1773 	/* Create background thread */
1774 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1775 	if (IS_ERR(c->bgt)) {
1776 		err = PTR_ERR(c->bgt);
1777 		c->bgt = NULL;
1778 		ubifs_err(c, "cannot spawn \"%s\", error %d",
1779 			  c->bgt_name, err);
1780 		goto out;
1781 	}
1782 	wake_up_process(c->bgt);
1783 
1784 	c->orph_buf = vmalloc(c->leb_size);
1785 	if (!c->orph_buf) {
1786 		err = -ENOMEM;
1787 		goto out;
1788 	}
1789 
1790 	/* Check for enough log space */
1791 	lnum = c->lhead_lnum + 1;
1792 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1793 		lnum = UBIFS_LOG_LNUM;
1794 	if (lnum == c->ltail_lnum) {
1795 		err = ubifs_consolidate_log(c);
1796 		if (err)
1797 			goto out;
1798 	}
1799 
1800 	if (c->need_recovery) {
1801 		err = ubifs_rcvry_gc_commit(c);
1802 		if (err)
1803 			goto out;
1804 
1805 		if (ubifs_authenticated(c)) {
1806 			err = ubifs_recover_size(c, false);
1807 			if (err)
1808 				goto out;
1809 		}
1810 	} else {
1811 		err = ubifs_leb_unmap(c, c->gc_lnum);
1812 	}
1813 	if (err)
1814 		goto out;
1815 
1816 	dbg_gen("re-mounted read-write");
1817 	c->remounting_rw = 0;
1818 
1819 	if (c->need_recovery) {
1820 		c->need_recovery = 0;
1821 		ubifs_msg(c, "deferred recovery completed");
1822 	} else {
1823 		/*
1824 		 * Do not run the debugging space check if the were doing
1825 		 * recovery, because when we saved the information we had the
1826 		 * file-system in a state where the TNC and lprops has been
1827 		 * modified in memory, but all the I/O operations (including a
1828 		 * commit) were deferred. So the file-system was in
1829 		 * "non-committed" state. Now the file-system is in committed
1830 		 * state, and of course the amount of free space will change
1831 		 * because, for example, the old index size was imprecise.
1832 		 */
1833 		err = dbg_check_space_info(c);
1834 	}
1835 
1836 	mutex_unlock(&c->umount_mutex);
1837 	return err;
1838 
1839 out:
1840 	c->ro_mount = 1;
1841 	vfree(c->orph_buf);
1842 	c->orph_buf = NULL;
1843 	if (c->bgt) {
1844 		kthread_stop(c->bgt);
1845 		c->bgt = NULL;
1846 	}
1847 	kfree(c->write_reserve_buf);
1848 	c->write_reserve_buf = NULL;
1849 	vfree(c->ileb_buf);
1850 	c->ileb_buf = NULL;
1851 	ubifs_lpt_free(c, 1);
1852 	c->remounting_rw = 0;
1853 	mutex_unlock(&c->umount_mutex);
1854 	return err;
1855 }
1856 
1857 /**
1858  * ubifs_remount_ro - re-mount in read-only mode.
1859  * @c: UBIFS file-system description object
1860  *
1861  * We assume VFS has stopped writing. Possibly the background thread could be
1862  * running a commit, however kthread_stop will wait in that case.
1863  */
ubifs_remount_ro(struct ubifs_info * c)1864 static void ubifs_remount_ro(struct ubifs_info *c)
1865 {
1866 	int i, err;
1867 
1868 	ubifs_assert(c, !c->need_recovery);
1869 	ubifs_assert(c, !c->ro_mount);
1870 
1871 	mutex_lock(&c->umount_mutex);
1872 	if (c->bgt) {
1873 		kthread_stop(c->bgt);
1874 		c->bgt = NULL;
1875 	}
1876 
1877 	dbg_save_space_info(c);
1878 
1879 	for (i = 0; i < c->jhead_cnt; i++) {
1880 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1881 		if (err)
1882 			ubifs_ro_mode(c, err);
1883 	}
1884 
1885 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1886 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1887 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1888 	err = ubifs_write_master(c);
1889 	if (err)
1890 		ubifs_ro_mode(c, err);
1891 
1892 	vfree(c->orph_buf);
1893 	c->orph_buf = NULL;
1894 	kfree(c->write_reserve_buf);
1895 	c->write_reserve_buf = NULL;
1896 	vfree(c->ileb_buf);
1897 	c->ileb_buf = NULL;
1898 	ubifs_lpt_free(c, 1);
1899 	c->ro_mount = 1;
1900 	err = dbg_check_space_info(c);
1901 	if (err)
1902 		ubifs_ro_mode(c, err);
1903 	mutex_unlock(&c->umount_mutex);
1904 }
1905 
ubifs_put_super(struct super_block * sb)1906 static void ubifs_put_super(struct super_block *sb)
1907 {
1908 	int i;
1909 	struct ubifs_info *c = sb->s_fs_info;
1910 
1911 	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1912 
1913 	/*
1914 	 * The following asserts are only valid if there has not been a failure
1915 	 * of the media. For example, there will be dirty inodes if we failed
1916 	 * to write them back because of I/O errors.
1917 	 */
1918 	if (!c->ro_error) {
1919 		ubifs_assert(c, c->bi.idx_growth == 0);
1920 		ubifs_assert(c, c->bi.dd_growth == 0);
1921 		ubifs_assert(c, c->bi.data_growth == 0);
1922 	}
1923 
1924 	/*
1925 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1926 	 * and file system un-mount. Namely, it prevents the shrinker from
1927 	 * picking this superblock for shrinking - it will be just skipped if
1928 	 * the mutex is locked.
1929 	 */
1930 	mutex_lock(&c->umount_mutex);
1931 	if (!c->ro_mount) {
1932 		/*
1933 		 * First of all kill the background thread to make sure it does
1934 		 * not interfere with un-mounting and freeing resources.
1935 		 */
1936 		if (c->bgt) {
1937 			kthread_stop(c->bgt);
1938 			c->bgt = NULL;
1939 		}
1940 
1941 		/*
1942 		 * On fatal errors c->ro_error is set to 1, in which case we do
1943 		 * not write the master node.
1944 		 */
1945 		if (!c->ro_error) {
1946 			int err;
1947 
1948 			/* Synchronize write-buffers */
1949 			for (i = 0; i < c->jhead_cnt; i++) {
1950 				err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1951 				if (err)
1952 					ubifs_ro_mode(c, err);
1953 			}
1954 
1955 			/*
1956 			 * We are being cleanly unmounted which means the
1957 			 * orphans were killed - indicate this in the master
1958 			 * node. Also save the reserved GC LEB number.
1959 			 */
1960 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1961 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1962 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1963 			err = ubifs_write_master(c);
1964 			if (err)
1965 				/*
1966 				 * Recovery will attempt to fix the master area
1967 				 * next mount, so we just print a message and
1968 				 * continue to unmount normally.
1969 				 */
1970 				ubifs_err(c, "failed to write master node, error %d",
1971 					  err);
1972 		} else {
1973 			for (i = 0; i < c->jhead_cnt; i++)
1974 				/* Make sure write-buffer timers are canceled */
1975 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1976 		}
1977 	}
1978 
1979 	ubifs_umount(c);
1980 	ubi_close_volume(c->ubi);
1981 	mutex_unlock(&c->umount_mutex);
1982 }
1983 
ubifs_remount_fs(struct super_block * sb,int * flags,char * data)1984 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1985 {
1986 	int err;
1987 	struct ubifs_info *c = sb->s_fs_info;
1988 
1989 	sync_filesystem(sb);
1990 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1991 
1992 	err = ubifs_parse_options(c, data, 1);
1993 	if (err) {
1994 		ubifs_err(c, "invalid or unknown remount parameter");
1995 		return err;
1996 	}
1997 
1998 	if (c->ro_mount && !(*flags & SB_RDONLY)) {
1999 		if (c->ro_error) {
2000 			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2001 			return -EROFS;
2002 		}
2003 		if (c->ro_media) {
2004 			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2005 			return -EROFS;
2006 		}
2007 		err = ubifs_remount_rw(c);
2008 		if (err)
2009 			return err;
2010 	} else if (!c->ro_mount && (*flags & SB_RDONLY)) {
2011 		if (c->ro_error) {
2012 			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2013 			return -EROFS;
2014 		}
2015 		ubifs_remount_ro(c);
2016 	}
2017 
2018 	if (c->bulk_read == 1)
2019 		bu_init(c);
2020 	else {
2021 		dbg_gen("disable bulk-read");
2022 		mutex_lock(&c->bu_mutex);
2023 		kfree(c->bu.buf);
2024 		c->bu.buf = NULL;
2025 		mutex_unlock(&c->bu_mutex);
2026 	}
2027 
2028 	if (!c->need_recovery)
2029 		ubifs_assert(c, c->lst.taken_empty_lebs > 0);
2030 
2031 	return 0;
2032 }
2033 
2034 const struct super_operations ubifs_super_operations = {
2035 	.alloc_inode   = ubifs_alloc_inode,
2036 	.free_inode    = ubifs_free_inode,
2037 	.put_super     = ubifs_put_super,
2038 	.write_inode   = ubifs_write_inode,
2039 	.drop_inode    = ubifs_drop_inode,
2040 	.evict_inode   = ubifs_evict_inode,
2041 	.statfs        = ubifs_statfs,
2042 	.dirty_inode   = ubifs_dirty_inode,
2043 	.remount_fs    = ubifs_remount_fs,
2044 	.show_options  = ubifs_show_options,
2045 	.sync_fs       = ubifs_sync_fs,
2046 };
2047 
2048 /**
2049  * open_ubi - parse UBI device name string and open the UBI device.
2050  * @name: UBI volume name
2051  * @mode: UBI volume open mode
2052  *
2053  * The primary method of mounting UBIFS is by specifying the UBI volume
2054  * character device node path. However, UBIFS may also be mounted withoug any
2055  * character device node using one of the following methods:
2056  *
2057  * o ubiX_Y    - mount UBI device number X, volume Y;
2058  * o ubiY      - mount UBI device number 0, volume Y;
2059  * o ubiX:NAME - mount UBI device X, volume with name NAME;
2060  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2061  *
2062  * Alternative '!' separator may be used instead of ':' (because some shells
2063  * like busybox may interpret ':' as an NFS host name separator). This function
2064  * returns UBI volume description object in case of success and a negative
2065  * error code in case of failure.
2066  */
open_ubi(const char * name,int mode)2067 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2068 {
2069 	struct ubi_volume_desc *ubi;
2070 	int dev, vol;
2071 	char *endptr;
2072 
2073 	if (!name || !*name)
2074 		return ERR_PTR(-EINVAL);
2075 
2076 	/* First, try to open using the device node path method */
2077 	ubi = ubi_open_volume_path(name, mode);
2078 	if (!IS_ERR(ubi))
2079 		return ubi;
2080 
2081 	/* Try the "nodev" method */
2082 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2083 		return ERR_PTR(-EINVAL);
2084 
2085 	/* ubi:NAME method */
2086 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2087 		return ubi_open_volume_nm(0, name + 4, mode);
2088 
2089 	if (!isdigit(name[3]))
2090 		return ERR_PTR(-EINVAL);
2091 
2092 	dev = simple_strtoul(name + 3, &endptr, 0);
2093 
2094 	/* ubiY method */
2095 	if (*endptr == '\0')
2096 		return ubi_open_volume(0, dev, mode);
2097 
2098 	/* ubiX_Y method */
2099 	if (*endptr == '_' && isdigit(endptr[1])) {
2100 		vol = simple_strtoul(endptr + 1, &endptr, 0);
2101 		if (*endptr != '\0')
2102 			return ERR_PTR(-EINVAL);
2103 		return ubi_open_volume(dev, vol, mode);
2104 	}
2105 
2106 	/* ubiX:NAME method */
2107 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2108 		return ubi_open_volume_nm(dev, ++endptr, mode);
2109 
2110 	return ERR_PTR(-EINVAL);
2111 }
2112 
alloc_ubifs_info(struct ubi_volume_desc * ubi)2113 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2114 {
2115 	struct ubifs_info *c;
2116 
2117 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2118 	if (c) {
2119 		spin_lock_init(&c->cnt_lock);
2120 		spin_lock_init(&c->cs_lock);
2121 		spin_lock_init(&c->buds_lock);
2122 		spin_lock_init(&c->space_lock);
2123 		spin_lock_init(&c->orphan_lock);
2124 		init_rwsem(&c->commit_sem);
2125 		mutex_init(&c->lp_mutex);
2126 		mutex_init(&c->tnc_mutex);
2127 		mutex_init(&c->log_mutex);
2128 		mutex_init(&c->umount_mutex);
2129 		mutex_init(&c->bu_mutex);
2130 		mutex_init(&c->write_reserve_mutex);
2131 		init_waitqueue_head(&c->cmt_wq);
2132 		c->buds = RB_ROOT;
2133 		c->old_idx = RB_ROOT;
2134 		c->size_tree = RB_ROOT;
2135 		c->orph_tree = RB_ROOT;
2136 		INIT_LIST_HEAD(&c->infos_list);
2137 		INIT_LIST_HEAD(&c->idx_gc);
2138 		INIT_LIST_HEAD(&c->replay_list);
2139 		INIT_LIST_HEAD(&c->replay_buds);
2140 		INIT_LIST_HEAD(&c->uncat_list);
2141 		INIT_LIST_HEAD(&c->empty_list);
2142 		INIT_LIST_HEAD(&c->freeable_list);
2143 		INIT_LIST_HEAD(&c->frdi_idx_list);
2144 		INIT_LIST_HEAD(&c->unclean_leb_list);
2145 		INIT_LIST_HEAD(&c->old_buds);
2146 		INIT_LIST_HEAD(&c->orph_list);
2147 		INIT_LIST_HEAD(&c->orph_new);
2148 		c->no_chk_data_crc = 1;
2149 		c->assert_action = ASSACT_RO;
2150 
2151 		c->highest_inum = UBIFS_FIRST_INO;
2152 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2153 
2154 		ubi_get_volume_info(ubi, &c->vi);
2155 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2156 	}
2157 	return c;
2158 }
2159 
ubifs_fill_super(struct super_block * sb,void * data,int silent)2160 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2161 {
2162 	struct ubifs_info *c = sb->s_fs_info;
2163 	struct inode *root;
2164 	int err;
2165 
2166 	c->vfs_sb = sb;
2167 	/* Re-open the UBI device in read-write mode */
2168 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2169 	if (IS_ERR(c->ubi)) {
2170 		err = PTR_ERR(c->ubi);
2171 		goto out;
2172 	}
2173 
2174 	err = ubifs_parse_options(c, data, 0);
2175 	if (err)
2176 		goto out_close;
2177 
2178 	/*
2179 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2180 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2181 	 * which means the user would have to wait not just for their own I/O
2182 	 * but the read-ahead I/O as well i.e. completely pointless.
2183 	 *
2184 	 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2185 	 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2186 	 * writeback happening.
2187 	 */
2188 	err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2189 				   c->vi.vol_id);
2190 	if (err)
2191 		goto out_close;
2192 
2193 	sb->s_fs_info = c;
2194 	sb->s_magic = UBIFS_SUPER_MAGIC;
2195 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2196 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2197 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2198 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2199 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2200 	sb->s_op = &ubifs_super_operations;
2201 #ifdef CONFIG_UBIFS_FS_XATTR
2202 	sb->s_xattr = ubifs_xattr_handlers;
2203 #endif
2204 	fscrypt_set_ops(sb, &ubifs_crypt_operations);
2205 
2206 	mutex_lock(&c->umount_mutex);
2207 	err = mount_ubifs(c);
2208 	if (err) {
2209 		ubifs_assert(c, err < 0);
2210 		goto out_unlock;
2211 	}
2212 
2213 	/* Read the root inode */
2214 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2215 	if (IS_ERR(root)) {
2216 		err = PTR_ERR(root);
2217 		goto out_umount;
2218 	}
2219 
2220 	sb->s_root = d_make_root(root);
2221 	if (!sb->s_root) {
2222 		err = -ENOMEM;
2223 		goto out_umount;
2224 	}
2225 
2226 	mutex_unlock(&c->umount_mutex);
2227 	return 0;
2228 
2229 out_umount:
2230 	ubifs_umount(c);
2231 out_unlock:
2232 	mutex_unlock(&c->umount_mutex);
2233 out_close:
2234 	ubifs_release_options(c);
2235 	ubi_close_volume(c->ubi);
2236 out:
2237 	return err;
2238 }
2239 
sb_test(struct super_block * sb,void * data)2240 static int sb_test(struct super_block *sb, void *data)
2241 {
2242 	struct ubifs_info *c1 = data;
2243 	struct ubifs_info *c = sb->s_fs_info;
2244 
2245 	return c->vi.cdev == c1->vi.cdev;
2246 }
2247 
sb_set(struct super_block * sb,void * data)2248 static int sb_set(struct super_block *sb, void *data)
2249 {
2250 	sb->s_fs_info = data;
2251 	return set_anon_super(sb, NULL);
2252 }
2253 
ubifs_mount(struct file_system_type * fs_type,int flags,const char * name,void * data)2254 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2255 			const char *name, void *data)
2256 {
2257 	struct ubi_volume_desc *ubi;
2258 	struct ubifs_info *c;
2259 	struct super_block *sb;
2260 	int err;
2261 
2262 	dbg_gen("name %s, flags %#x", name, flags);
2263 
2264 	/*
2265 	 * Get UBI device number and volume ID. Mount it read-only so far
2266 	 * because this might be a new mount point, and UBI allows only one
2267 	 * read-write user at a time.
2268 	 */
2269 	ubi = open_ubi(name, UBI_READONLY);
2270 	if (IS_ERR(ubi)) {
2271 		if (!(flags & SB_SILENT))
2272 			pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2273 			       current->pid, name, (int)PTR_ERR(ubi));
2274 		return ERR_CAST(ubi);
2275 	}
2276 
2277 	c = alloc_ubifs_info(ubi);
2278 	if (!c) {
2279 		err = -ENOMEM;
2280 		goto out_close;
2281 	}
2282 
2283 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2284 
2285 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2286 	if (IS_ERR(sb)) {
2287 		err = PTR_ERR(sb);
2288 		kfree(c);
2289 		goto out_close;
2290 	}
2291 
2292 	if (sb->s_root) {
2293 		struct ubifs_info *c1 = sb->s_fs_info;
2294 		kfree(c);
2295 		/* A new mount point for already mounted UBIFS */
2296 		dbg_gen("this ubi volume is already mounted");
2297 		if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2298 			err = -EBUSY;
2299 			goto out_deact;
2300 		}
2301 	} else {
2302 		err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2303 		if (err)
2304 			goto out_deact;
2305 		/* We do not support atime */
2306 		sb->s_flags |= SB_ACTIVE;
2307 		if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2308 			ubifs_msg(c, "full atime support is enabled.");
2309 		else
2310 			sb->s_flags |= SB_NOATIME;
2311 	}
2312 
2313 	/* 'fill_super()' opens ubi again so we must close it here */
2314 	ubi_close_volume(ubi);
2315 
2316 	return dget(sb->s_root);
2317 
2318 out_deact:
2319 	deactivate_locked_super(sb);
2320 out_close:
2321 	ubi_close_volume(ubi);
2322 	return ERR_PTR(err);
2323 }
2324 
kill_ubifs_super(struct super_block * s)2325 static void kill_ubifs_super(struct super_block *s)
2326 {
2327 	struct ubifs_info *c = s->s_fs_info;
2328 	kill_anon_super(s);
2329 	kfree(c);
2330 }
2331 
2332 static struct file_system_type ubifs_fs_type = {
2333 	.name    = "ubifs",
2334 	.owner   = THIS_MODULE,
2335 	.mount   = ubifs_mount,
2336 	.kill_sb = kill_ubifs_super,
2337 };
2338 MODULE_ALIAS_FS("ubifs");
2339 
2340 /*
2341  * Inode slab cache constructor.
2342  */
inode_slab_ctor(void * obj)2343 static void inode_slab_ctor(void *obj)
2344 {
2345 	struct ubifs_inode *ui = obj;
2346 	inode_init_once(&ui->vfs_inode);
2347 }
2348 
ubifs_init(void)2349 static int __init ubifs_init(void)
2350 {
2351 	int err;
2352 
2353 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2354 
2355 	/* Make sure node sizes are 8-byte aligned */
2356 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2357 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2358 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2359 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2360 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2361 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2362 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2363 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2364 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2365 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2366 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2367 
2368 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2369 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2370 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2371 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2372 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2373 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2374 
2375 	/* Check min. node size */
2376 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2377 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2378 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2379 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2380 
2381 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2382 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2383 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2384 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2385 
2386 	/* Defined node sizes */
2387 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2388 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2389 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2390 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2391 
2392 	/*
2393 	 * We use 2 bit wide bit-fields to store compression type, which should
2394 	 * be amended if more compressors are added. The bit-fields are:
2395 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2396 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2397 	 */
2398 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2399 
2400 	/*
2401 	 * We require that PAGE_SIZE is greater-than-or-equal-to
2402 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2403 	 */
2404 	if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2405 		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2406 		       current->pid, (unsigned int)PAGE_SIZE);
2407 		return -EINVAL;
2408 	}
2409 
2410 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2411 				sizeof(struct ubifs_inode), 0,
2412 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2413 				SLAB_ACCOUNT, &inode_slab_ctor);
2414 	if (!ubifs_inode_slab)
2415 		return -ENOMEM;
2416 
2417 	err = register_shrinker(&ubifs_shrinker_info);
2418 	if (err)
2419 		goto out_slab;
2420 
2421 	err = ubifs_compressors_init();
2422 	if (err)
2423 		goto out_shrinker;
2424 
2425 	dbg_debugfs_init();
2426 
2427 	err = register_filesystem(&ubifs_fs_type);
2428 	if (err) {
2429 		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2430 		       current->pid, err);
2431 		goto out_dbg;
2432 	}
2433 	return 0;
2434 
2435 out_dbg:
2436 	dbg_debugfs_exit();
2437 	ubifs_compressors_exit();
2438 out_shrinker:
2439 	unregister_shrinker(&ubifs_shrinker_info);
2440 out_slab:
2441 	kmem_cache_destroy(ubifs_inode_slab);
2442 	return err;
2443 }
2444 /* late_initcall to let compressors initialize first */
2445 late_initcall(ubifs_init);
2446 
ubifs_exit(void)2447 static void __exit ubifs_exit(void)
2448 {
2449 	WARN_ON(!list_empty(&ubifs_infos));
2450 	WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2451 
2452 	dbg_debugfs_exit();
2453 	ubifs_compressors_exit();
2454 	unregister_shrinker(&ubifs_shrinker_info);
2455 
2456 	/*
2457 	 * Make sure all delayed rcu free inodes are flushed before we
2458 	 * destroy cache.
2459 	 */
2460 	rcu_barrier();
2461 	kmem_cache_destroy(ubifs_inode_slab);
2462 	unregister_filesystem(&ubifs_fs_type);
2463 }
2464 module_exit(ubifs_exit);
2465 
2466 MODULE_LICENSE("GPL");
2467 MODULE_VERSION(__stringify(UBIFS_VERSION));
2468 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2469 MODULE_DESCRIPTION("UBIFS - UBI File System");
2470