1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <trace/events/kmem.h>
76
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
84
85 #include "internal.h"
86
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
89 #endif
90
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr;
94 EXPORT_SYMBOL(max_mapnr);
95
96 struct page *mem_map;
97 EXPORT_SYMBOL(mem_map);
98 #endif
99
100 /*
101 * A number of key systems in x86 including ioremap() rely on the assumption
102 * that high_memory defines the upper bound on direct map memory, then end
103 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
104 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105 * and ZONE_HIGHMEM.
106 */
107 void *high_memory;
108 EXPORT_SYMBOL(high_memory);
109
110 /*
111 * Randomize the address space (stacks, mmaps, brk, etc.).
112 *
113 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114 * as ancient (libc5 based) binaries can segfault. )
115 */
116 int randomize_va_space __read_mostly =
117 #ifdef CONFIG_COMPAT_BRK
118 1;
119 #else
120 2;
121 #endif
122
123 #ifndef arch_faults_on_old_pte
arch_faults_on_old_pte(void)124 static inline bool arch_faults_on_old_pte(void)
125 {
126 /*
127 * Those arches which don't have hw access flag feature need to
128 * implement their own helper. By default, "true" means pagefault
129 * will be hit on old pte.
130 */
131 return true;
132 }
133 #endif
134
disable_randmaps(char * s)135 static int __init disable_randmaps(char *s)
136 {
137 randomize_va_space = 0;
138 return 1;
139 }
140 __setup("norandmaps", disable_randmaps);
141
142 unsigned long zero_pfn __read_mostly;
143 EXPORT_SYMBOL(zero_pfn);
144
145 unsigned long highest_memmap_pfn __read_mostly;
146
147 /*
148 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149 */
init_zero_pfn(void)150 static int __init init_zero_pfn(void)
151 {
152 zero_pfn = page_to_pfn(ZERO_PAGE(0));
153 return 0;
154 }
155 early_initcall(init_zero_pfn);
156
157 /*
158 * Only trace rss_stat when there is a 512kb cross over.
159 * Smaller changes may be lost unless every small change is
160 * crossing into or returning to a 512kb boundary.
161 */
162 #define TRACE_MM_COUNTER_THRESHOLD 128
163
mm_trace_rss_stat(struct mm_struct * mm,int member,long count,long value)164 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count,
165 long value)
166 {
167 long thresh_mask = ~(TRACE_MM_COUNTER_THRESHOLD - 1);
168
169 /* Threshold roll-over, trace it */
170 if ((count & thresh_mask) != ((count - value) & thresh_mask))
171 trace_rss_stat(mm, member, count);
172 }
173 EXPORT_SYMBOL_GPL(mm_trace_rss_stat);
174
175 #if defined(SPLIT_RSS_COUNTING)
176
sync_mm_rss(struct mm_struct * mm)177 void sync_mm_rss(struct mm_struct *mm)
178 {
179 int i;
180
181 for (i = 0; i < NR_MM_COUNTERS; i++) {
182 if (current->rss_stat.count[i]) {
183 add_mm_counter(mm, i, current->rss_stat.count[i]);
184 current->rss_stat.count[i] = 0;
185 }
186 }
187 current->rss_stat.events = 0;
188 }
189
add_mm_counter_fast(struct mm_struct * mm,int member,int val)190 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
191 {
192 struct task_struct *task = current;
193
194 if (likely(task->mm == mm))
195 task->rss_stat.count[member] += val;
196 else
197 add_mm_counter(mm, member, val);
198 }
199 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
200 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
201
202 /* sync counter once per 64 page faults */
203 #define TASK_RSS_EVENTS_THRESH (64)
check_sync_rss_stat(struct task_struct * task)204 static void check_sync_rss_stat(struct task_struct *task)
205 {
206 if (unlikely(task != current))
207 return;
208 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
209 sync_mm_rss(task->mm);
210 }
211 #else /* SPLIT_RSS_COUNTING */
212
213 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
214 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
215
check_sync_rss_stat(struct task_struct * task)216 static void check_sync_rss_stat(struct task_struct *task)
217 {
218 }
219
220 #endif /* SPLIT_RSS_COUNTING */
221
222 /*
223 * Note: this doesn't free the actual pages themselves. That
224 * has been handled earlier when unmapping all the memory regions.
225 */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)226 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
227 unsigned long addr)
228 {
229 pgtable_t token = pmd_pgtable(*pmd);
230 pmd_clear(pmd);
231 pte_free_tlb(tlb, token, addr);
232 mm_dec_nr_ptes(tlb->mm);
233 }
234
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)235 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
236 unsigned long addr, unsigned long end,
237 unsigned long floor, unsigned long ceiling)
238 {
239 pmd_t *pmd;
240 unsigned long next;
241 unsigned long start;
242
243 start = addr;
244 pmd = pmd_offset(pud, addr);
245 do {
246 next = pmd_addr_end(addr, end);
247 if (pmd_none_or_clear_bad(pmd))
248 continue;
249 free_pte_range(tlb, pmd, addr);
250 } while (pmd++, addr = next, addr != end);
251
252 start &= PUD_MASK;
253 if (start < floor)
254 return;
255 if (ceiling) {
256 ceiling &= PUD_MASK;
257 if (!ceiling)
258 return;
259 }
260 if (end - 1 > ceiling - 1)
261 return;
262
263 pmd = pmd_offset(pud, start);
264 pud_clear(pud);
265 pmd_free_tlb(tlb, pmd, start);
266 mm_dec_nr_pmds(tlb->mm);
267 }
268
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)269 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
270 unsigned long addr, unsigned long end,
271 unsigned long floor, unsigned long ceiling)
272 {
273 pud_t *pud;
274 unsigned long next;
275 unsigned long start;
276
277 start = addr;
278 pud = pud_offset(p4d, addr);
279 do {
280 next = pud_addr_end(addr, end);
281 if (pud_none_or_clear_bad(pud))
282 continue;
283 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
284 } while (pud++, addr = next, addr != end);
285
286 start &= P4D_MASK;
287 if (start < floor)
288 return;
289 if (ceiling) {
290 ceiling &= P4D_MASK;
291 if (!ceiling)
292 return;
293 }
294 if (end - 1 > ceiling - 1)
295 return;
296
297 pud = pud_offset(p4d, start);
298 p4d_clear(p4d);
299 pud_free_tlb(tlb, pud, start);
300 mm_dec_nr_puds(tlb->mm);
301 }
302
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)303 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
304 unsigned long addr, unsigned long end,
305 unsigned long floor, unsigned long ceiling)
306 {
307 p4d_t *p4d;
308 unsigned long next;
309 unsigned long start;
310
311 start = addr;
312 p4d = p4d_offset(pgd, addr);
313 do {
314 next = p4d_addr_end(addr, end);
315 if (p4d_none_or_clear_bad(p4d))
316 continue;
317 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
318 } while (p4d++, addr = next, addr != end);
319
320 start &= PGDIR_MASK;
321 if (start < floor)
322 return;
323 if (ceiling) {
324 ceiling &= PGDIR_MASK;
325 if (!ceiling)
326 return;
327 }
328 if (end - 1 > ceiling - 1)
329 return;
330
331 p4d = p4d_offset(pgd, start);
332 pgd_clear(pgd);
333 p4d_free_tlb(tlb, p4d, start);
334 }
335
336 /*
337 * This function frees user-level page tables of a process.
338 */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)339 void free_pgd_range(struct mmu_gather *tlb,
340 unsigned long addr, unsigned long end,
341 unsigned long floor, unsigned long ceiling)
342 {
343 pgd_t *pgd;
344 unsigned long next;
345
346 /*
347 * The next few lines have given us lots of grief...
348 *
349 * Why are we testing PMD* at this top level? Because often
350 * there will be no work to do at all, and we'd prefer not to
351 * go all the way down to the bottom just to discover that.
352 *
353 * Why all these "- 1"s? Because 0 represents both the bottom
354 * of the address space and the top of it (using -1 for the
355 * top wouldn't help much: the masks would do the wrong thing).
356 * The rule is that addr 0 and floor 0 refer to the bottom of
357 * the address space, but end 0 and ceiling 0 refer to the top
358 * Comparisons need to use "end - 1" and "ceiling - 1" (though
359 * that end 0 case should be mythical).
360 *
361 * Wherever addr is brought up or ceiling brought down, we must
362 * be careful to reject "the opposite 0" before it confuses the
363 * subsequent tests. But what about where end is brought down
364 * by PMD_SIZE below? no, end can't go down to 0 there.
365 *
366 * Whereas we round start (addr) and ceiling down, by different
367 * masks at different levels, in order to test whether a table
368 * now has no other vmas using it, so can be freed, we don't
369 * bother to round floor or end up - the tests don't need that.
370 */
371
372 addr &= PMD_MASK;
373 if (addr < floor) {
374 addr += PMD_SIZE;
375 if (!addr)
376 return;
377 }
378 if (ceiling) {
379 ceiling &= PMD_MASK;
380 if (!ceiling)
381 return;
382 }
383 if (end - 1 > ceiling - 1)
384 end -= PMD_SIZE;
385 if (addr > end - 1)
386 return;
387 /*
388 * We add page table cache pages with PAGE_SIZE,
389 * (see pte_free_tlb()), flush the tlb if we need
390 */
391 tlb_change_page_size(tlb, PAGE_SIZE);
392 pgd = pgd_offset(tlb->mm, addr);
393 do {
394 next = pgd_addr_end(addr, end);
395 if (pgd_none_or_clear_bad(pgd))
396 continue;
397 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
398 } while (pgd++, addr = next, addr != end);
399 }
400
free_pgtables(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling)401 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
402 unsigned long floor, unsigned long ceiling)
403 {
404 while (vma) {
405 struct vm_area_struct *next = vma->vm_next;
406 unsigned long addr = vma->vm_start;
407
408 /*
409 * Hide vma from rmap and truncate_pagecache before freeing
410 * pgtables
411 */
412 unlink_anon_vmas(vma);
413 unlink_file_vma(vma);
414
415 if (is_vm_hugetlb_page(vma)) {
416 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
417 floor, next ? next->vm_start : ceiling);
418 } else {
419 /*
420 * Optimization: gather nearby vmas into one call down
421 */
422 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
423 && !is_vm_hugetlb_page(next)) {
424 vma = next;
425 next = vma->vm_next;
426 unlink_anon_vmas(vma);
427 unlink_file_vma(vma);
428 }
429 free_pgd_range(tlb, addr, vma->vm_end,
430 floor, next ? next->vm_start : ceiling);
431 }
432 vma = next;
433 }
434 }
435
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)436 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
437 {
438 spinlock_t *ptl;
439 pgtable_t new = pte_alloc_one(mm);
440 if (!new)
441 return -ENOMEM;
442
443 /*
444 * Ensure all pte setup (eg. pte page lock and page clearing) are
445 * visible before the pte is made visible to other CPUs by being
446 * put into page tables.
447 *
448 * The other side of the story is the pointer chasing in the page
449 * table walking code (when walking the page table without locking;
450 * ie. most of the time). Fortunately, these data accesses consist
451 * of a chain of data-dependent loads, meaning most CPUs (alpha
452 * being the notable exception) will already guarantee loads are
453 * seen in-order. See the alpha page table accessors for the
454 * smp_read_barrier_depends() barriers in page table walking code.
455 */
456 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457
458 ptl = pmd_lock(mm, pmd);
459 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
460 mm_inc_nr_ptes(mm);
461 pmd_populate(mm, pmd, new);
462 new = NULL;
463 }
464 spin_unlock(ptl);
465 if (new)
466 pte_free(mm, new);
467 return 0;
468 }
469
__pte_alloc_kernel(pmd_t * pmd)470 int __pte_alloc_kernel(pmd_t *pmd)
471 {
472 pte_t *new = pte_alloc_one_kernel(&init_mm);
473 if (!new)
474 return -ENOMEM;
475
476 smp_wmb(); /* See comment in __pte_alloc */
477
478 spin_lock(&init_mm.page_table_lock);
479 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
480 pmd_populate_kernel(&init_mm, pmd, new);
481 new = NULL;
482 }
483 spin_unlock(&init_mm.page_table_lock);
484 if (new)
485 pte_free_kernel(&init_mm, new);
486 return 0;
487 }
488
init_rss_vec(int * rss)489 static inline void init_rss_vec(int *rss)
490 {
491 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
492 }
493
add_mm_rss_vec(struct mm_struct * mm,int * rss)494 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
495 {
496 int i;
497
498 if (current->mm == mm)
499 sync_mm_rss(mm);
500 for (i = 0; i < NR_MM_COUNTERS; i++)
501 if (rss[i])
502 add_mm_counter(mm, i, rss[i]);
503 }
504
505 /*
506 * This function is called to print an error when a bad pte
507 * is found. For example, we might have a PFN-mapped pte in
508 * a region that doesn't allow it.
509 *
510 * The calling function must still handle the error.
511 */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)512 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
513 pte_t pte, struct page *page)
514 {
515 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
516 p4d_t *p4d = p4d_offset(pgd, addr);
517 pud_t *pud = pud_offset(p4d, addr);
518 pmd_t *pmd = pmd_offset(pud, addr);
519 struct address_space *mapping;
520 pgoff_t index;
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
525 /*
526 * Allow a burst of 60 reports, then keep quiet for that minute;
527 * or allow a steady drip of one report per second.
528 */
529 if (nr_shown == 60) {
530 if (time_before(jiffies, resume)) {
531 nr_unshown++;
532 return;
533 }
534 if (nr_unshown) {
535 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
536 nr_unshown);
537 nr_unshown = 0;
538 }
539 nr_shown = 0;
540 }
541 if (nr_shown++ == 0)
542 resume = jiffies + 60 * HZ;
543
544 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
545 index = linear_page_index(vma, addr);
546
547 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
548 current->comm,
549 (long long)pte_val(pte), (long long)pmd_val(*pmd));
550 if (page)
551 dump_page(page, "bad pte");
552 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
553 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
554 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
555 vma->vm_file,
556 vma->vm_ops ? vma->vm_ops->fault : NULL,
557 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
558 mapping ? mapping->a_ops->readpage : NULL);
559 dump_stack();
560 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
561 }
562
563 /*
564 * vm_normal_page -- This function gets the "struct page" associated with a pte.
565 *
566 * "Special" mappings do not wish to be associated with a "struct page" (either
567 * it doesn't exist, or it exists but they don't want to touch it). In this
568 * case, NULL is returned here. "Normal" mappings do have a struct page.
569 *
570 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
571 * pte bit, in which case this function is trivial. Secondly, an architecture
572 * may not have a spare pte bit, which requires a more complicated scheme,
573 * described below.
574 *
575 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
576 * special mapping (even if there are underlying and valid "struct pages").
577 * COWed pages of a VM_PFNMAP are always normal.
578 *
579 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
580 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
581 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
582 * mapping will always honor the rule
583 *
584 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
585 *
586 * And for normal mappings this is false.
587 *
588 * This restricts such mappings to be a linear translation from virtual address
589 * to pfn. To get around this restriction, we allow arbitrary mappings so long
590 * as the vma is not a COW mapping; in that case, we know that all ptes are
591 * special (because none can have been COWed).
592 *
593 *
594 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
595 *
596 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
597 * page" backing, however the difference is that _all_ pages with a struct
598 * page (that is, those where pfn_valid is true) are refcounted and considered
599 * normal pages by the VM. The disadvantage is that pages are refcounted
600 * (which can be slower and simply not an option for some PFNMAP users). The
601 * advantage is that we don't have to follow the strict linearity rule of
602 * PFNMAP mappings in order to support COWable mappings.
603 *
604 */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)605 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
606 pte_t pte)
607 {
608 unsigned long pfn = pte_pfn(pte);
609
610 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
611 if (likely(!pte_special(pte)))
612 goto check_pfn;
613 if (vma->vm_ops && vma->vm_ops->find_special_page)
614 return vma->vm_ops->find_special_page(vma, addr);
615 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
616 return NULL;
617 if (is_zero_pfn(pfn))
618 return NULL;
619 if (pte_devmap(pte))
620 return NULL;
621
622 print_bad_pte(vma, addr, pte, NULL);
623 return NULL;
624 }
625
626 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
627
628 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
629 if (vma->vm_flags & VM_MIXEDMAP) {
630 if (!pfn_valid(pfn))
631 return NULL;
632 goto out;
633 } else {
634 unsigned long off;
635 off = (addr - vma->vm_start) >> PAGE_SHIFT;
636 if (pfn == vma->vm_pgoff + off)
637 return NULL;
638 if (!is_cow_mapping(vma->vm_flags))
639 return NULL;
640 }
641 }
642
643 if (is_zero_pfn(pfn))
644 return NULL;
645
646 check_pfn:
647 if (unlikely(pfn > highest_memmap_pfn)) {
648 print_bad_pte(vma, addr, pte, NULL);
649 return NULL;
650 }
651
652 /*
653 * NOTE! We still have PageReserved() pages in the page tables.
654 * eg. VDSO mappings can cause them to exist.
655 */
656 out:
657 return pfn_to_page(pfn);
658 }
659
660 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)661 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
662 pmd_t pmd)
663 {
664 unsigned long pfn = pmd_pfn(pmd);
665
666 /*
667 * There is no pmd_special() but there may be special pmds, e.g.
668 * in a direct-access (dax) mapping, so let's just replicate the
669 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
670 */
671 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
672 if (vma->vm_flags & VM_MIXEDMAP) {
673 if (!pfn_valid(pfn))
674 return NULL;
675 goto out;
676 } else {
677 unsigned long off;
678 off = (addr - vma->vm_start) >> PAGE_SHIFT;
679 if (pfn == vma->vm_pgoff + off)
680 return NULL;
681 if (!is_cow_mapping(vma->vm_flags))
682 return NULL;
683 }
684 }
685
686 if (pmd_devmap(pmd))
687 return NULL;
688 if (is_zero_pfn(pfn))
689 return NULL;
690 if (unlikely(pfn > highest_memmap_pfn))
691 return NULL;
692
693 /*
694 * NOTE! We still have PageReserved() pages in the page tables.
695 * eg. VDSO mappings can cause them to exist.
696 */
697 out:
698 return pfn_to_page(pfn);
699 }
700 #endif
701
702 /*
703 * copy one vm_area from one task to the other. Assumes the page tables
704 * already present in the new task to be cleared in the whole range
705 * covered by this vma.
706 */
707
708 static inline unsigned long
copy_one_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr,int * rss)709 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
710 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
711 unsigned long addr, int *rss)
712 {
713 unsigned long vm_flags = vma->vm_flags;
714 pte_t pte = *src_pte;
715 struct page *page;
716
717 /* pte contains position in swap or file, so copy. */
718 if (unlikely(!pte_present(pte))) {
719 swp_entry_t entry = pte_to_swp_entry(pte);
720
721 if (likely(!non_swap_entry(entry))) {
722 if (swap_duplicate(entry) < 0)
723 return entry.val;
724
725 /* make sure dst_mm is on swapoff's mmlist. */
726 if (unlikely(list_empty(&dst_mm->mmlist))) {
727 spin_lock(&mmlist_lock);
728 if (list_empty(&dst_mm->mmlist))
729 list_add(&dst_mm->mmlist,
730 &src_mm->mmlist);
731 spin_unlock(&mmlist_lock);
732 }
733 rss[MM_SWAPENTS]++;
734 } else if (is_migration_entry(entry)) {
735 page = migration_entry_to_page(entry);
736
737 rss[mm_counter(page)]++;
738
739 if (is_write_migration_entry(entry) &&
740 is_cow_mapping(vm_flags)) {
741 /*
742 * COW mappings require pages in both
743 * parent and child to be set to read.
744 */
745 make_migration_entry_read(&entry);
746 pte = swp_entry_to_pte(entry);
747 if (pte_swp_soft_dirty(*src_pte))
748 pte = pte_swp_mksoft_dirty(pte);
749 set_pte_at(src_mm, addr, src_pte, pte);
750 }
751 } else if (is_device_private_entry(entry)) {
752 page = device_private_entry_to_page(entry);
753
754 /*
755 * Update rss count even for unaddressable pages, as
756 * they should treated just like normal pages in this
757 * respect.
758 *
759 * We will likely want to have some new rss counters
760 * for unaddressable pages, at some point. But for now
761 * keep things as they are.
762 */
763 get_page(page);
764 rss[mm_counter(page)]++;
765 page_dup_rmap(page, false);
766
767 /*
768 * We do not preserve soft-dirty information, because so
769 * far, checkpoint/restore is the only feature that
770 * requires that. And checkpoint/restore does not work
771 * when a device driver is involved (you cannot easily
772 * save and restore device driver state).
773 */
774 if (is_write_device_private_entry(entry) &&
775 is_cow_mapping(vm_flags)) {
776 make_device_private_entry_read(&entry);
777 pte = swp_entry_to_pte(entry);
778 set_pte_at(src_mm, addr, src_pte, pte);
779 }
780 }
781 goto out_set_pte;
782 }
783
784 /*
785 * If it's a COW mapping, write protect it both
786 * in the parent and the child
787 */
788 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
789 ptep_set_wrprotect(src_mm, addr, src_pte);
790 pte = pte_wrprotect(pte);
791 }
792
793 /*
794 * If it's a shared mapping, mark it clean in
795 * the child
796 */
797 if (vm_flags & VM_SHARED)
798 pte = pte_mkclean(pte);
799 pte = pte_mkold(pte);
800
801 page = vm_normal_page(vma, addr, pte);
802 if (page) {
803 get_page(page);
804 page_dup_rmap(page, false);
805 rss[mm_counter(page)]++;
806 } else if (pte_devmap(pte)) {
807 page = pte_page(pte);
808 }
809
810 out_set_pte:
811 set_pte_at(dst_mm, addr, dst_pte, pte);
812 return 0;
813 }
814
copy_pte_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,struct vm_area_struct * vma,unsigned long addr,unsigned long end)815 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
816 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
817 unsigned long addr, unsigned long end)
818 {
819 pte_t *orig_src_pte, *orig_dst_pte;
820 pte_t *src_pte, *dst_pte;
821 spinlock_t *src_ptl, *dst_ptl;
822 int progress = 0;
823 int rss[NR_MM_COUNTERS];
824 swp_entry_t entry = (swp_entry_t){0};
825
826 again:
827 init_rss_vec(rss);
828
829 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
830 if (!dst_pte)
831 return -ENOMEM;
832 src_pte = pte_offset_map(src_pmd, addr);
833 src_ptl = pte_lockptr(src_mm, src_pmd);
834 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
835 orig_src_pte = src_pte;
836 orig_dst_pte = dst_pte;
837 arch_enter_lazy_mmu_mode();
838
839 do {
840 /*
841 * We are holding two locks at this point - either of them
842 * could generate latencies in another task on another CPU.
843 */
844 if (progress >= 32) {
845 progress = 0;
846 if (need_resched() ||
847 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
848 break;
849 }
850 if (pte_none(*src_pte)) {
851 progress++;
852 continue;
853 }
854 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
855 vma, addr, rss);
856 if (entry.val)
857 break;
858 progress += 8;
859 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
860
861 arch_leave_lazy_mmu_mode();
862 spin_unlock(src_ptl);
863 pte_unmap(orig_src_pte);
864 add_mm_rss_vec(dst_mm, rss);
865 pte_unmap_unlock(orig_dst_pte, dst_ptl);
866 cond_resched();
867
868 if (entry.val) {
869 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
870 return -ENOMEM;
871 progress = 0;
872 }
873 if (addr != end)
874 goto again;
875 return 0;
876 }
877
copy_pmd_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,struct vm_area_struct * vma,unsigned long addr,unsigned long end)878 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
879 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
880 unsigned long addr, unsigned long end)
881 {
882 pmd_t *src_pmd, *dst_pmd;
883 unsigned long next;
884
885 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
886 if (!dst_pmd)
887 return -ENOMEM;
888 src_pmd = pmd_offset(src_pud, addr);
889 do {
890 next = pmd_addr_end(addr, end);
891 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
892 || pmd_devmap(*src_pmd)) {
893 int err;
894 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
895 err = copy_huge_pmd(dst_mm, src_mm,
896 dst_pmd, src_pmd, addr, vma);
897 if (err == -ENOMEM)
898 return -ENOMEM;
899 if (!err)
900 continue;
901 /* fall through */
902 }
903 if (pmd_none_or_clear_bad(src_pmd))
904 continue;
905 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
906 vma, addr, next))
907 return -ENOMEM;
908 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
909 return 0;
910 }
911
copy_pud_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,p4d_t * dst_p4d,p4d_t * src_p4d,struct vm_area_struct * vma,unsigned long addr,unsigned long end)912 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
913 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
914 unsigned long addr, unsigned long end)
915 {
916 pud_t *src_pud, *dst_pud;
917 unsigned long next;
918
919 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
920 if (!dst_pud)
921 return -ENOMEM;
922 src_pud = pud_offset(src_p4d, addr);
923 do {
924 next = pud_addr_end(addr, end);
925 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
926 int err;
927
928 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
929 err = copy_huge_pud(dst_mm, src_mm,
930 dst_pud, src_pud, addr, vma);
931 if (err == -ENOMEM)
932 return -ENOMEM;
933 if (!err)
934 continue;
935 /* fall through */
936 }
937 if (pud_none_or_clear_bad(src_pud))
938 continue;
939 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
940 vma, addr, next))
941 return -ENOMEM;
942 } while (dst_pud++, src_pud++, addr = next, addr != end);
943 return 0;
944 }
945
copy_p4d_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,pgd_t * dst_pgd,pgd_t * src_pgd,struct vm_area_struct * vma,unsigned long addr,unsigned long end)946 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
947 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
948 unsigned long addr, unsigned long end)
949 {
950 p4d_t *src_p4d, *dst_p4d;
951 unsigned long next;
952
953 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
954 if (!dst_p4d)
955 return -ENOMEM;
956 src_p4d = p4d_offset(src_pgd, addr);
957 do {
958 next = p4d_addr_end(addr, end);
959 if (p4d_none_or_clear_bad(src_p4d))
960 continue;
961 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
962 vma, addr, next))
963 return -ENOMEM;
964 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
965 return 0;
966 }
967
copy_page_range(struct mm_struct * dst_mm,struct mm_struct * src_mm,struct vm_area_struct * vma)968 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
969 struct vm_area_struct *vma)
970 {
971 pgd_t *src_pgd, *dst_pgd;
972 unsigned long next;
973 unsigned long addr = vma->vm_start;
974 unsigned long end = vma->vm_end;
975 struct mmu_notifier_range range;
976 bool is_cow;
977 int ret;
978
979 /*
980 * Don't copy ptes where a page fault will fill them correctly.
981 * Fork becomes much lighter when there are big shared or private
982 * readonly mappings. The tradeoff is that copy_page_range is more
983 * efficient than faulting.
984 */
985 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
986 !vma->anon_vma)
987 return 0;
988
989 if (is_vm_hugetlb_page(vma))
990 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
991
992 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
993 /*
994 * We do not free on error cases below as remove_vma
995 * gets called on error from higher level routine
996 */
997 ret = track_pfn_copy(vma);
998 if (ret)
999 return ret;
1000 }
1001
1002 /*
1003 * We need to invalidate the secondary MMU mappings only when
1004 * there could be a permission downgrade on the ptes of the
1005 * parent mm. And a permission downgrade will only happen if
1006 * is_cow_mapping() returns true.
1007 */
1008 is_cow = is_cow_mapping(vma->vm_flags);
1009
1010 if (is_cow) {
1011 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1012 0, vma, src_mm, addr, end);
1013 mmu_notifier_invalidate_range_start(&range);
1014 }
1015
1016 ret = 0;
1017 dst_pgd = pgd_offset(dst_mm, addr);
1018 src_pgd = pgd_offset(src_mm, addr);
1019 do {
1020 next = pgd_addr_end(addr, end);
1021 if (pgd_none_or_clear_bad(src_pgd))
1022 continue;
1023 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1024 vma, addr, next))) {
1025 ret = -ENOMEM;
1026 break;
1027 }
1028 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1029
1030 if (is_cow)
1031 mmu_notifier_invalidate_range_end(&range);
1032 return ret;
1033 }
1034
1035 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1036 static inline bool should_zap_cows(struct zap_details *details)
1037 {
1038 /* By default, zap all pages */
1039 if (!details)
1040 return true;
1041
1042 /* Or, we zap COWed pages only if the caller wants to */
1043 return !details->check_mapping;
1044 }
1045
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1046 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1047 struct vm_area_struct *vma, pmd_t *pmd,
1048 unsigned long addr, unsigned long end,
1049 struct zap_details *details)
1050 {
1051 struct mm_struct *mm = tlb->mm;
1052 int force_flush = 0;
1053 int rss[NR_MM_COUNTERS];
1054 spinlock_t *ptl;
1055 pte_t *start_pte;
1056 pte_t *pte;
1057 swp_entry_t entry;
1058
1059 tlb_change_page_size(tlb, PAGE_SIZE);
1060 again:
1061 init_rss_vec(rss);
1062 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1063 pte = start_pte;
1064 flush_tlb_batched_pending(mm);
1065 arch_enter_lazy_mmu_mode();
1066 do {
1067 pte_t ptent = *pte;
1068 if (pte_none(ptent))
1069 continue;
1070
1071 if (need_resched())
1072 break;
1073
1074 if (pte_present(ptent)) {
1075 struct page *page;
1076
1077 page = vm_normal_page(vma, addr, ptent);
1078 if (unlikely(details) && page) {
1079 /*
1080 * unmap_shared_mapping_pages() wants to
1081 * invalidate cache without truncating:
1082 * unmap shared but keep private pages.
1083 */
1084 if (details->check_mapping &&
1085 details->check_mapping != page_rmapping(page))
1086 continue;
1087 }
1088 ptent = ptep_get_and_clear_full(mm, addr, pte,
1089 tlb->fullmm);
1090 tlb_remove_tlb_entry(tlb, pte, addr);
1091 if (unlikely(!page))
1092 continue;
1093
1094 if (!PageAnon(page)) {
1095 if (pte_dirty(ptent)) {
1096 force_flush = 1;
1097 set_page_dirty(page);
1098 }
1099 if (pte_young(ptent) &&
1100 likely(!(vma->vm_flags & VM_SEQ_READ)))
1101 mark_page_accessed(page);
1102 }
1103 rss[mm_counter(page)]--;
1104 page_remove_rmap(page, false);
1105 if (unlikely(page_mapcount(page) < 0))
1106 print_bad_pte(vma, addr, ptent, page);
1107 if (unlikely(__tlb_remove_page(tlb, page))) {
1108 force_flush = 1;
1109 addr += PAGE_SIZE;
1110 break;
1111 }
1112 continue;
1113 }
1114
1115 entry = pte_to_swp_entry(ptent);
1116 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1117 struct page *page = device_private_entry_to_page(entry);
1118
1119 if (unlikely(details && details->check_mapping)) {
1120 /*
1121 * unmap_shared_mapping_pages() wants to
1122 * invalidate cache without truncating:
1123 * unmap shared but keep private pages.
1124 */
1125 if (details->check_mapping !=
1126 page_rmapping(page))
1127 continue;
1128 }
1129
1130 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1131 rss[mm_counter(page)]--;
1132 page_remove_rmap(page, false);
1133 put_page(page);
1134 continue;
1135 }
1136
1137 if (!non_swap_entry(entry)) {
1138 /* Genuine swap entry, hence a private anon page */
1139 if (!should_zap_cows(details))
1140 continue;
1141 rss[MM_SWAPENTS]--;
1142 } else if (is_migration_entry(entry)) {
1143 struct page *page;
1144
1145 page = migration_entry_to_page(entry);
1146 if (details && details->check_mapping &&
1147 details->check_mapping != page_rmapping(page))
1148 continue;
1149 rss[mm_counter(page)]--;
1150 }
1151 if (unlikely(!free_swap_and_cache(entry)))
1152 print_bad_pte(vma, addr, ptent, NULL);
1153 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1154 } while (pte++, addr += PAGE_SIZE, addr != end);
1155
1156 add_mm_rss_vec(mm, rss);
1157 arch_leave_lazy_mmu_mode();
1158
1159 /* Do the actual TLB flush before dropping ptl */
1160 if (force_flush)
1161 tlb_flush_mmu_tlbonly(tlb);
1162 pte_unmap_unlock(start_pte, ptl);
1163
1164 /*
1165 * If we forced a TLB flush (either due to running out of
1166 * batch buffers or because we needed to flush dirty TLB
1167 * entries before releasing the ptl), free the batched
1168 * memory too. Restart if we didn't do everything.
1169 */
1170 if (force_flush) {
1171 force_flush = 0;
1172 tlb_flush_mmu(tlb);
1173 }
1174
1175 if (addr != end) {
1176 cond_resched();
1177 goto again;
1178 }
1179
1180 return addr;
1181 }
1182
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1183 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1184 struct vm_area_struct *vma, pud_t *pud,
1185 unsigned long addr, unsigned long end,
1186 struct zap_details *details)
1187 {
1188 pmd_t *pmd;
1189 unsigned long next;
1190
1191 pmd = pmd_offset(pud, addr);
1192 do {
1193 next = pmd_addr_end(addr, end);
1194 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1195 if (next - addr != HPAGE_PMD_SIZE)
1196 __split_huge_pmd(vma, pmd, addr, false, NULL);
1197 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1198 goto next;
1199 /* fall through */
1200 } else if (details && details->single_page &&
1201 PageTransCompound(details->single_page) &&
1202 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1203 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1204 /*
1205 * Take and drop THP pmd lock so that we cannot return
1206 * prematurely, while zap_huge_pmd() has cleared *pmd,
1207 * but not yet decremented compound_mapcount().
1208 */
1209 spin_unlock(ptl);
1210 }
1211
1212 /*
1213 * Here there can be other concurrent MADV_DONTNEED or
1214 * trans huge page faults running, and if the pmd is
1215 * none or trans huge it can change under us. This is
1216 * because MADV_DONTNEED holds the mmap_sem in read
1217 * mode.
1218 */
1219 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1220 goto next;
1221 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1222 next:
1223 cond_resched();
1224 } while (pmd++, addr = next, addr != end);
1225
1226 return addr;
1227 }
1228
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1229 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1230 struct vm_area_struct *vma, p4d_t *p4d,
1231 unsigned long addr, unsigned long end,
1232 struct zap_details *details)
1233 {
1234 pud_t *pud;
1235 unsigned long next;
1236
1237 pud = pud_offset(p4d, addr);
1238 do {
1239 next = pud_addr_end(addr, end);
1240 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1241 if (next - addr != HPAGE_PUD_SIZE) {
1242 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1243 split_huge_pud(vma, pud, addr);
1244 } else if (zap_huge_pud(tlb, vma, pud, addr))
1245 goto next;
1246 /* fall through */
1247 }
1248 if (pud_none_or_clear_bad(pud))
1249 continue;
1250 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1251 next:
1252 cond_resched();
1253 } while (pud++, addr = next, addr != end);
1254
1255 return addr;
1256 }
1257
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1258 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1259 struct vm_area_struct *vma, pgd_t *pgd,
1260 unsigned long addr, unsigned long end,
1261 struct zap_details *details)
1262 {
1263 p4d_t *p4d;
1264 unsigned long next;
1265
1266 p4d = p4d_offset(pgd, addr);
1267 do {
1268 next = p4d_addr_end(addr, end);
1269 if (p4d_none_or_clear_bad(p4d))
1270 continue;
1271 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1272 } while (p4d++, addr = next, addr != end);
1273
1274 return addr;
1275 }
1276
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1277 void unmap_page_range(struct mmu_gather *tlb,
1278 struct vm_area_struct *vma,
1279 unsigned long addr, unsigned long end,
1280 struct zap_details *details)
1281 {
1282 pgd_t *pgd;
1283 unsigned long next;
1284
1285 BUG_ON(addr >= end);
1286 tlb_start_vma(tlb, vma);
1287 pgd = pgd_offset(vma->vm_mm, addr);
1288 do {
1289 next = pgd_addr_end(addr, end);
1290 if (pgd_none_or_clear_bad(pgd))
1291 continue;
1292 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1293 } while (pgd++, addr = next, addr != end);
1294 tlb_end_vma(tlb, vma);
1295 }
1296
1297
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)1298 static void unmap_single_vma(struct mmu_gather *tlb,
1299 struct vm_area_struct *vma, unsigned long start_addr,
1300 unsigned long end_addr,
1301 struct zap_details *details)
1302 {
1303 unsigned long start = max(vma->vm_start, start_addr);
1304 unsigned long end;
1305
1306 if (start >= vma->vm_end)
1307 return;
1308 end = min(vma->vm_end, end_addr);
1309 if (end <= vma->vm_start)
1310 return;
1311
1312 if (vma->vm_file)
1313 uprobe_munmap(vma, start, end);
1314
1315 if (unlikely(vma->vm_flags & VM_PFNMAP))
1316 untrack_pfn(vma, 0, 0);
1317
1318 if (start != end) {
1319 if (unlikely(is_vm_hugetlb_page(vma))) {
1320 /*
1321 * It is undesirable to test vma->vm_file as it
1322 * should be non-null for valid hugetlb area.
1323 * However, vm_file will be NULL in the error
1324 * cleanup path of mmap_region. When
1325 * hugetlbfs ->mmap method fails,
1326 * mmap_region() nullifies vma->vm_file
1327 * before calling this function to clean up.
1328 * Since no pte has actually been setup, it is
1329 * safe to do nothing in this case.
1330 */
1331 if (vma->vm_file) {
1332 i_mmap_lock_write(vma->vm_file->f_mapping);
1333 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1334 i_mmap_unlock_write(vma->vm_file->f_mapping);
1335 }
1336 } else
1337 unmap_page_range(tlb, vma, start, end, details);
1338 }
1339 }
1340
1341 /**
1342 * unmap_vmas - unmap a range of memory covered by a list of vma's
1343 * @tlb: address of the caller's struct mmu_gather
1344 * @vma: the starting vma
1345 * @start_addr: virtual address at which to start unmapping
1346 * @end_addr: virtual address at which to end unmapping
1347 *
1348 * Unmap all pages in the vma list.
1349 *
1350 * Only addresses between `start' and `end' will be unmapped.
1351 *
1352 * The VMA list must be sorted in ascending virtual address order.
1353 *
1354 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1355 * range after unmap_vmas() returns. So the only responsibility here is to
1356 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1357 * drops the lock and schedules.
1358 */
unmap_vmas(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)1359 void unmap_vmas(struct mmu_gather *tlb,
1360 struct vm_area_struct *vma, unsigned long start_addr,
1361 unsigned long end_addr)
1362 {
1363 struct mmu_notifier_range range;
1364
1365 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1366 start_addr, end_addr);
1367 mmu_notifier_invalidate_range_start(&range);
1368 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1369 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1370 mmu_notifier_invalidate_range_end(&range);
1371 }
1372
1373 /**
1374 * zap_page_range - remove user pages in a given range
1375 * @vma: vm_area_struct holding the applicable pages
1376 * @start: starting address of pages to zap
1377 * @size: number of bytes to zap
1378 *
1379 * Caller must protect the VMA list
1380 */
zap_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long size)1381 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1382 unsigned long size)
1383 {
1384 struct mmu_notifier_range range;
1385 struct mmu_gather tlb;
1386
1387 lru_add_drain();
1388 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1389 start, start + size);
1390 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1391 update_hiwater_rss(vma->vm_mm);
1392 mmu_notifier_invalidate_range_start(&range);
1393 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1394 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1395 mmu_notifier_invalidate_range_end(&range);
1396 tlb_finish_mmu(&tlb, start, range.end);
1397 }
1398
1399 /**
1400 * zap_page_range_single - remove user pages in a given range
1401 * @vma: vm_area_struct holding the applicable pages
1402 * @address: starting address of pages to zap
1403 * @size: number of bytes to zap
1404 * @details: details of shared cache invalidation
1405 *
1406 * The range must fit into one VMA.
1407 */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1408 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1409 unsigned long size, struct zap_details *details)
1410 {
1411 struct mmu_notifier_range range;
1412 struct mmu_gather tlb;
1413
1414 lru_add_drain();
1415 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1416 address, address + size);
1417 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1418 update_hiwater_rss(vma->vm_mm);
1419 mmu_notifier_invalidate_range_start(&range);
1420 unmap_single_vma(&tlb, vma, address, range.end, details);
1421 mmu_notifier_invalidate_range_end(&range);
1422 tlb_finish_mmu(&tlb, address, range.end);
1423 }
1424
1425 /**
1426 * zap_vma_ptes - remove ptes mapping the vma
1427 * @vma: vm_area_struct holding ptes to be zapped
1428 * @address: starting address of pages to zap
1429 * @size: number of bytes to zap
1430 *
1431 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1432 *
1433 * The entire address range must be fully contained within the vma.
1434 *
1435 */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1436 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1437 unsigned long size)
1438 {
1439 if (address < vma->vm_start || address + size > vma->vm_end ||
1440 !(vma->vm_flags & VM_PFNMAP))
1441 return;
1442
1443 zap_page_range_single(vma, address, size, NULL);
1444 }
1445 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1446
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1447 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1448 spinlock_t **ptl)
1449 {
1450 pgd_t *pgd;
1451 p4d_t *p4d;
1452 pud_t *pud;
1453 pmd_t *pmd;
1454
1455 pgd = pgd_offset(mm, addr);
1456 p4d = p4d_alloc(mm, pgd, addr);
1457 if (!p4d)
1458 return NULL;
1459 pud = pud_alloc(mm, p4d, addr);
1460 if (!pud)
1461 return NULL;
1462 pmd = pmd_alloc(mm, pud, addr);
1463 if (!pmd)
1464 return NULL;
1465
1466 VM_BUG_ON(pmd_trans_huge(*pmd));
1467 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1468 }
1469
1470 /*
1471 * This is the old fallback for page remapping.
1472 *
1473 * For historical reasons, it only allows reserved pages. Only
1474 * old drivers should use this, and they needed to mark their
1475 * pages reserved for the old functions anyway.
1476 */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1477 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1478 struct page *page, pgprot_t prot)
1479 {
1480 struct mm_struct *mm = vma->vm_mm;
1481 int retval;
1482 pte_t *pte;
1483 spinlock_t *ptl;
1484
1485 retval = -EINVAL;
1486 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1487 goto out;
1488 retval = -ENOMEM;
1489 flush_dcache_page(page);
1490 pte = get_locked_pte(mm, addr, &ptl);
1491 if (!pte)
1492 goto out;
1493 retval = -EBUSY;
1494 if (!pte_none(*pte))
1495 goto out_unlock;
1496
1497 /* Ok, finally just insert the thing.. */
1498 get_page(page);
1499 inc_mm_counter_fast(mm, mm_counter_file(page));
1500 page_add_file_rmap(page, false);
1501 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1502
1503 retval = 0;
1504 out_unlock:
1505 pte_unmap_unlock(pte, ptl);
1506 out:
1507 return retval;
1508 }
1509
1510 /**
1511 * vm_insert_page - insert single page into user vma
1512 * @vma: user vma to map to
1513 * @addr: target user address of this page
1514 * @page: source kernel page
1515 *
1516 * This allows drivers to insert individual pages they've allocated
1517 * into a user vma.
1518 *
1519 * The page has to be a nice clean _individual_ kernel allocation.
1520 * If you allocate a compound page, you need to have marked it as
1521 * such (__GFP_COMP), or manually just split the page up yourself
1522 * (see split_page()).
1523 *
1524 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1525 * took an arbitrary page protection parameter. This doesn't allow
1526 * that. Your vma protection will have to be set up correctly, which
1527 * means that if you want a shared writable mapping, you'd better
1528 * ask for a shared writable mapping!
1529 *
1530 * The page does not need to be reserved.
1531 *
1532 * Usually this function is called from f_op->mmap() handler
1533 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1534 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1535 * function from other places, for example from page-fault handler.
1536 *
1537 * Return: %0 on success, negative error code otherwise.
1538 */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)1539 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1540 struct page *page)
1541 {
1542 if (addr < vma->vm_start || addr >= vma->vm_end)
1543 return -EFAULT;
1544 if (!page_count(page))
1545 return -EINVAL;
1546 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1547 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1548 BUG_ON(vma->vm_flags & VM_PFNMAP);
1549 vma->vm_flags |= VM_MIXEDMAP;
1550 }
1551 return insert_page(vma, addr, page, vma->vm_page_prot);
1552 }
1553 EXPORT_SYMBOL(vm_insert_page);
1554
1555 /*
1556 * __vm_map_pages - maps range of kernel pages into user vma
1557 * @vma: user vma to map to
1558 * @pages: pointer to array of source kernel pages
1559 * @num: number of pages in page array
1560 * @offset: user's requested vm_pgoff
1561 *
1562 * This allows drivers to map range of kernel pages into a user vma.
1563 *
1564 * Return: 0 on success and error code otherwise.
1565 */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)1566 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1567 unsigned long num, unsigned long offset)
1568 {
1569 unsigned long count = vma_pages(vma);
1570 unsigned long uaddr = vma->vm_start;
1571 int ret, i;
1572
1573 /* Fail if the user requested offset is beyond the end of the object */
1574 if (offset >= num)
1575 return -ENXIO;
1576
1577 /* Fail if the user requested size exceeds available object size */
1578 if (count > num - offset)
1579 return -ENXIO;
1580
1581 for (i = 0; i < count; i++) {
1582 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1583 if (ret < 0)
1584 return ret;
1585 uaddr += PAGE_SIZE;
1586 }
1587
1588 return 0;
1589 }
1590
1591 /**
1592 * vm_map_pages - maps range of kernel pages starts with non zero offset
1593 * @vma: user vma to map to
1594 * @pages: pointer to array of source kernel pages
1595 * @num: number of pages in page array
1596 *
1597 * Maps an object consisting of @num pages, catering for the user's
1598 * requested vm_pgoff
1599 *
1600 * If we fail to insert any page into the vma, the function will return
1601 * immediately leaving any previously inserted pages present. Callers
1602 * from the mmap handler may immediately return the error as their caller
1603 * will destroy the vma, removing any successfully inserted pages. Other
1604 * callers should make their own arrangements for calling unmap_region().
1605 *
1606 * Context: Process context. Called by mmap handlers.
1607 * Return: 0 on success and error code otherwise.
1608 */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)1609 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1610 unsigned long num)
1611 {
1612 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1613 }
1614 EXPORT_SYMBOL(vm_map_pages);
1615
1616 /**
1617 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1618 * @vma: user vma to map to
1619 * @pages: pointer to array of source kernel pages
1620 * @num: number of pages in page array
1621 *
1622 * Similar to vm_map_pages(), except that it explicitly sets the offset
1623 * to 0. This function is intended for the drivers that did not consider
1624 * vm_pgoff.
1625 *
1626 * Context: Process context. Called by mmap handlers.
1627 * Return: 0 on success and error code otherwise.
1628 */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)1629 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1630 unsigned long num)
1631 {
1632 return __vm_map_pages(vma, pages, num, 0);
1633 }
1634 EXPORT_SYMBOL(vm_map_pages_zero);
1635
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)1636 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1637 pfn_t pfn, pgprot_t prot, bool mkwrite)
1638 {
1639 struct mm_struct *mm = vma->vm_mm;
1640 pte_t *pte, entry;
1641 spinlock_t *ptl;
1642
1643 pte = get_locked_pte(mm, addr, &ptl);
1644 if (!pte)
1645 return VM_FAULT_OOM;
1646 if (!pte_none(*pte)) {
1647 if (mkwrite) {
1648 /*
1649 * For read faults on private mappings the PFN passed
1650 * in may not match the PFN we have mapped if the
1651 * mapped PFN is a writeable COW page. In the mkwrite
1652 * case we are creating a writable PTE for a shared
1653 * mapping and we expect the PFNs to match. If they
1654 * don't match, we are likely racing with block
1655 * allocation and mapping invalidation so just skip the
1656 * update.
1657 */
1658 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1659 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1660 goto out_unlock;
1661 }
1662 entry = pte_mkyoung(*pte);
1663 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1664 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1665 update_mmu_cache(vma, addr, pte);
1666 }
1667 goto out_unlock;
1668 }
1669
1670 /* Ok, finally just insert the thing.. */
1671 if (pfn_t_devmap(pfn))
1672 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1673 else
1674 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1675
1676 if (mkwrite) {
1677 entry = pte_mkyoung(entry);
1678 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1679 }
1680
1681 set_pte_at(mm, addr, pte, entry);
1682 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1683
1684 out_unlock:
1685 pte_unmap_unlock(pte, ptl);
1686 return VM_FAULT_NOPAGE;
1687 }
1688
1689 /**
1690 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1691 * @vma: user vma to map to
1692 * @addr: target user address of this page
1693 * @pfn: source kernel pfn
1694 * @pgprot: pgprot flags for the inserted page
1695 *
1696 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1697 * to override pgprot on a per-page basis.
1698 *
1699 * This only makes sense for IO mappings, and it makes no sense for
1700 * COW mappings. In general, using multiple vmas is preferable;
1701 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1702 * impractical.
1703 *
1704 * Context: Process context. May allocate using %GFP_KERNEL.
1705 * Return: vm_fault_t value.
1706 */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)1707 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1708 unsigned long pfn, pgprot_t pgprot)
1709 {
1710 /*
1711 * Technically, architectures with pte_special can avoid all these
1712 * restrictions (same for remap_pfn_range). However we would like
1713 * consistency in testing and feature parity among all, so we should
1714 * try to keep these invariants in place for everybody.
1715 */
1716 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1717 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1718 (VM_PFNMAP|VM_MIXEDMAP));
1719 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1720 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1721
1722 if (addr < vma->vm_start || addr >= vma->vm_end)
1723 return VM_FAULT_SIGBUS;
1724
1725 if (!pfn_modify_allowed(pfn, pgprot))
1726 return VM_FAULT_SIGBUS;
1727
1728 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1729
1730 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1731 false);
1732 }
1733 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1734
1735 /**
1736 * vmf_insert_pfn - insert single pfn into user vma
1737 * @vma: user vma to map to
1738 * @addr: target user address of this page
1739 * @pfn: source kernel pfn
1740 *
1741 * Similar to vm_insert_page, this allows drivers to insert individual pages
1742 * they've allocated into a user vma. Same comments apply.
1743 *
1744 * This function should only be called from a vm_ops->fault handler, and
1745 * in that case the handler should return the result of this function.
1746 *
1747 * vma cannot be a COW mapping.
1748 *
1749 * As this is called only for pages that do not currently exist, we
1750 * do not need to flush old virtual caches or the TLB.
1751 *
1752 * Context: Process context. May allocate using %GFP_KERNEL.
1753 * Return: vm_fault_t value.
1754 */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)1755 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1756 unsigned long pfn)
1757 {
1758 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1759 }
1760 EXPORT_SYMBOL(vmf_insert_pfn);
1761
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn)1762 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1763 {
1764 /* these checks mirror the abort conditions in vm_normal_page */
1765 if (vma->vm_flags & VM_MIXEDMAP)
1766 return true;
1767 if (pfn_t_devmap(pfn))
1768 return true;
1769 if (pfn_t_special(pfn))
1770 return true;
1771 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1772 return true;
1773 return false;
1774 }
1775
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,bool mkwrite)1776 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1777 unsigned long addr, pfn_t pfn, bool mkwrite)
1778 {
1779 pgprot_t pgprot = vma->vm_page_prot;
1780 int err;
1781
1782 BUG_ON(!vm_mixed_ok(vma, pfn));
1783
1784 if (addr < vma->vm_start || addr >= vma->vm_end)
1785 return VM_FAULT_SIGBUS;
1786
1787 track_pfn_insert(vma, &pgprot, pfn);
1788
1789 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1790 return VM_FAULT_SIGBUS;
1791
1792 /*
1793 * If we don't have pte special, then we have to use the pfn_valid()
1794 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1795 * refcount the page if pfn_valid is true (hence insert_page rather
1796 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1797 * without pte special, it would there be refcounted as a normal page.
1798 */
1799 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1800 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1801 struct page *page;
1802
1803 /*
1804 * At this point we are committed to insert_page()
1805 * regardless of whether the caller specified flags that
1806 * result in pfn_t_has_page() == false.
1807 */
1808 page = pfn_to_page(pfn_t_to_pfn(pfn));
1809 err = insert_page(vma, addr, page, pgprot);
1810 } else {
1811 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1812 }
1813
1814 if (err == -ENOMEM)
1815 return VM_FAULT_OOM;
1816 if (err < 0 && err != -EBUSY)
1817 return VM_FAULT_SIGBUS;
1818
1819 return VM_FAULT_NOPAGE;
1820 }
1821
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)1822 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1823 pfn_t pfn)
1824 {
1825 return __vm_insert_mixed(vma, addr, pfn, false);
1826 }
1827 EXPORT_SYMBOL(vmf_insert_mixed);
1828
1829 /*
1830 * If the insertion of PTE failed because someone else already added a
1831 * different entry in the mean time, we treat that as success as we assume
1832 * the same entry was actually inserted.
1833 */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)1834 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1835 unsigned long addr, pfn_t pfn)
1836 {
1837 return __vm_insert_mixed(vma, addr, pfn, true);
1838 }
1839 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1840
1841 /*
1842 * maps a range of physical memory into the requested pages. the old
1843 * mappings are removed. any references to nonexistent pages results
1844 * in null mappings (currently treated as "copy-on-access")
1845 */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1846 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1847 unsigned long addr, unsigned long end,
1848 unsigned long pfn, pgprot_t prot)
1849 {
1850 pte_t *pte, *mapped_pte;
1851 spinlock_t *ptl;
1852 int err = 0;
1853
1854 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1855 if (!pte)
1856 return -ENOMEM;
1857 arch_enter_lazy_mmu_mode();
1858 do {
1859 BUG_ON(!pte_none(*pte));
1860 if (!pfn_modify_allowed(pfn, prot)) {
1861 err = -EACCES;
1862 break;
1863 }
1864 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1865 pfn++;
1866 } while (pte++, addr += PAGE_SIZE, addr != end);
1867 arch_leave_lazy_mmu_mode();
1868 pte_unmap_unlock(mapped_pte, ptl);
1869 return err;
1870 }
1871
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1872 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1873 unsigned long addr, unsigned long end,
1874 unsigned long pfn, pgprot_t prot)
1875 {
1876 pmd_t *pmd;
1877 unsigned long next;
1878 int err;
1879
1880 pfn -= addr >> PAGE_SHIFT;
1881 pmd = pmd_alloc(mm, pud, addr);
1882 if (!pmd)
1883 return -ENOMEM;
1884 VM_BUG_ON(pmd_trans_huge(*pmd));
1885 do {
1886 next = pmd_addr_end(addr, end);
1887 err = remap_pte_range(mm, pmd, addr, next,
1888 pfn + (addr >> PAGE_SHIFT), prot);
1889 if (err)
1890 return err;
1891 } while (pmd++, addr = next, addr != end);
1892 return 0;
1893 }
1894
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1895 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1896 unsigned long addr, unsigned long end,
1897 unsigned long pfn, pgprot_t prot)
1898 {
1899 pud_t *pud;
1900 unsigned long next;
1901 int err;
1902
1903 pfn -= addr >> PAGE_SHIFT;
1904 pud = pud_alloc(mm, p4d, addr);
1905 if (!pud)
1906 return -ENOMEM;
1907 do {
1908 next = pud_addr_end(addr, end);
1909 err = remap_pmd_range(mm, pud, addr, next,
1910 pfn + (addr >> PAGE_SHIFT), prot);
1911 if (err)
1912 return err;
1913 } while (pud++, addr = next, addr != end);
1914 return 0;
1915 }
1916
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)1917 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1918 unsigned long addr, unsigned long end,
1919 unsigned long pfn, pgprot_t prot)
1920 {
1921 p4d_t *p4d;
1922 unsigned long next;
1923 int err;
1924
1925 pfn -= addr >> PAGE_SHIFT;
1926 p4d = p4d_alloc(mm, pgd, addr);
1927 if (!p4d)
1928 return -ENOMEM;
1929 do {
1930 next = p4d_addr_end(addr, end);
1931 err = remap_pud_range(mm, p4d, addr, next,
1932 pfn + (addr >> PAGE_SHIFT), prot);
1933 if (err)
1934 return err;
1935 } while (p4d++, addr = next, addr != end);
1936 return 0;
1937 }
1938
1939 /**
1940 * remap_pfn_range - remap kernel memory to userspace
1941 * @vma: user vma to map to
1942 * @addr: target user address to start at
1943 * @pfn: physical address of kernel memory
1944 * @size: size of map area
1945 * @prot: page protection flags for this mapping
1946 *
1947 * Note: this is only safe if the mm semaphore is held when called.
1948 *
1949 * Return: %0 on success, negative error code otherwise.
1950 */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)1951 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1952 unsigned long pfn, unsigned long size, pgprot_t prot)
1953 {
1954 pgd_t *pgd;
1955 unsigned long next;
1956 unsigned long end = addr + PAGE_ALIGN(size);
1957 struct mm_struct *mm = vma->vm_mm;
1958 unsigned long remap_pfn = pfn;
1959 int err;
1960
1961 /*
1962 * Physically remapped pages are special. Tell the
1963 * rest of the world about it:
1964 * VM_IO tells people not to look at these pages
1965 * (accesses can have side effects).
1966 * VM_PFNMAP tells the core MM that the base pages are just
1967 * raw PFN mappings, and do not have a "struct page" associated
1968 * with them.
1969 * VM_DONTEXPAND
1970 * Disable vma merging and expanding with mremap().
1971 * VM_DONTDUMP
1972 * Omit vma from core dump, even when VM_IO turned off.
1973 *
1974 * There's a horrible special case to handle copy-on-write
1975 * behaviour that some programs depend on. We mark the "original"
1976 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1977 * See vm_normal_page() for details.
1978 */
1979 if (is_cow_mapping(vma->vm_flags)) {
1980 if (addr != vma->vm_start || end != vma->vm_end)
1981 return -EINVAL;
1982 vma->vm_pgoff = pfn;
1983 }
1984
1985 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1986 if (err)
1987 return -EINVAL;
1988
1989 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1990
1991 BUG_ON(addr >= end);
1992 pfn -= addr >> PAGE_SHIFT;
1993 pgd = pgd_offset(mm, addr);
1994 flush_cache_range(vma, addr, end);
1995 do {
1996 next = pgd_addr_end(addr, end);
1997 err = remap_p4d_range(mm, pgd, addr, next,
1998 pfn + (addr >> PAGE_SHIFT), prot);
1999 if (err)
2000 break;
2001 } while (pgd++, addr = next, addr != end);
2002
2003 if (err)
2004 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2005
2006 return err;
2007 }
2008 EXPORT_SYMBOL(remap_pfn_range);
2009
2010 /**
2011 * vm_iomap_memory - remap memory to userspace
2012 * @vma: user vma to map to
2013 * @start: start of area
2014 * @len: size of area
2015 *
2016 * This is a simplified io_remap_pfn_range() for common driver use. The
2017 * driver just needs to give us the physical memory range to be mapped,
2018 * we'll figure out the rest from the vma information.
2019 *
2020 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2021 * whatever write-combining details or similar.
2022 *
2023 * Return: %0 on success, negative error code otherwise.
2024 */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2025 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2026 {
2027 unsigned long vm_len, pfn, pages;
2028
2029 /* Check that the physical memory area passed in looks valid */
2030 if (start + len < start)
2031 return -EINVAL;
2032 /*
2033 * You *really* shouldn't map things that aren't page-aligned,
2034 * but we've historically allowed it because IO memory might
2035 * just have smaller alignment.
2036 */
2037 len += start & ~PAGE_MASK;
2038 pfn = start >> PAGE_SHIFT;
2039 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2040 if (pfn + pages < pfn)
2041 return -EINVAL;
2042
2043 /* We start the mapping 'vm_pgoff' pages into the area */
2044 if (vma->vm_pgoff > pages)
2045 return -EINVAL;
2046 pfn += vma->vm_pgoff;
2047 pages -= vma->vm_pgoff;
2048
2049 /* Can we fit all of the mapping? */
2050 vm_len = vma->vm_end - vma->vm_start;
2051 if (vm_len >> PAGE_SHIFT > pages)
2052 return -EINVAL;
2053
2054 /* Ok, let it rip */
2055 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2056 }
2057 EXPORT_SYMBOL(vm_iomap_memory);
2058
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2059 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2060 unsigned long addr, unsigned long end,
2061 pte_fn_t fn, void *data)
2062 {
2063 pte_t *pte;
2064 int err;
2065 spinlock_t *uninitialized_var(ptl);
2066
2067 pte = (mm == &init_mm) ?
2068 pte_alloc_kernel(pmd, addr) :
2069 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2070 if (!pte)
2071 return -ENOMEM;
2072
2073 BUG_ON(pmd_huge(*pmd));
2074
2075 arch_enter_lazy_mmu_mode();
2076
2077 do {
2078 err = fn(pte++, addr, data);
2079 if (err)
2080 break;
2081 } while (addr += PAGE_SIZE, addr != end);
2082
2083 arch_leave_lazy_mmu_mode();
2084
2085 if (mm != &init_mm)
2086 pte_unmap_unlock(pte-1, ptl);
2087 return err;
2088 }
2089
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2090 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2091 unsigned long addr, unsigned long end,
2092 pte_fn_t fn, void *data)
2093 {
2094 pmd_t *pmd;
2095 unsigned long next;
2096 int err;
2097
2098 BUG_ON(pud_huge(*pud));
2099
2100 pmd = pmd_alloc(mm, pud, addr);
2101 if (!pmd)
2102 return -ENOMEM;
2103 do {
2104 next = pmd_addr_end(addr, end);
2105 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2106 if (err)
2107 break;
2108 } while (pmd++, addr = next, addr != end);
2109 return err;
2110 }
2111
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2112 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2113 unsigned long addr, unsigned long end,
2114 pte_fn_t fn, void *data)
2115 {
2116 pud_t *pud;
2117 unsigned long next;
2118 int err;
2119
2120 pud = pud_alloc(mm, p4d, addr);
2121 if (!pud)
2122 return -ENOMEM;
2123 do {
2124 next = pud_addr_end(addr, end);
2125 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2126 if (err)
2127 break;
2128 } while (pud++, addr = next, addr != end);
2129 return err;
2130 }
2131
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data)2132 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2133 unsigned long addr, unsigned long end,
2134 pte_fn_t fn, void *data)
2135 {
2136 p4d_t *p4d;
2137 unsigned long next;
2138 int err;
2139
2140 p4d = p4d_alloc(mm, pgd, addr);
2141 if (!p4d)
2142 return -ENOMEM;
2143 do {
2144 next = p4d_addr_end(addr, end);
2145 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2146 if (err)
2147 break;
2148 } while (p4d++, addr = next, addr != end);
2149 return err;
2150 }
2151
2152 /*
2153 * Scan a region of virtual memory, filling in page tables as necessary
2154 * and calling a provided function on each leaf page table.
2155 */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2156 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2157 unsigned long size, pte_fn_t fn, void *data)
2158 {
2159 pgd_t *pgd;
2160 unsigned long next;
2161 unsigned long end = addr + size;
2162 int err;
2163
2164 if (WARN_ON(addr >= end))
2165 return -EINVAL;
2166
2167 pgd = pgd_offset(mm, addr);
2168 do {
2169 next = pgd_addr_end(addr, end);
2170 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2171 if (err)
2172 break;
2173 } while (pgd++, addr = next, addr != end);
2174
2175 return err;
2176 }
2177 EXPORT_SYMBOL_GPL(apply_to_page_range);
2178
2179 /*
2180 * handle_pte_fault chooses page fault handler according to an entry which was
2181 * read non-atomically. Before making any commitment, on those architectures
2182 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2183 * parts, do_swap_page must check under lock before unmapping the pte and
2184 * proceeding (but do_wp_page is only called after already making such a check;
2185 * and do_anonymous_page can safely check later on).
2186 */
pte_unmap_same(struct mm_struct * mm,pmd_t * pmd,pte_t * page_table,pte_t orig_pte)2187 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2188 pte_t *page_table, pte_t orig_pte)
2189 {
2190 int same = 1;
2191 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2192 if (sizeof(pte_t) > sizeof(unsigned long)) {
2193 spinlock_t *ptl = pte_lockptr(mm, pmd);
2194 spin_lock(ptl);
2195 same = pte_same(*page_table, orig_pte);
2196 spin_unlock(ptl);
2197 }
2198 #endif
2199 pte_unmap(page_table);
2200 return same;
2201 }
2202
cow_user_page(struct page * dst,struct page * src,struct vm_fault * vmf)2203 static inline bool cow_user_page(struct page *dst, struct page *src,
2204 struct vm_fault *vmf)
2205 {
2206 bool ret;
2207 void *kaddr;
2208 void __user *uaddr;
2209 bool locked = false;
2210 struct vm_area_struct *vma = vmf->vma;
2211 struct mm_struct *mm = vma->vm_mm;
2212 unsigned long addr = vmf->address;
2213
2214 debug_dma_assert_idle(src);
2215
2216 if (likely(src)) {
2217 copy_user_highpage(dst, src, addr, vma);
2218 return true;
2219 }
2220
2221 /*
2222 * If the source page was a PFN mapping, we don't have
2223 * a "struct page" for it. We do a best-effort copy by
2224 * just copying from the original user address. If that
2225 * fails, we just zero-fill it. Live with it.
2226 */
2227 kaddr = kmap_atomic(dst);
2228 uaddr = (void __user *)(addr & PAGE_MASK);
2229
2230 /*
2231 * On architectures with software "accessed" bits, we would
2232 * take a double page fault, so mark it accessed here.
2233 */
2234 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2235 pte_t entry;
2236
2237 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2238 locked = true;
2239 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2240 /*
2241 * Other thread has already handled the fault
2242 * and we don't need to do anything. If it's
2243 * not the case, the fault will be triggered
2244 * again on the same address.
2245 */
2246 ret = false;
2247 goto pte_unlock;
2248 }
2249
2250 entry = pte_mkyoung(vmf->orig_pte);
2251 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2252 update_mmu_cache(vma, addr, vmf->pte);
2253 }
2254
2255 /*
2256 * This really shouldn't fail, because the page is there
2257 * in the page tables. But it might just be unreadable,
2258 * in which case we just give up and fill the result with
2259 * zeroes.
2260 */
2261 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2262 if (locked)
2263 goto warn;
2264
2265 /* Re-validate under PTL if the page is still mapped */
2266 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2267 locked = true;
2268 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2269 /* The PTE changed under us. Retry page fault. */
2270 ret = false;
2271 goto pte_unlock;
2272 }
2273
2274 /*
2275 * The same page can be mapped back since last copy attampt.
2276 * Try to copy again under PTL.
2277 */
2278 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2279 /*
2280 * Give a warn in case there can be some obscure
2281 * use-case
2282 */
2283 warn:
2284 WARN_ON_ONCE(1);
2285 clear_page(kaddr);
2286 }
2287 }
2288
2289 ret = true;
2290
2291 pte_unlock:
2292 if (locked)
2293 pte_unmap_unlock(vmf->pte, vmf->ptl);
2294 kunmap_atomic(kaddr);
2295 flush_dcache_page(dst);
2296
2297 return ret;
2298 }
2299
__get_fault_gfp_mask(struct vm_area_struct * vma)2300 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2301 {
2302 struct file *vm_file = vma->vm_file;
2303
2304 if (vm_file)
2305 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2306
2307 /*
2308 * Special mappings (e.g. VDSO) do not have any file so fake
2309 * a default GFP_KERNEL for them.
2310 */
2311 return GFP_KERNEL;
2312 }
2313
2314 /*
2315 * Notify the address space that the page is about to become writable so that
2316 * it can prohibit this or wait for the page to get into an appropriate state.
2317 *
2318 * We do this without the lock held, so that it can sleep if it needs to.
2319 */
do_page_mkwrite(struct vm_fault * vmf)2320 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2321 {
2322 vm_fault_t ret;
2323 struct page *page = vmf->page;
2324 unsigned int old_flags = vmf->flags;
2325
2326 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2327
2328 if (vmf->vma->vm_file &&
2329 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2330 return VM_FAULT_SIGBUS;
2331
2332 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2333 /* Restore original flags so that caller is not surprised */
2334 vmf->flags = old_flags;
2335 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2336 return ret;
2337 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2338 lock_page(page);
2339 if (!page->mapping) {
2340 unlock_page(page);
2341 return 0; /* retry */
2342 }
2343 ret |= VM_FAULT_LOCKED;
2344 } else
2345 VM_BUG_ON_PAGE(!PageLocked(page), page);
2346 return ret;
2347 }
2348
2349 /*
2350 * Handle dirtying of a page in shared file mapping on a write fault.
2351 *
2352 * The function expects the page to be locked and unlocks it.
2353 */
fault_dirty_shared_page(struct vm_fault * vmf)2354 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2355 {
2356 struct vm_area_struct *vma = vmf->vma;
2357 struct address_space *mapping;
2358 struct page *page = vmf->page;
2359 bool dirtied;
2360 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2361
2362 dirtied = set_page_dirty(page);
2363 VM_BUG_ON_PAGE(PageAnon(page), page);
2364 /*
2365 * Take a local copy of the address_space - page.mapping may be zeroed
2366 * by truncate after unlock_page(). The address_space itself remains
2367 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2368 * release semantics to prevent the compiler from undoing this copying.
2369 */
2370 mapping = page_rmapping(page);
2371 unlock_page(page);
2372
2373 if (!page_mkwrite)
2374 file_update_time(vma->vm_file);
2375
2376 /*
2377 * Throttle page dirtying rate down to writeback speed.
2378 *
2379 * mapping may be NULL here because some device drivers do not
2380 * set page.mapping but still dirty their pages
2381 *
2382 * Drop the mmap_sem before waiting on IO, if we can. The file
2383 * is pinning the mapping, as per above.
2384 */
2385 if ((dirtied || page_mkwrite) && mapping) {
2386 struct file *fpin;
2387
2388 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2389 balance_dirty_pages_ratelimited(mapping);
2390 if (fpin) {
2391 fput(fpin);
2392 return VM_FAULT_RETRY;
2393 }
2394 }
2395
2396 return 0;
2397 }
2398
2399 /*
2400 * Handle write page faults for pages that can be reused in the current vma
2401 *
2402 * This can happen either due to the mapping being with the VM_SHARED flag,
2403 * or due to us being the last reference standing to the page. In either
2404 * case, all we need to do here is to mark the page as writable and update
2405 * any related book-keeping.
2406 */
wp_page_reuse(struct vm_fault * vmf)2407 static inline void wp_page_reuse(struct vm_fault *vmf)
2408 __releases(vmf->ptl)
2409 {
2410 struct vm_area_struct *vma = vmf->vma;
2411 struct page *page = vmf->page;
2412 pte_t entry;
2413 /*
2414 * Clear the pages cpupid information as the existing
2415 * information potentially belongs to a now completely
2416 * unrelated process.
2417 */
2418 if (page)
2419 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2420
2421 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2422 entry = pte_mkyoung(vmf->orig_pte);
2423 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2424 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2425 update_mmu_cache(vma, vmf->address, vmf->pte);
2426 pte_unmap_unlock(vmf->pte, vmf->ptl);
2427 }
2428
2429 /*
2430 * Handle the case of a page which we actually need to copy to a new page.
2431 *
2432 * Called with mmap_sem locked and the old page referenced, but
2433 * without the ptl held.
2434 *
2435 * High level logic flow:
2436 *
2437 * - Allocate a page, copy the content of the old page to the new one.
2438 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2439 * - Take the PTL. If the pte changed, bail out and release the allocated page
2440 * - If the pte is still the way we remember it, update the page table and all
2441 * relevant references. This includes dropping the reference the page-table
2442 * held to the old page, as well as updating the rmap.
2443 * - In any case, unlock the PTL and drop the reference we took to the old page.
2444 */
wp_page_copy(struct vm_fault * vmf)2445 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2446 {
2447 struct vm_area_struct *vma = vmf->vma;
2448 struct mm_struct *mm = vma->vm_mm;
2449 struct page *old_page = vmf->page;
2450 struct page *new_page = NULL;
2451 pte_t entry;
2452 int page_copied = 0;
2453 struct mem_cgroup *memcg;
2454 struct mmu_notifier_range range;
2455
2456 if (unlikely(anon_vma_prepare(vma)))
2457 goto oom;
2458
2459 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2460 new_page = alloc_zeroed_user_highpage_movable(vma,
2461 vmf->address);
2462 if (!new_page)
2463 goto oom;
2464 } else {
2465 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2466 vmf->address);
2467 if (!new_page)
2468 goto oom;
2469
2470 if (!cow_user_page(new_page, old_page, vmf)) {
2471 /*
2472 * COW failed, if the fault was solved by other,
2473 * it's fine. If not, userspace would re-fault on
2474 * the same address and we will handle the fault
2475 * from the second attempt.
2476 */
2477 put_page(new_page);
2478 if (old_page)
2479 put_page(old_page);
2480 return 0;
2481 }
2482 }
2483
2484 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2485 goto oom_free_new;
2486
2487 __SetPageUptodate(new_page);
2488
2489 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2490 vmf->address & PAGE_MASK,
2491 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2492 mmu_notifier_invalidate_range_start(&range);
2493
2494 /*
2495 * Re-check the pte - we dropped the lock
2496 */
2497 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2498 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2499 if (old_page) {
2500 if (!PageAnon(old_page)) {
2501 dec_mm_counter_fast(mm,
2502 mm_counter_file(old_page));
2503 inc_mm_counter_fast(mm, MM_ANONPAGES);
2504 }
2505 } else {
2506 inc_mm_counter_fast(mm, MM_ANONPAGES);
2507 }
2508 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2509 entry = mk_pte(new_page, vma->vm_page_prot);
2510 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2511 /*
2512 * Clear the pte entry and flush it first, before updating the
2513 * pte with the new entry. This will avoid a race condition
2514 * seen in the presence of one thread doing SMC and another
2515 * thread doing COW.
2516 */
2517 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2518 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2519 mem_cgroup_commit_charge(new_page, memcg, false, false);
2520 lru_cache_add_active_or_unevictable(new_page, vma);
2521 /*
2522 * We call the notify macro here because, when using secondary
2523 * mmu page tables (such as kvm shadow page tables), we want the
2524 * new page to be mapped directly into the secondary page table.
2525 */
2526 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2527 update_mmu_cache(vma, vmf->address, vmf->pte);
2528 if (old_page) {
2529 /*
2530 * Only after switching the pte to the new page may
2531 * we remove the mapcount here. Otherwise another
2532 * process may come and find the rmap count decremented
2533 * before the pte is switched to the new page, and
2534 * "reuse" the old page writing into it while our pte
2535 * here still points into it and can be read by other
2536 * threads.
2537 *
2538 * The critical issue is to order this
2539 * page_remove_rmap with the ptp_clear_flush above.
2540 * Those stores are ordered by (if nothing else,)
2541 * the barrier present in the atomic_add_negative
2542 * in page_remove_rmap.
2543 *
2544 * Then the TLB flush in ptep_clear_flush ensures that
2545 * no process can access the old page before the
2546 * decremented mapcount is visible. And the old page
2547 * cannot be reused until after the decremented
2548 * mapcount is visible. So transitively, TLBs to
2549 * old page will be flushed before it can be reused.
2550 */
2551 page_remove_rmap(old_page, false);
2552 }
2553
2554 /* Free the old page.. */
2555 new_page = old_page;
2556 page_copied = 1;
2557 } else {
2558 mem_cgroup_cancel_charge(new_page, memcg, false);
2559 }
2560
2561 if (new_page)
2562 put_page(new_page);
2563
2564 pte_unmap_unlock(vmf->pte, vmf->ptl);
2565 /*
2566 * No need to double call mmu_notifier->invalidate_range() callback as
2567 * the above ptep_clear_flush_notify() did already call it.
2568 */
2569 mmu_notifier_invalidate_range_only_end(&range);
2570 if (old_page) {
2571 /*
2572 * Don't let another task, with possibly unlocked vma,
2573 * keep the mlocked page.
2574 */
2575 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2576 lock_page(old_page); /* LRU manipulation */
2577 if (PageMlocked(old_page))
2578 munlock_vma_page(old_page);
2579 unlock_page(old_page);
2580 }
2581 put_page(old_page);
2582 }
2583 return page_copied ? VM_FAULT_WRITE : 0;
2584 oom_free_new:
2585 put_page(new_page);
2586 oom:
2587 if (old_page)
2588 put_page(old_page);
2589 return VM_FAULT_OOM;
2590 }
2591
2592 /**
2593 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2594 * writeable once the page is prepared
2595 *
2596 * @vmf: structure describing the fault
2597 *
2598 * This function handles all that is needed to finish a write page fault in a
2599 * shared mapping due to PTE being read-only once the mapped page is prepared.
2600 * It handles locking of PTE and modifying it.
2601 *
2602 * The function expects the page to be locked or other protection against
2603 * concurrent faults / writeback (such as DAX radix tree locks).
2604 *
2605 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2606 * we acquired PTE lock.
2607 */
finish_mkwrite_fault(struct vm_fault * vmf)2608 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2609 {
2610 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2611 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2612 &vmf->ptl);
2613 /*
2614 * We might have raced with another page fault while we released the
2615 * pte_offset_map_lock.
2616 */
2617 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2618 pte_unmap_unlock(vmf->pte, vmf->ptl);
2619 return VM_FAULT_NOPAGE;
2620 }
2621 wp_page_reuse(vmf);
2622 return 0;
2623 }
2624
2625 /*
2626 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2627 * mapping
2628 */
wp_pfn_shared(struct vm_fault * vmf)2629 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2630 {
2631 struct vm_area_struct *vma = vmf->vma;
2632
2633 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2634 vm_fault_t ret;
2635
2636 pte_unmap_unlock(vmf->pte, vmf->ptl);
2637 vmf->flags |= FAULT_FLAG_MKWRITE;
2638 ret = vma->vm_ops->pfn_mkwrite(vmf);
2639 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2640 return ret;
2641 return finish_mkwrite_fault(vmf);
2642 }
2643 wp_page_reuse(vmf);
2644 return VM_FAULT_WRITE;
2645 }
2646
wp_page_shared(struct vm_fault * vmf)2647 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2648 __releases(vmf->ptl)
2649 {
2650 struct vm_area_struct *vma = vmf->vma;
2651 vm_fault_t ret = VM_FAULT_WRITE;
2652
2653 get_page(vmf->page);
2654
2655 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2656 vm_fault_t tmp;
2657
2658 pte_unmap_unlock(vmf->pte, vmf->ptl);
2659 tmp = do_page_mkwrite(vmf);
2660 if (unlikely(!tmp || (tmp &
2661 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2662 put_page(vmf->page);
2663 return tmp;
2664 }
2665 tmp = finish_mkwrite_fault(vmf);
2666 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2667 unlock_page(vmf->page);
2668 put_page(vmf->page);
2669 return tmp;
2670 }
2671 } else {
2672 wp_page_reuse(vmf);
2673 lock_page(vmf->page);
2674 }
2675 ret |= fault_dirty_shared_page(vmf);
2676 put_page(vmf->page);
2677
2678 return ret;
2679 }
2680
2681 /*
2682 * This routine handles present pages, when users try to write
2683 * to a shared page. It is done by copying the page to a new address
2684 * and decrementing the shared-page counter for the old page.
2685 *
2686 * Note that this routine assumes that the protection checks have been
2687 * done by the caller (the low-level page fault routine in most cases).
2688 * Thus we can safely just mark it writable once we've done any necessary
2689 * COW.
2690 *
2691 * We also mark the page dirty at this point even though the page will
2692 * change only once the write actually happens. This avoids a few races,
2693 * and potentially makes it more efficient.
2694 *
2695 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2696 * but allow concurrent faults), with pte both mapped and locked.
2697 * We return with mmap_sem still held, but pte unmapped and unlocked.
2698 */
do_wp_page(struct vm_fault * vmf)2699 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2700 __releases(vmf->ptl)
2701 {
2702 struct vm_area_struct *vma = vmf->vma;
2703
2704 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2705 if (!vmf->page) {
2706 /*
2707 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2708 * VM_PFNMAP VMA.
2709 *
2710 * We should not cow pages in a shared writeable mapping.
2711 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2712 */
2713 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2714 (VM_WRITE|VM_SHARED))
2715 return wp_pfn_shared(vmf);
2716
2717 pte_unmap_unlock(vmf->pte, vmf->ptl);
2718 return wp_page_copy(vmf);
2719 }
2720
2721 /*
2722 * Take out anonymous pages first, anonymous shared vmas are
2723 * not dirty accountable.
2724 */
2725 if (PageAnon(vmf->page)) {
2726 struct page *page = vmf->page;
2727
2728 /* PageKsm() doesn't necessarily raise the page refcount */
2729 if (PageKsm(page) || page_count(page) != 1)
2730 goto copy;
2731 if (!trylock_page(page))
2732 goto copy;
2733 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
2734 unlock_page(page);
2735 goto copy;
2736 }
2737 /*
2738 * Ok, we've got the only map reference, and the only
2739 * page count reference, and the page is locked,
2740 * it's dark out, and we're wearing sunglasses. Hit it.
2741 */
2742 unlock_page(page);
2743 wp_page_reuse(vmf);
2744 return VM_FAULT_WRITE;
2745 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2746 (VM_WRITE|VM_SHARED))) {
2747 return wp_page_shared(vmf);
2748 }
2749 copy:
2750 /*
2751 * Ok, we need to copy. Oh, well..
2752 */
2753 get_page(vmf->page);
2754
2755 pte_unmap_unlock(vmf->pte, vmf->ptl);
2756 return wp_page_copy(vmf);
2757 }
2758
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)2759 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2760 unsigned long start_addr, unsigned long end_addr,
2761 struct zap_details *details)
2762 {
2763 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2764 }
2765
unmap_mapping_range_tree(struct rb_root_cached * root,struct zap_details * details)2766 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2767 struct zap_details *details)
2768 {
2769 struct vm_area_struct *vma;
2770 pgoff_t vba, vea, zba, zea;
2771
2772 vma_interval_tree_foreach(vma, root,
2773 details->first_index, details->last_index) {
2774
2775 vba = vma->vm_pgoff;
2776 vea = vba + vma_pages(vma) - 1;
2777 zba = details->first_index;
2778 if (zba < vba)
2779 zba = vba;
2780 zea = details->last_index;
2781 if (zea > vea)
2782 zea = vea;
2783
2784 unmap_mapping_range_vma(vma,
2785 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2786 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2787 details);
2788 }
2789 }
2790
2791 /**
2792 * unmap_mapping_page() - Unmap single page from processes.
2793 * @page: The locked page to be unmapped.
2794 *
2795 * Unmap this page from any userspace process which still has it mmaped.
2796 * Typically, for efficiency, the range of nearby pages has already been
2797 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
2798 * truncation or invalidation holds the lock on a page, it may find that
2799 * the page has been remapped again: and then uses unmap_mapping_page()
2800 * to unmap it finally.
2801 */
unmap_mapping_page(struct page * page)2802 void unmap_mapping_page(struct page *page)
2803 {
2804 struct address_space *mapping = page->mapping;
2805 struct zap_details details = { };
2806
2807 VM_BUG_ON(!PageLocked(page));
2808 VM_BUG_ON(PageTail(page));
2809
2810 details.check_mapping = mapping;
2811 details.first_index = page->index;
2812 details.last_index = page->index + hpage_nr_pages(page) - 1;
2813 details.single_page = page;
2814
2815 i_mmap_lock_write(mapping);
2816 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2817 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2818 i_mmap_unlock_write(mapping);
2819 }
2820
2821 /**
2822 * unmap_mapping_pages() - Unmap pages from processes.
2823 * @mapping: The address space containing pages to be unmapped.
2824 * @start: Index of first page to be unmapped.
2825 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2826 * @even_cows: Whether to unmap even private COWed pages.
2827 *
2828 * Unmap the pages in this address space from any userspace process which
2829 * has them mmaped. Generally, you want to remove COWed pages as well when
2830 * a file is being truncated, but not when invalidating pages from the page
2831 * cache.
2832 */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2833 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2834 pgoff_t nr, bool even_cows)
2835 {
2836 struct zap_details details = { };
2837
2838 details.check_mapping = even_cows ? NULL : mapping;
2839 details.first_index = start;
2840 details.last_index = start + nr - 1;
2841 if (details.last_index < details.first_index)
2842 details.last_index = ULONG_MAX;
2843
2844 i_mmap_lock_write(mapping);
2845 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2846 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2847 i_mmap_unlock_write(mapping);
2848 }
2849
2850 /**
2851 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2852 * address_space corresponding to the specified byte range in the underlying
2853 * file.
2854 *
2855 * @mapping: the address space containing mmaps to be unmapped.
2856 * @holebegin: byte in first page to unmap, relative to the start of
2857 * the underlying file. This will be rounded down to a PAGE_SIZE
2858 * boundary. Note that this is different from truncate_pagecache(), which
2859 * must keep the partial page. In contrast, we must get rid of
2860 * partial pages.
2861 * @holelen: size of prospective hole in bytes. This will be rounded
2862 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2863 * end of the file.
2864 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2865 * but 0 when invalidating pagecache, don't throw away private data.
2866 */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2867 void unmap_mapping_range(struct address_space *mapping,
2868 loff_t const holebegin, loff_t const holelen, int even_cows)
2869 {
2870 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
2871 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
2872
2873 /* Check for overflow. */
2874 if (sizeof(holelen) > sizeof(hlen)) {
2875 long long holeend =
2876 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2877 if (holeend & ~(long long)ULONG_MAX)
2878 hlen = ULONG_MAX - hba + 1;
2879 }
2880
2881 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2882 }
2883 EXPORT_SYMBOL(unmap_mapping_range);
2884
2885 /*
2886 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2887 * but allow concurrent faults), and pte mapped but not yet locked.
2888 * We return with pte unmapped and unlocked.
2889 *
2890 * We return with the mmap_sem locked or unlocked in the same cases
2891 * as does filemap_fault().
2892 */
do_swap_page(struct vm_fault * vmf)2893 vm_fault_t do_swap_page(struct vm_fault *vmf)
2894 {
2895 struct vm_area_struct *vma = vmf->vma;
2896 struct page *page = NULL, *swapcache;
2897 struct mem_cgroup *memcg;
2898 swp_entry_t entry;
2899 pte_t pte;
2900 int locked;
2901 int exclusive = 0;
2902 vm_fault_t ret = 0;
2903
2904 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2905 goto out;
2906
2907 entry = pte_to_swp_entry(vmf->orig_pte);
2908 if (unlikely(non_swap_entry(entry))) {
2909 if (is_migration_entry(entry)) {
2910 migration_entry_wait(vma->vm_mm, vmf->pmd,
2911 vmf->address);
2912 } else if (is_device_private_entry(entry)) {
2913 vmf->page = device_private_entry_to_page(entry);
2914 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2915 } else if (is_hwpoison_entry(entry)) {
2916 ret = VM_FAULT_HWPOISON;
2917 } else {
2918 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2919 ret = VM_FAULT_SIGBUS;
2920 }
2921 goto out;
2922 }
2923
2924
2925 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2926 page = lookup_swap_cache(entry, vma, vmf->address);
2927 swapcache = page;
2928
2929 if (!page) {
2930 struct swap_info_struct *si = swp_swap_info(entry);
2931
2932 if (si->flags & SWP_SYNCHRONOUS_IO &&
2933 __swap_count(entry) == 1) {
2934 /* skip swapcache */
2935 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2936 vmf->address);
2937 if (page) {
2938 __SetPageLocked(page);
2939 __SetPageSwapBacked(page);
2940 set_page_private(page, entry.val);
2941 lru_cache_add_anon(page);
2942 swap_readpage(page, true);
2943 }
2944 } else {
2945 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2946 vmf);
2947 swapcache = page;
2948 }
2949
2950 if (!page) {
2951 /*
2952 * Back out if somebody else faulted in this pte
2953 * while we released the pte lock.
2954 */
2955 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2956 vmf->address, &vmf->ptl);
2957 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2958 ret = VM_FAULT_OOM;
2959 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2960 goto unlock;
2961 }
2962
2963 /* Had to read the page from swap area: Major fault */
2964 ret = VM_FAULT_MAJOR;
2965 count_vm_event(PGMAJFAULT);
2966 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2967 } else if (PageHWPoison(page)) {
2968 /*
2969 * hwpoisoned dirty swapcache pages are kept for killing
2970 * owner processes (which may be unknown at hwpoison time)
2971 */
2972 ret = VM_FAULT_HWPOISON;
2973 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2974 goto out_release;
2975 }
2976
2977 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2978
2979 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2980 if (!locked) {
2981 ret |= VM_FAULT_RETRY;
2982 goto out_release;
2983 }
2984
2985 /*
2986 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2987 * release the swapcache from under us. The page pin, and pte_same
2988 * test below, are not enough to exclude that. Even if it is still
2989 * swapcache, we need to check that the page's swap has not changed.
2990 */
2991 if (unlikely((!PageSwapCache(page) ||
2992 page_private(page) != entry.val)) && swapcache)
2993 goto out_page;
2994
2995 page = ksm_might_need_to_copy(page, vma, vmf->address);
2996 if (unlikely(!page)) {
2997 ret = VM_FAULT_OOM;
2998 page = swapcache;
2999 goto out_page;
3000 }
3001
3002 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3003 &memcg, false)) {
3004 ret = VM_FAULT_OOM;
3005 goto out_page;
3006 }
3007
3008 /*
3009 * Back out if somebody else already faulted in this pte.
3010 */
3011 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3012 &vmf->ptl);
3013 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3014 goto out_nomap;
3015
3016 if (unlikely(!PageUptodate(page))) {
3017 ret = VM_FAULT_SIGBUS;
3018 goto out_nomap;
3019 }
3020
3021 /*
3022 * The page isn't present yet, go ahead with the fault.
3023 *
3024 * Be careful about the sequence of operations here.
3025 * To get its accounting right, reuse_swap_page() must be called
3026 * while the page is counted on swap but not yet in mapcount i.e.
3027 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3028 * must be called after the swap_free(), or it will never succeed.
3029 */
3030
3031 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3032 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3033 pte = mk_pte(page, vma->vm_page_prot);
3034 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3035 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3036 vmf->flags &= ~FAULT_FLAG_WRITE;
3037 ret |= VM_FAULT_WRITE;
3038 exclusive = RMAP_EXCLUSIVE;
3039 }
3040 flush_icache_page(vma, page);
3041 if (pte_swp_soft_dirty(vmf->orig_pte))
3042 pte = pte_mksoft_dirty(pte);
3043 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3044 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3045 vmf->orig_pte = pte;
3046
3047 /* ksm created a completely new copy */
3048 if (unlikely(page != swapcache && swapcache)) {
3049 page_add_new_anon_rmap(page, vma, vmf->address, false);
3050 mem_cgroup_commit_charge(page, memcg, false, false);
3051 lru_cache_add_active_or_unevictable(page, vma);
3052 } else {
3053 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3054 mem_cgroup_commit_charge(page, memcg, true, false);
3055 activate_page(page);
3056 }
3057
3058 swap_free(entry);
3059 if (mem_cgroup_swap_full(page) ||
3060 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3061 try_to_free_swap(page);
3062 unlock_page(page);
3063 if (page != swapcache && swapcache) {
3064 /*
3065 * Hold the lock to avoid the swap entry to be reused
3066 * until we take the PT lock for the pte_same() check
3067 * (to avoid false positives from pte_same). For
3068 * further safety release the lock after the swap_free
3069 * so that the swap count won't change under a
3070 * parallel locked swapcache.
3071 */
3072 unlock_page(swapcache);
3073 put_page(swapcache);
3074 }
3075
3076 if (vmf->flags & FAULT_FLAG_WRITE) {
3077 ret |= do_wp_page(vmf);
3078 if (ret & VM_FAULT_ERROR)
3079 ret &= VM_FAULT_ERROR;
3080 goto out;
3081 }
3082
3083 /* No need to invalidate - it was non-present before */
3084 update_mmu_cache(vma, vmf->address, vmf->pte);
3085 unlock:
3086 pte_unmap_unlock(vmf->pte, vmf->ptl);
3087 out:
3088 return ret;
3089 out_nomap:
3090 mem_cgroup_cancel_charge(page, memcg, false);
3091 pte_unmap_unlock(vmf->pte, vmf->ptl);
3092 out_page:
3093 unlock_page(page);
3094 out_release:
3095 put_page(page);
3096 if (page != swapcache && swapcache) {
3097 unlock_page(swapcache);
3098 put_page(swapcache);
3099 }
3100 return ret;
3101 }
3102
3103 /*
3104 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3105 * but allow concurrent faults), and pte mapped but not yet locked.
3106 * We return with mmap_sem still held, but pte unmapped and unlocked.
3107 */
do_anonymous_page(struct vm_fault * vmf)3108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3109 {
3110 struct vm_area_struct *vma = vmf->vma;
3111 struct mem_cgroup *memcg;
3112 struct page *page;
3113 vm_fault_t ret = 0;
3114 pte_t entry;
3115
3116 /* File mapping without ->vm_ops ? */
3117 if (vma->vm_flags & VM_SHARED)
3118 return VM_FAULT_SIGBUS;
3119
3120 /*
3121 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3122 * pte_offset_map() on pmds where a huge pmd might be created
3123 * from a different thread.
3124 *
3125 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3126 * parallel threads are excluded by other means.
3127 *
3128 * Here we only have down_read(mmap_sem).
3129 */
3130 if (pte_alloc(vma->vm_mm, vmf->pmd))
3131 return VM_FAULT_OOM;
3132
3133 /* See the comment in pte_alloc_one_map() */
3134 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3135 return 0;
3136
3137 /* Use the zero-page for reads */
3138 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3139 !mm_forbids_zeropage(vma->vm_mm)) {
3140 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3141 vma->vm_page_prot));
3142 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3143 vmf->address, &vmf->ptl);
3144 if (!pte_none(*vmf->pte))
3145 goto unlock;
3146 ret = check_stable_address_space(vma->vm_mm);
3147 if (ret)
3148 goto unlock;
3149 /* Deliver the page fault to userland, check inside PT lock */
3150 if (userfaultfd_missing(vma)) {
3151 pte_unmap_unlock(vmf->pte, vmf->ptl);
3152 return handle_userfault(vmf, VM_UFFD_MISSING);
3153 }
3154 goto setpte;
3155 }
3156
3157 /* Allocate our own private page. */
3158 if (unlikely(anon_vma_prepare(vma)))
3159 goto oom;
3160 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3161 if (!page)
3162 goto oom;
3163
3164 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3165 false))
3166 goto oom_free_page;
3167
3168 /*
3169 * The memory barrier inside __SetPageUptodate makes sure that
3170 * preceeding stores to the page contents become visible before
3171 * the set_pte_at() write.
3172 */
3173 __SetPageUptodate(page);
3174
3175 entry = mk_pte(page, vma->vm_page_prot);
3176 if (vma->vm_flags & VM_WRITE)
3177 entry = pte_mkwrite(pte_mkdirty(entry));
3178
3179 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3180 &vmf->ptl);
3181 if (!pte_none(*vmf->pte))
3182 goto release;
3183
3184 ret = check_stable_address_space(vma->vm_mm);
3185 if (ret)
3186 goto release;
3187
3188 /* Deliver the page fault to userland, check inside PT lock */
3189 if (userfaultfd_missing(vma)) {
3190 pte_unmap_unlock(vmf->pte, vmf->ptl);
3191 mem_cgroup_cancel_charge(page, memcg, false);
3192 put_page(page);
3193 return handle_userfault(vmf, VM_UFFD_MISSING);
3194 }
3195
3196 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3197 page_add_new_anon_rmap(page, vma, vmf->address, false);
3198 mem_cgroup_commit_charge(page, memcg, false, false);
3199 lru_cache_add_active_or_unevictable(page, vma);
3200 setpte:
3201 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3202
3203 /* No need to invalidate - it was non-present before */
3204 update_mmu_cache(vma, vmf->address, vmf->pte);
3205 unlock:
3206 pte_unmap_unlock(vmf->pte, vmf->ptl);
3207 return ret;
3208 release:
3209 mem_cgroup_cancel_charge(page, memcg, false);
3210 put_page(page);
3211 goto unlock;
3212 oom_free_page:
3213 put_page(page);
3214 oom:
3215 return VM_FAULT_OOM;
3216 }
3217
3218 /*
3219 * The mmap_sem must have been held on entry, and may have been
3220 * released depending on flags and vma->vm_ops->fault() return value.
3221 * See filemap_fault() and __lock_page_retry().
3222 */
__do_fault(struct vm_fault * vmf)3223 static vm_fault_t __do_fault(struct vm_fault *vmf)
3224 {
3225 struct vm_area_struct *vma = vmf->vma;
3226 vm_fault_t ret;
3227
3228 /*
3229 * Preallocate pte before we take page_lock because this might lead to
3230 * deadlocks for memcg reclaim which waits for pages under writeback:
3231 * lock_page(A)
3232 * SetPageWriteback(A)
3233 * unlock_page(A)
3234 * lock_page(B)
3235 * lock_page(B)
3236 * pte_alloc_pne
3237 * shrink_page_list
3238 * wait_on_page_writeback(A)
3239 * SetPageWriteback(B)
3240 * unlock_page(B)
3241 * # flush A, B to clear the writeback
3242 */
3243 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3244 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3245 if (!vmf->prealloc_pte)
3246 return VM_FAULT_OOM;
3247 smp_wmb(); /* See comment in __pte_alloc() */
3248 }
3249
3250 ret = vma->vm_ops->fault(vmf);
3251 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3252 VM_FAULT_DONE_COW)))
3253 return ret;
3254
3255 if (unlikely(PageHWPoison(vmf->page))) {
3256 struct page *page = vmf->page;
3257 vm_fault_t poisonret = VM_FAULT_HWPOISON;
3258 if (ret & VM_FAULT_LOCKED) {
3259 if (page_mapped(page))
3260 unmap_mapping_pages(page_mapping(page),
3261 page->index, 1, false);
3262 /* Retry if a clean page was removed from the cache. */
3263 if (invalidate_inode_page(page))
3264 poisonret = VM_FAULT_NOPAGE;
3265 unlock_page(page);
3266 }
3267 put_page(page);
3268 vmf->page = NULL;
3269 return poisonret;
3270 }
3271
3272 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3273 lock_page(vmf->page);
3274 else
3275 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3276
3277 return ret;
3278 }
3279
3280 /*
3281 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3282 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3283 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3284 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3285 */
pmd_devmap_trans_unstable(pmd_t * pmd)3286 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3287 {
3288 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3289 }
3290
pte_alloc_one_map(struct vm_fault * vmf)3291 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3292 {
3293 struct vm_area_struct *vma = vmf->vma;
3294
3295 if (!pmd_none(*vmf->pmd))
3296 goto map_pte;
3297 if (vmf->prealloc_pte) {
3298 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3299 if (unlikely(!pmd_none(*vmf->pmd))) {
3300 spin_unlock(vmf->ptl);
3301 goto map_pte;
3302 }
3303
3304 mm_inc_nr_ptes(vma->vm_mm);
3305 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3306 spin_unlock(vmf->ptl);
3307 vmf->prealloc_pte = NULL;
3308 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3309 return VM_FAULT_OOM;
3310 }
3311 map_pte:
3312 /*
3313 * If a huge pmd materialized under us just retry later. Use
3314 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3315 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3316 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3317 * running immediately after a huge pmd fault in a different thread of
3318 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3319 * All we have to ensure is that it is a regular pmd that we can walk
3320 * with pte_offset_map() and we can do that through an atomic read in
3321 * C, which is what pmd_trans_unstable() provides.
3322 */
3323 if (pmd_devmap_trans_unstable(vmf->pmd))
3324 return VM_FAULT_NOPAGE;
3325
3326 /*
3327 * At this point we know that our vmf->pmd points to a page of ptes
3328 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3329 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3330 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3331 * be valid and we will re-check to make sure the vmf->pte isn't
3332 * pte_none() under vmf->ptl protection when we return to
3333 * alloc_set_pte().
3334 */
3335 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3336 &vmf->ptl);
3337 return 0;
3338 }
3339
3340 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
deposit_prealloc_pte(struct vm_fault * vmf)3341 static void deposit_prealloc_pte(struct vm_fault *vmf)
3342 {
3343 struct vm_area_struct *vma = vmf->vma;
3344
3345 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3346 /*
3347 * We are going to consume the prealloc table,
3348 * count that as nr_ptes.
3349 */
3350 mm_inc_nr_ptes(vma->vm_mm);
3351 vmf->prealloc_pte = NULL;
3352 }
3353
do_set_pmd(struct vm_fault * vmf,struct page * page)3354 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3355 {
3356 struct vm_area_struct *vma = vmf->vma;
3357 bool write = vmf->flags & FAULT_FLAG_WRITE;
3358 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3359 pmd_t entry;
3360 int i;
3361 vm_fault_t ret;
3362
3363 if (!transhuge_vma_suitable(vma, haddr))
3364 return VM_FAULT_FALLBACK;
3365
3366 ret = VM_FAULT_FALLBACK;
3367 page = compound_head(page);
3368
3369 /*
3370 * Archs like ppc64 need additonal space to store information
3371 * related to pte entry. Use the preallocated table for that.
3372 */
3373 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3374 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3375 if (!vmf->prealloc_pte)
3376 return VM_FAULT_OOM;
3377 smp_wmb(); /* See comment in __pte_alloc() */
3378 }
3379
3380 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3381 if (unlikely(!pmd_none(*vmf->pmd)))
3382 goto out;
3383
3384 for (i = 0; i < HPAGE_PMD_NR; i++)
3385 flush_icache_page(vma, page + i);
3386
3387 entry = mk_huge_pmd(page, vma->vm_page_prot);
3388 if (write)
3389 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3390
3391 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3392 page_add_file_rmap(page, true);
3393 /*
3394 * deposit and withdraw with pmd lock held
3395 */
3396 if (arch_needs_pgtable_deposit())
3397 deposit_prealloc_pte(vmf);
3398
3399 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3400
3401 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3402
3403 /* fault is handled */
3404 ret = 0;
3405 count_vm_event(THP_FILE_MAPPED);
3406 out:
3407 spin_unlock(vmf->ptl);
3408 return ret;
3409 }
3410 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)3411 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3412 {
3413 BUILD_BUG();
3414 return 0;
3415 }
3416 #endif
3417
3418 /**
3419 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3420 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3421 *
3422 * @vmf: fault environment
3423 * @memcg: memcg to charge page (only for private mappings)
3424 * @page: page to map
3425 *
3426 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3427 * return.
3428 *
3429 * Target users are page handler itself and implementations of
3430 * vm_ops->map_pages.
3431 *
3432 * Return: %0 on success, %VM_FAULT_ code in case of error.
3433 */
alloc_set_pte(struct vm_fault * vmf,struct mem_cgroup * memcg,struct page * page)3434 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3435 struct page *page)
3436 {
3437 struct vm_area_struct *vma = vmf->vma;
3438 bool write = vmf->flags & FAULT_FLAG_WRITE;
3439 pte_t entry;
3440 vm_fault_t ret;
3441
3442 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3443 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3444 /* THP on COW? */
3445 VM_BUG_ON_PAGE(memcg, page);
3446
3447 ret = do_set_pmd(vmf, page);
3448 if (ret != VM_FAULT_FALLBACK)
3449 return ret;
3450 }
3451
3452 if (!vmf->pte) {
3453 ret = pte_alloc_one_map(vmf);
3454 if (ret)
3455 return ret;
3456 }
3457
3458 /* Re-check under ptl */
3459 if (unlikely(!pte_none(*vmf->pte)))
3460 return VM_FAULT_NOPAGE;
3461
3462 flush_icache_page(vma, page);
3463 entry = mk_pte(page, vma->vm_page_prot);
3464 if (write)
3465 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3466 /* copy-on-write page */
3467 if (write && !(vma->vm_flags & VM_SHARED)) {
3468 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3469 page_add_new_anon_rmap(page, vma, vmf->address, false);
3470 mem_cgroup_commit_charge(page, memcg, false, false);
3471 lru_cache_add_active_or_unevictable(page, vma);
3472 } else {
3473 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3474 page_add_file_rmap(page, false);
3475 }
3476 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3477
3478 /* no need to invalidate: a not-present page won't be cached */
3479 update_mmu_cache(vma, vmf->address, vmf->pte);
3480
3481 return 0;
3482 }
3483
3484
3485 /**
3486 * finish_fault - finish page fault once we have prepared the page to fault
3487 *
3488 * @vmf: structure describing the fault
3489 *
3490 * This function handles all that is needed to finish a page fault once the
3491 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3492 * given page, adds reverse page mapping, handles memcg charges and LRU
3493 * addition.
3494 *
3495 * The function expects the page to be locked and on success it consumes a
3496 * reference of a page being mapped (for the PTE which maps it).
3497 *
3498 * Return: %0 on success, %VM_FAULT_ code in case of error.
3499 */
finish_fault(struct vm_fault * vmf)3500 vm_fault_t finish_fault(struct vm_fault *vmf)
3501 {
3502 struct page *page;
3503 vm_fault_t ret = 0;
3504
3505 /* Did we COW the page? */
3506 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3507 !(vmf->vma->vm_flags & VM_SHARED))
3508 page = vmf->cow_page;
3509 else
3510 page = vmf->page;
3511
3512 /*
3513 * check even for read faults because we might have lost our CoWed
3514 * page
3515 */
3516 if (!(vmf->vma->vm_flags & VM_SHARED))
3517 ret = check_stable_address_space(vmf->vma->vm_mm);
3518 if (!ret)
3519 ret = alloc_set_pte(vmf, vmf->memcg, page);
3520 if (vmf->pte)
3521 pte_unmap_unlock(vmf->pte, vmf->ptl);
3522 return ret;
3523 }
3524
3525 static unsigned long fault_around_bytes __read_mostly =
3526 rounddown_pow_of_two(65536);
3527
3528 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)3529 static int fault_around_bytes_get(void *data, u64 *val)
3530 {
3531 *val = fault_around_bytes;
3532 return 0;
3533 }
3534
3535 /*
3536 * fault_around_bytes must be rounded down to the nearest page order as it's
3537 * what do_fault_around() expects to see.
3538 */
fault_around_bytes_set(void * data,u64 val)3539 static int fault_around_bytes_set(void *data, u64 val)
3540 {
3541 if (val / PAGE_SIZE > PTRS_PER_PTE)
3542 return -EINVAL;
3543 if (val > PAGE_SIZE)
3544 fault_around_bytes = rounddown_pow_of_two(val);
3545 else
3546 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3547 return 0;
3548 }
3549 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3550 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3551
fault_around_debugfs(void)3552 static int __init fault_around_debugfs(void)
3553 {
3554 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3555 &fault_around_bytes_fops);
3556 return 0;
3557 }
3558 late_initcall(fault_around_debugfs);
3559 #endif
3560
3561 /*
3562 * do_fault_around() tries to map few pages around the fault address. The hope
3563 * is that the pages will be needed soon and this will lower the number of
3564 * faults to handle.
3565 *
3566 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3567 * not ready to be mapped: not up-to-date, locked, etc.
3568 *
3569 * This function is called with the page table lock taken. In the split ptlock
3570 * case the page table lock only protects only those entries which belong to
3571 * the page table corresponding to the fault address.
3572 *
3573 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3574 * only once.
3575 *
3576 * fault_around_bytes defines how many bytes we'll try to map.
3577 * do_fault_around() expects it to be set to a power of two less than or equal
3578 * to PTRS_PER_PTE.
3579 *
3580 * The virtual address of the area that we map is naturally aligned to
3581 * fault_around_bytes rounded down to the machine page size
3582 * (and therefore to page order). This way it's easier to guarantee
3583 * that we don't cross page table boundaries.
3584 */
do_fault_around(struct vm_fault * vmf)3585 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3586 {
3587 unsigned long address = vmf->address, nr_pages, mask;
3588 pgoff_t start_pgoff = vmf->pgoff;
3589 pgoff_t end_pgoff;
3590 int off;
3591 vm_fault_t ret = 0;
3592
3593 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3594 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3595
3596 vmf->address = max(address & mask, vmf->vma->vm_start);
3597 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3598 start_pgoff -= off;
3599
3600 /*
3601 * end_pgoff is either the end of the page table, the end of
3602 * the vma or nr_pages from start_pgoff, depending what is nearest.
3603 */
3604 end_pgoff = start_pgoff -
3605 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3606 PTRS_PER_PTE - 1;
3607 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3608 start_pgoff + nr_pages - 1);
3609
3610 if (pmd_none(*vmf->pmd)) {
3611 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3612 if (!vmf->prealloc_pte)
3613 goto out;
3614 smp_wmb(); /* See comment in __pte_alloc() */
3615 }
3616
3617 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3618
3619 /* Huge page is mapped? Page fault is solved */
3620 if (pmd_trans_huge(*vmf->pmd)) {
3621 ret = VM_FAULT_NOPAGE;
3622 goto out;
3623 }
3624
3625 /* ->map_pages() haven't done anything useful. Cold page cache? */
3626 if (!vmf->pte)
3627 goto out;
3628
3629 /* check if the page fault is solved */
3630 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3631 if (!pte_none(*vmf->pte))
3632 ret = VM_FAULT_NOPAGE;
3633 pte_unmap_unlock(vmf->pte, vmf->ptl);
3634 out:
3635 vmf->address = address;
3636 vmf->pte = NULL;
3637 return ret;
3638 }
3639
do_read_fault(struct vm_fault * vmf)3640 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3641 {
3642 struct vm_area_struct *vma = vmf->vma;
3643 vm_fault_t ret = 0;
3644
3645 /*
3646 * Let's call ->map_pages() first and use ->fault() as fallback
3647 * if page by the offset is not ready to be mapped (cold cache or
3648 * something).
3649 */
3650 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3651 ret = do_fault_around(vmf);
3652 if (ret)
3653 return ret;
3654 }
3655
3656 ret = __do_fault(vmf);
3657 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3658 return ret;
3659
3660 ret |= finish_fault(vmf);
3661 unlock_page(vmf->page);
3662 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3663 put_page(vmf->page);
3664 return ret;
3665 }
3666
do_cow_fault(struct vm_fault * vmf)3667 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3668 {
3669 struct vm_area_struct *vma = vmf->vma;
3670 vm_fault_t ret;
3671
3672 if (unlikely(anon_vma_prepare(vma)))
3673 return VM_FAULT_OOM;
3674
3675 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3676 if (!vmf->cow_page)
3677 return VM_FAULT_OOM;
3678
3679 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3680 &vmf->memcg, false)) {
3681 put_page(vmf->cow_page);
3682 return VM_FAULT_OOM;
3683 }
3684
3685 ret = __do_fault(vmf);
3686 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3687 goto uncharge_out;
3688 if (ret & VM_FAULT_DONE_COW)
3689 return ret;
3690
3691 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3692 __SetPageUptodate(vmf->cow_page);
3693
3694 ret |= finish_fault(vmf);
3695 unlock_page(vmf->page);
3696 put_page(vmf->page);
3697 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3698 goto uncharge_out;
3699 return ret;
3700 uncharge_out:
3701 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3702 put_page(vmf->cow_page);
3703 return ret;
3704 }
3705
do_shared_fault(struct vm_fault * vmf)3706 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3707 {
3708 struct vm_area_struct *vma = vmf->vma;
3709 vm_fault_t ret, tmp;
3710
3711 ret = __do_fault(vmf);
3712 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3713 return ret;
3714
3715 /*
3716 * Check if the backing address space wants to know that the page is
3717 * about to become writable
3718 */
3719 if (vma->vm_ops->page_mkwrite) {
3720 unlock_page(vmf->page);
3721 tmp = do_page_mkwrite(vmf);
3722 if (unlikely(!tmp ||
3723 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3724 put_page(vmf->page);
3725 return tmp;
3726 }
3727 }
3728
3729 ret |= finish_fault(vmf);
3730 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3731 VM_FAULT_RETRY))) {
3732 unlock_page(vmf->page);
3733 put_page(vmf->page);
3734 return ret;
3735 }
3736
3737 ret |= fault_dirty_shared_page(vmf);
3738 return ret;
3739 }
3740
3741 /*
3742 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3743 * but allow concurrent faults).
3744 * The mmap_sem may have been released depending on flags and our
3745 * return value. See filemap_fault() and __lock_page_or_retry().
3746 * If mmap_sem is released, vma may become invalid (for example
3747 * by other thread calling munmap()).
3748 */
do_fault(struct vm_fault * vmf)3749 static vm_fault_t do_fault(struct vm_fault *vmf)
3750 {
3751 struct vm_area_struct *vma = vmf->vma;
3752 struct mm_struct *vm_mm = vma->vm_mm;
3753 vm_fault_t ret;
3754
3755 /*
3756 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3757 */
3758 if (!vma->vm_ops->fault) {
3759 /*
3760 * If we find a migration pmd entry or a none pmd entry, which
3761 * should never happen, return SIGBUS
3762 */
3763 if (unlikely(!pmd_present(*vmf->pmd)))
3764 ret = VM_FAULT_SIGBUS;
3765 else {
3766 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3767 vmf->pmd,
3768 vmf->address,
3769 &vmf->ptl);
3770 /*
3771 * Make sure this is not a temporary clearing of pte
3772 * by holding ptl and checking again. A R/M/W update
3773 * of pte involves: take ptl, clearing the pte so that
3774 * we don't have concurrent modification by hardware
3775 * followed by an update.
3776 */
3777 if (unlikely(pte_none(*vmf->pte)))
3778 ret = VM_FAULT_SIGBUS;
3779 else
3780 ret = VM_FAULT_NOPAGE;
3781
3782 pte_unmap_unlock(vmf->pte, vmf->ptl);
3783 }
3784 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3785 ret = do_read_fault(vmf);
3786 else if (!(vma->vm_flags & VM_SHARED))
3787 ret = do_cow_fault(vmf);
3788 else
3789 ret = do_shared_fault(vmf);
3790
3791 /* preallocated pagetable is unused: free it */
3792 if (vmf->prealloc_pte) {
3793 pte_free(vm_mm, vmf->prealloc_pte);
3794 vmf->prealloc_pte = NULL;
3795 }
3796 return ret;
3797 }
3798
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)3799 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3800 unsigned long addr, int page_nid,
3801 int *flags)
3802 {
3803 get_page(page);
3804
3805 count_vm_numa_event(NUMA_HINT_FAULTS);
3806 if (page_nid == numa_node_id()) {
3807 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3808 *flags |= TNF_FAULT_LOCAL;
3809 }
3810
3811 return mpol_misplaced(page, vma, addr);
3812 }
3813
do_numa_page(struct vm_fault * vmf)3814 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3815 {
3816 struct vm_area_struct *vma = vmf->vma;
3817 struct page *page = NULL;
3818 int page_nid = NUMA_NO_NODE;
3819 int last_cpupid;
3820 int target_nid;
3821 bool migrated = false;
3822 pte_t pte, old_pte;
3823 bool was_writable = pte_savedwrite(vmf->orig_pte);
3824 int flags = 0;
3825
3826 /*
3827 * The "pte" at this point cannot be used safely without
3828 * validation through pte_unmap_same(). It's of NUMA type but
3829 * the pfn may be screwed if the read is non atomic.
3830 */
3831 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3832 spin_lock(vmf->ptl);
3833 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3834 pte_unmap_unlock(vmf->pte, vmf->ptl);
3835 goto out;
3836 }
3837
3838 /*
3839 * Make it present again, Depending on how arch implementes non
3840 * accessible ptes, some can allow access by kernel mode.
3841 */
3842 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3843 pte = pte_modify(old_pte, vma->vm_page_prot);
3844 pte = pte_mkyoung(pte);
3845 if (was_writable)
3846 pte = pte_mkwrite(pte);
3847 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3848 update_mmu_cache(vma, vmf->address, vmf->pte);
3849
3850 page = vm_normal_page(vma, vmf->address, pte);
3851 if (!page) {
3852 pte_unmap_unlock(vmf->pte, vmf->ptl);
3853 return 0;
3854 }
3855
3856 /* TODO: handle PTE-mapped THP */
3857 if (PageCompound(page)) {
3858 pte_unmap_unlock(vmf->pte, vmf->ptl);
3859 return 0;
3860 }
3861
3862 /*
3863 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3864 * much anyway since they can be in shared cache state. This misses
3865 * the case where a mapping is writable but the process never writes
3866 * to it but pte_write gets cleared during protection updates and
3867 * pte_dirty has unpredictable behaviour between PTE scan updates,
3868 * background writeback, dirty balancing and application behaviour.
3869 */
3870 if (!pte_write(pte))
3871 flags |= TNF_NO_GROUP;
3872
3873 /*
3874 * Flag if the page is shared between multiple address spaces. This
3875 * is later used when determining whether to group tasks together
3876 */
3877 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3878 flags |= TNF_SHARED;
3879
3880 last_cpupid = page_cpupid_last(page);
3881 page_nid = page_to_nid(page);
3882 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3883 &flags);
3884 pte_unmap_unlock(vmf->pte, vmf->ptl);
3885 if (target_nid == NUMA_NO_NODE) {
3886 put_page(page);
3887 goto out;
3888 }
3889
3890 /* Migrate to the requested node */
3891 migrated = migrate_misplaced_page(page, vma, target_nid);
3892 if (migrated) {
3893 page_nid = target_nid;
3894 flags |= TNF_MIGRATED;
3895 } else
3896 flags |= TNF_MIGRATE_FAIL;
3897
3898 out:
3899 if (page_nid != NUMA_NO_NODE)
3900 task_numa_fault(last_cpupid, page_nid, 1, flags);
3901 return 0;
3902 }
3903
create_huge_pmd(struct vm_fault * vmf)3904 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3905 {
3906 if (vma_is_anonymous(vmf->vma))
3907 return do_huge_pmd_anonymous_page(vmf);
3908 if (vmf->vma->vm_ops->huge_fault)
3909 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3910 return VM_FAULT_FALLBACK;
3911 }
3912
3913 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf,pmd_t orig_pmd)3914 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3915 {
3916 if (vma_is_anonymous(vmf->vma))
3917 return do_huge_pmd_wp_page(vmf, orig_pmd);
3918 if (vmf->vma->vm_ops->huge_fault)
3919 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3920
3921 /* COW handled on pte level: split pmd */
3922 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3923 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3924
3925 return VM_FAULT_FALLBACK;
3926 }
3927
vma_is_accessible(struct vm_area_struct * vma)3928 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3929 {
3930 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3931 }
3932
create_huge_pud(struct vm_fault * vmf)3933 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3934 {
3935 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3936 /* No support for anonymous transparent PUD pages yet */
3937 if (vma_is_anonymous(vmf->vma))
3938 return VM_FAULT_FALLBACK;
3939 if (vmf->vma->vm_ops->huge_fault)
3940 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3941 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3942 return VM_FAULT_FALLBACK;
3943 }
3944
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)3945 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3946 {
3947 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3948 /* No support for anonymous transparent PUD pages yet */
3949 if (vma_is_anonymous(vmf->vma))
3950 return VM_FAULT_FALLBACK;
3951 if (vmf->vma->vm_ops->huge_fault)
3952 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3953 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3954 return VM_FAULT_FALLBACK;
3955 }
3956
3957 /*
3958 * These routines also need to handle stuff like marking pages dirty
3959 * and/or accessed for architectures that don't do it in hardware (most
3960 * RISC architectures). The early dirtying is also good on the i386.
3961 *
3962 * There is also a hook called "update_mmu_cache()" that architectures
3963 * with external mmu caches can use to update those (ie the Sparc or
3964 * PowerPC hashed page tables that act as extended TLBs).
3965 *
3966 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3967 * concurrent faults).
3968 *
3969 * The mmap_sem may have been released depending on flags and our return value.
3970 * See filemap_fault() and __lock_page_or_retry().
3971 */
handle_pte_fault(struct vm_fault * vmf)3972 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3973 {
3974 pte_t entry;
3975
3976 if (unlikely(pmd_none(*vmf->pmd))) {
3977 /*
3978 * Leave __pte_alloc() until later: because vm_ops->fault may
3979 * want to allocate huge page, and if we expose page table
3980 * for an instant, it will be difficult to retract from
3981 * concurrent faults and from rmap lookups.
3982 */
3983 vmf->pte = NULL;
3984 } else {
3985 /* See comment in pte_alloc_one_map() */
3986 if (pmd_devmap_trans_unstable(vmf->pmd))
3987 return 0;
3988 /*
3989 * A regular pmd is established and it can't morph into a huge
3990 * pmd from under us anymore at this point because we hold the
3991 * mmap_sem read mode and khugepaged takes it in write mode.
3992 * So now it's safe to run pte_offset_map().
3993 */
3994 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3995 vmf->orig_pte = *vmf->pte;
3996
3997 /*
3998 * some architectures can have larger ptes than wordsize,
3999 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4000 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4001 * accesses. The code below just needs a consistent view
4002 * for the ifs and we later double check anyway with the
4003 * ptl lock held. So here a barrier will do.
4004 */
4005 barrier();
4006 if (pte_none(vmf->orig_pte)) {
4007 pte_unmap(vmf->pte);
4008 vmf->pte = NULL;
4009 }
4010 }
4011
4012 if (!vmf->pte) {
4013 if (vma_is_anonymous(vmf->vma))
4014 return do_anonymous_page(vmf);
4015 else
4016 return do_fault(vmf);
4017 }
4018
4019 if (!pte_present(vmf->orig_pte))
4020 return do_swap_page(vmf);
4021
4022 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4023 return do_numa_page(vmf);
4024
4025 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4026 spin_lock(vmf->ptl);
4027 entry = vmf->orig_pte;
4028 if (unlikely(!pte_same(*vmf->pte, entry)))
4029 goto unlock;
4030 if (vmf->flags & FAULT_FLAG_WRITE) {
4031 if (!pte_write(entry))
4032 return do_wp_page(vmf);
4033 entry = pte_mkdirty(entry);
4034 }
4035 entry = pte_mkyoung(entry);
4036 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4037 vmf->flags & FAULT_FLAG_WRITE)) {
4038 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4039 } else {
4040 /*
4041 * This is needed only for protection faults but the arch code
4042 * is not yet telling us if this is a protection fault or not.
4043 * This still avoids useless tlb flushes for .text page faults
4044 * with threads.
4045 */
4046 if (vmf->flags & FAULT_FLAG_WRITE)
4047 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4048 }
4049 unlock:
4050 pte_unmap_unlock(vmf->pte, vmf->ptl);
4051 return 0;
4052 }
4053
4054 /*
4055 * By the time we get here, we already hold the mm semaphore
4056 *
4057 * The mmap_sem may have been released depending on flags and our
4058 * return value. See filemap_fault() and __lock_page_or_retry().
4059 */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)4060 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4061 unsigned long address, unsigned int flags)
4062 {
4063 struct vm_fault vmf = {
4064 .vma = vma,
4065 .address = address & PAGE_MASK,
4066 .flags = flags,
4067 .pgoff = linear_page_index(vma, address),
4068 .gfp_mask = __get_fault_gfp_mask(vma),
4069 };
4070 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4071 struct mm_struct *mm = vma->vm_mm;
4072 pgd_t *pgd;
4073 p4d_t *p4d;
4074 vm_fault_t ret;
4075
4076 pgd = pgd_offset(mm, address);
4077 p4d = p4d_alloc(mm, pgd, address);
4078 if (!p4d)
4079 return VM_FAULT_OOM;
4080
4081 vmf.pud = pud_alloc(mm, p4d, address);
4082 if (!vmf.pud)
4083 return VM_FAULT_OOM;
4084 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4085 ret = create_huge_pud(&vmf);
4086 if (!(ret & VM_FAULT_FALLBACK))
4087 return ret;
4088 } else {
4089 pud_t orig_pud = *vmf.pud;
4090
4091 barrier();
4092 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4093
4094 /* NUMA case for anonymous PUDs would go here */
4095
4096 if (dirty && !pud_write(orig_pud)) {
4097 ret = wp_huge_pud(&vmf, orig_pud);
4098 if (!(ret & VM_FAULT_FALLBACK))
4099 return ret;
4100 } else {
4101 huge_pud_set_accessed(&vmf, orig_pud);
4102 return 0;
4103 }
4104 }
4105 }
4106
4107 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4108 if (!vmf.pmd)
4109 return VM_FAULT_OOM;
4110 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4111 ret = create_huge_pmd(&vmf);
4112 if (!(ret & VM_FAULT_FALLBACK))
4113 return ret;
4114 } else {
4115 pmd_t orig_pmd = *vmf.pmd;
4116
4117 barrier();
4118 if (unlikely(is_swap_pmd(orig_pmd))) {
4119 VM_BUG_ON(thp_migration_supported() &&
4120 !is_pmd_migration_entry(orig_pmd));
4121 if (is_pmd_migration_entry(orig_pmd))
4122 pmd_migration_entry_wait(mm, vmf.pmd);
4123 return 0;
4124 }
4125 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4126 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4127 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4128
4129 if (dirty && !pmd_write(orig_pmd)) {
4130 ret = wp_huge_pmd(&vmf, orig_pmd);
4131 if (!(ret & VM_FAULT_FALLBACK))
4132 return ret;
4133 } else {
4134 huge_pmd_set_accessed(&vmf, orig_pmd);
4135 return 0;
4136 }
4137 }
4138 }
4139
4140 return handle_pte_fault(&vmf);
4141 }
4142
4143 /*
4144 * By the time we get here, we already hold the mm semaphore
4145 *
4146 * The mmap_sem may have been released depending on flags and our
4147 * return value. See filemap_fault() and __lock_page_or_retry().
4148 */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)4149 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4150 unsigned int flags)
4151 {
4152 vm_fault_t ret;
4153
4154 __set_current_state(TASK_RUNNING);
4155
4156 count_vm_event(PGFAULT);
4157 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4158
4159 /* do counter updates before entering really critical section. */
4160 check_sync_rss_stat(current);
4161
4162 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4163 flags & FAULT_FLAG_INSTRUCTION,
4164 flags & FAULT_FLAG_REMOTE))
4165 return VM_FAULT_SIGSEGV;
4166
4167 /*
4168 * Enable the memcg OOM handling for faults triggered in user
4169 * space. Kernel faults are handled more gracefully.
4170 */
4171 if (flags & FAULT_FLAG_USER)
4172 mem_cgroup_enter_user_fault();
4173
4174 if (unlikely(is_vm_hugetlb_page(vma)))
4175 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4176 else
4177 ret = __handle_mm_fault(vma, address, flags);
4178
4179 if (flags & FAULT_FLAG_USER) {
4180 mem_cgroup_exit_user_fault();
4181 /*
4182 * The task may have entered a memcg OOM situation but
4183 * if the allocation error was handled gracefully (no
4184 * VM_FAULT_OOM), there is no need to kill anything.
4185 * Just clean up the OOM state peacefully.
4186 */
4187 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4188 mem_cgroup_oom_synchronize(false);
4189 }
4190
4191 return ret;
4192 }
4193 EXPORT_SYMBOL_GPL(handle_mm_fault);
4194
4195 #ifndef __PAGETABLE_P4D_FOLDED
4196 /*
4197 * Allocate p4d page table.
4198 * We've already handled the fast-path in-line.
4199 */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)4200 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4201 {
4202 p4d_t *new = p4d_alloc_one(mm, address);
4203 if (!new)
4204 return -ENOMEM;
4205
4206 smp_wmb(); /* See comment in __pte_alloc */
4207
4208 spin_lock(&mm->page_table_lock);
4209 if (pgd_present(*pgd)) /* Another has populated it */
4210 p4d_free(mm, new);
4211 else
4212 pgd_populate(mm, pgd, new);
4213 spin_unlock(&mm->page_table_lock);
4214 return 0;
4215 }
4216 #endif /* __PAGETABLE_P4D_FOLDED */
4217
4218 #ifndef __PAGETABLE_PUD_FOLDED
4219 /*
4220 * Allocate page upper directory.
4221 * We've already handled the fast-path in-line.
4222 */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)4223 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4224 {
4225 pud_t *new = pud_alloc_one(mm, address);
4226 if (!new)
4227 return -ENOMEM;
4228
4229 smp_wmb(); /* See comment in __pte_alloc */
4230
4231 spin_lock(&mm->page_table_lock);
4232 #ifndef __ARCH_HAS_5LEVEL_HACK
4233 if (!p4d_present(*p4d)) {
4234 mm_inc_nr_puds(mm);
4235 p4d_populate(mm, p4d, new);
4236 } else /* Another has populated it */
4237 pud_free(mm, new);
4238 #else
4239 if (!pgd_present(*p4d)) {
4240 mm_inc_nr_puds(mm);
4241 pgd_populate(mm, p4d, new);
4242 } else /* Another has populated it */
4243 pud_free(mm, new);
4244 #endif /* __ARCH_HAS_5LEVEL_HACK */
4245 spin_unlock(&mm->page_table_lock);
4246 return 0;
4247 }
4248 #endif /* __PAGETABLE_PUD_FOLDED */
4249
4250 #ifndef __PAGETABLE_PMD_FOLDED
4251 /*
4252 * Allocate page middle directory.
4253 * We've already handled the fast-path in-line.
4254 */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)4255 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4256 {
4257 spinlock_t *ptl;
4258 pmd_t *new = pmd_alloc_one(mm, address);
4259 if (!new)
4260 return -ENOMEM;
4261
4262 smp_wmb(); /* See comment in __pte_alloc */
4263
4264 ptl = pud_lock(mm, pud);
4265 #ifndef __ARCH_HAS_4LEVEL_HACK
4266 if (!pud_present(*pud)) {
4267 mm_inc_nr_pmds(mm);
4268 pud_populate(mm, pud, new);
4269 } else /* Another has populated it */
4270 pmd_free(mm, new);
4271 #else
4272 if (!pgd_present(*pud)) {
4273 mm_inc_nr_pmds(mm);
4274 pgd_populate(mm, pud, new);
4275 } else /* Another has populated it */
4276 pmd_free(mm, new);
4277 #endif /* __ARCH_HAS_4LEVEL_HACK */
4278 spin_unlock(ptl);
4279 return 0;
4280 }
4281 #endif /* __PAGETABLE_PMD_FOLDED */
4282
follow_invalidate_pte(struct mm_struct * mm,unsigned long address,struct mmu_notifier_range * range,pte_t ** ptepp,pmd_t ** pmdpp,spinlock_t ** ptlp)4283 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4284 struct mmu_notifier_range *range, pte_t **ptepp,
4285 pmd_t **pmdpp, spinlock_t **ptlp)
4286 {
4287 pgd_t *pgd;
4288 p4d_t *p4d;
4289 pud_t *pud;
4290 pmd_t *pmd;
4291 pte_t *ptep;
4292
4293 pgd = pgd_offset(mm, address);
4294 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4295 goto out;
4296
4297 p4d = p4d_offset(pgd, address);
4298 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4299 goto out;
4300
4301 pud = pud_offset(p4d, address);
4302 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4303 goto out;
4304
4305 pmd = pmd_offset(pud, address);
4306 VM_BUG_ON(pmd_trans_huge(*pmd));
4307
4308 if (pmd_huge(*pmd)) {
4309 if (!pmdpp)
4310 goto out;
4311
4312 if (range) {
4313 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4314 NULL, mm, address & PMD_MASK,
4315 (address & PMD_MASK) + PMD_SIZE);
4316 mmu_notifier_invalidate_range_start(range);
4317 }
4318 *ptlp = pmd_lock(mm, pmd);
4319 if (pmd_huge(*pmd)) {
4320 *pmdpp = pmd;
4321 return 0;
4322 }
4323 spin_unlock(*ptlp);
4324 if (range)
4325 mmu_notifier_invalidate_range_end(range);
4326 }
4327
4328 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4329 goto out;
4330
4331 if (range) {
4332 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4333 address & PAGE_MASK,
4334 (address & PAGE_MASK) + PAGE_SIZE);
4335 mmu_notifier_invalidate_range_start(range);
4336 }
4337 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4338 if (!pte_present(*ptep))
4339 goto unlock;
4340 *ptepp = ptep;
4341 return 0;
4342 unlock:
4343 pte_unmap_unlock(ptep, *ptlp);
4344 if (range)
4345 mmu_notifier_invalidate_range_end(range);
4346 out:
4347 return -EINVAL;
4348 }
4349
4350 /**
4351 * follow_pte - look up PTE at a user virtual address
4352 * @mm: the mm_struct of the target address space
4353 * @address: user virtual address
4354 * @ptepp: location to store found PTE
4355 * @ptlp: location to store the lock for the PTE
4356 *
4357 * On a successful return, the pointer to the PTE is stored in @ptepp;
4358 * the corresponding lock is taken and its location is stored in @ptlp.
4359 * The contents of the PTE are only stable until @ptlp is released;
4360 * any further use, if any, must be protected against invalidation
4361 * with MMU notifiers.
4362 *
4363 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4364 * should be taken for read.
4365 *
4366 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4367 * it is not a good general-purpose API.
4368 *
4369 * Return: zero on success, -ve otherwise.
4370 */
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)4371 int follow_pte(struct mm_struct *mm, unsigned long address,
4372 pte_t **ptepp, spinlock_t **ptlp)
4373 {
4374 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4375 }
4376 EXPORT_SYMBOL_GPL(follow_pte);
4377
4378 /**
4379 * follow_pfn - look up PFN at a user virtual address
4380 * @vma: memory mapping
4381 * @address: user virtual address
4382 * @pfn: location to store found PFN
4383 *
4384 * Only IO mappings and raw PFN mappings are allowed.
4385 *
4386 * This function does not allow the caller to read the permissions
4387 * of the PTE. Do not use it.
4388 *
4389 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4390 */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)4391 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4392 unsigned long *pfn)
4393 {
4394 int ret = -EINVAL;
4395 spinlock_t *ptl;
4396 pte_t *ptep;
4397
4398 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4399 return ret;
4400
4401 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4402 if (ret)
4403 return ret;
4404 *pfn = pte_pfn(*ptep);
4405 pte_unmap_unlock(ptep, ptl);
4406 return 0;
4407 }
4408 EXPORT_SYMBOL(follow_pfn);
4409
4410 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)4411 int follow_phys(struct vm_area_struct *vma,
4412 unsigned long address, unsigned int flags,
4413 unsigned long *prot, resource_size_t *phys)
4414 {
4415 int ret = -EINVAL;
4416 pte_t *ptep, pte;
4417 spinlock_t *ptl;
4418
4419 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4420 goto out;
4421
4422 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4423 goto out;
4424 pte = *ptep;
4425
4426 /* Never return PFNs of anon folios in COW mappings. */
4427 if (vm_normal_page(vma, address, pte))
4428 goto unlock;
4429
4430 if ((flags & FOLL_WRITE) && !pte_write(pte))
4431 goto unlock;
4432
4433 *prot = pgprot_val(pte_pgprot(pte));
4434 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4435
4436 ret = 0;
4437 unlock:
4438 pte_unmap_unlock(ptep, ptl);
4439 out:
4440 return ret;
4441 }
4442
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)4443 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4444 void *buf, int len, int write)
4445 {
4446 resource_size_t phys_addr;
4447 unsigned long prot = 0;
4448 void __iomem *maddr;
4449 int offset = addr & (PAGE_SIZE-1);
4450
4451 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4452 return -EINVAL;
4453
4454 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4455 if (!maddr)
4456 return -ENOMEM;
4457
4458 if (write)
4459 memcpy_toio(maddr + offset, buf, len);
4460 else
4461 memcpy_fromio(buf, maddr + offset, len);
4462 iounmap(maddr);
4463
4464 return len;
4465 }
4466 EXPORT_SYMBOL_GPL(generic_access_phys);
4467 #endif
4468
4469 /*
4470 * Access another process' address space as given in mm. If non-NULL, use the
4471 * given task for page fault accounting.
4472 */
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)4473 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4474 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4475 {
4476 struct vm_area_struct *vma;
4477 void *old_buf = buf;
4478 int write = gup_flags & FOLL_WRITE;
4479
4480 if (down_read_killable(&mm->mmap_sem))
4481 return 0;
4482
4483 /* ignore errors, just check how much was successfully transferred */
4484 while (len) {
4485 int bytes, ret, offset;
4486 void *maddr;
4487 struct page *page = NULL;
4488
4489 ret = get_user_pages_remote(tsk, mm, addr, 1,
4490 gup_flags, &page, &vma, NULL);
4491 if (ret <= 0) {
4492 #ifndef CONFIG_HAVE_IOREMAP_PROT
4493 break;
4494 #else
4495 /*
4496 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4497 * we can access using slightly different code.
4498 */
4499 vma = find_vma(mm, addr);
4500 if (!vma || vma->vm_start > addr)
4501 break;
4502 if (vma->vm_ops && vma->vm_ops->access)
4503 ret = vma->vm_ops->access(vma, addr, buf,
4504 len, write);
4505 if (ret <= 0)
4506 break;
4507 bytes = ret;
4508 #endif
4509 } else {
4510 bytes = len;
4511 offset = addr & (PAGE_SIZE-1);
4512 if (bytes > PAGE_SIZE-offset)
4513 bytes = PAGE_SIZE-offset;
4514
4515 maddr = kmap(page);
4516 if (write) {
4517 copy_to_user_page(vma, page, addr,
4518 maddr + offset, buf, bytes);
4519 set_page_dirty_lock(page);
4520 } else {
4521 copy_from_user_page(vma, page, addr,
4522 buf, maddr + offset, bytes);
4523 }
4524 kunmap(page);
4525 put_page(page);
4526 }
4527 len -= bytes;
4528 buf += bytes;
4529 addr += bytes;
4530 }
4531 up_read(&mm->mmap_sem);
4532
4533 return buf - old_buf;
4534 }
4535
4536 /**
4537 * access_remote_vm - access another process' address space
4538 * @mm: the mm_struct of the target address space
4539 * @addr: start address to access
4540 * @buf: source or destination buffer
4541 * @len: number of bytes to transfer
4542 * @gup_flags: flags modifying lookup behaviour
4543 *
4544 * The caller must hold a reference on @mm.
4545 *
4546 * Return: number of bytes copied from source to destination.
4547 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)4548 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4549 void *buf, int len, unsigned int gup_flags)
4550 {
4551 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4552 }
4553
4554 /*
4555 * Access another process' address space.
4556 * Source/target buffer must be kernel space,
4557 * Do not walk the page table directly, use get_user_pages
4558 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)4559 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4560 void *buf, int len, unsigned int gup_flags)
4561 {
4562 struct mm_struct *mm;
4563 int ret;
4564
4565 mm = get_task_mm(tsk);
4566 if (!mm)
4567 return 0;
4568
4569 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4570
4571 mmput(mm);
4572
4573 return ret;
4574 }
4575 EXPORT_SYMBOL_GPL(access_process_vm);
4576
4577 /*
4578 * Print the name of a VMA.
4579 */
print_vma_addr(char * prefix,unsigned long ip)4580 void print_vma_addr(char *prefix, unsigned long ip)
4581 {
4582 struct mm_struct *mm = current->mm;
4583 struct vm_area_struct *vma;
4584
4585 /*
4586 * we might be running from an atomic context so we cannot sleep
4587 */
4588 if (!down_read_trylock(&mm->mmap_sem))
4589 return;
4590
4591 vma = find_vma(mm, ip);
4592 if (vma && vma->vm_file) {
4593 struct file *f = vma->vm_file;
4594 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4595 if (buf) {
4596 char *p;
4597
4598 p = file_path(f, buf, PAGE_SIZE);
4599 if (IS_ERR(p))
4600 p = "?";
4601 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4602 vma->vm_start,
4603 vma->vm_end - vma->vm_start);
4604 free_page((unsigned long)buf);
4605 }
4606 }
4607 up_read(&mm->mmap_sem);
4608 }
4609
4610 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)4611 void __might_fault(const char *file, int line)
4612 {
4613 /*
4614 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4615 * holding the mmap_sem, this is safe because kernel memory doesn't
4616 * get paged out, therefore we'll never actually fault, and the
4617 * below annotations will generate false positives.
4618 */
4619 if (uaccess_kernel())
4620 return;
4621 if (pagefault_disabled())
4622 return;
4623 __might_sleep(file, line, 0);
4624 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4625 if (current->mm)
4626 might_lock_read(¤t->mm->mmap_sem);
4627 #endif
4628 }
4629 EXPORT_SYMBOL(__might_fault);
4630 #endif
4631
4632 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4633 /*
4634 * Process all subpages of the specified huge page with the specified
4635 * operation. The target subpage will be processed last to keep its
4636 * cache lines hot.
4637 */
process_huge_page(unsigned long addr_hint,unsigned int pages_per_huge_page,void (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)4638 static inline void process_huge_page(
4639 unsigned long addr_hint, unsigned int pages_per_huge_page,
4640 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4641 void *arg)
4642 {
4643 int i, n, base, l;
4644 unsigned long addr = addr_hint &
4645 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4646
4647 /* Process target subpage last to keep its cache lines hot */
4648 might_sleep();
4649 n = (addr_hint - addr) / PAGE_SIZE;
4650 if (2 * n <= pages_per_huge_page) {
4651 /* If target subpage in first half of huge page */
4652 base = 0;
4653 l = n;
4654 /* Process subpages at the end of huge page */
4655 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4656 cond_resched();
4657 process_subpage(addr + i * PAGE_SIZE, i, arg);
4658 }
4659 } else {
4660 /* If target subpage in second half of huge page */
4661 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4662 l = pages_per_huge_page - n;
4663 /* Process subpages at the begin of huge page */
4664 for (i = 0; i < base; i++) {
4665 cond_resched();
4666 process_subpage(addr + i * PAGE_SIZE, i, arg);
4667 }
4668 }
4669 /*
4670 * Process remaining subpages in left-right-left-right pattern
4671 * towards the target subpage
4672 */
4673 for (i = 0; i < l; i++) {
4674 int left_idx = base + i;
4675 int right_idx = base + 2 * l - 1 - i;
4676
4677 cond_resched();
4678 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4679 cond_resched();
4680 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4681 }
4682 }
4683
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)4684 static void clear_gigantic_page(struct page *page,
4685 unsigned long addr,
4686 unsigned int pages_per_huge_page)
4687 {
4688 int i;
4689 struct page *p = page;
4690
4691 might_sleep();
4692 for (i = 0; i < pages_per_huge_page;
4693 i++, p = mem_map_next(p, page, i)) {
4694 cond_resched();
4695 clear_user_highpage(p, addr + i * PAGE_SIZE);
4696 }
4697 }
4698
clear_subpage(unsigned long addr,int idx,void * arg)4699 static void clear_subpage(unsigned long addr, int idx, void *arg)
4700 {
4701 struct page *page = arg;
4702
4703 clear_user_highpage(page + idx, addr);
4704 }
4705
clear_huge_page(struct page * page,unsigned long addr_hint,unsigned int pages_per_huge_page)4706 void clear_huge_page(struct page *page,
4707 unsigned long addr_hint, unsigned int pages_per_huge_page)
4708 {
4709 unsigned long addr = addr_hint &
4710 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4711
4712 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4713 clear_gigantic_page(page, addr, pages_per_huge_page);
4714 return;
4715 }
4716
4717 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4718 }
4719
copy_user_gigantic_page(struct page * dst,struct page * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)4720 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4721 unsigned long addr,
4722 struct vm_area_struct *vma,
4723 unsigned int pages_per_huge_page)
4724 {
4725 int i;
4726 struct page *dst_base = dst;
4727 struct page *src_base = src;
4728
4729 for (i = 0; i < pages_per_huge_page; ) {
4730 cond_resched();
4731 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4732
4733 i++;
4734 dst = mem_map_next(dst, dst_base, i);
4735 src = mem_map_next(src, src_base, i);
4736 }
4737 }
4738
4739 struct copy_subpage_arg {
4740 struct page *dst;
4741 struct page *src;
4742 struct vm_area_struct *vma;
4743 };
4744
copy_subpage(unsigned long addr,int idx,void * arg)4745 static void copy_subpage(unsigned long addr, int idx, void *arg)
4746 {
4747 struct copy_subpage_arg *copy_arg = arg;
4748
4749 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4750 addr, copy_arg->vma);
4751 }
4752
copy_user_huge_page(struct page * dst,struct page * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int pages_per_huge_page)4753 void copy_user_huge_page(struct page *dst, struct page *src,
4754 unsigned long addr_hint, struct vm_area_struct *vma,
4755 unsigned int pages_per_huge_page)
4756 {
4757 unsigned long addr = addr_hint &
4758 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4759 struct copy_subpage_arg arg = {
4760 .dst = dst,
4761 .src = src,
4762 .vma = vma,
4763 };
4764
4765 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4766 copy_user_gigantic_page(dst, src, addr, vma,
4767 pages_per_huge_page);
4768 return;
4769 }
4770
4771 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4772 }
4773
copy_huge_page_from_user(struct page * dst_page,const void __user * usr_src,unsigned int pages_per_huge_page,bool allow_pagefault)4774 long copy_huge_page_from_user(struct page *dst_page,
4775 const void __user *usr_src,
4776 unsigned int pages_per_huge_page,
4777 bool allow_pagefault)
4778 {
4779 void *src = (void *)usr_src;
4780 void *page_kaddr;
4781 unsigned long i, rc = 0;
4782 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4783 struct page *subpage = dst_page;
4784
4785 for (i = 0; i < pages_per_huge_page;
4786 i++, subpage = mem_map_next(subpage, dst_page, i)) {
4787 if (allow_pagefault)
4788 page_kaddr = kmap(subpage);
4789 else
4790 page_kaddr = kmap_atomic(subpage);
4791 rc = copy_from_user(page_kaddr,
4792 (const void __user *)(src + i * PAGE_SIZE),
4793 PAGE_SIZE);
4794 if (allow_pagefault)
4795 kunmap(subpage);
4796 else
4797 kunmap_atomic(page_kaddr);
4798
4799 ret_val -= (PAGE_SIZE - rc);
4800 if (rc)
4801 break;
4802
4803 flush_dcache_page(subpage);
4804
4805 cond_resched();
4806 }
4807 return ret_val;
4808 }
4809 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4810
4811 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4812
4813 static struct kmem_cache *page_ptl_cachep;
4814
ptlock_cache_init(void)4815 void __init ptlock_cache_init(void)
4816 {
4817 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4818 SLAB_PANIC, NULL);
4819 }
4820
ptlock_alloc(struct page * page)4821 bool ptlock_alloc(struct page *page)
4822 {
4823 spinlock_t *ptl;
4824
4825 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4826 if (!ptl)
4827 return false;
4828 page->ptl = ptl;
4829 return true;
4830 }
4831
ptlock_free(struct page * page)4832 void ptlock_free(struct page *page)
4833 {
4834 kmem_cache_free(page_ptl_cachep, page->ptl);
4835 }
4836 #endif
4837