• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3  * (C) Copyright IBM Corp. 2001, 2004
4  * Copyright (c) 1999-2000 Cisco, Inc.
5  * Copyright (c) 1999-2001 Motorola, Inc.
6  * Copyright (c) 2001-2003 Intel Corp.
7  *
8  * This file is part of the SCTP kernel implementation
9  *
10  * These functions implement the sctp_outq class.   The outqueue handles
11  * bundling and queueing of outgoing SCTP chunks.
12  *
13  * Please send any bug reports or fixes you make to the
14  * email address(es):
15  *    lksctp developers <linux-sctp@vger.kernel.org>
16  *
17  * Written or modified by:
18  *    La Monte H.P. Yarroll <piggy@acm.org>
19  *    Karl Knutson          <karl@athena.chicago.il.us>
20  *    Perry Melange         <pmelange@null.cc.uic.edu>
21  *    Xingang Guo           <xingang.guo@intel.com>
22  *    Hui Huang 	    <hui.huang@nokia.com>
23  *    Sridhar Samudrala     <sri@us.ibm.com>
24  *    Jon Grimm             <jgrimm@us.ibm.com>
25  */
26 
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28 
29 #include <linux/types.h>
30 #include <linux/list.h>   /* For struct list_head */
31 #include <linux/socket.h>
32 #include <linux/ip.h>
33 #include <linux/slab.h>
34 #include <net/sock.h>	  /* For skb_set_owner_w */
35 
36 #include <net/sctp/sctp.h>
37 #include <net/sctp/sm.h>
38 #include <net/sctp/stream_sched.h>
39 #include <trace/events/sctp.h>
40 
41 /* Declare internal functions here.  */
42 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
43 static void sctp_check_transmitted(struct sctp_outq *q,
44 				   struct list_head *transmitted_queue,
45 				   struct sctp_transport *transport,
46 				   union sctp_addr *saddr,
47 				   struct sctp_sackhdr *sack,
48 				   __u32 *highest_new_tsn);
49 
50 static void sctp_mark_missing(struct sctp_outq *q,
51 			      struct list_head *transmitted_queue,
52 			      struct sctp_transport *transport,
53 			      __u32 highest_new_tsn,
54 			      int count_of_newacks);
55 
56 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp);
57 
58 /* Add data to the front of the queue. */
sctp_outq_head_data(struct sctp_outq * q,struct sctp_chunk * ch)59 static inline void sctp_outq_head_data(struct sctp_outq *q,
60 				       struct sctp_chunk *ch)
61 {
62 	struct sctp_stream_out_ext *oute;
63 	__u16 stream;
64 
65 	list_add(&ch->list, &q->out_chunk_list);
66 	q->out_qlen += ch->skb->len;
67 
68 	stream = sctp_chunk_stream_no(ch);
69 	oute = SCTP_SO(&q->asoc->stream, stream)->ext;
70 	list_add(&ch->stream_list, &oute->outq);
71 }
72 
73 /* Take data from the front of the queue. */
sctp_outq_dequeue_data(struct sctp_outq * q)74 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
75 {
76 	return q->sched->dequeue(q);
77 }
78 
79 /* Add data chunk to the end of the queue. */
sctp_outq_tail_data(struct sctp_outq * q,struct sctp_chunk * ch)80 static inline void sctp_outq_tail_data(struct sctp_outq *q,
81 				       struct sctp_chunk *ch)
82 {
83 	struct sctp_stream_out_ext *oute;
84 	__u16 stream;
85 
86 	list_add_tail(&ch->list, &q->out_chunk_list);
87 	q->out_qlen += ch->skb->len;
88 
89 	stream = sctp_chunk_stream_no(ch);
90 	oute = SCTP_SO(&q->asoc->stream, stream)->ext;
91 	list_add_tail(&ch->stream_list, &oute->outq);
92 }
93 
94 /*
95  * SFR-CACC algorithm:
96  * D) If count_of_newacks is greater than or equal to 2
97  * and t was not sent to the current primary then the
98  * sender MUST NOT increment missing report count for t.
99  */
sctp_cacc_skip_3_1_d(struct sctp_transport * primary,struct sctp_transport * transport,int count_of_newacks)100 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
101 				       struct sctp_transport *transport,
102 				       int count_of_newacks)
103 {
104 	if (count_of_newacks >= 2 && transport != primary)
105 		return 1;
106 	return 0;
107 }
108 
109 /*
110  * SFR-CACC algorithm:
111  * F) If count_of_newacks is less than 2, let d be the
112  * destination to which t was sent. If cacc_saw_newack
113  * is 0 for destination d, then the sender MUST NOT
114  * increment missing report count for t.
115  */
sctp_cacc_skip_3_1_f(struct sctp_transport * transport,int count_of_newacks)116 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
117 				       int count_of_newacks)
118 {
119 	if (count_of_newacks < 2 &&
120 			(transport && !transport->cacc.cacc_saw_newack))
121 		return 1;
122 	return 0;
123 }
124 
125 /*
126  * SFR-CACC algorithm:
127  * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
128  * execute steps C, D, F.
129  *
130  * C has been implemented in sctp_outq_sack
131  */
sctp_cacc_skip_3_1(struct sctp_transport * primary,struct sctp_transport * transport,int count_of_newacks)132 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
133 				     struct sctp_transport *transport,
134 				     int count_of_newacks)
135 {
136 	if (!primary->cacc.cycling_changeover) {
137 		if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
138 			return 1;
139 		if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
140 			return 1;
141 		return 0;
142 	}
143 	return 0;
144 }
145 
146 /*
147  * SFR-CACC algorithm:
148  * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
149  * than next_tsn_at_change of the current primary, then
150  * the sender MUST NOT increment missing report count
151  * for t.
152  */
sctp_cacc_skip_3_2(struct sctp_transport * primary,__u32 tsn)153 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
154 {
155 	if (primary->cacc.cycling_changeover &&
156 	    TSN_lt(tsn, primary->cacc.next_tsn_at_change))
157 		return 1;
158 	return 0;
159 }
160 
161 /*
162  * SFR-CACC algorithm:
163  * 3) If the missing report count for TSN t is to be
164  * incremented according to [RFC2960] and
165  * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
166  * then the sender MUST further execute steps 3.1 and
167  * 3.2 to determine if the missing report count for
168  * TSN t SHOULD NOT be incremented.
169  *
170  * 3.3) If 3.1 and 3.2 do not dictate that the missing
171  * report count for t should not be incremented, then
172  * the sender SHOULD increment missing report count for
173  * t (according to [RFC2960] and [SCTP_STEWART_2002]).
174  */
sctp_cacc_skip(struct sctp_transport * primary,struct sctp_transport * transport,int count_of_newacks,__u32 tsn)175 static inline int sctp_cacc_skip(struct sctp_transport *primary,
176 				 struct sctp_transport *transport,
177 				 int count_of_newacks,
178 				 __u32 tsn)
179 {
180 	if (primary->cacc.changeover_active &&
181 	    (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
182 	     sctp_cacc_skip_3_2(primary, tsn)))
183 		return 1;
184 	return 0;
185 }
186 
187 /* Initialize an existing sctp_outq.  This does the boring stuff.
188  * You still need to define handlers if you really want to DO
189  * something with this structure...
190  */
sctp_outq_init(struct sctp_association * asoc,struct sctp_outq * q)191 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
192 {
193 	memset(q, 0, sizeof(struct sctp_outq));
194 
195 	q->asoc = asoc;
196 	INIT_LIST_HEAD(&q->out_chunk_list);
197 	INIT_LIST_HEAD(&q->control_chunk_list);
198 	INIT_LIST_HEAD(&q->retransmit);
199 	INIT_LIST_HEAD(&q->sacked);
200 	INIT_LIST_HEAD(&q->abandoned);
201 	sctp_sched_set_sched(asoc, sctp_sk(asoc->base.sk)->default_ss);
202 }
203 
204 /* Free the outqueue structure and any related pending chunks.
205  */
__sctp_outq_teardown(struct sctp_outq * q)206 static void __sctp_outq_teardown(struct sctp_outq *q)
207 {
208 	struct sctp_transport *transport;
209 	struct list_head *lchunk, *temp;
210 	struct sctp_chunk *chunk, *tmp;
211 
212 	/* Throw away unacknowledged chunks. */
213 	list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
214 			transports) {
215 		while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
216 			chunk = list_entry(lchunk, struct sctp_chunk,
217 					   transmitted_list);
218 			/* Mark as part of a failed message. */
219 			sctp_chunk_fail(chunk, q->error);
220 			sctp_chunk_free(chunk);
221 		}
222 	}
223 
224 	/* Throw away chunks that have been gap ACKed.  */
225 	list_for_each_safe(lchunk, temp, &q->sacked) {
226 		list_del_init(lchunk);
227 		chunk = list_entry(lchunk, struct sctp_chunk,
228 				   transmitted_list);
229 		sctp_chunk_fail(chunk, q->error);
230 		sctp_chunk_free(chunk);
231 	}
232 
233 	/* Throw away any chunks in the retransmit queue. */
234 	list_for_each_safe(lchunk, temp, &q->retransmit) {
235 		list_del_init(lchunk);
236 		chunk = list_entry(lchunk, struct sctp_chunk,
237 				   transmitted_list);
238 		sctp_chunk_fail(chunk, q->error);
239 		sctp_chunk_free(chunk);
240 	}
241 
242 	/* Throw away any chunks that are in the abandoned queue. */
243 	list_for_each_safe(lchunk, temp, &q->abandoned) {
244 		list_del_init(lchunk);
245 		chunk = list_entry(lchunk, struct sctp_chunk,
246 				   transmitted_list);
247 		sctp_chunk_fail(chunk, q->error);
248 		sctp_chunk_free(chunk);
249 	}
250 
251 	/* Throw away any leftover data chunks. */
252 	while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
253 		sctp_sched_dequeue_done(q, chunk);
254 
255 		/* Mark as send failure. */
256 		sctp_chunk_fail(chunk, q->error);
257 		sctp_chunk_free(chunk);
258 	}
259 
260 	/* Throw away any leftover control chunks. */
261 	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
262 		list_del_init(&chunk->list);
263 		sctp_chunk_free(chunk);
264 	}
265 }
266 
sctp_outq_teardown(struct sctp_outq * q)267 void sctp_outq_teardown(struct sctp_outq *q)
268 {
269 	__sctp_outq_teardown(q);
270 	sctp_outq_init(q->asoc, q);
271 }
272 
273 /* Free the outqueue structure and any related pending chunks.  */
sctp_outq_free(struct sctp_outq * q)274 void sctp_outq_free(struct sctp_outq *q)
275 {
276 	/* Throw away leftover chunks. */
277 	__sctp_outq_teardown(q);
278 }
279 
280 /* Put a new chunk in an sctp_outq.  */
sctp_outq_tail(struct sctp_outq * q,struct sctp_chunk * chunk,gfp_t gfp)281 void sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk, gfp_t gfp)
282 {
283 	struct net *net = sock_net(q->asoc->base.sk);
284 
285 	pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk,
286 		 chunk && chunk->chunk_hdr ?
287 		 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
288 		 "illegal chunk");
289 
290 	/* If it is data, queue it up, otherwise, send it
291 	 * immediately.
292 	 */
293 	if (sctp_chunk_is_data(chunk)) {
294 		pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n",
295 			 __func__, q, chunk, chunk && chunk->chunk_hdr ?
296 			 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
297 			 "illegal chunk");
298 
299 		sctp_outq_tail_data(q, chunk);
300 		if (chunk->asoc->peer.prsctp_capable &&
301 		    SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
302 			chunk->asoc->sent_cnt_removable++;
303 		if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
304 			SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS);
305 		else
306 			SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS);
307 	} else {
308 		list_add_tail(&chunk->list, &q->control_chunk_list);
309 		SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
310 	}
311 
312 	if (!q->cork)
313 		sctp_outq_flush(q, 0, gfp);
314 }
315 
316 /* Insert a chunk into the sorted list based on the TSNs.  The retransmit list
317  * and the abandoned list are in ascending order.
318  */
sctp_insert_list(struct list_head * head,struct list_head * new)319 static void sctp_insert_list(struct list_head *head, struct list_head *new)
320 {
321 	struct list_head *pos;
322 	struct sctp_chunk *nchunk, *lchunk;
323 	__u32 ntsn, ltsn;
324 	int done = 0;
325 
326 	nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
327 	ntsn = ntohl(nchunk->subh.data_hdr->tsn);
328 
329 	list_for_each(pos, head) {
330 		lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
331 		ltsn = ntohl(lchunk->subh.data_hdr->tsn);
332 		if (TSN_lt(ntsn, ltsn)) {
333 			list_add(new, pos->prev);
334 			done = 1;
335 			break;
336 		}
337 	}
338 	if (!done)
339 		list_add_tail(new, head);
340 }
341 
sctp_prsctp_prune_sent(struct sctp_association * asoc,struct sctp_sndrcvinfo * sinfo,struct list_head * queue,int msg_len)342 static int sctp_prsctp_prune_sent(struct sctp_association *asoc,
343 				  struct sctp_sndrcvinfo *sinfo,
344 				  struct list_head *queue, int msg_len)
345 {
346 	struct sctp_chunk *chk, *temp;
347 
348 	list_for_each_entry_safe(chk, temp, queue, transmitted_list) {
349 		struct sctp_stream_out *streamout;
350 
351 		if (!chk->msg->abandoned &&
352 		    (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
353 		     chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive))
354 			continue;
355 
356 		chk->msg->abandoned = 1;
357 		list_del_init(&chk->transmitted_list);
358 		sctp_insert_list(&asoc->outqueue.abandoned,
359 				 &chk->transmitted_list);
360 
361 		streamout = SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream);
362 		asoc->sent_cnt_removable--;
363 		asoc->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
364 		streamout->ext->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
365 
366 		if (queue != &asoc->outqueue.retransmit &&
367 		    !chk->tsn_gap_acked) {
368 			if (chk->transport)
369 				chk->transport->flight_size -=
370 						sctp_data_size(chk);
371 			asoc->outqueue.outstanding_bytes -= sctp_data_size(chk);
372 		}
373 
374 		msg_len -= chk->skb->truesize + sizeof(struct sctp_chunk);
375 		if (msg_len <= 0)
376 			break;
377 	}
378 
379 	return msg_len;
380 }
381 
sctp_prsctp_prune_unsent(struct sctp_association * asoc,struct sctp_sndrcvinfo * sinfo,int msg_len)382 static int sctp_prsctp_prune_unsent(struct sctp_association *asoc,
383 				    struct sctp_sndrcvinfo *sinfo, int msg_len)
384 {
385 	struct sctp_outq *q = &asoc->outqueue;
386 	struct sctp_chunk *chk, *temp;
387 
388 	q->sched->unsched_all(&asoc->stream);
389 
390 	list_for_each_entry_safe(chk, temp, &q->out_chunk_list, list) {
391 		if (!chk->msg->abandoned &&
392 		    (!(chk->chunk_hdr->flags & SCTP_DATA_FIRST_FRAG) ||
393 		     !SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
394 		     chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive))
395 			continue;
396 
397 		chk->msg->abandoned = 1;
398 		sctp_sched_dequeue_common(q, chk);
399 		asoc->sent_cnt_removable--;
400 		asoc->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
401 		if (chk->sinfo.sinfo_stream < asoc->stream.outcnt) {
402 			struct sctp_stream_out *streamout =
403 				SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream);
404 
405 			streamout->ext->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
406 		}
407 
408 		msg_len -= chk->skb->truesize + sizeof(struct sctp_chunk);
409 		sctp_chunk_free(chk);
410 		if (msg_len <= 0)
411 			break;
412 	}
413 
414 	q->sched->sched_all(&asoc->stream);
415 
416 	return msg_len;
417 }
418 
419 /* Abandon the chunks according their priorities */
sctp_prsctp_prune(struct sctp_association * asoc,struct sctp_sndrcvinfo * sinfo,int msg_len)420 void sctp_prsctp_prune(struct sctp_association *asoc,
421 		       struct sctp_sndrcvinfo *sinfo, int msg_len)
422 {
423 	struct sctp_transport *transport;
424 
425 	if (!asoc->peer.prsctp_capable || !asoc->sent_cnt_removable)
426 		return;
427 
428 	msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
429 					 &asoc->outqueue.retransmit,
430 					 msg_len);
431 	if (msg_len <= 0)
432 		return;
433 
434 	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
435 			    transports) {
436 		msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
437 						 &transport->transmitted,
438 						 msg_len);
439 		if (msg_len <= 0)
440 			return;
441 	}
442 
443 	sctp_prsctp_prune_unsent(asoc, sinfo, msg_len);
444 }
445 
446 /* Mark all the eligible packets on a transport for retransmission.  */
sctp_retransmit_mark(struct sctp_outq * q,struct sctp_transport * transport,__u8 reason)447 void sctp_retransmit_mark(struct sctp_outq *q,
448 			  struct sctp_transport *transport,
449 			  __u8 reason)
450 {
451 	struct list_head *lchunk, *ltemp;
452 	struct sctp_chunk *chunk;
453 
454 	/* Walk through the specified transmitted queue.  */
455 	list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
456 		chunk = list_entry(lchunk, struct sctp_chunk,
457 				   transmitted_list);
458 
459 		/* If the chunk is abandoned, move it to abandoned list. */
460 		if (sctp_chunk_abandoned(chunk)) {
461 			list_del_init(lchunk);
462 			sctp_insert_list(&q->abandoned, lchunk);
463 
464 			/* If this chunk has not been previousely acked,
465 			 * stop considering it 'outstanding'.  Our peer
466 			 * will most likely never see it since it will
467 			 * not be retransmitted
468 			 */
469 			if (!chunk->tsn_gap_acked) {
470 				if (chunk->transport)
471 					chunk->transport->flight_size -=
472 							sctp_data_size(chunk);
473 				q->outstanding_bytes -= sctp_data_size(chunk);
474 				q->asoc->peer.rwnd += sctp_data_size(chunk);
475 			}
476 			continue;
477 		}
478 
479 		/* If we are doing  retransmission due to a timeout or pmtu
480 		 * discovery, only the  chunks that are not yet acked should
481 		 * be added to the retransmit queue.
482 		 */
483 		if ((reason == SCTP_RTXR_FAST_RTX  &&
484 			    (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
485 		    (reason != SCTP_RTXR_FAST_RTX  && !chunk->tsn_gap_acked)) {
486 			/* RFC 2960 6.2.1 Processing a Received SACK
487 			 *
488 			 * C) Any time a DATA chunk is marked for
489 			 * retransmission (via either T3-rtx timer expiration
490 			 * (Section 6.3.3) or via fast retransmit
491 			 * (Section 7.2.4)), add the data size of those
492 			 * chunks to the rwnd.
493 			 */
494 			q->asoc->peer.rwnd += sctp_data_size(chunk);
495 			q->outstanding_bytes -= sctp_data_size(chunk);
496 			if (chunk->transport)
497 				transport->flight_size -= sctp_data_size(chunk);
498 
499 			/* sctpimpguide-05 Section 2.8.2
500 			 * M5) If a T3-rtx timer expires, the
501 			 * 'TSN.Missing.Report' of all affected TSNs is set
502 			 * to 0.
503 			 */
504 			chunk->tsn_missing_report = 0;
505 
506 			/* If a chunk that is being used for RTT measurement
507 			 * has to be retransmitted, we cannot use this chunk
508 			 * anymore for RTT measurements. Reset rto_pending so
509 			 * that a new RTT measurement is started when a new
510 			 * data chunk is sent.
511 			 */
512 			if (chunk->rtt_in_progress) {
513 				chunk->rtt_in_progress = 0;
514 				transport->rto_pending = 0;
515 			}
516 
517 			/* Move the chunk to the retransmit queue. The chunks
518 			 * on the retransmit queue are always kept in order.
519 			 */
520 			list_del_init(lchunk);
521 			sctp_insert_list(&q->retransmit, lchunk);
522 		}
523 	}
524 
525 	pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, "
526 		 "flight_size:%d, pba:%d\n", __func__, transport, reason,
527 		 transport->cwnd, transport->ssthresh, transport->flight_size,
528 		 transport->partial_bytes_acked);
529 }
530 
531 /* Mark all the eligible packets on a transport for retransmission and force
532  * one packet out.
533  */
sctp_retransmit(struct sctp_outq * q,struct sctp_transport * transport,enum sctp_retransmit_reason reason)534 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
535 		     enum sctp_retransmit_reason reason)
536 {
537 	struct net *net = sock_net(q->asoc->base.sk);
538 
539 	switch (reason) {
540 	case SCTP_RTXR_T3_RTX:
541 		SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS);
542 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
543 		/* Update the retran path if the T3-rtx timer has expired for
544 		 * the current retran path.
545 		 */
546 		if (transport == transport->asoc->peer.retran_path)
547 			sctp_assoc_update_retran_path(transport->asoc);
548 		transport->asoc->rtx_data_chunks +=
549 			transport->asoc->unack_data;
550 		break;
551 	case SCTP_RTXR_FAST_RTX:
552 		SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS);
553 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
554 		q->fast_rtx = 1;
555 		break;
556 	case SCTP_RTXR_PMTUD:
557 		SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS);
558 		break;
559 	case SCTP_RTXR_T1_RTX:
560 		SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS);
561 		transport->asoc->init_retries++;
562 		break;
563 	default:
564 		BUG();
565 	}
566 
567 	sctp_retransmit_mark(q, transport, reason);
568 
569 	/* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
570 	 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
571 	 * following the procedures outlined in C1 - C5.
572 	 */
573 	if (reason == SCTP_RTXR_T3_RTX)
574 		q->asoc->stream.si->generate_ftsn(q, q->asoc->ctsn_ack_point);
575 
576 	/* Flush the queues only on timeout, since fast_rtx is only
577 	 * triggered during sack processing and the queue
578 	 * will be flushed at the end.
579 	 */
580 	if (reason != SCTP_RTXR_FAST_RTX)
581 		sctp_outq_flush(q, /* rtx_timeout */ 1, GFP_ATOMIC);
582 }
583 
584 /*
585  * Transmit DATA chunks on the retransmit queue.  Upon return from
586  * __sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
587  * need to be transmitted by the caller.
588  * We assume that pkt->transport has already been set.
589  *
590  * The return value is a normal kernel error return value.
591  */
__sctp_outq_flush_rtx(struct sctp_outq * q,struct sctp_packet * pkt,int rtx_timeout,int * start_timer,gfp_t gfp)592 static int __sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
593 				 int rtx_timeout, int *start_timer, gfp_t gfp)
594 {
595 	struct sctp_transport *transport = pkt->transport;
596 	struct sctp_chunk *chunk, *chunk1;
597 	struct list_head *lqueue;
598 	enum sctp_xmit status;
599 	int error = 0;
600 	int timer = 0;
601 	int done = 0;
602 	int fast_rtx;
603 
604 	lqueue = &q->retransmit;
605 	fast_rtx = q->fast_rtx;
606 
607 	/* This loop handles time-out retransmissions, fast retransmissions,
608 	 * and retransmissions due to opening of whindow.
609 	 *
610 	 * RFC 2960 6.3.3 Handle T3-rtx Expiration
611 	 *
612 	 * E3) Determine how many of the earliest (i.e., lowest TSN)
613 	 * outstanding DATA chunks for the address for which the
614 	 * T3-rtx has expired will fit into a single packet, subject
615 	 * to the MTU constraint for the path corresponding to the
616 	 * destination transport address to which the retransmission
617 	 * is being sent (this may be different from the address for
618 	 * which the timer expires [see Section 6.4]). Call this value
619 	 * K. Bundle and retransmit those K DATA chunks in a single
620 	 * packet to the destination endpoint.
621 	 *
622 	 * [Just to be painfully clear, if we are retransmitting
623 	 * because a timeout just happened, we should send only ONE
624 	 * packet of retransmitted data.]
625 	 *
626 	 * For fast retransmissions we also send only ONE packet.  However,
627 	 * if we are just flushing the queue due to open window, we'll
628 	 * try to send as much as possible.
629 	 */
630 	list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
631 		/* If the chunk is abandoned, move it to abandoned list. */
632 		if (sctp_chunk_abandoned(chunk)) {
633 			list_del_init(&chunk->transmitted_list);
634 			sctp_insert_list(&q->abandoned,
635 					 &chunk->transmitted_list);
636 			continue;
637 		}
638 
639 		/* Make sure that Gap Acked TSNs are not retransmitted.  A
640 		 * simple approach is just to move such TSNs out of the
641 		 * way and into a 'transmitted' queue and skip to the
642 		 * next chunk.
643 		 */
644 		if (chunk->tsn_gap_acked) {
645 			list_move_tail(&chunk->transmitted_list,
646 				       &transport->transmitted);
647 			continue;
648 		}
649 
650 		/* If we are doing fast retransmit, ignore non-fast_rtransmit
651 		 * chunks
652 		 */
653 		if (fast_rtx && !chunk->fast_retransmit)
654 			continue;
655 
656 redo:
657 		/* Attempt to append this chunk to the packet. */
658 		status = sctp_packet_append_chunk(pkt, chunk);
659 
660 		switch (status) {
661 		case SCTP_XMIT_PMTU_FULL:
662 			if (!pkt->has_data && !pkt->has_cookie_echo) {
663 				/* If this packet did not contain DATA then
664 				 * retransmission did not happen, so do it
665 				 * again.  We'll ignore the error here since
666 				 * control chunks are already freed so there
667 				 * is nothing we can do.
668 				 */
669 				sctp_packet_transmit(pkt, gfp);
670 				goto redo;
671 			}
672 
673 			/* Send this packet.  */
674 			error = sctp_packet_transmit(pkt, gfp);
675 
676 			/* If we are retransmitting, we should only
677 			 * send a single packet.
678 			 * Otherwise, try appending this chunk again.
679 			 */
680 			if (rtx_timeout || fast_rtx)
681 				done = 1;
682 			else
683 				goto redo;
684 
685 			/* Bundle next chunk in the next round.  */
686 			break;
687 
688 		case SCTP_XMIT_RWND_FULL:
689 			/* Send this packet. */
690 			error = sctp_packet_transmit(pkt, gfp);
691 
692 			/* Stop sending DATA as there is no more room
693 			 * at the receiver.
694 			 */
695 			done = 1;
696 			break;
697 
698 		case SCTP_XMIT_DELAY:
699 			/* Send this packet. */
700 			error = sctp_packet_transmit(pkt, gfp);
701 
702 			/* Stop sending DATA because of nagle delay. */
703 			done = 1;
704 			break;
705 
706 		default:
707 			/* The append was successful, so add this chunk to
708 			 * the transmitted list.
709 			 */
710 			list_move_tail(&chunk->transmitted_list,
711 				       &transport->transmitted);
712 
713 			/* Mark the chunk as ineligible for fast retransmit
714 			 * after it is retransmitted.
715 			 */
716 			if (chunk->fast_retransmit == SCTP_NEED_FRTX)
717 				chunk->fast_retransmit = SCTP_DONT_FRTX;
718 
719 			q->asoc->stats.rtxchunks++;
720 			break;
721 		}
722 
723 		/* Set the timer if there were no errors */
724 		if (!error && !timer)
725 			timer = 1;
726 
727 		if (done)
728 			break;
729 	}
730 
731 	/* If we are here due to a retransmit timeout or a fast
732 	 * retransmit and if there are any chunks left in the retransmit
733 	 * queue that could not fit in the PMTU sized packet, they need
734 	 * to be marked as ineligible for a subsequent fast retransmit.
735 	 */
736 	if (rtx_timeout || fast_rtx) {
737 		list_for_each_entry(chunk1, lqueue, transmitted_list) {
738 			if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
739 				chunk1->fast_retransmit = SCTP_DONT_FRTX;
740 		}
741 	}
742 
743 	*start_timer = timer;
744 
745 	/* Clear fast retransmit hint */
746 	if (fast_rtx)
747 		q->fast_rtx = 0;
748 
749 	return error;
750 }
751 
752 /* Cork the outqueue so queued chunks are really queued. */
sctp_outq_uncork(struct sctp_outq * q,gfp_t gfp)753 void sctp_outq_uncork(struct sctp_outq *q, gfp_t gfp)
754 {
755 	if (q->cork)
756 		q->cork = 0;
757 
758 	sctp_outq_flush(q, 0, gfp);
759 }
760 
sctp_packet_singleton(struct sctp_transport * transport,struct sctp_chunk * chunk,gfp_t gfp)761 static int sctp_packet_singleton(struct sctp_transport *transport,
762 				 struct sctp_chunk *chunk, gfp_t gfp)
763 {
764 	const struct sctp_association *asoc = transport->asoc;
765 	const __u16 sport = asoc->base.bind_addr.port;
766 	const __u16 dport = asoc->peer.port;
767 	const __u32 vtag = asoc->peer.i.init_tag;
768 	struct sctp_packet singleton;
769 
770 	sctp_packet_init(&singleton, transport, sport, dport);
771 	sctp_packet_config(&singleton, vtag, 0);
772 	sctp_packet_append_chunk(&singleton, chunk);
773 	return sctp_packet_transmit(&singleton, gfp);
774 }
775 
776 /* Struct to hold the context during sctp outq flush */
777 struct sctp_flush_ctx {
778 	struct sctp_outq *q;
779 	/* Current transport being used. It's NOT the same as curr active one */
780 	struct sctp_transport *transport;
781 	/* These transports have chunks to send. */
782 	struct list_head transport_list;
783 	struct sctp_association *asoc;
784 	/* Packet on the current transport above */
785 	struct sctp_packet *packet;
786 	gfp_t gfp;
787 };
788 
789 /* transport: current transport */
sctp_outq_select_transport(struct sctp_flush_ctx * ctx,struct sctp_chunk * chunk)790 static void sctp_outq_select_transport(struct sctp_flush_ctx *ctx,
791 				       struct sctp_chunk *chunk)
792 {
793 	struct sctp_transport *new_transport = chunk->transport;
794 
795 	if (!new_transport) {
796 		if (!sctp_chunk_is_data(chunk)) {
797 			/* If we have a prior transport pointer, see if
798 			 * the destination address of the chunk
799 			 * matches the destination address of the
800 			 * current transport.  If not a match, then
801 			 * try to look up the transport with a given
802 			 * destination address.  We do this because
803 			 * after processing ASCONFs, we may have new
804 			 * transports created.
805 			 */
806 			if (ctx->transport && sctp_cmp_addr_exact(&chunk->dest,
807 							&ctx->transport->ipaddr))
808 				new_transport = ctx->transport;
809 			else
810 				new_transport = sctp_assoc_lookup_paddr(ctx->asoc,
811 								  &chunk->dest);
812 		}
813 
814 		/* if we still don't have a new transport, then
815 		 * use the current active path.
816 		 */
817 		if (!new_transport)
818 			new_transport = ctx->asoc->peer.active_path;
819 	} else {
820 		__u8 type;
821 
822 		switch (new_transport->state) {
823 		case SCTP_INACTIVE:
824 		case SCTP_UNCONFIRMED:
825 		case SCTP_PF:
826 			/* If the chunk is Heartbeat or Heartbeat Ack,
827 			 * send it to chunk->transport, even if it's
828 			 * inactive.
829 			 *
830 			 * 3.3.6 Heartbeat Acknowledgement:
831 			 * ...
832 			 * A HEARTBEAT ACK is always sent to the source IP
833 			 * address of the IP datagram containing the
834 			 * HEARTBEAT chunk to which this ack is responding.
835 			 * ...
836 			 *
837 			 * ASCONF_ACKs also must be sent to the source.
838 			 */
839 			type = chunk->chunk_hdr->type;
840 			if (type != SCTP_CID_HEARTBEAT &&
841 			    type != SCTP_CID_HEARTBEAT_ACK &&
842 			    type != SCTP_CID_ASCONF_ACK)
843 				new_transport = ctx->asoc->peer.active_path;
844 			break;
845 		default:
846 			break;
847 		}
848 	}
849 
850 	/* Are we switching transports? Take care of transport locks. */
851 	if (new_transport != ctx->transport) {
852 		ctx->transport = new_transport;
853 		ctx->packet = &ctx->transport->packet;
854 
855 		if (list_empty(&ctx->transport->send_ready))
856 			list_add_tail(&ctx->transport->send_ready,
857 				      &ctx->transport_list);
858 
859 		sctp_packet_config(ctx->packet,
860 				   ctx->asoc->peer.i.init_tag,
861 				   ctx->asoc->peer.ecn_capable);
862 		/* We've switched transports, so apply the
863 		 * Burst limit to the new transport.
864 		 */
865 		sctp_transport_burst_limited(ctx->transport);
866 	}
867 }
868 
sctp_outq_flush_ctrl(struct sctp_flush_ctx * ctx)869 static void sctp_outq_flush_ctrl(struct sctp_flush_ctx *ctx)
870 {
871 	struct sctp_chunk *chunk, *tmp;
872 	enum sctp_xmit status;
873 	int one_packet, error;
874 
875 	list_for_each_entry_safe(chunk, tmp, &ctx->q->control_chunk_list, list) {
876 		one_packet = 0;
877 
878 		/* RFC 5061, 5.3
879 		 * F1) This means that until such time as the ASCONF
880 		 * containing the add is acknowledged, the sender MUST
881 		 * NOT use the new IP address as a source for ANY SCTP
882 		 * packet except on carrying an ASCONF Chunk.
883 		 */
884 		if (ctx->asoc->src_out_of_asoc_ok &&
885 		    chunk->chunk_hdr->type != SCTP_CID_ASCONF)
886 			continue;
887 
888 		list_del_init(&chunk->list);
889 
890 		/* Pick the right transport to use. Should always be true for
891 		 * the first chunk as we don't have a transport by then.
892 		 */
893 		sctp_outq_select_transport(ctx, chunk);
894 
895 		switch (chunk->chunk_hdr->type) {
896 		/* 6.10 Bundling
897 		 *   ...
898 		 *   An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
899 		 *   COMPLETE with any other chunks.  [Send them immediately.]
900 		 */
901 		case SCTP_CID_INIT:
902 		case SCTP_CID_INIT_ACK:
903 		case SCTP_CID_SHUTDOWN_COMPLETE:
904 			error = sctp_packet_singleton(ctx->transport, chunk,
905 						      ctx->gfp);
906 			if (error < 0) {
907 				ctx->asoc->base.sk->sk_err = -error;
908 				return;
909 			}
910 			break;
911 
912 		case SCTP_CID_ABORT:
913 			if (sctp_test_T_bit(chunk))
914 				ctx->packet->vtag = ctx->asoc->c.my_vtag;
915 			/* fallthru */
916 
917 		/* The following chunks are "response" chunks, i.e.
918 		 * they are generated in response to something we
919 		 * received.  If we are sending these, then we can
920 		 * send only 1 packet containing these chunks.
921 		 */
922 		case SCTP_CID_HEARTBEAT_ACK:
923 		case SCTP_CID_SHUTDOWN_ACK:
924 		case SCTP_CID_COOKIE_ACK:
925 		case SCTP_CID_COOKIE_ECHO:
926 		case SCTP_CID_ERROR:
927 		case SCTP_CID_ECN_CWR:
928 		case SCTP_CID_ASCONF_ACK:
929 			one_packet = 1;
930 			/* Fall through */
931 
932 		case SCTP_CID_SACK:
933 		case SCTP_CID_HEARTBEAT:
934 		case SCTP_CID_SHUTDOWN:
935 		case SCTP_CID_ECN_ECNE:
936 		case SCTP_CID_ASCONF:
937 		case SCTP_CID_FWD_TSN:
938 		case SCTP_CID_I_FWD_TSN:
939 		case SCTP_CID_RECONF:
940 			status = sctp_packet_transmit_chunk(ctx->packet, chunk,
941 							    one_packet, ctx->gfp);
942 			if (status != SCTP_XMIT_OK) {
943 				/* put the chunk back */
944 				list_add(&chunk->list, &ctx->q->control_chunk_list);
945 				break;
946 			}
947 
948 			ctx->asoc->stats.octrlchunks++;
949 			/* PR-SCTP C5) If a FORWARD TSN is sent, the
950 			 * sender MUST assure that at least one T3-rtx
951 			 * timer is running.
952 			 */
953 			if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN ||
954 			    chunk->chunk_hdr->type == SCTP_CID_I_FWD_TSN) {
955 				sctp_transport_reset_t3_rtx(ctx->transport);
956 				ctx->transport->last_time_sent = jiffies;
957 			}
958 
959 			if (chunk == ctx->asoc->strreset_chunk)
960 				sctp_transport_reset_reconf_timer(ctx->transport);
961 
962 			break;
963 
964 		default:
965 			/* We built a chunk with an illegal type! */
966 			BUG();
967 		}
968 	}
969 }
970 
971 /* Returns false if new data shouldn't be sent */
sctp_outq_flush_rtx(struct sctp_flush_ctx * ctx,int rtx_timeout)972 static bool sctp_outq_flush_rtx(struct sctp_flush_ctx *ctx,
973 				int rtx_timeout)
974 {
975 	int error, start_timer = 0;
976 
977 	if (ctx->asoc->peer.retran_path->state == SCTP_UNCONFIRMED)
978 		return false;
979 
980 	if (ctx->transport != ctx->asoc->peer.retran_path) {
981 		/* Switch transports & prepare the packet.  */
982 		ctx->transport = ctx->asoc->peer.retran_path;
983 		ctx->packet = &ctx->transport->packet;
984 
985 		if (list_empty(&ctx->transport->send_ready))
986 			list_add_tail(&ctx->transport->send_ready,
987 				      &ctx->transport_list);
988 
989 		sctp_packet_config(ctx->packet, ctx->asoc->peer.i.init_tag,
990 				   ctx->asoc->peer.ecn_capable);
991 	}
992 
993 	error = __sctp_outq_flush_rtx(ctx->q, ctx->packet, rtx_timeout,
994 				      &start_timer, ctx->gfp);
995 	if (error < 0)
996 		ctx->asoc->base.sk->sk_err = -error;
997 
998 	if (start_timer) {
999 		sctp_transport_reset_t3_rtx(ctx->transport);
1000 		ctx->transport->last_time_sent = jiffies;
1001 	}
1002 
1003 	/* This can happen on COOKIE-ECHO resend.  Only
1004 	 * one chunk can get bundled with a COOKIE-ECHO.
1005 	 */
1006 	if (ctx->packet->has_cookie_echo)
1007 		return false;
1008 
1009 	/* Don't send new data if there is still data
1010 	 * waiting to retransmit.
1011 	 */
1012 	if (!list_empty(&ctx->q->retransmit))
1013 		return false;
1014 
1015 	return true;
1016 }
1017 
sctp_outq_flush_data(struct sctp_flush_ctx * ctx,int rtx_timeout)1018 static void sctp_outq_flush_data(struct sctp_flush_ctx *ctx,
1019 				 int rtx_timeout)
1020 {
1021 	struct sctp_chunk *chunk;
1022 	enum sctp_xmit status;
1023 
1024 	/* Is it OK to send data chunks?  */
1025 	switch (ctx->asoc->state) {
1026 	case SCTP_STATE_COOKIE_ECHOED:
1027 		/* Only allow bundling when this packet has a COOKIE-ECHO
1028 		 * chunk.
1029 		 */
1030 		if (!ctx->packet || !ctx->packet->has_cookie_echo)
1031 			return;
1032 
1033 		/* fall through */
1034 	case SCTP_STATE_ESTABLISHED:
1035 	case SCTP_STATE_SHUTDOWN_PENDING:
1036 	case SCTP_STATE_SHUTDOWN_RECEIVED:
1037 		break;
1038 
1039 	default:
1040 		/* Do nothing. */
1041 		return;
1042 	}
1043 
1044 	/* RFC 2960 6.1  Transmission of DATA Chunks
1045 	 *
1046 	 * C) When the time comes for the sender to transmit,
1047 	 * before sending new DATA chunks, the sender MUST
1048 	 * first transmit any outstanding DATA chunks which
1049 	 * are marked for retransmission (limited by the
1050 	 * current cwnd).
1051 	 */
1052 	if (!list_empty(&ctx->q->retransmit) &&
1053 	    !sctp_outq_flush_rtx(ctx, rtx_timeout))
1054 		return;
1055 
1056 	/* Apply Max.Burst limitation to the current transport in
1057 	 * case it will be used for new data.  We are going to
1058 	 * rest it before we return, but we want to apply the limit
1059 	 * to the currently queued data.
1060 	 */
1061 	if (ctx->transport)
1062 		sctp_transport_burst_limited(ctx->transport);
1063 
1064 	/* Finally, transmit new packets.  */
1065 	while ((chunk = sctp_outq_dequeue_data(ctx->q)) != NULL) {
1066 		__u32 sid = ntohs(chunk->subh.data_hdr->stream);
1067 		__u8 stream_state = SCTP_SO(&ctx->asoc->stream, sid)->state;
1068 
1069 		/* Has this chunk expired? */
1070 		if (sctp_chunk_abandoned(chunk)) {
1071 			sctp_sched_dequeue_done(ctx->q, chunk);
1072 			sctp_chunk_fail(chunk, 0);
1073 			sctp_chunk_free(chunk);
1074 			continue;
1075 		}
1076 
1077 		if (stream_state == SCTP_STREAM_CLOSED) {
1078 			sctp_outq_head_data(ctx->q, chunk);
1079 			break;
1080 		}
1081 
1082 		sctp_outq_select_transport(ctx, chunk);
1083 
1084 		pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p skb->users:%d\n",
1085 			 __func__, ctx->q, chunk, chunk && chunk->chunk_hdr ?
1086 			 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
1087 			 "illegal chunk", ntohl(chunk->subh.data_hdr->tsn),
1088 			 chunk->skb ? chunk->skb->head : NULL, chunk->skb ?
1089 			 refcount_read(&chunk->skb->users) : -1);
1090 
1091 		/* Add the chunk to the packet.  */
1092 		status = sctp_packet_transmit_chunk(ctx->packet, chunk, 0,
1093 						    ctx->gfp);
1094 		if (status != SCTP_XMIT_OK) {
1095 			/* We could not append this chunk, so put
1096 			 * the chunk back on the output queue.
1097 			 */
1098 			pr_debug("%s: could not transmit tsn:0x%x, status:%d\n",
1099 				 __func__, ntohl(chunk->subh.data_hdr->tsn),
1100 				 status);
1101 
1102 			sctp_outq_head_data(ctx->q, chunk);
1103 			break;
1104 		}
1105 
1106 		/* The sender is in the SHUTDOWN-PENDING state,
1107 		 * The sender MAY set the I-bit in the DATA
1108 		 * chunk header.
1109 		 */
1110 		if (ctx->asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1111 			chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1112 		if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
1113 			ctx->asoc->stats.ouodchunks++;
1114 		else
1115 			ctx->asoc->stats.oodchunks++;
1116 
1117 		/* Only now it's safe to consider this
1118 		 * chunk as sent, sched-wise.
1119 		 */
1120 		sctp_sched_dequeue_done(ctx->q, chunk);
1121 
1122 		list_add_tail(&chunk->transmitted_list,
1123 			      &ctx->transport->transmitted);
1124 
1125 		sctp_transport_reset_t3_rtx(ctx->transport);
1126 		ctx->transport->last_time_sent = jiffies;
1127 
1128 		/* Only let one DATA chunk get bundled with a
1129 		 * COOKIE-ECHO chunk.
1130 		 */
1131 		if (ctx->packet->has_cookie_echo)
1132 			break;
1133 	}
1134 }
1135 
sctp_outq_flush_transports(struct sctp_flush_ctx * ctx)1136 static void sctp_outq_flush_transports(struct sctp_flush_ctx *ctx)
1137 {
1138 	struct list_head *ltransport;
1139 	struct sctp_packet *packet;
1140 	struct sctp_transport *t;
1141 	int error = 0;
1142 
1143 	while ((ltransport = sctp_list_dequeue(&ctx->transport_list)) != NULL) {
1144 		t = list_entry(ltransport, struct sctp_transport, send_ready);
1145 		packet = &t->packet;
1146 		if (!sctp_packet_empty(packet)) {
1147 			error = sctp_packet_transmit(packet, ctx->gfp);
1148 			if (error < 0)
1149 				ctx->q->asoc->base.sk->sk_err = -error;
1150 		}
1151 
1152 		/* Clear the burst limited state, if any */
1153 		sctp_transport_burst_reset(t);
1154 	}
1155 }
1156 
1157 /* Try to flush an outqueue.
1158  *
1159  * Description: Send everything in q which we legally can, subject to
1160  * congestion limitations.
1161  * * Note: This function can be called from multiple contexts so appropriate
1162  * locking concerns must be made.  Today we use the sock lock to protect
1163  * this function.
1164  */
1165 
sctp_outq_flush(struct sctp_outq * q,int rtx_timeout,gfp_t gfp)1166 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp)
1167 {
1168 	struct sctp_flush_ctx ctx = {
1169 		.q = q,
1170 		.transport = NULL,
1171 		.transport_list = LIST_HEAD_INIT(ctx.transport_list),
1172 		.asoc = q->asoc,
1173 		.packet = NULL,
1174 		.gfp = gfp,
1175 	};
1176 
1177 	/* 6.10 Bundling
1178 	 *   ...
1179 	 *   When bundling control chunks with DATA chunks, an
1180 	 *   endpoint MUST place control chunks first in the outbound
1181 	 *   SCTP packet.  The transmitter MUST transmit DATA chunks
1182 	 *   within a SCTP packet in increasing order of TSN.
1183 	 *   ...
1184 	 */
1185 
1186 	sctp_outq_flush_ctrl(&ctx);
1187 
1188 	if (q->asoc->src_out_of_asoc_ok)
1189 		goto sctp_flush_out;
1190 
1191 	sctp_outq_flush_data(&ctx, rtx_timeout);
1192 
1193 sctp_flush_out:
1194 
1195 	sctp_outq_flush_transports(&ctx);
1196 }
1197 
1198 /* Update unack_data based on the incoming SACK chunk */
sctp_sack_update_unack_data(struct sctp_association * assoc,struct sctp_sackhdr * sack)1199 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1200 					struct sctp_sackhdr *sack)
1201 {
1202 	union sctp_sack_variable *frags;
1203 	__u16 unack_data;
1204 	int i;
1205 
1206 	unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1207 
1208 	frags = sack->variable;
1209 	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1210 		unack_data -= ((ntohs(frags[i].gab.end) -
1211 				ntohs(frags[i].gab.start) + 1));
1212 	}
1213 
1214 	assoc->unack_data = unack_data;
1215 }
1216 
1217 /* This is where we REALLY process a SACK.
1218  *
1219  * Process the SACK against the outqueue.  Mostly, this just frees
1220  * things off the transmitted queue.
1221  */
sctp_outq_sack(struct sctp_outq * q,struct sctp_chunk * chunk)1222 int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk)
1223 {
1224 	struct sctp_association *asoc = q->asoc;
1225 	struct sctp_sackhdr *sack = chunk->subh.sack_hdr;
1226 	struct sctp_transport *transport;
1227 	struct sctp_chunk *tchunk = NULL;
1228 	struct list_head *lchunk, *transport_list, *temp;
1229 	union sctp_sack_variable *frags = sack->variable;
1230 	__u32 sack_ctsn, ctsn, tsn;
1231 	__u32 highest_tsn, highest_new_tsn;
1232 	__u32 sack_a_rwnd;
1233 	unsigned int outstanding;
1234 	struct sctp_transport *primary = asoc->peer.primary_path;
1235 	int count_of_newacks = 0;
1236 	int gap_ack_blocks;
1237 	u8 accum_moved = 0;
1238 
1239 	/* Grab the association's destination address list. */
1240 	transport_list = &asoc->peer.transport_addr_list;
1241 
1242 	/* SCTP path tracepoint for congestion control debugging. */
1243 	list_for_each_entry(transport, transport_list, transports) {
1244 		trace_sctp_probe_path(transport, asoc);
1245 	}
1246 
1247 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1248 	gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1249 	asoc->stats.gapcnt += gap_ack_blocks;
1250 	/*
1251 	 * SFR-CACC algorithm:
1252 	 * On receipt of a SACK the sender SHOULD execute the
1253 	 * following statements.
1254 	 *
1255 	 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1256 	 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1257 	 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1258 	 * all destinations.
1259 	 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1260 	 * is set the receiver of the SACK MUST take the following actions:
1261 	 *
1262 	 * A) Initialize the cacc_saw_newack to 0 for all destination
1263 	 * addresses.
1264 	 *
1265 	 * Only bother if changeover_active is set. Otherwise, this is
1266 	 * totally suboptimal to do on every SACK.
1267 	 */
1268 	if (primary->cacc.changeover_active) {
1269 		u8 clear_cycling = 0;
1270 
1271 		if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1272 			primary->cacc.changeover_active = 0;
1273 			clear_cycling = 1;
1274 		}
1275 
1276 		if (clear_cycling || gap_ack_blocks) {
1277 			list_for_each_entry(transport, transport_list,
1278 					transports) {
1279 				if (clear_cycling)
1280 					transport->cacc.cycling_changeover = 0;
1281 				if (gap_ack_blocks)
1282 					transport->cacc.cacc_saw_newack = 0;
1283 			}
1284 		}
1285 	}
1286 
1287 	/* Get the highest TSN in the sack. */
1288 	highest_tsn = sack_ctsn;
1289 	if (gap_ack_blocks)
1290 		highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1291 
1292 	if (TSN_lt(asoc->highest_sacked, highest_tsn))
1293 		asoc->highest_sacked = highest_tsn;
1294 
1295 	highest_new_tsn = sack_ctsn;
1296 
1297 	/* Run through the retransmit queue.  Credit bytes received
1298 	 * and free those chunks that we can.
1299 	 */
1300 	sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn);
1301 
1302 	/* Run through the transmitted queue.
1303 	 * Credit bytes received and free those chunks which we can.
1304 	 *
1305 	 * This is a MASSIVE candidate for optimization.
1306 	 */
1307 	list_for_each_entry(transport, transport_list, transports) {
1308 		sctp_check_transmitted(q, &transport->transmitted,
1309 				       transport, &chunk->source, sack,
1310 				       &highest_new_tsn);
1311 		/*
1312 		 * SFR-CACC algorithm:
1313 		 * C) Let count_of_newacks be the number of
1314 		 * destinations for which cacc_saw_newack is set.
1315 		 */
1316 		if (transport->cacc.cacc_saw_newack)
1317 			count_of_newacks++;
1318 	}
1319 
1320 	/* Move the Cumulative TSN Ack Point if appropriate.  */
1321 	if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) {
1322 		asoc->ctsn_ack_point = sack_ctsn;
1323 		accum_moved = 1;
1324 	}
1325 
1326 	if (gap_ack_blocks) {
1327 
1328 		if (asoc->fast_recovery && accum_moved)
1329 			highest_new_tsn = highest_tsn;
1330 
1331 		list_for_each_entry(transport, transport_list, transports)
1332 			sctp_mark_missing(q, &transport->transmitted, transport,
1333 					  highest_new_tsn, count_of_newacks);
1334 	}
1335 
1336 	/* Update unack_data field in the assoc. */
1337 	sctp_sack_update_unack_data(asoc, sack);
1338 
1339 	ctsn = asoc->ctsn_ack_point;
1340 
1341 	/* Throw away stuff rotting on the sack queue.  */
1342 	list_for_each_safe(lchunk, temp, &q->sacked) {
1343 		tchunk = list_entry(lchunk, struct sctp_chunk,
1344 				    transmitted_list);
1345 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1346 		if (TSN_lte(tsn, ctsn)) {
1347 			list_del_init(&tchunk->transmitted_list);
1348 			if (asoc->peer.prsctp_capable &&
1349 			    SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
1350 				asoc->sent_cnt_removable--;
1351 			sctp_chunk_free(tchunk);
1352 		}
1353 	}
1354 
1355 	/* ii) Set rwnd equal to the newly received a_rwnd minus the
1356 	 *     number of bytes still outstanding after processing the
1357 	 *     Cumulative TSN Ack and the Gap Ack Blocks.
1358 	 */
1359 
1360 	sack_a_rwnd = ntohl(sack->a_rwnd);
1361 	asoc->peer.zero_window_announced = !sack_a_rwnd;
1362 	outstanding = q->outstanding_bytes;
1363 
1364 	if (outstanding < sack_a_rwnd)
1365 		sack_a_rwnd -= outstanding;
1366 	else
1367 		sack_a_rwnd = 0;
1368 
1369 	asoc->peer.rwnd = sack_a_rwnd;
1370 
1371 	asoc->stream.si->generate_ftsn(q, sack_ctsn);
1372 
1373 	pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn);
1374 	pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, "
1375 		 "advertised peer ack point:0x%x\n", __func__, asoc, ctsn,
1376 		 asoc->adv_peer_ack_point);
1377 
1378 	return sctp_outq_is_empty(q);
1379 }
1380 
1381 /* Is the outqueue empty?
1382  * The queue is empty when we have not pending data, no in-flight data
1383  * and nothing pending retransmissions.
1384  */
sctp_outq_is_empty(const struct sctp_outq * q)1385 int sctp_outq_is_empty(const struct sctp_outq *q)
1386 {
1387 	return q->out_qlen == 0 && q->outstanding_bytes == 0 &&
1388 	       list_empty(&q->retransmit);
1389 }
1390 
1391 /********************************************************************
1392  * 2nd Level Abstractions
1393  ********************************************************************/
1394 
1395 /* Go through a transport's transmitted list or the association's retransmit
1396  * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1397  * The retransmit list will not have an associated transport.
1398  *
1399  * I added coherent debug information output.	--xguo
1400  *
1401  * Instead of printing 'sacked' or 'kept' for each TSN on the
1402  * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1403  * KEPT TSN6-TSN7, etc.
1404  */
sctp_check_transmitted(struct sctp_outq * q,struct list_head * transmitted_queue,struct sctp_transport * transport,union sctp_addr * saddr,struct sctp_sackhdr * sack,__u32 * highest_new_tsn_in_sack)1405 static void sctp_check_transmitted(struct sctp_outq *q,
1406 				   struct list_head *transmitted_queue,
1407 				   struct sctp_transport *transport,
1408 				   union sctp_addr *saddr,
1409 				   struct sctp_sackhdr *sack,
1410 				   __u32 *highest_new_tsn_in_sack)
1411 {
1412 	struct list_head *lchunk;
1413 	struct sctp_chunk *tchunk;
1414 	struct list_head tlist;
1415 	__u32 tsn;
1416 	__u32 sack_ctsn;
1417 	__u32 rtt;
1418 	__u8 restart_timer = 0;
1419 	int bytes_acked = 0;
1420 	int migrate_bytes = 0;
1421 	bool forward_progress = false;
1422 
1423 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1424 
1425 	INIT_LIST_HEAD(&tlist);
1426 
1427 	/* The while loop will skip empty transmitted queues. */
1428 	while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1429 		tchunk = list_entry(lchunk, struct sctp_chunk,
1430 				    transmitted_list);
1431 
1432 		if (sctp_chunk_abandoned(tchunk)) {
1433 			/* Move the chunk to abandoned list. */
1434 			sctp_insert_list(&q->abandoned, lchunk);
1435 
1436 			/* If this chunk has not been acked, stop
1437 			 * considering it as 'outstanding'.
1438 			 */
1439 			if (transmitted_queue != &q->retransmit &&
1440 			    !tchunk->tsn_gap_acked) {
1441 				if (tchunk->transport)
1442 					tchunk->transport->flight_size -=
1443 							sctp_data_size(tchunk);
1444 				q->outstanding_bytes -= sctp_data_size(tchunk);
1445 			}
1446 			continue;
1447 		}
1448 
1449 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1450 		if (sctp_acked(sack, tsn)) {
1451 			/* If this queue is the retransmit queue, the
1452 			 * retransmit timer has already reclaimed
1453 			 * the outstanding bytes for this chunk, so only
1454 			 * count bytes associated with a transport.
1455 			 */
1456 			if (transport && !tchunk->tsn_gap_acked) {
1457 				/* If this chunk is being used for RTT
1458 				 * measurement, calculate the RTT and update
1459 				 * the RTO using this value.
1460 				 *
1461 				 * 6.3.1 C5) Karn's algorithm: RTT measurements
1462 				 * MUST NOT be made using packets that were
1463 				 * retransmitted (and thus for which it is
1464 				 * ambiguous whether the reply was for the
1465 				 * first instance of the packet or a later
1466 				 * instance).
1467 				 */
1468 				if (!sctp_chunk_retransmitted(tchunk) &&
1469 				    tchunk->rtt_in_progress) {
1470 					tchunk->rtt_in_progress = 0;
1471 					rtt = jiffies - tchunk->sent_at;
1472 					sctp_transport_update_rto(transport,
1473 								  rtt);
1474 				}
1475 
1476 				if (TSN_lte(tsn, sack_ctsn)) {
1477 					/*
1478 					 * SFR-CACC algorithm:
1479 					 * 2) If the SACK contains gap acks
1480 					 * and the flag CHANGEOVER_ACTIVE is
1481 					 * set the receiver of the SACK MUST
1482 					 * take the following action:
1483 					 *
1484 					 * B) For each TSN t being acked that
1485 					 * has not been acked in any SACK so
1486 					 * far, set cacc_saw_newack to 1 for
1487 					 * the destination that the TSN was
1488 					 * sent to.
1489 					 */
1490 					if (sack->num_gap_ack_blocks &&
1491 					    q->asoc->peer.primary_path->cacc.
1492 					    changeover_active)
1493 						transport->cacc.cacc_saw_newack
1494 							= 1;
1495 				}
1496 			}
1497 
1498 			/* If the chunk hasn't been marked as ACKED,
1499 			 * mark it and account bytes_acked if the
1500 			 * chunk had a valid transport (it will not
1501 			 * have a transport if ASCONF had deleted it
1502 			 * while DATA was outstanding).
1503 			 */
1504 			if (!tchunk->tsn_gap_acked) {
1505 				tchunk->tsn_gap_acked = 1;
1506 				if (TSN_lt(*highest_new_tsn_in_sack, tsn))
1507 					*highest_new_tsn_in_sack = tsn;
1508 				bytes_acked += sctp_data_size(tchunk);
1509 				if (!tchunk->transport)
1510 					migrate_bytes += sctp_data_size(tchunk);
1511 				forward_progress = true;
1512 			}
1513 
1514 			if (TSN_lte(tsn, sack_ctsn)) {
1515 				/* RFC 2960  6.3.2 Retransmission Timer Rules
1516 				 *
1517 				 * R3) Whenever a SACK is received
1518 				 * that acknowledges the DATA chunk
1519 				 * with the earliest outstanding TSN
1520 				 * for that address, restart T3-rtx
1521 				 * timer for that address with its
1522 				 * current RTO.
1523 				 */
1524 				restart_timer = 1;
1525 				forward_progress = true;
1526 
1527 				list_add_tail(&tchunk->transmitted_list,
1528 					      &q->sacked);
1529 			} else {
1530 				/* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1531 				 * M2) Each time a SACK arrives reporting
1532 				 * 'Stray DATA chunk(s)' record the highest TSN
1533 				 * reported as newly acknowledged, call this
1534 				 * value 'HighestTSNinSack'. A newly
1535 				 * acknowledged DATA chunk is one not
1536 				 * previously acknowledged in a SACK.
1537 				 *
1538 				 * When the SCTP sender of data receives a SACK
1539 				 * chunk that acknowledges, for the first time,
1540 				 * the receipt of a DATA chunk, all the still
1541 				 * unacknowledged DATA chunks whose TSN is
1542 				 * older than that newly acknowledged DATA
1543 				 * chunk, are qualified as 'Stray DATA chunks'.
1544 				 */
1545 				list_add_tail(lchunk, &tlist);
1546 			}
1547 		} else {
1548 			if (tchunk->tsn_gap_acked) {
1549 				pr_debug("%s: receiver reneged on data TSN:0x%x\n",
1550 					 __func__, tsn);
1551 
1552 				tchunk->tsn_gap_acked = 0;
1553 
1554 				if (tchunk->transport)
1555 					bytes_acked -= sctp_data_size(tchunk);
1556 
1557 				/* RFC 2960 6.3.2 Retransmission Timer Rules
1558 				 *
1559 				 * R4) Whenever a SACK is received missing a
1560 				 * TSN that was previously acknowledged via a
1561 				 * Gap Ack Block, start T3-rtx for the
1562 				 * destination address to which the DATA
1563 				 * chunk was originally
1564 				 * transmitted if it is not already running.
1565 				 */
1566 				restart_timer = 1;
1567 			}
1568 
1569 			list_add_tail(lchunk, &tlist);
1570 		}
1571 	}
1572 
1573 	if (transport) {
1574 		if (bytes_acked) {
1575 			struct sctp_association *asoc = transport->asoc;
1576 
1577 			/* We may have counted DATA that was migrated
1578 			 * to this transport due to DEL-IP operation.
1579 			 * Subtract those bytes, since the were never
1580 			 * send on this transport and shouldn't be
1581 			 * credited to this transport.
1582 			 */
1583 			bytes_acked -= migrate_bytes;
1584 
1585 			/* 8.2. When an outstanding TSN is acknowledged,
1586 			 * the endpoint shall clear the error counter of
1587 			 * the destination transport address to which the
1588 			 * DATA chunk was last sent.
1589 			 * The association's overall error counter is
1590 			 * also cleared.
1591 			 */
1592 			transport->error_count = 0;
1593 			transport->asoc->overall_error_count = 0;
1594 			forward_progress = true;
1595 
1596 			/*
1597 			 * While in SHUTDOWN PENDING, we may have started
1598 			 * the T5 shutdown guard timer after reaching the
1599 			 * retransmission limit. Stop that timer as soon
1600 			 * as the receiver acknowledged any data.
1601 			 */
1602 			if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING &&
1603 			    del_timer(&asoc->timers
1604 				[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]))
1605 					sctp_association_put(asoc);
1606 
1607 			/* Mark the destination transport address as
1608 			 * active if it is not so marked.
1609 			 */
1610 			if ((transport->state == SCTP_INACTIVE ||
1611 			     transport->state == SCTP_UNCONFIRMED) &&
1612 			    sctp_cmp_addr_exact(&transport->ipaddr, saddr)) {
1613 				sctp_assoc_control_transport(
1614 					transport->asoc,
1615 					transport,
1616 					SCTP_TRANSPORT_UP,
1617 					SCTP_RECEIVED_SACK);
1618 			}
1619 
1620 			sctp_transport_raise_cwnd(transport, sack_ctsn,
1621 						  bytes_acked);
1622 
1623 			transport->flight_size -= bytes_acked;
1624 			if (transport->flight_size == 0)
1625 				transport->partial_bytes_acked = 0;
1626 			q->outstanding_bytes -= bytes_acked + migrate_bytes;
1627 		} else {
1628 			/* RFC 2960 6.1, sctpimpguide-06 2.15.2
1629 			 * When a sender is doing zero window probing, it
1630 			 * should not timeout the association if it continues
1631 			 * to receive new packets from the receiver. The
1632 			 * reason is that the receiver MAY keep its window
1633 			 * closed for an indefinite time.
1634 			 * A sender is doing zero window probing when the
1635 			 * receiver's advertised window is zero, and there is
1636 			 * only one data chunk in flight to the receiver.
1637 			 *
1638 			 * Allow the association to timeout while in SHUTDOWN
1639 			 * PENDING or SHUTDOWN RECEIVED in case the receiver
1640 			 * stays in zero window mode forever.
1641 			 */
1642 			if (!q->asoc->peer.rwnd &&
1643 			    !list_empty(&tlist) &&
1644 			    (sack_ctsn+2 == q->asoc->next_tsn) &&
1645 			    q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) {
1646 				pr_debug("%s: sack received for zero window "
1647 					 "probe:%u\n", __func__, sack_ctsn);
1648 
1649 				q->asoc->overall_error_count = 0;
1650 				transport->error_count = 0;
1651 			}
1652 		}
1653 
1654 		/* RFC 2960 6.3.2 Retransmission Timer Rules
1655 		 *
1656 		 * R2) Whenever all outstanding data sent to an address have
1657 		 * been acknowledged, turn off the T3-rtx timer of that
1658 		 * address.
1659 		 */
1660 		if (!transport->flight_size) {
1661 			if (del_timer(&transport->T3_rtx_timer))
1662 				sctp_transport_put(transport);
1663 		} else if (restart_timer) {
1664 			if (!mod_timer(&transport->T3_rtx_timer,
1665 				       jiffies + transport->rto))
1666 				sctp_transport_hold(transport);
1667 		}
1668 
1669 		if (forward_progress) {
1670 			if (transport->dst)
1671 				sctp_transport_dst_confirm(transport);
1672 		}
1673 	}
1674 
1675 	list_splice(&tlist, transmitted_queue);
1676 }
1677 
1678 /* Mark chunks as missing and consequently may get retransmitted. */
sctp_mark_missing(struct sctp_outq * q,struct list_head * transmitted_queue,struct sctp_transport * transport,__u32 highest_new_tsn_in_sack,int count_of_newacks)1679 static void sctp_mark_missing(struct sctp_outq *q,
1680 			      struct list_head *transmitted_queue,
1681 			      struct sctp_transport *transport,
1682 			      __u32 highest_new_tsn_in_sack,
1683 			      int count_of_newacks)
1684 {
1685 	struct sctp_chunk *chunk;
1686 	__u32 tsn;
1687 	char do_fast_retransmit = 0;
1688 	struct sctp_association *asoc = q->asoc;
1689 	struct sctp_transport *primary = asoc->peer.primary_path;
1690 
1691 	list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1692 
1693 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1694 
1695 		/* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1696 		 * 'Unacknowledged TSN's', if the TSN number of an
1697 		 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1698 		 * value, increment the 'TSN.Missing.Report' count on that
1699 		 * chunk if it has NOT been fast retransmitted or marked for
1700 		 * fast retransmit already.
1701 		 */
1702 		if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1703 		    !chunk->tsn_gap_acked &&
1704 		    TSN_lt(tsn, highest_new_tsn_in_sack)) {
1705 
1706 			/* SFR-CACC may require us to skip marking
1707 			 * this chunk as missing.
1708 			 */
1709 			if (!transport || !sctp_cacc_skip(primary,
1710 						chunk->transport,
1711 						count_of_newacks, tsn)) {
1712 				chunk->tsn_missing_report++;
1713 
1714 				pr_debug("%s: tsn:0x%x missing counter:%d\n",
1715 					 __func__, tsn, chunk->tsn_missing_report);
1716 			}
1717 		}
1718 		/*
1719 		 * M4) If any DATA chunk is found to have a
1720 		 * 'TSN.Missing.Report'
1721 		 * value larger than or equal to 3, mark that chunk for
1722 		 * retransmission and start the fast retransmit procedure.
1723 		 */
1724 
1725 		if (chunk->tsn_missing_report >= 3) {
1726 			chunk->fast_retransmit = SCTP_NEED_FRTX;
1727 			do_fast_retransmit = 1;
1728 		}
1729 	}
1730 
1731 	if (transport) {
1732 		if (do_fast_retransmit)
1733 			sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1734 
1735 		pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, "
1736 			 "flight_size:%d, pba:%d\n",  __func__, transport,
1737 			 transport->cwnd, transport->ssthresh,
1738 			 transport->flight_size, transport->partial_bytes_acked);
1739 	}
1740 }
1741 
1742 /* Is the given TSN acked by this packet?  */
sctp_acked(struct sctp_sackhdr * sack,__u32 tsn)1743 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1744 {
1745 	__u32 ctsn = ntohl(sack->cum_tsn_ack);
1746 	union sctp_sack_variable *frags;
1747 	__u16 tsn_offset, blocks;
1748 	int i;
1749 
1750 	if (TSN_lte(tsn, ctsn))
1751 		goto pass;
1752 
1753 	/* 3.3.4 Selective Acknowledgment (SACK) (3):
1754 	 *
1755 	 * Gap Ack Blocks:
1756 	 *  These fields contain the Gap Ack Blocks. They are repeated
1757 	 *  for each Gap Ack Block up to the number of Gap Ack Blocks
1758 	 *  defined in the Number of Gap Ack Blocks field. All DATA
1759 	 *  chunks with TSNs greater than or equal to (Cumulative TSN
1760 	 *  Ack + Gap Ack Block Start) and less than or equal to
1761 	 *  (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1762 	 *  Block are assumed to have been received correctly.
1763 	 */
1764 
1765 	frags = sack->variable;
1766 	blocks = ntohs(sack->num_gap_ack_blocks);
1767 	tsn_offset = tsn - ctsn;
1768 	for (i = 0; i < blocks; ++i) {
1769 		if (tsn_offset >= ntohs(frags[i].gab.start) &&
1770 		    tsn_offset <= ntohs(frags[i].gab.end))
1771 			goto pass;
1772 	}
1773 
1774 	return 0;
1775 pass:
1776 	return 1;
1777 }
1778 
sctp_get_skip_pos(struct sctp_fwdtsn_skip * skiplist,int nskips,__be16 stream)1779 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1780 				    int nskips, __be16 stream)
1781 {
1782 	int i;
1783 
1784 	for (i = 0; i < nskips; i++) {
1785 		if (skiplist[i].stream == stream)
1786 			return i;
1787 	}
1788 	return i;
1789 }
1790 
1791 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
sctp_generate_fwdtsn(struct sctp_outq * q,__u32 ctsn)1792 void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1793 {
1794 	struct sctp_association *asoc = q->asoc;
1795 	struct sctp_chunk *ftsn_chunk = NULL;
1796 	struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1797 	int nskips = 0;
1798 	int skip_pos = 0;
1799 	__u32 tsn;
1800 	struct sctp_chunk *chunk;
1801 	struct list_head *lchunk, *temp;
1802 
1803 	if (!asoc->peer.prsctp_capable)
1804 		return;
1805 
1806 	/* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1807 	 * received SACK.
1808 	 *
1809 	 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1810 	 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1811 	 */
1812 	if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1813 		asoc->adv_peer_ack_point = ctsn;
1814 
1815 	/* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1816 	 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1817 	 * the chunk next in the out-queue space is marked as "abandoned" as
1818 	 * shown in the following example:
1819 	 *
1820 	 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1821 	 * and the Advanced.Peer.Ack.Point is updated to this value:
1822 	 *
1823 	 *   out-queue at the end of  ==>   out-queue after Adv.Ack.Point
1824 	 *   normal SACK processing           local advancement
1825 	 *                ...                           ...
1826 	 *   Adv.Ack.Pt-> 102 acked                     102 acked
1827 	 *                103 abandoned                 103 abandoned
1828 	 *                104 abandoned     Adv.Ack.P-> 104 abandoned
1829 	 *                105                           105
1830 	 *                106 acked                     106 acked
1831 	 *                ...                           ...
1832 	 *
1833 	 * In this example, the data sender successfully advanced the
1834 	 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1835 	 */
1836 	list_for_each_safe(lchunk, temp, &q->abandoned) {
1837 		chunk = list_entry(lchunk, struct sctp_chunk,
1838 					transmitted_list);
1839 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1840 
1841 		/* Remove any chunks in the abandoned queue that are acked by
1842 		 * the ctsn.
1843 		 */
1844 		if (TSN_lte(tsn, ctsn)) {
1845 			list_del_init(lchunk);
1846 			sctp_chunk_free(chunk);
1847 		} else {
1848 			if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1849 				asoc->adv_peer_ack_point = tsn;
1850 				if (chunk->chunk_hdr->flags &
1851 					 SCTP_DATA_UNORDERED)
1852 					continue;
1853 				skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1854 						nskips,
1855 						chunk->subh.data_hdr->stream);
1856 				ftsn_skip_arr[skip_pos].stream =
1857 					chunk->subh.data_hdr->stream;
1858 				ftsn_skip_arr[skip_pos].ssn =
1859 					 chunk->subh.data_hdr->ssn;
1860 				if (skip_pos == nskips)
1861 					nskips++;
1862 				if (nskips == 10)
1863 					break;
1864 			} else
1865 				break;
1866 		}
1867 	}
1868 
1869 	/* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1870 	 * is greater than the Cumulative TSN ACK carried in the received
1871 	 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1872 	 * chunk containing the latest value of the
1873 	 * "Advanced.Peer.Ack.Point".
1874 	 *
1875 	 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1876 	 * list each stream and sequence number in the forwarded TSN. This
1877 	 * information will enable the receiver to easily find any
1878 	 * stranded TSN's waiting on stream reorder queues. Each stream
1879 	 * SHOULD only be reported once; this means that if multiple
1880 	 * abandoned messages occur in the same stream then only the
1881 	 * highest abandoned stream sequence number is reported. If the
1882 	 * total size of the FORWARD TSN does NOT fit in a single MTU then
1883 	 * the sender of the FORWARD TSN SHOULD lower the
1884 	 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1885 	 * single MTU.
1886 	 */
1887 	if (asoc->adv_peer_ack_point > ctsn)
1888 		ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1889 					      nskips, &ftsn_skip_arr[0]);
1890 
1891 	if (ftsn_chunk) {
1892 		list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1893 		SCTP_INC_STATS(sock_net(asoc->base.sk), SCTP_MIB_OUTCTRLCHUNKS);
1894 	}
1895 }
1896