• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24 
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66 
67 #include <linux/uaccess.h>
68 
69 #include <trace/events/vmscan.h>
70 
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73 
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75 
76 #define MEM_CGROUP_RECLAIM_RETRIES	5
77 
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
80 
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
83 
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly;
87 #else
88 #define do_swap_account		0
89 #endif
90 
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
do_memsw_account(void)96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 static const char *const mem_cgroup_lru_names[] = {
102 	"inactive_anon",
103 	"active_anon",
104 	"inactive_file",
105 	"active_file",
106 	"unevictable",
107 };
108 
109 #define THRESHOLDS_EVENTS_TARGET 128
110 #define SOFTLIMIT_EVENTS_TARGET 1024
111 #define NUMAINFO_EVENTS_TARGET	1024
112 
113 /*
114  * Cgroups above their limits are maintained in a RB-Tree, independent of
115  * their hierarchy representation
116  */
117 
118 struct mem_cgroup_tree_per_node {
119 	struct rb_root rb_root;
120 	struct rb_node *rb_rightmost;
121 	spinlock_t lock;
122 };
123 
124 struct mem_cgroup_tree {
125 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
126 };
127 
128 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
129 
130 /* for OOM */
131 struct mem_cgroup_eventfd_list {
132 	struct list_head list;
133 	struct eventfd_ctx *eventfd;
134 };
135 
136 /*
137  * cgroup_event represents events which userspace want to receive.
138  */
139 struct mem_cgroup_event {
140 	/*
141 	 * memcg which the event belongs to.
142 	 */
143 	struct mem_cgroup *memcg;
144 	/*
145 	 * eventfd to signal userspace about the event.
146 	 */
147 	struct eventfd_ctx *eventfd;
148 	/*
149 	 * Each of these stored in a list by the cgroup.
150 	 */
151 	struct list_head list;
152 	/*
153 	 * register_event() callback will be used to add new userspace
154 	 * waiter for changes related to this event.  Use eventfd_signal()
155 	 * on eventfd to send notification to userspace.
156 	 */
157 	int (*register_event)(struct mem_cgroup *memcg,
158 			      struct eventfd_ctx *eventfd, const char *args);
159 	/*
160 	 * unregister_event() callback will be called when userspace closes
161 	 * the eventfd or on cgroup removing.  This callback must be set,
162 	 * if you want provide notification functionality.
163 	 */
164 	void (*unregister_event)(struct mem_cgroup *memcg,
165 				 struct eventfd_ctx *eventfd);
166 	/*
167 	 * All fields below needed to unregister event when
168 	 * userspace closes eventfd.
169 	 */
170 	poll_table pt;
171 	wait_queue_head_t *wqh;
172 	wait_queue_entry_t wait;
173 	struct work_struct remove;
174 };
175 
176 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
177 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
178 
179 /* Stuffs for move charges at task migration. */
180 /*
181  * Types of charges to be moved.
182  */
183 #define MOVE_ANON	0x1U
184 #define MOVE_FILE	0x2U
185 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
186 
187 /* "mc" and its members are protected by cgroup_mutex */
188 static struct move_charge_struct {
189 	spinlock_t	  lock; /* for from, to */
190 	struct mm_struct  *mm;
191 	struct mem_cgroup *from;
192 	struct mem_cgroup *to;
193 	unsigned long flags;
194 	unsigned long precharge;
195 	unsigned long moved_charge;
196 	unsigned long moved_swap;
197 	struct task_struct *moving_task;	/* a task moving charges */
198 	wait_queue_head_t waitq;		/* a waitq for other context */
199 } mc = {
200 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
201 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
202 };
203 
204 /*
205  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
206  * limit reclaim to prevent infinite loops, if they ever occur.
207  */
208 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
209 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
210 
211 enum charge_type {
212 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
213 	MEM_CGROUP_CHARGE_TYPE_ANON,
214 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
215 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
216 	NR_CHARGE_TYPE,
217 };
218 
219 /* for encoding cft->private value on file */
220 enum res_type {
221 	_MEM,
222 	_MEMSWAP,
223 	_OOM_TYPE,
224 	_KMEM,
225 	_TCP,
226 };
227 
228 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
229 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
230 #define MEMFILE_ATTR(val)	((val) & 0xffff)
231 /* Used for OOM nofiier */
232 #define OOM_CONTROL		(0)
233 
234 /*
235  * Iteration constructs for visiting all cgroups (under a tree).  If
236  * loops are exited prematurely (break), mem_cgroup_iter_break() must
237  * be used for reference counting.
238  */
239 #define for_each_mem_cgroup_tree(iter, root)		\
240 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
241 	     iter != NULL;				\
242 	     iter = mem_cgroup_iter(root, iter, NULL))
243 
244 #define for_each_mem_cgroup(iter)			\
245 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
246 	     iter != NULL;				\
247 	     iter = mem_cgroup_iter(NULL, iter, NULL))
248 
should_force_charge(void)249 static inline bool should_force_charge(void)
250 {
251 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
252 		(current->flags & PF_EXITING);
253 }
254 
255 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)256 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
257 {
258 	if (!memcg)
259 		memcg = root_mem_cgroup;
260 	return &memcg->vmpressure;
261 }
262 
vmpressure_to_css(struct vmpressure * vmpr)263 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
264 {
265 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
266 }
267 
268 #ifdef CONFIG_MEMCG_KMEM
269 /*
270  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271  * The main reason for not using cgroup id for this:
272  *  this works better in sparse environments, where we have a lot of memcgs,
273  *  but only a few kmem-limited. Or also, if we have, for instance, 200
274  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
275  *  200 entry array for that.
276  *
277  * The current size of the caches array is stored in memcg_nr_cache_ids. It
278  * will double each time we have to increase it.
279  */
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
282 
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
285 
memcg_get_cache_ids(void)286 void memcg_get_cache_ids(void)
287 {
288 	down_read(&memcg_cache_ids_sem);
289 }
290 
memcg_put_cache_ids(void)291 void memcg_put_cache_ids(void)
292 {
293 	up_read(&memcg_cache_ids_sem);
294 }
295 
296 /*
297  * MIN_SIZE is different than 1, because we would like to avoid going through
298  * the alloc/free process all the time. In a small machine, 4 kmem-limited
299  * cgroups is a reasonable guess. In the future, it could be a parameter or
300  * tunable, but that is strictly not necessary.
301  *
302  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303  * this constant directly from cgroup, but it is understandable that this is
304  * better kept as an internal representation in cgroup.c. In any case, the
305  * cgrp_id space is not getting any smaller, and we don't have to necessarily
306  * increase ours as well if it increases.
307  */
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310 
311 /*
312  * A lot of the calls to the cache allocation functions are expected to be
313  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314  * conditional to this static branch, we'll have to allow modules that does
315  * kmem_cache_alloc and the such to see this symbol as well
316  */
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319 
320 struct workqueue_struct *memcg_kmem_cache_wq;
321 #endif
322 
323 static int memcg_shrinker_map_size;
324 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
325 
memcg_free_shrinker_map_rcu(struct rcu_head * head)326 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
327 {
328 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
329 }
330 
memcg_expand_one_shrinker_map(struct mem_cgroup * memcg,int size,int old_size)331 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
332 					 int size, int old_size)
333 {
334 	struct memcg_shrinker_map *new, *old;
335 	int nid;
336 
337 	lockdep_assert_held(&memcg_shrinker_map_mutex);
338 
339 	for_each_node(nid) {
340 		old = rcu_dereference_protected(
341 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
342 		/* Not yet online memcg */
343 		if (!old)
344 			return 0;
345 
346 		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
347 		if (!new)
348 			return -ENOMEM;
349 
350 		/* Set all old bits, clear all new bits */
351 		memset(new->map, (int)0xff, old_size);
352 		memset((void *)new->map + old_size, 0, size - old_size);
353 
354 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
355 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
356 	}
357 
358 	return 0;
359 }
360 
memcg_free_shrinker_maps(struct mem_cgroup * memcg)361 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
362 {
363 	struct mem_cgroup_per_node *pn;
364 	struct memcg_shrinker_map *map;
365 	int nid;
366 
367 	if (mem_cgroup_is_root(memcg))
368 		return;
369 
370 	for_each_node(nid) {
371 		pn = mem_cgroup_nodeinfo(memcg, nid);
372 		map = rcu_dereference_protected(pn->shrinker_map, true);
373 		if (map)
374 			kvfree(map);
375 		rcu_assign_pointer(pn->shrinker_map, NULL);
376 	}
377 }
378 
memcg_alloc_shrinker_maps(struct mem_cgroup * memcg)379 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
380 {
381 	struct memcg_shrinker_map *map;
382 	int nid, size, ret = 0;
383 
384 	if (mem_cgroup_is_root(memcg))
385 		return 0;
386 
387 	mutex_lock(&memcg_shrinker_map_mutex);
388 	size = memcg_shrinker_map_size;
389 	for_each_node(nid) {
390 		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
391 		if (!map) {
392 			memcg_free_shrinker_maps(memcg);
393 			ret = -ENOMEM;
394 			break;
395 		}
396 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
397 	}
398 	mutex_unlock(&memcg_shrinker_map_mutex);
399 
400 	return ret;
401 }
402 
memcg_expand_shrinker_maps(int new_id)403 int memcg_expand_shrinker_maps(int new_id)
404 {
405 	int size, old_size, ret = 0;
406 	struct mem_cgroup *memcg;
407 
408 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
409 	old_size = memcg_shrinker_map_size;
410 	if (size <= old_size)
411 		return 0;
412 
413 	mutex_lock(&memcg_shrinker_map_mutex);
414 	if (!root_mem_cgroup)
415 		goto unlock;
416 
417 	for_each_mem_cgroup(memcg) {
418 		if (mem_cgroup_is_root(memcg))
419 			continue;
420 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
421 		if (ret) {
422 			mem_cgroup_iter_break(NULL, memcg);
423 			goto unlock;
424 		}
425 	}
426 unlock:
427 	if (!ret)
428 		memcg_shrinker_map_size = size;
429 	mutex_unlock(&memcg_shrinker_map_mutex);
430 	return ret;
431 }
432 
memcg_set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)433 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
434 {
435 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
436 		struct memcg_shrinker_map *map;
437 
438 		rcu_read_lock();
439 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
440 		/* Pairs with smp mb in shrink_slab() */
441 		smp_mb__before_atomic();
442 		set_bit(shrinker_id, map->map);
443 		rcu_read_unlock();
444 	}
445 }
446 
447 /**
448  * mem_cgroup_css_from_page - css of the memcg associated with a page
449  * @page: page of interest
450  *
451  * If memcg is bound to the default hierarchy, css of the memcg associated
452  * with @page is returned.  The returned css remains associated with @page
453  * until it is released.
454  *
455  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
456  * is returned.
457  */
mem_cgroup_css_from_page(struct page * page)458 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
459 {
460 	struct mem_cgroup *memcg;
461 
462 	memcg = page->mem_cgroup;
463 
464 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
465 		memcg = root_mem_cgroup;
466 
467 	return &memcg->css;
468 }
469 
470 /**
471  * page_cgroup_ino - return inode number of the memcg a page is charged to
472  * @page: the page
473  *
474  * Look up the closest online ancestor of the memory cgroup @page is charged to
475  * and return its inode number or 0 if @page is not charged to any cgroup. It
476  * is safe to call this function without holding a reference to @page.
477  *
478  * Note, this function is inherently racy, because there is nothing to prevent
479  * the cgroup inode from getting torn down and potentially reallocated a moment
480  * after page_cgroup_ino() returns, so it only should be used by callers that
481  * do not care (such as procfs interfaces).
482  */
page_cgroup_ino(struct page * page)483 ino_t page_cgroup_ino(struct page *page)
484 {
485 	struct mem_cgroup *memcg;
486 	unsigned long ino = 0;
487 
488 	rcu_read_lock();
489 	if (PageSlab(page) && !PageTail(page))
490 		memcg = memcg_from_slab_page(page);
491 	else
492 		memcg = READ_ONCE(page->mem_cgroup);
493 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
494 		memcg = parent_mem_cgroup(memcg);
495 	if (memcg)
496 		ino = cgroup_ino(memcg->css.cgroup);
497 	rcu_read_unlock();
498 	return ino;
499 }
500 
501 static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup * memcg,struct page * page)502 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
503 {
504 	int nid = page_to_nid(page);
505 
506 	return memcg->nodeinfo[nid];
507 }
508 
509 static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)510 soft_limit_tree_node(int nid)
511 {
512 	return soft_limit_tree.rb_tree_per_node[nid];
513 }
514 
515 static struct mem_cgroup_tree_per_node *
soft_limit_tree_from_page(struct page * page)516 soft_limit_tree_from_page(struct page *page)
517 {
518 	int nid = page_to_nid(page);
519 
520 	return soft_limit_tree.rb_tree_per_node[nid];
521 }
522 
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz,unsigned long new_usage_in_excess)523 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
524 					 struct mem_cgroup_tree_per_node *mctz,
525 					 unsigned long new_usage_in_excess)
526 {
527 	struct rb_node **p = &mctz->rb_root.rb_node;
528 	struct rb_node *parent = NULL;
529 	struct mem_cgroup_per_node *mz_node;
530 	bool rightmost = true;
531 
532 	if (mz->on_tree)
533 		return;
534 
535 	mz->usage_in_excess = new_usage_in_excess;
536 	if (!mz->usage_in_excess)
537 		return;
538 	while (*p) {
539 		parent = *p;
540 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
541 					tree_node);
542 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
543 			p = &(*p)->rb_left;
544 			rightmost = false;
545 		}
546 
547 		/*
548 		 * We can't avoid mem cgroups that are over their soft
549 		 * limit by the same amount
550 		 */
551 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 			p = &(*p)->rb_right;
553 	}
554 
555 	if (rightmost)
556 		mctz->rb_rightmost = &mz->tree_node;
557 
558 	rb_link_node(&mz->tree_node, parent, p);
559 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
560 	mz->on_tree = true;
561 }
562 
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)563 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
564 					 struct mem_cgroup_tree_per_node *mctz)
565 {
566 	if (!mz->on_tree)
567 		return;
568 
569 	if (&mz->tree_node == mctz->rb_rightmost)
570 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
571 
572 	rb_erase(&mz->tree_node, &mctz->rb_root);
573 	mz->on_tree = false;
574 }
575 
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)576 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
577 				       struct mem_cgroup_tree_per_node *mctz)
578 {
579 	unsigned long flags;
580 
581 	spin_lock_irqsave(&mctz->lock, flags);
582 	__mem_cgroup_remove_exceeded(mz, mctz);
583 	spin_unlock_irqrestore(&mctz->lock, flags);
584 }
585 
soft_limit_excess(struct mem_cgroup * memcg)586 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
587 {
588 	unsigned long nr_pages = page_counter_read(&memcg->memory);
589 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
590 	unsigned long excess = 0;
591 
592 	if (nr_pages > soft_limit)
593 		excess = nr_pages - soft_limit;
594 
595 	return excess;
596 }
597 
mem_cgroup_update_tree(struct mem_cgroup * memcg,struct page * page)598 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
599 {
600 	unsigned long excess;
601 	struct mem_cgroup_per_node *mz;
602 	struct mem_cgroup_tree_per_node *mctz;
603 
604 	mctz = soft_limit_tree_from_page(page);
605 	if (!mctz)
606 		return;
607 	/*
608 	 * Necessary to update all ancestors when hierarchy is used.
609 	 * because their event counter is not touched.
610 	 */
611 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
612 		mz = mem_cgroup_page_nodeinfo(memcg, page);
613 		excess = soft_limit_excess(memcg);
614 		/*
615 		 * We have to update the tree if mz is on RB-tree or
616 		 * mem is over its softlimit.
617 		 */
618 		if (excess || mz->on_tree) {
619 			unsigned long flags;
620 
621 			spin_lock_irqsave(&mctz->lock, flags);
622 			/* if on-tree, remove it */
623 			if (mz->on_tree)
624 				__mem_cgroup_remove_exceeded(mz, mctz);
625 			/*
626 			 * Insert again. mz->usage_in_excess will be updated.
627 			 * If excess is 0, no tree ops.
628 			 */
629 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
630 			spin_unlock_irqrestore(&mctz->lock, flags);
631 		}
632 	}
633 }
634 
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)635 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
636 {
637 	struct mem_cgroup_tree_per_node *mctz;
638 	struct mem_cgroup_per_node *mz;
639 	int nid;
640 
641 	for_each_node(nid) {
642 		mz = mem_cgroup_nodeinfo(memcg, nid);
643 		mctz = soft_limit_tree_node(nid);
644 		if (mctz)
645 			mem_cgroup_remove_exceeded(mz, mctz);
646 	}
647 }
648 
649 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)650 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
651 {
652 	struct mem_cgroup_per_node *mz;
653 
654 retry:
655 	mz = NULL;
656 	if (!mctz->rb_rightmost)
657 		goto done;		/* Nothing to reclaim from */
658 
659 	mz = rb_entry(mctz->rb_rightmost,
660 		      struct mem_cgroup_per_node, tree_node);
661 	/*
662 	 * Remove the node now but someone else can add it back,
663 	 * we will to add it back at the end of reclaim to its correct
664 	 * position in the tree.
665 	 */
666 	__mem_cgroup_remove_exceeded(mz, mctz);
667 	if (!soft_limit_excess(mz->memcg) ||
668 	    !css_tryget_online(&mz->memcg->css))
669 		goto retry;
670 done:
671 	return mz;
672 }
673 
674 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)675 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
676 {
677 	struct mem_cgroup_per_node *mz;
678 
679 	spin_lock_irq(&mctz->lock);
680 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
681 	spin_unlock_irq(&mctz->lock);
682 	return mz;
683 }
684 
685 /**
686  * __mod_memcg_state - update cgroup memory statistics
687  * @memcg: the memory cgroup
688  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
689  * @val: delta to add to the counter, can be negative
690  */
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)691 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
692 {
693 	long x;
694 
695 	if (mem_cgroup_disabled())
696 		return;
697 
698 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
699 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
700 		struct mem_cgroup *mi;
701 
702 		/*
703 		 * Batch local counters to keep them in sync with
704 		 * the hierarchical ones.
705 		 */
706 		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
707 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
708 			atomic_long_add(x, &mi->vmstats[idx]);
709 		x = 0;
710 	}
711 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
712 }
713 
714 static struct mem_cgroup_per_node *
parent_nodeinfo(struct mem_cgroup_per_node * pn,int nid)715 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
716 {
717 	struct mem_cgroup *parent;
718 
719 	parent = parent_mem_cgroup(pn->memcg);
720 	if (!parent)
721 		return NULL;
722 	return mem_cgroup_nodeinfo(parent, nid);
723 }
724 
725 /**
726  * __mod_lruvec_state - update lruvec memory statistics
727  * @lruvec: the lruvec
728  * @idx: the stat item
729  * @val: delta to add to the counter, can be negative
730  *
731  * The lruvec is the intersection of the NUMA node and a cgroup. This
732  * function updates the all three counters that are affected by a
733  * change of state at this level: per-node, per-cgroup, per-lruvec.
734  */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)735 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
736 			int val)
737 {
738 	pg_data_t *pgdat = lruvec_pgdat(lruvec);
739 	struct mem_cgroup_per_node *pn;
740 	struct mem_cgroup *memcg;
741 	long x;
742 
743 	/* Update node */
744 	__mod_node_page_state(pgdat, idx, val);
745 
746 	if (mem_cgroup_disabled())
747 		return;
748 
749 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
750 	memcg = pn->memcg;
751 
752 	/* Update memcg */
753 	__mod_memcg_state(memcg, idx, val);
754 
755 	/* Update lruvec */
756 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
757 
758 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
759 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
760 		struct mem_cgroup_per_node *pi;
761 
762 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
763 			atomic_long_add(x, &pi->lruvec_stat[idx]);
764 		x = 0;
765 	}
766 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
767 }
768 
__mod_lruvec_slab_state(void * p,enum node_stat_item idx,int val)769 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
770 {
771 	struct page *page = virt_to_head_page(p);
772 	pg_data_t *pgdat = page_pgdat(page);
773 	struct mem_cgroup *memcg;
774 	struct lruvec *lruvec;
775 
776 	rcu_read_lock();
777 	memcg = memcg_from_slab_page(page);
778 
779 	/*
780 	 * Untracked pages have no memcg, no lruvec. Update only the
781 	 * node. If we reparent the slab objects to the root memcg,
782 	 * when we free the slab object, we need to update the per-memcg
783 	 * vmstats to keep it correct for the root memcg.
784 	 */
785 	if (!memcg) {
786 		__mod_node_page_state(pgdat, idx, val);
787 	} else {
788 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
789 		__mod_lruvec_state(lruvec, idx, val);
790 	}
791 	rcu_read_unlock();
792 }
793 
mod_memcg_obj_state(void * p,int idx,int val)794 void mod_memcg_obj_state(void *p, int idx, int val)
795 {
796 	struct mem_cgroup *memcg;
797 
798 	rcu_read_lock();
799 	memcg = mem_cgroup_from_obj(p);
800 	if (memcg)
801 		mod_memcg_state(memcg, idx, val);
802 	rcu_read_unlock();
803 }
804 
805 /**
806  * __count_memcg_events - account VM events in a cgroup
807  * @memcg: the memory cgroup
808  * @idx: the event item
809  * @count: the number of events that occured
810  */
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)811 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
812 			  unsigned long count)
813 {
814 	unsigned long x;
815 
816 	if (mem_cgroup_disabled())
817 		return;
818 
819 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
820 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
821 		struct mem_cgroup *mi;
822 
823 		/*
824 		 * Batch local counters to keep them in sync with
825 		 * the hierarchical ones.
826 		 */
827 		__this_cpu_add(memcg->vmstats_local->events[idx], x);
828 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
829 			atomic_long_add(x, &mi->vmevents[idx]);
830 		x = 0;
831 	}
832 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
833 }
834 
memcg_events(struct mem_cgroup * memcg,int event)835 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
836 {
837 	return atomic_long_read(&memcg->vmevents[event]);
838 }
839 
memcg_events_local(struct mem_cgroup * memcg,int event)840 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
841 {
842 	long x = 0;
843 	int cpu;
844 
845 	for_each_possible_cpu(cpu)
846 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
847 	return x;
848 }
849 
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,struct page * page,bool compound,int nr_pages)850 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
851 					 struct page *page,
852 					 bool compound, int nr_pages)
853 {
854 	/*
855 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
856 	 * counted as CACHE even if it's on ANON LRU.
857 	 */
858 	if (PageAnon(page))
859 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
860 	else {
861 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
862 		if (PageSwapBacked(page))
863 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
864 	}
865 
866 	if (compound) {
867 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
868 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
869 	}
870 
871 	/* pagein of a big page is an event. So, ignore page size */
872 	if (nr_pages > 0)
873 		__count_memcg_events(memcg, PGPGIN, 1);
874 	else {
875 		__count_memcg_events(memcg, PGPGOUT, 1);
876 		nr_pages = -nr_pages; /* for event */
877 	}
878 
879 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
880 }
881 
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)882 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
883 				       enum mem_cgroup_events_target target)
884 {
885 	unsigned long val, next;
886 
887 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
888 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
889 	/* from time_after() in jiffies.h */
890 	if ((long)(next - val) < 0) {
891 		switch (target) {
892 		case MEM_CGROUP_TARGET_THRESH:
893 			next = val + THRESHOLDS_EVENTS_TARGET;
894 			break;
895 		case MEM_CGROUP_TARGET_SOFTLIMIT:
896 			next = val + SOFTLIMIT_EVENTS_TARGET;
897 			break;
898 		case MEM_CGROUP_TARGET_NUMAINFO:
899 			next = val + NUMAINFO_EVENTS_TARGET;
900 			break;
901 		default:
902 			break;
903 		}
904 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
905 		return true;
906 	}
907 	return false;
908 }
909 
910 /*
911  * Check events in order.
912  *
913  */
memcg_check_events(struct mem_cgroup * memcg,struct page * page)914 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
915 {
916 	/* threshold event is triggered in finer grain than soft limit */
917 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
918 						MEM_CGROUP_TARGET_THRESH))) {
919 		bool do_softlimit;
920 		bool do_numainfo __maybe_unused;
921 
922 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
923 						MEM_CGROUP_TARGET_SOFTLIMIT);
924 #if MAX_NUMNODES > 1
925 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
926 						MEM_CGROUP_TARGET_NUMAINFO);
927 #endif
928 		mem_cgroup_threshold(memcg);
929 		if (unlikely(do_softlimit))
930 			mem_cgroup_update_tree(memcg, page);
931 #if MAX_NUMNODES > 1
932 		if (unlikely(do_numainfo))
933 			atomic_inc(&memcg->numainfo_events);
934 #endif
935 	}
936 }
937 
mem_cgroup_from_task(struct task_struct * p)938 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
939 {
940 	/*
941 	 * mm_update_next_owner() may clear mm->owner to NULL
942 	 * if it races with swapoff, page migration, etc.
943 	 * So this can be called with p == NULL.
944 	 */
945 	if (unlikely(!p))
946 		return NULL;
947 
948 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
949 }
950 EXPORT_SYMBOL(mem_cgroup_from_task);
951 
952 /**
953  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
954  * @mm: mm from which memcg should be extracted. It can be NULL.
955  *
956  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
957  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
958  * returned.
959  */
get_mem_cgroup_from_mm(struct mm_struct * mm)960 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
961 {
962 	struct mem_cgroup *memcg;
963 
964 	if (mem_cgroup_disabled())
965 		return NULL;
966 
967 	rcu_read_lock();
968 	do {
969 		/*
970 		 * Page cache insertions can happen withou an
971 		 * actual mm context, e.g. during disk probing
972 		 * on boot, loopback IO, acct() writes etc.
973 		 */
974 		if (unlikely(!mm))
975 			memcg = root_mem_cgroup;
976 		else {
977 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
978 			if (unlikely(!memcg))
979 				memcg = root_mem_cgroup;
980 		}
981 	} while (!css_tryget(&memcg->css));
982 	rcu_read_unlock();
983 	return memcg;
984 }
985 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
986 
987 /**
988  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
989  * @page: page from which memcg should be extracted.
990  *
991  * Obtain a reference on page->memcg and returns it if successful. Otherwise
992  * root_mem_cgroup is returned.
993  */
get_mem_cgroup_from_page(struct page * page)994 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
995 {
996 	struct mem_cgroup *memcg = page->mem_cgroup;
997 
998 	if (mem_cgroup_disabled())
999 		return NULL;
1000 
1001 	rcu_read_lock();
1002 	if (!memcg || !css_tryget_online(&memcg->css))
1003 		memcg = root_mem_cgroup;
1004 	rcu_read_unlock();
1005 	return memcg;
1006 }
1007 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1008 
1009 /**
1010  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
1011  */
get_mem_cgroup_from_current(void)1012 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1013 {
1014 	if (unlikely(current->active_memcg)) {
1015 		struct mem_cgroup *memcg = root_mem_cgroup;
1016 
1017 		rcu_read_lock();
1018 		if (css_tryget_online(&current->active_memcg->css))
1019 			memcg = current->active_memcg;
1020 		rcu_read_unlock();
1021 		return memcg;
1022 	}
1023 	return get_mem_cgroup_from_mm(current->mm);
1024 }
1025 
1026 /**
1027  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1028  * @root: hierarchy root
1029  * @prev: previously returned memcg, NULL on first invocation
1030  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1031  *
1032  * Returns references to children of the hierarchy below @root, or
1033  * @root itself, or %NULL after a full round-trip.
1034  *
1035  * Caller must pass the return value in @prev on subsequent
1036  * invocations for reference counting, or use mem_cgroup_iter_break()
1037  * to cancel a hierarchy walk before the round-trip is complete.
1038  *
1039  * Reclaimers can specify a node and a priority level in @reclaim to
1040  * divide up the memcgs in the hierarchy among all concurrent
1041  * reclaimers operating on the same node and priority.
1042  */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1043 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1044 				   struct mem_cgroup *prev,
1045 				   struct mem_cgroup_reclaim_cookie *reclaim)
1046 {
1047 	struct mem_cgroup_reclaim_iter *iter;
1048 	struct cgroup_subsys_state *css = NULL;
1049 	struct mem_cgroup *memcg = NULL;
1050 	struct mem_cgroup *pos = NULL;
1051 
1052 	if (mem_cgroup_disabled())
1053 		return NULL;
1054 
1055 	if (!root)
1056 		root = root_mem_cgroup;
1057 
1058 	if (prev && !reclaim)
1059 		pos = prev;
1060 
1061 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1062 		if (prev)
1063 			goto out;
1064 		return root;
1065 	}
1066 
1067 	rcu_read_lock();
1068 
1069 	if (reclaim) {
1070 		struct mem_cgroup_per_node *mz;
1071 
1072 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1073 		iter = &mz->iter[reclaim->priority];
1074 
1075 		if (prev && reclaim->generation != iter->generation)
1076 			goto out_unlock;
1077 
1078 		while (1) {
1079 			pos = READ_ONCE(iter->position);
1080 			if (!pos || css_tryget(&pos->css))
1081 				break;
1082 			/*
1083 			 * css reference reached zero, so iter->position will
1084 			 * be cleared by ->css_released. However, we should not
1085 			 * rely on this happening soon, because ->css_released
1086 			 * is called from a work queue, and by busy-waiting we
1087 			 * might block it. So we clear iter->position right
1088 			 * away.
1089 			 */
1090 			(void)cmpxchg(&iter->position, pos, NULL);
1091 		}
1092 	}
1093 
1094 	if (pos)
1095 		css = &pos->css;
1096 
1097 	for (;;) {
1098 		css = css_next_descendant_pre(css, &root->css);
1099 		if (!css) {
1100 			/*
1101 			 * Reclaimers share the hierarchy walk, and a
1102 			 * new one might jump in right at the end of
1103 			 * the hierarchy - make sure they see at least
1104 			 * one group and restart from the beginning.
1105 			 */
1106 			if (!prev)
1107 				continue;
1108 			break;
1109 		}
1110 
1111 		/*
1112 		 * Verify the css and acquire a reference.  The root
1113 		 * is provided by the caller, so we know it's alive
1114 		 * and kicking, and don't take an extra reference.
1115 		 */
1116 		memcg = mem_cgroup_from_css(css);
1117 
1118 		if (css == &root->css)
1119 			break;
1120 
1121 		if (css_tryget(css))
1122 			break;
1123 
1124 		memcg = NULL;
1125 	}
1126 
1127 	if (reclaim) {
1128 		/*
1129 		 * The position could have already been updated by a competing
1130 		 * thread, so check that the value hasn't changed since we read
1131 		 * it to avoid reclaiming from the same cgroup twice.
1132 		 */
1133 		(void)cmpxchg(&iter->position, pos, memcg);
1134 
1135 		if (pos)
1136 			css_put(&pos->css);
1137 
1138 		if (!memcg)
1139 			iter->generation++;
1140 		else if (!prev)
1141 			reclaim->generation = iter->generation;
1142 	}
1143 
1144 out_unlock:
1145 	rcu_read_unlock();
1146 out:
1147 	if (prev && prev != root)
1148 		css_put(&prev->css);
1149 
1150 	return memcg;
1151 }
1152 
1153 /**
1154  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1155  * @root: hierarchy root
1156  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1157  */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1158 void mem_cgroup_iter_break(struct mem_cgroup *root,
1159 			   struct mem_cgroup *prev)
1160 {
1161 	if (!root)
1162 		root = root_mem_cgroup;
1163 	if (prev && prev != root)
1164 		css_put(&prev->css);
1165 }
1166 
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1167 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1168 					struct mem_cgroup *dead_memcg)
1169 {
1170 	struct mem_cgroup_reclaim_iter *iter;
1171 	struct mem_cgroup_per_node *mz;
1172 	int nid;
1173 	int i;
1174 
1175 	for_each_node(nid) {
1176 		mz = mem_cgroup_nodeinfo(from, nid);
1177 		for (i = 0; i <= DEF_PRIORITY; i++) {
1178 			iter = &mz->iter[i];
1179 			cmpxchg(&iter->position,
1180 				dead_memcg, NULL);
1181 		}
1182 	}
1183 }
1184 
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1185 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1186 {
1187 	struct mem_cgroup *memcg = dead_memcg;
1188 	struct mem_cgroup *last;
1189 
1190 	do {
1191 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1192 		last = memcg;
1193 	} while ((memcg = parent_mem_cgroup(memcg)));
1194 
1195 	/*
1196 	 * When cgruop1 non-hierarchy mode is used,
1197 	 * parent_mem_cgroup() does not walk all the way up to the
1198 	 * cgroup root (root_mem_cgroup). So we have to handle
1199 	 * dead_memcg from cgroup root separately.
1200 	 */
1201 	if (last != root_mem_cgroup)
1202 		__invalidate_reclaim_iterators(root_mem_cgroup,
1203 						dead_memcg);
1204 }
1205 
1206 /**
1207  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1208  * @memcg: hierarchy root
1209  * @fn: function to call for each task
1210  * @arg: argument passed to @fn
1211  *
1212  * This function iterates over tasks attached to @memcg or to any of its
1213  * descendants and calls @fn for each task. If @fn returns a non-zero
1214  * value, the function breaks the iteration loop and returns the value.
1215  * Otherwise, it will iterate over all tasks and return 0.
1216  *
1217  * This function must not be called for the root memory cgroup.
1218  */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1219 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1220 			  int (*fn)(struct task_struct *, void *), void *arg)
1221 {
1222 	struct mem_cgroup *iter;
1223 	int ret = 0;
1224 
1225 	BUG_ON(memcg == root_mem_cgroup);
1226 
1227 	for_each_mem_cgroup_tree(iter, memcg) {
1228 		struct css_task_iter it;
1229 		struct task_struct *task;
1230 
1231 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1232 		while (!ret && (task = css_task_iter_next(&it)))
1233 			ret = fn(task, arg);
1234 		css_task_iter_end(&it);
1235 		if (ret) {
1236 			mem_cgroup_iter_break(memcg, iter);
1237 			break;
1238 		}
1239 	}
1240 	return ret;
1241 }
1242 
1243 /**
1244  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1245  * @page: the page
1246  * @pgdat: pgdat of the page
1247  *
1248  * This function is only safe when following the LRU page isolation
1249  * and putback protocol: the LRU lock must be held, and the page must
1250  * either be PageLRU() or the caller must have isolated/allocated it.
1251  */
mem_cgroup_page_lruvec(struct page * page,struct pglist_data * pgdat)1252 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1253 {
1254 	struct mem_cgroup_per_node *mz;
1255 	struct mem_cgroup *memcg;
1256 	struct lruvec *lruvec;
1257 
1258 	if (mem_cgroup_disabled()) {
1259 		lruvec = &pgdat->lruvec;
1260 		goto out;
1261 	}
1262 
1263 	memcg = page->mem_cgroup;
1264 	/*
1265 	 * Swapcache readahead pages are added to the LRU - and
1266 	 * possibly migrated - before they are charged.
1267 	 */
1268 	if (!memcg)
1269 		memcg = root_mem_cgroup;
1270 
1271 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1272 	lruvec = &mz->lruvec;
1273 out:
1274 	/*
1275 	 * Since a node can be onlined after the mem_cgroup was created,
1276 	 * we have to be prepared to initialize lruvec->zone here;
1277 	 * and if offlined then reonlined, we need to reinitialize it.
1278 	 */
1279 	if (unlikely(lruvec->pgdat != pgdat))
1280 		lruvec->pgdat = pgdat;
1281 	return lruvec;
1282 }
1283 
1284 /**
1285  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1286  * @lruvec: mem_cgroup per zone lru vector
1287  * @lru: index of lru list the page is sitting on
1288  * @zid: zone id of the accounted pages
1289  * @nr_pages: positive when adding or negative when removing
1290  *
1291  * This function must be called under lru_lock, just before a page is added
1292  * to or just after a page is removed from an lru list (that ordering being
1293  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1294  */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1295 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1296 				int zid, int nr_pages)
1297 {
1298 	struct mem_cgroup_per_node *mz;
1299 	unsigned long *lru_size;
1300 	long size;
1301 
1302 	if (mem_cgroup_disabled())
1303 		return;
1304 
1305 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1306 	lru_size = &mz->lru_zone_size[zid][lru];
1307 
1308 	if (nr_pages < 0)
1309 		*lru_size += nr_pages;
1310 
1311 	size = *lru_size;
1312 	if (WARN_ONCE(size < 0,
1313 		"%s(%p, %d, %d): lru_size %ld\n",
1314 		__func__, lruvec, lru, nr_pages, size)) {
1315 		VM_BUG_ON(1);
1316 		*lru_size = 0;
1317 	}
1318 
1319 	if (nr_pages > 0)
1320 		*lru_size += nr_pages;
1321 }
1322 
1323 /**
1324  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1325  * @memcg: the memory cgroup
1326  *
1327  * Returns the maximum amount of memory @mem can be charged with, in
1328  * pages.
1329  */
mem_cgroup_margin(struct mem_cgroup * memcg)1330 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1331 {
1332 	unsigned long margin = 0;
1333 	unsigned long count;
1334 	unsigned long limit;
1335 
1336 	count = page_counter_read(&memcg->memory);
1337 	limit = READ_ONCE(memcg->memory.max);
1338 	if (count < limit)
1339 		margin = limit - count;
1340 
1341 	if (do_memsw_account()) {
1342 		count = page_counter_read(&memcg->memsw);
1343 		limit = READ_ONCE(memcg->memsw.max);
1344 		if (count <= limit)
1345 			margin = min(margin, limit - count);
1346 		else
1347 			margin = 0;
1348 	}
1349 
1350 	return margin;
1351 }
1352 
1353 /*
1354  * A routine for checking "mem" is under move_account() or not.
1355  *
1356  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1357  * moving cgroups. This is for waiting at high-memory pressure
1358  * caused by "move".
1359  */
mem_cgroup_under_move(struct mem_cgroup * memcg)1360 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1361 {
1362 	struct mem_cgroup *from;
1363 	struct mem_cgroup *to;
1364 	bool ret = false;
1365 	/*
1366 	 * Unlike task_move routines, we access mc.to, mc.from not under
1367 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1368 	 */
1369 	spin_lock(&mc.lock);
1370 	from = mc.from;
1371 	to = mc.to;
1372 	if (!from)
1373 		goto unlock;
1374 
1375 	ret = mem_cgroup_is_descendant(from, memcg) ||
1376 		mem_cgroup_is_descendant(to, memcg);
1377 unlock:
1378 	spin_unlock(&mc.lock);
1379 	return ret;
1380 }
1381 
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1382 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1383 {
1384 	if (mc.moving_task && current != mc.moving_task) {
1385 		if (mem_cgroup_under_move(memcg)) {
1386 			DEFINE_WAIT(wait);
1387 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1388 			/* moving charge context might have finished. */
1389 			if (mc.moving_task)
1390 				schedule();
1391 			finish_wait(&mc.waitq, &wait);
1392 			return true;
1393 		}
1394 	}
1395 	return false;
1396 }
1397 
memory_stat_format(struct mem_cgroup * memcg)1398 static char *memory_stat_format(struct mem_cgroup *memcg)
1399 {
1400 	struct seq_buf s;
1401 	int i;
1402 
1403 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1404 	if (!s.buffer)
1405 		return NULL;
1406 
1407 	/*
1408 	 * Provide statistics on the state of the memory subsystem as
1409 	 * well as cumulative event counters that show past behavior.
1410 	 *
1411 	 * This list is ordered following a combination of these gradients:
1412 	 * 1) generic big picture -> specifics and details
1413 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1414 	 *
1415 	 * Current memory state:
1416 	 */
1417 
1418 	seq_buf_printf(&s, "anon %llu\n",
1419 		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
1420 		       PAGE_SIZE);
1421 	seq_buf_printf(&s, "file %llu\n",
1422 		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1423 		       PAGE_SIZE);
1424 	seq_buf_printf(&s, "kernel_stack %llu\n",
1425 		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1426 		       1024);
1427 	seq_buf_printf(&s, "slab %llu\n",
1428 		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1429 			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1430 		       PAGE_SIZE);
1431 	seq_buf_printf(&s, "sock %llu\n",
1432 		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1433 		       PAGE_SIZE);
1434 
1435 	seq_buf_printf(&s, "shmem %llu\n",
1436 		       (u64)memcg_page_state(memcg, NR_SHMEM) *
1437 		       PAGE_SIZE);
1438 	seq_buf_printf(&s, "file_mapped %llu\n",
1439 		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1440 		       PAGE_SIZE);
1441 	seq_buf_printf(&s, "file_dirty %llu\n",
1442 		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1443 		       PAGE_SIZE);
1444 	seq_buf_printf(&s, "file_writeback %llu\n",
1445 		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1446 		       PAGE_SIZE);
1447 
1448 	/*
1449 	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1450 	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1451 	 * arse because it requires migrating the work out of rmap to a place
1452 	 * where the page->mem_cgroup is set up and stable.
1453 	 */
1454 	seq_buf_printf(&s, "anon_thp %llu\n",
1455 		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1456 		       PAGE_SIZE);
1457 
1458 	for (i = 0; i < NR_LRU_LISTS; i++)
1459 		seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1460 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1461 			       PAGE_SIZE);
1462 
1463 	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1464 		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1465 		       PAGE_SIZE);
1466 	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1467 		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1468 		       PAGE_SIZE);
1469 
1470 	/* Accumulated memory events */
1471 
1472 	seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1473 	seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1474 
1475 	seq_buf_printf(&s, "workingset_refault %lu\n",
1476 		       memcg_page_state(memcg, WORKINGSET_REFAULT));
1477 	seq_buf_printf(&s, "workingset_activate %lu\n",
1478 		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1479 	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1480 		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1481 
1482 	seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1483 	seq_buf_printf(&s, "pgscan %lu\n",
1484 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1485 		       memcg_events(memcg, PGSCAN_DIRECT));
1486 	seq_buf_printf(&s, "pgsteal %lu\n",
1487 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1488 		       memcg_events(memcg, PGSTEAL_DIRECT));
1489 	seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1490 	seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1491 	seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1492 	seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1493 
1494 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1495 	seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1496 		       memcg_events(memcg, THP_FAULT_ALLOC));
1497 	seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1498 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1499 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1500 
1501 	/* The above should easily fit into one page */
1502 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1503 
1504 	return s.buffer;
1505 }
1506 
1507 #define K(x) ((x) << (PAGE_SHIFT-10))
1508 /**
1509  * mem_cgroup_print_oom_context: Print OOM information relevant to
1510  * memory controller.
1511  * @memcg: The memory cgroup that went over limit
1512  * @p: Task that is going to be killed
1513  *
1514  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1515  * enabled
1516  */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1517 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1518 {
1519 	rcu_read_lock();
1520 
1521 	if (memcg) {
1522 		pr_cont(",oom_memcg=");
1523 		pr_cont_cgroup_path(memcg->css.cgroup);
1524 	} else
1525 		pr_cont(",global_oom");
1526 	if (p) {
1527 		pr_cont(",task_memcg=");
1528 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1529 	}
1530 	rcu_read_unlock();
1531 }
1532 
1533 /**
1534  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1535  * memory controller.
1536  * @memcg: The memory cgroup that went over limit
1537  */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1538 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1539 {
1540 	char *buf;
1541 
1542 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1543 		K((u64)page_counter_read(&memcg->memory)),
1544 		K((u64)memcg->memory.max), memcg->memory.failcnt);
1545 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1546 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1547 			K((u64)page_counter_read(&memcg->swap)),
1548 			K((u64)memcg->swap.max), memcg->swap.failcnt);
1549 	else {
1550 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1551 			K((u64)page_counter_read(&memcg->memsw)),
1552 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1553 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1554 			K((u64)page_counter_read(&memcg->kmem)),
1555 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1556 	}
1557 
1558 	pr_info("Memory cgroup stats for ");
1559 	pr_cont_cgroup_path(memcg->css.cgroup);
1560 	pr_cont(":");
1561 	buf = memory_stat_format(memcg);
1562 	if (!buf)
1563 		return;
1564 	pr_info("%s", buf);
1565 	kfree(buf);
1566 }
1567 
1568 /*
1569  * Return the memory (and swap, if configured) limit for a memcg.
1570  */
mem_cgroup_get_max(struct mem_cgroup * memcg)1571 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1572 {
1573 	unsigned long max;
1574 
1575 	max = memcg->memory.max;
1576 	if (mem_cgroup_swappiness(memcg)) {
1577 		unsigned long memsw_max;
1578 		unsigned long swap_max;
1579 
1580 		memsw_max = memcg->memsw.max;
1581 		swap_max = memcg->swap.max;
1582 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1583 		max = min(max + swap_max, memsw_max);
1584 	}
1585 	return max;
1586 }
1587 
mem_cgroup_size(struct mem_cgroup * memcg)1588 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1589 {
1590 	return page_counter_read(&memcg->memory);
1591 }
1592 
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1593 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1594 				     int order)
1595 {
1596 	struct oom_control oc = {
1597 		.zonelist = NULL,
1598 		.nodemask = NULL,
1599 		.memcg = memcg,
1600 		.gfp_mask = gfp_mask,
1601 		.order = order,
1602 	};
1603 	bool ret;
1604 
1605 	if (mutex_lock_killable(&oom_lock))
1606 		return true;
1607 	/*
1608 	 * A few threads which were not waiting at mutex_lock_killable() can
1609 	 * fail to bail out. Therefore, check again after holding oom_lock.
1610 	 */
1611 	ret = should_force_charge() || out_of_memory(&oc);
1612 	mutex_unlock(&oom_lock);
1613 	return ret;
1614 }
1615 
1616 #if MAX_NUMNODES > 1
1617 
1618 /**
1619  * test_mem_cgroup_node_reclaimable
1620  * @memcg: the target memcg
1621  * @nid: the node ID to be checked.
1622  * @noswap : specify true here if the user wants flle only information.
1623  *
1624  * This function returns whether the specified memcg contains any
1625  * reclaimable pages on a node. Returns true if there are any reclaimable
1626  * pages in the node.
1627  */
test_mem_cgroup_node_reclaimable(struct mem_cgroup * memcg,int nid,bool noswap)1628 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1629 		int nid, bool noswap)
1630 {
1631 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1632 
1633 	if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1634 	    lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1635 		return true;
1636 	if (noswap || !total_swap_pages)
1637 		return false;
1638 	if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1639 	    lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1640 		return true;
1641 	return false;
1642 
1643 }
1644 
1645 /*
1646  * Always updating the nodemask is not very good - even if we have an empty
1647  * list or the wrong list here, we can start from some node and traverse all
1648  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1649  *
1650  */
mem_cgroup_may_update_nodemask(struct mem_cgroup * memcg)1651 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1652 {
1653 	int nid;
1654 	/*
1655 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1656 	 * pagein/pageout changes since the last update.
1657 	 */
1658 	if (!atomic_read(&memcg->numainfo_events))
1659 		return;
1660 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1661 		return;
1662 
1663 	/* make a nodemask where this memcg uses memory from */
1664 	memcg->scan_nodes = node_states[N_MEMORY];
1665 
1666 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1667 
1668 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1669 			node_clear(nid, memcg->scan_nodes);
1670 	}
1671 
1672 	atomic_set(&memcg->numainfo_events, 0);
1673 	atomic_set(&memcg->numainfo_updating, 0);
1674 }
1675 
1676 /*
1677  * Selecting a node where we start reclaim from. Because what we need is just
1678  * reducing usage counter, start from anywhere is O,K. Considering
1679  * memory reclaim from current node, there are pros. and cons.
1680  *
1681  * Freeing memory from current node means freeing memory from a node which
1682  * we'll use or we've used. So, it may make LRU bad. And if several threads
1683  * hit limits, it will see a contention on a node. But freeing from remote
1684  * node means more costs for memory reclaim because of memory latency.
1685  *
1686  * Now, we use round-robin. Better algorithm is welcomed.
1687  */
mem_cgroup_select_victim_node(struct mem_cgroup * memcg)1688 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1689 {
1690 	int node;
1691 
1692 	mem_cgroup_may_update_nodemask(memcg);
1693 	node = memcg->last_scanned_node;
1694 
1695 	node = next_node_in(node, memcg->scan_nodes);
1696 	/*
1697 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1698 	 * last time it really checked all the LRUs due to rate limiting.
1699 	 * Fallback to the current node in that case for simplicity.
1700 	 */
1701 	if (unlikely(node == MAX_NUMNODES))
1702 		node = numa_node_id();
1703 
1704 	memcg->last_scanned_node = node;
1705 	return node;
1706 }
1707 #else
mem_cgroup_select_victim_node(struct mem_cgroup * memcg)1708 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1709 {
1710 	return 0;
1711 }
1712 #endif
1713 
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,pg_data_t * pgdat,gfp_t gfp_mask,unsigned long * total_scanned)1714 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1715 				   pg_data_t *pgdat,
1716 				   gfp_t gfp_mask,
1717 				   unsigned long *total_scanned)
1718 {
1719 	struct mem_cgroup *victim = NULL;
1720 	int total = 0;
1721 	int loop = 0;
1722 	unsigned long excess;
1723 	unsigned long nr_scanned;
1724 	struct mem_cgroup_reclaim_cookie reclaim = {
1725 		.pgdat = pgdat,
1726 		.priority = 0,
1727 	};
1728 
1729 	excess = soft_limit_excess(root_memcg);
1730 
1731 	while (1) {
1732 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1733 		if (!victim) {
1734 			loop++;
1735 			if (loop >= 2) {
1736 				/*
1737 				 * If we have not been able to reclaim
1738 				 * anything, it might because there are
1739 				 * no reclaimable pages under this hierarchy
1740 				 */
1741 				if (!total)
1742 					break;
1743 				/*
1744 				 * We want to do more targeted reclaim.
1745 				 * excess >> 2 is not to excessive so as to
1746 				 * reclaim too much, nor too less that we keep
1747 				 * coming back to reclaim from this cgroup
1748 				 */
1749 				if (total >= (excess >> 2) ||
1750 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1751 					break;
1752 			}
1753 			continue;
1754 		}
1755 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1756 					pgdat, &nr_scanned);
1757 		*total_scanned += nr_scanned;
1758 		if (!soft_limit_excess(root_memcg))
1759 			break;
1760 	}
1761 	mem_cgroup_iter_break(root_memcg, victim);
1762 	return total;
1763 }
1764 
1765 #ifdef CONFIG_LOCKDEP
1766 static struct lockdep_map memcg_oom_lock_dep_map = {
1767 	.name = "memcg_oom_lock",
1768 };
1769 #endif
1770 
1771 static DEFINE_SPINLOCK(memcg_oom_lock);
1772 
1773 /*
1774  * Check OOM-Killer is already running under our hierarchy.
1775  * If someone is running, return false.
1776  */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1777 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1778 {
1779 	struct mem_cgroup *iter, *failed = NULL;
1780 
1781 	spin_lock(&memcg_oom_lock);
1782 
1783 	for_each_mem_cgroup_tree(iter, memcg) {
1784 		if (iter->oom_lock) {
1785 			/*
1786 			 * this subtree of our hierarchy is already locked
1787 			 * so we cannot give a lock.
1788 			 */
1789 			failed = iter;
1790 			mem_cgroup_iter_break(memcg, iter);
1791 			break;
1792 		} else
1793 			iter->oom_lock = true;
1794 	}
1795 
1796 	if (failed) {
1797 		/*
1798 		 * OK, we failed to lock the whole subtree so we have
1799 		 * to clean up what we set up to the failing subtree
1800 		 */
1801 		for_each_mem_cgroup_tree(iter, memcg) {
1802 			if (iter == failed) {
1803 				mem_cgroup_iter_break(memcg, iter);
1804 				break;
1805 			}
1806 			iter->oom_lock = false;
1807 		}
1808 	} else
1809 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1810 
1811 	spin_unlock(&memcg_oom_lock);
1812 
1813 	return !failed;
1814 }
1815 
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1816 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1817 {
1818 	struct mem_cgroup *iter;
1819 
1820 	spin_lock(&memcg_oom_lock);
1821 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1822 	for_each_mem_cgroup_tree(iter, memcg)
1823 		iter->oom_lock = false;
1824 	spin_unlock(&memcg_oom_lock);
1825 }
1826 
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1827 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1828 {
1829 	struct mem_cgroup *iter;
1830 
1831 	spin_lock(&memcg_oom_lock);
1832 	for_each_mem_cgroup_tree(iter, memcg)
1833 		iter->under_oom++;
1834 	spin_unlock(&memcg_oom_lock);
1835 }
1836 
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1837 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1838 {
1839 	struct mem_cgroup *iter;
1840 
1841 	/*
1842 	 * When a new child is created while the hierarchy is under oom,
1843 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1844 	 */
1845 	spin_lock(&memcg_oom_lock);
1846 	for_each_mem_cgroup_tree(iter, memcg)
1847 		if (iter->under_oom > 0)
1848 			iter->under_oom--;
1849 	spin_unlock(&memcg_oom_lock);
1850 }
1851 
1852 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1853 
1854 struct oom_wait_info {
1855 	struct mem_cgroup *memcg;
1856 	wait_queue_entry_t	wait;
1857 };
1858 
memcg_oom_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1859 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1860 	unsigned mode, int sync, void *arg)
1861 {
1862 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1863 	struct mem_cgroup *oom_wait_memcg;
1864 	struct oom_wait_info *oom_wait_info;
1865 
1866 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1867 	oom_wait_memcg = oom_wait_info->memcg;
1868 
1869 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1870 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1871 		return 0;
1872 	return autoremove_wake_function(wait, mode, sync, arg);
1873 }
1874 
memcg_oom_recover(struct mem_cgroup * memcg)1875 static void memcg_oom_recover(struct mem_cgroup *memcg)
1876 {
1877 	/*
1878 	 * For the following lockless ->under_oom test, the only required
1879 	 * guarantee is that it must see the state asserted by an OOM when
1880 	 * this function is called as a result of userland actions
1881 	 * triggered by the notification of the OOM.  This is trivially
1882 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1883 	 * triggering notification.
1884 	 */
1885 	if (memcg && memcg->under_oom)
1886 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1887 }
1888 
1889 enum oom_status {
1890 	OOM_SUCCESS,
1891 	OOM_FAILED,
1892 	OOM_ASYNC,
1893 	OOM_SKIPPED
1894 };
1895 
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1896 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1897 {
1898 	enum oom_status ret;
1899 	bool locked;
1900 
1901 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1902 		return OOM_SKIPPED;
1903 
1904 	memcg_memory_event(memcg, MEMCG_OOM);
1905 
1906 	/*
1907 	 * We are in the middle of the charge context here, so we
1908 	 * don't want to block when potentially sitting on a callstack
1909 	 * that holds all kinds of filesystem and mm locks.
1910 	 *
1911 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1912 	 * handling until the charge can succeed; remember the context and put
1913 	 * the task to sleep at the end of the page fault when all locks are
1914 	 * released.
1915 	 *
1916 	 * On the other hand, in-kernel OOM killer allows for an async victim
1917 	 * memory reclaim (oom_reaper) and that means that we are not solely
1918 	 * relying on the oom victim to make a forward progress and we can
1919 	 * invoke the oom killer here.
1920 	 *
1921 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1922 	 * victim and then we have to bail out from the charge path.
1923 	 */
1924 	if (memcg->oom_kill_disable) {
1925 		if (!current->in_user_fault)
1926 			return OOM_SKIPPED;
1927 		css_get(&memcg->css);
1928 		current->memcg_in_oom = memcg;
1929 		current->memcg_oom_gfp_mask = mask;
1930 		current->memcg_oom_order = order;
1931 
1932 		return OOM_ASYNC;
1933 	}
1934 
1935 	mem_cgroup_mark_under_oom(memcg);
1936 
1937 	locked = mem_cgroup_oom_trylock(memcg);
1938 
1939 	if (locked)
1940 		mem_cgroup_oom_notify(memcg);
1941 
1942 	mem_cgroup_unmark_under_oom(memcg);
1943 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1944 		ret = OOM_SUCCESS;
1945 	else
1946 		ret = OOM_FAILED;
1947 
1948 	if (locked)
1949 		mem_cgroup_oom_unlock(memcg);
1950 
1951 	return ret;
1952 }
1953 
1954 /**
1955  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1956  * @handle: actually kill/wait or just clean up the OOM state
1957  *
1958  * This has to be called at the end of a page fault if the memcg OOM
1959  * handler was enabled.
1960  *
1961  * Memcg supports userspace OOM handling where failed allocations must
1962  * sleep on a waitqueue until the userspace task resolves the
1963  * situation.  Sleeping directly in the charge context with all kinds
1964  * of locks held is not a good idea, instead we remember an OOM state
1965  * in the task and mem_cgroup_oom_synchronize() has to be called at
1966  * the end of the page fault to complete the OOM handling.
1967  *
1968  * Returns %true if an ongoing memcg OOM situation was detected and
1969  * completed, %false otherwise.
1970  */
mem_cgroup_oom_synchronize(bool handle)1971 bool mem_cgroup_oom_synchronize(bool handle)
1972 {
1973 	struct mem_cgroup *memcg = current->memcg_in_oom;
1974 	struct oom_wait_info owait;
1975 	bool locked;
1976 
1977 	/* OOM is global, do not handle */
1978 	if (!memcg)
1979 		return false;
1980 
1981 	if (!handle)
1982 		goto cleanup;
1983 
1984 	owait.memcg = memcg;
1985 	owait.wait.flags = 0;
1986 	owait.wait.func = memcg_oom_wake_function;
1987 	owait.wait.private = current;
1988 	INIT_LIST_HEAD(&owait.wait.entry);
1989 
1990 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1991 	mem_cgroup_mark_under_oom(memcg);
1992 
1993 	locked = mem_cgroup_oom_trylock(memcg);
1994 
1995 	if (locked)
1996 		mem_cgroup_oom_notify(memcg);
1997 
1998 	if (locked && !memcg->oom_kill_disable) {
1999 		mem_cgroup_unmark_under_oom(memcg);
2000 		finish_wait(&memcg_oom_waitq, &owait.wait);
2001 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2002 					 current->memcg_oom_order);
2003 	} else {
2004 		schedule();
2005 		mem_cgroup_unmark_under_oom(memcg);
2006 		finish_wait(&memcg_oom_waitq, &owait.wait);
2007 	}
2008 
2009 	if (locked) {
2010 		mem_cgroup_oom_unlock(memcg);
2011 		/*
2012 		 * There is no guarantee that an OOM-lock contender
2013 		 * sees the wakeups triggered by the OOM kill
2014 		 * uncharges.  Wake any sleepers explicitely.
2015 		 */
2016 		memcg_oom_recover(memcg);
2017 	}
2018 cleanup:
2019 	current->memcg_in_oom = NULL;
2020 	css_put(&memcg->css);
2021 	return true;
2022 }
2023 
2024 /**
2025  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2026  * @victim: task to be killed by the OOM killer
2027  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2028  *
2029  * Returns a pointer to a memory cgroup, which has to be cleaned up
2030  * by killing all belonging OOM-killable tasks.
2031  *
2032  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2033  */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)2034 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2035 					    struct mem_cgroup *oom_domain)
2036 {
2037 	struct mem_cgroup *oom_group = NULL;
2038 	struct mem_cgroup *memcg;
2039 
2040 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2041 		return NULL;
2042 
2043 	if (!oom_domain)
2044 		oom_domain = root_mem_cgroup;
2045 
2046 	rcu_read_lock();
2047 
2048 	memcg = mem_cgroup_from_task(victim);
2049 	if (memcg == root_mem_cgroup)
2050 		goto out;
2051 
2052 	/*
2053 	 * Traverse the memory cgroup hierarchy from the victim task's
2054 	 * cgroup up to the OOMing cgroup (or root) to find the
2055 	 * highest-level memory cgroup with oom.group set.
2056 	 */
2057 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2058 		if (memcg->oom_group)
2059 			oom_group = memcg;
2060 
2061 		if (memcg == oom_domain)
2062 			break;
2063 	}
2064 
2065 	if (oom_group)
2066 		css_get(&oom_group->css);
2067 out:
2068 	rcu_read_unlock();
2069 
2070 	return oom_group;
2071 }
2072 
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)2073 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2074 {
2075 	pr_info("Tasks in ");
2076 	pr_cont_cgroup_path(memcg->css.cgroup);
2077 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2078 }
2079 
2080 /**
2081  * lock_page_memcg - lock a page->mem_cgroup binding
2082  * @page: the page
2083  *
2084  * This function protects unlocked LRU pages from being moved to
2085  * another cgroup.
2086  *
2087  * It ensures lifetime of the returned memcg. Caller is responsible
2088  * for the lifetime of the page; __unlock_page_memcg() is available
2089  * when @page might get freed inside the locked section.
2090  */
lock_page_memcg(struct page * page)2091 struct mem_cgroup *lock_page_memcg(struct page *page)
2092 {
2093 	struct mem_cgroup *memcg;
2094 	unsigned long flags;
2095 
2096 	/*
2097 	 * The RCU lock is held throughout the transaction.  The fast
2098 	 * path can get away without acquiring the memcg->move_lock
2099 	 * because page moving starts with an RCU grace period.
2100 	 *
2101 	 * The RCU lock also protects the memcg from being freed when
2102 	 * the page state that is going to change is the only thing
2103 	 * preventing the page itself from being freed. E.g. writeback
2104 	 * doesn't hold a page reference and relies on PG_writeback to
2105 	 * keep off truncation, migration and so forth.
2106          */
2107 	rcu_read_lock();
2108 
2109 	if (mem_cgroup_disabled())
2110 		return NULL;
2111 again:
2112 	memcg = page->mem_cgroup;
2113 	if (unlikely(!memcg))
2114 		return NULL;
2115 
2116 	if (atomic_read(&memcg->moving_account) <= 0)
2117 		return memcg;
2118 
2119 	spin_lock_irqsave(&memcg->move_lock, flags);
2120 	if (memcg != page->mem_cgroup) {
2121 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2122 		goto again;
2123 	}
2124 
2125 	/*
2126 	 * When charge migration first begins, we can have locked and
2127 	 * unlocked page stat updates happening concurrently.  Track
2128 	 * the task who has the lock for unlock_page_memcg().
2129 	 */
2130 	memcg->move_lock_task = current;
2131 	memcg->move_lock_flags = flags;
2132 
2133 	return memcg;
2134 }
2135 EXPORT_SYMBOL(lock_page_memcg);
2136 
2137 /**
2138  * __unlock_page_memcg - unlock and unpin a memcg
2139  * @memcg: the memcg
2140  *
2141  * Unlock and unpin a memcg returned by lock_page_memcg().
2142  */
__unlock_page_memcg(struct mem_cgroup * memcg)2143 void __unlock_page_memcg(struct mem_cgroup *memcg)
2144 {
2145 	if (memcg && memcg->move_lock_task == current) {
2146 		unsigned long flags = memcg->move_lock_flags;
2147 
2148 		memcg->move_lock_task = NULL;
2149 		memcg->move_lock_flags = 0;
2150 
2151 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2152 	}
2153 
2154 	rcu_read_unlock();
2155 }
2156 
2157 /**
2158  * unlock_page_memcg - unlock a page->mem_cgroup binding
2159  * @page: the page
2160  */
unlock_page_memcg(struct page * page)2161 void unlock_page_memcg(struct page *page)
2162 {
2163 	__unlock_page_memcg(page->mem_cgroup);
2164 }
2165 EXPORT_SYMBOL(unlock_page_memcg);
2166 
2167 struct memcg_stock_pcp {
2168 	struct mem_cgroup *cached; /* this never be root cgroup */
2169 	unsigned int nr_pages;
2170 	struct work_struct work;
2171 	unsigned long flags;
2172 #define FLUSHING_CACHED_CHARGE	0
2173 };
2174 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2175 static DEFINE_MUTEX(percpu_charge_mutex);
2176 
2177 /**
2178  * consume_stock: Try to consume stocked charge on this cpu.
2179  * @memcg: memcg to consume from.
2180  * @nr_pages: how many pages to charge.
2181  *
2182  * The charges will only happen if @memcg matches the current cpu's memcg
2183  * stock, and at least @nr_pages are available in that stock.  Failure to
2184  * service an allocation will refill the stock.
2185  *
2186  * returns true if successful, false otherwise.
2187  */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2188 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2189 {
2190 	struct memcg_stock_pcp *stock;
2191 	unsigned long flags;
2192 	bool ret = false;
2193 
2194 	if (nr_pages > MEMCG_CHARGE_BATCH)
2195 		return ret;
2196 
2197 	local_irq_save(flags);
2198 
2199 	stock = this_cpu_ptr(&memcg_stock);
2200 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2201 		stock->nr_pages -= nr_pages;
2202 		ret = true;
2203 	}
2204 
2205 	local_irq_restore(flags);
2206 
2207 	return ret;
2208 }
2209 
2210 /*
2211  * Returns stocks cached in percpu and reset cached information.
2212  */
drain_stock(struct memcg_stock_pcp * stock)2213 static void drain_stock(struct memcg_stock_pcp *stock)
2214 {
2215 	struct mem_cgroup *old = stock->cached;
2216 
2217 	if (!old)
2218 		return;
2219 
2220 	if (stock->nr_pages) {
2221 		page_counter_uncharge(&old->memory, stock->nr_pages);
2222 		if (do_memsw_account())
2223 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2224 		css_put_many(&old->css, stock->nr_pages);
2225 		stock->nr_pages = 0;
2226 	}
2227 
2228 	css_put(&old->css);
2229 	stock->cached = NULL;
2230 }
2231 
drain_local_stock(struct work_struct * dummy)2232 static void drain_local_stock(struct work_struct *dummy)
2233 {
2234 	struct memcg_stock_pcp *stock;
2235 	unsigned long flags;
2236 
2237 	/*
2238 	 * The only protection from memory hotplug vs. drain_stock races is
2239 	 * that we always operate on local CPU stock here with IRQ disabled
2240 	 */
2241 	local_irq_save(flags);
2242 
2243 	stock = this_cpu_ptr(&memcg_stock);
2244 	drain_stock(stock);
2245 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2246 
2247 	local_irq_restore(flags);
2248 }
2249 
2250 /*
2251  * Cache charges(val) to local per_cpu area.
2252  * This will be consumed by consume_stock() function, later.
2253  */
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2254 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2255 {
2256 	struct memcg_stock_pcp *stock;
2257 	unsigned long flags;
2258 
2259 	local_irq_save(flags);
2260 
2261 	stock = this_cpu_ptr(&memcg_stock);
2262 	if (stock->cached != memcg) { /* reset if necessary */
2263 		drain_stock(stock);
2264 		css_get(&memcg->css);
2265 		stock->cached = memcg;
2266 	}
2267 	stock->nr_pages += nr_pages;
2268 
2269 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2270 		drain_stock(stock);
2271 
2272 	local_irq_restore(flags);
2273 }
2274 
2275 /*
2276  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2277  * of the hierarchy under it.
2278  */
drain_all_stock(struct mem_cgroup * root_memcg)2279 static void drain_all_stock(struct mem_cgroup *root_memcg)
2280 {
2281 	int cpu, curcpu;
2282 
2283 	/* If someone's already draining, avoid adding running more workers. */
2284 	if (!mutex_trylock(&percpu_charge_mutex))
2285 		return;
2286 	/*
2287 	 * Notify other cpus that system-wide "drain" is running
2288 	 * We do not care about races with the cpu hotplug because cpu down
2289 	 * as well as workers from this path always operate on the local
2290 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2291 	 */
2292 	curcpu = get_cpu();
2293 	for_each_online_cpu(cpu) {
2294 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2295 		struct mem_cgroup *memcg;
2296 		bool flush = false;
2297 
2298 		rcu_read_lock();
2299 		memcg = stock->cached;
2300 		if (memcg && stock->nr_pages &&
2301 		    mem_cgroup_is_descendant(memcg, root_memcg))
2302 			flush = true;
2303 		rcu_read_unlock();
2304 
2305 		if (flush &&
2306 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2307 			if (cpu == curcpu)
2308 				drain_local_stock(&stock->work);
2309 			else
2310 				schedule_work_on(cpu, &stock->work);
2311 		}
2312 	}
2313 	put_cpu();
2314 	mutex_unlock(&percpu_charge_mutex);
2315 }
2316 
memcg_hotplug_cpu_dead(unsigned int cpu)2317 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2318 {
2319 	struct memcg_stock_pcp *stock;
2320 	struct mem_cgroup *memcg, *mi;
2321 
2322 	stock = &per_cpu(memcg_stock, cpu);
2323 	drain_stock(stock);
2324 
2325 	for_each_mem_cgroup(memcg) {
2326 		int i;
2327 
2328 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2329 			int nid;
2330 			long x;
2331 
2332 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2333 			if (x)
2334 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2335 					atomic_long_add(x, &memcg->vmstats[i]);
2336 
2337 			if (i >= NR_VM_NODE_STAT_ITEMS)
2338 				continue;
2339 
2340 			for_each_node(nid) {
2341 				struct mem_cgroup_per_node *pn;
2342 
2343 				pn = mem_cgroup_nodeinfo(memcg, nid);
2344 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2345 				if (x)
2346 					do {
2347 						atomic_long_add(x, &pn->lruvec_stat[i]);
2348 					} while ((pn = parent_nodeinfo(pn, nid)));
2349 			}
2350 		}
2351 
2352 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2353 			long x;
2354 
2355 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2356 			if (x)
2357 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2358 					atomic_long_add(x, &memcg->vmevents[i]);
2359 		}
2360 	}
2361 
2362 	return 0;
2363 }
2364 
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2365 static void reclaim_high(struct mem_cgroup *memcg,
2366 			 unsigned int nr_pages,
2367 			 gfp_t gfp_mask)
2368 {
2369 	do {
2370 		if (page_counter_read(&memcg->memory) <= memcg->high)
2371 			continue;
2372 		memcg_memory_event(memcg, MEMCG_HIGH);
2373 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2374 	} while ((memcg = parent_mem_cgroup(memcg)));
2375 }
2376 
high_work_func(struct work_struct * work)2377 static void high_work_func(struct work_struct *work)
2378 {
2379 	struct mem_cgroup *memcg;
2380 
2381 	memcg = container_of(work, struct mem_cgroup, high_work);
2382 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2383 }
2384 
2385 /*
2386  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2387  * enough to still cause a significant slowdown in most cases, while still
2388  * allowing diagnostics and tracing to proceed without becoming stuck.
2389  */
2390 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2391 
2392 /*
2393  * When calculating the delay, we use these either side of the exponentiation to
2394  * maintain precision and scale to a reasonable number of jiffies (see the table
2395  * below.
2396  *
2397  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2398  *   overage ratio to a delay.
2399  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2400  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2401  *   to produce a reasonable delay curve.
2402  *
2403  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2404  * reasonable delay curve compared to precision-adjusted overage, not
2405  * penalising heavily at first, but still making sure that growth beyond the
2406  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2407  * example, with a high of 100 megabytes:
2408  *
2409  *  +-------+------------------------+
2410  *  | usage | time to allocate in ms |
2411  *  +-------+------------------------+
2412  *  | 100M  |                      0 |
2413  *  | 101M  |                      6 |
2414  *  | 102M  |                     25 |
2415  *  | 103M  |                     57 |
2416  *  | 104M  |                    102 |
2417  *  | 105M  |                    159 |
2418  *  | 106M  |                    230 |
2419  *  | 107M  |                    313 |
2420  *  | 108M  |                    409 |
2421  *  | 109M  |                    518 |
2422  *  | 110M  |                    639 |
2423  *  | 111M  |                    774 |
2424  *  | 112M  |                    921 |
2425  *  | 113M  |                   1081 |
2426  *  | 114M  |                   1254 |
2427  *  | 115M  |                   1439 |
2428  *  | 116M  |                   1638 |
2429  *  | 117M  |                   1849 |
2430  *  | 118M  |                   2000 |
2431  *  | 119M  |                   2000 |
2432  *  | 120M  |                   2000 |
2433  *  +-------+------------------------+
2434  */
2435  #define MEMCG_DELAY_PRECISION_SHIFT 20
2436  #define MEMCG_DELAY_SCALING_SHIFT 14
2437 
2438 /*
2439  * Get the number of jiffies that we should penalise a mischievous cgroup which
2440  * is exceeding its memory.high by checking both it and its ancestors.
2441  */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages)2442 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2443 					  unsigned int nr_pages)
2444 {
2445 	unsigned long penalty_jiffies;
2446 	u64 max_overage = 0;
2447 
2448 	do {
2449 		unsigned long usage, high;
2450 		u64 overage;
2451 
2452 		usage = page_counter_read(&memcg->memory);
2453 		high = READ_ONCE(memcg->high);
2454 
2455 		if (usage <= high)
2456 			continue;
2457 
2458 		/*
2459 		 * Prevent division by 0 in overage calculation by acting as if
2460 		 * it was a threshold of 1 page
2461 		 */
2462 		high = max(high, 1UL);
2463 
2464 		overage = usage - high;
2465 		overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2466 		overage = div64_u64(overage, high);
2467 
2468 		if (overage > max_overage)
2469 			max_overage = overage;
2470 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2471 		 !mem_cgroup_is_root(memcg));
2472 
2473 	if (!max_overage)
2474 		return 0;
2475 
2476 	/*
2477 	 * We use overage compared to memory.high to calculate the number of
2478 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2479 	 * fairly lenient on small overages, and increasingly harsh when the
2480 	 * memcg in question makes it clear that it has no intention of stopping
2481 	 * its crazy behaviour, so we exponentially increase the delay based on
2482 	 * overage amount.
2483 	 */
2484 	penalty_jiffies = max_overage * max_overage * HZ;
2485 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2486 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2487 
2488 	/*
2489 	 * Factor in the task's own contribution to the overage, such that four
2490 	 * N-sized allocations are throttled approximately the same as one
2491 	 * 4N-sized allocation.
2492 	 *
2493 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2494 	 * larger the current charge patch is than that.
2495 	 */
2496 	penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2497 
2498 	/*
2499 	 * Clamp the max delay per usermode return so as to still keep the
2500 	 * application moving forwards and also permit diagnostics, albeit
2501 	 * extremely slowly.
2502 	 */
2503 	return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2504 }
2505 
2506 /*
2507  * Scheduled by try_charge() to be executed from the userland return path
2508  * and reclaims memory over the high limit.
2509  */
mem_cgroup_handle_over_high(void)2510 void mem_cgroup_handle_over_high(void)
2511 {
2512 	unsigned long penalty_jiffies;
2513 	unsigned long pflags;
2514 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2515 	struct mem_cgroup *memcg;
2516 
2517 	if (likely(!nr_pages))
2518 		return;
2519 
2520 	memcg = get_mem_cgroup_from_mm(current->mm);
2521 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2522 	current->memcg_nr_pages_over_high = 0;
2523 
2524 	/*
2525 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2526 	 * allocators proactively to slow down excessive growth.
2527 	 */
2528 	penalty_jiffies = calculate_high_delay(memcg, nr_pages);
2529 
2530 	/*
2531 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2532 	 * that it's not even worth doing, in an attempt to be nice to those who
2533 	 * go only a small amount over their memory.high value and maybe haven't
2534 	 * been aggressively reclaimed enough yet.
2535 	 */
2536 	if (penalty_jiffies <= HZ / 100)
2537 		goto out;
2538 
2539 	/*
2540 	 * If we exit early, we're guaranteed to die (since
2541 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2542 	 * need to account for any ill-begotten jiffies to pay them off later.
2543 	 */
2544 	psi_memstall_enter(&pflags);
2545 	schedule_timeout_killable(penalty_jiffies);
2546 	psi_memstall_leave(&pflags);
2547 
2548 out:
2549 	css_put(&memcg->css);
2550 }
2551 
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2552 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2553 		      unsigned int nr_pages)
2554 {
2555 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2556 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2557 	struct mem_cgroup *mem_over_limit;
2558 	struct page_counter *counter;
2559 	unsigned long nr_reclaimed;
2560 	bool may_swap = true;
2561 	bool drained = false;
2562 	enum oom_status oom_status;
2563 
2564 	if (mem_cgroup_is_root(memcg))
2565 		return 0;
2566 retry:
2567 	if (consume_stock(memcg, nr_pages))
2568 		return 0;
2569 
2570 	if (!do_memsw_account() ||
2571 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2572 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2573 			goto done_restock;
2574 		if (do_memsw_account())
2575 			page_counter_uncharge(&memcg->memsw, batch);
2576 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2577 	} else {
2578 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2579 		may_swap = false;
2580 	}
2581 
2582 	if (batch > nr_pages) {
2583 		batch = nr_pages;
2584 		goto retry;
2585 	}
2586 
2587 	/*
2588 	 * Memcg doesn't have a dedicated reserve for atomic
2589 	 * allocations. But like the global atomic pool, we need to
2590 	 * put the burden of reclaim on regular allocation requests
2591 	 * and let these go through as privileged allocations.
2592 	 */
2593 	if (gfp_mask & __GFP_ATOMIC)
2594 		goto force;
2595 
2596 	/*
2597 	 * Unlike in global OOM situations, memcg is not in a physical
2598 	 * memory shortage.  Allow dying and OOM-killed tasks to
2599 	 * bypass the last charges so that they can exit quickly and
2600 	 * free their memory.
2601 	 */
2602 	if (unlikely(should_force_charge()))
2603 		goto force;
2604 
2605 	/*
2606 	 * Prevent unbounded recursion when reclaim operations need to
2607 	 * allocate memory. This might exceed the limits temporarily,
2608 	 * but we prefer facilitating memory reclaim and getting back
2609 	 * under the limit over triggering OOM kills in these cases.
2610 	 */
2611 	if (unlikely(current->flags & PF_MEMALLOC))
2612 		goto force;
2613 
2614 	if (unlikely(task_in_memcg_oom(current)))
2615 		goto nomem;
2616 
2617 	if (!gfpflags_allow_blocking(gfp_mask))
2618 		goto nomem;
2619 
2620 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2621 
2622 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2623 						    gfp_mask, may_swap);
2624 
2625 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2626 		goto retry;
2627 
2628 	if (!drained) {
2629 		drain_all_stock(mem_over_limit);
2630 		drained = true;
2631 		goto retry;
2632 	}
2633 
2634 	if (gfp_mask & __GFP_NORETRY)
2635 		goto nomem;
2636 	/*
2637 	 * Even though the limit is exceeded at this point, reclaim
2638 	 * may have been able to free some pages.  Retry the charge
2639 	 * before killing the task.
2640 	 *
2641 	 * Only for regular pages, though: huge pages are rather
2642 	 * unlikely to succeed so close to the limit, and we fall back
2643 	 * to regular pages anyway in case of failure.
2644 	 */
2645 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2646 		goto retry;
2647 	/*
2648 	 * At task move, charge accounts can be doubly counted. So, it's
2649 	 * better to wait until the end of task_move if something is going on.
2650 	 */
2651 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2652 		goto retry;
2653 
2654 	if (nr_retries--)
2655 		goto retry;
2656 
2657 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2658 		goto nomem;
2659 
2660 	if (gfp_mask & __GFP_NOFAIL)
2661 		goto force;
2662 
2663 	if (fatal_signal_pending(current))
2664 		goto force;
2665 
2666 	/*
2667 	 * keep retrying as long as the memcg oom killer is able to make
2668 	 * a forward progress or bypass the charge if the oom killer
2669 	 * couldn't make any progress.
2670 	 */
2671 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2672 		       get_order(nr_pages * PAGE_SIZE));
2673 	switch (oom_status) {
2674 	case OOM_SUCCESS:
2675 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2676 		goto retry;
2677 	case OOM_FAILED:
2678 		goto force;
2679 	default:
2680 		goto nomem;
2681 	}
2682 nomem:
2683 	if (!(gfp_mask & __GFP_NOFAIL))
2684 		return -ENOMEM;
2685 force:
2686 	/*
2687 	 * The allocation either can't fail or will lead to more memory
2688 	 * being freed very soon.  Allow memory usage go over the limit
2689 	 * temporarily by force charging it.
2690 	 */
2691 	page_counter_charge(&memcg->memory, nr_pages);
2692 	if (do_memsw_account())
2693 		page_counter_charge(&memcg->memsw, nr_pages);
2694 	css_get_many(&memcg->css, nr_pages);
2695 
2696 	return 0;
2697 
2698 done_restock:
2699 	css_get_many(&memcg->css, batch);
2700 	if (batch > nr_pages)
2701 		refill_stock(memcg, batch - nr_pages);
2702 
2703 	/*
2704 	 * If the hierarchy is above the normal consumption range, schedule
2705 	 * reclaim on returning to userland.  We can perform reclaim here
2706 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2707 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2708 	 * not recorded as it most likely matches current's and won't
2709 	 * change in the meantime.  As high limit is checked again before
2710 	 * reclaim, the cost of mismatch is negligible.
2711 	 */
2712 	do {
2713 		if (page_counter_read(&memcg->memory) > memcg->high) {
2714 			/* Don't bother a random interrupted task */
2715 			if (in_interrupt()) {
2716 				schedule_work(&memcg->high_work);
2717 				break;
2718 			}
2719 			current->memcg_nr_pages_over_high += batch;
2720 			set_notify_resume(current);
2721 			break;
2722 		}
2723 	} while ((memcg = parent_mem_cgroup(memcg)));
2724 
2725 	return 0;
2726 }
2727 
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2728 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2729 {
2730 	if (mem_cgroup_is_root(memcg))
2731 		return;
2732 
2733 	page_counter_uncharge(&memcg->memory, nr_pages);
2734 	if (do_memsw_account())
2735 		page_counter_uncharge(&memcg->memsw, nr_pages);
2736 
2737 	css_put_many(&memcg->css, nr_pages);
2738 }
2739 
lock_page_lru(struct page * page,int * isolated)2740 static void lock_page_lru(struct page *page, int *isolated)
2741 {
2742 	pg_data_t *pgdat = page_pgdat(page);
2743 
2744 	spin_lock_irq(&pgdat->lru_lock);
2745 	if (PageLRU(page)) {
2746 		struct lruvec *lruvec;
2747 
2748 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2749 		ClearPageLRU(page);
2750 		del_page_from_lru_list(page, lruvec, page_lru(page));
2751 		*isolated = 1;
2752 	} else
2753 		*isolated = 0;
2754 }
2755 
unlock_page_lru(struct page * page,int isolated)2756 static void unlock_page_lru(struct page *page, int isolated)
2757 {
2758 	pg_data_t *pgdat = page_pgdat(page);
2759 
2760 	if (isolated) {
2761 		struct lruvec *lruvec;
2762 
2763 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2764 		VM_BUG_ON_PAGE(PageLRU(page), page);
2765 		SetPageLRU(page);
2766 		add_page_to_lru_list(page, lruvec, page_lru(page));
2767 	}
2768 	spin_unlock_irq(&pgdat->lru_lock);
2769 }
2770 
commit_charge(struct page * page,struct mem_cgroup * memcg,bool lrucare)2771 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2772 			  bool lrucare)
2773 {
2774 	int isolated;
2775 
2776 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2777 
2778 	/*
2779 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2780 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2781 	 */
2782 	if (lrucare)
2783 		lock_page_lru(page, &isolated);
2784 
2785 	/*
2786 	 * Nobody should be changing or seriously looking at
2787 	 * page->mem_cgroup at this point:
2788 	 *
2789 	 * - the page is uncharged
2790 	 *
2791 	 * - the page is off-LRU
2792 	 *
2793 	 * - an anonymous fault has exclusive page access, except for
2794 	 *   a locked page table
2795 	 *
2796 	 * - a page cache insertion, a swapin fault, or a migration
2797 	 *   have the page locked
2798 	 */
2799 	page->mem_cgroup = memcg;
2800 
2801 	if (lrucare)
2802 		unlock_page_lru(page, isolated);
2803 }
2804 
2805 #ifdef CONFIG_MEMCG_KMEM
2806 /*
2807  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2808  *
2809  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2810  * cgroup_mutex, etc.
2811  */
mem_cgroup_from_obj(void * p)2812 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2813 {
2814 	struct page *page;
2815 
2816 	if (mem_cgroup_disabled())
2817 		return NULL;
2818 
2819 	page = virt_to_head_page(p);
2820 
2821 	/*
2822 	 * Slab pages don't have page->mem_cgroup set because corresponding
2823 	 * kmem caches can be reparented during the lifetime. That's why
2824 	 * memcg_from_slab_page() should be used instead.
2825 	 */
2826 	if (PageSlab(page))
2827 		return memcg_from_slab_page(page);
2828 
2829 	/* All other pages use page->mem_cgroup */
2830 	return page->mem_cgroup;
2831 }
2832 
memcg_alloc_cache_id(void)2833 static int memcg_alloc_cache_id(void)
2834 {
2835 	int id, size;
2836 	int err;
2837 
2838 	id = ida_simple_get(&memcg_cache_ida,
2839 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2840 	if (id < 0)
2841 		return id;
2842 
2843 	if (id < memcg_nr_cache_ids)
2844 		return id;
2845 
2846 	/*
2847 	 * There's no space for the new id in memcg_caches arrays,
2848 	 * so we have to grow them.
2849 	 */
2850 	down_write(&memcg_cache_ids_sem);
2851 
2852 	size = 2 * (id + 1);
2853 	if (size < MEMCG_CACHES_MIN_SIZE)
2854 		size = MEMCG_CACHES_MIN_SIZE;
2855 	else if (size > MEMCG_CACHES_MAX_SIZE)
2856 		size = MEMCG_CACHES_MAX_SIZE;
2857 
2858 	err = memcg_update_all_caches(size);
2859 	if (!err)
2860 		err = memcg_update_all_list_lrus(size);
2861 	if (!err)
2862 		memcg_nr_cache_ids = size;
2863 
2864 	up_write(&memcg_cache_ids_sem);
2865 
2866 	if (err) {
2867 		ida_simple_remove(&memcg_cache_ida, id);
2868 		return err;
2869 	}
2870 	return id;
2871 }
2872 
memcg_free_cache_id(int id)2873 static void memcg_free_cache_id(int id)
2874 {
2875 	ida_simple_remove(&memcg_cache_ida, id);
2876 }
2877 
2878 struct memcg_kmem_cache_create_work {
2879 	struct mem_cgroup *memcg;
2880 	struct kmem_cache *cachep;
2881 	struct work_struct work;
2882 };
2883 
memcg_kmem_cache_create_func(struct work_struct * w)2884 static void memcg_kmem_cache_create_func(struct work_struct *w)
2885 {
2886 	struct memcg_kmem_cache_create_work *cw =
2887 		container_of(w, struct memcg_kmem_cache_create_work, work);
2888 	struct mem_cgroup *memcg = cw->memcg;
2889 	struct kmem_cache *cachep = cw->cachep;
2890 
2891 	memcg_create_kmem_cache(memcg, cachep);
2892 
2893 	css_put(&memcg->css);
2894 	kfree(cw);
2895 }
2896 
2897 /*
2898  * Enqueue the creation of a per-memcg kmem_cache.
2899  */
memcg_schedule_kmem_cache_create(struct mem_cgroup * memcg,struct kmem_cache * cachep)2900 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2901 					       struct kmem_cache *cachep)
2902 {
2903 	struct memcg_kmem_cache_create_work *cw;
2904 
2905 	if (!css_tryget_online(&memcg->css))
2906 		return;
2907 
2908 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2909 	if (!cw) {
2910 		css_put(&memcg->css);
2911 		return;
2912 	}
2913 
2914 	cw->memcg = memcg;
2915 	cw->cachep = cachep;
2916 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2917 
2918 	queue_work(memcg_kmem_cache_wq, &cw->work);
2919 }
2920 
memcg_kmem_bypass(void)2921 static inline bool memcg_kmem_bypass(void)
2922 {
2923 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2924 		return true;
2925 	return false;
2926 }
2927 
2928 /**
2929  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2930  * @cachep: the original global kmem cache
2931  *
2932  * Return the kmem_cache we're supposed to use for a slab allocation.
2933  * We try to use the current memcg's version of the cache.
2934  *
2935  * If the cache does not exist yet, if we are the first user of it, we
2936  * create it asynchronously in a workqueue and let the current allocation
2937  * go through with the original cache.
2938  *
2939  * This function takes a reference to the cache it returns to assure it
2940  * won't get destroyed while we are working with it. Once the caller is
2941  * done with it, memcg_kmem_put_cache() must be called to release the
2942  * reference.
2943  */
memcg_kmem_get_cache(struct kmem_cache * cachep)2944 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2945 {
2946 	struct mem_cgroup *memcg;
2947 	struct kmem_cache *memcg_cachep;
2948 	struct memcg_cache_array *arr;
2949 	int kmemcg_id;
2950 
2951 	VM_BUG_ON(!is_root_cache(cachep));
2952 
2953 	if (memcg_kmem_bypass())
2954 		return cachep;
2955 
2956 	rcu_read_lock();
2957 
2958 	if (unlikely(current->active_memcg))
2959 		memcg = current->active_memcg;
2960 	else
2961 		memcg = mem_cgroup_from_task(current);
2962 
2963 	if (!memcg || memcg == root_mem_cgroup)
2964 		goto out_unlock;
2965 
2966 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2967 	if (kmemcg_id < 0)
2968 		goto out_unlock;
2969 
2970 	arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2971 
2972 	/*
2973 	 * Make sure we will access the up-to-date value. The code updating
2974 	 * memcg_caches issues a write barrier to match the data dependency
2975 	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2976 	 */
2977 	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2978 
2979 	/*
2980 	 * If we are in a safe context (can wait, and not in interrupt
2981 	 * context), we could be be predictable and return right away.
2982 	 * This would guarantee that the allocation being performed
2983 	 * already belongs in the new cache.
2984 	 *
2985 	 * However, there are some clashes that can arrive from locking.
2986 	 * For instance, because we acquire the slab_mutex while doing
2987 	 * memcg_create_kmem_cache, this means no further allocation
2988 	 * could happen with the slab_mutex held. So it's better to
2989 	 * defer everything.
2990 	 *
2991 	 * If the memcg is dying or memcg_cache is about to be released,
2992 	 * don't bother creating new kmem_caches. Because memcg_cachep
2993 	 * is ZEROed as the fist step of kmem offlining, we don't need
2994 	 * percpu_ref_tryget_live() here. css_tryget_online() check in
2995 	 * memcg_schedule_kmem_cache_create() will prevent us from
2996 	 * creation of a new kmem_cache.
2997 	 */
2998 	if (unlikely(!memcg_cachep))
2999 		memcg_schedule_kmem_cache_create(memcg, cachep);
3000 	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
3001 		cachep = memcg_cachep;
3002 out_unlock:
3003 	rcu_read_unlock();
3004 	return cachep;
3005 }
3006 
3007 /**
3008  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
3009  * @cachep: the cache returned by memcg_kmem_get_cache
3010  */
memcg_kmem_put_cache(struct kmem_cache * cachep)3011 void memcg_kmem_put_cache(struct kmem_cache *cachep)
3012 {
3013 	if (!is_root_cache(cachep))
3014 		percpu_ref_put(&cachep->memcg_params.refcnt);
3015 }
3016 
3017 /**
3018  * __memcg_kmem_charge_memcg: charge a kmem page
3019  * @page: page to charge
3020  * @gfp: reclaim mode
3021  * @order: allocation order
3022  * @memcg: memory cgroup to charge
3023  *
3024  * Returns 0 on success, an error code on failure.
3025  */
__memcg_kmem_charge_memcg(struct page * page,gfp_t gfp,int order,struct mem_cgroup * memcg)3026 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
3027 			    struct mem_cgroup *memcg)
3028 {
3029 	unsigned int nr_pages = 1 << order;
3030 	struct page_counter *counter;
3031 	int ret;
3032 
3033 	ret = try_charge(memcg, gfp, nr_pages);
3034 	if (ret)
3035 		return ret;
3036 
3037 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3038 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3039 
3040 		/*
3041 		 * Enforce __GFP_NOFAIL allocation because callers are not
3042 		 * prepared to see failures and likely do not have any failure
3043 		 * handling code.
3044 		 */
3045 		if (gfp & __GFP_NOFAIL) {
3046 			page_counter_charge(&memcg->kmem, nr_pages);
3047 			return 0;
3048 		}
3049 		cancel_charge(memcg, nr_pages);
3050 		return -ENOMEM;
3051 	}
3052 	return 0;
3053 }
3054 
3055 /**
3056  * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
3057  * @page: page to charge
3058  * @gfp: reclaim mode
3059  * @order: allocation order
3060  *
3061  * Returns 0 on success, an error code on failure.
3062  */
__memcg_kmem_charge(struct page * page,gfp_t gfp,int order)3063 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
3064 {
3065 	struct mem_cgroup *memcg;
3066 	int ret = 0;
3067 
3068 	if (memcg_kmem_bypass())
3069 		return 0;
3070 
3071 	memcg = get_mem_cgroup_from_current();
3072 	if (!mem_cgroup_is_root(memcg)) {
3073 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
3074 		if (!ret) {
3075 			page->mem_cgroup = memcg;
3076 			__SetPageKmemcg(page);
3077 		}
3078 	}
3079 	css_put(&memcg->css);
3080 	return ret;
3081 }
3082 
3083 /**
3084  * __memcg_kmem_uncharge_memcg: uncharge a kmem page
3085  * @memcg: memcg to uncharge
3086  * @nr_pages: number of pages to uncharge
3087  */
__memcg_kmem_uncharge_memcg(struct mem_cgroup * memcg,unsigned int nr_pages)3088 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
3089 				 unsigned int nr_pages)
3090 {
3091 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3092 		page_counter_uncharge(&memcg->kmem, nr_pages);
3093 
3094 	page_counter_uncharge(&memcg->memory, nr_pages);
3095 	if (do_memsw_account())
3096 		page_counter_uncharge(&memcg->memsw, nr_pages);
3097 }
3098 /**
3099  * __memcg_kmem_uncharge: uncharge a kmem page
3100  * @page: page to uncharge
3101  * @order: allocation order
3102  */
__memcg_kmem_uncharge(struct page * page,int order)3103 void __memcg_kmem_uncharge(struct page *page, int order)
3104 {
3105 	struct mem_cgroup *memcg = page->mem_cgroup;
3106 	unsigned int nr_pages = 1 << order;
3107 
3108 	if (!memcg)
3109 		return;
3110 
3111 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3112 	__memcg_kmem_uncharge_memcg(memcg, nr_pages);
3113 	page->mem_cgroup = NULL;
3114 
3115 	/* slab pages do not have PageKmemcg flag set */
3116 	if (PageKmemcg(page))
3117 		__ClearPageKmemcg(page);
3118 
3119 	css_put_many(&memcg->css, nr_pages);
3120 }
3121 #endif /* CONFIG_MEMCG_KMEM */
3122 
3123 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3124 
3125 /*
3126  * Because tail pages are not marked as "used", set it. We're under
3127  * pgdat->lru_lock and migration entries setup in all page mappings.
3128  */
mem_cgroup_split_huge_fixup(struct page * head)3129 void mem_cgroup_split_huge_fixup(struct page *head)
3130 {
3131 	int i;
3132 
3133 	if (mem_cgroup_disabled())
3134 		return;
3135 
3136 	for (i = 1; i < HPAGE_PMD_NR; i++)
3137 		head[i].mem_cgroup = head->mem_cgroup;
3138 
3139 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
3140 }
3141 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3142 
3143 #ifdef CONFIG_MEMCG_SWAP
3144 /**
3145  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3146  * @entry: swap entry to be moved
3147  * @from:  mem_cgroup which the entry is moved from
3148  * @to:  mem_cgroup which the entry is moved to
3149  *
3150  * It succeeds only when the swap_cgroup's record for this entry is the same
3151  * as the mem_cgroup's id of @from.
3152  *
3153  * Returns 0 on success, -EINVAL on failure.
3154  *
3155  * The caller must have charged to @to, IOW, called page_counter_charge() about
3156  * both res and memsw, and called css_get().
3157  */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3158 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3159 				struct mem_cgroup *from, struct mem_cgroup *to)
3160 {
3161 	unsigned short old_id, new_id;
3162 
3163 	old_id = mem_cgroup_id(from);
3164 	new_id = mem_cgroup_id(to);
3165 
3166 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3167 		mod_memcg_state(from, MEMCG_SWAP, -1);
3168 		mod_memcg_state(to, MEMCG_SWAP, 1);
3169 		return 0;
3170 	}
3171 	return -EINVAL;
3172 }
3173 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3174 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3175 				struct mem_cgroup *from, struct mem_cgroup *to)
3176 {
3177 	return -EINVAL;
3178 }
3179 #endif
3180 
3181 static DEFINE_MUTEX(memcg_max_mutex);
3182 
mem_cgroup_resize_max(struct mem_cgroup * memcg,unsigned long max,bool memsw)3183 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3184 				 unsigned long max, bool memsw)
3185 {
3186 	bool enlarge = false;
3187 	bool drained = false;
3188 	int ret;
3189 	bool limits_invariant;
3190 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3191 
3192 	do {
3193 		if (signal_pending(current)) {
3194 			ret = -EINTR;
3195 			break;
3196 		}
3197 
3198 		mutex_lock(&memcg_max_mutex);
3199 		/*
3200 		 * Make sure that the new limit (memsw or memory limit) doesn't
3201 		 * break our basic invariant rule memory.max <= memsw.max.
3202 		 */
3203 		limits_invariant = memsw ? max >= memcg->memory.max :
3204 					   max <= memcg->memsw.max;
3205 		if (!limits_invariant) {
3206 			mutex_unlock(&memcg_max_mutex);
3207 			ret = -EINVAL;
3208 			break;
3209 		}
3210 		if (max > counter->max)
3211 			enlarge = true;
3212 		ret = page_counter_set_max(counter, max);
3213 		mutex_unlock(&memcg_max_mutex);
3214 
3215 		if (!ret)
3216 			break;
3217 
3218 		if (!drained) {
3219 			drain_all_stock(memcg);
3220 			drained = true;
3221 			continue;
3222 		}
3223 
3224 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3225 					GFP_KERNEL, !memsw)) {
3226 			ret = -EBUSY;
3227 			break;
3228 		}
3229 	} while (true);
3230 
3231 	if (!ret && enlarge)
3232 		memcg_oom_recover(memcg);
3233 
3234 	return ret;
3235 }
3236 
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)3237 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3238 					    gfp_t gfp_mask,
3239 					    unsigned long *total_scanned)
3240 {
3241 	unsigned long nr_reclaimed = 0;
3242 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3243 	unsigned long reclaimed;
3244 	int loop = 0;
3245 	struct mem_cgroup_tree_per_node *mctz;
3246 	unsigned long excess;
3247 	unsigned long nr_scanned;
3248 
3249 	if (order > 0)
3250 		return 0;
3251 
3252 	mctz = soft_limit_tree_node(pgdat->node_id);
3253 
3254 	/*
3255 	 * Do not even bother to check the largest node if the root
3256 	 * is empty. Do it lockless to prevent lock bouncing. Races
3257 	 * are acceptable as soft limit is best effort anyway.
3258 	 */
3259 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3260 		return 0;
3261 
3262 	/*
3263 	 * This loop can run a while, specially if mem_cgroup's continuously
3264 	 * keep exceeding their soft limit and putting the system under
3265 	 * pressure
3266 	 */
3267 	do {
3268 		if (next_mz)
3269 			mz = next_mz;
3270 		else
3271 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3272 		if (!mz)
3273 			break;
3274 
3275 		nr_scanned = 0;
3276 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3277 						    gfp_mask, &nr_scanned);
3278 		nr_reclaimed += reclaimed;
3279 		*total_scanned += nr_scanned;
3280 		spin_lock_irq(&mctz->lock);
3281 		__mem_cgroup_remove_exceeded(mz, mctz);
3282 
3283 		/*
3284 		 * If we failed to reclaim anything from this memory cgroup
3285 		 * it is time to move on to the next cgroup
3286 		 */
3287 		next_mz = NULL;
3288 		if (!reclaimed)
3289 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3290 
3291 		excess = soft_limit_excess(mz->memcg);
3292 		/*
3293 		 * One school of thought says that we should not add
3294 		 * back the node to the tree if reclaim returns 0.
3295 		 * But our reclaim could return 0, simply because due
3296 		 * to priority we are exposing a smaller subset of
3297 		 * memory to reclaim from. Consider this as a longer
3298 		 * term TODO.
3299 		 */
3300 		/* If excess == 0, no tree ops */
3301 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3302 		spin_unlock_irq(&mctz->lock);
3303 		css_put(&mz->memcg->css);
3304 		loop++;
3305 		/*
3306 		 * Could not reclaim anything and there are no more
3307 		 * mem cgroups to try or we seem to be looping without
3308 		 * reclaiming anything.
3309 		 */
3310 		if (!nr_reclaimed &&
3311 			(next_mz == NULL ||
3312 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3313 			break;
3314 	} while (!nr_reclaimed);
3315 	if (next_mz)
3316 		css_put(&next_mz->memcg->css);
3317 	return nr_reclaimed;
3318 }
3319 
3320 /*
3321  * Test whether @memcg has children, dead or alive.  Note that this
3322  * function doesn't care whether @memcg has use_hierarchy enabled and
3323  * returns %true if there are child csses according to the cgroup
3324  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3325  */
memcg_has_children(struct mem_cgroup * memcg)3326 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3327 {
3328 	bool ret;
3329 
3330 	rcu_read_lock();
3331 	ret = css_next_child(NULL, &memcg->css);
3332 	rcu_read_unlock();
3333 	return ret;
3334 }
3335 
3336 /*
3337  * Reclaims as many pages from the given memcg as possible.
3338  *
3339  * Caller is responsible for holding css reference for memcg.
3340  */
mem_cgroup_force_empty(struct mem_cgroup * memcg)3341 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3342 {
3343 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3344 
3345 	/* we call try-to-free pages for make this cgroup empty */
3346 	lru_add_drain_all();
3347 
3348 	drain_all_stock(memcg);
3349 
3350 	/* try to free all pages in this cgroup */
3351 	while (nr_retries && page_counter_read(&memcg->memory)) {
3352 		int progress;
3353 
3354 		if (signal_pending(current))
3355 			return -EINTR;
3356 
3357 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3358 							GFP_KERNEL, true);
3359 		if (!progress) {
3360 			nr_retries--;
3361 			/* maybe some writeback is necessary */
3362 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3363 		}
3364 
3365 	}
3366 
3367 	return 0;
3368 }
3369 
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3370 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3371 					    char *buf, size_t nbytes,
3372 					    loff_t off)
3373 {
3374 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3375 
3376 	if (mem_cgroup_is_root(memcg))
3377 		return -EINVAL;
3378 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3379 }
3380 
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)3381 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3382 				     struct cftype *cft)
3383 {
3384 	return mem_cgroup_from_css(css)->use_hierarchy;
3385 }
3386 
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3387 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3388 				      struct cftype *cft, u64 val)
3389 {
3390 	int retval = 0;
3391 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3392 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3393 
3394 	if (memcg->use_hierarchy == val)
3395 		return 0;
3396 
3397 	/*
3398 	 * If parent's use_hierarchy is set, we can't make any modifications
3399 	 * in the child subtrees. If it is unset, then the change can
3400 	 * occur, provided the current cgroup has no children.
3401 	 *
3402 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3403 	 * set if there are no children.
3404 	 */
3405 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3406 				(val == 1 || val == 0)) {
3407 		if (!memcg_has_children(memcg))
3408 			memcg->use_hierarchy = val;
3409 		else
3410 			retval = -EBUSY;
3411 	} else
3412 		retval = -EINVAL;
3413 
3414 	return retval;
3415 }
3416 
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3417 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3418 {
3419 	unsigned long val;
3420 
3421 	if (mem_cgroup_is_root(memcg)) {
3422 		val = memcg_page_state(memcg, MEMCG_CACHE) +
3423 			memcg_page_state(memcg, MEMCG_RSS);
3424 		if (swap)
3425 			val += memcg_page_state(memcg, MEMCG_SWAP);
3426 	} else {
3427 		if (!swap)
3428 			val = page_counter_read(&memcg->memory);
3429 		else
3430 			val = page_counter_read(&memcg->memsw);
3431 	}
3432 	return val;
3433 }
3434 
3435 enum {
3436 	RES_USAGE,
3437 	RES_LIMIT,
3438 	RES_MAX_USAGE,
3439 	RES_FAILCNT,
3440 	RES_SOFT_LIMIT,
3441 };
3442 
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)3443 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3444 			       struct cftype *cft)
3445 {
3446 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3447 	struct page_counter *counter;
3448 
3449 	switch (MEMFILE_TYPE(cft->private)) {
3450 	case _MEM:
3451 		counter = &memcg->memory;
3452 		break;
3453 	case _MEMSWAP:
3454 		counter = &memcg->memsw;
3455 		break;
3456 	case _KMEM:
3457 		counter = &memcg->kmem;
3458 		break;
3459 	case _TCP:
3460 		counter = &memcg->tcpmem;
3461 		break;
3462 	default:
3463 		BUG();
3464 	}
3465 
3466 	switch (MEMFILE_ATTR(cft->private)) {
3467 	case RES_USAGE:
3468 		if (counter == &memcg->memory)
3469 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3470 		if (counter == &memcg->memsw)
3471 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3472 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3473 	case RES_LIMIT:
3474 		return (u64)counter->max * PAGE_SIZE;
3475 	case RES_MAX_USAGE:
3476 		return (u64)counter->watermark * PAGE_SIZE;
3477 	case RES_FAILCNT:
3478 		return counter->failcnt;
3479 	case RES_SOFT_LIMIT:
3480 		return (u64)memcg->soft_limit * PAGE_SIZE;
3481 	default:
3482 		BUG();
3483 	}
3484 }
3485 
memcg_flush_percpu_vmstats(struct mem_cgroup * memcg)3486 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3487 {
3488 	unsigned long stat[MEMCG_NR_STAT] = {0};
3489 	struct mem_cgroup *mi;
3490 	int node, cpu, i;
3491 
3492 	for_each_online_cpu(cpu)
3493 		for (i = 0; i < MEMCG_NR_STAT; i++)
3494 			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3495 
3496 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3497 		for (i = 0; i < MEMCG_NR_STAT; i++)
3498 			atomic_long_add(stat[i], &mi->vmstats[i]);
3499 
3500 	for_each_node(node) {
3501 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3502 		struct mem_cgroup_per_node *pi;
3503 
3504 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3505 			stat[i] = 0;
3506 
3507 		for_each_online_cpu(cpu)
3508 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3509 				stat[i] += per_cpu(
3510 					pn->lruvec_stat_cpu->count[i], cpu);
3511 
3512 		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3513 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3514 				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3515 	}
3516 }
3517 
memcg_flush_percpu_vmevents(struct mem_cgroup * memcg)3518 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3519 {
3520 	unsigned long events[NR_VM_EVENT_ITEMS];
3521 	struct mem_cgroup *mi;
3522 	int cpu, i;
3523 
3524 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3525 		events[i] = 0;
3526 
3527 	for_each_online_cpu(cpu)
3528 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3529 			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3530 					     cpu);
3531 
3532 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3533 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3534 			atomic_long_add(events[i], &mi->vmevents[i]);
3535 }
3536 
3537 #ifdef CONFIG_MEMCG_KMEM
memcg_online_kmem(struct mem_cgroup * memcg)3538 static int memcg_online_kmem(struct mem_cgroup *memcg)
3539 {
3540 	int memcg_id;
3541 
3542 	if (cgroup_memory_nokmem)
3543 		return 0;
3544 
3545 	BUG_ON(memcg->kmemcg_id >= 0);
3546 	BUG_ON(memcg->kmem_state);
3547 
3548 	memcg_id = memcg_alloc_cache_id();
3549 	if (memcg_id < 0)
3550 		return memcg_id;
3551 
3552 	static_branch_inc(&memcg_kmem_enabled_key);
3553 	/*
3554 	 * A memory cgroup is considered kmem-online as soon as it gets
3555 	 * kmemcg_id. Setting the id after enabling static branching will
3556 	 * guarantee no one starts accounting before all call sites are
3557 	 * patched.
3558 	 */
3559 	memcg->kmemcg_id = memcg_id;
3560 	memcg->kmem_state = KMEM_ONLINE;
3561 	INIT_LIST_HEAD(&memcg->kmem_caches);
3562 
3563 	return 0;
3564 }
3565 
memcg_offline_kmem(struct mem_cgroup * memcg)3566 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3567 {
3568 	struct cgroup_subsys_state *css;
3569 	struct mem_cgroup *parent, *child;
3570 	int kmemcg_id;
3571 
3572 	if (memcg->kmem_state != KMEM_ONLINE)
3573 		return;
3574 	/*
3575 	 * Clear the online state before clearing memcg_caches array
3576 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3577 	 * guarantees that no cache will be created for this cgroup
3578 	 * after we are done (see memcg_create_kmem_cache()).
3579 	 */
3580 	memcg->kmem_state = KMEM_ALLOCATED;
3581 
3582 	parent = parent_mem_cgroup(memcg);
3583 	if (!parent)
3584 		parent = root_mem_cgroup;
3585 
3586 	/*
3587 	 * Deactivate and reparent kmem_caches.
3588 	 */
3589 	memcg_deactivate_kmem_caches(memcg, parent);
3590 
3591 	kmemcg_id = memcg->kmemcg_id;
3592 	BUG_ON(kmemcg_id < 0);
3593 
3594 	/*
3595 	 * Change kmemcg_id of this cgroup and all its descendants to the
3596 	 * parent's id, and then move all entries from this cgroup's list_lrus
3597 	 * to ones of the parent. After we have finished, all list_lrus
3598 	 * corresponding to this cgroup are guaranteed to remain empty. The
3599 	 * ordering is imposed by list_lru_node->lock taken by
3600 	 * memcg_drain_all_list_lrus().
3601 	 */
3602 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3603 	css_for_each_descendant_pre(css, &memcg->css) {
3604 		child = mem_cgroup_from_css(css);
3605 		BUG_ON(child->kmemcg_id != kmemcg_id);
3606 		child->kmemcg_id = parent->kmemcg_id;
3607 		if (!memcg->use_hierarchy)
3608 			break;
3609 	}
3610 	rcu_read_unlock();
3611 
3612 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3613 
3614 	memcg_free_cache_id(kmemcg_id);
3615 }
3616 
memcg_free_kmem(struct mem_cgroup * memcg)3617 static void memcg_free_kmem(struct mem_cgroup *memcg)
3618 {
3619 	/* css_alloc() failed, offlining didn't happen */
3620 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3621 		memcg_offline_kmem(memcg);
3622 
3623 	if (memcg->kmem_state == KMEM_ALLOCATED) {
3624 		WARN_ON(!list_empty(&memcg->kmem_caches));
3625 		static_branch_dec(&memcg_kmem_enabled_key);
3626 	}
3627 }
3628 #else
memcg_online_kmem(struct mem_cgroup * memcg)3629 static int memcg_online_kmem(struct mem_cgroup *memcg)
3630 {
3631 	return 0;
3632 }
memcg_offline_kmem(struct mem_cgroup * memcg)3633 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3634 {
3635 }
memcg_free_kmem(struct mem_cgroup * memcg)3636 static void memcg_free_kmem(struct mem_cgroup *memcg)
3637 {
3638 }
3639 #endif /* CONFIG_MEMCG_KMEM */
3640 
memcg_update_kmem_max(struct mem_cgroup * memcg,unsigned long max)3641 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3642 				 unsigned long max)
3643 {
3644 	int ret;
3645 
3646 	mutex_lock(&memcg_max_mutex);
3647 	ret = page_counter_set_max(&memcg->kmem, max);
3648 	mutex_unlock(&memcg_max_mutex);
3649 	return ret;
3650 }
3651 
memcg_update_tcp_max(struct mem_cgroup * memcg,unsigned long max)3652 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3653 {
3654 	int ret;
3655 
3656 	mutex_lock(&memcg_max_mutex);
3657 
3658 	ret = page_counter_set_max(&memcg->tcpmem, max);
3659 	if (ret)
3660 		goto out;
3661 
3662 	if (!memcg->tcpmem_active) {
3663 		/*
3664 		 * The active flag needs to be written after the static_key
3665 		 * update. This is what guarantees that the socket activation
3666 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3667 		 * for details, and note that we don't mark any socket as
3668 		 * belonging to this memcg until that flag is up.
3669 		 *
3670 		 * We need to do this, because static_keys will span multiple
3671 		 * sites, but we can't control their order. If we mark a socket
3672 		 * as accounted, but the accounting functions are not patched in
3673 		 * yet, we'll lose accounting.
3674 		 *
3675 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3676 		 * because when this value change, the code to process it is not
3677 		 * patched in yet.
3678 		 */
3679 		static_branch_inc(&memcg_sockets_enabled_key);
3680 		memcg->tcpmem_active = true;
3681 	}
3682 out:
3683 	mutex_unlock(&memcg_max_mutex);
3684 	return ret;
3685 }
3686 
3687 /*
3688  * The user of this function is...
3689  * RES_LIMIT.
3690  */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3691 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3692 				char *buf, size_t nbytes, loff_t off)
3693 {
3694 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3695 	unsigned long nr_pages;
3696 	int ret;
3697 
3698 	buf = strstrip(buf);
3699 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3700 	if (ret)
3701 		return ret;
3702 
3703 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3704 	case RES_LIMIT:
3705 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3706 			ret = -EINVAL;
3707 			break;
3708 		}
3709 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3710 		case _MEM:
3711 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3712 			break;
3713 		case _MEMSWAP:
3714 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3715 			break;
3716 		case _KMEM:
3717 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3718 				     "Please report your usecase to linux-mm@kvack.org if you "
3719 				     "depend on this functionality.\n");
3720 			ret = memcg_update_kmem_max(memcg, nr_pages);
3721 			break;
3722 		case _TCP:
3723 			ret = memcg_update_tcp_max(memcg, nr_pages);
3724 			break;
3725 		}
3726 		break;
3727 	case RES_SOFT_LIMIT:
3728 		memcg->soft_limit = nr_pages;
3729 		ret = 0;
3730 		break;
3731 	}
3732 	return ret ?: nbytes;
3733 }
3734 
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3735 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3736 				size_t nbytes, loff_t off)
3737 {
3738 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3739 	struct page_counter *counter;
3740 
3741 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3742 	case _MEM:
3743 		counter = &memcg->memory;
3744 		break;
3745 	case _MEMSWAP:
3746 		counter = &memcg->memsw;
3747 		break;
3748 	case _KMEM:
3749 		counter = &memcg->kmem;
3750 		break;
3751 	case _TCP:
3752 		counter = &memcg->tcpmem;
3753 		break;
3754 	default:
3755 		BUG();
3756 	}
3757 
3758 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3759 	case RES_MAX_USAGE:
3760 		page_counter_reset_watermark(counter);
3761 		break;
3762 	case RES_FAILCNT:
3763 		counter->failcnt = 0;
3764 		break;
3765 	default:
3766 		BUG();
3767 	}
3768 
3769 	return nbytes;
3770 }
3771 
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3772 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3773 					struct cftype *cft)
3774 {
3775 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3776 }
3777 
3778 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3779 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3780 					struct cftype *cft, u64 val)
3781 {
3782 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3783 
3784 	pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3785 		     "Please report your usecase to linux-mm@kvack.org if you "
3786 		     "depend on this functionality.\n");
3787 
3788 	if (val & ~MOVE_MASK)
3789 		return -EINVAL;
3790 
3791 	/*
3792 	 * No kind of locking is needed in here, because ->can_attach() will
3793 	 * check this value once in the beginning of the process, and then carry
3794 	 * on with stale data. This means that changes to this value will only
3795 	 * affect task migrations starting after the change.
3796 	 */
3797 	memcg->move_charge_at_immigrate = val;
3798 	return 0;
3799 }
3800 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3801 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3802 					struct cftype *cft, u64 val)
3803 {
3804 	return -ENOSYS;
3805 }
3806 #endif
3807 
3808 #ifdef CONFIG_NUMA
3809 
3810 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3811 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3812 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3813 
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask)3814 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3815 					   int nid, unsigned int lru_mask)
3816 {
3817 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3818 	unsigned long nr = 0;
3819 	enum lru_list lru;
3820 
3821 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3822 
3823 	for_each_lru(lru) {
3824 		if (!(BIT(lru) & lru_mask))
3825 			continue;
3826 		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3827 	}
3828 	return nr;
3829 }
3830 
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask)3831 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3832 					     unsigned int lru_mask)
3833 {
3834 	unsigned long nr = 0;
3835 	enum lru_list lru;
3836 
3837 	for_each_lru(lru) {
3838 		if (!(BIT(lru) & lru_mask))
3839 			continue;
3840 		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3841 	}
3842 	return nr;
3843 }
3844 
memcg_numa_stat_show(struct seq_file * m,void * v)3845 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3846 {
3847 	struct numa_stat {
3848 		const char *name;
3849 		unsigned int lru_mask;
3850 	};
3851 
3852 	static const struct numa_stat stats[] = {
3853 		{ "total", LRU_ALL },
3854 		{ "file", LRU_ALL_FILE },
3855 		{ "anon", LRU_ALL_ANON },
3856 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3857 	};
3858 	const struct numa_stat *stat;
3859 	int nid;
3860 	unsigned long nr;
3861 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3862 
3863 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3864 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3865 		seq_printf(m, "%s=%lu", stat->name, nr);
3866 		for_each_node_state(nid, N_MEMORY) {
3867 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3868 							  stat->lru_mask);
3869 			seq_printf(m, " N%d=%lu", nid, nr);
3870 		}
3871 		seq_putc(m, '\n');
3872 	}
3873 
3874 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3875 		struct mem_cgroup *iter;
3876 
3877 		nr = 0;
3878 		for_each_mem_cgroup_tree(iter, memcg)
3879 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3880 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3881 		for_each_node_state(nid, N_MEMORY) {
3882 			nr = 0;
3883 			for_each_mem_cgroup_tree(iter, memcg)
3884 				nr += mem_cgroup_node_nr_lru_pages(
3885 					iter, nid, stat->lru_mask);
3886 			seq_printf(m, " N%d=%lu", nid, nr);
3887 		}
3888 		seq_putc(m, '\n');
3889 	}
3890 
3891 	return 0;
3892 }
3893 #endif /* CONFIG_NUMA */
3894 
3895 static const unsigned int memcg1_stats[] = {
3896 	MEMCG_CACHE,
3897 	MEMCG_RSS,
3898 	MEMCG_RSS_HUGE,
3899 	NR_SHMEM,
3900 	NR_FILE_MAPPED,
3901 	NR_FILE_DIRTY,
3902 	NR_WRITEBACK,
3903 	MEMCG_SWAP,
3904 };
3905 
3906 static const char *const memcg1_stat_names[] = {
3907 	"cache",
3908 	"rss",
3909 	"rss_huge",
3910 	"shmem",
3911 	"mapped_file",
3912 	"dirty",
3913 	"writeback",
3914 	"swap",
3915 };
3916 
3917 /* Universal VM events cgroup1 shows, original sort order */
3918 static const unsigned int memcg1_events[] = {
3919 	PGPGIN,
3920 	PGPGOUT,
3921 	PGFAULT,
3922 	PGMAJFAULT,
3923 };
3924 
3925 static const char *const memcg1_event_names[] = {
3926 	"pgpgin",
3927 	"pgpgout",
3928 	"pgfault",
3929 	"pgmajfault",
3930 };
3931 
memcg_stat_show(struct seq_file * m,void * v)3932 static int memcg_stat_show(struct seq_file *m, void *v)
3933 {
3934 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3935 	unsigned long memory, memsw;
3936 	struct mem_cgroup *mi;
3937 	unsigned int i;
3938 
3939 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3940 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3941 
3942 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3943 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3944 			continue;
3945 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3946 			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3947 			   PAGE_SIZE);
3948 	}
3949 
3950 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3951 		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3952 			   memcg_events_local(memcg, memcg1_events[i]));
3953 
3954 	for (i = 0; i < NR_LRU_LISTS; i++)
3955 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3956 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3957 			   PAGE_SIZE);
3958 
3959 	/* Hierarchical information */
3960 	memory = memsw = PAGE_COUNTER_MAX;
3961 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3962 		memory = min(memory, mi->memory.max);
3963 		memsw = min(memsw, mi->memsw.max);
3964 	}
3965 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3966 		   (u64)memory * PAGE_SIZE);
3967 	if (do_memsw_account())
3968 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3969 			   (u64)memsw * PAGE_SIZE);
3970 
3971 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3972 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3973 			continue;
3974 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3975 			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3976 			   PAGE_SIZE);
3977 	}
3978 
3979 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3980 		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3981 			   (u64)memcg_events(memcg, memcg1_events[i]));
3982 
3983 	for (i = 0; i < NR_LRU_LISTS; i++)
3984 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3985 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3986 			   PAGE_SIZE);
3987 
3988 #ifdef CONFIG_DEBUG_VM
3989 	{
3990 		pg_data_t *pgdat;
3991 		struct mem_cgroup_per_node *mz;
3992 		struct zone_reclaim_stat *rstat;
3993 		unsigned long recent_rotated[2] = {0, 0};
3994 		unsigned long recent_scanned[2] = {0, 0};
3995 
3996 		for_each_online_pgdat(pgdat) {
3997 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3998 			rstat = &mz->lruvec.reclaim_stat;
3999 
4000 			recent_rotated[0] += rstat->recent_rotated[0];
4001 			recent_rotated[1] += rstat->recent_rotated[1];
4002 			recent_scanned[0] += rstat->recent_scanned[0];
4003 			recent_scanned[1] += rstat->recent_scanned[1];
4004 		}
4005 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4006 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4007 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4008 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4009 	}
4010 #endif
4011 
4012 	return 0;
4013 }
4014 
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)4015 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4016 				      struct cftype *cft)
4017 {
4018 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4019 
4020 	return mem_cgroup_swappiness(memcg);
4021 }
4022 
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4023 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4024 				       struct cftype *cft, u64 val)
4025 {
4026 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4027 
4028 	if (val > 100)
4029 		return -EINVAL;
4030 
4031 	if (css->parent)
4032 		memcg->swappiness = val;
4033 	else
4034 		vm_swappiness = val;
4035 
4036 	return 0;
4037 }
4038 
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)4039 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4040 {
4041 	struct mem_cgroup_threshold_ary *t;
4042 	unsigned long usage;
4043 	int i;
4044 
4045 	rcu_read_lock();
4046 	if (!swap)
4047 		t = rcu_dereference(memcg->thresholds.primary);
4048 	else
4049 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4050 
4051 	if (!t)
4052 		goto unlock;
4053 
4054 	usage = mem_cgroup_usage(memcg, swap);
4055 
4056 	/*
4057 	 * current_threshold points to threshold just below or equal to usage.
4058 	 * If it's not true, a threshold was crossed after last
4059 	 * call of __mem_cgroup_threshold().
4060 	 */
4061 	i = t->current_threshold;
4062 
4063 	/*
4064 	 * Iterate backward over array of thresholds starting from
4065 	 * current_threshold and check if a threshold is crossed.
4066 	 * If none of thresholds below usage is crossed, we read
4067 	 * only one element of the array here.
4068 	 */
4069 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4070 		eventfd_signal(t->entries[i].eventfd, 1);
4071 
4072 	/* i = current_threshold + 1 */
4073 	i++;
4074 
4075 	/*
4076 	 * Iterate forward over array of thresholds starting from
4077 	 * current_threshold+1 and check if a threshold is crossed.
4078 	 * If none of thresholds above usage is crossed, we read
4079 	 * only one element of the array here.
4080 	 */
4081 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4082 		eventfd_signal(t->entries[i].eventfd, 1);
4083 
4084 	/* Update current_threshold */
4085 	t->current_threshold = i - 1;
4086 unlock:
4087 	rcu_read_unlock();
4088 }
4089 
mem_cgroup_threshold(struct mem_cgroup * memcg)4090 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4091 {
4092 	while (memcg) {
4093 		__mem_cgroup_threshold(memcg, false);
4094 		if (do_memsw_account())
4095 			__mem_cgroup_threshold(memcg, true);
4096 
4097 		memcg = parent_mem_cgroup(memcg);
4098 	}
4099 }
4100 
compare_thresholds(const void * a,const void * b)4101 static int compare_thresholds(const void *a, const void *b)
4102 {
4103 	const struct mem_cgroup_threshold *_a = a;
4104 	const struct mem_cgroup_threshold *_b = b;
4105 
4106 	if (_a->threshold > _b->threshold)
4107 		return 1;
4108 
4109 	if (_a->threshold < _b->threshold)
4110 		return -1;
4111 
4112 	return 0;
4113 }
4114 
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)4115 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4116 {
4117 	struct mem_cgroup_eventfd_list *ev;
4118 
4119 	spin_lock(&memcg_oom_lock);
4120 
4121 	list_for_each_entry(ev, &memcg->oom_notify, list)
4122 		eventfd_signal(ev->eventfd, 1);
4123 
4124 	spin_unlock(&memcg_oom_lock);
4125 	return 0;
4126 }
4127 
mem_cgroup_oom_notify(struct mem_cgroup * memcg)4128 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4129 {
4130 	struct mem_cgroup *iter;
4131 
4132 	for_each_mem_cgroup_tree(iter, memcg)
4133 		mem_cgroup_oom_notify_cb(iter);
4134 }
4135 
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)4136 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4137 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4138 {
4139 	struct mem_cgroup_thresholds *thresholds;
4140 	struct mem_cgroup_threshold_ary *new;
4141 	unsigned long threshold;
4142 	unsigned long usage;
4143 	int i, size, ret;
4144 
4145 	ret = page_counter_memparse(args, "-1", &threshold);
4146 	if (ret)
4147 		return ret;
4148 
4149 	mutex_lock(&memcg->thresholds_lock);
4150 
4151 	if (type == _MEM) {
4152 		thresholds = &memcg->thresholds;
4153 		usage = mem_cgroup_usage(memcg, false);
4154 	} else if (type == _MEMSWAP) {
4155 		thresholds = &memcg->memsw_thresholds;
4156 		usage = mem_cgroup_usage(memcg, true);
4157 	} else
4158 		BUG();
4159 
4160 	/* Check if a threshold crossed before adding a new one */
4161 	if (thresholds->primary)
4162 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4163 
4164 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4165 
4166 	/* Allocate memory for new array of thresholds */
4167 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4168 	if (!new) {
4169 		ret = -ENOMEM;
4170 		goto unlock;
4171 	}
4172 	new->size = size;
4173 
4174 	/* Copy thresholds (if any) to new array */
4175 	if (thresholds->primary) {
4176 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4177 				sizeof(struct mem_cgroup_threshold));
4178 	}
4179 
4180 	/* Add new threshold */
4181 	new->entries[size - 1].eventfd = eventfd;
4182 	new->entries[size - 1].threshold = threshold;
4183 
4184 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4185 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4186 			compare_thresholds, NULL);
4187 
4188 	/* Find current threshold */
4189 	new->current_threshold = -1;
4190 	for (i = 0; i < size; i++) {
4191 		if (new->entries[i].threshold <= usage) {
4192 			/*
4193 			 * new->current_threshold will not be used until
4194 			 * rcu_assign_pointer(), so it's safe to increment
4195 			 * it here.
4196 			 */
4197 			++new->current_threshold;
4198 		} else
4199 			break;
4200 	}
4201 
4202 	/* Free old spare buffer and save old primary buffer as spare */
4203 	kfree(thresholds->spare);
4204 	thresholds->spare = thresholds->primary;
4205 
4206 	rcu_assign_pointer(thresholds->primary, new);
4207 
4208 	/* To be sure that nobody uses thresholds */
4209 	synchronize_rcu();
4210 
4211 unlock:
4212 	mutex_unlock(&memcg->thresholds_lock);
4213 
4214 	return ret;
4215 }
4216 
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4217 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4218 	struct eventfd_ctx *eventfd, const char *args)
4219 {
4220 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4221 }
4222 
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4223 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4224 	struct eventfd_ctx *eventfd, const char *args)
4225 {
4226 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4227 }
4228 
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)4229 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4230 	struct eventfd_ctx *eventfd, enum res_type type)
4231 {
4232 	struct mem_cgroup_thresholds *thresholds;
4233 	struct mem_cgroup_threshold_ary *new;
4234 	unsigned long usage;
4235 	int i, j, size, entries;
4236 
4237 	mutex_lock(&memcg->thresholds_lock);
4238 
4239 	if (type == _MEM) {
4240 		thresholds = &memcg->thresholds;
4241 		usage = mem_cgroup_usage(memcg, false);
4242 	} else if (type == _MEMSWAP) {
4243 		thresholds = &memcg->memsw_thresholds;
4244 		usage = mem_cgroup_usage(memcg, true);
4245 	} else
4246 		BUG();
4247 
4248 	if (!thresholds->primary)
4249 		goto unlock;
4250 
4251 	/* Check if a threshold crossed before removing */
4252 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4253 
4254 	/* Calculate new number of threshold */
4255 	size = entries = 0;
4256 	for (i = 0; i < thresholds->primary->size; i++) {
4257 		if (thresholds->primary->entries[i].eventfd != eventfd)
4258 			size++;
4259 		else
4260 			entries++;
4261 	}
4262 
4263 	new = thresholds->spare;
4264 
4265 	/* If no items related to eventfd have been cleared, nothing to do */
4266 	if (!entries)
4267 		goto unlock;
4268 
4269 	/* Set thresholds array to NULL if we don't have thresholds */
4270 	if (!size) {
4271 		kfree(new);
4272 		new = NULL;
4273 		goto swap_buffers;
4274 	}
4275 
4276 	new->size = size;
4277 
4278 	/* Copy thresholds and find current threshold */
4279 	new->current_threshold = -1;
4280 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4281 		if (thresholds->primary->entries[i].eventfd == eventfd)
4282 			continue;
4283 
4284 		new->entries[j] = thresholds->primary->entries[i];
4285 		if (new->entries[j].threshold <= usage) {
4286 			/*
4287 			 * new->current_threshold will not be used
4288 			 * until rcu_assign_pointer(), so it's safe to increment
4289 			 * it here.
4290 			 */
4291 			++new->current_threshold;
4292 		}
4293 		j++;
4294 	}
4295 
4296 swap_buffers:
4297 	/* Swap primary and spare array */
4298 	thresholds->spare = thresholds->primary;
4299 
4300 	rcu_assign_pointer(thresholds->primary, new);
4301 
4302 	/* To be sure that nobody uses thresholds */
4303 	synchronize_rcu();
4304 
4305 	/* If all events are unregistered, free the spare array */
4306 	if (!new) {
4307 		kfree(thresholds->spare);
4308 		thresholds->spare = NULL;
4309 	}
4310 unlock:
4311 	mutex_unlock(&memcg->thresholds_lock);
4312 }
4313 
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4314 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4315 	struct eventfd_ctx *eventfd)
4316 {
4317 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4318 }
4319 
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4320 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4321 	struct eventfd_ctx *eventfd)
4322 {
4323 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4324 }
4325 
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4326 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4327 	struct eventfd_ctx *eventfd, const char *args)
4328 {
4329 	struct mem_cgroup_eventfd_list *event;
4330 
4331 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4332 	if (!event)
4333 		return -ENOMEM;
4334 
4335 	spin_lock(&memcg_oom_lock);
4336 
4337 	event->eventfd = eventfd;
4338 	list_add(&event->list, &memcg->oom_notify);
4339 
4340 	/* already in OOM ? */
4341 	if (memcg->under_oom)
4342 		eventfd_signal(eventfd, 1);
4343 	spin_unlock(&memcg_oom_lock);
4344 
4345 	return 0;
4346 }
4347 
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4348 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4349 	struct eventfd_ctx *eventfd)
4350 {
4351 	struct mem_cgroup_eventfd_list *ev, *tmp;
4352 
4353 	spin_lock(&memcg_oom_lock);
4354 
4355 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4356 		if (ev->eventfd == eventfd) {
4357 			list_del(&ev->list);
4358 			kfree(ev);
4359 		}
4360 	}
4361 
4362 	spin_unlock(&memcg_oom_lock);
4363 }
4364 
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)4365 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4366 {
4367 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4368 
4369 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4370 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4371 	seq_printf(sf, "oom_kill %lu\n",
4372 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4373 	return 0;
4374 }
4375 
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4376 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4377 	struct cftype *cft, u64 val)
4378 {
4379 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4380 
4381 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4382 	if (!css->parent || !((val == 0) || (val == 1)))
4383 		return -EINVAL;
4384 
4385 	memcg->oom_kill_disable = val;
4386 	if (!val)
4387 		memcg_oom_recover(memcg);
4388 
4389 	return 0;
4390 }
4391 
4392 #ifdef CONFIG_CGROUP_WRITEBACK
4393 
4394 #include <trace/events/writeback.h>
4395 
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4396 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4397 {
4398 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4399 }
4400 
memcg_wb_domain_exit(struct mem_cgroup * memcg)4401 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4402 {
4403 	wb_domain_exit(&memcg->cgwb_domain);
4404 }
4405 
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4406 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4407 {
4408 	wb_domain_size_changed(&memcg->cgwb_domain);
4409 }
4410 
mem_cgroup_wb_domain(struct bdi_writeback * wb)4411 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4412 {
4413 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4414 
4415 	if (!memcg->css.parent)
4416 		return NULL;
4417 
4418 	return &memcg->cgwb_domain;
4419 }
4420 
4421 /*
4422  * idx can be of type enum memcg_stat_item or node_stat_item.
4423  * Keep in sync with memcg_exact_page().
4424  */
memcg_exact_page_state(struct mem_cgroup * memcg,int idx)4425 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4426 {
4427 	long x = atomic_long_read(&memcg->vmstats[idx]);
4428 	int cpu;
4429 
4430 	for_each_online_cpu(cpu)
4431 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4432 	if (x < 0)
4433 		x = 0;
4434 	return x;
4435 }
4436 
4437 /**
4438  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4439  * @wb: bdi_writeback in question
4440  * @pfilepages: out parameter for number of file pages
4441  * @pheadroom: out parameter for number of allocatable pages according to memcg
4442  * @pdirty: out parameter for number of dirty pages
4443  * @pwriteback: out parameter for number of pages under writeback
4444  *
4445  * Determine the numbers of file, headroom, dirty, and writeback pages in
4446  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4447  * is a bit more involved.
4448  *
4449  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4450  * headroom is calculated as the lowest headroom of itself and the
4451  * ancestors.  Note that this doesn't consider the actual amount of
4452  * available memory in the system.  The caller should further cap
4453  * *@pheadroom accordingly.
4454  */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)4455 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4456 			 unsigned long *pheadroom, unsigned long *pdirty,
4457 			 unsigned long *pwriteback)
4458 {
4459 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4460 	struct mem_cgroup *parent;
4461 
4462 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4463 
4464 	/* this should eventually include NR_UNSTABLE_NFS */
4465 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4466 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4467 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4468 	*pheadroom = PAGE_COUNTER_MAX;
4469 
4470 	while ((parent = parent_mem_cgroup(memcg))) {
4471 		unsigned long ceiling = min(memcg->memory.max, memcg->high);
4472 		unsigned long used = page_counter_read(&memcg->memory);
4473 
4474 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4475 		memcg = parent;
4476 	}
4477 }
4478 
4479 /*
4480  * Foreign dirty flushing
4481  *
4482  * There's an inherent mismatch between memcg and writeback.  The former
4483  * trackes ownership per-page while the latter per-inode.  This was a
4484  * deliberate design decision because honoring per-page ownership in the
4485  * writeback path is complicated, may lead to higher CPU and IO overheads
4486  * and deemed unnecessary given that write-sharing an inode across
4487  * different cgroups isn't a common use-case.
4488  *
4489  * Combined with inode majority-writer ownership switching, this works well
4490  * enough in most cases but there are some pathological cases.  For
4491  * example, let's say there are two cgroups A and B which keep writing to
4492  * different but confined parts of the same inode.  B owns the inode and
4493  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4494  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4495  * triggering background writeback.  A will be slowed down without a way to
4496  * make writeback of the dirty pages happen.
4497  *
4498  * Conditions like the above can lead to a cgroup getting repatedly and
4499  * severely throttled after making some progress after each
4500  * dirty_expire_interval while the underyling IO device is almost
4501  * completely idle.
4502  *
4503  * Solving this problem completely requires matching the ownership tracking
4504  * granularities between memcg and writeback in either direction.  However,
4505  * the more egregious behaviors can be avoided by simply remembering the
4506  * most recent foreign dirtying events and initiating remote flushes on
4507  * them when local writeback isn't enough to keep the memory clean enough.
4508  *
4509  * The following two functions implement such mechanism.  When a foreign
4510  * page - a page whose memcg and writeback ownerships don't match - is
4511  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4512  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4513  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4514  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4515  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4516  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4517  * limited to MEMCG_CGWB_FRN_CNT.
4518  *
4519  * The mechanism only remembers IDs and doesn't hold any object references.
4520  * As being wrong occasionally doesn't matter, updates and accesses to the
4521  * records are lockless and racy.
4522  */
mem_cgroup_track_foreign_dirty_slowpath(struct page * page,struct bdi_writeback * wb)4523 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4524 					     struct bdi_writeback *wb)
4525 {
4526 	struct mem_cgroup *memcg = page->mem_cgroup;
4527 	struct memcg_cgwb_frn *frn;
4528 	u64 now = get_jiffies_64();
4529 	u64 oldest_at = now;
4530 	int oldest = -1;
4531 	int i;
4532 
4533 	trace_track_foreign_dirty(page, wb);
4534 
4535 	/*
4536 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4537 	 * using it.  If not replace the oldest one which isn't being
4538 	 * written out.
4539 	 */
4540 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4541 		frn = &memcg->cgwb_frn[i];
4542 		if (frn->bdi_id == wb->bdi->id &&
4543 		    frn->memcg_id == wb->memcg_css->id)
4544 			break;
4545 		if (time_before64(frn->at, oldest_at) &&
4546 		    atomic_read(&frn->done.cnt) == 1) {
4547 			oldest = i;
4548 			oldest_at = frn->at;
4549 		}
4550 	}
4551 
4552 	if (i < MEMCG_CGWB_FRN_CNT) {
4553 		/*
4554 		 * Re-using an existing one.  Update timestamp lazily to
4555 		 * avoid making the cacheline hot.  We want them to be
4556 		 * reasonably up-to-date and significantly shorter than
4557 		 * dirty_expire_interval as that's what expires the record.
4558 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4559 		 */
4560 		unsigned long update_intv =
4561 			min_t(unsigned long, HZ,
4562 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4563 
4564 		if (time_before64(frn->at, now - update_intv))
4565 			frn->at = now;
4566 	} else if (oldest >= 0) {
4567 		/* replace the oldest free one */
4568 		frn = &memcg->cgwb_frn[oldest];
4569 		frn->bdi_id = wb->bdi->id;
4570 		frn->memcg_id = wb->memcg_css->id;
4571 		frn->at = now;
4572 	}
4573 }
4574 
4575 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)4576 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4577 {
4578 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4579 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4580 	u64 now = jiffies_64;
4581 	int i;
4582 
4583 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4584 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4585 
4586 		/*
4587 		 * If the record is older than dirty_expire_interval,
4588 		 * writeback on it has already started.  No need to kick it
4589 		 * off again.  Also, don't start a new one if there's
4590 		 * already one in flight.
4591 		 */
4592 		if (time_after64(frn->at, now - intv) &&
4593 		    atomic_read(&frn->done.cnt) == 1) {
4594 			frn->at = 0;
4595 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4596 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4597 					       WB_REASON_FOREIGN_FLUSH,
4598 					       &frn->done);
4599 		}
4600 	}
4601 }
4602 
4603 #else	/* CONFIG_CGROUP_WRITEBACK */
4604 
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4605 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4606 {
4607 	return 0;
4608 }
4609 
memcg_wb_domain_exit(struct mem_cgroup * memcg)4610 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4611 {
4612 }
4613 
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4614 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4615 {
4616 }
4617 
4618 #endif	/* CONFIG_CGROUP_WRITEBACK */
4619 
4620 /*
4621  * DO NOT USE IN NEW FILES.
4622  *
4623  * "cgroup.event_control" implementation.
4624  *
4625  * This is way over-engineered.  It tries to support fully configurable
4626  * events for each user.  Such level of flexibility is completely
4627  * unnecessary especially in the light of the planned unified hierarchy.
4628  *
4629  * Please deprecate this and replace with something simpler if at all
4630  * possible.
4631  */
4632 
4633 /*
4634  * Unregister event and free resources.
4635  *
4636  * Gets called from workqueue.
4637  */
memcg_event_remove(struct work_struct * work)4638 static void memcg_event_remove(struct work_struct *work)
4639 {
4640 	struct mem_cgroup_event *event =
4641 		container_of(work, struct mem_cgroup_event, remove);
4642 	struct mem_cgroup *memcg = event->memcg;
4643 
4644 	remove_wait_queue(event->wqh, &event->wait);
4645 
4646 	event->unregister_event(memcg, event->eventfd);
4647 
4648 	/* Notify userspace the event is going away. */
4649 	eventfd_signal(event->eventfd, 1);
4650 
4651 	eventfd_ctx_put(event->eventfd);
4652 	kfree(event);
4653 	css_put(&memcg->css);
4654 }
4655 
4656 /*
4657  * Gets called on EPOLLHUP on eventfd when user closes it.
4658  *
4659  * Called with wqh->lock held and interrupts disabled.
4660  */
memcg_event_wake(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)4661 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4662 			    int sync, void *key)
4663 {
4664 	struct mem_cgroup_event *event =
4665 		container_of(wait, struct mem_cgroup_event, wait);
4666 	struct mem_cgroup *memcg = event->memcg;
4667 	__poll_t flags = key_to_poll(key);
4668 
4669 	if (flags & EPOLLHUP) {
4670 		/*
4671 		 * If the event has been detached at cgroup removal, we
4672 		 * can simply return knowing the other side will cleanup
4673 		 * for us.
4674 		 *
4675 		 * We can't race against event freeing since the other
4676 		 * side will require wqh->lock via remove_wait_queue(),
4677 		 * which we hold.
4678 		 */
4679 		spin_lock(&memcg->event_list_lock);
4680 		if (!list_empty(&event->list)) {
4681 			list_del_init(&event->list);
4682 			/*
4683 			 * We are in atomic context, but cgroup_event_remove()
4684 			 * may sleep, so we have to call it in workqueue.
4685 			 */
4686 			schedule_work(&event->remove);
4687 		}
4688 		spin_unlock(&memcg->event_list_lock);
4689 	}
4690 
4691 	return 0;
4692 }
4693 
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)4694 static void memcg_event_ptable_queue_proc(struct file *file,
4695 		wait_queue_head_t *wqh, poll_table *pt)
4696 {
4697 	struct mem_cgroup_event *event =
4698 		container_of(pt, struct mem_cgroup_event, pt);
4699 
4700 	event->wqh = wqh;
4701 	add_wait_queue(wqh, &event->wait);
4702 }
4703 
4704 /*
4705  * DO NOT USE IN NEW FILES.
4706  *
4707  * Parse input and register new cgroup event handler.
4708  *
4709  * Input must be in format '<event_fd> <control_fd> <args>'.
4710  * Interpretation of args is defined by control file implementation.
4711  */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4712 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4713 					 char *buf, size_t nbytes, loff_t off)
4714 {
4715 	struct cgroup_subsys_state *css = of_css(of);
4716 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4717 	struct mem_cgroup_event *event;
4718 	struct cgroup_subsys_state *cfile_css;
4719 	unsigned int efd, cfd;
4720 	struct fd efile;
4721 	struct fd cfile;
4722 	struct dentry *cdentry;
4723 	const char *name;
4724 	char *endp;
4725 	int ret;
4726 
4727 	buf = strstrip(buf);
4728 
4729 	efd = simple_strtoul(buf, &endp, 10);
4730 	if (*endp != ' ')
4731 		return -EINVAL;
4732 	buf = endp + 1;
4733 
4734 	cfd = simple_strtoul(buf, &endp, 10);
4735 	if ((*endp != ' ') && (*endp != '\0'))
4736 		return -EINVAL;
4737 	buf = endp + 1;
4738 
4739 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4740 	if (!event)
4741 		return -ENOMEM;
4742 
4743 	event->memcg = memcg;
4744 	INIT_LIST_HEAD(&event->list);
4745 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4746 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4747 	INIT_WORK(&event->remove, memcg_event_remove);
4748 
4749 	efile = fdget(efd);
4750 	if (!efile.file) {
4751 		ret = -EBADF;
4752 		goto out_kfree;
4753 	}
4754 
4755 	event->eventfd = eventfd_ctx_fileget(efile.file);
4756 	if (IS_ERR(event->eventfd)) {
4757 		ret = PTR_ERR(event->eventfd);
4758 		goto out_put_efile;
4759 	}
4760 
4761 	cfile = fdget(cfd);
4762 	if (!cfile.file) {
4763 		ret = -EBADF;
4764 		goto out_put_eventfd;
4765 	}
4766 
4767 	/* the process need read permission on control file */
4768 	/* AV: shouldn't we check that it's been opened for read instead? */
4769 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4770 	if (ret < 0)
4771 		goto out_put_cfile;
4772 
4773 	/*
4774 	 * The control file must be a regular cgroup1 file. As a regular cgroup
4775 	 * file can't be renamed, it's safe to access its name afterwards.
4776 	 */
4777 	cdentry = cfile.file->f_path.dentry;
4778 	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4779 		ret = -EINVAL;
4780 		goto out_put_cfile;
4781 	}
4782 
4783 	/*
4784 	 * Determine the event callbacks and set them in @event.  This used
4785 	 * to be done via struct cftype but cgroup core no longer knows
4786 	 * about these events.  The following is crude but the whole thing
4787 	 * is for compatibility anyway.
4788 	 *
4789 	 * DO NOT ADD NEW FILES.
4790 	 */
4791 	name = cdentry->d_name.name;
4792 
4793 	if (!strcmp(name, "memory.usage_in_bytes")) {
4794 		event->register_event = mem_cgroup_usage_register_event;
4795 		event->unregister_event = mem_cgroup_usage_unregister_event;
4796 	} else if (!strcmp(name, "memory.oom_control")) {
4797 		event->register_event = mem_cgroup_oom_register_event;
4798 		event->unregister_event = mem_cgroup_oom_unregister_event;
4799 	} else if (!strcmp(name, "memory.pressure_level")) {
4800 		event->register_event = vmpressure_register_event;
4801 		event->unregister_event = vmpressure_unregister_event;
4802 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4803 		event->register_event = memsw_cgroup_usage_register_event;
4804 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4805 	} else {
4806 		ret = -EINVAL;
4807 		goto out_put_cfile;
4808 	}
4809 
4810 	/*
4811 	 * Verify @cfile should belong to @css.  Also, remaining events are
4812 	 * automatically removed on cgroup destruction but the removal is
4813 	 * asynchronous, so take an extra ref on @css.
4814 	 */
4815 	cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4816 					       &memory_cgrp_subsys);
4817 	ret = -EINVAL;
4818 	if (IS_ERR(cfile_css))
4819 		goto out_put_cfile;
4820 	if (cfile_css != css) {
4821 		css_put(cfile_css);
4822 		goto out_put_cfile;
4823 	}
4824 
4825 	ret = event->register_event(memcg, event->eventfd, buf);
4826 	if (ret)
4827 		goto out_put_css;
4828 
4829 	vfs_poll(efile.file, &event->pt);
4830 
4831 	spin_lock(&memcg->event_list_lock);
4832 	list_add(&event->list, &memcg->event_list);
4833 	spin_unlock(&memcg->event_list_lock);
4834 
4835 	fdput(cfile);
4836 	fdput(efile);
4837 
4838 	return nbytes;
4839 
4840 out_put_css:
4841 	css_put(css);
4842 out_put_cfile:
4843 	fdput(cfile);
4844 out_put_eventfd:
4845 	eventfd_ctx_put(event->eventfd);
4846 out_put_efile:
4847 	fdput(efile);
4848 out_kfree:
4849 	kfree(event);
4850 
4851 	return ret;
4852 }
4853 
4854 static struct cftype mem_cgroup_legacy_files[] = {
4855 	{
4856 		.name = "usage_in_bytes",
4857 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4858 		.read_u64 = mem_cgroup_read_u64,
4859 	},
4860 	{
4861 		.name = "max_usage_in_bytes",
4862 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4863 		.write = mem_cgroup_reset,
4864 		.read_u64 = mem_cgroup_read_u64,
4865 	},
4866 	{
4867 		.name = "limit_in_bytes",
4868 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4869 		.write = mem_cgroup_write,
4870 		.read_u64 = mem_cgroup_read_u64,
4871 	},
4872 	{
4873 		.name = "soft_limit_in_bytes",
4874 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4875 		.write = mem_cgroup_write,
4876 		.read_u64 = mem_cgroup_read_u64,
4877 	},
4878 	{
4879 		.name = "failcnt",
4880 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4881 		.write = mem_cgroup_reset,
4882 		.read_u64 = mem_cgroup_read_u64,
4883 	},
4884 	{
4885 		.name = "stat",
4886 		.seq_show = memcg_stat_show,
4887 	},
4888 	{
4889 		.name = "force_empty",
4890 		.write = mem_cgroup_force_empty_write,
4891 	},
4892 	{
4893 		.name = "use_hierarchy",
4894 		.write_u64 = mem_cgroup_hierarchy_write,
4895 		.read_u64 = mem_cgroup_hierarchy_read,
4896 	},
4897 	{
4898 		.name = "cgroup.event_control",		/* XXX: for compat */
4899 		.write = memcg_write_event_control,
4900 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4901 	},
4902 	{
4903 		.name = "swappiness",
4904 		.read_u64 = mem_cgroup_swappiness_read,
4905 		.write_u64 = mem_cgroup_swappiness_write,
4906 	},
4907 	{
4908 		.name = "move_charge_at_immigrate",
4909 		.read_u64 = mem_cgroup_move_charge_read,
4910 		.write_u64 = mem_cgroup_move_charge_write,
4911 	},
4912 	{
4913 		.name = "oom_control",
4914 		.seq_show = mem_cgroup_oom_control_read,
4915 		.write_u64 = mem_cgroup_oom_control_write,
4916 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4917 	},
4918 	{
4919 		.name = "pressure_level",
4920 	},
4921 #ifdef CONFIG_NUMA
4922 	{
4923 		.name = "numa_stat",
4924 		.seq_show = memcg_numa_stat_show,
4925 	},
4926 #endif
4927 	{
4928 		.name = "kmem.limit_in_bytes",
4929 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4930 		.write = mem_cgroup_write,
4931 		.read_u64 = mem_cgroup_read_u64,
4932 	},
4933 	{
4934 		.name = "kmem.usage_in_bytes",
4935 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4936 		.read_u64 = mem_cgroup_read_u64,
4937 	},
4938 	{
4939 		.name = "kmem.failcnt",
4940 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4941 		.write = mem_cgroup_reset,
4942 		.read_u64 = mem_cgroup_read_u64,
4943 	},
4944 	{
4945 		.name = "kmem.max_usage_in_bytes",
4946 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4947 		.write = mem_cgroup_reset,
4948 		.read_u64 = mem_cgroup_read_u64,
4949 	},
4950 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4951 	{
4952 		.name = "kmem.slabinfo",
4953 		.seq_start = memcg_slab_start,
4954 		.seq_next = memcg_slab_next,
4955 		.seq_stop = memcg_slab_stop,
4956 		.seq_show = memcg_slab_show,
4957 	},
4958 #endif
4959 	{
4960 		.name = "kmem.tcp.limit_in_bytes",
4961 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4962 		.write = mem_cgroup_write,
4963 		.read_u64 = mem_cgroup_read_u64,
4964 	},
4965 	{
4966 		.name = "kmem.tcp.usage_in_bytes",
4967 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4968 		.read_u64 = mem_cgroup_read_u64,
4969 	},
4970 	{
4971 		.name = "kmem.tcp.failcnt",
4972 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4973 		.write = mem_cgroup_reset,
4974 		.read_u64 = mem_cgroup_read_u64,
4975 	},
4976 	{
4977 		.name = "kmem.tcp.max_usage_in_bytes",
4978 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4979 		.write = mem_cgroup_reset,
4980 		.read_u64 = mem_cgroup_read_u64,
4981 	},
4982 	{ },	/* terminate */
4983 };
4984 
4985 /*
4986  * Private memory cgroup IDR
4987  *
4988  * Swap-out records and page cache shadow entries need to store memcg
4989  * references in constrained space, so we maintain an ID space that is
4990  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4991  * memory-controlled cgroups to 64k.
4992  *
4993  * However, there usually are many references to the oflline CSS after
4994  * the cgroup has been destroyed, such as page cache or reclaimable
4995  * slab objects, that don't need to hang on to the ID. We want to keep
4996  * those dead CSS from occupying IDs, or we might quickly exhaust the
4997  * relatively small ID space and prevent the creation of new cgroups
4998  * even when there are much fewer than 64k cgroups - possibly none.
4999  *
5000  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5001  * be freed and recycled when it's no longer needed, which is usually
5002  * when the CSS is offlined.
5003  *
5004  * The only exception to that are records of swapped out tmpfs/shmem
5005  * pages that need to be attributed to live ancestors on swapin. But
5006  * those references are manageable from userspace.
5007  */
5008 
5009 static DEFINE_IDR(mem_cgroup_idr);
5010 
mem_cgroup_id_remove(struct mem_cgroup * memcg)5011 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5012 {
5013 	if (memcg->id.id > 0) {
5014 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5015 		memcg->id.id = 0;
5016 	}
5017 }
5018 
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)5019 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
5020 {
5021 	refcount_add(n, &memcg->id.ref);
5022 }
5023 
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)5024 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5025 {
5026 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5027 		mem_cgroup_id_remove(memcg);
5028 
5029 		/* Memcg ID pins CSS */
5030 		css_put(&memcg->css);
5031 	}
5032 }
5033 
mem_cgroup_id_put(struct mem_cgroup * memcg)5034 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5035 {
5036 	mem_cgroup_id_put_many(memcg, 1);
5037 }
5038 
5039 /**
5040  * mem_cgroup_from_id - look up a memcg from a memcg id
5041  * @id: the memcg id to look up
5042  *
5043  * Caller must hold rcu_read_lock().
5044  */
mem_cgroup_from_id(unsigned short id)5045 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5046 {
5047 	WARN_ON_ONCE(!rcu_read_lock_held());
5048 	return idr_find(&mem_cgroup_idr, id);
5049 }
5050 
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5051 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5052 {
5053 	struct mem_cgroup_per_node *pn;
5054 	int tmp = node;
5055 	/*
5056 	 * This routine is called against possible nodes.
5057 	 * But it's BUG to call kmalloc() against offline node.
5058 	 *
5059 	 * TODO: this routine can waste much memory for nodes which will
5060 	 *       never be onlined. It's better to use memory hotplug callback
5061 	 *       function.
5062 	 */
5063 	if (!node_state(node, N_NORMAL_MEMORY))
5064 		tmp = -1;
5065 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5066 	if (!pn)
5067 		return 1;
5068 
5069 	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
5070 	if (!pn->lruvec_stat_local) {
5071 		kfree(pn);
5072 		return 1;
5073 	}
5074 
5075 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
5076 	if (!pn->lruvec_stat_cpu) {
5077 		free_percpu(pn->lruvec_stat_local);
5078 		kfree(pn);
5079 		return 1;
5080 	}
5081 
5082 	lruvec_init(&pn->lruvec);
5083 	pn->usage_in_excess = 0;
5084 	pn->on_tree = false;
5085 	pn->memcg = memcg;
5086 
5087 	memcg->nodeinfo[node] = pn;
5088 	return 0;
5089 }
5090 
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5091 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5092 {
5093 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5094 
5095 	if (!pn)
5096 		return;
5097 
5098 	free_percpu(pn->lruvec_stat_cpu);
5099 	free_percpu(pn->lruvec_stat_local);
5100 	kfree(pn);
5101 }
5102 
__mem_cgroup_free(struct mem_cgroup * memcg)5103 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5104 {
5105 	int node;
5106 
5107 	for_each_node(node)
5108 		free_mem_cgroup_per_node_info(memcg, node);
5109 	free_percpu(memcg->vmstats_percpu);
5110 	free_percpu(memcg->vmstats_local);
5111 	kfree(memcg);
5112 }
5113 
mem_cgroup_free(struct mem_cgroup * memcg)5114 static void mem_cgroup_free(struct mem_cgroup *memcg)
5115 {
5116 	memcg_wb_domain_exit(memcg);
5117 	/*
5118 	 * Flush percpu vmstats and vmevents to guarantee the value correctness
5119 	 * on parent's and all ancestor levels.
5120 	 */
5121 	memcg_flush_percpu_vmstats(memcg);
5122 	memcg_flush_percpu_vmevents(memcg);
5123 	__mem_cgroup_free(memcg);
5124 }
5125 
mem_cgroup_alloc(void)5126 static struct mem_cgroup *mem_cgroup_alloc(void)
5127 {
5128 	struct mem_cgroup *memcg;
5129 	unsigned int size;
5130 	int node;
5131 	int __maybe_unused i;
5132 	long error = -ENOMEM;
5133 
5134 	size = sizeof(struct mem_cgroup);
5135 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5136 
5137 	memcg = kzalloc(size, GFP_KERNEL);
5138 	if (!memcg)
5139 		return ERR_PTR(error);
5140 
5141 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5142 				 1, MEM_CGROUP_ID_MAX,
5143 				 GFP_KERNEL);
5144 	if (memcg->id.id < 0) {
5145 		error = memcg->id.id;
5146 		goto fail;
5147 	}
5148 
5149 	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5150 	if (!memcg->vmstats_local)
5151 		goto fail;
5152 
5153 	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5154 	if (!memcg->vmstats_percpu)
5155 		goto fail;
5156 
5157 	for_each_node(node)
5158 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5159 			goto fail;
5160 
5161 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5162 		goto fail;
5163 
5164 	INIT_WORK(&memcg->high_work, high_work_func);
5165 	memcg->last_scanned_node = MAX_NUMNODES;
5166 	INIT_LIST_HEAD(&memcg->oom_notify);
5167 	mutex_init(&memcg->thresholds_lock);
5168 	spin_lock_init(&memcg->move_lock);
5169 	vmpressure_init(&memcg->vmpressure);
5170 	INIT_LIST_HEAD(&memcg->event_list);
5171 	spin_lock_init(&memcg->event_list_lock);
5172 	memcg->socket_pressure = jiffies;
5173 #ifdef CONFIG_MEMCG_KMEM
5174 	memcg->kmemcg_id = -1;
5175 #endif
5176 #ifdef CONFIG_CGROUP_WRITEBACK
5177 	INIT_LIST_HEAD(&memcg->cgwb_list);
5178 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5179 		memcg->cgwb_frn[i].done =
5180 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5181 #endif
5182 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5183 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5184 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5185 	memcg->deferred_split_queue.split_queue_len = 0;
5186 #endif
5187 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5188 	return memcg;
5189 fail:
5190 	mem_cgroup_id_remove(memcg);
5191 	__mem_cgroup_free(memcg);
5192 	return ERR_PTR(error);
5193 }
5194 
5195 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)5196 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5197 {
5198 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5199 	struct mem_cgroup *memcg;
5200 	long error = -ENOMEM;
5201 
5202 	memcg = mem_cgroup_alloc();
5203 	if (IS_ERR(memcg))
5204 		return ERR_CAST(memcg);
5205 
5206 	memcg->high = PAGE_COUNTER_MAX;
5207 	memcg->soft_limit = PAGE_COUNTER_MAX;
5208 	if (parent) {
5209 		memcg->swappiness = mem_cgroup_swappiness(parent);
5210 		memcg->oom_kill_disable = parent->oom_kill_disable;
5211 	}
5212 	if (parent && parent->use_hierarchy) {
5213 		memcg->use_hierarchy = true;
5214 		page_counter_init(&memcg->memory, &parent->memory);
5215 		page_counter_init(&memcg->swap, &parent->swap);
5216 		page_counter_init(&memcg->memsw, &parent->memsw);
5217 		page_counter_init(&memcg->kmem, &parent->kmem);
5218 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5219 	} else {
5220 		page_counter_init(&memcg->memory, NULL);
5221 		page_counter_init(&memcg->swap, NULL);
5222 		page_counter_init(&memcg->memsw, NULL);
5223 		page_counter_init(&memcg->kmem, NULL);
5224 		page_counter_init(&memcg->tcpmem, NULL);
5225 		/*
5226 		 * Deeper hierachy with use_hierarchy == false doesn't make
5227 		 * much sense so let cgroup subsystem know about this
5228 		 * unfortunate state in our controller.
5229 		 */
5230 		if (parent != root_mem_cgroup)
5231 			memory_cgrp_subsys.broken_hierarchy = true;
5232 	}
5233 
5234 	/* The following stuff does not apply to the root */
5235 	if (!parent) {
5236 #ifdef CONFIG_MEMCG_KMEM
5237 		INIT_LIST_HEAD(&memcg->kmem_caches);
5238 #endif
5239 		root_mem_cgroup = memcg;
5240 		return &memcg->css;
5241 	}
5242 
5243 	error = memcg_online_kmem(memcg);
5244 	if (error)
5245 		goto fail;
5246 
5247 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5248 		static_branch_inc(&memcg_sockets_enabled_key);
5249 
5250 	return &memcg->css;
5251 fail:
5252 	mem_cgroup_id_remove(memcg);
5253 	mem_cgroup_free(memcg);
5254 	return ERR_PTR(error);
5255 }
5256 
mem_cgroup_css_online(struct cgroup_subsys_state * css)5257 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5258 {
5259 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5260 
5261 	/*
5262 	 * A memcg must be visible for memcg_expand_shrinker_maps()
5263 	 * by the time the maps are allocated. So, we allocate maps
5264 	 * here, when for_each_mem_cgroup() can't skip it.
5265 	 */
5266 	if (memcg_alloc_shrinker_maps(memcg)) {
5267 		mem_cgroup_id_remove(memcg);
5268 		return -ENOMEM;
5269 	}
5270 
5271 	/* Online state pins memcg ID, memcg ID pins CSS */
5272 	refcount_set(&memcg->id.ref, 1);
5273 	css_get(css);
5274 	return 0;
5275 }
5276 
mem_cgroup_css_offline(struct cgroup_subsys_state * css)5277 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5278 {
5279 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5280 	struct mem_cgroup_event *event, *tmp;
5281 
5282 	/*
5283 	 * Unregister events and notify userspace.
5284 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5285 	 * directory to avoid race between userspace and kernelspace.
5286 	 */
5287 	spin_lock(&memcg->event_list_lock);
5288 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5289 		list_del_init(&event->list);
5290 		schedule_work(&event->remove);
5291 	}
5292 	spin_unlock(&memcg->event_list_lock);
5293 
5294 	page_counter_set_min(&memcg->memory, 0);
5295 	page_counter_set_low(&memcg->memory, 0);
5296 
5297 	memcg_offline_kmem(memcg);
5298 	wb_memcg_offline(memcg);
5299 
5300 	drain_all_stock(memcg);
5301 
5302 	mem_cgroup_id_put(memcg);
5303 }
5304 
mem_cgroup_css_released(struct cgroup_subsys_state * css)5305 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5306 {
5307 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5308 
5309 	invalidate_reclaim_iterators(memcg);
5310 }
5311 
mem_cgroup_css_free(struct cgroup_subsys_state * css)5312 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5313 {
5314 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5315 	int __maybe_unused i;
5316 
5317 #ifdef CONFIG_CGROUP_WRITEBACK
5318 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5319 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5320 #endif
5321 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5322 		static_branch_dec(&memcg_sockets_enabled_key);
5323 
5324 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5325 		static_branch_dec(&memcg_sockets_enabled_key);
5326 
5327 	vmpressure_cleanup(&memcg->vmpressure);
5328 	cancel_work_sync(&memcg->high_work);
5329 	mem_cgroup_remove_from_trees(memcg);
5330 	memcg_free_shrinker_maps(memcg);
5331 	memcg_free_kmem(memcg);
5332 	mem_cgroup_free(memcg);
5333 }
5334 
5335 /**
5336  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5337  * @css: the target css
5338  *
5339  * Reset the states of the mem_cgroup associated with @css.  This is
5340  * invoked when the userland requests disabling on the default hierarchy
5341  * but the memcg is pinned through dependency.  The memcg should stop
5342  * applying policies and should revert to the vanilla state as it may be
5343  * made visible again.
5344  *
5345  * The current implementation only resets the essential configurations.
5346  * This needs to be expanded to cover all the visible parts.
5347  */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)5348 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5349 {
5350 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5351 
5352 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5353 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5354 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5355 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5356 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5357 	page_counter_set_min(&memcg->memory, 0);
5358 	page_counter_set_low(&memcg->memory, 0);
5359 	memcg->high = PAGE_COUNTER_MAX;
5360 	memcg->soft_limit = PAGE_COUNTER_MAX;
5361 	memcg_wb_domain_size_changed(memcg);
5362 }
5363 
5364 #ifdef CONFIG_MMU
5365 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)5366 static int mem_cgroup_do_precharge(unsigned long count)
5367 {
5368 	int ret;
5369 
5370 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5371 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5372 	if (!ret) {
5373 		mc.precharge += count;
5374 		return ret;
5375 	}
5376 
5377 	/* Try charges one by one with reclaim, but do not retry */
5378 	while (count--) {
5379 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5380 		if (ret)
5381 			return ret;
5382 		mc.precharge++;
5383 		cond_resched();
5384 	}
5385 	return 0;
5386 }
5387 
5388 union mc_target {
5389 	struct page	*page;
5390 	swp_entry_t	ent;
5391 };
5392 
5393 enum mc_target_type {
5394 	MC_TARGET_NONE = 0,
5395 	MC_TARGET_PAGE,
5396 	MC_TARGET_SWAP,
5397 	MC_TARGET_DEVICE,
5398 };
5399 
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5400 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5401 						unsigned long addr, pte_t ptent)
5402 {
5403 	struct page *page = vm_normal_page(vma, addr, ptent);
5404 
5405 	if (!page || !page_mapped(page))
5406 		return NULL;
5407 	if (PageAnon(page)) {
5408 		if (!(mc.flags & MOVE_ANON))
5409 			return NULL;
5410 	} else {
5411 		if (!(mc.flags & MOVE_FILE))
5412 			return NULL;
5413 	}
5414 	if (!get_page_unless_zero(page))
5415 		return NULL;
5416 
5417 	return page;
5418 }
5419 
5420 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5421 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5422 			pte_t ptent, swp_entry_t *entry)
5423 {
5424 	struct page *page = NULL;
5425 	swp_entry_t ent = pte_to_swp_entry(ptent);
5426 
5427 	if (!(mc.flags & MOVE_ANON))
5428 		return NULL;
5429 
5430 	/*
5431 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5432 	 * a device and because they are not accessible by CPU they are store
5433 	 * as special swap entry in the CPU page table.
5434 	 */
5435 	if (is_device_private_entry(ent)) {
5436 		page = device_private_entry_to_page(ent);
5437 		/*
5438 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5439 		 * a refcount of 1 when free (unlike normal page)
5440 		 */
5441 		if (!page_ref_add_unless(page, 1, 1))
5442 			return NULL;
5443 		return page;
5444 	}
5445 
5446 	if (non_swap_entry(ent))
5447 		return NULL;
5448 
5449 	/*
5450 	 * Because lookup_swap_cache() updates some statistics counter,
5451 	 * we call find_get_page() with swapper_space directly.
5452 	 */
5453 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5454 	if (do_memsw_account())
5455 		entry->val = ent.val;
5456 
5457 	return page;
5458 }
5459 #else
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5460 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5461 			pte_t ptent, swp_entry_t *entry)
5462 {
5463 	return NULL;
5464 }
5465 #endif
5466 
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)5467 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5468 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5469 {
5470 	struct page *page = NULL;
5471 	struct address_space *mapping;
5472 	pgoff_t pgoff;
5473 
5474 	if (!vma->vm_file) /* anonymous vma */
5475 		return NULL;
5476 	if (!(mc.flags & MOVE_FILE))
5477 		return NULL;
5478 
5479 	mapping = vma->vm_file->f_mapping;
5480 	pgoff = linear_page_index(vma, addr);
5481 
5482 	/* page is moved even if it's not RSS of this task(page-faulted). */
5483 #ifdef CONFIG_SWAP
5484 	/* shmem/tmpfs may report page out on swap: account for that too. */
5485 	if (shmem_mapping(mapping)) {
5486 		page = find_get_entry(mapping, pgoff);
5487 		if (xa_is_value(page)) {
5488 			swp_entry_t swp = radix_to_swp_entry(page);
5489 			if (do_memsw_account())
5490 				*entry = swp;
5491 			page = find_get_page(swap_address_space(swp),
5492 					     swp_offset(swp));
5493 		}
5494 	} else
5495 		page = find_get_page(mapping, pgoff);
5496 #else
5497 	page = find_get_page(mapping, pgoff);
5498 #endif
5499 	return page;
5500 }
5501 
5502 /**
5503  * mem_cgroup_move_account - move account of the page
5504  * @page: the page
5505  * @compound: charge the page as compound or small page
5506  * @from: mem_cgroup which the page is moved from.
5507  * @to:	mem_cgroup which the page is moved to. @from != @to.
5508  *
5509  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5510  *
5511  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5512  * from old cgroup.
5513  */
mem_cgroup_move_account(struct page * page,bool compound,struct mem_cgroup * from,struct mem_cgroup * to)5514 static int mem_cgroup_move_account(struct page *page,
5515 				   bool compound,
5516 				   struct mem_cgroup *from,
5517 				   struct mem_cgroup *to)
5518 {
5519 	struct lruvec *from_vec, *to_vec;
5520 	struct pglist_data *pgdat;
5521 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5522 	int ret;
5523 	bool anon;
5524 
5525 	VM_BUG_ON(from == to);
5526 	VM_BUG_ON_PAGE(PageLRU(page), page);
5527 	VM_BUG_ON(compound && !PageTransHuge(page));
5528 
5529 	/*
5530 	 * Prevent mem_cgroup_migrate() from looking at
5531 	 * page->mem_cgroup of its source page while we change it.
5532 	 */
5533 	ret = -EBUSY;
5534 	if (!trylock_page(page))
5535 		goto out;
5536 
5537 	ret = -EINVAL;
5538 	if (page->mem_cgroup != from)
5539 		goto out_unlock;
5540 
5541 	anon = PageAnon(page);
5542 
5543 	pgdat = page_pgdat(page);
5544 	from_vec = mem_cgroup_lruvec(pgdat, from);
5545 	to_vec = mem_cgroup_lruvec(pgdat, to);
5546 
5547 	lock_page_memcg(page);
5548 
5549 	if (!anon && page_mapped(page)) {
5550 		__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5551 		__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5552 	}
5553 
5554 	if (!anon && PageDirty(page)) {
5555 		struct address_space *mapping = page_mapping(page);
5556 
5557 		if (mapping_cap_account_dirty(mapping)) {
5558 			__mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5559 			__mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5560 		}
5561 	}
5562 
5563 	if (PageWriteback(page)) {
5564 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5565 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5566 	}
5567 
5568 	/*
5569 	 * All state has been migrated, let's switch to the new memcg.
5570 	 *
5571 	 * It is safe to change page->mem_cgroup here because the page
5572 	 * is referenced, charged, isolated, and locked: we can't race
5573 	 * with (un)charging, migration, LRU putback, or anything else
5574 	 * that would rely on a stable page->mem_cgroup.
5575 	 *
5576 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5577 	 * to save space. As soon as we switch page->mem_cgroup to a
5578 	 * new memcg that isn't locked, the above state can change
5579 	 * concurrently again. Make sure we're truly done with it.
5580 	 */
5581 	smp_mb();
5582 
5583 	page->mem_cgroup = to; 	/* caller should have done css_get */
5584 
5585 	__unlock_page_memcg(from);
5586 
5587 	ret = 0;
5588 
5589 	local_irq_disable();
5590 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5591 	memcg_check_events(to, page);
5592 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5593 	memcg_check_events(from, page);
5594 	local_irq_enable();
5595 out_unlock:
5596 	unlock_page(page);
5597 out:
5598 	return ret;
5599 }
5600 
5601 /**
5602  * get_mctgt_type - get target type of moving charge
5603  * @vma: the vma the pte to be checked belongs
5604  * @addr: the address corresponding to the pte to be checked
5605  * @ptent: the pte to be checked
5606  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5607  *
5608  * Returns
5609  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5610  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5611  *     move charge. if @target is not NULL, the page is stored in target->page
5612  *     with extra refcnt got(Callers should handle it).
5613  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5614  *     target for charge migration. if @target is not NULL, the entry is stored
5615  *     in target->ent.
5616  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5617  *     (so ZONE_DEVICE page and thus not on the lru).
5618  *     For now we such page is charge like a regular page would be as for all
5619  *     intent and purposes it is just special memory taking the place of a
5620  *     regular page.
5621  *
5622  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5623  *
5624  * Called with pte lock held.
5625  */
5626 
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)5627 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5628 		unsigned long addr, pte_t ptent, union mc_target *target)
5629 {
5630 	struct page *page = NULL;
5631 	enum mc_target_type ret = MC_TARGET_NONE;
5632 	swp_entry_t ent = { .val = 0 };
5633 
5634 	if (pte_present(ptent))
5635 		page = mc_handle_present_pte(vma, addr, ptent);
5636 	else if (is_swap_pte(ptent))
5637 		page = mc_handle_swap_pte(vma, ptent, &ent);
5638 	else if (pte_none(ptent))
5639 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5640 
5641 	if (!page && !ent.val)
5642 		return ret;
5643 	if (page) {
5644 		/*
5645 		 * Do only loose check w/o serialization.
5646 		 * mem_cgroup_move_account() checks the page is valid or
5647 		 * not under LRU exclusion.
5648 		 */
5649 		if (page->mem_cgroup == mc.from) {
5650 			ret = MC_TARGET_PAGE;
5651 			if (is_device_private_page(page))
5652 				ret = MC_TARGET_DEVICE;
5653 			if (target)
5654 				target->page = page;
5655 		}
5656 		if (!ret || !target)
5657 			put_page(page);
5658 	}
5659 	/*
5660 	 * There is a swap entry and a page doesn't exist or isn't charged.
5661 	 * But we cannot move a tail-page in a THP.
5662 	 */
5663 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5664 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5665 		ret = MC_TARGET_SWAP;
5666 		if (target)
5667 			target->ent = ent;
5668 	}
5669 	return ret;
5670 }
5671 
5672 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5673 /*
5674  * We don't consider PMD mapped swapping or file mapped pages because THP does
5675  * not support them for now.
5676  * Caller should make sure that pmd_trans_huge(pmd) is true.
5677  */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5678 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5679 		unsigned long addr, pmd_t pmd, union mc_target *target)
5680 {
5681 	struct page *page = NULL;
5682 	enum mc_target_type ret = MC_TARGET_NONE;
5683 
5684 	if (unlikely(is_swap_pmd(pmd))) {
5685 		VM_BUG_ON(thp_migration_supported() &&
5686 				  !is_pmd_migration_entry(pmd));
5687 		return ret;
5688 	}
5689 	page = pmd_page(pmd);
5690 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5691 	if (!(mc.flags & MOVE_ANON))
5692 		return ret;
5693 	if (page->mem_cgroup == mc.from) {
5694 		ret = MC_TARGET_PAGE;
5695 		if (target) {
5696 			get_page(page);
5697 			target->page = page;
5698 		}
5699 	}
5700 	return ret;
5701 }
5702 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)5703 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5704 		unsigned long addr, pmd_t pmd, union mc_target *target)
5705 {
5706 	return MC_TARGET_NONE;
5707 }
5708 #endif
5709 
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)5710 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5711 					unsigned long addr, unsigned long end,
5712 					struct mm_walk *walk)
5713 {
5714 	struct vm_area_struct *vma = walk->vma;
5715 	pte_t *pte;
5716 	spinlock_t *ptl;
5717 
5718 	ptl = pmd_trans_huge_lock(pmd, vma);
5719 	if (ptl) {
5720 		/*
5721 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5722 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5723 		 * this might change.
5724 		 */
5725 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5726 			mc.precharge += HPAGE_PMD_NR;
5727 		spin_unlock(ptl);
5728 		return 0;
5729 	}
5730 
5731 	if (pmd_trans_unstable(pmd))
5732 		return 0;
5733 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5734 	for (; addr != end; pte++, addr += PAGE_SIZE)
5735 		if (get_mctgt_type(vma, addr, *pte, NULL))
5736 			mc.precharge++;	/* increment precharge temporarily */
5737 	pte_unmap_unlock(pte - 1, ptl);
5738 	cond_resched();
5739 
5740 	return 0;
5741 }
5742 
5743 static const struct mm_walk_ops precharge_walk_ops = {
5744 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5745 };
5746 
mem_cgroup_count_precharge(struct mm_struct * mm)5747 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5748 {
5749 	unsigned long precharge;
5750 
5751 	down_read(&mm->mmap_sem);
5752 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5753 	up_read(&mm->mmap_sem);
5754 
5755 	precharge = mc.precharge;
5756 	mc.precharge = 0;
5757 
5758 	return precharge;
5759 }
5760 
mem_cgroup_precharge_mc(struct mm_struct * mm)5761 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5762 {
5763 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5764 
5765 	VM_BUG_ON(mc.moving_task);
5766 	mc.moving_task = current;
5767 	return mem_cgroup_do_precharge(precharge);
5768 }
5769 
5770 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)5771 static void __mem_cgroup_clear_mc(void)
5772 {
5773 	struct mem_cgroup *from = mc.from;
5774 	struct mem_cgroup *to = mc.to;
5775 
5776 	/* we must uncharge all the leftover precharges from mc.to */
5777 	if (mc.precharge) {
5778 		cancel_charge(mc.to, mc.precharge);
5779 		mc.precharge = 0;
5780 	}
5781 	/*
5782 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5783 	 * we must uncharge here.
5784 	 */
5785 	if (mc.moved_charge) {
5786 		cancel_charge(mc.from, mc.moved_charge);
5787 		mc.moved_charge = 0;
5788 	}
5789 	/* we must fixup refcnts and charges */
5790 	if (mc.moved_swap) {
5791 		/* uncharge swap account from the old cgroup */
5792 		if (!mem_cgroup_is_root(mc.from))
5793 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5794 
5795 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5796 
5797 		/*
5798 		 * we charged both to->memory and to->memsw, so we
5799 		 * should uncharge to->memory.
5800 		 */
5801 		if (!mem_cgroup_is_root(mc.to))
5802 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5803 
5804 		css_put_many(&mc.to->css, mc.moved_swap);
5805 
5806 		mc.moved_swap = 0;
5807 	}
5808 	memcg_oom_recover(from);
5809 	memcg_oom_recover(to);
5810 	wake_up_all(&mc.waitq);
5811 }
5812 
mem_cgroup_clear_mc(void)5813 static void mem_cgroup_clear_mc(void)
5814 {
5815 	struct mm_struct *mm = mc.mm;
5816 
5817 	/*
5818 	 * we must clear moving_task before waking up waiters at the end of
5819 	 * task migration.
5820 	 */
5821 	mc.moving_task = NULL;
5822 	__mem_cgroup_clear_mc();
5823 	spin_lock(&mc.lock);
5824 	mc.from = NULL;
5825 	mc.to = NULL;
5826 	mc.mm = NULL;
5827 	spin_unlock(&mc.lock);
5828 
5829 	mmput(mm);
5830 }
5831 
mem_cgroup_can_attach(struct cgroup_taskset * tset)5832 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5833 {
5834 	struct cgroup_subsys_state *css;
5835 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5836 	struct mem_cgroup *from;
5837 	struct task_struct *leader, *p;
5838 	struct mm_struct *mm;
5839 	unsigned long move_flags;
5840 	int ret = 0;
5841 
5842 	/* charge immigration isn't supported on the default hierarchy */
5843 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5844 		return 0;
5845 
5846 	/*
5847 	 * Multi-process migrations only happen on the default hierarchy
5848 	 * where charge immigration is not used.  Perform charge
5849 	 * immigration if @tset contains a leader and whine if there are
5850 	 * multiple.
5851 	 */
5852 	p = NULL;
5853 	cgroup_taskset_for_each_leader(leader, css, tset) {
5854 		WARN_ON_ONCE(p);
5855 		p = leader;
5856 		memcg = mem_cgroup_from_css(css);
5857 	}
5858 	if (!p)
5859 		return 0;
5860 
5861 	/*
5862 	 * We are now commited to this value whatever it is. Changes in this
5863 	 * tunable will only affect upcoming migrations, not the current one.
5864 	 * So we need to save it, and keep it going.
5865 	 */
5866 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5867 	if (!move_flags)
5868 		return 0;
5869 
5870 	from = mem_cgroup_from_task(p);
5871 
5872 	VM_BUG_ON(from == memcg);
5873 
5874 	mm = get_task_mm(p);
5875 	if (!mm)
5876 		return 0;
5877 	/* We move charges only when we move a owner of the mm */
5878 	if (mm->owner == p) {
5879 		VM_BUG_ON(mc.from);
5880 		VM_BUG_ON(mc.to);
5881 		VM_BUG_ON(mc.precharge);
5882 		VM_BUG_ON(mc.moved_charge);
5883 		VM_BUG_ON(mc.moved_swap);
5884 
5885 		spin_lock(&mc.lock);
5886 		mc.mm = mm;
5887 		mc.from = from;
5888 		mc.to = memcg;
5889 		mc.flags = move_flags;
5890 		spin_unlock(&mc.lock);
5891 		/* We set mc.moving_task later */
5892 
5893 		ret = mem_cgroup_precharge_mc(mm);
5894 		if (ret)
5895 			mem_cgroup_clear_mc();
5896 	} else {
5897 		mmput(mm);
5898 	}
5899 	return ret;
5900 }
5901 
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)5902 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5903 {
5904 	if (mc.to)
5905 		mem_cgroup_clear_mc();
5906 }
5907 
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)5908 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5909 				unsigned long addr, unsigned long end,
5910 				struct mm_walk *walk)
5911 {
5912 	int ret = 0;
5913 	struct vm_area_struct *vma = walk->vma;
5914 	pte_t *pte;
5915 	spinlock_t *ptl;
5916 	enum mc_target_type target_type;
5917 	union mc_target target;
5918 	struct page *page;
5919 
5920 	ptl = pmd_trans_huge_lock(pmd, vma);
5921 	if (ptl) {
5922 		if (mc.precharge < HPAGE_PMD_NR) {
5923 			spin_unlock(ptl);
5924 			return 0;
5925 		}
5926 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5927 		if (target_type == MC_TARGET_PAGE) {
5928 			page = target.page;
5929 			if (!isolate_lru_page(page)) {
5930 				if (!mem_cgroup_move_account(page, true,
5931 							     mc.from, mc.to)) {
5932 					mc.precharge -= HPAGE_PMD_NR;
5933 					mc.moved_charge += HPAGE_PMD_NR;
5934 				}
5935 				putback_lru_page(page);
5936 			}
5937 			put_page(page);
5938 		} else if (target_type == MC_TARGET_DEVICE) {
5939 			page = target.page;
5940 			if (!mem_cgroup_move_account(page, true,
5941 						     mc.from, mc.to)) {
5942 				mc.precharge -= HPAGE_PMD_NR;
5943 				mc.moved_charge += HPAGE_PMD_NR;
5944 			}
5945 			put_page(page);
5946 		}
5947 		spin_unlock(ptl);
5948 		return 0;
5949 	}
5950 
5951 	if (pmd_trans_unstable(pmd))
5952 		return 0;
5953 retry:
5954 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5955 	for (; addr != end; addr += PAGE_SIZE) {
5956 		pte_t ptent = *(pte++);
5957 		bool device = false;
5958 		swp_entry_t ent;
5959 
5960 		if (!mc.precharge)
5961 			break;
5962 
5963 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5964 		case MC_TARGET_DEVICE:
5965 			device = true;
5966 			/* fall through */
5967 		case MC_TARGET_PAGE:
5968 			page = target.page;
5969 			/*
5970 			 * We can have a part of the split pmd here. Moving it
5971 			 * can be done but it would be too convoluted so simply
5972 			 * ignore such a partial THP and keep it in original
5973 			 * memcg. There should be somebody mapping the head.
5974 			 */
5975 			if (PageTransCompound(page))
5976 				goto put;
5977 			if (!device && isolate_lru_page(page))
5978 				goto put;
5979 			if (!mem_cgroup_move_account(page, false,
5980 						mc.from, mc.to)) {
5981 				mc.precharge--;
5982 				/* we uncharge from mc.from later. */
5983 				mc.moved_charge++;
5984 			}
5985 			if (!device)
5986 				putback_lru_page(page);
5987 put:			/* get_mctgt_type() gets the page */
5988 			put_page(page);
5989 			break;
5990 		case MC_TARGET_SWAP:
5991 			ent = target.ent;
5992 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5993 				mc.precharge--;
5994 				mem_cgroup_id_get_many(mc.to, 1);
5995 				/* we fixup other refcnts and charges later. */
5996 				mc.moved_swap++;
5997 			}
5998 			break;
5999 		default:
6000 			break;
6001 		}
6002 	}
6003 	pte_unmap_unlock(pte - 1, ptl);
6004 	cond_resched();
6005 
6006 	if (addr != end) {
6007 		/*
6008 		 * We have consumed all precharges we got in can_attach().
6009 		 * We try charge one by one, but don't do any additional
6010 		 * charges to mc.to if we have failed in charge once in attach()
6011 		 * phase.
6012 		 */
6013 		ret = mem_cgroup_do_precharge(1);
6014 		if (!ret)
6015 			goto retry;
6016 	}
6017 
6018 	return ret;
6019 }
6020 
6021 static const struct mm_walk_ops charge_walk_ops = {
6022 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6023 };
6024 
mem_cgroup_move_charge(void)6025 static void mem_cgroup_move_charge(void)
6026 {
6027 	lru_add_drain_all();
6028 	/*
6029 	 * Signal lock_page_memcg() to take the memcg's move_lock
6030 	 * while we're moving its pages to another memcg. Then wait
6031 	 * for already started RCU-only updates to finish.
6032 	 */
6033 	atomic_inc(&mc.from->moving_account);
6034 	synchronize_rcu();
6035 retry:
6036 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
6037 		/*
6038 		 * Someone who are holding the mmap_sem might be waiting in
6039 		 * waitq. So we cancel all extra charges, wake up all waiters,
6040 		 * and retry. Because we cancel precharges, we might not be able
6041 		 * to move enough charges, but moving charge is a best-effort
6042 		 * feature anyway, so it wouldn't be a big problem.
6043 		 */
6044 		__mem_cgroup_clear_mc();
6045 		cond_resched();
6046 		goto retry;
6047 	}
6048 	/*
6049 	 * When we have consumed all precharges and failed in doing
6050 	 * additional charge, the page walk just aborts.
6051 	 */
6052 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6053 			NULL);
6054 
6055 	up_read(&mc.mm->mmap_sem);
6056 	atomic_dec(&mc.from->moving_account);
6057 }
6058 
mem_cgroup_move_task(void)6059 static void mem_cgroup_move_task(void)
6060 {
6061 	if (mc.to) {
6062 		mem_cgroup_move_charge();
6063 		mem_cgroup_clear_mc();
6064 	}
6065 }
6066 #else	/* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)6067 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6068 {
6069 	return 0;
6070 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6071 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6072 {
6073 }
mem_cgroup_move_task(void)6074 static void mem_cgroup_move_task(void)
6075 {
6076 }
6077 #endif
6078 
6079 /*
6080  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6081  * to verify whether we're attached to the default hierarchy on each mount
6082  * attempt.
6083  */
mem_cgroup_bind(struct cgroup_subsys_state * root_css)6084 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6085 {
6086 	/*
6087 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6088 	 * guarantees that @root doesn't have any children, so turning it
6089 	 * on for the root memcg is enough.
6090 	 */
6091 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6092 		root_mem_cgroup->use_hierarchy = true;
6093 	else
6094 		root_mem_cgroup->use_hierarchy = false;
6095 }
6096 
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)6097 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6098 {
6099 	if (value == PAGE_COUNTER_MAX)
6100 		seq_puts(m, "max\n");
6101 	else
6102 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6103 
6104 	return 0;
6105 }
6106 
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)6107 static u64 memory_current_read(struct cgroup_subsys_state *css,
6108 			       struct cftype *cft)
6109 {
6110 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6111 
6112 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6113 }
6114 
memory_min_show(struct seq_file * m,void * v)6115 static int memory_min_show(struct seq_file *m, void *v)
6116 {
6117 	return seq_puts_memcg_tunable(m,
6118 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6119 }
6120 
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6121 static ssize_t memory_min_write(struct kernfs_open_file *of,
6122 				char *buf, size_t nbytes, loff_t off)
6123 {
6124 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6125 	unsigned long min;
6126 	int err;
6127 
6128 	buf = strstrip(buf);
6129 	err = page_counter_memparse(buf, "max", &min);
6130 	if (err)
6131 		return err;
6132 
6133 	page_counter_set_min(&memcg->memory, min);
6134 
6135 	return nbytes;
6136 }
6137 
memory_low_show(struct seq_file * m,void * v)6138 static int memory_low_show(struct seq_file *m, void *v)
6139 {
6140 	return seq_puts_memcg_tunable(m,
6141 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6142 }
6143 
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6144 static ssize_t memory_low_write(struct kernfs_open_file *of,
6145 				char *buf, size_t nbytes, loff_t off)
6146 {
6147 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6148 	unsigned long low;
6149 	int err;
6150 
6151 	buf = strstrip(buf);
6152 	err = page_counter_memparse(buf, "max", &low);
6153 	if (err)
6154 		return err;
6155 
6156 	page_counter_set_low(&memcg->memory, low);
6157 
6158 	return nbytes;
6159 }
6160 
memory_high_show(struct seq_file * m,void * v)6161 static int memory_high_show(struct seq_file *m, void *v)
6162 {
6163 	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
6164 }
6165 
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6166 static ssize_t memory_high_write(struct kernfs_open_file *of,
6167 				 char *buf, size_t nbytes, loff_t off)
6168 {
6169 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6170 	unsigned long nr_pages;
6171 	unsigned long high;
6172 	int err;
6173 
6174 	buf = strstrip(buf);
6175 	err = page_counter_memparse(buf, "max", &high);
6176 	if (err)
6177 		return err;
6178 
6179 	memcg->high = high;
6180 
6181 	nr_pages = page_counter_read(&memcg->memory);
6182 	if (nr_pages > high)
6183 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6184 					     GFP_KERNEL, true);
6185 
6186 	memcg_wb_domain_size_changed(memcg);
6187 	return nbytes;
6188 }
6189 
memory_max_show(struct seq_file * m,void * v)6190 static int memory_max_show(struct seq_file *m, void *v)
6191 {
6192 	return seq_puts_memcg_tunable(m,
6193 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6194 }
6195 
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6196 static ssize_t memory_max_write(struct kernfs_open_file *of,
6197 				char *buf, size_t nbytes, loff_t off)
6198 {
6199 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6200 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6201 	bool drained = false;
6202 	unsigned long max;
6203 	int err;
6204 
6205 	buf = strstrip(buf);
6206 	err = page_counter_memparse(buf, "max", &max);
6207 	if (err)
6208 		return err;
6209 
6210 	xchg(&memcg->memory.max, max);
6211 
6212 	for (;;) {
6213 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6214 
6215 		if (nr_pages <= max)
6216 			break;
6217 
6218 		if (signal_pending(current)) {
6219 			err = -EINTR;
6220 			break;
6221 		}
6222 
6223 		if (!drained) {
6224 			drain_all_stock(memcg);
6225 			drained = true;
6226 			continue;
6227 		}
6228 
6229 		if (nr_reclaims) {
6230 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6231 							  GFP_KERNEL, true))
6232 				nr_reclaims--;
6233 			continue;
6234 		}
6235 
6236 		memcg_memory_event(memcg, MEMCG_OOM);
6237 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6238 			break;
6239 	}
6240 
6241 	memcg_wb_domain_size_changed(memcg);
6242 	return nbytes;
6243 }
6244 
__memory_events_show(struct seq_file * m,atomic_long_t * events)6245 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6246 {
6247 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6248 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6249 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6250 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6251 	seq_printf(m, "oom_kill %lu\n",
6252 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6253 }
6254 
memory_events_show(struct seq_file * m,void * v)6255 static int memory_events_show(struct seq_file *m, void *v)
6256 {
6257 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6258 
6259 	__memory_events_show(m, memcg->memory_events);
6260 	return 0;
6261 }
6262 
memory_events_local_show(struct seq_file * m,void * v)6263 static int memory_events_local_show(struct seq_file *m, void *v)
6264 {
6265 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6266 
6267 	__memory_events_show(m, memcg->memory_events_local);
6268 	return 0;
6269 }
6270 
memory_stat_show(struct seq_file * m,void * v)6271 static int memory_stat_show(struct seq_file *m, void *v)
6272 {
6273 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6274 	char *buf;
6275 
6276 	buf = memory_stat_format(memcg);
6277 	if (!buf)
6278 		return -ENOMEM;
6279 	seq_puts(m, buf);
6280 	kfree(buf);
6281 	return 0;
6282 }
6283 
memory_oom_group_show(struct seq_file * m,void * v)6284 static int memory_oom_group_show(struct seq_file *m, void *v)
6285 {
6286 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6287 
6288 	seq_printf(m, "%d\n", memcg->oom_group);
6289 
6290 	return 0;
6291 }
6292 
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6293 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6294 				      char *buf, size_t nbytes, loff_t off)
6295 {
6296 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6297 	int ret, oom_group;
6298 
6299 	buf = strstrip(buf);
6300 	if (!buf)
6301 		return -EINVAL;
6302 
6303 	ret = kstrtoint(buf, 0, &oom_group);
6304 	if (ret)
6305 		return ret;
6306 
6307 	if (oom_group != 0 && oom_group != 1)
6308 		return -EINVAL;
6309 
6310 	memcg->oom_group = oom_group;
6311 
6312 	return nbytes;
6313 }
6314 
6315 static struct cftype memory_files[] = {
6316 	{
6317 		.name = "current",
6318 		.flags = CFTYPE_NOT_ON_ROOT,
6319 		.read_u64 = memory_current_read,
6320 	},
6321 	{
6322 		.name = "min",
6323 		.flags = CFTYPE_NOT_ON_ROOT,
6324 		.seq_show = memory_min_show,
6325 		.write = memory_min_write,
6326 	},
6327 	{
6328 		.name = "low",
6329 		.flags = CFTYPE_NOT_ON_ROOT,
6330 		.seq_show = memory_low_show,
6331 		.write = memory_low_write,
6332 	},
6333 	{
6334 		.name = "high",
6335 		.flags = CFTYPE_NOT_ON_ROOT,
6336 		.seq_show = memory_high_show,
6337 		.write = memory_high_write,
6338 	},
6339 	{
6340 		.name = "max",
6341 		.flags = CFTYPE_NOT_ON_ROOT,
6342 		.seq_show = memory_max_show,
6343 		.write = memory_max_write,
6344 	},
6345 	{
6346 		.name = "events",
6347 		.flags = CFTYPE_NOT_ON_ROOT,
6348 		.file_offset = offsetof(struct mem_cgroup, events_file),
6349 		.seq_show = memory_events_show,
6350 	},
6351 	{
6352 		.name = "events.local",
6353 		.flags = CFTYPE_NOT_ON_ROOT,
6354 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6355 		.seq_show = memory_events_local_show,
6356 	},
6357 	{
6358 		.name = "stat",
6359 		.flags = CFTYPE_NOT_ON_ROOT,
6360 		.seq_show = memory_stat_show,
6361 	},
6362 	{
6363 		.name = "oom.group",
6364 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6365 		.seq_show = memory_oom_group_show,
6366 		.write = memory_oom_group_write,
6367 	},
6368 	{ }	/* terminate */
6369 };
6370 
6371 struct cgroup_subsys memory_cgrp_subsys = {
6372 	.css_alloc = mem_cgroup_css_alloc,
6373 	.css_online = mem_cgroup_css_online,
6374 	.css_offline = mem_cgroup_css_offline,
6375 	.css_released = mem_cgroup_css_released,
6376 	.css_free = mem_cgroup_css_free,
6377 	.css_reset = mem_cgroup_css_reset,
6378 	.can_attach = mem_cgroup_can_attach,
6379 	.cancel_attach = mem_cgroup_cancel_attach,
6380 	.post_attach = mem_cgroup_move_task,
6381 	.bind = mem_cgroup_bind,
6382 	.dfl_cftypes = memory_files,
6383 	.legacy_cftypes = mem_cgroup_legacy_files,
6384 	.early_init = 0,
6385 };
6386 
6387 /**
6388  * mem_cgroup_protected - check if memory consumption is in the normal range
6389  * @root: the top ancestor of the sub-tree being checked
6390  * @memcg: the memory cgroup to check
6391  *
6392  * WARNING: This function is not stateless! It can only be used as part
6393  *          of a top-down tree iteration, not for isolated queries.
6394  *
6395  * Returns one of the following:
6396  *   MEMCG_PROT_NONE: cgroup memory is not protected
6397  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
6398  *     an unprotected supply of reclaimable memory from other cgroups.
6399  *   MEMCG_PROT_MIN: cgroup memory is protected
6400  *
6401  * @root is exclusive; it is never protected when looked at directly
6402  *
6403  * To provide a proper hierarchical behavior, effective memory.min/low values
6404  * are used. Below is the description of how effective memory.low is calculated.
6405  * Effective memory.min values is calculated in the same way.
6406  *
6407  * Effective memory.low is always equal or less than the original memory.low.
6408  * If there is no memory.low overcommittment (which is always true for
6409  * top-level memory cgroups), these two values are equal.
6410  * Otherwise, it's a part of parent's effective memory.low,
6411  * calculated as a cgroup's memory.low usage divided by sum of sibling's
6412  * memory.low usages, where memory.low usage is the size of actually
6413  * protected memory.
6414  *
6415  *                                             low_usage
6416  * elow = min( memory.low, parent->elow * ------------------ ),
6417  *                                        siblings_low_usage
6418  *
6419  *             | memory.current, if memory.current < memory.low
6420  * low_usage = |
6421  *	       | 0, otherwise.
6422  *
6423  *
6424  * Such definition of the effective memory.low provides the expected
6425  * hierarchical behavior: parent's memory.low value is limiting
6426  * children, unprotected memory is reclaimed first and cgroups,
6427  * which are not using their guarantee do not affect actual memory
6428  * distribution.
6429  *
6430  * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6431  *
6432  *     A      A/memory.low = 2G, A/memory.current = 6G
6433  *    //\\
6434  *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
6435  *            C/memory.low = 1G  C/memory.current = 2G
6436  *            D/memory.low = 0   D/memory.current = 2G
6437  *            E/memory.low = 10G E/memory.current = 0
6438  *
6439  * and the memory pressure is applied, the following memory distribution
6440  * is expected (approximately):
6441  *
6442  *     A/memory.current = 2G
6443  *
6444  *     B/memory.current = 1.3G
6445  *     C/memory.current = 0.6G
6446  *     D/memory.current = 0
6447  *     E/memory.current = 0
6448  *
6449  * These calculations require constant tracking of the actual low usages
6450  * (see propagate_protected_usage()), as well as recursive calculation of
6451  * effective memory.low values. But as we do call mem_cgroup_protected()
6452  * path for each memory cgroup top-down from the reclaim,
6453  * it's possible to optimize this part, and save calculated elow
6454  * for next usage. This part is intentionally racy, but it's ok,
6455  * as memory.low is a best-effort mechanism.
6456  */
mem_cgroup_protected(struct mem_cgroup * root,struct mem_cgroup * memcg)6457 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6458 						struct mem_cgroup *memcg)
6459 {
6460 	struct mem_cgroup *parent;
6461 	unsigned long emin, parent_emin;
6462 	unsigned long elow, parent_elow;
6463 	unsigned long usage;
6464 
6465 	if (mem_cgroup_disabled())
6466 		return MEMCG_PROT_NONE;
6467 
6468 	if (!root)
6469 		root = root_mem_cgroup;
6470 
6471 	/*
6472 	 * Effective values of the reclaim targets are ignored so they
6473 	 * can be stale. Have a look at mem_cgroup_protection for more
6474 	 * details.
6475 	 * TODO: calculation should be more robust so that we do not need
6476 	 * that special casing.
6477 	 */
6478 	if (memcg == root)
6479 		return MEMCG_PROT_NONE;
6480 
6481 	usage = page_counter_read(&memcg->memory);
6482 	if (!usage)
6483 		return MEMCG_PROT_NONE;
6484 
6485 	emin = memcg->memory.min;
6486 	elow = memcg->memory.low;
6487 
6488 	parent = parent_mem_cgroup(memcg);
6489 	/* No parent means a non-hierarchical mode on v1 memcg */
6490 	if (!parent)
6491 		return MEMCG_PROT_NONE;
6492 
6493 	if (parent == root)
6494 		goto exit;
6495 
6496 	parent_emin = READ_ONCE(parent->memory.emin);
6497 	emin = min(emin, parent_emin);
6498 	if (emin && parent_emin) {
6499 		unsigned long min_usage, siblings_min_usage;
6500 
6501 		min_usage = min(usage, memcg->memory.min);
6502 		siblings_min_usage = atomic_long_read(
6503 			&parent->memory.children_min_usage);
6504 
6505 		if (min_usage && siblings_min_usage)
6506 			emin = min(emin, parent_emin * min_usage /
6507 				   siblings_min_usage);
6508 	}
6509 
6510 	parent_elow = READ_ONCE(parent->memory.elow);
6511 	elow = min(elow, parent_elow);
6512 	if (elow && parent_elow) {
6513 		unsigned long low_usage, siblings_low_usage;
6514 
6515 		low_usage = min(usage, memcg->memory.low);
6516 		siblings_low_usage = atomic_long_read(
6517 			&parent->memory.children_low_usage);
6518 
6519 		if (low_usage && siblings_low_usage)
6520 			elow = min(elow, parent_elow * low_usage /
6521 				   siblings_low_usage);
6522 	}
6523 
6524 exit:
6525 	memcg->memory.emin = emin;
6526 	memcg->memory.elow = elow;
6527 
6528 	if (usage <= emin)
6529 		return MEMCG_PROT_MIN;
6530 	else if (usage <= elow)
6531 		return MEMCG_PROT_LOW;
6532 	else
6533 		return MEMCG_PROT_NONE;
6534 }
6535 
6536 /**
6537  * mem_cgroup_try_charge - try charging a page
6538  * @page: page to charge
6539  * @mm: mm context of the victim
6540  * @gfp_mask: reclaim mode
6541  * @memcgp: charged memcg return
6542  * @compound: charge the page as compound or small page
6543  *
6544  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6545  * pages according to @gfp_mask if necessary.
6546  *
6547  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6548  * Otherwise, an error code is returned.
6549  *
6550  * After page->mapping has been set up, the caller must finalize the
6551  * charge with mem_cgroup_commit_charge().  Or abort the transaction
6552  * with mem_cgroup_cancel_charge() in case page instantiation fails.
6553  */
mem_cgroup_try_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask,struct mem_cgroup ** memcgp,bool compound)6554 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6555 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6556 			  bool compound)
6557 {
6558 	struct mem_cgroup *memcg = NULL;
6559 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6560 	int ret = 0;
6561 
6562 	if (mem_cgroup_disabled())
6563 		goto out;
6564 
6565 	if (PageSwapCache(page)) {
6566 		/*
6567 		 * Every swap fault against a single page tries to charge the
6568 		 * page, bail as early as possible.  shmem_unuse() encounters
6569 		 * already charged pages, too.  The USED bit is protected by
6570 		 * the page lock, which serializes swap cache removal, which
6571 		 * in turn serializes uncharging.
6572 		 */
6573 		VM_BUG_ON_PAGE(!PageLocked(page), page);
6574 		if (compound_head(page)->mem_cgroup)
6575 			goto out;
6576 
6577 		if (do_swap_account) {
6578 			swp_entry_t ent = { .val = page_private(page), };
6579 			unsigned short id = lookup_swap_cgroup_id(ent);
6580 
6581 			rcu_read_lock();
6582 			memcg = mem_cgroup_from_id(id);
6583 			if (memcg && !css_tryget_online(&memcg->css))
6584 				memcg = NULL;
6585 			rcu_read_unlock();
6586 		}
6587 	}
6588 
6589 	if (!memcg)
6590 		memcg = get_mem_cgroup_from_mm(mm);
6591 
6592 	ret = try_charge(memcg, gfp_mask, nr_pages);
6593 
6594 	css_put(&memcg->css);
6595 out:
6596 	*memcgp = memcg;
6597 	return ret;
6598 }
6599 
mem_cgroup_try_charge_delay(struct page * page,struct mm_struct * mm,gfp_t gfp_mask,struct mem_cgroup ** memcgp,bool compound)6600 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6601 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6602 			  bool compound)
6603 {
6604 	struct mem_cgroup *memcg;
6605 	int ret;
6606 
6607 	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6608 	memcg = *memcgp;
6609 	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6610 	return ret;
6611 }
6612 
6613 /**
6614  * mem_cgroup_commit_charge - commit a page charge
6615  * @page: page to charge
6616  * @memcg: memcg to charge the page to
6617  * @lrucare: page might be on LRU already
6618  * @compound: charge the page as compound or small page
6619  *
6620  * Finalize a charge transaction started by mem_cgroup_try_charge(),
6621  * after page->mapping has been set up.  This must happen atomically
6622  * as part of the page instantiation, i.e. under the page table lock
6623  * for anonymous pages, under the page lock for page and swap cache.
6624  *
6625  * In addition, the page must not be on the LRU during the commit, to
6626  * prevent racing with task migration.  If it might be, use @lrucare.
6627  *
6628  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6629  */
mem_cgroup_commit_charge(struct page * page,struct mem_cgroup * memcg,bool lrucare,bool compound)6630 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6631 			      bool lrucare, bool compound)
6632 {
6633 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6634 
6635 	VM_BUG_ON_PAGE(!page->mapping, page);
6636 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6637 
6638 	if (mem_cgroup_disabled())
6639 		return;
6640 	/*
6641 	 * Swap faults will attempt to charge the same page multiple
6642 	 * times.  But reuse_swap_page() might have removed the page
6643 	 * from swapcache already, so we can't check PageSwapCache().
6644 	 */
6645 	if (!memcg)
6646 		return;
6647 
6648 	commit_charge(page, memcg, lrucare);
6649 
6650 	local_irq_disable();
6651 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6652 	memcg_check_events(memcg, page);
6653 	local_irq_enable();
6654 
6655 	if (do_memsw_account() && PageSwapCache(page)) {
6656 		swp_entry_t entry = { .val = page_private(page) };
6657 		/*
6658 		 * The swap entry might not get freed for a long time,
6659 		 * let's not wait for it.  The page already received a
6660 		 * memory+swap charge, drop the swap entry duplicate.
6661 		 */
6662 		mem_cgroup_uncharge_swap(entry, nr_pages);
6663 	}
6664 }
6665 
6666 /**
6667  * mem_cgroup_cancel_charge - cancel a page charge
6668  * @page: page to charge
6669  * @memcg: memcg to charge the page to
6670  * @compound: charge the page as compound or small page
6671  *
6672  * Cancel a charge transaction started by mem_cgroup_try_charge().
6673  */
mem_cgroup_cancel_charge(struct page * page,struct mem_cgroup * memcg,bool compound)6674 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6675 		bool compound)
6676 {
6677 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6678 
6679 	if (mem_cgroup_disabled())
6680 		return;
6681 	/*
6682 	 * Swap faults will attempt to charge the same page multiple
6683 	 * times.  But reuse_swap_page() might have removed the page
6684 	 * from swapcache already, so we can't check PageSwapCache().
6685 	 */
6686 	if (!memcg)
6687 		return;
6688 
6689 	cancel_charge(memcg, nr_pages);
6690 }
6691 
6692 struct uncharge_gather {
6693 	struct mem_cgroup *memcg;
6694 	unsigned long pgpgout;
6695 	unsigned long nr_anon;
6696 	unsigned long nr_file;
6697 	unsigned long nr_kmem;
6698 	unsigned long nr_huge;
6699 	unsigned long nr_shmem;
6700 	struct page *dummy_page;
6701 };
6702 
uncharge_gather_clear(struct uncharge_gather * ug)6703 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6704 {
6705 	memset(ug, 0, sizeof(*ug));
6706 }
6707 
uncharge_batch(const struct uncharge_gather * ug)6708 static void uncharge_batch(const struct uncharge_gather *ug)
6709 {
6710 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6711 	unsigned long flags;
6712 
6713 	if (!mem_cgroup_is_root(ug->memcg)) {
6714 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6715 		if (do_memsw_account())
6716 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6717 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6718 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6719 		memcg_oom_recover(ug->memcg);
6720 	}
6721 
6722 	local_irq_save(flags);
6723 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6724 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6725 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6726 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6727 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6728 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6729 	memcg_check_events(ug->memcg, ug->dummy_page);
6730 	local_irq_restore(flags);
6731 
6732 	if (!mem_cgroup_is_root(ug->memcg))
6733 		css_put_many(&ug->memcg->css, nr_pages);
6734 }
6735 
uncharge_page(struct page * page,struct uncharge_gather * ug)6736 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6737 {
6738 	VM_BUG_ON_PAGE(PageLRU(page), page);
6739 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6740 			!PageHWPoison(page) , page);
6741 
6742 	if (!page->mem_cgroup)
6743 		return;
6744 
6745 	/*
6746 	 * Nobody should be changing or seriously looking at
6747 	 * page->mem_cgroup at this point, we have fully
6748 	 * exclusive access to the page.
6749 	 */
6750 
6751 	if (ug->memcg != page->mem_cgroup) {
6752 		if (ug->memcg) {
6753 			uncharge_batch(ug);
6754 			uncharge_gather_clear(ug);
6755 		}
6756 		ug->memcg = page->mem_cgroup;
6757 	}
6758 
6759 	if (!PageKmemcg(page)) {
6760 		unsigned int nr_pages = 1;
6761 
6762 		if (PageTransHuge(page)) {
6763 			nr_pages = compound_nr(page);
6764 			ug->nr_huge += nr_pages;
6765 		}
6766 		if (PageAnon(page))
6767 			ug->nr_anon += nr_pages;
6768 		else {
6769 			ug->nr_file += nr_pages;
6770 			if (PageSwapBacked(page))
6771 				ug->nr_shmem += nr_pages;
6772 		}
6773 		ug->pgpgout++;
6774 	} else {
6775 		ug->nr_kmem += compound_nr(page);
6776 		__ClearPageKmemcg(page);
6777 	}
6778 
6779 	ug->dummy_page = page;
6780 	page->mem_cgroup = NULL;
6781 }
6782 
uncharge_list(struct list_head * page_list)6783 static void uncharge_list(struct list_head *page_list)
6784 {
6785 	struct uncharge_gather ug;
6786 	struct list_head *next;
6787 
6788 	uncharge_gather_clear(&ug);
6789 
6790 	/*
6791 	 * Note that the list can be a single page->lru; hence the
6792 	 * do-while loop instead of a simple list_for_each_entry().
6793 	 */
6794 	next = page_list->next;
6795 	do {
6796 		struct page *page;
6797 
6798 		page = list_entry(next, struct page, lru);
6799 		next = page->lru.next;
6800 
6801 		uncharge_page(page, &ug);
6802 	} while (next != page_list);
6803 
6804 	if (ug.memcg)
6805 		uncharge_batch(&ug);
6806 }
6807 
6808 /**
6809  * mem_cgroup_uncharge - uncharge a page
6810  * @page: page to uncharge
6811  *
6812  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6813  * mem_cgroup_commit_charge().
6814  */
mem_cgroup_uncharge(struct page * page)6815 void mem_cgroup_uncharge(struct page *page)
6816 {
6817 	struct uncharge_gather ug;
6818 
6819 	if (mem_cgroup_disabled())
6820 		return;
6821 
6822 	/* Don't touch page->lru of any random page, pre-check: */
6823 	if (!page->mem_cgroup)
6824 		return;
6825 
6826 	uncharge_gather_clear(&ug);
6827 	uncharge_page(page, &ug);
6828 	uncharge_batch(&ug);
6829 }
6830 
6831 /**
6832  * mem_cgroup_uncharge_list - uncharge a list of page
6833  * @page_list: list of pages to uncharge
6834  *
6835  * Uncharge a list of pages previously charged with
6836  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6837  */
mem_cgroup_uncharge_list(struct list_head * page_list)6838 void mem_cgroup_uncharge_list(struct list_head *page_list)
6839 {
6840 	if (mem_cgroup_disabled())
6841 		return;
6842 
6843 	if (!list_empty(page_list))
6844 		uncharge_list(page_list);
6845 }
6846 
6847 /**
6848  * mem_cgroup_migrate - charge a page's replacement
6849  * @oldpage: currently circulating page
6850  * @newpage: replacement page
6851  *
6852  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6853  * be uncharged upon free.
6854  *
6855  * Both pages must be locked, @newpage->mapping must be set up.
6856  */
mem_cgroup_migrate(struct page * oldpage,struct page * newpage)6857 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6858 {
6859 	struct mem_cgroup *memcg;
6860 	unsigned int nr_pages;
6861 	bool compound;
6862 	unsigned long flags;
6863 
6864 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6865 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6866 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6867 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6868 		       newpage);
6869 
6870 	if (mem_cgroup_disabled())
6871 		return;
6872 
6873 	/* Page cache replacement: new page already charged? */
6874 	if (newpage->mem_cgroup)
6875 		return;
6876 
6877 	/* Swapcache readahead pages can get replaced before being charged */
6878 	memcg = oldpage->mem_cgroup;
6879 	if (!memcg)
6880 		return;
6881 
6882 	/* Force-charge the new page. The old one will be freed soon */
6883 	compound = PageTransHuge(newpage);
6884 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6885 
6886 	page_counter_charge(&memcg->memory, nr_pages);
6887 	if (do_memsw_account())
6888 		page_counter_charge(&memcg->memsw, nr_pages);
6889 	css_get_many(&memcg->css, nr_pages);
6890 
6891 	commit_charge(newpage, memcg, false);
6892 
6893 	local_irq_save(flags);
6894 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6895 	memcg_check_events(memcg, newpage);
6896 	local_irq_restore(flags);
6897 }
6898 
6899 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6900 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6901 
mem_cgroup_sk_alloc(struct sock * sk)6902 void mem_cgroup_sk_alloc(struct sock *sk)
6903 {
6904 	struct mem_cgroup *memcg;
6905 
6906 	if (!mem_cgroup_sockets_enabled)
6907 		return;
6908 
6909 	/* Do not associate the sock with unrelated interrupted task's memcg. */
6910 	if (in_interrupt())
6911 		return;
6912 
6913 	rcu_read_lock();
6914 	memcg = mem_cgroup_from_task(current);
6915 	if (memcg == root_mem_cgroup)
6916 		goto out;
6917 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6918 		goto out;
6919 	if (css_tryget_online(&memcg->css))
6920 		sk->sk_memcg = memcg;
6921 out:
6922 	rcu_read_unlock();
6923 }
6924 
mem_cgroup_sk_free(struct sock * sk)6925 void mem_cgroup_sk_free(struct sock *sk)
6926 {
6927 	if (sk->sk_memcg)
6928 		css_put(&sk->sk_memcg->css);
6929 }
6930 
6931 /**
6932  * mem_cgroup_charge_skmem - charge socket memory
6933  * @memcg: memcg to charge
6934  * @nr_pages: number of pages to charge
6935  *
6936  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6937  * @memcg's configured limit, %false if the charge had to be forced.
6938  */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)6939 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6940 {
6941 	gfp_t gfp_mask = GFP_KERNEL;
6942 
6943 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6944 		struct page_counter *fail;
6945 
6946 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6947 			memcg->tcpmem_pressure = 0;
6948 			return true;
6949 		}
6950 		page_counter_charge(&memcg->tcpmem, nr_pages);
6951 		memcg->tcpmem_pressure = 1;
6952 		return false;
6953 	}
6954 
6955 	/* Don't block in the packet receive path */
6956 	if (in_softirq())
6957 		gfp_mask = GFP_NOWAIT;
6958 
6959 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6960 
6961 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6962 		return true;
6963 
6964 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6965 	return false;
6966 }
6967 
6968 /**
6969  * mem_cgroup_uncharge_skmem - uncharge socket memory
6970  * @memcg: memcg to uncharge
6971  * @nr_pages: number of pages to uncharge
6972  */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)6973 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6974 {
6975 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6976 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6977 		return;
6978 	}
6979 
6980 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6981 
6982 	refill_stock(memcg, nr_pages);
6983 }
6984 
cgroup_memory(char * s)6985 static int __init cgroup_memory(char *s)
6986 {
6987 	char *token;
6988 
6989 	while ((token = strsep(&s, ",")) != NULL) {
6990 		if (!*token)
6991 			continue;
6992 		if (!strcmp(token, "nosocket"))
6993 			cgroup_memory_nosocket = true;
6994 		if (!strcmp(token, "nokmem"))
6995 			cgroup_memory_nokmem = true;
6996 	}
6997 	return 1;
6998 }
6999 __setup("cgroup.memory=", cgroup_memory);
7000 
7001 /*
7002  * subsys_initcall() for memory controller.
7003  *
7004  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7005  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7006  * basically everything that doesn't depend on a specific mem_cgroup structure
7007  * should be initialized from here.
7008  */
mem_cgroup_init(void)7009 static int __init mem_cgroup_init(void)
7010 {
7011 	int cpu, node;
7012 
7013 #ifdef CONFIG_MEMCG_KMEM
7014 	/*
7015 	 * Kmem cache creation is mostly done with the slab_mutex held,
7016 	 * so use a workqueue with limited concurrency to avoid stalling
7017 	 * all worker threads in case lots of cgroups are created and
7018 	 * destroyed simultaneously.
7019 	 */
7020 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
7021 	BUG_ON(!memcg_kmem_cache_wq);
7022 #endif
7023 
7024 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7025 				  memcg_hotplug_cpu_dead);
7026 
7027 	for_each_possible_cpu(cpu)
7028 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7029 			  drain_local_stock);
7030 
7031 	for_each_node(node) {
7032 		struct mem_cgroup_tree_per_node *rtpn;
7033 
7034 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7035 				    node_online(node) ? node : NUMA_NO_NODE);
7036 
7037 		rtpn->rb_root = RB_ROOT;
7038 		rtpn->rb_rightmost = NULL;
7039 		spin_lock_init(&rtpn->lock);
7040 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7041 	}
7042 
7043 	return 0;
7044 }
7045 subsys_initcall(mem_cgroup_init);
7046 
7047 #ifdef CONFIG_MEMCG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)7048 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7049 {
7050 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7051 		/*
7052 		 * The root cgroup cannot be destroyed, so it's refcount must
7053 		 * always be >= 1.
7054 		 */
7055 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7056 			VM_BUG_ON(1);
7057 			break;
7058 		}
7059 		memcg = parent_mem_cgroup(memcg);
7060 		if (!memcg)
7061 			memcg = root_mem_cgroup;
7062 	}
7063 	return memcg;
7064 }
7065 
7066 /**
7067  * mem_cgroup_swapout - transfer a memsw charge to swap
7068  * @page: page whose memsw charge to transfer
7069  * @entry: swap entry to move the charge to
7070  *
7071  * Transfer the memsw charge of @page to @entry.
7072  */
mem_cgroup_swapout(struct page * page,swp_entry_t entry)7073 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7074 {
7075 	struct mem_cgroup *memcg, *swap_memcg;
7076 	unsigned int nr_entries;
7077 	unsigned short oldid;
7078 
7079 	VM_BUG_ON_PAGE(PageLRU(page), page);
7080 	VM_BUG_ON_PAGE(page_count(page), page);
7081 
7082 	if (!do_memsw_account())
7083 		return;
7084 
7085 	memcg = page->mem_cgroup;
7086 
7087 	/* Readahead page, never charged */
7088 	if (!memcg)
7089 		return;
7090 
7091 	/*
7092 	 * In case the memcg owning these pages has been offlined and doesn't
7093 	 * have an ID allocated to it anymore, charge the closest online
7094 	 * ancestor for the swap instead and transfer the memory+swap charge.
7095 	 */
7096 	swap_memcg = mem_cgroup_id_get_online(memcg);
7097 	nr_entries = hpage_nr_pages(page);
7098 	/* Get references for the tail pages, too */
7099 	if (nr_entries > 1)
7100 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7101 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7102 				   nr_entries);
7103 	VM_BUG_ON_PAGE(oldid, page);
7104 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7105 
7106 	page->mem_cgroup = NULL;
7107 
7108 	if (!mem_cgroup_is_root(memcg))
7109 		page_counter_uncharge(&memcg->memory, nr_entries);
7110 
7111 	if (memcg != swap_memcg) {
7112 		if (!mem_cgroup_is_root(swap_memcg))
7113 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7114 		page_counter_uncharge(&memcg->memsw, nr_entries);
7115 	}
7116 
7117 	/*
7118 	 * Interrupts should be disabled here because the caller holds the
7119 	 * i_pages lock which is taken with interrupts-off. It is
7120 	 * important here to have the interrupts disabled because it is the
7121 	 * only synchronisation we have for updating the per-CPU variables.
7122 	 */
7123 	VM_BUG_ON(!irqs_disabled());
7124 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
7125 				     -nr_entries);
7126 	memcg_check_events(memcg, page);
7127 
7128 	if (!mem_cgroup_is_root(memcg))
7129 		css_put_many(&memcg->css, nr_entries);
7130 }
7131 
7132 /**
7133  * mem_cgroup_try_charge_swap - try charging swap space for a page
7134  * @page: page being added to swap
7135  * @entry: swap entry to charge
7136  *
7137  * Try to charge @page's memcg for the swap space at @entry.
7138  *
7139  * Returns 0 on success, -ENOMEM on failure.
7140  */
mem_cgroup_try_charge_swap(struct page * page,swp_entry_t entry)7141 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7142 {
7143 	unsigned int nr_pages = hpage_nr_pages(page);
7144 	struct page_counter *counter;
7145 	struct mem_cgroup *memcg;
7146 	unsigned short oldid;
7147 
7148 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
7149 		return 0;
7150 
7151 	memcg = page->mem_cgroup;
7152 
7153 	/* Readahead page, never charged */
7154 	if (!memcg)
7155 		return 0;
7156 
7157 	if (!entry.val) {
7158 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7159 		return 0;
7160 	}
7161 
7162 	memcg = mem_cgroup_id_get_online(memcg);
7163 
7164 	if (!mem_cgroup_is_root(memcg) &&
7165 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7166 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7167 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7168 		mem_cgroup_id_put(memcg);
7169 		return -ENOMEM;
7170 	}
7171 
7172 	/* Get references for the tail pages, too */
7173 	if (nr_pages > 1)
7174 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7175 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7176 	VM_BUG_ON_PAGE(oldid, page);
7177 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7178 
7179 	return 0;
7180 }
7181 
7182 /**
7183  * mem_cgroup_uncharge_swap - uncharge swap space
7184  * @entry: swap entry to uncharge
7185  * @nr_pages: the amount of swap space to uncharge
7186  */
mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)7187 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7188 {
7189 	struct mem_cgroup *memcg;
7190 	unsigned short id;
7191 
7192 	if (!do_swap_account)
7193 		return;
7194 
7195 	id = swap_cgroup_record(entry, 0, nr_pages);
7196 	rcu_read_lock();
7197 	memcg = mem_cgroup_from_id(id);
7198 	if (memcg) {
7199 		if (!mem_cgroup_is_root(memcg)) {
7200 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7201 				page_counter_uncharge(&memcg->swap, nr_pages);
7202 			else
7203 				page_counter_uncharge(&memcg->memsw, nr_pages);
7204 		}
7205 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7206 		mem_cgroup_id_put_many(memcg, nr_pages);
7207 	}
7208 	rcu_read_unlock();
7209 }
7210 
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)7211 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7212 {
7213 	long nr_swap_pages = get_nr_swap_pages();
7214 
7215 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7216 		return nr_swap_pages;
7217 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7218 		nr_swap_pages = min_t(long, nr_swap_pages,
7219 				      READ_ONCE(memcg->swap.max) -
7220 				      page_counter_read(&memcg->swap));
7221 	return nr_swap_pages;
7222 }
7223 
mem_cgroup_swap_full(struct page * page)7224 bool mem_cgroup_swap_full(struct page *page)
7225 {
7226 	struct mem_cgroup *memcg;
7227 
7228 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7229 
7230 	if (vm_swap_full())
7231 		return true;
7232 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7233 		return false;
7234 
7235 	memcg = page->mem_cgroup;
7236 	if (!memcg)
7237 		return false;
7238 
7239 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7240 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7241 			return true;
7242 
7243 	return false;
7244 }
7245 
7246 /* for remember boot option*/
7247 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7248 static int really_do_swap_account __initdata = 1;
7249 #else
7250 static int really_do_swap_account __initdata;
7251 #endif
7252 
enable_swap_account(char * s)7253 static int __init enable_swap_account(char *s)
7254 {
7255 	if (!strcmp(s, "1"))
7256 		really_do_swap_account = 1;
7257 	else if (!strcmp(s, "0"))
7258 		really_do_swap_account = 0;
7259 	return 1;
7260 }
7261 __setup("swapaccount=", enable_swap_account);
7262 
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7263 static u64 swap_current_read(struct cgroup_subsys_state *css,
7264 			     struct cftype *cft)
7265 {
7266 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7267 
7268 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7269 }
7270 
swap_max_show(struct seq_file * m,void * v)7271 static int swap_max_show(struct seq_file *m, void *v)
7272 {
7273 	return seq_puts_memcg_tunable(m,
7274 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7275 }
7276 
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7277 static ssize_t swap_max_write(struct kernfs_open_file *of,
7278 			      char *buf, size_t nbytes, loff_t off)
7279 {
7280 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7281 	unsigned long max;
7282 	int err;
7283 
7284 	buf = strstrip(buf);
7285 	err = page_counter_memparse(buf, "max", &max);
7286 	if (err)
7287 		return err;
7288 
7289 	xchg(&memcg->swap.max, max);
7290 
7291 	return nbytes;
7292 }
7293 
swap_events_show(struct seq_file * m,void * v)7294 static int swap_events_show(struct seq_file *m, void *v)
7295 {
7296 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7297 
7298 	seq_printf(m, "max %lu\n",
7299 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7300 	seq_printf(m, "fail %lu\n",
7301 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7302 
7303 	return 0;
7304 }
7305 
7306 static struct cftype swap_files[] = {
7307 	{
7308 		.name = "swap.current",
7309 		.flags = CFTYPE_NOT_ON_ROOT,
7310 		.read_u64 = swap_current_read,
7311 	},
7312 	{
7313 		.name = "swap.max",
7314 		.flags = CFTYPE_NOT_ON_ROOT,
7315 		.seq_show = swap_max_show,
7316 		.write = swap_max_write,
7317 	},
7318 	{
7319 		.name = "swap.events",
7320 		.flags = CFTYPE_NOT_ON_ROOT,
7321 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7322 		.seq_show = swap_events_show,
7323 	},
7324 	{ }	/* terminate */
7325 };
7326 
7327 static struct cftype memsw_cgroup_files[] = {
7328 	{
7329 		.name = "memsw.usage_in_bytes",
7330 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7331 		.read_u64 = mem_cgroup_read_u64,
7332 	},
7333 	{
7334 		.name = "memsw.max_usage_in_bytes",
7335 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7336 		.write = mem_cgroup_reset,
7337 		.read_u64 = mem_cgroup_read_u64,
7338 	},
7339 	{
7340 		.name = "memsw.limit_in_bytes",
7341 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7342 		.write = mem_cgroup_write,
7343 		.read_u64 = mem_cgroup_read_u64,
7344 	},
7345 	{
7346 		.name = "memsw.failcnt",
7347 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7348 		.write = mem_cgroup_reset,
7349 		.read_u64 = mem_cgroup_read_u64,
7350 	},
7351 	{ },	/* terminate */
7352 };
7353 
mem_cgroup_swap_init(void)7354 static int __init mem_cgroup_swap_init(void)
7355 {
7356 	if (!mem_cgroup_disabled() && really_do_swap_account) {
7357 		do_swap_account = 1;
7358 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7359 					       swap_files));
7360 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7361 						  memsw_cgroup_files));
7362 	}
7363 	return 0;
7364 }
7365 subsys_initcall(mem_cgroup_swap_init);
7366 
7367 #endif /* CONFIG_MEMCG_SWAP */
7368