• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 
75 #include <trace/events/kmem.h>
76 
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
84 
85 #include "internal.h"
86 
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
89 #endif
90 
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr;
94 EXPORT_SYMBOL(max_mapnr);
95 
96 struct page *mem_map;
97 EXPORT_SYMBOL(mem_map);
98 #endif
99 
100 /*
101  * A number of key systems in x86 including ioremap() rely on the assumption
102  * that high_memory defines the upper bound on direct map memory, then end
103  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
104  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105  * and ZONE_HIGHMEM.
106  */
107 void *high_memory;
108 EXPORT_SYMBOL(high_memory);
109 
110 /*
111  * Randomize the address space (stacks, mmaps, brk, etc.).
112  *
113  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114  *   as ancient (libc5 based) binaries can segfault. )
115  */
116 int randomize_va_space __read_mostly =
117 #ifdef CONFIG_COMPAT_BRK
118 					1;
119 #else
120 					2;
121 #endif
122 
123 #ifndef arch_faults_on_old_pte
arch_faults_on_old_pte(void)124 static inline bool arch_faults_on_old_pte(void)
125 {
126 	/*
127 	 * Those arches which don't have hw access flag feature need to
128 	 * implement their own helper. By default, "true" means pagefault
129 	 * will be hit on old pte.
130 	 */
131 	return true;
132 }
133 #endif
134 
disable_randmaps(char * s)135 static int __init disable_randmaps(char *s)
136 {
137 	randomize_va_space = 0;
138 	return 1;
139 }
140 __setup("norandmaps", disable_randmaps);
141 
142 unsigned long zero_pfn __read_mostly;
143 EXPORT_SYMBOL(zero_pfn);
144 
145 unsigned long highest_memmap_pfn __read_mostly;
146 
147 /*
148  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149  */
init_zero_pfn(void)150 static int __init init_zero_pfn(void)
151 {
152 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
153 	return 0;
154 }
155 early_initcall(init_zero_pfn);
156 
157 /*
158  * Only trace rss_stat when there is a 512kb cross over.
159  * Smaller changes may be lost unless every small change is
160  * crossing into or returning to a 512kb boundary.
161  */
162 #define TRACE_MM_COUNTER_THRESHOLD 128
163 
mm_trace_rss_stat(struct mm_struct * mm,int member,long count,long value)164 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count,
165 		       long value)
166 {
167 	long thresh_mask = ~(TRACE_MM_COUNTER_THRESHOLD - 1);
168 
169 	/* Threshold roll-over, trace it */
170 	if ((count & thresh_mask) != ((count - value) & thresh_mask))
171 		trace_rss_stat(mm, member, count);
172 }
173 EXPORT_SYMBOL_GPL(mm_trace_rss_stat);
174 
175 #if defined(SPLIT_RSS_COUNTING)
176 
sync_mm_rss(struct mm_struct * mm)177 void sync_mm_rss(struct mm_struct *mm)
178 {
179 	int i;
180 
181 	for (i = 0; i < NR_MM_COUNTERS; i++) {
182 		if (current->rss_stat.count[i]) {
183 			add_mm_counter(mm, i, current->rss_stat.count[i]);
184 			current->rss_stat.count[i] = 0;
185 		}
186 	}
187 	current->rss_stat.events = 0;
188 }
189 
add_mm_counter_fast(struct mm_struct * mm,int member,int val)190 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
191 {
192 	struct task_struct *task = current;
193 
194 	if (likely(task->mm == mm))
195 		task->rss_stat.count[member] += val;
196 	else
197 		add_mm_counter(mm, member, val);
198 }
199 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
200 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
201 
202 /* sync counter once per 64 page faults */
203 #define TASK_RSS_EVENTS_THRESH	(64)
check_sync_rss_stat(struct task_struct * task)204 static void check_sync_rss_stat(struct task_struct *task)
205 {
206 	if (unlikely(task != current))
207 		return;
208 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
209 		sync_mm_rss(task->mm);
210 }
211 #else /* SPLIT_RSS_COUNTING */
212 
213 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
214 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
215 
check_sync_rss_stat(struct task_struct * task)216 static void check_sync_rss_stat(struct task_struct *task)
217 {
218 }
219 
220 #endif /* SPLIT_RSS_COUNTING */
221 
222 /*
223  * Note: this doesn't free the actual pages themselves. That
224  * has been handled earlier when unmapping all the memory regions.
225  */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)226 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
227 			   unsigned long addr)
228 {
229 	pgtable_t token = pmd_pgtable(*pmd);
230 	pmd_clear(pmd);
231 	pte_free_tlb(tlb, token, addr);
232 	mm_dec_nr_ptes(tlb->mm);
233 }
234 
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)235 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
236 				unsigned long addr, unsigned long end,
237 				unsigned long floor, unsigned long ceiling)
238 {
239 	pmd_t *pmd;
240 	unsigned long next;
241 	unsigned long start;
242 
243 	start = addr;
244 	pmd = pmd_offset(pud, addr);
245 	do {
246 		next = pmd_addr_end(addr, end);
247 		if (pmd_none_or_clear_bad(pmd))
248 			continue;
249 		free_pte_range(tlb, pmd, addr);
250 	} while (pmd++, addr = next, addr != end);
251 
252 	start &= PUD_MASK;
253 	if (start < floor)
254 		return;
255 	if (ceiling) {
256 		ceiling &= PUD_MASK;
257 		if (!ceiling)
258 			return;
259 	}
260 	if (end - 1 > ceiling - 1)
261 		return;
262 
263 	pmd = pmd_offset(pud, start);
264 	pud_clear(pud);
265 	pmd_free_tlb(tlb, pmd, start);
266 	mm_dec_nr_pmds(tlb->mm);
267 }
268 
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)269 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
270 				unsigned long addr, unsigned long end,
271 				unsigned long floor, unsigned long ceiling)
272 {
273 	pud_t *pud;
274 	unsigned long next;
275 	unsigned long start;
276 
277 	start = addr;
278 	pud = pud_offset(p4d, addr);
279 	do {
280 		next = pud_addr_end(addr, end);
281 		if (pud_none_or_clear_bad(pud))
282 			continue;
283 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
284 	} while (pud++, addr = next, addr != end);
285 
286 	start &= P4D_MASK;
287 	if (start < floor)
288 		return;
289 	if (ceiling) {
290 		ceiling &= P4D_MASK;
291 		if (!ceiling)
292 			return;
293 	}
294 	if (end - 1 > ceiling - 1)
295 		return;
296 
297 	pud = pud_offset(p4d, start);
298 	p4d_clear(p4d);
299 	pud_free_tlb(tlb, pud, start);
300 	mm_dec_nr_puds(tlb->mm);
301 }
302 
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)303 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
304 				unsigned long addr, unsigned long end,
305 				unsigned long floor, unsigned long ceiling)
306 {
307 	p4d_t *p4d;
308 	unsigned long next;
309 	unsigned long start;
310 
311 	start = addr;
312 	p4d = p4d_offset(pgd, addr);
313 	do {
314 		next = p4d_addr_end(addr, end);
315 		if (p4d_none_or_clear_bad(p4d))
316 			continue;
317 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
318 	} while (p4d++, addr = next, addr != end);
319 
320 	start &= PGDIR_MASK;
321 	if (start < floor)
322 		return;
323 	if (ceiling) {
324 		ceiling &= PGDIR_MASK;
325 		if (!ceiling)
326 			return;
327 	}
328 	if (end - 1 > ceiling - 1)
329 		return;
330 
331 	p4d = p4d_offset(pgd, start);
332 	pgd_clear(pgd);
333 	p4d_free_tlb(tlb, p4d, start);
334 }
335 
336 /*
337  * This function frees user-level page tables of a process.
338  */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)339 void free_pgd_range(struct mmu_gather *tlb,
340 			unsigned long addr, unsigned long end,
341 			unsigned long floor, unsigned long ceiling)
342 {
343 	pgd_t *pgd;
344 	unsigned long next;
345 
346 	/*
347 	 * The next few lines have given us lots of grief...
348 	 *
349 	 * Why are we testing PMD* at this top level?  Because often
350 	 * there will be no work to do at all, and we'd prefer not to
351 	 * go all the way down to the bottom just to discover that.
352 	 *
353 	 * Why all these "- 1"s?  Because 0 represents both the bottom
354 	 * of the address space and the top of it (using -1 for the
355 	 * top wouldn't help much: the masks would do the wrong thing).
356 	 * The rule is that addr 0 and floor 0 refer to the bottom of
357 	 * the address space, but end 0 and ceiling 0 refer to the top
358 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
359 	 * that end 0 case should be mythical).
360 	 *
361 	 * Wherever addr is brought up or ceiling brought down, we must
362 	 * be careful to reject "the opposite 0" before it confuses the
363 	 * subsequent tests.  But what about where end is brought down
364 	 * by PMD_SIZE below? no, end can't go down to 0 there.
365 	 *
366 	 * Whereas we round start (addr) and ceiling down, by different
367 	 * masks at different levels, in order to test whether a table
368 	 * now has no other vmas using it, so can be freed, we don't
369 	 * bother to round floor or end up - the tests don't need that.
370 	 */
371 
372 	addr &= PMD_MASK;
373 	if (addr < floor) {
374 		addr += PMD_SIZE;
375 		if (!addr)
376 			return;
377 	}
378 	if (ceiling) {
379 		ceiling &= PMD_MASK;
380 		if (!ceiling)
381 			return;
382 	}
383 	if (end - 1 > ceiling - 1)
384 		end -= PMD_SIZE;
385 	if (addr > end - 1)
386 		return;
387 	/*
388 	 * We add page table cache pages with PAGE_SIZE,
389 	 * (see pte_free_tlb()), flush the tlb if we need
390 	 */
391 	tlb_change_page_size(tlb, PAGE_SIZE);
392 	pgd = pgd_offset(tlb->mm, addr);
393 	do {
394 		next = pgd_addr_end(addr, end);
395 		if (pgd_none_or_clear_bad(pgd))
396 			continue;
397 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
398 	} while (pgd++, addr = next, addr != end);
399 }
400 
free_pgtables(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling)401 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
402 		unsigned long floor, unsigned long ceiling)
403 {
404 	while (vma) {
405 		struct vm_area_struct *next = vma->vm_next;
406 		unsigned long addr = vma->vm_start;
407 
408 		/*
409 		 * Hide vma from rmap and truncate_pagecache before freeing
410 		 * pgtables
411 		 */
412 		unlink_anon_vmas(vma);
413 		unlink_file_vma(vma);
414 
415 		if (is_vm_hugetlb_page(vma)) {
416 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
417 				floor, next ? next->vm_start : ceiling);
418 		} else {
419 			/*
420 			 * Optimization: gather nearby vmas into one call down
421 			 */
422 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
423 			       && !is_vm_hugetlb_page(next)) {
424 				vma = next;
425 				next = vma->vm_next;
426 				unlink_anon_vmas(vma);
427 				unlink_file_vma(vma);
428 			}
429 			free_pgd_range(tlb, addr, vma->vm_end,
430 				floor, next ? next->vm_start : ceiling);
431 		}
432 		vma = next;
433 	}
434 }
435 
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)436 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
437 {
438 	spinlock_t *ptl;
439 	pgtable_t new = pte_alloc_one(mm);
440 	if (!new)
441 		return -ENOMEM;
442 
443 	/*
444 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
445 	 * visible before the pte is made visible to other CPUs by being
446 	 * put into page tables.
447 	 *
448 	 * The other side of the story is the pointer chasing in the page
449 	 * table walking code (when walking the page table without locking;
450 	 * ie. most of the time). Fortunately, these data accesses consist
451 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
452 	 * being the notable exception) will already guarantee loads are
453 	 * seen in-order. See the alpha page table accessors for the
454 	 * smp_read_barrier_depends() barriers in page table walking code.
455 	 */
456 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457 
458 	ptl = pmd_lock(mm, pmd);
459 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
460 		mm_inc_nr_ptes(mm);
461 		pmd_populate(mm, pmd, new);
462 		new = NULL;
463 	}
464 	spin_unlock(ptl);
465 	if (new)
466 		pte_free(mm, new);
467 	return 0;
468 }
469 
__pte_alloc_kernel(pmd_t * pmd)470 int __pte_alloc_kernel(pmd_t *pmd)
471 {
472 	pte_t *new = pte_alloc_one_kernel(&init_mm);
473 	if (!new)
474 		return -ENOMEM;
475 
476 	smp_wmb(); /* See comment in __pte_alloc */
477 
478 	spin_lock(&init_mm.page_table_lock);
479 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
480 		pmd_populate_kernel(&init_mm, pmd, new);
481 		new = NULL;
482 	}
483 	spin_unlock(&init_mm.page_table_lock);
484 	if (new)
485 		pte_free_kernel(&init_mm, new);
486 	return 0;
487 }
488 
init_rss_vec(int * rss)489 static inline void init_rss_vec(int *rss)
490 {
491 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
492 }
493 
add_mm_rss_vec(struct mm_struct * mm,int * rss)494 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
495 {
496 	int i;
497 
498 	if (current->mm == mm)
499 		sync_mm_rss(mm);
500 	for (i = 0; i < NR_MM_COUNTERS; i++)
501 		if (rss[i])
502 			add_mm_counter(mm, i, rss[i]);
503 }
504 
505 /*
506  * This function is called to print an error when a bad pte
507  * is found. For example, we might have a PFN-mapped pte in
508  * a region that doesn't allow it.
509  *
510  * The calling function must still handle the error.
511  */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)512 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
513 			  pte_t pte, struct page *page)
514 {
515 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
516 	p4d_t *p4d = p4d_offset(pgd, addr);
517 	pud_t *pud = pud_offset(p4d, addr);
518 	pmd_t *pmd = pmd_offset(pud, addr);
519 	struct address_space *mapping;
520 	pgoff_t index;
521 	static unsigned long resume;
522 	static unsigned long nr_shown;
523 	static unsigned long nr_unshown;
524 
525 	/*
526 	 * Allow a burst of 60 reports, then keep quiet for that minute;
527 	 * or allow a steady drip of one report per second.
528 	 */
529 	if (nr_shown == 60) {
530 		if (time_before(jiffies, resume)) {
531 			nr_unshown++;
532 			return;
533 		}
534 		if (nr_unshown) {
535 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
536 				 nr_unshown);
537 			nr_unshown = 0;
538 		}
539 		nr_shown = 0;
540 	}
541 	if (nr_shown++ == 0)
542 		resume = jiffies + 60 * HZ;
543 
544 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
545 	index = linear_page_index(vma, addr);
546 
547 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
548 		 current->comm,
549 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
550 	if (page)
551 		dump_page(page, "bad pte");
552 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
553 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
554 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
555 		 vma->vm_file,
556 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
557 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
558 		 mapping ? mapping->a_ops->readpage : NULL);
559 	dump_stack();
560 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
561 }
562 
563 /*
564  * vm_normal_page -- This function gets the "struct page" associated with a pte.
565  *
566  * "Special" mappings do not wish to be associated with a "struct page" (either
567  * it doesn't exist, or it exists but they don't want to touch it). In this
568  * case, NULL is returned here. "Normal" mappings do have a struct page.
569  *
570  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
571  * pte bit, in which case this function is trivial. Secondly, an architecture
572  * may not have a spare pte bit, which requires a more complicated scheme,
573  * described below.
574  *
575  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
576  * special mapping (even if there are underlying and valid "struct pages").
577  * COWed pages of a VM_PFNMAP are always normal.
578  *
579  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
580  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
581  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
582  * mapping will always honor the rule
583  *
584  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
585  *
586  * And for normal mappings this is false.
587  *
588  * This restricts such mappings to be a linear translation from virtual address
589  * to pfn. To get around this restriction, we allow arbitrary mappings so long
590  * as the vma is not a COW mapping; in that case, we know that all ptes are
591  * special (because none can have been COWed).
592  *
593  *
594  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
595  *
596  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
597  * page" backing, however the difference is that _all_ pages with a struct
598  * page (that is, those where pfn_valid is true) are refcounted and considered
599  * normal pages by the VM. The disadvantage is that pages are refcounted
600  * (which can be slower and simply not an option for some PFNMAP users). The
601  * advantage is that we don't have to follow the strict linearity rule of
602  * PFNMAP mappings in order to support COWable mappings.
603  *
604  */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)605 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
606 			    pte_t pte)
607 {
608 	unsigned long pfn = pte_pfn(pte);
609 
610 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
611 		if (likely(!pte_special(pte)))
612 			goto check_pfn;
613 		if (vma->vm_ops && vma->vm_ops->find_special_page)
614 			return vma->vm_ops->find_special_page(vma, addr);
615 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
616 			return NULL;
617 		if (is_zero_pfn(pfn))
618 			return NULL;
619 		if (pte_devmap(pte))
620 			return NULL;
621 
622 		print_bad_pte(vma, addr, pte, NULL);
623 		return NULL;
624 	}
625 
626 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
627 
628 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
629 		if (vma->vm_flags & VM_MIXEDMAP) {
630 			if (!pfn_valid(pfn))
631 				return NULL;
632 			goto out;
633 		} else {
634 			unsigned long off;
635 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
636 			if (pfn == vma->vm_pgoff + off)
637 				return NULL;
638 			if (!is_cow_mapping(vma->vm_flags))
639 				return NULL;
640 		}
641 	}
642 
643 	if (is_zero_pfn(pfn))
644 		return NULL;
645 
646 check_pfn:
647 	if (unlikely(pfn > highest_memmap_pfn)) {
648 		print_bad_pte(vma, addr, pte, NULL);
649 		return NULL;
650 	}
651 
652 	/*
653 	 * NOTE! We still have PageReserved() pages in the page tables.
654 	 * eg. VDSO mappings can cause them to exist.
655 	 */
656 out:
657 	return pfn_to_page(pfn);
658 }
659 
660 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)661 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
662 				pmd_t pmd)
663 {
664 	unsigned long pfn = pmd_pfn(pmd);
665 
666 	/*
667 	 * There is no pmd_special() but there may be special pmds, e.g.
668 	 * in a direct-access (dax) mapping, so let's just replicate the
669 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
670 	 */
671 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
672 		if (vma->vm_flags & VM_MIXEDMAP) {
673 			if (!pfn_valid(pfn))
674 				return NULL;
675 			goto out;
676 		} else {
677 			unsigned long off;
678 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
679 			if (pfn == vma->vm_pgoff + off)
680 				return NULL;
681 			if (!is_cow_mapping(vma->vm_flags))
682 				return NULL;
683 		}
684 	}
685 
686 	if (pmd_devmap(pmd))
687 		return NULL;
688 	if (is_zero_pfn(pfn))
689 		return NULL;
690 	if (unlikely(pfn > highest_memmap_pfn))
691 		return NULL;
692 
693 	/*
694 	 * NOTE! We still have PageReserved() pages in the page tables.
695 	 * eg. VDSO mappings can cause them to exist.
696 	 */
697 out:
698 	return pfn_to_page(pfn);
699 }
700 #endif
701 
702 /*
703  * copy one vm_area from one task to the other. Assumes the page tables
704  * already present in the new task to be cleared in the whole range
705  * covered by this vma.
706  */
707 
708 static inline unsigned long
copy_one_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr,int * rss)709 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
710 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
711 		unsigned long addr, int *rss)
712 {
713 	unsigned long vm_flags = vma->vm_flags;
714 	pte_t pte = *src_pte;
715 	struct page *page;
716 
717 	/* pte contains position in swap or file, so copy. */
718 	if (unlikely(!pte_present(pte))) {
719 		swp_entry_t entry = pte_to_swp_entry(pte);
720 
721 		if (likely(!non_swap_entry(entry))) {
722 			if (swap_duplicate(entry) < 0)
723 				return entry.val;
724 
725 			/* make sure dst_mm is on swapoff's mmlist. */
726 			if (unlikely(list_empty(&dst_mm->mmlist))) {
727 				spin_lock(&mmlist_lock);
728 				if (list_empty(&dst_mm->mmlist))
729 					list_add(&dst_mm->mmlist,
730 							&src_mm->mmlist);
731 				spin_unlock(&mmlist_lock);
732 			}
733 			rss[MM_SWAPENTS]++;
734 		} else if (is_migration_entry(entry)) {
735 			page = migration_entry_to_page(entry);
736 
737 			rss[mm_counter(page)]++;
738 
739 			if (is_write_migration_entry(entry) &&
740 					is_cow_mapping(vm_flags)) {
741 				/*
742 				 * COW mappings require pages in both
743 				 * parent and child to be set to read.
744 				 */
745 				make_migration_entry_read(&entry);
746 				pte = swp_entry_to_pte(entry);
747 				if (pte_swp_soft_dirty(*src_pte))
748 					pte = pte_swp_mksoft_dirty(pte);
749 				set_pte_at(src_mm, addr, src_pte, pte);
750 			}
751 		} else if (is_device_private_entry(entry)) {
752 			page = device_private_entry_to_page(entry);
753 
754 			/*
755 			 * Update rss count even for unaddressable pages, as
756 			 * they should treated just like normal pages in this
757 			 * respect.
758 			 *
759 			 * We will likely want to have some new rss counters
760 			 * for unaddressable pages, at some point. But for now
761 			 * keep things as they are.
762 			 */
763 			get_page(page);
764 			rss[mm_counter(page)]++;
765 			page_dup_rmap(page, false);
766 
767 			/*
768 			 * We do not preserve soft-dirty information, because so
769 			 * far, checkpoint/restore is the only feature that
770 			 * requires that. And checkpoint/restore does not work
771 			 * when a device driver is involved (you cannot easily
772 			 * save and restore device driver state).
773 			 */
774 			if (is_write_device_private_entry(entry) &&
775 			    is_cow_mapping(vm_flags)) {
776 				make_device_private_entry_read(&entry);
777 				pte = swp_entry_to_pte(entry);
778 				set_pte_at(src_mm, addr, src_pte, pte);
779 			}
780 		}
781 		goto out_set_pte;
782 	}
783 
784 	/*
785 	 * If it's a COW mapping, write protect it both
786 	 * in the parent and the child
787 	 */
788 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
789 		ptep_set_wrprotect(src_mm, addr, src_pte);
790 		pte = pte_wrprotect(pte);
791 	}
792 
793 	/*
794 	 * If it's a shared mapping, mark it clean in
795 	 * the child
796 	 */
797 	if (vm_flags & VM_SHARED)
798 		pte = pte_mkclean(pte);
799 	pte = pte_mkold(pte);
800 
801 	page = vm_normal_page(vma, addr, pte);
802 	if (page) {
803 		get_page(page);
804 		page_dup_rmap(page, false);
805 		rss[mm_counter(page)]++;
806 	} else if (pte_devmap(pte)) {
807 		page = pte_page(pte);
808 	}
809 
810 out_set_pte:
811 	set_pte_at(dst_mm, addr, dst_pte, pte);
812 	return 0;
813 }
814 
copy_pte_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,struct vm_area_struct * vma,unsigned long addr,unsigned long end)815 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
816 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
817 		   unsigned long addr, unsigned long end)
818 {
819 	pte_t *orig_src_pte, *orig_dst_pte;
820 	pte_t *src_pte, *dst_pte;
821 	spinlock_t *src_ptl, *dst_ptl;
822 	int progress = 0;
823 	int rss[NR_MM_COUNTERS];
824 	swp_entry_t entry = (swp_entry_t){0};
825 
826 again:
827 	init_rss_vec(rss);
828 
829 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
830 	if (!dst_pte)
831 		return -ENOMEM;
832 	src_pte = pte_offset_map(src_pmd, addr);
833 	src_ptl = pte_lockptr(src_mm, src_pmd);
834 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
835 	orig_src_pte = src_pte;
836 	orig_dst_pte = dst_pte;
837 	arch_enter_lazy_mmu_mode();
838 
839 	do {
840 		/*
841 		 * We are holding two locks at this point - either of them
842 		 * could generate latencies in another task on another CPU.
843 		 */
844 		if (progress >= 32) {
845 			progress = 0;
846 			if (need_resched() ||
847 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
848 				break;
849 		}
850 		if (pte_none(*src_pte)) {
851 			progress++;
852 			continue;
853 		}
854 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
855 							vma, addr, rss);
856 		if (entry.val)
857 			break;
858 		progress += 8;
859 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
860 
861 	arch_leave_lazy_mmu_mode();
862 	spin_unlock(src_ptl);
863 	pte_unmap(orig_src_pte);
864 	add_mm_rss_vec(dst_mm, rss);
865 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
866 	cond_resched();
867 
868 	if (entry.val) {
869 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
870 			return -ENOMEM;
871 		progress = 0;
872 	}
873 	if (addr != end)
874 		goto again;
875 	return 0;
876 }
877 
copy_pmd_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,struct vm_area_struct * vma,unsigned long addr,unsigned long end)878 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
879 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
880 		unsigned long addr, unsigned long end)
881 {
882 	pmd_t *src_pmd, *dst_pmd;
883 	unsigned long next;
884 
885 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
886 	if (!dst_pmd)
887 		return -ENOMEM;
888 	src_pmd = pmd_offset(src_pud, addr);
889 	do {
890 		next = pmd_addr_end(addr, end);
891 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
892 			|| pmd_devmap(*src_pmd)) {
893 			int err;
894 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
895 			err = copy_huge_pmd(dst_mm, src_mm,
896 					    dst_pmd, src_pmd, addr, vma);
897 			if (err == -ENOMEM)
898 				return -ENOMEM;
899 			if (!err)
900 				continue;
901 			/* fall through */
902 		}
903 		if (pmd_none_or_clear_bad(src_pmd))
904 			continue;
905 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
906 						vma, addr, next))
907 			return -ENOMEM;
908 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
909 	return 0;
910 }
911 
copy_pud_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,p4d_t * dst_p4d,p4d_t * src_p4d,struct vm_area_struct * vma,unsigned long addr,unsigned long end)912 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
913 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
914 		unsigned long addr, unsigned long end)
915 {
916 	pud_t *src_pud, *dst_pud;
917 	unsigned long next;
918 
919 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
920 	if (!dst_pud)
921 		return -ENOMEM;
922 	src_pud = pud_offset(src_p4d, addr);
923 	do {
924 		next = pud_addr_end(addr, end);
925 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
926 			int err;
927 
928 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
929 			err = copy_huge_pud(dst_mm, src_mm,
930 					    dst_pud, src_pud, addr, vma);
931 			if (err == -ENOMEM)
932 				return -ENOMEM;
933 			if (!err)
934 				continue;
935 			/* fall through */
936 		}
937 		if (pud_none_or_clear_bad(src_pud))
938 			continue;
939 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
940 						vma, addr, next))
941 			return -ENOMEM;
942 	} while (dst_pud++, src_pud++, addr = next, addr != end);
943 	return 0;
944 }
945 
copy_p4d_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pgd_t * dst_pgd,pgd_t * src_pgd,struct vm_area_struct * vma,unsigned long addr,unsigned long end)946 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
947 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
948 		unsigned long addr, unsigned long end)
949 {
950 	p4d_t *src_p4d, *dst_p4d;
951 	unsigned long next;
952 
953 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
954 	if (!dst_p4d)
955 		return -ENOMEM;
956 	src_p4d = p4d_offset(src_pgd, addr);
957 	do {
958 		next = p4d_addr_end(addr, end);
959 		if (p4d_none_or_clear_bad(src_p4d))
960 			continue;
961 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
962 						vma, addr, next))
963 			return -ENOMEM;
964 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
965 	return 0;
966 }
967 
copy_page_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,struct vm_area_struct * vma)968 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
969 		struct vm_area_struct *vma)
970 {
971 	pgd_t *src_pgd, *dst_pgd;
972 	unsigned long next;
973 	unsigned long addr = vma->vm_start;
974 	unsigned long end = vma->vm_end;
975 	struct mmu_notifier_range range;
976 	bool is_cow;
977 	int ret;
978 
979 	/*
980 	 * Don't copy ptes where a page fault will fill them correctly.
981 	 * Fork becomes much lighter when there are big shared or private
982 	 * readonly mappings. The tradeoff is that copy_page_range is more
983 	 * efficient than faulting.
984 	 */
985 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
986 			!vma->anon_vma)
987 		return 0;
988 
989 	if (is_vm_hugetlb_page(vma))
990 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
991 
992 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
993 		/*
994 		 * We do not free on error cases below as remove_vma
995 		 * gets called on error from higher level routine
996 		 */
997 		ret = track_pfn_copy(vma);
998 		if (ret)
999 			return ret;
1000 	}
1001 
1002 	/*
1003 	 * We need to invalidate the secondary MMU mappings only when
1004 	 * there could be a permission downgrade on the ptes of the
1005 	 * parent mm. And a permission downgrade will only happen if
1006 	 * is_cow_mapping() returns true.
1007 	 */
1008 	is_cow = is_cow_mapping(vma->vm_flags);
1009 
1010 	if (is_cow) {
1011 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1012 					0, vma, src_mm, addr, end);
1013 		mmu_notifier_invalidate_range_start(&range);
1014 	}
1015 
1016 	ret = 0;
1017 	dst_pgd = pgd_offset(dst_mm, addr);
1018 	src_pgd = pgd_offset(src_mm, addr);
1019 	do {
1020 		next = pgd_addr_end(addr, end);
1021 		if (pgd_none_or_clear_bad(src_pgd))
1022 			continue;
1023 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1024 					    vma, addr, next))) {
1025 			ret = -ENOMEM;
1026 			break;
1027 		}
1028 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1029 
1030 	if (is_cow)
1031 		mmu_notifier_invalidate_range_end(&range);
1032 	return ret;
1033 }
1034 
1035 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1036 static inline bool should_zap_cows(struct zap_details *details)
1037 {
1038 	/* By default, zap all pages */
1039 	if (!details)
1040 		return true;
1041 
1042 	/* Or, we zap COWed pages only if the caller wants to */
1043 	return !details->check_mapping;
1044 }
1045 
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1046 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1047 				struct vm_area_struct *vma, pmd_t *pmd,
1048 				unsigned long addr, unsigned long end,
1049 				struct zap_details *details)
1050 {
1051 	struct mm_struct *mm = tlb->mm;
1052 	int force_flush = 0;
1053 	int rss[NR_MM_COUNTERS];
1054 	spinlock_t *ptl;
1055 	pte_t *start_pte;
1056 	pte_t *pte;
1057 	swp_entry_t entry;
1058 
1059 	tlb_change_page_size(tlb, PAGE_SIZE);
1060 again:
1061 	init_rss_vec(rss);
1062 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1063 	pte = start_pte;
1064 	flush_tlb_batched_pending(mm);
1065 	arch_enter_lazy_mmu_mode();
1066 	do {
1067 		pte_t ptent = *pte;
1068 		if (pte_none(ptent))
1069 			continue;
1070 
1071 		if (need_resched())
1072 			break;
1073 
1074 		if (pte_present(ptent)) {
1075 			struct page *page;
1076 
1077 			page = vm_normal_page(vma, addr, ptent);
1078 			if (unlikely(details) && page) {
1079 				/*
1080 				 * unmap_shared_mapping_pages() wants to
1081 				 * invalidate cache without truncating:
1082 				 * unmap shared but keep private pages.
1083 				 */
1084 				if (details->check_mapping &&
1085 				    details->check_mapping != page_rmapping(page))
1086 					continue;
1087 			}
1088 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1089 							tlb->fullmm);
1090 			tlb_remove_tlb_entry(tlb, pte, addr);
1091 			if (unlikely(!page))
1092 				continue;
1093 
1094 			if (!PageAnon(page)) {
1095 				if (pte_dirty(ptent)) {
1096 					force_flush = 1;
1097 					set_page_dirty(page);
1098 				}
1099 				if (pte_young(ptent) &&
1100 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1101 					mark_page_accessed(page);
1102 			}
1103 			rss[mm_counter(page)]--;
1104 			page_remove_rmap(page, false);
1105 			if (unlikely(page_mapcount(page) < 0))
1106 				print_bad_pte(vma, addr, ptent, page);
1107 			if (unlikely(__tlb_remove_page(tlb, page))) {
1108 				force_flush = 1;
1109 				addr += PAGE_SIZE;
1110 				break;
1111 			}
1112 			continue;
1113 		}
1114 
1115 		entry = pte_to_swp_entry(ptent);
1116 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1117 			struct page *page = device_private_entry_to_page(entry);
1118 
1119 			if (unlikely(details && details->check_mapping)) {
1120 				/*
1121 				 * unmap_shared_mapping_pages() wants to
1122 				 * invalidate cache without truncating:
1123 				 * unmap shared but keep private pages.
1124 				 */
1125 				if (details->check_mapping !=
1126 				    page_rmapping(page))
1127 					continue;
1128 			}
1129 
1130 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1131 			rss[mm_counter(page)]--;
1132 			page_remove_rmap(page, false);
1133 			put_page(page);
1134 			continue;
1135 		}
1136 
1137 		if (!non_swap_entry(entry)) {
1138 			/* Genuine swap entry, hence a private anon page */
1139 			if (!should_zap_cows(details))
1140 				continue;
1141 			rss[MM_SWAPENTS]--;
1142 		} else if (is_migration_entry(entry)) {
1143 			struct page *page;
1144 
1145 			page = migration_entry_to_page(entry);
1146 			if (details && details->check_mapping &&
1147 			    details->check_mapping != page_rmapping(page))
1148 				continue;
1149 			rss[mm_counter(page)]--;
1150 		}
1151 		if (unlikely(!free_swap_and_cache(entry)))
1152 			print_bad_pte(vma, addr, ptent, NULL);
1153 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1154 	} while (pte++, addr += PAGE_SIZE, addr != end);
1155 
1156 	add_mm_rss_vec(mm, rss);
1157 	arch_leave_lazy_mmu_mode();
1158 
1159 	/* Do the actual TLB flush before dropping ptl */
1160 	if (force_flush)
1161 		tlb_flush_mmu_tlbonly(tlb);
1162 	pte_unmap_unlock(start_pte, ptl);
1163 
1164 	/*
1165 	 * If we forced a TLB flush (either due to running out of
1166 	 * batch buffers or because we needed to flush dirty TLB
1167 	 * entries before releasing the ptl), free the batched
1168 	 * memory too. Restart if we didn't do everything.
1169 	 */
1170 	if (force_flush) {
1171 		force_flush = 0;
1172 		tlb_flush_mmu(tlb);
1173 	}
1174 
1175 	if (addr != end) {
1176 		cond_resched();
1177 		goto again;
1178 	}
1179 
1180 	return addr;
1181 }
1182 
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1183 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1184 				struct vm_area_struct *vma, pud_t *pud,
1185 				unsigned long addr, unsigned long end,
1186 				struct zap_details *details)
1187 {
1188 	pmd_t *pmd;
1189 	unsigned long next;
1190 
1191 	pmd = pmd_offset(pud, addr);
1192 	do {
1193 		next = pmd_addr_end(addr, end);
1194 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1195 			if (next - addr != HPAGE_PMD_SIZE)
1196 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1197 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1198 				goto next;
1199 			/* fall through */
1200 		} else if (details && details->single_page &&
1201 			   PageTransCompound(details->single_page) &&
1202 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1203 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1204 			/*
1205 			 * Take and drop THP pmd lock so that we cannot return
1206 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1207 			 * but not yet decremented compound_mapcount().
1208 			 */
1209 			spin_unlock(ptl);
1210 		}
1211 
1212 		/*
1213 		 * Here there can be other concurrent MADV_DONTNEED or
1214 		 * trans huge page faults running, and if the pmd is
1215 		 * none or trans huge it can change under us. This is
1216 		 * because MADV_DONTNEED holds the mmap_sem in read
1217 		 * mode.
1218 		 */
1219 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1220 			goto next;
1221 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1222 next:
1223 		cond_resched();
1224 	} while (pmd++, addr = next, addr != end);
1225 
1226 	return addr;
1227 }
1228 
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1229 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1230 				struct vm_area_struct *vma, p4d_t *p4d,
1231 				unsigned long addr, unsigned long end,
1232 				struct zap_details *details)
1233 {
1234 	pud_t *pud;
1235 	unsigned long next;
1236 
1237 	pud = pud_offset(p4d, addr);
1238 	do {
1239 		next = pud_addr_end(addr, end);
1240 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1241 			if (next - addr != HPAGE_PUD_SIZE) {
1242 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1243 				split_huge_pud(vma, pud, addr);
1244 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1245 				goto next;
1246 			/* fall through */
1247 		}
1248 		if (pud_none_or_clear_bad(pud))
1249 			continue;
1250 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1251 next:
1252 		cond_resched();
1253 	} while (pud++, addr = next, addr != end);
1254 
1255 	return addr;
1256 }
1257 
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1258 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1259 				struct vm_area_struct *vma, pgd_t *pgd,
1260 				unsigned long addr, unsigned long end,
1261 				struct zap_details *details)
1262 {
1263 	p4d_t *p4d;
1264 	unsigned long next;
1265 
1266 	p4d = p4d_offset(pgd, addr);
1267 	do {
1268 		next = p4d_addr_end(addr, end);
1269 		if (p4d_none_or_clear_bad(p4d))
1270 			continue;
1271 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1272 	} while (p4d++, addr = next, addr != end);
1273 
1274 	return addr;
1275 }
1276 
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1277 void unmap_page_range(struct mmu_gather *tlb,
1278 			     struct vm_area_struct *vma,
1279 			     unsigned long addr, unsigned long end,
1280 			     struct zap_details *details)
1281 {
1282 	pgd_t *pgd;
1283 	unsigned long next;
1284 
1285 	BUG_ON(addr >= end);
1286 	tlb_start_vma(tlb, vma);
1287 	pgd = pgd_offset(vma->vm_mm, addr);
1288 	do {
1289 		next = pgd_addr_end(addr, end);
1290 		if (pgd_none_or_clear_bad(pgd))
1291 			continue;
1292 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1293 	} while (pgd++, addr = next, addr != end);
1294 	tlb_end_vma(tlb, vma);
1295 }
1296 
1297 
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)1298 static void unmap_single_vma(struct mmu_gather *tlb,
1299 		struct vm_area_struct *vma, unsigned long start_addr,
1300 		unsigned long end_addr,
1301 		struct zap_details *details)
1302 {
1303 	unsigned long start = max(vma->vm_start, start_addr);
1304 	unsigned long end;
1305 
1306 	if (start >= vma->vm_end)
1307 		return;
1308 	end = min(vma->vm_end, end_addr);
1309 	if (end <= vma->vm_start)
1310 		return;
1311 
1312 	if (vma->vm_file)
1313 		uprobe_munmap(vma, start, end);
1314 
1315 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1316 		untrack_pfn(vma, 0, 0);
1317 
1318 	if (start != end) {
1319 		if (unlikely(is_vm_hugetlb_page(vma))) {
1320 			/*
1321 			 * It is undesirable to test vma->vm_file as it
1322 			 * should be non-null for valid hugetlb area.
1323 			 * However, vm_file will be NULL in the error
1324 			 * cleanup path of mmap_region. When
1325 			 * hugetlbfs ->mmap method fails,
1326 			 * mmap_region() nullifies vma->vm_file
1327 			 * before calling this function to clean up.
1328 			 * Since no pte has actually been setup, it is
1329 			 * safe to do nothing in this case.
1330 			 */
1331 			if (vma->vm_file) {
1332 				i_mmap_lock_write(vma->vm_file->f_mapping);
1333 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1334 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1335 			}
1336 		} else
1337 			unmap_page_range(tlb, vma, start, end, details);
1338 	}
1339 }
1340 
1341 /**
1342  * unmap_vmas - unmap a range of memory covered by a list of vma's
1343  * @tlb: address of the caller's struct mmu_gather
1344  * @vma: the starting vma
1345  * @start_addr: virtual address at which to start unmapping
1346  * @end_addr: virtual address at which to end unmapping
1347  *
1348  * Unmap all pages in the vma list.
1349  *
1350  * Only addresses between `start' and `end' will be unmapped.
1351  *
1352  * The VMA list must be sorted in ascending virtual address order.
1353  *
1354  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1355  * range after unmap_vmas() returns.  So the only responsibility here is to
1356  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1357  * drops the lock and schedules.
1358  */
unmap_vmas(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)1359 void unmap_vmas(struct mmu_gather *tlb,
1360 		struct vm_area_struct *vma, unsigned long start_addr,
1361 		unsigned long end_addr)
1362 {
1363 	struct mmu_notifier_range range;
1364 
1365 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1366 				start_addr, end_addr);
1367 	mmu_notifier_invalidate_range_start(&range);
1368 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1369 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1370 	mmu_notifier_invalidate_range_end(&range);
1371 }
1372 
1373 /**
1374  * zap_page_range - remove user pages in a given range
1375  * @vma: vm_area_struct holding the applicable pages
1376  * @start: starting address of pages to zap
1377  * @size: number of bytes to zap
1378  *
1379  * Caller must protect the VMA list
1380  */
zap_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long size)1381 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1382 		unsigned long size)
1383 {
1384 	struct mmu_notifier_range range;
1385 	struct mmu_gather tlb;
1386 
1387 	lru_add_drain();
1388 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1389 				start, start + size);
1390 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1391 	update_hiwater_rss(vma->vm_mm);
1392 	mmu_notifier_invalidate_range_start(&range);
1393 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1394 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1395 	mmu_notifier_invalidate_range_end(&range);
1396 	tlb_finish_mmu(&tlb, start, range.end);
1397 }
1398 
1399 /**
1400  * zap_page_range_single - remove user pages in a given range
1401  * @vma: vm_area_struct holding the applicable pages
1402  * @address: starting address of pages to zap
1403  * @size: number of bytes to zap
1404  * @details: details of shared cache invalidation
1405  *
1406  * The range must fit into one VMA.
1407  */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1408 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1409 		unsigned long size, struct zap_details *details)
1410 {
1411 	struct mmu_notifier_range range;
1412 	struct mmu_gather tlb;
1413 
1414 	lru_add_drain();
1415 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1416 				address, address + size);
1417 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1418 	update_hiwater_rss(vma->vm_mm);
1419 	mmu_notifier_invalidate_range_start(&range);
1420 	unmap_single_vma(&tlb, vma, address, range.end, details);
1421 	mmu_notifier_invalidate_range_end(&range);
1422 	tlb_finish_mmu(&tlb, address, range.end);
1423 }
1424 
1425 /**
1426  * zap_vma_ptes - remove ptes mapping the vma
1427  * @vma: vm_area_struct holding ptes to be zapped
1428  * @address: starting address of pages to zap
1429  * @size: number of bytes to zap
1430  *
1431  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1432  *
1433  * The entire address range must be fully contained within the vma.
1434  *
1435  */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1436 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1437 		unsigned long size)
1438 {
1439 	if (address < vma->vm_start || address + size > vma->vm_end ||
1440 	    		!(vma->vm_flags & VM_PFNMAP))
1441 		return;
1442 
1443 	zap_page_range_single(vma, address, size, NULL);
1444 }
1445 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1446 
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1447 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1448 			spinlock_t **ptl)
1449 {
1450 	pgd_t *pgd;
1451 	p4d_t *p4d;
1452 	pud_t *pud;
1453 	pmd_t *pmd;
1454 
1455 	pgd = pgd_offset(mm, addr);
1456 	p4d = p4d_alloc(mm, pgd, addr);
1457 	if (!p4d)
1458 		return NULL;
1459 	pud = pud_alloc(mm, p4d, addr);
1460 	if (!pud)
1461 		return NULL;
1462 	pmd = pmd_alloc(mm, pud, addr);
1463 	if (!pmd)
1464 		return NULL;
1465 
1466 	VM_BUG_ON(pmd_trans_huge(*pmd));
1467 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1468 }
1469 
1470 /*
1471  * This is the old fallback for page remapping.
1472  *
1473  * For historical reasons, it only allows reserved pages. Only
1474  * old drivers should use this, and they needed to mark their
1475  * pages reserved for the old functions anyway.
1476  */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1477 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1478 			struct page *page, pgprot_t prot)
1479 {
1480 	struct mm_struct *mm = vma->vm_mm;
1481 	int retval;
1482 	pte_t *pte;
1483 	spinlock_t *ptl;
1484 
1485 	retval = -EINVAL;
1486 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1487 		goto out;
1488 	retval = -ENOMEM;
1489 	flush_dcache_page(page);
1490 	pte = get_locked_pte(mm, addr, &ptl);
1491 	if (!pte)
1492 		goto out;
1493 	retval = -EBUSY;
1494 	if (!pte_none(*pte))
1495 		goto out_unlock;
1496 
1497 	/* Ok, finally just insert the thing.. */
1498 	get_page(page);
1499 	inc_mm_counter_fast(mm, mm_counter_file(page));
1500 	page_add_file_rmap(page, false);
1501 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1502 
1503 	retval = 0;
1504 out_unlock:
1505 	pte_unmap_unlock(pte, ptl);
1506 out:
1507 	return retval;
1508 }
1509 
1510 /**
1511  * vm_insert_page - insert single page into user vma
1512  * @vma: user vma to map to
1513  * @addr: target user address of this page
1514  * @page: source kernel page
1515  *
1516  * This allows drivers to insert individual pages they've allocated
1517  * into a user vma.
1518  *
1519  * The page has to be a nice clean _individual_ kernel allocation.
1520  * If you allocate a compound page, you need to have marked it as
1521  * such (__GFP_COMP), or manually just split the page up yourself
1522  * (see split_page()).
1523  *
1524  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1525  * took an arbitrary page protection parameter. This doesn't allow
1526  * that. Your vma protection will have to be set up correctly, which
1527  * means that if you want a shared writable mapping, you'd better
1528  * ask for a shared writable mapping!
1529  *
1530  * The page does not need to be reserved.
1531  *
1532  * Usually this function is called from f_op->mmap() handler
1533  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1534  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1535  * function from other places, for example from page-fault handler.
1536  *
1537  * Return: %0 on success, negative error code otherwise.
1538  */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)1539 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1540 			struct page *page)
1541 {
1542 	if (addr < vma->vm_start || addr >= vma->vm_end)
1543 		return -EFAULT;
1544 	if (!page_count(page))
1545 		return -EINVAL;
1546 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1547 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1548 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1549 		vma->vm_flags |= VM_MIXEDMAP;
1550 	}
1551 	return insert_page(vma, addr, page, vma->vm_page_prot);
1552 }
1553 EXPORT_SYMBOL(vm_insert_page);
1554 
1555 /*
1556  * __vm_map_pages - maps range of kernel pages into user vma
1557  * @vma: user vma to map to
1558  * @pages: pointer to array of source kernel pages
1559  * @num: number of pages in page array
1560  * @offset: user's requested vm_pgoff
1561  *
1562  * This allows drivers to map range of kernel pages into a user vma.
1563  *
1564  * Return: 0 on success and error code otherwise.
1565  */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)1566 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1567 				unsigned long num, unsigned long offset)
1568 {
1569 	unsigned long count = vma_pages(vma);
1570 	unsigned long uaddr = vma->vm_start;
1571 	int ret, i;
1572 
1573 	/* Fail if the user requested offset is beyond the end of the object */
1574 	if (offset >= num)
1575 		return -ENXIO;
1576 
1577 	/* Fail if the user requested size exceeds available object size */
1578 	if (count > num - offset)
1579 		return -ENXIO;
1580 
1581 	for (i = 0; i < count; i++) {
1582 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1583 		if (ret < 0)
1584 			return ret;
1585 		uaddr += PAGE_SIZE;
1586 	}
1587 
1588 	return 0;
1589 }
1590 
1591 /**
1592  * vm_map_pages - maps range of kernel pages starts with non zero offset
1593  * @vma: user vma to map to
1594  * @pages: pointer to array of source kernel pages
1595  * @num: number of pages in page array
1596  *
1597  * Maps an object consisting of @num pages, catering for the user's
1598  * requested vm_pgoff
1599  *
1600  * If we fail to insert any page into the vma, the function will return
1601  * immediately leaving any previously inserted pages present.  Callers
1602  * from the mmap handler may immediately return the error as their caller
1603  * will destroy the vma, removing any successfully inserted pages. Other
1604  * callers should make their own arrangements for calling unmap_region().
1605  *
1606  * Context: Process context. Called by mmap handlers.
1607  * Return: 0 on success and error code otherwise.
1608  */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)1609 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1610 				unsigned long num)
1611 {
1612 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1613 }
1614 EXPORT_SYMBOL(vm_map_pages);
1615 
1616 /**
1617  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1618  * @vma: user vma to map to
1619  * @pages: pointer to array of source kernel pages
1620  * @num: number of pages in page array
1621  *
1622  * Similar to vm_map_pages(), except that it explicitly sets the offset
1623  * to 0. This function is intended for the drivers that did not consider
1624  * vm_pgoff.
1625  *
1626  * Context: Process context. Called by mmap handlers.
1627  * Return: 0 on success and error code otherwise.
1628  */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)1629 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1630 				unsigned long num)
1631 {
1632 	return __vm_map_pages(vma, pages, num, 0);
1633 }
1634 EXPORT_SYMBOL(vm_map_pages_zero);
1635 
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)1636 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1637 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1638 {
1639 	struct mm_struct *mm = vma->vm_mm;
1640 	pte_t *pte, entry;
1641 	spinlock_t *ptl;
1642 
1643 	pte = get_locked_pte(mm, addr, &ptl);
1644 	if (!pte)
1645 		return VM_FAULT_OOM;
1646 	if (!pte_none(*pte)) {
1647 		if (mkwrite) {
1648 			/*
1649 			 * For read faults on private mappings the PFN passed
1650 			 * in may not match the PFN we have mapped if the
1651 			 * mapped PFN is a writeable COW page.  In the mkwrite
1652 			 * case we are creating a writable PTE for a shared
1653 			 * mapping and we expect the PFNs to match. If they
1654 			 * don't match, we are likely racing with block
1655 			 * allocation and mapping invalidation so just skip the
1656 			 * update.
1657 			 */
1658 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1659 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1660 				goto out_unlock;
1661 			}
1662 			entry = pte_mkyoung(*pte);
1663 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1664 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1665 				update_mmu_cache(vma, addr, pte);
1666 		}
1667 		goto out_unlock;
1668 	}
1669 
1670 	/* Ok, finally just insert the thing.. */
1671 	if (pfn_t_devmap(pfn))
1672 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1673 	else
1674 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1675 
1676 	if (mkwrite) {
1677 		entry = pte_mkyoung(entry);
1678 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1679 	}
1680 
1681 	set_pte_at(mm, addr, pte, entry);
1682 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1683 
1684 out_unlock:
1685 	pte_unmap_unlock(pte, ptl);
1686 	return VM_FAULT_NOPAGE;
1687 }
1688 
1689 /**
1690  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1691  * @vma: user vma to map to
1692  * @addr: target user address of this page
1693  * @pfn: source kernel pfn
1694  * @pgprot: pgprot flags for the inserted page
1695  *
1696  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1697  * to override pgprot on a per-page basis.
1698  *
1699  * This only makes sense for IO mappings, and it makes no sense for
1700  * COW mappings.  In general, using multiple vmas is preferable;
1701  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1702  * impractical.
1703  *
1704  * Context: Process context.  May allocate using %GFP_KERNEL.
1705  * Return: vm_fault_t value.
1706  */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)1707 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1708 			unsigned long pfn, pgprot_t pgprot)
1709 {
1710 	/*
1711 	 * Technically, architectures with pte_special can avoid all these
1712 	 * restrictions (same for remap_pfn_range).  However we would like
1713 	 * consistency in testing and feature parity among all, so we should
1714 	 * try to keep these invariants in place for everybody.
1715 	 */
1716 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1717 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1718 						(VM_PFNMAP|VM_MIXEDMAP));
1719 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1720 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1721 
1722 	if (addr < vma->vm_start || addr >= vma->vm_end)
1723 		return VM_FAULT_SIGBUS;
1724 
1725 	if (!pfn_modify_allowed(pfn, pgprot))
1726 		return VM_FAULT_SIGBUS;
1727 
1728 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1729 
1730 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1731 			false);
1732 }
1733 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1734 
1735 /**
1736  * vmf_insert_pfn - insert single pfn into user vma
1737  * @vma: user vma to map to
1738  * @addr: target user address of this page
1739  * @pfn: source kernel pfn
1740  *
1741  * Similar to vm_insert_page, this allows drivers to insert individual pages
1742  * they've allocated into a user vma. Same comments apply.
1743  *
1744  * This function should only be called from a vm_ops->fault handler, and
1745  * in that case the handler should return the result of this function.
1746  *
1747  * vma cannot be a COW mapping.
1748  *
1749  * As this is called only for pages that do not currently exist, we
1750  * do not need to flush old virtual caches or the TLB.
1751  *
1752  * Context: Process context.  May allocate using %GFP_KERNEL.
1753  * Return: vm_fault_t value.
1754  */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)1755 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1756 			unsigned long pfn)
1757 {
1758 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1759 }
1760 EXPORT_SYMBOL(vmf_insert_pfn);
1761 
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn)1762 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1763 {
1764 	/* these checks mirror the abort conditions in vm_normal_page */
1765 	if (vma->vm_flags & VM_MIXEDMAP)
1766 		return true;
1767 	if (pfn_t_devmap(pfn))
1768 		return true;
1769 	if (pfn_t_special(pfn))
1770 		return true;
1771 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1772 		return true;
1773 	return false;
1774 }
1775 
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,bool mkwrite)1776 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1777 		unsigned long addr, pfn_t pfn, bool mkwrite)
1778 {
1779 	pgprot_t pgprot = vma->vm_page_prot;
1780 	int err;
1781 
1782 	BUG_ON(!vm_mixed_ok(vma, pfn));
1783 
1784 	if (addr < vma->vm_start || addr >= vma->vm_end)
1785 		return VM_FAULT_SIGBUS;
1786 
1787 	track_pfn_insert(vma, &pgprot, pfn);
1788 
1789 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1790 		return VM_FAULT_SIGBUS;
1791 
1792 	/*
1793 	 * If we don't have pte special, then we have to use the pfn_valid()
1794 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1795 	 * refcount the page if pfn_valid is true (hence insert_page rather
1796 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1797 	 * without pte special, it would there be refcounted as a normal page.
1798 	 */
1799 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1800 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1801 		struct page *page;
1802 
1803 		/*
1804 		 * At this point we are committed to insert_page()
1805 		 * regardless of whether the caller specified flags that
1806 		 * result in pfn_t_has_page() == false.
1807 		 */
1808 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1809 		err = insert_page(vma, addr, page, pgprot);
1810 	} else {
1811 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1812 	}
1813 
1814 	if (err == -ENOMEM)
1815 		return VM_FAULT_OOM;
1816 	if (err < 0 && err != -EBUSY)
1817 		return VM_FAULT_SIGBUS;
1818 
1819 	return VM_FAULT_NOPAGE;
1820 }
1821 
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)1822 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1823 		pfn_t pfn)
1824 {
1825 	return __vm_insert_mixed(vma, addr, pfn, false);
1826 }
1827 EXPORT_SYMBOL(vmf_insert_mixed);
1828 
1829 /*
1830  *  If the insertion of PTE failed because someone else already added a
1831  *  different entry in the mean time, we treat that as success as we assume
1832  *  the same entry was actually inserted.
1833  */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)1834 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1835 		unsigned long addr, pfn_t pfn)
1836 {
1837 	return __vm_insert_mixed(vma, addr, pfn, true);
1838 }
1839 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1840 
1841 /*
1842  * maps a range of physical memory into the requested pages. the old
1843  * mappings are removed. any references to nonexistent pages results
1844  * in null mappings (currently treated as "copy-on-access")
1845  */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1846 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1847 			unsigned long addr, unsigned long end,
1848 			unsigned long pfn, pgprot_t prot)
1849 {
1850 	pte_t *pte, *mapped_pte;
1851 	spinlock_t *ptl;
1852 	int err = 0;
1853 
1854 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1855 	if (!pte)
1856 		return -ENOMEM;
1857 	arch_enter_lazy_mmu_mode();
1858 	do {
1859 		BUG_ON(!pte_none(*pte));
1860 		if (!pfn_modify_allowed(pfn, prot)) {
1861 			err = -EACCES;
1862 			break;
1863 		}
1864 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1865 		pfn++;
1866 	} while (pte++, addr += PAGE_SIZE, addr != end);
1867 	arch_leave_lazy_mmu_mode();
1868 	pte_unmap_unlock(mapped_pte, ptl);
1869 	return err;
1870 }
1871 
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1872 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1873 			unsigned long addr, unsigned long end,
1874 			unsigned long pfn, pgprot_t prot)
1875 {
1876 	pmd_t *pmd;
1877 	unsigned long next;
1878 	int err;
1879 
1880 	pfn -= addr >> PAGE_SHIFT;
1881 	pmd = pmd_alloc(mm, pud, addr);
1882 	if (!pmd)
1883 		return -ENOMEM;
1884 	VM_BUG_ON(pmd_trans_huge(*pmd));
1885 	do {
1886 		next = pmd_addr_end(addr, end);
1887 		err = remap_pte_range(mm, pmd, addr, next,
1888 				pfn + (addr >> PAGE_SHIFT), prot);
1889 		if (err)
1890 			return err;
1891 	} while (pmd++, addr = next, addr != end);
1892 	return 0;
1893 }
1894 
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1895 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1896 			unsigned long addr, unsigned long end,
1897 			unsigned long pfn, pgprot_t prot)
1898 {
1899 	pud_t *pud;
1900 	unsigned long next;
1901 	int err;
1902 
1903 	pfn -= addr >> PAGE_SHIFT;
1904 	pud = pud_alloc(mm, p4d, addr);
1905 	if (!pud)
1906 		return -ENOMEM;
1907 	do {
1908 		next = pud_addr_end(addr, end);
1909 		err = remap_pmd_range(mm, pud, addr, next,
1910 				pfn + (addr >> PAGE_SHIFT), prot);
1911 		if (err)
1912 			return err;
1913 	} while (pud++, addr = next, addr != end);
1914 	return 0;
1915 }
1916 
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1917 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1918 			unsigned long addr, unsigned long end,
1919 			unsigned long pfn, pgprot_t prot)
1920 {
1921 	p4d_t *p4d;
1922 	unsigned long next;
1923 	int err;
1924 
1925 	pfn -= addr >> PAGE_SHIFT;
1926 	p4d = p4d_alloc(mm, pgd, addr);
1927 	if (!p4d)
1928 		return -ENOMEM;
1929 	do {
1930 		next = p4d_addr_end(addr, end);
1931 		err = remap_pud_range(mm, p4d, addr, next,
1932 				pfn + (addr >> PAGE_SHIFT), prot);
1933 		if (err)
1934 			return err;
1935 	} while (p4d++, addr = next, addr != end);
1936 	return 0;
1937 }
1938 
1939 /**
1940  * remap_pfn_range - remap kernel memory to userspace
1941  * @vma: user vma to map to
1942  * @addr: target user address to start at
1943  * @pfn: physical address of kernel memory
1944  * @size: size of map area
1945  * @prot: page protection flags for this mapping
1946  *
1947  * Note: this is only safe if the mm semaphore is held when called.
1948  *
1949  * Return: %0 on success, negative error code otherwise.
1950  */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)1951 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1952 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1953 {
1954 	pgd_t *pgd;
1955 	unsigned long next;
1956 	unsigned long end = addr + PAGE_ALIGN(size);
1957 	struct mm_struct *mm = vma->vm_mm;
1958 	unsigned long remap_pfn = pfn;
1959 	int err;
1960 
1961 	/*
1962 	 * Physically remapped pages are special. Tell the
1963 	 * rest of the world about it:
1964 	 *   VM_IO tells people not to look at these pages
1965 	 *	(accesses can have side effects).
1966 	 *   VM_PFNMAP tells the core MM that the base pages are just
1967 	 *	raw PFN mappings, and do not have a "struct page" associated
1968 	 *	with them.
1969 	 *   VM_DONTEXPAND
1970 	 *      Disable vma merging and expanding with mremap().
1971 	 *   VM_DONTDUMP
1972 	 *      Omit vma from core dump, even when VM_IO turned off.
1973 	 *
1974 	 * There's a horrible special case to handle copy-on-write
1975 	 * behaviour that some programs depend on. We mark the "original"
1976 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1977 	 * See vm_normal_page() for details.
1978 	 */
1979 	if (is_cow_mapping(vma->vm_flags)) {
1980 		if (addr != vma->vm_start || end != vma->vm_end)
1981 			return -EINVAL;
1982 		vma->vm_pgoff = pfn;
1983 	}
1984 
1985 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1986 	if (err)
1987 		return -EINVAL;
1988 
1989 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1990 
1991 	BUG_ON(addr >= end);
1992 	pfn -= addr >> PAGE_SHIFT;
1993 	pgd = pgd_offset(mm, addr);
1994 	flush_cache_range(vma, addr, end);
1995 	do {
1996 		next = pgd_addr_end(addr, end);
1997 		err = remap_p4d_range(mm, pgd, addr, next,
1998 				pfn + (addr >> PAGE_SHIFT), prot);
1999 		if (err)
2000 			break;
2001 	} while (pgd++, addr = next, addr != end);
2002 
2003 	if (err)
2004 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2005 
2006 	return err;
2007 }
2008 EXPORT_SYMBOL(remap_pfn_range);
2009 
2010 /**
2011  * vm_iomap_memory - remap memory to userspace
2012  * @vma: user vma to map to
2013  * @start: start of area
2014  * @len: size of area
2015  *
2016  * This is a simplified io_remap_pfn_range() for common driver use. The
2017  * driver just needs to give us the physical memory range to be mapped,
2018  * we'll figure out the rest from the vma information.
2019  *
2020  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2021  * whatever write-combining details or similar.
2022  *
2023  * Return: %0 on success, negative error code otherwise.
2024  */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2025 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2026 {
2027 	unsigned long vm_len, pfn, pages;
2028 
2029 	/* Check that the physical memory area passed in looks valid */
2030 	if (start + len < start)
2031 		return -EINVAL;
2032 	/*
2033 	 * You *really* shouldn't map things that aren't page-aligned,
2034 	 * but we've historically allowed it because IO memory might
2035 	 * just have smaller alignment.
2036 	 */
2037 	len += start & ~PAGE_MASK;
2038 	pfn = start >> PAGE_SHIFT;
2039 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2040 	if (pfn + pages < pfn)
2041 		return -EINVAL;
2042 
2043 	/* We start the mapping 'vm_pgoff' pages into the area */
2044 	if (vma->vm_pgoff > pages)
2045 		return -EINVAL;
2046 	pfn += vma->vm_pgoff;
2047 	pages -= vma->vm_pgoff;
2048 
2049 	/* Can we fit all of the mapping? */
2050 	vm_len = vma->vm_end - vma->vm_start;
2051 	if (vm_len >> PAGE_SHIFT > pages)
2052 		return -EINVAL;
2053 
2054 	/* Ok, let it rip */
2055 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2056 }
2057 EXPORT_SYMBOL(vm_iomap_memory);
2058 
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2059 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2060 				     unsigned long addr, unsigned long end,
2061 				     pte_fn_t fn, void *data)
2062 {
2063 	pte_t *pte;
2064 	int err;
2065 	spinlock_t *uninitialized_var(ptl);
2066 
2067 	pte = (mm == &init_mm) ?
2068 		pte_alloc_kernel(pmd, addr) :
2069 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2070 	if (!pte)
2071 		return -ENOMEM;
2072 
2073 	BUG_ON(pmd_huge(*pmd));
2074 
2075 	arch_enter_lazy_mmu_mode();
2076 
2077 	do {
2078 		err = fn(pte++, addr, data);
2079 		if (err)
2080 			break;
2081 	} while (addr += PAGE_SIZE, addr != end);
2082 
2083 	arch_leave_lazy_mmu_mode();
2084 
2085 	if (mm != &init_mm)
2086 		pte_unmap_unlock(pte-1, ptl);
2087 	return err;
2088 }
2089 
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2090 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2091 				     unsigned long addr, unsigned long end,
2092 				     pte_fn_t fn, void *data)
2093 {
2094 	pmd_t *pmd;
2095 	unsigned long next;
2096 	int err;
2097 
2098 	BUG_ON(pud_huge(*pud));
2099 
2100 	pmd = pmd_alloc(mm, pud, addr);
2101 	if (!pmd)
2102 		return -ENOMEM;
2103 	do {
2104 		next = pmd_addr_end(addr, end);
2105 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2106 		if (err)
2107 			break;
2108 	} while (pmd++, addr = next, addr != end);
2109 	return err;
2110 }
2111 
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2112 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2113 				     unsigned long addr, unsigned long end,
2114 				     pte_fn_t fn, void *data)
2115 {
2116 	pud_t *pud;
2117 	unsigned long next;
2118 	int err;
2119 
2120 	pud = pud_alloc(mm, p4d, addr);
2121 	if (!pud)
2122 		return -ENOMEM;
2123 	do {
2124 		next = pud_addr_end(addr, end);
2125 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2126 		if (err)
2127 			break;
2128 	} while (pud++, addr = next, addr != end);
2129 	return err;
2130 }
2131 
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2132 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2133 				     unsigned long addr, unsigned long end,
2134 				     pte_fn_t fn, void *data)
2135 {
2136 	p4d_t *p4d;
2137 	unsigned long next;
2138 	int err;
2139 
2140 	p4d = p4d_alloc(mm, pgd, addr);
2141 	if (!p4d)
2142 		return -ENOMEM;
2143 	do {
2144 		next = p4d_addr_end(addr, end);
2145 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2146 		if (err)
2147 			break;
2148 	} while (p4d++, addr = next, addr != end);
2149 	return err;
2150 }
2151 
2152 /*
2153  * Scan a region of virtual memory, filling in page tables as necessary
2154  * and calling a provided function on each leaf page table.
2155  */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2156 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2157 			unsigned long size, pte_fn_t fn, void *data)
2158 {
2159 	pgd_t *pgd;
2160 	unsigned long next;
2161 	unsigned long end = addr + size;
2162 	int err;
2163 
2164 	if (WARN_ON(addr >= end))
2165 		return -EINVAL;
2166 
2167 	pgd = pgd_offset(mm, addr);
2168 	do {
2169 		next = pgd_addr_end(addr, end);
2170 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2171 		if (err)
2172 			break;
2173 	} while (pgd++, addr = next, addr != end);
2174 
2175 	return err;
2176 }
2177 EXPORT_SYMBOL_GPL(apply_to_page_range);
2178 
2179 /*
2180  * handle_pte_fault chooses page fault handler according to an entry which was
2181  * read non-atomically.  Before making any commitment, on those architectures
2182  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2183  * parts, do_swap_page must check under lock before unmapping the pte and
2184  * proceeding (but do_wp_page is only called after already making such a check;
2185  * and do_anonymous_page can safely check later on).
2186  */
pte_unmap_same(struct mm_struct * mm,pmd_t * pmd,pte_t * page_table,pte_t orig_pte)2187 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2188 				pte_t *page_table, pte_t orig_pte)
2189 {
2190 	int same = 1;
2191 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2192 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2193 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2194 		spin_lock(ptl);
2195 		same = pte_same(*page_table, orig_pte);
2196 		spin_unlock(ptl);
2197 	}
2198 #endif
2199 	pte_unmap(page_table);
2200 	return same;
2201 }
2202 
cow_user_page(struct page * dst,struct page * src,struct vm_fault * vmf)2203 static inline bool cow_user_page(struct page *dst, struct page *src,
2204 				 struct vm_fault *vmf)
2205 {
2206 	bool ret;
2207 	void *kaddr;
2208 	void __user *uaddr;
2209 	bool locked = false;
2210 	struct vm_area_struct *vma = vmf->vma;
2211 	struct mm_struct *mm = vma->vm_mm;
2212 	unsigned long addr = vmf->address;
2213 
2214 	debug_dma_assert_idle(src);
2215 
2216 	if (likely(src)) {
2217 		copy_user_highpage(dst, src, addr, vma);
2218 		return true;
2219 	}
2220 
2221 	/*
2222 	 * If the source page was a PFN mapping, we don't have
2223 	 * a "struct page" for it. We do a best-effort copy by
2224 	 * just copying from the original user address. If that
2225 	 * fails, we just zero-fill it. Live with it.
2226 	 */
2227 	kaddr = kmap_atomic(dst);
2228 	uaddr = (void __user *)(addr & PAGE_MASK);
2229 
2230 	/*
2231 	 * On architectures with software "accessed" bits, we would
2232 	 * take a double page fault, so mark it accessed here.
2233 	 */
2234 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2235 		pte_t entry;
2236 
2237 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2238 		locked = true;
2239 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2240 			/*
2241 			 * Other thread has already handled the fault
2242 			 * and we don't need to do anything. If it's
2243 			 * not the case, the fault will be triggered
2244 			 * again on the same address.
2245 			 */
2246 			ret = false;
2247 			goto pte_unlock;
2248 		}
2249 
2250 		entry = pte_mkyoung(vmf->orig_pte);
2251 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2252 			update_mmu_cache(vma, addr, vmf->pte);
2253 	}
2254 
2255 	/*
2256 	 * This really shouldn't fail, because the page is there
2257 	 * in the page tables. But it might just be unreadable,
2258 	 * in which case we just give up and fill the result with
2259 	 * zeroes.
2260 	 */
2261 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2262 		if (locked)
2263 			goto warn;
2264 
2265 		/* Re-validate under PTL if the page is still mapped */
2266 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2267 		locked = true;
2268 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2269 			/* The PTE changed under us. Retry page fault. */
2270 			ret = false;
2271 			goto pte_unlock;
2272 		}
2273 
2274 		/*
2275 		 * The same page can be mapped back since last copy attampt.
2276 		 * Try to copy again under PTL.
2277 		 */
2278 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2279 			/*
2280 			 * Give a warn in case there can be some obscure
2281 			 * use-case
2282 			 */
2283 warn:
2284 			WARN_ON_ONCE(1);
2285 			clear_page(kaddr);
2286 		}
2287 	}
2288 
2289 	ret = true;
2290 
2291 pte_unlock:
2292 	if (locked)
2293 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2294 	kunmap_atomic(kaddr);
2295 	flush_dcache_page(dst);
2296 
2297 	return ret;
2298 }
2299 
__get_fault_gfp_mask(struct vm_area_struct * vma)2300 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2301 {
2302 	struct file *vm_file = vma->vm_file;
2303 
2304 	if (vm_file)
2305 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2306 
2307 	/*
2308 	 * Special mappings (e.g. VDSO) do not have any file so fake
2309 	 * a default GFP_KERNEL for them.
2310 	 */
2311 	return GFP_KERNEL;
2312 }
2313 
2314 /*
2315  * Notify the address space that the page is about to become writable so that
2316  * it can prohibit this or wait for the page to get into an appropriate state.
2317  *
2318  * We do this without the lock held, so that it can sleep if it needs to.
2319  */
do_page_mkwrite(struct vm_fault * vmf)2320 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2321 {
2322 	vm_fault_t ret;
2323 	struct page *page = vmf->page;
2324 	unsigned int old_flags = vmf->flags;
2325 
2326 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2327 
2328 	if (vmf->vma->vm_file &&
2329 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2330 		return VM_FAULT_SIGBUS;
2331 
2332 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2333 	/* Restore original flags so that caller is not surprised */
2334 	vmf->flags = old_flags;
2335 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2336 		return ret;
2337 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2338 		lock_page(page);
2339 		if (!page->mapping) {
2340 			unlock_page(page);
2341 			return 0; /* retry */
2342 		}
2343 		ret |= VM_FAULT_LOCKED;
2344 	} else
2345 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2346 	return ret;
2347 }
2348 
2349 /*
2350  * Handle dirtying of a page in shared file mapping on a write fault.
2351  *
2352  * The function expects the page to be locked and unlocks it.
2353  */
fault_dirty_shared_page(struct vm_fault * vmf)2354 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2355 {
2356 	struct vm_area_struct *vma = vmf->vma;
2357 	struct address_space *mapping;
2358 	struct page *page = vmf->page;
2359 	bool dirtied;
2360 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2361 
2362 	dirtied = set_page_dirty(page);
2363 	VM_BUG_ON_PAGE(PageAnon(page), page);
2364 	/*
2365 	 * Take a local copy of the address_space - page.mapping may be zeroed
2366 	 * by truncate after unlock_page().   The address_space itself remains
2367 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2368 	 * release semantics to prevent the compiler from undoing this copying.
2369 	 */
2370 	mapping = page_rmapping(page);
2371 	unlock_page(page);
2372 
2373 	if (!page_mkwrite)
2374 		file_update_time(vma->vm_file);
2375 
2376 	/*
2377 	 * Throttle page dirtying rate down to writeback speed.
2378 	 *
2379 	 * mapping may be NULL here because some device drivers do not
2380 	 * set page.mapping but still dirty their pages
2381 	 *
2382 	 * Drop the mmap_sem before waiting on IO, if we can. The file
2383 	 * is pinning the mapping, as per above.
2384 	 */
2385 	if ((dirtied || page_mkwrite) && mapping) {
2386 		struct file *fpin;
2387 
2388 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2389 		balance_dirty_pages_ratelimited(mapping);
2390 		if (fpin) {
2391 			fput(fpin);
2392 			return VM_FAULT_RETRY;
2393 		}
2394 	}
2395 
2396 	return 0;
2397 }
2398 
2399 /*
2400  * Handle write page faults for pages that can be reused in the current vma
2401  *
2402  * This can happen either due to the mapping being with the VM_SHARED flag,
2403  * or due to us being the last reference standing to the page. In either
2404  * case, all we need to do here is to mark the page as writable and update
2405  * any related book-keeping.
2406  */
wp_page_reuse(struct vm_fault * vmf)2407 static inline void wp_page_reuse(struct vm_fault *vmf)
2408 	__releases(vmf->ptl)
2409 {
2410 	struct vm_area_struct *vma = vmf->vma;
2411 	struct page *page = vmf->page;
2412 	pte_t entry;
2413 	/*
2414 	 * Clear the pages cpupid information as the existing
2415 	 * information potentially belongs to a now completely
2416 	 * unrelated process.
2417 	 */
2418 	if (page)
2419 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2420 
2421 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2422 	entry = pte_mkyoung(vmf->orig_pte);
2423 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2424 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2425 		update_mmu_cache(vma, vmf->address, vmf->pte);
2426 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2427 }
2428 
2429 /*
2430  * Handle the case of a page which we actually need to copy to a new page.
2431  *
2432  * Called with mmap_sem locked and the old page referenced, but
2433  * without the ptl held.
2434  *
2435  * High level logic flow:
2436  *
2437  * - Allocate a page, copy the content of the old page to the new one.
2438  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2439  * - Take the PTL. If the pte changed, bail out and release the allocated page
2440  * - If the pte is still the way we remember it, update the page table and all
2441  *   relevant references. This includes dropping the reference the page-table
2442  *   held to the old page, as well as updating the rmap.
2443  * - In any case, unlock the PTL and drop the reference we took to the old page.
2444  */
wp_page_copy(struct vm_fault * vmf)2445 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2446 {
2447 	struct vm_area_struct *vma = vmf->vma;
2448 	struct mm_struct *mm = vma->vm_mm;
2449 	struct page *old_page = vmf->page;
2450 	struct page *new_page = NULL;
2451 	pte_t entry;
2452 	int page_copied = 0;
2453 	struct mem_cgroup *memcg;
2454 	struct mmu_notifier_range range;
2455 
2456 	if (unlikely(anon_vma_prepare(vma)))
2457 		goto oom;
2458 
2459 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2460 		new_page = alloc_zeroed_user_highpage_movable(vma,
2461 							      vmf->address);
2462 		if (!new_page)
2463 			goto oom;
2464 	} else {
2465 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2466 				vmf->address);
2467 		if (!new_page)
2468 			goto oom;
2469 
2470 		if (!cow_user_page(new_page, old_page, vmf)) {
2471 			/*
2472 			 * COW failed, if the fault was solved by other,
2473 			 * it's fine. If not, userspace would re-fault on
2474 			 * the same address and we will handle the fault
2475 			 * from the second attempt.
2476 			 */
2477 			put_page(new_page);
2478 			if (old_page)
2479 				put_page(old_page);
2480 			return 0;
2481 		}
2482 	}
2483 
2484 	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2485 		goto oom_free_new;
2486 
2487 	__SetPageUptodate(new_page);
2488 
2489 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2490 				vmf->address & PAGE_MASK,
2491 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2492 	mmu_notifier_invalidate_range_start(&range);
2493 
2494 	/*
2495 	 * Re-check the pte - we dropped the lock
2496 	 */
2497 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2498 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2499 		if (old_page) {
2500 			if (!PageAnon(old_page)) {
2501 				dec_mm_counter_fast(mm,
2502 						mm_counter_file(old_page));
2503 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2504 			}
2505 		} else {
2506 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2507 		}
2508 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2509 		entry = mk_pte(new_page, vma->vm_page_prot);
2510 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2511 		/*
2512 		 * Clear the pte entry and flush it first, before updating the
2513 		 * pte with the new entry. This will avoid a race condition
2514 		 * seen in the presence of one thread doing SMC and another
2515 		 * thread doing COW.
2516 		 */
2517 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2518 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2519 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2520 		lru_cache_add_active_or_unevictable(new_page, vma);
2521 		/*
2522 		 * We call the notify macro here because, when using secondary
2523 		 * mmu page tables (such as kvm shadow page tables), we want the
2524 		 * new page to be mapped directly into the secondary page table.
2525 		 */
2526 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2527 		update_mmu_cache(vma, vmf->address, vmf->pte);
2528 		if (old_page) {
2529 			/*
2530 			 * Only after switching the pte to the new page may
2531 			 * we remove the mapcount here. Otherwise another
2532 			 * process may come and find the rmap count decremented
2533 			 * before the pte is switched to the new page, and
2534 			 * "reuse" the old page writing into it while our pte
2535 			 * here still points into it and can be read by other
2536 			 * threads.
2537 			 *
2538 			 * The critical issue is to order this
2539 			 * page_remove_rmap with the ptp_clear_flush above.
2540 			 * Those stores are ordered by (if nothing else,)
2541 			 * the barrier present in the atomic_add_negative
2542 			 * in page_remove_rmap.
2543 			 *
2544 			 * Then the TLB flush in ptep_clear_flush ensures that
2545 			 * no process can access the old page before the
2546 			 * decremented mapcount is visible. And the old page
2547 			 * cannot be reused until after the decremented
2548 			 * mapcount is visible. So transitively, TLBs to
2549 			 * old page will be flushed before it can be reused.
2550 			 */
2551 			page_remove_rmap(old_page, false);
2552 		}
2553 
2554 		/* Free the old page.. */
2555 		new_page = old_page;
2556 		page_copied = 1;
2557 	} else {
2558 		mem_cgroup_cancel_charge(new_page, memcg, false);
2559 	}
2560 
2561 	if (new_page)
2562 		put_page(new_page);
2563 
2564 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2565 	/*
2566 	 * No need to double call mmu_notifier->invalidate_range() callback as
2567 	 * the above ptep_clear_flush_notify() did already call it.
2568 	 */
2569 	mmu_notifier_invalidate_range_only_end(&range);
2570 	if (old_page) {
2571 		/*
2572 		 * Don't let another task, with possibly unlocked vma,
2573 		 * keep the mlocked page.
2574 		 */
2575 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2576 			lock_page(old_page);	/* LRU manipulation */
2577 			if (PageMlocked(old_page))
2578 				munlock_vma_page(old_page);
2579 			unlock_page(old_page);
2580 		}
2581 		put_page(old_page);
2582 	}
2583 	return page_copied ? VM_FAULT_WRITE : 0;
2584 oom_free_new:
2585 	put_page(new_page);
2586 oom:
2587 	if (old_page)
2588 		put_page(old_page);
2589 	return VM_FAULT_OOM;
2590 }
2591 
2592 /**
2593  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2594  *			  writeable once the page is prepared
2595  *
2596  * @vmf: structure describing the fault
2597  *
2598  * This function handles all that is needed to finish a write page fault in a
2599  * shared mapping due to PTE being read-only once the mapped page is prepared.
2600  * It handles locking of PTE and modifying it.
2601  *
2602  * The function expects the page to be locked or other protection against
2603  * concurrent faults / writeback (such as DAX radix tree locks).
2604  *
2605  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2606  * we acquired PTE lock.
2607  */
finish_mkwrite_fault(struct vm_fault * vmf)2608 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2609 {
2610 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2611 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2612 				       &vmf->ptl);
2613 	/*
2614 	 * We might have raced with another page fault while we released the
2615 	 * pte_offset_map_lock.
2616 	 */
2617 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2618 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2619 		return VM_FAULT_NOPAGE;
2620 	}
2621 	wp_page_reuse(vmf);
2622 	return 0;
2623 }
2624 
2625 /*
2626  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2627  * mapping
2628  */
wp_pfn_shared(struct vm_fault * vmf)2629 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2630 {
2631 	struct vm_area_struct *vma = vmf->vma;
2632 
2633 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2634 		vm_fault_t ret;
2635 
2636 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2637 		vmf->flags |= FAULT_FLAG_MKWRITE;
2638 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2639 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2640 			return ret;
2641 		return finish_mkwrite_fault(vmf);
2642 	}
2643 	wp_page_reuse(vmf);
2644 	return VM_FAULT_WRITE;
2645 }
2646 
wp_page_shared(struct vm_fault * vmf)2647 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2648 	__releases(vmf->ptl)
2649 {
2650 	struct vm_area_struct *vma = vmf->vma;
2651 	vm_fault_t ret = VM_FAULT_WRITE;
2652 
2653 	get_page(vmf->page);
2654 
2655 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2656 		vm_fault_t tmp;
2657 
2658 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2659 		tmp = do_page_mkwrite(vmf);
2660 		if (unlikely(!tmp || (tmp &
2661 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2662 			put_page(vmf->page);
2663 			return tmp;
2664 		}
2665 		tmp = finish_mkwrite_fault(vmf);
2666 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2667 			unlock_page(vmf->page);
2668 			put_page(vmf->page);
2669 			return tmp;
2670 		}
2671 	} else {
2672 		wp_page_reuse(vmf);
2673 		lock_page(vmf->page);
2674 	}
2675 	ret |= fault_dirty_shared_page(vmf);
2676 	put_page(vmf->page);
2677 
2678 	return ret;
2679 }
2680 
2681 /*
2682  * This routine handles present pages, when users try to write
2683  * to a shared page. It is done by copying the page to a new address
2684  * and decrementing the shared-page counter for the old page.
2685  *
2686  * Note that this routine assumes that the protection checks have been
2687  * done by the caller (the low-level page fault routine in most cases).
2688  * Thus we can safely just mark it writable once we've done any necessary
2689  * COW.
2690  *
2691  * We also mark the page dirty at this point even though the page will
2692  * change only once the write actually happens. This avoids a few races,
2693  * and potentially makes it more efficient.
2694  *
2695  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2696  * but allow concurrent faults), with pte both mapped and locked.
2697  * We return with mmap_sem still held, but pte unmapped and unlocked.
2698  */
do_wp_page(struct vm_fault * vmf)2699 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2700 	__releases(vmf->ptl)
2701 {
2702 	struct vm_area_struct *vma = vmf->vma;
2703 
2704 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2705 	if (!vmf->page) {
2706 		/*
2707 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2708 		 * VM_PFNMAP VMA.
2709 		 *
2710 		 * We should not cow pages in a shared writeable mapping.
2711 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2712 		 */
2713 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2714 				     (VM_WRITE|VM_SHARED))
2715 			return wp_pfn_shared(vmf);
2716 
2717 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2718 		return wp_page_copy(vmf);
2719 	}
2720 
2721 	/*
2722 	 * Take out anonymous pages first, anonymous shared vmas are
2723 	 * not dirty accountable.
2724 	 */
2725 	if (PageAnon(vmf->page)) {
2726 		struct page *page = vmf->page;
2727 
2728 		/* PageKsm() doesn't necessarily raise the page refcount */
2729 		if (PageKsm(page) || page_count(page) != 1)
2730 			goto copy;
2731 		if (!trylock_page(page))
2732 			goto copy;
2733 		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
2734 			unlock_page(page);
2735 			goto copy;
2736 		}
2737 		/*
2738 		 * Ok, we've got the only map reference, and the only
2739 		 * page count reference, and the page is locked,
2740 		 * it's dark out, and we're wearing sunglasses. Hit it.
2741 		 */
2742 		unlock_page(page);
2743 		wp_page_reuse(vmf);
2744 		return VM_FAULT_WRITE;
2745 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2746 					(VM_WRITE|VM_SHARED))) {
2747 		return wp_page_shared(vmf);
2748 	}
2749 copy:
2750 	/*
2751 	 * Ok, we need to copy. Oh, well..
2752 	 */
2753 	get_page(vmf->page);
2754 
2755 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2756 	return wp_page_copy(vmf);
2757 }
2758 
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)2759 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2760 		unsigned long start_addr, unsigned long end_addr,
2761 		struct zap_details *details)
2762 {
2763 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2764 }
2765 
unmap_mapping_range_tree(struct rb_root_cached * root,struct zap_details * details)2766 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2767 					    struct zap_details *details)
2768 {
2769 	struct vm_area_struct *vma;
2770 	pgoff_t vba, vea, zba, zea;
2771 
2772 	vma_interval_tree_foreach(vma, root,
2773 			details->first_index, details->last_index) {
2774 
2775 		vba = vma->vm_pgoff;
2776 		vea = vba + vma_pages(vma) - 1;
2777 		zba = details->first_index;
2778 		if (zba < vba)
2779 			zba = vba;
2780 		zea = details->last_index;
2781 		if (zea > vea)
2782 			zea = vea;
2783 
2784 		unmap_mapping_range_vma(vma,
2785 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2786 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2787 				details);
2788 	}
2789 }
2790 
2791 /**
2792  * unmap_mapping_page() - Unmap single page from processes.
2793  * @page: The locked page to be unmapped.
2794  *
2795  * Unmap this page from any userspace process which still has it mmaped.
2796  * Typically, for efficiency, the range of nearby pages has already been
2797  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
2798  * truncation or invalidation holds the lock on a page, it may find that
2799  * the page has been remapped again: and then uses unmap_mapping_page()
2800  * to unmap it finally.
2801  */
unmap_mapping_page(struct page * page)2802 void unmap_mapping_page(struct page *page)
2803 {
2804 	struct address_space *mapping = page->mapping;
2805 	struct zap_details details = { };
2806 
2807 	VM_BUG_ON(!PageLocked(page));
2808 	VM_BUG_ON(PageTail(page));
2809 
2810 	details.check_mapping = mapping;
2811 	details.first_index = page->index;
2812 	details.last_index = page->index + hpage_nr_pages(page) - 1;
2813 	details.single_page = page;
2814 
2815 	i_mmap_lock_write(mapping);
2816 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2817 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2818 	i_mmap_unlock_write(mapping);
2819 }
2820 
2821 /**
2822  * unmap_mapping_pages() - Unmap pages from processes.
2823  * @mapping: The address space containing pages to be unmapped.
2824  * @start: Index of first page to be unmapped.
2825  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2826  * @even_cows: Whether to unmap even private COWed pages.
2827  *
2828  * Unmap the pages in this address space from any userspace process which
2829  * has them mmaped.  Generally, you want to remove COWed pages as well when
2830  * a file is being truncated, but not when invalidating pages from the page
2831  * cache.
2832  */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2833 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2834 		pgoff_t nr, bool even_cows)
2835 {
2836 	struct zap_details details = { };
2837 
2838 	details.check_mapping = even_cows ? NULL : mapping;
2839 	details.first_index = start;
2840 	details.last_index = start + nr - 1;
2841 	if (details.last_index < details.first_index)
2842 		details.last_index = ULONG_MAX;
2843 
2844 	i_mmap_lock_write(mapping);
2845 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2846 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2847 	i_mmap_unlock_write(mapping);
2848 }
2849 
2850 /**
2851  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2852  * address_space corresponding to the specified byte range in the underlying
2853  * file.
2854  *
2855  * @mapping: the address space containing mmaps to be unmapped.
2856  * @holebegin: byte in first page to unmap, relative to the start of
2857  * the underlying file.  This will be rounded down to a PAGE_SIZE
2858  * boundary.  Note that this is different from truncate_pagecache(), which
2859  * must keep the partial page.  In contrast, we must get rid of
2860  * partial pages.
2861  * @holelen: size of prospective hole in bytes.  This will be rounded
2862  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2863  * end of the file.
2864  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2865  * but 0 when invalidating pagecache, don't throw away private data.
2866  */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2867 void unmap_mapping_range(struct address_space *mapping,
2868 		loff_t const holebegin, loff_t const holelen, int even_cows)
2869 {
2870 	pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
2871 	pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
2872 
2873 	/* Check for overflow. */
2874 	if (sizeof(holelen) > sizeof(hlen)) {
2875 		long long holeend =
2876 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2877 		if (holeend & ~(long long)ULONG_MAX)
2878 			hlen = ULONG_MAX - hba + 1;
2879 	}
2880 
2881 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2882 }
2883 EXPORT_SYMBOL(unmap_mapping_range);
2884 
2885 /*
2886  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2887  * but allow concurrent faults), and pte mapped but not yet locked.
2888  * We return with pte unmapped and unlocked.
2889  *
2890  * We return with the mmap_sem locked or unlocked in the same cases
2891  * as does filemap_fault().
2892  */
do_swap_page(struct vm_fault * vmf)2893 vm_fault_t do_swap_page(struct vm_fault *vmf)
2894 {
2895 	struct vm_area_struct *vma = vmf->vma;
2896 	struct page *page = NULL, *swapcache;
2897 	struct mem_cgroup *memcg;
2898 	swp_entry_t entry;
2899 	pte_t pte;
2900 	int locked;
2901 	int exclusive = 0;
2902 	vm_fault_t ret = 0;
2903 
2904 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2905 		goto out;
2906 
2907 	entry = pte_to_swp_entry(vmf->orig_pte);
2908 	if (unlikely(non_swap_entry(entry))) {
2909 		if (is_migration_entry(entry)) {
2910 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2911 					     vmf->address);
2912 		} else if (is_device_private_entry(entry)) {
2913 			vmf->page = device_private_entry_to_page(entry);
2914 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2915 		} else if (is_hwpoison_entry(entry)) {
2916 			ret = VM_FAULT_HWPOISON;
2917 		} else {
2918 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2919 			ret = VM_FAULT_SIGBUS;
2920 		}
2921 		goto out;
2922 	}
2923 
2924 
2925 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2926 	page = lookup_swap_cache(entry, vma, vmf->address);
2927 	swapcache = page;
2928 
2929 	if (!page) {
2930 		struct swap_info_struct *si = swp_swap_info(entry);
2931 
2932 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2933 				__swap_count(entry) == 1) {
2934 			/* skip swapcache */
2935 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2936 							vmf->address);
2937 			if (page) {
2938 				__SetPageLocked(page);
2939 				__SetPageSwapBacked(page);
2940 				set_page_private(page, entry.val);
2941 				lru_cache_add_anon(page);
2942 				swap_readpage(page, true);
2943 			}
2944 		} else {
2945 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2946 						vmf);
2947 			swapcache = page;
2948 		}
2949 
2950 		if (!page) {
2951 			/*
2952 			 * Back out if somebody else faulted in this pte
2953 			 * while we released the pte lock.
2954 			 */
2955 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2956 					vmf->address, &vmf->ptl);
2957 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2958 				ret = VM_FAULT_OOM;
2959 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2960 			goto unlock;
2961 		}
2962 
2963 		/* Had to read the page from swap area: Major fault */
2964 		ret = VM_FAULT_MAJOR;
2965 		count_vm_event(PGMAJFAULT);
2966 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2967 	} else if (PageHWPoison(page)) {
2968 		/*
2969 		 * hwpoisoned dirty swapcache pages are kept for killing
2970 		 * owner processes (which may be unknown at hwpoison time)
2971 		 */
2972 		ret = VM_FAULT_HWPOISON;
2973 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2974 		goto out_release;
2975 	}
2976 
2977 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2978 
2979 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2980 	if (!locked) {
2981 		ret |= VM_FAULT_RETRY;
2982 		goto out_release;
2983 	}
2984 
2985 	/*
2986 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2987 	 * release the swapcache from under us.  The page pin, and pte_same
2988 	 * test below, are not enough to exclude that.  Even if it is still
2989 	 * swapcache, we need to check that the page's swap has not changed.
2990 	 */
2991 	if (unlikely((!PageSwapCache(page) ||
2992 			page_private(page) != entry.val)) && swapcache)
2993 		goto out_page;
2994 
2995 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2996 	if (unlikely(!page)) {
2997 		ret = VM_FAULT_OOM;
2998 		page = swapcache;
2999 		goto out_page;
3000 	}
3001 
3002 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3003 					&memcg, false)) {
3004 		ret = VM_FAULT_OOM;
3005 		goto out_page;
3006 	}
3007 
3008 	/*
3009 	 * Back out if somebody else already faulted in this pte.
3010 	 */
3011 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3012 			&vmf->ptl);
3013 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3014 		goto out_nomap;
3015 
3016 	if (unlikely(!PageUptodate(page))) {
3017 		ret = VM_FAULT_SIGBUS;
3018 		goto out_nomap;
3019 	}
3020 
3021 	/*
3022 	 * The page isn't present yet, go ahead with the fault.
3023 	 *
3024 	 * Be careful about the sequence of operations here.
3025 	 * To get its accounting right, reuse_swap_page() must be called
3026 	 * while the page is counted on swap but not yet in mapcount i.e.
3027 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3028 	 * must be called after the swap_free(), or it will never succeed.
3029 	 */
3030 
3031 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3032 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3033 	pte = mk_pte(page, vma->vm_page_prot);
3034 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3035 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3036 		vmf->flags &= ~FAULT_FLAG_WRITE;
3037 		ret |= VM_FAULT_WRITE;
3038 		exclusive = RMAP_EXCLUSIVE;
3039 	}
3040 	flush_icache_page(vma, page);
3041 	if (pte_swp_soft_dirty(vmf->orig_pte))
3042 		pte = pte_mksoft_dirty(pte);
3043 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3044 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3045 	vmf->orig_pte = pte;
3046 
3047 	/* ksm created a completely new copy */
3048 	if (unlikely(page != swapcache && swapcache)) {
3049 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3050 		mem_cgroup_commit_charge(page, memcg, false, false);
3051 		lru_cache_add_active_or_unevictable(page, vma);
3052 	} else {
3053 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3054 		mem_cgroup_commit_charge(page, memcg, true, false);
3055 		activate_page(page);
3056 	}
3057 
3058 	swap_free(entry);
3059 	if (mem_cgroup_swap_full(page) ||
3060 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3061 		try_to_free_swap(page);
3062 	unlock_page(page);
3063 	if (page != swapcache && swapcache) {
3064 		/*
3065 		 * Hold the lock to avoid the swap entry to be reused
3066 		 * until we take the PT lock for the pte_same() check
3067 		 * (to avoid false positives from pte_same). For
3068 		 * further safety release the lock after the swap_free
3069 		 * so that the swap count won't change under a
3070 		 * parallel locked swapcache.
3071 		 */
3072 		unlock_page(swapcache);
3073 		put_page(swapcache);
3074 	}
3075 
3076 	if (vmf->flags & FAULT_FLAG_WRITE) {
3077 		ret |= do_wp_page(vmf);
3078 		if (ret & VM_FAULT_ERROR)
3079 			ret &= VM_FAULT_ERROR;
3080 		goto out;
3081 	}
3082 
3083 	/* No need to invalidate - it was non-present before */
3084 	update_mmu_cache(vma, vmf->address, vmf->pte);
3085 unlock:
3086 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3087 out:
3088 	return ret;
3089 out_nomap:
3090 	mem_cgroup_cancel_charge(page, memcg, false);
3091 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3092 out_page:
3093 	unlock_page(page);
3094 out_release:
3095 	put_page(page);
3096 	if (page != swapcache && swapcache) {
3097 		unlock_page(swapcache);
3098 		put_page(swapcache);
3099 	}
3100 	return ret;
3101 }
3102 
3103 /*
3104  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3105  * but allow concurrent faults), and pte mapped but not yet locked.
3106  * We return with mmap_sem still held, but pte unmapped and unlocked.
3107  */
do_anonymous_page(struct vm_fault * vmf)3108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3109 {
3110 	struct vm_area_struct *vma = vmf->vma;
3111 	struct mem_cgroup *memcg;
3112 	struct page *page;
3113 	vm_fault_t ret = 0;
3114 	pte_t entry;
3115 
3116 	/* File mapping without ->vm_ops ? */
3117 	if (vma->vm_flags & VM_SHARED)
3118 		return VM_FAULT_SIGBUS;
3119 
3120 	/*
3121 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3122 	 * pte_offset_map() on pmds where a huge pmd might be created
3123 	 * from a different thread.
3124 	 *
3125 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3126 	 * parallel threads are excluded by other means.
3127 	 *
3128 	 * Here we only have down_read(mmap_sem).
3129 	 */
3130 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3131 		return VM_FAULT_OOM;
3132 
3133 	/* See the comment in pte_alloc_one_map() */
3134 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3135 		return 0;
3136 
3137 	/* Use the zero-page for reads */
3138 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3139 			!mm_forbids_zeropage(vma->vm_mm)) {
3140 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3141 						vma->vm_page_prot));
3142 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3143 				vmf->address, &vmf->ptl);
3144 		if (!pte_none(*vmf->pte))
3145 			goto unlock;
3146 		ret = check_stable_address_space(vma->vm_mm);
3147 		if (ret)
3148 			goto unlock;
3149 		/* Deliver the page fault to userland, check inside PT lock */
3150 		if (userfaultfd_missing(vma)) {
3151 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3152 			return handle_userfault(vmf, VM_UFFD_MISSING);
3153 		}
3154 		goto setpte;
3155 	}
3156 
3157 	/* Allocate our own private page. */
3158 	if (unlikely(anon_vma_prepare(vma)))
3159 		goto oom;
3160 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3161 	if (!page)
3162 		goto oom;
3163 
3164 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3165 					false))
3166 		goto oom_free_page;
3167 
3168 	/*
3169 	 * The memory barrier inside __SetPageUptodate makes sure that
3170 	 * preceeding stores to the page contents become visible before
3171 	 * the set_pte_at() write.
3172 	 */
3173 	__SetPageUptodate(page);
3174 
3175 	entry = mk_pte(page, vma->vm_page_prot);
3176 	if (vma->vm_flags & VM_WRITE)
3177 		entry = pte_mkwrite(pte_mkdirty(entry));
3178 
3179 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3180 			&vmf->ptl);
3181 	if (!pte_none(*vmf->pte))
3182 		goto release;
3183 
3184 	ret = check_stable_address_space(vma->vm_mm);
3185 	if (ret)
3186 		goto release;
3187 
3188 	/* Deliver the page fault to userland, check inside PT lock */
3189 	if (userfaultfd_missing(vma)) {
3190 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3191 		mem_cgroup_cancel_charge(page, memcg, false);
3192 		put_page(page);
3193 		return handle_userfault(vmf, VM_UFFD_MISSING);
3194 	}
3195 
3196 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3197 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3198 	mem_cgroup_commit_charge(page, memcg, false, false);
3199 	lru_cache_add_active_or_unevictable(page, vma);
3200 setpte:
3201 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3202 
3203 	/* No need to invalidate - it was non-present before */
3204 	update_mmu_cache(vma, vmf->address, vmf->pte);
3205 unlock:
3206 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3207 	return ret;
3208 release:
3209 	mem_cgroup_cancel_charge(page, memcg, false);
3210 	put_page(page);
3211 	goto unlock;
3212 oom_free_page:
3213 	put_page(page);
3214 oom:
3215 	return VM_FAULT_OOM;
3216 }
3217 
3218 /*
3219  * The mmap_sem must have been held on entry, and may have been
3220  * released depending on flags and vma->vm_ops->fault() return value.
3221  * See filemap_fault() and __lock_page_retry().
3222  */
__do_fault(struct vm_fault * vmf)3223 static vm_fault_t __do_fault(struct vm_fault *vmf)
3224 {
3225 	struct vm_area_struct *vma = vmf->vma;
3226 	vm_fault_t ret;
3227 
3228 	/*
3229 	 * Preallocate pte before we take page_lock because this might lead to
3230 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3231 	 *				lock_page(A)
3232 	 *				SetPageWriteback(A)
3233 	 *				unlock_page(A)
3234 	 * lock_page(B)
3235 	 *				lock_page(B)
3236 	 * pte_alloc_pne
3237 	 *   shrink_page_list
3238 	 *     wait_on_page_writeback(A)
3239 	 *				SetPageWriteback(B)
3240 	 *				unlock_page(B)
3241 	 *				# flush A, B to clear the writeback
3242 	 */
3243 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3244 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3245 		if (!vmf->prealloc_pte)
3246 			return VM_FAULT_OOM;
3247 		smp_wmb(); /* See comment in __pte_alloc() */
3248 	}
3249 
3250 	ret = vma->vm_ops->fault(vmf);
3251 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3252 			    VM_FAULT_DONE_COW)))
3253 		return ret;
3254 
3255 	if (unlikely(PageHWPoison(vmf->page))) {
3256 		struct page *page = vmf->page;
3257 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
3258 		if (ret & VM_FAULT_LOCKED) {
3259 			if (page_mapped(page))
3260 				unmap_mapping_pages(page_mapping(page),
3261 						    page->index, 1, false);
3262 			/* Retry if a clean page was removed from the cache. */
3263 			if (invalidate_inode_page(page))
3264 				poisonret = VM_FAULT_NOPAGE;
3265 			unlock_page(page);
3266 		}
3267 		put_page(page);
3268 		vmf->page = NULL;
3269 		return poisonret;
3270 	}
3271 
3272 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3273 		lock_page(vmf->page);
3274 	else
3275 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3276 
3277 	return ret;
3278 }
3279 
3280 /*
3281  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3282  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3283  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3284  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3285  */
pmd_devmap_trans_unstable(pmd_t * pmd)3286 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3287 {
3288 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3289 }
3290 
pte_alloc_one_map(struct vm_fault * vmf)3291 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3292 {
3293 	struct vm_area_struct *vma = vmf->vma;
3294 
3295 	if (!pmd_none(*vmf->pmd))
3296 		goto map_pte;
3297 	if (vmf->prealloc_pte) {
3298 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3299 		if (unlikely(!pmd_none(*vmf->pmd))) {
3300 			spin_unlock(vmf->ptl);
3301 			goto map_pte;
3302 		}
3303 
3304 		mm_inc_nr_ptes(vma->vm_mm);
3305 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3306 		spin_unlock(vmf->ptl);
3307 		vmf->prealloc_pte = NULL;
3308 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3309 		return VM_FAULT_OOM;
3310 	}
3311 map_pte:
3312 	/*
3313 	 * If a huge pmd materialized under us just retry later.  Use
3314 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3315 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3316 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3317 	 * running immediately after a huge pmd fault in a different thread of
3318 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3319 	 * All we have to ensure is that it is a regular pmd that we can walk
3320 	 * with pte_offset_map() and we can do that through an atomic read in
3321 	 * C, which is what pmd_trans_unstable() provides.
3322 	 */
3323 	if (pmd_devmap_trans_unstable(vmf->pmd))
3324 		return VM_FAULT_NOPAGE;
3325 
3326 	/*
3327 	 * At this point we know that our vmf->pmd points to a page of ptes
3328 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3329 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3330 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3331 	 * be valid and we will re-check to make sure the vmf->pte isn't
3332 	 * pte_none() under vmf->ptl protection when we return to
3333 	 * alloc_set_pte().
3334 	 */
3335 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3336 			&vmf->ptl);
3337 	return 0;
3338 }
3339 
3340 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
deposit_prealloc_pte(struct vm_fault * vmf)3341 static void deposit_prealloc_pte(struct vm_fault *vmf)
3342 {
3343 	struct vm_area_struct *vma = vmf->vma;
3344 
3345 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3346 	/*
3347 	 * We are going to consume the prealloc table,
3348 	 * count that as nr_ptes.
3349 	 */
3350 	mm_inc_nr_ptes(vma->vm_mm);
3351 	vmf->prealloc_pte = NULL;
3352 }
3353 
do_set_pmd(struct vm_fault * vmf,struct page * page)3354 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3355 {
3356 	struct vm_area_struct *vma = vmf->vma;
3357 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3358 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3359 	pmd_t entry;
3360 	int i;
3361 	vm_fault_t ret;
3362 
3363 	if (!transhuge_vma_suitable(vma, haddr))
3364 		return VM_FAULT_FALLBACK;
3365 
3366 	ret = VM_FAULT_FALLBACK;
3367 	page = compound_head(page);
3368 
3369 	/*
3370 	 * Archs like ppc64 need additonal space to store information
3371 	 * related to pte entry. Use the preallocated table for that.
3372 	 */
3373 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3374 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3375 		if (!vmf->prealloc_pte)
3376 			return VM_FAULT_OOM;
3377 		smp_wmb(); /* See comment in __pte_alloc() */
3378 	}
3379 
3380 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3381 	if (unlikely(!pmd_none(*vmf->pmd)))
3382 		goto out;
3383 
3384 	for (i = 0; i < HPAGE_PMD_NR; i++)
3385 		flush_icache_page(vma, page + i);
3386 
3387 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3388 	if (write)
3389 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3390 
3391 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3392 	page_add_file_rmap(page, true);
3393 	/*
3394 	 * deposit and withdraw with pmd lock held
3395 	 */
3396 	if (arch_needs_pgtable_deposit())
3397 		deposit_prealloc_pte(vmf);
3398 
3399 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3400 
3401 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3402 
3403 	/* fault is handled */
3404 	ret = 0;
3405 	count_vm_event(THP_FILE_MAPPED);
3406 out:
3407 	spin_unlock(vmf->ptl);
3408 	return ret;
3409 }
3410 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)3411 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3412 {
3413 	BUILD_BUG();
3414 	return 0;
3415 }
3416 #endif
3417 
3418 /**
3419  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3420  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3421  *
3422  * @vmf: fault environment
3423  * @memcg: memcg to charge page (only for private mappings)
3424  * @page: page to map
3425  *
3426  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3427  * return.
3428  *
3429  * Target users are page handler itself and implementations of
3430  * vm_ops->map_pages.
3431  *
3432  * Return: %0 on success, %VM_FAULT_ code in case of error.
3433  */
alloc_set_pte(struct vm_fault * vmf,struct mem_cgroup * memcg,struct page * page)3434 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3435 		struct page *page)
3436 {
3437 	struct vm_area_struct *vma = vmf->vma;
3438 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3439 	pte_t entry;
3440 	vm_fault_t ret;
3441 
3442 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3443 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3444 		/* THP on COW? */
3445 		VM_BUG_ON_PAGE(memcg, page);
3446 
3447 		ret = do_set_pmd(vmf, page);
3448 		if (ret != VM_FAULT_FALLBACK)
3449 			return ret;
3450 	}
3451 
3452 	if (!vmf->pte) {
3453 		ret = pte_alloc_one_map(vmf);
3454 		if (ret)
3455 			return ret;
3456 	}
3457 
3458 	/* Re-check under ptl */
3459 	if (unlikely(!pte_none(*vmf->pte)))
3460 		return VM_FAULT_NOPAGE;
3461 
3462 	flush_icache_page(vma, page);
3463 	entry = mk_pte(page, vma->vm_page_prot);
3464 	if (write)
3465 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3466 	/* copy-on-write page */
3467 	if (write && !(vma->vm_flags & VM_SHARED)) {
3468 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3469 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3470 		mem_cgroup_commit_charge(page, memcg, false, false);
3471 		lru_cache_add_active_or_unevictable(page, vma);
3472 	} else {
3473 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3474 		page_add_file_rmap(page, false);
3475 	}
3476 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3477 
3478 	/* no need to invalidate: a not-present page won't be cached */
3479 	update_mmu_cache(vma, vmf->address, vmf->pte);
3480 
3481 	return 0;
3482 }
3483 
3484 
3485 /**
3486  * finish_fault - finish page fault once we have prepared the page to fault
3487  *
3488  * @vmf: structure describing the fault
3489  *
3490  * This function handles all that is needed to finish a page fault once the
3491  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3492  * given page, adds reverse page mapping, handles memcg charges and LRU
3493  * addition.
3494  *
3495  * The function expects the page to be locked and on success it consumes a
3496  * reference of a page being mapped (for the PTE which maps it).
3497  *
3498  * Return: %0 on success, %VM_FAULT_ code in case of error.
3499  */
finish_fault(struct vm_fault * vmf)3500 vm_fault_t finish_fault(struct vm_fault *vmf)
3501 {
3502 	struct page *page;
3503 	vm_fault_t ret = 0;
3504 
3505 	/* Did we COW the page? */
3506 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3507 	    !(vmf->vma->vm_flags & VM_SHARED))
3508 		page = vmf->cow_page;
3509 	else
3510 		page = vmf->page;
3511 
3512 	/*
3513 	 * check even for read faults because we might have lost our CoWed
3514 	 * page
3515 	 */
3516 	if (!(vmf->vma->vm_flags & VM_SHARED))
3517 		ret = check_stable_address_space(vmf->vma->vm_mm);
3518 	if (!ret)
3519 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3520 	if (vmf->pte)
3521 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3522 	return ret;
3523 }
3524 
3525 static unsigned long fault_around_bytes __read_mostly =
3526 	rounddown_pow_of_two(65536);
3527 
3528 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)3529 static int fault_around_bytes_get(void *data, u64 *val)
3530 {
3531 	*val = fault_around_bytes;
3532 	return 0;
3533 }
3534 
3535 /*
3536  * fault_around_bytes must be rounded down to the nearest page order as it's
3537  * what do_fault_around() expects to see.
3538  */
fault_around_bytes_set(void * data,u64 val)3539 static int fault_around_bytes_set(void *data, u64 val)
3540 {
3541 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3542 		return -EINVAL;
3543 	if (val > PAGE_SIZE)
3544 		fault_around_bytes = rounddown_pow_of_two(val);
3545 	else
3546 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3547 	return 0;
3548 }
3549 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3550 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3551 
fault_around_debugfs(void)3552 static int __init fault_around_debugfs(void)
3553 {
3554 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3555 				   &fault_around_bytes_fops);
3556 	return 0;
3557 }
3558 late_initcall(fault_around_debugfs);
3559 #endif
3560 
3561 /*
3562  * do_fault_around() tries to map few pages around the fault address. The hope
3563  * is that the pages will be needed soon and this will lower the number of
3564  * faults to handle.
3565  *
3566  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3567  * not ready to be mapped: not up-to-date, locked, etc.
3568  *
3569  * This function is called with the page table lock taken. In the split ptlock
3570  * case the page table lock only protects only those entries which belong to
3571  * the page table corresponding to the fault address.
3572  *
3573  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3574  * only once.
3575  *
3576  * fault_around_bytes defines how many bytes we'll try to map.
3577  * do_fault_around() expects it to be set to a power of two less than or equal
3578  * to PTRS_PER_PTE.
3579  *
3580  * The virtual address of the area that we map is naturally aligned to
3581  * fault_around_bytes rounded down to the machine page size
3582  * (and therefore to page order).  This way it's easier to guarantee
3583  * that we don't cross page table boundaries.
3584  */
do_fault_around(struct vm_fault * vmf)3585 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3586 {
3587 	unsigned long address = vmf->address, nr_pages, mask;
3588 	pgoff_t start_pgoff = vmf->pgoff;
3589 	pgoff_t end_pgoff;
3590 	int off;
3591 	vm_fault_t ret = 0;
3592 
3593 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3594 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3595 
3596 	vmf->address = max(address & mask, vmf->vma->vm_start);
3597 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3598 	start_pgoff -= off;
3599 
3600 	/*
3601 	 *  end_pgoff is either the end of the page table, the end of
3602 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3603 	 */
3604 	end_pgoff = start_pgoff -
3605 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3606 		PTRS_PER_PTE - 1;
3607 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3608 			start_pgoff + nr_pages - 1);
3609 
3610 	if (pmd_none(*vmf->pmd)) {
3611 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3612 		if (!vmf->prealloc_pte)
3613 			goto out;
3614 		smp_wmb(); /* See comment in __pte_alloc() */
3615 	}
3616 
3617 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3618 
3619 	/* Huge page is mapped? Page fault is solved */
3620 	if (pmd_trans_huge(*vmf->pmd)) {
3621 		ret = VM_FAULT_NOPAGE;
3622 		goto out;
3623 	}
3624 
3625 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3626 	if (!vmf->pte)
3627 		goto out;
3628 
3629 	/* check if the page fault is solved */
3630 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3631 	if (!pte_none(*vmf->pte))
3632 		ret = VM_FAULT_NOPAGE;
3633 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3634 out:
3635 	vmf->address = address;
3636 	vmf->pte = NULL;
3637 	return ret;
3638 }
3639 
do_read_fault(struct vm_fault * vmf)3640 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3641 {
3642 	struct vm_area_struct *vma = vmf->vma;
3643 	vm_fault_t ret = 0;
3644 
3645 	/*
3646 	 * Let's call ->map_pages() first and use ->fault() as fallback
3647 	 * if page by the offset is not ready to be mapped (cold cache or
3648 	 * something).
3649 	 */
3650 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3651 		ret = do_fault_around(vmf);
3652 		if (ret)
3653 			return ret;
3654 	}
3655 
3656 	ret = __do_fault(vmf);
3657 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3658 		return ret;
3659 
3660 	ret |= finish_fault(vmf);
3661 	unlock_page(vmf->page);
3662 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3663 		put_page(vmf->page);
3664 	return ret;
3665 }
3666 
do_cow_fault(struct vm_fault * vmf)3667 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3668 {
3669 	struct vm_area_struct *vma = vmf->vma;
3670 	vm_fault_t ret;
3671 
3672 	if (unlikely(anon_vma_prepare(vma)))
3673 		return VM_FAULT_OOM;
3674 
3675 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3676 	if (!vmf->cow_page)
3677 		return VM_FAULT_OOM;
3678 
3679 	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3680 				&vmf->memcg, false)) {
3681 		put_page(vmf->cow_page);
3682 		return VM_FAULT_OOM;
3683 	}
3684 
3685 	ret = __do_fault(vmf);
3686 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3687 		goto uncharge_out;
3688 	if (ret & VM_FAULT_DONE_COW)
3689 		return ret;
3690 
3691 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3692 	__SetPageUptodate(vmf->cow_page);
3693 
3694 	ret |= finish_fault(vmf);
3695 	unlock_page(vmf->page);
3696 	put_page(vmf->page);
3697 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3698 		goto uncharge_out;
3699 	return ret;
3700 uncharge_out:
3701 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3702 	put_page(vmf->cow_page);
3703 	return ret;
3704 }
3705 
do_shared_fault(struct vm_fault * vmf)3706 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3707 {
3708 	struct vm_area_struct *vma = vmf->vma;
3709 	vm_fault_t ret, tmp;
3710 
3711 	ret = __do_fault(vmf);
3712 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3713 		return ret;
3714 
3715 	/*
3716 	 * Check if the backing address space wants to know that the page is
3717 	 * about to become writable
3718 	 */
3719 	if (vma->vm_ops->page_mkwrite) {
3720 		unlock_page(vmf->page);
3721 		tmp = do_page_mkwrite(vmf);
3722 		if (unlikely(!tmp ||
3723 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3724 			put_page(vmf->page);
3725 			return tmp;
3726 		}
3727 	}
3728 
3729 	ret |= finish_fault(vmf);
3730 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3731 					VM_FAULT_RETRY))) {
3732 		unlock_page(vmf->page);
3733 		put_page(vmf->page);
3734 		return ret;
3735 	}
3736 
3737 	ret |= fault_dirty_shared_page(vmf);
3738 	return ret;
3739 }
3740 
3741 /*
3742  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3743  * but allow concurrent faults).
3744  * The mmap_sem may have been released depending on flags and our
3745  * return value.  See filemap_fault() and __lock_page_or_retry().
3746  * If mmap_sem is released, vma may become invalid (for example
3747  * by other thread calling munmap()).
3748  */
do_fault(struct vm_fault * vmf)3749 static vm_fault_t do_fault(struct vm_fault *vmf)
3750 {
3751 	struct vm_area_struct *vma = vmf->vma;
3752 	struct mm_struct *vm_mm = vma->vm_mm;
3753 	vm_fault_t ret;
3754 
3755 	/*
3756 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3757 	 */
3758 	if (!vma->vm_ops->fault) {
3759 		/*
3760 		 * If we find a migration pmd entry or a none pmd entry, which
3761 		 * should never happen, return SIGBUS
3762 		 */
3763 		if (unlikely(!pmd_present(*vmf->pmd)))
3764 			ret = VM_FAULT_SIGBUS;
3765 		else {
3766 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3767 						       vmf->pmd,
3768 						       vmf->address,
3769 						       &vmf->ptl);
3770 			/*
3771 			 * Make sure this is not a temporary clearing of pte
3772 			 * by holding ptl and checking again. A R/M/W update
3773 			 * of pte involves: take ptl, clearing the pte so that
3774 			 * we don't have concurrent modification by hardware
3775 			 * followed by an update.
3776 			 */
3777 			if (unlikely(pte_none(*vmf->pte)))
3778 				ret = VM_FAULT_SIGBUS;
3779 			else
3780 				ret = VM_FAULT_NOPAGE;
3781 
3782 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3783 		}
3784 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3785 		ret = do_read_fault(vmf);
3786 	else if (!(vma->vm_flags & VM_SHARED))
3787 		ret = do_cow_fault(vmf);
3788 	else
3789 		ret = do_shared_fault(vmf);
3790 
3791 	/* preallocated pagetable is unused: free it */
3792 	if (vmf->prealloc_pte) {
3793 		pte_free(vm_mm, vmf->prealloc_pte);
3794 		vmf->prealloc_pte = NULL;
3795 	}
3796 	return ret;
3797 }
3798 
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)3799 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3800 				unsigned long addr, int page_nid,
3801 				int *flags)
3802 {
3803 	get_page(page);
3804 
3805 	count_vm_numa_event(NUMA_HINT_FAULTS);
3806 	if (page_nid == numa_node_id()) {
3807 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3808 		*flags |= TNF_FAULT_LOCAL;
3809 	}
3810 
3811 	return mpol_misplaced(page, vma, addr);
3812 }
3813 
do_numa_page(struct vm_fault * vmf)3814 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3815 {
3816 	struct vm_area_struct *vma = vmf->vma;
3817 	struct page *page = NULL;
3818 	int page_nid = NUMA_NO_NODE;
3819 	int last_cpupid;
3820 	int target_nid;
3821 	bool migrated = false;
3822 	pte_t pte, old_pte;
3823 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3824 	int flags = 0;
3825 
3826 	/*
3827 	 * The "pte" at this point cannot be used safely without
3828 	 * validation through pte_unmap_same(). It's of NUMA type but
3829 	 * the pfn may be screwed if the read is non atomic.
3830 	 */
3831 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3832 	spin_lock(vmf->ptl);
3833 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3834 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3835 		goto out;
3836 	}
3837 
3838 	/*
3839 	 * Make it present again, Depending on how arch implementes non
3840 	 * accessible ptes, some can allow access by kernel mode.
3841 	 */
3842 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3843 	pte = pte_modify(old_pte, vma->vm_page_prot);
3844 	pte = pte_mkyoung(pte);
3845 	if (was_writable)
3846 		pte = pte_mkwrite(pte);
3847 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3848 	update_mmu_cache(vma, vmf->address, vmf->pte);
3849 
3850 	page = vm_normal_page(vma, vmf->address, pte);
3851 	if (!page) {
3852 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3853 		return 0;
3854 	}
3855 
3856 	/* TODO: handle PTE-mapped THP */
3857 	if (PageCompound(page)) {
3858 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3859 		return 0;
3860 	}
3861 
3862 	/*
3863 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3864 	 * much anyway since they can be in shared cache state. This misses
3865 	 * the case where a mapping is writable but the process never writes
3866 	 * to it but pte_write gets cleared during protection updates and
3867 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3868 	 * background writeback, dirty balancing and application behaviour.
3869 	 */
3870 	if (!pte_write(pte))
3871 		flags |= TNF_NO_GROUP;
3872 
3873 	/*
3874 	 * Flag if the page is shared between multiple address spaces. This
3875 	 * is later used when determining whether to group tasks together
3876 	 */
3877 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3878 		flags |= TNF_SHARED;
3879 
3880 	last_cpupid = page_cpupid_last(page);
3881 	page_nid = page_to_nid(page);
3882 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3883 			&flags);
3884 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3885 	if (target_nid == NUMA_NO_NODE) {
3886 		put_page(page);
3887 		goto out;
3888 	}
3889 
3890 	/* Migrate to the requested node */
3891 	migrated = migrate_misplaced_page(page, vma, target_nid);
3892 	if (migrated) {
3893 		page_nid = target_nid;
3894 		flags |= TNF_MIGRATED;
3895 	} else
3896 		flags |= TNF_MIGRATE_FAIL;
3897 
3898 out:
3899 	if (page_nid != NUMA_NO_NODE)
3900 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3901 	return 0;
3902 }
3903 
create_huge_pmd(struct vm_fault * vmf)3904 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3905 {
3906 	if (vma_is_anonymous(vmf->vma))
3907 		return do_huge_pmd_anonymous_page(vmf);
3908 	if (vmf->vma->vm_ops->huge_fault)
3909 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3910 	return VM_FAULT_FALLBACK;
3911 }
3912 
3913 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf,pmd_t orig_pmd)3914 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3915 {
3916 	if (vma_is_anonymous(vmf->vma))
3917 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3918 	if (vmf->vma->vm_ops->huge_fault)
3919 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3920 
3921 	/* COW handled on pte level: split pmd */
3922 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3923 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3924 
3925 	return VM_FAULT_FALLBACK;
3926 }
3927 
vma_is_accessible(struct vm_area_struct * vma)3928 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3929 {
3930 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3931 }
3932 
create_huge_pud(struct vm_fault * vmf)3933 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3934 {
3935 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3936 	/* No support for anonymous transparent PUD pages yet */
3937 	if (vma_is_anonymous(vmf->vma))
3938 		return VM_FAULT_FALLBACK;
3939 	if (vmf->vma->vm_ops->huge_fault)
3940 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3941 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3942 	return VM_FAULT_FALLBACK;
3943 }
3944 
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)3945 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3946 {
3947 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3948 	/* No support for anonymous transparent PUD pages yet */
3949 	if (vma_is_anonymous(vmf->vma))
3950 		return VM_FAULT_FALLBACK;
3951 	if (vmf->vma->vm_ops->huge_fault)
3952 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3953 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3954 	return VM_FAULT_FALLBACK;
3955 }
3956 
3957 /*
3958  * These routines also need to handle stuff like marking pages dirty
3959  * and/or accessed for architectures that don't do it in hardware (most
3960  * RISC architectures).  The early dirtying is also good on the i386.
3961  *
3962  * There is also a hook called "update_mmu_cache()" that architectures
3963  * with external mmu caches can use to update those (ie the Sparc or
3964  * PowerPC hashed page tables that act as extended TLBs).
3965  *
3966  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3967  * concurrent faults).
3968  *
3969  * The mmap_sem may have been released depending on flags and our return value.
3970  * See filemap_fault() and __lock_page_or_retry().
3971  */
handle_pte_fault(struct vm_fault * vmf)3972 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3973 {
3974 	pte_t entry;
3975 
3976 	if (unlikely(pmd_none(*vmf->pmd))) {
3977 		/*
3978 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3979 		 * want to allocate huge page, and if we expose page table
3980 		 * for an instant, it will be difficult to retract from
3981 		 * concurrent faults and from rmap lookups.
3982 		 */
3983 		vmf->pte = NULL;
3984 	} else {
3985 		/* See comment in pte_alloc_one_map() */
3986 		if (pmd_devmap_trans_unstable(vmf->pmd))
3987 			return 0;
3988 		/*
3989 		 * A regular pmd is established and it can't morph into a huge
3990 		 * pmd from under us anymore at this point because we hold the
3991 		 * mmap_sem read mode and khugepaged takes it in write mode.
3992 		 * So now it's safe to run pte_offset_map().
3993 		 */
3994 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3995 		vmf->orig_pte = *vmf->pte;
3996 
3997 		/*
3998 		 * some architectures can have larger ptes than wordsize,
3999 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4000 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4001 		 * accesses.  The code below just needs a consistent view
4002 		 * for the ifs and we later double check anyway with the
4003 		 * ptl lock held. So here a barrier will do.
4004 		 */
4005 		barrier();
4006 		if (pte_none(vmf->orig_pte)) {
4007 			pte_unmap(vmf->pte);
4008 			vmf->pte = NULL;
4009 		}
4010 	}
4011 
4012 	if (!vmf->pte) {
4013 		if (vma_is_anonymous(vmf->vma))
4014 			return do_anonymous_page(vmf);
4015 		else
4016 			return do_fault(vmf);
4017 	}
4018 
4019 	if (!pte_present(vmf->orig_pte))
4020 		return do_swap_page(vmf);
4021 
4022 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4023 		return do_numa_page(vmf);
4024 
4025 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4026 	spin_lock(vmf->ptl);
4027 	entry = vmf->orig_pte;
4028 	if (unlikely(!pte_same(*vmf->pte, entry)))
4029 		goto unlock;
4030 	if (vmf->flags & FAULT_FLAG_WRITE) {
4031 		if (!pte_write(entry))
4032 			return do_wp_page(vmf);
4033 		entry = pte_mkdirty(entry);
4034 	}
4035 	entry = pte_mkyoung(entry);
4036 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4037 				vmf->flags & FAULT_FLAG_WRITE)) {
4038 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4039 	} else {
4040 		/*
4041 		 * This is needed only for protection faults but the arch code
4042 		 * is not yet telling us if this is a protection fault or not.
4043 		 * This still avoids useless tlb flushes for .text page faults
4044 		 * with threads.
4045 		 */
4046 		if (vmf->flags & FAULT_FLAG_WRITE)
4047 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4048 	}
4049 unlock:
4050 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4051 	return 0;
4052 }
4053 
4054 /*
4055  * By the time we get here, we already hold the mm semaphore
4056  *
4057  * The mmap_sem may have been released depending on flags and our
4058  * return value.  See filemap_fault() and __lock_page_or_retry().
4059  */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)4060 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4061 		unsigned long address, unsigned int flags)
4062 {
4063 	struct vm_fault vmf = {
4064 		.vma = vma,
4065 		.address = address & PAGE_MASK,
4066 		.flags = flags,
4067 		.pgoff = linear_page_index(vma, address),
4068 		.gfp_mask = __get_fault_gfp_mask(vma),
4069 	};
4070 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4071 	struct mm_struct *mm = vma->vm_mm;
4072 	pgd_t *pgd;
4073 	p4d_t *p4d;
4074 	vm_fault_t ret;
4075 
4076 	pgd = pgd_offset(mm, address);
4077 	p4d = p4d_alloc(mm, pgd, address);
4078 	if (!p4d)
4079 		return VM_FAULT_OOM;
4080 
4081 	vmf.pud = pud_alloc(mm, p4d, address);
4082 	if (!vmf.pud)
4083 		return VM_FAULT_OOM;
4084 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4085 		ret = create_huge_pud(&vmf);
4086 		if (!(ret & VM_FAULT_FALLBACK))
4087 			return ret;
4088 	} else {
4089 		pud_t orig_pud = *vmf.pud;
4090 
4091 		barrier();
4092 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4093 
4094 			/* NUMA case for anonymous PUDs would go here */
4095 
4096 			if (dirty && !pud_write(orig_pud)) {
4097 				ret = wp_huge_pud(&vmf, orig_pud);
4098 				if (!(ret & VM_FAULT_FALLBACK))
4099 					return ret;
4100 			} else {
4101 				huge_pud_set_accessed(&vmf, orig_pud);
4102 				return 0;
4103 			}
4104 		}
4105 	}
4106 
4107 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4108 	if (!vmf.pmd)
4109 		return VM_FAULT_OOM;
4110 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4111 		ret = create_huge_pmd(&vmf);
4112 		if (!(ret & VM_FAULT_FALLBACK))
4113 			return ret;
4114 	} else {
4115 		pmd_t orig_pmd = *vmf.pmd;
4116 
4117 		barrier();
4118 		if (unlikely(is_swap_pmd(orig_pmd))) {
4119 			VM_BUG_ON(thp_migration_supported() &&
4120 					  !is_pmd_migration_entry(orig_pmd));
4121 			if (is_pmd_migration_entry(orig_pmd))
4122 				pmd_migration_entry_wait(mm, vmf.pmd);
4123 			return 0;
4124 		}
4125 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4126 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4127 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4128 
4129 			if (dirty && !pmd_write(orig_pmd)) {
4130 				ret = wp_huge_pmd(&vmf, orig_pmd);
4131 				if (!(ret & VM_FAULT_FALLBACK))
4132 					return ret;
4133 			} else {
4134 				huge_pmd_set_accessed(&vmf, orig_pmd);
4135 				return 0;
4136 			}
4137 		}
4138 	}
4139 
4140 	return handle_pte_fault(&vmf);
4141 }
4142 
4143 /*
4144  * By the time we get here, we already hold the mm semaphore
4145  *
4146  * The mmap_sem may have been released depending on flags and our
4147  * return value.  See filemap_fault() and __lock_page_or_retry().
4148  */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)4149 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4150 		unsigned int flags)
4151 {
4152 	vm_fault_t ret;
4153 
4154 	__set_current_state(TASK_RUNNING);
4155 
4156 	count_vm_event(PGFAULT);
4157 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4158 
4159 	/* do counter updates before entering really critical section. */
4160 	check_sync_rss_stat(current);
4161 
4162 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4163 					    flags & FAULT_FLAG_INSTRUCTION,
4164 					    flags & FAULT_FLAG_REMOTE))
4165 		return VM_FAULT_SIGSEGV;
4166 
4167 	/*
4168 	 * Enable the memcg OOM handling for faults triggered in user
4169 	 * space.  Kernel faults are handled more gracefully.
4170 	 */
4171 	if (flags & FAULT_FLAG_USER)
4172 		mem_cgroup_enter_user_fault();
4173 
4174 	if (unlikely(is_vm_hugetlb_page(vma)))
4175 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4176 	else
4177 		ret = __handle_mm_fault(vma, address, flags);
4178 
4179 	if (flags & FAULT_FLAG_USER) {
4180 		mem_cgroup_exit_user_fault();
4181 		/*
4182 		 * The task may have entered a memcg OOM situation but
4183 		 * if the allocation error was handled gracefully (no
4184 		 * VM_FAULT_OOM), there is no need to kill anything.
4185 		 * Just clean up the OOM state peacefully.
4186 		 */
4187 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4188 			mem_cgroup_oom_synchronize(false);
4189 	}
4190 
4191 	return ret;
4192 }
4193 EXPORT_SYMBOL_GPL(handle_mm_fault);
4194 
4195 #ifndef __PAGETABLE_P4D_FOLDED
4196 /*
4197  * Allocate p4d page table.
4198  * We've already handled the fast-path in-line.
4199  */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)4200 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4201 {
4202 	p4d_t *new = p4d_alloc_one(mm, address);
4203 	if (!new)
4204 		return -ENOMEM;
4205 
4206 	smp_wmb(); /* See comment in __pte_alloc */
4207 
4208 	spin_lock(&mm->page_table_lock);
4209 	if (pgd_present(*pgd))		/* Another has populated it */
4210 		p4d_free(mm, new);
4211 	else
4212 		pgd_populate(mm, pgd, new);
4213 	spin_unlock(&mm->page_table_lock);
4214 	return 0;
4215 }
4216 #endif /* __PAGETABLE_P4D_FOLDED */
4217 
4218 #ifndef __PAGETABLE_PUD_FOLDED
4219 /*
4220  * Allocate page upper directory.
4221  * We've already handled the fast-path in-line.
4222  */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)4223 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4224 {
4225 	pud_t *new = pud_alloc_one(mm, address);
4226 	if (!new)
4227 		return -ENOMEM;
4228 
4229 	smp_wmb(); /* See comment in __pte_alloc */
4230 
4231 	spin_lock(&mm->page_table_lock);
4232 #ifndef __ARCH_HAS_5LEVEL_HACK
4233 	if (!p4d_present(*p4d)) {
4234 		mm_inc_nr_puds(mm);
4235 		p4d_populate(mm, p4d, new);
4236 	} else	/* Another has populated it */
4237 		pud_free(mm, new);
4238 #else
4239 	if (!pgd_present(*p4d)) {
4240 		mm_inc_nr_puds(mm);
4241 		pgd_populate(mm, p4d, new);
4242 	} else	/* Another has populated it */
4243 		pud_free(mm, new);
4244 #endif /* __ARCH_HAS_5LEVEL_HACK */
4245 	spin_unlock(&mm->page_table_lock);
4246 	return 0;
4247 }
4248 #endif /* __PAGETABLE_PUD_FOLDED */
4249 
4250 #ifndef __PAGETABLE_PMD_FOLDED
4251 /*
4252  * Allocate page middle directory.
4253  * We've already handled the fast-path in-line.
4254  */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)4255 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4256 {
4257 	spinlock_t *ptl;
4258 	pmd_t *new = pmd_alloc_one(mm, address);
4259 	if (!new)
4260 		return -ENOMEM;
4261 
4262 	smp_wmb(); /* See comment in __pte_alloc */
4263 
4264 	ptl = pud_lock(mm, pud);
4265 #ifndef __ARCH_HAS_4LEVEL_HACK
4266 	if (!pud_present(*pud)) {
4267 		mm_inc_nr_pmds(mm);
4268 		pud_populate(mm, pud, new);
4269 	} else	/* Another has populated it */
4270 		pmd_free(mm, new);
4271 #else
4272 	if (!pgd_present(*pud)) {
4273 		mm_inc_nr_pmds(mm);
4274 		pgd_populate(mm, pud, new);
4275 	} else /* Another has populated it */
4276 		pmd_free(mm, new);
4277 #endif /* __ARCH_HAS_4LEVEL_HACK */
4278 	spin_unlock(ptl);
4279 	return 0;
4280 }
4281 #endif /* __PAGETABLE_PMD_FOLDED */
4282 
follow_invalidate_pte(struct mm_struct * mm,unsigned long address,struct mmu_notifier_range * range,pte_t ** ptepp,pmd_t ** pmdpp,spinlock_t ** ptlp)4283 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4284 			  struct mmu_notifier_range *range, pte_t **ptepp,
4285 			  pmd_t **pmdpp, spinlock_t **ptlp)
4286 {
4287 	pgd_t *pgd;
4288 	p4d_t *p4d;
4289 	pud_t *pud;
4290 	pmd_t *pmd;
4291 	pte_t *ptep;
4292 
4293 	pgd = pgd_offset(mm, address);
4294 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4295 		goto out;
4296 
4297 	p4d = p4d_offset(pgd, address);
4298 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4299 		goto out;
4300 
4301 	pud = pud_offset(p4d, address);
4302 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4303 		goto out;
4304 
4305 	pmd = pmd_offset(pud, address);
4306 	VM_BUG_ON(pmd_trans_huge(*pmd));
4307 
4308 	if (pmd_huge(*pmd)) {
4309 		if (!pmdpp)
4310 			goto out;
4311 
4312 		if (range) {
4313 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4314 						NULL, mm, address & PMD_MASK,
4315 						(address & PMD_MASK) + PMD_SIZE);
4316 			mmu_notifier_invalidate_range_start(range);
4317 		}
4318 		*ptlp = pmd_lock(mm, pmd);
4319 		if (pmd_huge(*pmd)) {
4320 			*pmdpp = pmd;
4321 			return 0;
4322 		}
4323 		spin_unlock(*ptlp);
4324 		if (range)
4325 			mmu_notifier_invalidate_range_end(range);
4326 	}
4327 
4328 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4329 		goto out;
4330 
4331 	if (range) {
4332 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4333 					address & PAGE_MASK,
4334 					(address & PAGE_MASK) + PAGE_SIZE);
4335 		mmu_notifier_invalidate_range_start(range);
4336 	}
4337 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4338 	if (!pte_present(*ptep))
4339 		goto unlock;
4340 	*ptepp = ptep;
4341 	return 0;
4342 unlock:
4343 	pte_unmap_unlock(ptep, *ptlp);
4344 	if (range)
4345 		mmu_notifier_invalidate_range_end(range);
4346 out:
4347 	return -EINVAL;
4348 }
4349 
4350 /**
4351  * follow_pte - look up PTE at a user virtual address
4352  * @mm: the mm_struct of the target address space
4353  * @address: user virtual address
4354  * @ptepp: location to store found PTE
4355  * @ptlp: location to store the lock for the PTE
4356  *
4357  * On a successful return, the pointer to the PTE is stored in @ptepp;
4358  * the corresponding lock is taken and its location is stored in @ptlp.
4359  * The contents of the PTE are only stable until @ptlp is released;
4360  * any further use, if any, must be protected against invalidation
4361  * with MMU notifiers.
4362  *
4363  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4364  * should be taken for read.
4365  *
4366  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4367  * it is not a good general-purpose API.
4368  *
4369  * Return: zero on success, -ve otherwise.
4370  */
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)4371 int follow_pte(struct mm_struct *mm, unsigned long address,
4372 	       pte_t **ptepp, spinlock_t **ptlp)
4373 {
4374 	return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4375 }
4376 EXPORT_SYMBOL_GPL(follow_pte);
4377 
4378 /**
4379  * follow_pfn - look up PFN at a user virtual address
4380  * @vma: memory mapping
4381  * @address: user virtual address
4382  * @pfn: location to store found PFN
4383  *
4384  * Only IO mappings and raw PFN mappings are allowed.
4385  *
4386  * This function does not allow the caller to read the permissions
4387  * of the PTE.  Do not use it.
4388  *
4389  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4390  */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)4391 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4392 	unsigned long *pfn)
4393 {
4394 	int ret = -EINVAL;
4395 	spinlock_t *ptl;
4396 	pte_t *ptep;
4397 
4398 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4399 		return ret;
4400 
4401 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4402 	if (ret)
4403 		return ret;
4404 	*pfn = pte_pfn(*ptep);
4405 	pte_unmap_unlock(ptep, ptl);
4406 	return 0;
4407 }
4408 EXPORT_SYMBOL(follow_pfn);
4409 
4410 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)4411 int follow_phys(struct vm_area_struct *vma,
4412 		unsigned long address, unsigned int flags,
4413 		unsigned long *prot, resource_size_t *phys)
4414 {
4415 	int ret = -EINVAL;
4416 	pte_t *ptep, pte;
4417 	spinlock_t *ptl;
4418 
4419 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4420 		goto out;
4421 
4422 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4423 		goto out;
4424 	pte = *ptep;
4425 
4426 	/* Never return PFNs of anon folios in COW mappings. */
4427 	if (vm_normal_page(vma, address, pte))
4428 		goto unlock;
4429 
4430 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4431 		goto unlock;
4432 
4433 	*prot = pgprot_val(pte_pgprot(pte));
4434 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4435 
4436 	ret = 0;
4437 unlock:
4438 	pte_unmap_unlock(ptep, ptl);
4439 out:
4440 	return ret;
4441 }
4442 
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)4443 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4444 			void *buf, int len, int write)
4445 {
4446 	resource_size_t phys_addr;
4447 	unsigned long prot = 0;
4448 	void __iomem *maddr;
4449 	int offset = addr & (PAGE_SIZE-1);
4450 
4451 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4452 		return -EINVAL;
4453 
4454 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4455 	if (!maddr)
4456 		return -ENOMEM;
4457 
4458 	if (write)
4459 		memcpy_toio(maddr + offset, buf, len);
4460 	else
4461 		memcpy_fromio(buf, maddr + offset, len);
4462 	iounmap(maddr);
4463 
4464 	return len;
4465 }
4466 EXPORT_SYMBOL_GPL(generic_access_phys);
4467 #endif
4468 
4469 /*
4470  * Access another process' address space as given in mm.  If non-NULL, use the
4471  * given task for page fault accounting.
4472  */
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)4473 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4474 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4475 {
4476 	struct vm_area_struct *vma;
4477 	void *old_buf = buf;
4478 	int write = gup_flags & FOLL_WRITE;
4479 
4480 	if (down_read_killable(&mm->mmap_sem))
4481 		return 0;
4482 
4483 	/* ignore errors, just check how much was successfully transferred */
4484 	while (len) {
4485 		int bytes, ret, offset;
4486 		void *maddr;
4487 		struct page *page = NULL;
4488 
4489 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4490 				gup_flags, &page, &vma, NULL);
4491 		if (ret <= 0) {
4492 #ifndef CONFIG_HAVE_IOREMAP_PROT
4493 			break;
4494 #else
4495 			/*
4496 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4497 			 * we can access using slightly different code.
4498 			 */
4499 			vma = find_vma(mm, addr);
4500 			if (!vma || vma->vm_start > addr)
4501 				break;
4502 			if (vma->vm_ops && vma->vm_ops->access)
4503 				ret = vma->vm_ops->access(vma, addr, buf,
4504 							  len, write);
4505 			if (ret <= 0)
4506 				break;
4507 			bytes = ret;
4508 #endif
4509 		} else {
4510 			bytes = len;
4511 			offset = addr & (PAGE_SIZE-1);
4512 			if (bytes > PAGE_SIZE-offset)
4513 				bytes = PAGE_SIZE-offset;
4514 
4515 			maddr = kmap(page);
4516 			if (write) {
4517 				copy_to_user_page(vma, page, addr,
4518 						  maddr + offset, buf, bytes);
4519 				set_page_dirty_lock(page);
4520 			} else {
4521 				copy_from_user_page(vma, page, addr,
4522 						    buf, maddr + offset, bytes);
4523 			}
4524 			kunmap(page);
4525 			put_page(page);
4526 		}
4527 		len -= bytes;
4528 		buf += bytes;
4529 		addr += bytes;
4530 	}
4531 	up_read(&mm->mmap_sem);
4532 
4533 	return buf - old_buf;
4534 }
4535 
4536 /**
4537  * access_remote_vm - access another process' address space
4538  * @mm:		the mm_struct of the target address space
4539  * @addr:	start address to access
4540  * @buf:	source or destination buffer
4541  * @len:	number of bytes to transfer
4542  * @gup_flags:	flags modifying lookup behaviour
4543  *
4544  * The caller must hold a reference on @mm.
4545  *
4546  * Return: number of bytes copied from source to destination.
4547  */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)4548 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4549 		void *buf, int len, unsigned int gup_flags)
4550 {
4551 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4552 }
4553 
4554 /*
4555  * Access another process' address space.
4556  * Source/target buffer must be kernel space,
4557  * Do not walk the page table directly, use get_user_pages
4558  */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)4559 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4560 		void *buf, int len, unsigned int gup_flags)
4561 {
4562 	struct mm_struct *mm;
4563 	int ret;
4564 
4565 	mm = get_task_mm(tsk);
4566 	if (!mm)
4567 		return 0;
4568 
4569 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4570 
4571 	mmput(mm);
4572 
4573 	return ret;
4574 }
4575 EXPORT_SYMBOL_GPL(access_process_vm);
4576 
4577 /*
4578  * Print the name of a VMA.
4579  */
print_vma_addr(char * prefix,unsigned long ip)4580 void print_vma_addr(char *prefix, unsigned long ip)
4581 {
4582 	struct mm_struct *mm = current->mm;
4583 	struct vm_area_struct *vma;
4584 
4585 	/*
4586 	 * we might be running from an atomic context so we cannot sleep
4587 	 */
4588 	if (!down_read_trylock(&mm->mmap_sem))
4589 		return;
4590 
4591 	vma = find_vma(mm, ip);
4592 	if (vma && vma->vm_file) {
4593 		struct file *f = vma->vm_file;
4594 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4595 		if (buf) {
4596 			char *p;
4597 
4598 			p = file_path(f, buf, PAGE_SIZE);
4599 			if (IS_ERR(p))
4600 				p = "?";
4601 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4602 					vma->vm_start,
4603 					vma->vm_end - vma->vm_start);
4604 			free_page((unsigned long)buf);
4605 		}
4606 	}
4607 	up_read(&mm->mmap_sem);
4608 }
4609 
4610 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)4611 void __might_fault(const char *file, int line)
4612 {
4613 	/*
4614 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4615 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4616 	 * get paged out, therefore we'll never actually fault, and the
4617 	 * below annotations will generate false positives.
4618 	 */
4619 	if (uaccess_kernel())
4620 		return;
4621 	if (pagefault_disabled())
4622 		return;
4623 	__might_sleep(file, line, 0);
4624 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4625 	if (current->mm)
4626 		might_lock_read(&current->mm->mmap_sem);
4627 #endif
4628 }
4629 EXPORT_SYMBOL(__might_fault);
4630 #endif
4631 
4632 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4633 /*
4634  * Process all subpages of the specified huge page with the specified
4635  * operation.  The target subpage will be processed last to keep its
4636  * cache lines hot.
4637  */
process_huge_page(unsigned long addr_hint,unsigned int pages_per_huge_page,void (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)4638 static inline void process_huge_page(
4639 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4640 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4641 	void *arg)
4642 {
4643 	int i, n, base, l;
4644 	unsigned long addr = addr_hint &
4645 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4646 
4647 	/* Process target subpage last to keep its cache lines hot */
4648 	might_sleep();
4649 	n = (addr_hint - addr) / PAGE_SIZE;
4650 	if (2 * n <= pages_per_huge_page) {
4651 		/* If target subpage in first half of huge page */
4652 		base = 0;
4653 		l = n;
4654 		/* Process subpages at the end of huge page */
4655 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4656 			cond_resched();
4657 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4658 		}
4659 	} else {
4660 		/* If target subpage in second half of huge page */
4661 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4662 		l = pages_per_huge_page - n;
4663 		/* Process subpages at the begin of huge page */
4664 		for (i = 0; i < base; i++) {
4665 			cond_resched();
4666 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4667 		}
4668 	}
4669 	/*
4670 	 * Process remaining subpages in left-right-left-right pattern
4671 	 * towards the target subpage
4672 	 */
4673 	for (i = 0; i < l; i++) {
4674 		int left_idx = base + i;
4675 		int right_idx = base + 2 * l - 1 - i;
4676 
4677 		cond_resched();
4678 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4679 		cond_resched();
4680 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4681 	}
4682 }
4683 
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)4684 static void clear_gigantic_page(struct page *page,
4685 				unsigned long addr,
4686 				unsigned int pages_per_huge_page)
4687 {
4688 	int i;
4689 	struct page *p = page;
4690 
4691 	might_sleep();
4692 	for (i = 0; i < pages_per_huge_page;
4693 	     i++, p = mem_map_next(p, page, i)) {
4694 		cond_resched();
4695 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4696 	}
4697 }
4698 
clear_subpage(unsigned long addr,int idx,void * arg)4699 static void clear_subpage(unsigned long addr, int idx, void *arg)
4700 {
4701 	struct page *page = arg;
4702 
4703 	clear_user_highpage(page + idx, addr);
4704 }
4705 
clear_huge_page(struct page * page,unsigned long addr_hint,unsigned int pages_per_huge_page)4706 void clear_huge_page(struct page *page,
4707 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4708 {
4709 	unsigned long addr = addr_hint &
4710 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4711 
4712 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4713 		clear_gigantic_page(page, addr, pages_per_huge_page);
4714 		return;
4715 	}
4716 
4717 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4718 }
4719 
copy_user_gigantic_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)4720 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4721 				    unsigned long addr,
4722 				    struct vm_area_struct *vma,
4723 				    unsigned int pages_per_huge_page)
4724 {
4725 	int i;
4726 	struct page *dst_base = dst;
4727 	struct page *src_base = src;
4728 
4729 	for (i = 0; i < pages_per_huge_page; ) {
4730 		cond_resched();
4731 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4732 
4733 		i++;
4734 		dst = mem_map_next(dst, dst_base, i);
4735 		src = mem_map_next(src, src_base, i);
4736 	}
4737 }
4738 
4739 struct copy_subpage_arg {
4740 	struct page *dst;
4741 	struct page *src;
4742 	struct vm_area_struct *vma;
4743 };
4744 
copy_subpage(unsigned long addr,int idx,void * arg)4745 static void copy_subpage(unsigned long addr, int idx, void *arg)
4746 {
4747 	struct copy_subpage_arg *copy_arg = arg;
4748 
4749 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4750 			   addr, copy_arg->vma);
4751 }
4752 
copy_user_huge_page(struct page * dst,struct page * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int pages_per_huge_page)4753 void copy_user_huge_page(struct page *dst, struct page *src,
4754 			 unsigned long addr_hint, struct vm_area_struct *vma,
4755 			 unsigned int pages_per_huge_page)
4756 {
4757 	unsigned long addr = addr_hint &
4758 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4759 	struct copy_subpage_arg arg = {
4760 		.dst = dst,
4761 		.src = src,
4762 		.vma = vma,
4763 	};
4764 
4765 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4766 		copy_user_gigantic_page(dst, src, addr, vma,
4767 					pages_per_huge_page);
4768 		return;
4769 	}
4770 
4771 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4772 }
4773 
copy_huge_page_from_user(struct page * dst_page,const void __user * usr_src,unsigned int pages_per_huge_page,bool allow_pagefault)4774 long copy_huge_page_from_user(struct page *dst_page,
4775 				const void __user *usr_src,
4776 				unsigned int pages_per_huge_page,
4777 				bool allow_pagefault)
4778 {
4779 	void *src = (void *)usr_src;
4780 	void *page_kaddr;
4781 	unsigned long i, rc = 0;
4782 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4783 	struct page *subpage = dst_page;
4784 
4785 	for (i = 0; i < pages_per_huge_page;
4786 	     i++, subpage = mem_map_next(subpage, dst_page, i)) {
4787 		if (allow_pagefault)
4788 			page_kaddr = kmap(subpage);
4789 		else
4790 			page_kaddr = kmap_atomic(subpage);
4791 		rc = copy_from_user(page_kaddr,
4792 				(const void __user *)(src + i * PAGE_SIZE),
4793 				PAGE_SIZE);
4794 		if (allow_pagefault)
4795 			kunmap(subpage);
4796 		else
4797 			kunmap_atomic(page_kaddr);
4798 
4799 		ret_val -= (PAGE_SIZE - rc);
4800 		if (rc)
4801 			break;
4802 
4803 		flush_dcache_page(subpage);
4804 
4805 		cond_resched();
4806 	}
4807 	return ret_val;
4808 }
4809 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4810 
4811 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4812 
4813 static struct kmem_cache *page_ptl_cachep;
4814 
ptlock_cache_init(void)4815 void __init ptlock_cache_init(void)
4816 {
4817 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4818 			SLAB_PANIC, NULL);
4819 }
4820 
ptlock_alloc(struct page * page)4821 bool ptlock_alloc(struct page *page)
4822 {
4823 	spinlock_t *ptl;
4824 
4825 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4826 	if (!ptl)
4827 		return false;
4828 	page->ptl = ptl;
4829 	return true;
4830 }
4831 
ptlock_free(struct page * page)4832 void ptlock_free(struct page *page)
4833 {
4834 	kmem_cache_free(page_ptl_cachep, page->ptl);
4835 }
4836 #endif
4837