• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 #include <trace/events/sched.h>
26 #include <trace/hooks/sched.h>
27 
28 /*
29  * Targeted preemption latency for CPU-bound tasks:
30  *
31  * NOTE: this latency value is not the same as the concept of
32  * 'timeslice length' - timeslices in CFS are of variable length
33  * and have no persistent notion like in traditional, time-slice
34  * based scheduling concepts.
35  *
36  * (to see the precise effective timeslice length of your workload,
37  *  run vmstat and monitor the context-switches (cs) field)
38  *
39  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40  */
41 unsigned int sysctl_sched_latency			= 6000000ULL;
42 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
43 
44 /*
45  * The initial- and re-scaling of tunables is configurable
46  *
47  * Options are:
48  *
49  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
50  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
51  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
52  *
53  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
54  */
55 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
56 
57 /*
58  * Minimal preemption granularity for CPU-bound tasks:
59  *
60  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
61  */
62 unsigned int sysctl_sched_min_granularity			= 750000ULL;
63 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
64 
65 /*
66  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
67  */
68 static unsigned int sched_nr_latency = 8;
69 
70 /*
71  * After fork, child runs first. If set to 0 (default) then
72  * parent will (try to) run first.
73  */
74 unsigned int sysctl_sched_child_runs_first __read_mostly;
75 
76 /*
77  * SCHED_OTHER wake-up granularity.
78  *
79  * This option delays the preemption effects of decoupled workloads
80  * and reduces their over-scheduling. Synchronous workloads will still
81  * have immediate wakeup/sleep latencies.
82  *
83  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
84  */
85 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
86 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
87 
88 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
89 
90 #ifdef CONFIG_SMP
91 /*
92  * For asym packing, by default the lower numbered CPU has higher priority.
93  */
arch_asym_cpu_priority(int cpu)94 int __weak arch_asym_cpu_priority(int cpu)
95 {
96 	return -cpu;
97 }
98 
99 /*
100  * The margin used when comparing utilization with CPU capacity.
101  *
102  * (default: ~20%)
103  */
104 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
105 
106 #endif
107 
108 #ifdef CONFIG_CFS_BANDWIDTH
109 /*
110  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
111  * each time a cfs_rq requests quota.
112  *
113  * Note: in the case that the slice exceeds the runtime remaining (either due
114  * to consumption or the quota being specified to be smaller than the slice)
115  * we will always only issue the remaining available time.
116  *
117  * (default: 5 msec, units: microseconds)
118  */
119 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
120 #endif
121 
update_load_add(struct load_weight * lw,unsigned long inc)122 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
123 {
124 	lw->weight += inc;
125 	lw->inv_weight = 0;
126 }
127 
update_load_sub(struct load_weight * lw,unsigned long dec)128 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
129 {
130 	lw->weight -= dec;
131 	lw->inv_weight = 0;
132 }
133 
update_load_set(struct load_weight * lw,unsigned long w)134 static inline void update_load_set(struct load_weight *lw, unsigned long w)
135 {
136 	lw->weight = w;
137 	lw->inv_weight = 0;
138 }
139 
140 /*
141  * Increase the granularity value when there are more CPUs,
142  * because with more CPUs the 'effective latency' as visible
143  * to users decreases. But the relationship is not linear,
144  * so pick a second-best guess by going with the log2 of the
145  * number of CPUs.
146  *
147  * This idea comes from the SD scheduler of Con Kolivas:
148  */
get_update_sysctl_factor(void)149 static unsigned int get_update_sysctl_factor(void)
150 {
151 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
152 	unsigned int factor;
153 
154 	switch (sysctl_sched_tunable_scaling) {
155 	case SCHED_TUNABLESCALING_NONE:
156 		factor = 1;
157 		break;
158 	case SCHED_TUNABLESCALING_LINEAR:
159 		factor = cpus;
160 		break;
161 	case SCHED_TUNABLESCALING_LOG:
162 	default:
163 		factor = 1 + ilog2(cpus);
164 		break;
165 	}
166 
167 	return factor;
168 }
169 
update_sysctl(void)170 static void update_sysctl(void)
171 {
172 	unsigned int factor = get_update_sysctl_factor();
173 
174 #define SET_SYSCTL(name) \
175 	(sysctl_##name = (factor) * normalized_sysctl_##name)
176 	SET_SYSCTL(sched_min_granularity);
177 	SET_SYSCTL(sched_latency);
178 	SET_SYSCTL(sched_wakeup_granularity);
179 #undef SET_SYSCTL
180 }
181 
sched_init_granularity(void)182 void sched_init_granularity(void)
183 {
184 	update_sysctl();
185 }
186 
187 #define WMULT_CONST	(~0U)
188 #define WMULT_SHIFT	32
189 
__update_inv_weight(struct load_weight * lw)190 static void __update_inv_weight(struct load_weight *lw)
191 {
192 	unsigned long w;
193 
194 	if (likely(lw->inv_weight))
195 		return;
196 
197 	w = scale_load_down(lw->weight);
198 
199 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
200 		lw->inv_weight = 1;
201 	else if (unlikely(!w))
202 		lw->inv_weight = WMULT_CONST;
203 	else
204 		lw->inv_weight = WMULT_CONST / w;
205 }
206 
207 /*
208  * delta_exec * weight / lw.weight
209  *   OR
210  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
211  *
212  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
213  * we're guaranteed shift stays positive because inv_weight is guaranteed to
214  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
215  *
216  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
217  * weight/lw.weight <= 1, and therefore our shift will also be positive.
218  */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)219 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
220 {
221 	u64 fact = scale_load_down(weight);
222 	int shift = WMULT_SHIFT;
223 
224 	__update_inv_weight(lw);
225 
226 	if (unlikely(fact >> 32)) {
227 		while (fact >> 32) {
228 			fact >>= 1;
229 			shift--;
230 		}
231 	}
232 
233 	/* hint to use a 32x32->64 mul */
234 	fact = (u64)(u32)fact * lw->inv_weight;
235 
236 	while (fact >> 32) {
237 		fact >>= 1;
238 		shift--;
239 	}
240 
241 	return mul_u64_u32_shr(delta_exec, fact, shift);
242 }
243 
244 
245 const struct sched_class fair_sched_class;
246 
247 /**************************************************************
248  * CFS operations on generic schedulable entities:
249  */
250 
251 #ifdef CONFIG_FAIR_GROUP_SCHED
task_of(struct sched_entity * se)252 static inline struct task_struct *task_of(struct sched_entity *se)
253 {
254 	SCHED_WARN_ON(!entity_is_task(se));
255 	return container_of(se, struct task_struct, se);
256 }
257 
258 /* Walk up scheduling entities hierarchy */
259 #define for_each_sched_entity(se) \
260 		for (; se; se = se->parent)
261 
task_cfs_rq(struct task_struct * p)262 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
263 {
264 	return p->se.cfs_rq;
265 }
266 
267 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(struct sched_entity * se)268 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
269 {
270 	return se->cfs_rq;
271 }
272 
273 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)274 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
275 {
276 	return grp->my_q;
277 }
278 
cfs_rq_tg_path(struct cfs_rq * cfs_rq,char * path,int len)279 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
280 {
281 	if (!path)
282 		return;
283 
284 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
285 		autogroup_path(cfs_rq->tg, path, len);
286 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
287 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
288 	else
289 		strlcpy(path, "(null)", len);
290 }
291 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)292 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
293 {
294 	struct rq *rq = rq_of(cfs_rq);
295 	int cpu = cpu_of(rq);
296 
297 	if (cfs_rq->on_list)
298 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
299 
300 	cfs_rq->on_list = 1;
301 
302 	/*
303 	 * Ensure we either appear before our parent (if already
304 	 * enqueued) or force our parent to appear after us when it is
305 	 * enqueued. The fact that we always enqueue bottom-up
306 	 * reduces this to two cases and a special case for the root
307 	 * cfs_rq. Furthermore, it also means that we will always reset
308 	 * tmp_alone_branch either when the branch is connected
309 	 * to a tree or when we reach the top of the tree
310 	 */
311 	if (cfs_rq->tg->parent &&
312 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
313 		/*
314 		 * If parent is already on the list, we add the child
315 		 * just before. Thanks to circular linked property of
316 		 * the list, this means to put the child at the tail
317 		 * of the list that starts by parent.
318 		 */
319 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
320 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
321 		/*
322 		 * The branch is now connected to its tree so we can
323 		 * reset tmp_alone_branch to the beginning of the
324 		 * list.
325 		 */
326 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
327 		return true;
328 	}
329 
330 	if (!cfs_rq->tg->parent) {
331 		/*
332 		 * cfs rq without parent should be put
333 		 * at the tail of the list.
334 		 */
335 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
336 			&rq->leaf_cfs_rq_list);
337 		/*
338 		 * We have reach the top of a tree so we can reset
339 		 * tmp_alone_branch to the beginning of the list.
340 		 */
341 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
342 		return true;
343 	}
344 
345 	/*
346 	 * The parent has not already been added so we want to
347 	 * make sure that it will be put after us.
348 	 * tmp_alone_branch points to the begin of the branch
349 	 * where we will add parent.
350 	 */
351 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
352 	/*
353 	 * update tmp_alone_branch to points to the new begin
354 	 * of the branch
355 	 */
356 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
357 	return false;
358 }
359 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)360 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
361 {
362 	if (cfs_rq->on_list) {
363 		struct rq *rq = rq_of(cfs_rq);
364 
365 		/*
366 		 * With cfs_rq being unthrottled/throttled during an enqueue,
367 		 * it can happen the tmp_alone_branch points the a leaf that
368 		 * we finally want to del. In this case, tmp_alone_branch moves
369 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
370 		 * at the end of the enqueue.
371 		 */
372 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
373 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
374 
375 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
376 		cfs_rq->on_list = 0;
377 	}
378 }
379 
assert_list_leaf_cfs_rq(struct rq * rq)380 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
381 {
382 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
383 }
384 
385 /* Iterate thr' all leaf cfs_rq's on a runqueue */
386 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
387 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
388 				 leaf_cfs_rq_list)
389 
390 /* Do the two (enqueued) entities belong to the same group ? */
391 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)392 is_same_group(struct sched_entity *se, struct sched_entity *pse)
393 {
394 	if (se->cfs_rq == pse->cfs_rq)
395 		return se->cfs_rq;
396 
397 	return NULL;
398 }
399 
parent_entity(struct sched_entity * se)400 static inline struct sched_entity *parent_entity(struct sched_entity *se)
401 {
402 	return se->parent;
403 }
404 
405 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)406 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
407 {
408 	int se_depth, pse_depth;
409 
410 	/*
411 	 * preemption test can be made between sibling entities who are in the
412 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
413 	 * both tasks until we find their ancestors who are siblings of common
414 	 * parent.
415 	 */
416 
417 	/* First walk up until both entities are at same depth */
418 	se_depth = (*se)->depth;
419 	pse_depth = (*pse)->depth;
420 
421 	while (se_depth > pse_depth) {
422 		se_depth--;
423 		*se = parent_entity(*se);
424 	}
425 
426 	while (pse_depth > se_depth) {
427 		pse_depth--;
428 		*pse = parent_entity(*pse);
429 	}
430 
431 	while (!is_same_group(*se, *pse)) {
432 		*se = parent_entity(*se);
433 		*pse = parent_entity(*pse);
434 	}
435 }
436 
437 #else	/* !CONFIG_FAIR_GROUP_SCHED */
438 
task_of(struct sched_entity * se)439 static inline struct task_struct *task_of(struct sched_entity *se)
440 {
441 	return container_of(se, struct task_struct, se);
442 }
443 
444 #define for_each_sched_entity(se) \
445 		for (; se; se = NULL)
446 
task_cfs_rq(struct task_struct * p)447 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
448 {
449 	return &task_rq(p)->cfs;
450 }
451 
cfs_rq_of(struct sched_entity * se)452 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
453 {
454 	struct task_struct *p = task_of(se);
455 	struct rq *rq = task_rq(p);
456 
457 	return &rq->cfs;
458 }
459 
460 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)461 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
462 {
463 	return NULL;
464 }
465 
cfs_rq_tg_path(struct cfs_rq * cfs_rq,char * path,int len)466 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
467 {
468 	if (path)
469 		strlcpy(path, "(null)", len);
470 }
471 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)472 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
473 {
474 	return true;
475 }
476 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)477 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
478 {
479 }
480 
assert_list_leaf_cfs_rq(struct rq * rq)481 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
482 {
483 }
484 
485 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
486 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
487 
parent_entity(struct sched_entity * se)488 static inline struct sched_entity *parent_entity(struct sched_entity *se)
489 {
490 	return NULL;
491 }
492 
493 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)494 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
495 {
496 }
497 
498 #endif	/* CONFIG_FAIR_GROUP_SCHED */
499 
500 static __always_inline
501 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
502 
503 /**************************************************************
504  * Scheduling class tree data structure manipulation methods:
505  */
506 
max_vruntime(u64 max_vruntime,u64 vruntime)507 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
508 {
509 	s64 delta = (s64)(vruntime - max_vruntime);
510 	if (delta > 0)
511 		max_vruntime = vruntime;
512 
513 	return max_vruntime;
514 }
515 
min_vruntime(u64 min_vruntime,u64 vruntime)516 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
517 {
518 	s64 delta = (s64)(vruntime - min_vruntime);
519 	if (delta < 0)
520 		min_vruntime = vruntime;
521 
522 	return min_vruntime;
523 }
524 
entity_before(struct sched_entity * a,struct sched_entity * b)525 static inline int entity_before(struct sched_entity *a,
526 				struct sched_entity *b)
527 {
528 	return (s64)(a->vruntime - b->vruntime) < 0;
529 }
530 
update_min_vruntime(struct cfs_rq * cfs_rq)531 static void update_min_vruntime(struct cfs_rq *cfs_rq)
532 {
533 	struct sched_entity *curr = cfs_rq->curr;
534 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
535 
536 	u64 vruntime = cfs_rq->min_vruntime;
537 
538 	if (curr) {
539 		if (curr->on_rq)
540 			vruntime = curr->vruntime;
541 		else
542 			curr = NULL;
543 	}
544 
545 	if (leftmost) { /* non-empty tree */
546 		struct sched_entity *se;
547 		se = rb_entry(leftmost, struct sched_entity, run_node);
548 
549 		if (!curr)
550 			vruntime = se->vruntime;
551 		else
552 			vruntime = min_vruntime(vruntime, se->vruntime);
553 	}
554 
555 	/* ensure we never gain time by being placed backwards. */
556 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
557 #ifndef CONFIG_64BIT
558 	smp_wmb();
559 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
560 #endif
561 }
562 
563 /*
564  * Enqueue an entity into the rb-tree:
565  */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)566 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
567 {
568 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
569 	struct rb_node *parent = NULL;
570 	struct sched_entity *entry;
571 	bool leftmost = true;
572 
573 	/*
574 	 * Find the right place in the rbtree:
575 	 */
576 	while (*link) {
577 		parent = *link;
578 		entry = rb_entry(parent, struct sched_entity, run_node);
579 		/*
580 		 * We dont care about collisions. Nodes with
581 		 * the same key stay together.
582 		 */
583 		if (entity_before(se, entry)) {
584 			link = &parent->rb_left;
585 		} else {
586 			link = &parent->rb_right;
587 			leftmost = false;
588 		}
589 	}
590 
591 	rb_link_node(&se->run_node, parent, link);
592 	rb_insert_color_cached(&se->run_node,
593 			       &cfs_rq->tasks_timeline, leftmost);
594 }
595 
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)596 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
597 {
598 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
599 }
600 
__pick_first_entity(struct cfs_rq * cfs_rq)601 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
602 {
603 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
604 
605 	if (!left)
606 		return NULL;
607 
608 	return rb_entry(left, struct sched_entity, run_node);
609 }
610 
__pick_next_entity(struct sched_entity * se)611 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
612 {
613 	struct rb_node *next = rb_next(&se->run_node);
614 
615 	if (!next)
616 		return NULL;
617 
618 	return rb_entry(next, struct sched_entity, run_node);
619 }
620 
621 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)622 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
623 {
624 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
625 
626 	if (!last)
627 		return NULL;
628 
629 	return rb_entry(last, struct sched_entity, run_node);
630 }
631 
632 /**************************************************************
633  * Scheduling class statistics methods:
634  */
635 
sched_proc_update_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)636 int sched_proc_update_handler(struct ctl_table *table, int write,
637 		void __user *buffer, size_t *lenp,
638 		loff_t *ppos)
639 {
640 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
641 	unsigned int factor = get_update_sysctl_factor();
642 
643 	if (ret || !write)
644 		return ret;
645 
646 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
647 					sysctl_sched_min_granularity);
648 
649 #define WRT_SYSCTL(name) \
650 	(normalized_sysctl_##name = sysctl_##name / (factor))
651 	WRT_SYSCTL(sched_min_granularity);
652 	WRT_SYSCTL(sched_latency);
653 	WRT_SYSCTL(sched_wakeup_granularity);
654 #undef WRT_SYSCTL
655 
656 	return 0;
657 }
658 #endif
659 
660 /*
661  * delta /= w
662  */
calc_delta_fair(u64 delta,struct sched_entity * se)663 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
664 {
665 	if (unlikely(se->load.weight != NICE_0_LOAD))
666 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
667 
668 	return delta;
669 }
670 
671 /*
672  * The idea is to set a period in which each task runs once.
673  *
674  * When there are too many tasks (sched_nr_latency) we have to stretch
675  * this period because otherwise the slices get too small.
676  *
677  * p = (nr <= nl) ? l : l*nr/nl
678  */
__sched_period(unsigned long nr_running)679 static u64 __sched_period(unsigned long nr_running)
680 {
681 	if (unlikely(nr_running > sched_nr_latency))
682 		return nr_running * sysctl_sched_min_granularity;
683 	else
684 		return sysctl_sched_latency;
685 }
686 
687 /*
688  * We calculate the wall-time slice from the period by taking a part
689  * proportional to the weight.
690  *
691  * s = p*P[w/rw]
692  */
sched_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)693 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
694 {
695 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
696 
697 	for_each_sched_entity(se) {
698 		struct load_weight *load;
699 		struct load_weight lw;
700 
701 		cfs_rq = cfs_rq_of(se);
702 		load = &cfs_rq->load;
703 
704 		if (unlikely(!se->on_rq)) {
705 			lw = cfs_rq->load;
706 
707 			update_load_add(&lw, se->load.weight);
708 			load = &lw;
709 		}
710 		slice = __calc_delta(slice, se->load.weight, load);
711 	}
712 	return slice;
713 }
714 
715 /*
716  * We calculate the vruntime slice of a to-be-inserted task.
717  *
718  * vs = s/w
719  */
sched_vslice(struct cfs_rq * cfs_rq,struct sched_entity * se)720 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
721 {
722 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
723 }
724 
725 #include "pelt.h"
726 #ifdef CONFIG_SMP
727 
728 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
729 static unsigned long task_h_load(struct task_struct *p);
730 static unsigned long capacity_of(int cpu);
731 
732 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)733 void init_entity_runnable_average(struct sched_entity *se)
734 {
735 	struct sched_avg *sa = &se->avg;
736 
737 	memset(sa, 0, sizeof(*sa));
738 
739 	/*
740 	 * Tasks are initialized with full load to be seen as heavy tasks until
741 	 * they get a chance to stabilize to their real load level.
742 	 * Group entities are initialized with zero load to reflect the fact that
743 	 * nothing has been attached to the task group yet.
744 	 */
745 	if (entity_is_task(se))
746 		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
747 
748 	se->runnable_weight = se->load.weight;
749 
750 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
751 }
752 
753 static void attach_entity_cfs_rq(struct sched_entity *se);
754 
755 /*
756  * With new tasks being created, their initial util_avgs are extrapolated
757  * based on the cfs_rq's current util_avg:
758  *
759  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
760  *
761  * However, in many cases, the above util_avg does not give a desired
762  * value. Moreover, the sum of the util_avgs may be divergent, such
763  * as when the series is a harmonic series.
764  *
765  * To solve this problem, we also cap the util_avg of successive tasks to
766  * only 1/2 of the left utilization budget:
767  *
768  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
769  *
770  * where n denotes the nth task and cpu_scale the CPU capacity.
771  *
772  * For example, for a CPU with 1024 of capacity, a simplest series from
773  * the beginning would be like:
774  *
775  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
776  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
777  *
778  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
779  * if util_avg > util_avg_cap.
780  */
post_init_entity_util_avg(struct task_struct * p)781 void post_init_entity_util_avg(struct task_struct *p)
782 {
783 	struct sched_entity *se = &p->se;
784 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
785 	struct sched_avg *sa = &se->avg;
786 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
787 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
788 
789 	if (cap > 0) {
790 		if (cfs_rq->avg.util_avg != 0) {
791 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
792 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
793 
794 			if (sa->util_avg > cap)
795 				sa->util_avg = cap;
796 		} else {
797 			sa->util_avg = cap;
798 		}
799 	}
800 
801 	if (p->sched_class != &fair_sched_class) {
802 		/*
803 		 * For !fair tasks do:
804 		 *
805 		update_cfs_rq_load_avg(now, cfs_rq);
806 		attach_entity_load_avg(cfs_rq, se, 0);
807 		switched_from_fair(rq, p);
808 		 *
809 		 * such that the next switched_to_fair() has the
810 		 * expected state.
811 		 */
812 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
813 		return;
814 	}
815 
816 	attach_entity_cfs_rq(se);
817 }
818 
819 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)820 void init_entity_runnable_average(struct sched_entity *se)
821 {
822 }
post_init_entity_util_avg(struct task_struct * p)823 void post_init_entity_util_avg(struct task_struct *p)
824 {
825 }
update_tg_load_avg(struct cfs_rq * cfs_rq,int force)826 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
827 {
828 }
829 #endif /* CONFIG_SMP */
830 
831 /*
832  * Update the current task's runtime statistics.
833  */
update_curr(struct cfs_rq * cfs_rq)834 static void update_curr(struct cfs_rq *cfs_rq)
835 {
836 	struct sched_entity *curr = cfs_rq->curr;
837 	u64 now = rq_clock_task(rq_of(cfs_rq));
838 	u64 delta_exec;
839 
840 	if (unlikely(!curr))
841 		return;
842 
843 	delta_exec = now - curr->exec_start;
844 	if (unlikely((s64)delta_exec <= 0))
845 		return;
846 
847 	curr->exec_start = now;
848 
849 	schedstat_set(curr->statistics.exec_max,
850 		      max(delta_exec, curr->statistics.exec_max));
851 
852 	curr->sum_exec_runtime += delta_exec;
853 	schedstat_add(cfs_rq->exec_clock, delta_exec);
854 
855 	curr->vruntime += calc_delta_fair(delta_exec, curr);
856 	update_min_vruntime(cfs_rq);
857 
858 	if (entity_is_task(curr)) {
859 		struct task_struct *curtask = task_of(curr);
860 
861 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
862 		cgroup_account_cputime(curtask, delta_exec);
863 		account_group_exec_runtime(curtask, delta_exec);
864 	}
865 
866 	account_cfs_rq_runtime(cfs_rq, delta_exec);
867 }
868 
update_curr_fair(struct rq * rq)869 static void update_curr_fair(struct rq *rq)
870 {
871 	update_curr(cfs_rq_of(&rq->curr->se));
872 }
873 
874 static inline void
update_stats_wait_start(struct cfs_rq * cfs_rq,struct sched_entity * se)875 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
876 {
877 	u64 wait_start, prev_wait_start;
878 
879 	if (!schedstat_enabled())
880 		return;
881 
882 	wait_start = rq_clock(rq_of(cfs_rq));
883 	prev_wait_start = schedstat_val(se->statistics.wait_start);
884 
885 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
886 	    likely(wait_start > prev_wait_start))
887 		wait_start -= prev_wait_start;
888 
889 	__schedstat_set(se->statistics.wait_start, wait_start);
890 }
891 
892 static inline void
update_stats_wait_end(struct cfs_rq * cfs_rq,struct sched_entity * se)893 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
894 {
895 	struct task_struct *p;
896 	u64 delta;
897 
898 	if (!schedstat_enabled())
899 		return;
900 
901 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
902 
903 	if (entity_is_task(se)) {
904 		p = task_of(se);
905 		if (task_on_rq_migrating(p)) {
906 			/*
907 			 * Preserve migrating task's wait time so wait_start
908 			 * time stamp can be adjusted to accumulate wait time
909 			 * prior to migration.
910 			 */
911 			__schedstat_set(se->statistics.wait_start, delta);
912 			return;
913 		}
914 		trace_sched_stat_wait(p, delta);
915 	}
916 
917 	__schedstat_set(se->statistics.wait_max,
918 		      max(schedstat_val(se->statistics.wait_max), delta));
919 	__schedstat_inc(se->statistics.wait_count);
920 	__schedstat_add(se->statistics.wait_sum, delta);
921 	__schedstat_set(se->statistics.wait_start, 0);
922 }
923 
924 static inline void
update_stats_enqueue_sleeper(struct cfs_rq * cfs_rq,struct sched_entity * se)925 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
926 {
927 	struct task_struct *tsk = NULL;
928 	u64 sleep_start, block_start;
929 
930 	if (!schedstat_enabled())
931 		return;
932 
933 	sleep_start = schedstat_val(se->statistics.sleep_start);
934 	block_start = schedstat_val(se->statistics.block_start);
935 
936 	if (entity_is_task(se))
937 		tsk = task_of(se);
938 
939 	if (sleep_start) {
940 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
941 
942 		if ((s64)delta < 0)
943 			delta = 0;
944 
945 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
946 			__schedstat_set(se->statistics.sleep_max, delta);
947 
948 		__schedstat_set(se->statistics.sleep_start, 0);
949 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
950 
951 		if (tsk) {
952 			account_scheduler_latency(tsk, delta >> 10, 1);
953 			trace_sched_stat_sleep(tsk, delta);
954 		}
955 	}
956 	if (block_start) {
957 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
958 
959 		if ((s64)delta < 0)
960 			delta = 0;
961 
962 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
963 			__schedstat_set(se->statistics.block_max, delta);
964 
965 		__schedstat_set(se->statistics.block_start, 0);
966 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
967 
968 		if (tsk) {
969 			if (tsk->in_iowait) {
970 				__schedstat_add(se->statistics.iowait_sum, delta);
971 				__schedstat_inc(se->statistics.iowait_count);
972 				trace_sched_stat_iowait(tsk, delta);
973 			}
974 
975 			trace_sched_stat_blocked(tsk, delta);
976 			trace_sched_blocked_reason(tsk);
977 
978 			/*
979 			 * Blocking time is in units of nanosecs, so shift by
980 			 * 20 to get a milliseconds-range estimation of the
981 			 * amount of time that the task spent sleeping:
982 			 */
983 			if (unlikely(prof_on == SLEEP_PROFILING)) {
984 				profile_hits(SLEEP_PROFILING,
985 						(void *)get_wchan(tsk),
986 						delta >> 20);
987 			}
988 			account_scheduler_latency(tsk, delta >> 10, 0);
989 		}
990 	}
991 }
992 
993 /*
994  * Task is being enqueued - update stats:
995  */
996 static inline void
update_stats_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)997 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
998 {
999 	if (!schedstat_enabled())
1000 		return;
1001 
1002 	/*
1003 	 * Are we enqueueing a waiting task? (for current tasks
1004 	 * a dequeue/enqueue event is a NOP)
1005 	 */
1006 	if (se != cfs_rq->curr)
1007 		update_stats_wait_start(cfs_rq, se);
1008 
1009 	if (flags & ENQUEUE_WAKEUP)
1010 		update_stats_enqueue_sleeper(cfs_rq, se);
1011 }
1012 
1013 static inline void
update_stats_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1014 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1015 {
1016 
1017 	if (!schedstat_enabled())
1018 		return;
1019 
1020 	/*
1021 	 * Mark the end of the wait period if dequeueing a
1022 	 * waiting task:
1023 	 */
1024 	if (se != cfs_rq->curr)
1025 		update_stats_wait_end(cfs_rq, se);
1026 
1027 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1028 		struct task_struct *tsk = task_of(se);
1029 
1030 		if (tsk->state & TASK_INTERRUPTIBLE)
1031 			__schedstat_set(se->statistics.sleep_start,
1032 				      rq_clock(rq_of(cfs_rq)));
1033 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1034 			__schedstat_set(se->statistics.block_start,
1035 				      rq_clock(rq_of(cfs_rq)));
1036 	}
1037 }
1038 
1039 /*
1040  * We are picking a new current task - update its stats:
1041  */
1042 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1043 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1044 {
1045 	/*
1046 	 * We are starting a new run period:
1047 	 */
1048 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1049 }
1050 
1051 /**************************************************
1052  * Scheduling class queueing methods:
1053  */
1054 
1055 #ifdef CONFIG_NUMA_BALANCING
1056 /*
1057  * Approximate time to scan a full NUMA task in ms. The task scan period is
1058  * calculated based on the tasks virtual memory size and
1059  * numa_balancing_scan_size.
1060  */
1061 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1062 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1063 
1064 /* Portion of address space to scan in MB */
1065 unsigned int sysctl_numa_balancing_scan_size = 256;
1066 
1067 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1068 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1069 
1070 struct numa_group {
1071 	refcount_t refcount;
1072 
1073 	spinlock_t lock; /* nr_tasks, tasks */
1074 	int nr_tasks;
1075 	pid_t gid;
1076 	int active_nodes;
1077 
1078 	struct rcu_head rcu;
1079 	unsigned long total_faults;
1080 	unsigned long max_faults_cpu;
1081 	/*
1082 	 * Faults_cpu is used to decide whether memory should move
1083 	 * towards the CPU. As a consequence, these stats are weighted
1084 	 * more by CPU use than by memory faults.
1085 	 */
1086 	unsigned long *faults_cpu;
1087 	unsigned long faults[0];
1088 };
1089 
1090 /*
1091  * For functions that can be called in multiple contexts that permit reading
1092  * ->numa_group (see struct task_struct for locking rules).
1093  */
deref_task_numa_group(struct task_struct * p)1094 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1095 {
1096 	return rcu_dereference_check(p->numa_group, p == current ||
1097 		(lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1098 }
1099 
deref_curr_numa_group(struct task_struct * p)1100 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1101 {
1102 	return rcu_dereference_protected(p->numa_group, p == current);
1103 }
1104 
1105 static inline unsigned long group_faults_priv(struct numa_group *ng);
1106 static inline unsigned long group_faults_shared(struct numa_group *ng);
1107 
task_nr_scan_windows(struct task_struct * p)1108 static unsigned int task_nr_scan_windows(struct task_struct *p)
1109 {
1110 	unsigned long rss = 0;
1111 	unsigned long nr_scan_pages;
1112 
1113 	/*
1114 	 * Calculations based on RSS as non-present and empty pages are skipped
1115 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1116 	 * on resident pages
1117 	 */
1118 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1119 	rss = get_mm_rss(p->mm);
1120 	if (!rss)
1121 		rss = nr_scan_pages;
1122 
1123 	rss = round_up(rss, nr_scan_pages);
1124 	return rss / nr_scan_pages;
1125 }
1126 
1127 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1128 #define MAX_SCAN_WINDOW 2560
1129 
task_scan_min(struct task_struct * p)1130 static unsigned int task_scan_min(struct task_struct *p)
1131 {
1132 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1133 	unsigned int scan, floor;
1134 	unsigned int windows = 1;
1135 
1136 	if (scan_size < MAX_SCAN_WINDOW)
1137 		windows = MAX_SCAN_WINDOW / scan_size;
1138 	floor = 1000 / windows;
1139 
1140 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1141 	return max_t(unsigned int, floor, scan);
1142 }
1143 
task_scan_start(struct task_struct * p)1144 static unsigned int task_scan_start(struct task_struct *p)
1145 {
1146 	unsigned long smin = task_scan_min(p);
1147 	unsigned long period = smin;
1148 	struct numa_group *ng;
1149 
1150 	/* Scale the maximum scan period with the amount of shared memory. */
1151 	rcu_read_lock();
1152 	ng = rcu_dereference(p->numa_group);
1153 	if (ng) {
1154 		unsigned long shared = group_faults_shared(ng);
1155 		unsigned long private = group_faults_priv(ng);
1156 
1157 		period *= refcount_read(&ng->refcount);
1158 		period *= shared + 1;
1159 		period /= private + shared + 1;
1160 	}
1161 	rcu_read_unlock();
1162 
1163 	return max(smin, period);
1164 }
1165 
task_scan_max(struct task_struct * p)1166 static unsigned int task_scan_max(struct task_struct *p)
1167 {
1168 	unsigned long smin = task_scan_min(p);
1169 	unsigned long smax;
1170 	struct numa_group *ng;
1171 
1172 	/* Watch for min being lower than max due to floor calculations */
1173 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1174 
1175 	/* Scale the maximum scan period with the amount of shared memory. */
1176 	ng = deref_curr_numa_group(p);
1177 	if (ng) {
1178 		unsigned long shared = group_faults_shared(ng);
1179 		unsigned long private = group_faults_priv(ng);
1180 		unsigned long period = smax;
1181 
1182 		period *= refcount_read(&ng->refcount);
1183 		period *= shared + 1;
1184 		period /= private + shared + 1;
1185 
1186 		smax = max(smax, period);
1187 	}
1188 
1189 	return max(smin, smax);
1190 }
1191 
account_numa_enqueue(struct rq * rq,struct task_struct * p)1192 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1193 {
1194 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1195 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1196 }
1197 
account_numa_dequeue(struct rq * rq,struct task_struct * p)1198 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1199 {
1200 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1201 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1202 }
1203 
1204 /* Shared or private faults. */
1205 #define NR_NUMA_HINT_FAULT_TYPES 2
1206 
1207 /* Memory and CPU locality */
1208 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1209 
1210 /* Averaged statistics, and temporary buffers. */
1211 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1212 
task_numa_group_id(struct task_struct * p)1213 pid_t task_numa_group_id(struct task_struct *p)
1214 {
1215 	struct numa_group *ng;
1216 	pid_t gid = 0;
1217 
1218 	rcu_read_lock();
1219 	ng = rcu_dereference(p->numa_group);
1220 	if (ng)
1221 		gid = ng->gid;
1222 	rcu_read_unlock();
1223 
1224 	return gid;
1225 }
1226 
1227 /*
1228  * The averaged statistics, shared & private, memory & CPU,
1229  * occupy the first half of the array. The second half of the
1230  * array is for current counters, which are averaged into the
1231  * first set by task_numa_placement.
1232  */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1233 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1234 {
1235 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1236 }
1237 
task_faults(struct task_struct * p,int nid)1238 static inline unsigned long task_faults(struct task_struct *p, int nid)
1239 {
1240 	if (!p->numa_faults)
1241 		return 0;
1242 
1243 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1244 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1245 }
1246 
group_faults(struct task_struct * p,int nid)1247 static inline unsigned long group_faults(struct task_struct *p, int nid)
1248 {
1249 	struct numa_group *ng = deref_task_numa_group(p);
1250 
1251 	if (!ng)
1252 		return 0;
1253 
1254 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1255 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1256 }
1257 
group_faults_cpu(struct numa_group * group,int nid)1258 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1259 {
1260 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1261 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1262 }
1263 
group_faults_priv(struct numa_group * ng)1264 static inline unsigned long group_faults_priv(struct numa_group *ng)
1265 {
1266 	unsigned long faults = 0;
1267 	int node;
1268 
1269 	for_each_online_node(node) {
1270 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1271 	}
1272 
1273 	return faults;
1274 }
1275 
group_faults_shared(struct numa_group * ng)1276 static inline unsigned long group_faults_shared(struct numa_group *ng)
1277 {
1278 	unsigned long faults = 0;
1279 	int node;
1280 
1281 	for_each_online_node(node) {
1282 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1283 	}
1284 
1285 	return faults;
1286 }
1287 
1288 /*
1289  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1290  * considered part of a numa group's pseudo-interleaving set. Migrations
1291  * between these nodes are slowed down, to allow things to settle down.
1292  */
1293 #define ACTIVE_NODE_FRACTION 3
1294 
numa_is_active_node(int nid,struct numa_group * ng)1295 static bool numa_is_active_node(int nid, struct numa_group *ng)
1296 {
1297 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1298 }
1299 
1300 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int maxdist,bool task)1301 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1302 					int maxdist, bool task)
1303 {
1304 	unsigned long score = 0;
1305 	int node;
1306 
1307 	/*
1308 	 * All nodes are directly connected, and the same distance
1309 	 * from each other. No need for fancy placement algorithms.
1310 	 */
1311 	if (sched_numa_topology_type == NUMA_DIRECT)
1312 		return 0;
1313 
1314 	/*
1315 	 * This code is called for each node, introducing N^2 complexity,
1316 	 * which should be ok given the number of nodes rarely exceeds 8.
1317 	 */
1318 	for_each_online_node(node) {
1319 		unsigned long faults;
1320 		int dist = node_distance(nid, node);
1321 
1322 		/*
1323 		 * The furthest away nodes in the system are not interesting
1324 		 * for placement; nid was already counted.
1325 		 */
1326 		if (dist == sched_max_numa_distance || node == nid)
1327 			continue;
1328 
1329 		/*
1330 		 * On systems with a backplane NUMA topology, compare groups
1331 		 * of nodes, and move tasks towards the group with the most
1332 		 * memory accesses. When comparing two nodes at distance
1333 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1334 		 * of each group. Skip other nodes.
1335 		 */
1336 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1337 					dist >= maxdist)
1338 			continue;
1339 
1340 		/* Add up the faults from nearby nodes. */
1341 		if (task)
1342 			faults = task_faults(p, node);
1343 		else
1344 			faults = group_faults(p, node);
1345 
1346 		/*
1347 		 * On systems with a glueless mesh NUMA topology, there are
1348 		 * no fixed "groups of nodes". Instead, nodes that are not
1349 		 * directly connected bounce traffic through intermediate
1350 		 * nodes; a numa_group can occupy any set of nodes.
1351 		 * The further away a node is, the less the faults count.
1352 		 * This seems to result in good task placement.
1353 		 */
1354 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1355 			faults *= (sched_max_numa_distance - dist);
1356 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1357 		}
1358 
1359 		score += faults;
1360 	}
1361 
1362 	return score;
1363 }
1364 
1365 /*
1366  * These return the fraction of accesses done by a particular task, or
1367  * task group, on a particular numa node.  The group weight is given a
1368  * larger multiplier, in order to group tasks together that are almost
1369  * evenly spread out between numa nodes.
1370  */
task_weight(struct task_struct * p,int nid,int dist)1371 static inline unsigned long task_weight(struct task_struct *p, int nid,
1372 					int dist)
1373 {
1374 	unsigned long faults, total_faults;
1375 
1376 	if (!p->numa_faults)
1377 		return 0;
1378 
1379 	total_faults = p->total_numa_faults;
1380 
1381 	if (!total_faults)
1382 		return 0;
1383 
1384 	faults = task_faults(p, nid);
1385 	faults += score_nearby_nodes(p, nid, dist, true);
1386 
1387 	return 1000 * faults / total_faults;
1388 }
1389 
group_weight(struct task_struct * p,int nid,int dist)1390 static inline unsigned long group_weight(struct task_struct *p, int nid,
1391 					 int dist)
1392 {
1393 	struct numa_group *ng = deref_task_numa_group(p);
1394 	unsigned long faults, total_faults;
1395 
1396 	if (!ng)
1397 		return 0;
1398 
1399 	total_faults = ng->total_faults;
1400 
1401 	if (!total_faults)
1402 		return 0;
1403 
1404 	faults = group_faults(p, nid);
1405 	faults += score_nearby_nodes(p, nid, dist, false);
1406 
1407 	return 1000 * faults / total_faults;
1408 }
1409 
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1410 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1411 				int src_nid, int dst_cpu)
1412 {
1413 	struct numa_group *ng = deref_curr_numa_group(p);
1414 	int dst_nid = cpu_to_node(dst_cpu);
1415 	int last_cpupid, this_cpupid;
1416 
1417 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1418 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1419 
1420 	/*
1421 	 * Allow first faults or private faults to migrate immediately early in
1422 	 * the lifetime of a task. The magic number 4 is based on waiting for
1423 	 * two full passes of the "multi-stage node selection" test that is
1424 	 * executed below.
1425 	 */
1426 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1427 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1428 		return true;
1429 
1430 	/*
1431 	 * Multi-stage node selection is used in conjunction with a periodic
1432 	 * migration fault to build a temporal task<->page relation. By using
1433 	 * a two-stage filter we remove short/unlikely relations.
1434 	 *
1435 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1436 	 * a task's usage of a particular page (n_p) per total usage of this
1437 	 * page (n_t) (in a given time-span) to a probability.
1438 	 *
1439 	 * Our periodic faults will sample this probability and getting the
1440 	 * same result twice in a row, given these samples are fully
1441 	 * independent, is then given by P(n)^2, provided our sample period
1442 	 * is sufficiently short compared to the usage pattern.
1443 	 *
1444 	 * This quadric squishes small probabilities, making it less likely we
1445 	 * act on an unlikely task<->page relation.
1446 	 */
1447 	if (!cpupid_pid_unset(last_cpupid) &&
1448 				cpupid_to_nid(last_cpupid) != dst_nid)
1449 		return false;
1450 
1451 	/* Always allow migrate on private faults */
1452 	if (cpupid_match_pid(p, last_cpupid))
1453 		return true;
1454 
1455 	/* A shared fault, but p->numa_group has not been set up yet. */
1456 	if (!ng)
1457 		return true;
1458 
1459 	/*
1460 	 * Destination node is much more heavily used than the source
1461 	 * node? Allow migration.
1462 	 */
1463 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1464 					ACTIVE_NODE_FRACTION)
1465 		return true;
1466 
1467 	/*
1468 	 * Distribute memory according to CPU & memory use on each node,
1469 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1470 	 *
1471 	 * faults_cpu(dst)   3   faults_cpu(src)
1472 	 * --------------- * - > ---------------
1473 	 * faults_mem(dst)   4   faults_mem(src)
1474 	 */
1475 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1476 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1477 }
1478 
1479 static unsigned long cpu_runnable_load(struct rq *rq);
1480 
1481 /* Cached statistics for all CPUs within a node */
1482 struct numa_stats {
1483 	unsigned long load;
1484 
1485 	/* Total compute capacity of CPUs on a node */
1486 	unsigned long compute_capacity;
1487 };
1488 
1489 /*
1490  * XXX borrowed from update_sg_lb_stats
1491  */
update_numa_stats(struct numa_stats * ns,int nid)1492 static void update_numa_stats(struct numa_stats *ns, int nid)
1493 {
1494 	int cpu;
1495 
1496 	memset(ns, 0, sizeof(*ns));
1497 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1498 		struct rq *rq = cpu_rq(cpu);
1499 
1500 		ns->load += cpu_runnable_load(rq);
1501 		ns->compute_capacity += capacity_of(cpu);
1502 	}
1503 
1504 }
1505 
1506 struct task_numa_env {
1507 	struct task_struct *p;
1508 
1509 	int src_cpu, src_nid;
1510 	int dst_cpu, dst_nid;
1511 
1512 	struct numa_stats src_stats, dst_stats;
1513 
1514 	int imbalance_pct;
1515 	int dist;
1516 
1517 	struct task_struct *best_task;
1518 	long best_imp;
1519 	int best_cpu;
1520 };
1521 
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)1522 static void task_numa_assign(struct task_numa_env *env,
1523 			     struct task_struct *p, long imp)
1524 {
1525 	struct rq *rq = cpu_rq(env->dst_cpu);
1526 
1527 	/* Bail out if run-queue part of active NUMA balance. */
1528 	if (xchg(&rq->numa_migrate_on, 1))
1529 		return;
1530 
1531 	/*
1532 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1533 	 * found a better CPU to move/swap.
1534 	 */
1535 	if (env->best_cpu != -1) {
1536 		rq = cpu_rq(env->best_cpu);
1537 		WRITE_ONCE(rq->numa_migrate_on, 0);
1538 	}
1539 
1540 	if (env->best_task)
1541 		put_task_struct(env->best_task);
1542 	if (p)
1543 		get_task_struct(p);
1544 
1545 	env->best_task = p;
1546 	env->best_imp = imp;
1547 	env->best_cpu = env->dst_cpu;
1548 }
1549 
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)1550 static bool load_too_imbalanced(long src_load, long dst_load,
1551 				struct task_numa_env *env)
1552 {
1553 	long imb, old_imb;
1554 	long orig_src_load, orig_dst_load;
1555 	long src_capacity, dst_capacity;
1556 
1557 	/*
1558 	 * The load is corrected for the CPU capacity available on each node.
1559 	 *
1560 	 * src_load        dst_load
1561 	 * ------------ vs ---------
1562 	 * src_capacity    dst_capacity
1563 	 */
1564 	src_capacity = env->src_stats.compute_capacity;
1565 	dst_capacity = env->dst_stats.compute_capacity;
1566 
1567 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1568 
1569 	orig_src_load = env->src_stats.load;
1570 	orig_dst_load = env->dst_stats.load;
1571 
1572 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1573 
1574 	/* Would this change make things worse? */
1575 	return (imb > old_imb);
1576 }
1577 
1578 /*
1579  * Maximum NUMA importance can be 1998 (2*999);
1580  * SMALLIMP @ 30 would be close to 1998/64.
1581  * Used to deter task migration.
1582  */
1583 #define SMALLIMP	30
1584 
1585 /*
1586  * This checks if the overall compute and NUMA accesses of the system would
1587  * be improved if the source tasks was migrated to the target dst_cpu taking
1588  * into account that it might be best if task running on the dst_cpu should
1589  * be exchanged with the source task
1590  */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)1591 static void task_numa_compare(struct task_numa_env *env,
1592 			      long taskimp, long groupimp, bool maymove)
1593 {
1594 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1595 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1596 	long imp = p_ng ? groupimp : taskimp;
1597 	struct task_struct *cur;
1598 	long src_load, dst_load;
1599 	int dist = env->dist;
1600 	long moveimp = imp;
1601 	long load;
1602 
1603 	if (READ_ONCE(dst_rq->numa_migrate_on))
1604 		return;
1605 
1606 	rcu_read_lock();
1607 	cur = rcu_dereference(dst_rq->curr);
1608 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1609 		cur = NULL;
1610 
1611 	/*
1612 	 * Because we have preemption enabled we can get migrated around and
1613 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1614 	 */
1615 	if (cur == env->p)
1616 		goto unlock;
1617 
1618 	if (!cur) {
1619 		if (maymove && moveimp >= env->best_imp)
1620 			goto assign;
1621 		else
1622 			goto unlock;
1623 	}
1624 
1625 	/*
1626 	 * "imp" is the fault differential for the source task between the
1627 	 * source and destination node. Calculate the total differential for
1628 	 * the source task and potential destination task. The more negative
1629 	 * the value is, the more remote accesses that would be expected to
1630 	 * be incurred if the tasks were swapped.
1631 	 */
1632 	/* Skip this swap candidate if cannot move to the source cpu */
1633 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1634 		goto unlock;
1635 
1636 	/*
1637 	 * If dst and source tasks are in the same NUMA group, or not
1638 	 * in any group then look only at task weights.
1639 	 */
1640 	cur_ng = rcu_dereference(cur->numa_group);
1641 	if (cur_ng == p_ng) {
1642 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1643 		      task_weight(cur, env->dst_nid, dist);
1644 		/*
1645 		 * Add some hysteresis to prevent swapping the
1646 		 * tasks within a group over tiny differences.
1647 		 */
1648 		if (cur_ng)
1649 			imp -= imp / 16;
1650 	} else {
1651 		/*
1652 		 * Compare the group weights. If a task is all by itself
1653 		 * (not part of a group), use the task weight instead.
1654 		 */
1655 		if (cur_ng && p_ng)
1656 			imp += group_weight(cur, env->src_nid, dist) -
1657 			       group_weight(cur, env->dst_nid, dist);
1658 		else
1659 			imp += task_weight(cur, env->src_nid, dist) -
1660 			       task_weight(cur, env->dst_nid, dist);
1661 	}
1662 
1663 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1664 		imp = moveimp;
1665 		cur = NULL;
1666 		goto assign;
1667 	}
1668 
1669 	/*
1670 	 * If the NUMA importance is less than SMALLIMP,
1671 	 * task migration might only result in ping pong
1672 	 * of tasks and also hurt performance due to cache
1673 	 * misses.
1674 	 */
1675 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1676 		goto unlock;
1677 
1678 	/*
1679 	 * In the overloaded case, try and keep the load balanced.
1680 	 */
1681 	load = task_h_load(env->p) - task_h_load(cur);
1682 	if (!load)
1683 		goto assign;
1684 
1685 	dst_load = env->dst_stats.load + load;
1686 	src_load = env->src_stats.load - load;
1687 
1688 	if (load_too_imbalanced(src_load, dst_load, env))
1689 		goto unlock;
1690 
1691 assign:
1692 	/*
1693 	 * One idle CPU per node is evaluated for a task numa move.
1694 	 * Call select_idle_sibling to maybe find a better one.
1695 	 */
1696 	if (!cur) {
1697 		/*
1698 		 * select_idle_siblings() uses an per-CPU cpumask that
1699 		 * can be used from IRQ context.
1700 		 */
1701 		local_irq_disable();
1702 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1703 						   env->dst_cpu);
1704 		local_irq_enable();
1705 	}
1706 
1707 	task_numa_assign(env, cur, imp);
1708 unlock:
1709 	rcu_read_unlock();
1710 }
1711 
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)1712 static void task_numa_find_cpu(struct task_numa_env *env,
1713 				long taskimp, long groupimp)
1714 {
1715 	long src_load, dst_load, load;
1716 	bool maymove = false;
1717 	int cpu;
1718 
1719 	load = task_h_load(env->p);
1720 	dst_load = env->dst_stats.load + load;
1721 	src_load = env->src_stats.load - load;
1722 
1723 	/*
1724 	 * If the improvement from just moving env->p direction is better
1725 	 * than swapping tasks around, check if a move is possible.
1726 	 */
1727 	maymove = !load_too_imbalanced(src_load, dst_load, env);
1728 
1729 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1730 		/* Skip this CPU if the source task cannot migrate */
1731 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1732 			continue;
1733 
1734 		env->dst_cpu = cpu;
1735 		task_numa_compare(env, taskimp, groupimp, maymove);
1736 	}
1737 }
1738 
task_numa_migrate(struct task_struct * p)1739 static int task_numa_migrate(struct task_struct *p)
1740 {
1741 	struct task_numa_env env = {
1742 		.p = p,
1743 
1744 		.src_cpu = task_cpu(p),
1745 		.src_nid = task_node(p),
1746 
1747 		.imbalance_pct = 112,
1748 
1749 		.best_task = NULL,
1750 		.best_imp = 0,
1751 		.best_cpu = -1,
1752 	};
1753 	unsigned long taskweight, groupweight;
1754 	struct sched_domain *sd;
1755 	long taskimp, groupimp;
1756 	struct numa_group *ng;
1757 	struct rq *best_rq;
1758 	int nid, ret, dist;
1759 
1760 	/*
1761 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1762 	 * imbalance and would be the first to start moving tasks about.
1763 	 *
1764 	 * And we want to avoid any moving of tasks about, as that would create
1765 	 * random movement of tasks -- counter the numa conditions we're trying
1766 	 * to satisfy here.
1767 	 */
1768 	rcu_read_lock();
1769 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1770 	if (sd)
1771 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1772 	rcu_read_unlock();
1773 
1774 	/*
1775 	 * Cpusets can break the scheduler domain tree into smaller
1776 	 * balance domains, some of which do not cross NUMA boundaries.
1777 	 * Tasks that are "trapped" in such domains cannot be migrated
1778 	 * elsewhere, so there is no point in (re)trying.
1779 	 */
1780 	if (unlikely(!sd)) {
1781 		sched_setnuma(p, task_node(p));
1782 		return -EINVAL;
1783 	}
1784 
1785 	env.dst_nid = p->numa_preferred_nid;
1786 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1787 	taskweight = task_weight(p, env.src_nid, dist);
1788 	groupweight = group_weight(p, env.src_nid, dist);
1789 	update_numa_stats(&env.src_stats, env.src_nid);
1790 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1791 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1792 	update_numa_stats(&env.dst_stats, env.dst_nid);
1793 
1794 	/* Try to find a spot on the preferred nid. */
1795 	task_numa_find_cpu(&env, taskimp, groupimp);
1796 
1797 	/*
1798 	 * Look at other nodes in these cases:
1799 	 * - there is no space available on the preferred_nid
1800 	 * - the task is part of a numa_group that is interleaved across
1801 	 *   multiple NUMA nodes; in order to better consolidate the group,
1802 	 *   we need to check other locations.
1803 	 */
1804 	ng = deref_curr_numa_group(p);
1805 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
1806 		for_each_online_node(nid) {
1807 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1808 				continue;
1809 
1810 			dist = node_distance(env.src_nid, env.dst_nid);
1811 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1812 						dist != env.dist) {
1813 				taskweight = task_weight(p, env.src_nid, dist);
1814 				groupweight = group_weight(p, env.src_nid, dist);
1815 			}
1816 
1817 			/* Only consider nodes where both task and groups benefit */
1818 			taskimp = task_weight(p, nid, dist) - taskweight;
1819 			groupimp = group_weight(p, nid, dist) - groupweight;
1820 			if (taskimp < 0 && groupimp < 0)
1821 				continue;
1822 
1823 			env.dist = dist;
1824 			env.dst_nid = nid;
1825 			update_numa_stats(&env.dst_stats, env.dst_nid);
1826 			task_numa_find_cpu(&env, taskimp, groupimp);
1827 		}
1828 	}
1829 
1830 	/*
1831 	 * If the task is part of a workload that spans multiple NUMA nodes,
1832 	 * and is migrating into one of the workload's active nodes, remember
1833 	 * this node as the task's preferred numa node, so the workload can
1834 	 * settle down.
1835 	 * A task that migrated to a second choice node will be better off
1836 	 * trying for a better one later. Do not set the preferred node here.
1837 	 */
1838 	if (ng) {
1839 		if (env.best_cpu == -1)
1840 			nid = env.src_nid;
1841 		else
1842 			nid = cpu_to_node(env.best_cpu);
1843 
1844 		if (nid != p->numa_preferred_nid)
1845 			sched_setnuma(p, nid);
1846 	}
1847 
1848 	/* No better CPU than the current one was found. */
1849 	if (env.best_cpu == -1)
1850 		return -EAGAIN;
1851 
1852 	best_rq = cpu_rq(env.best_cpu);
1853 	if (env.best_task == NULL) {
1854 		ret = migrate_task_to(p, env.best_cpu);
1855 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
1856 		if (ret != 0)
1857 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1858 		return ret;
1859 	}
1860 
1861 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1862 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
1863 
1864 	if (ret != 0)
1865 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1866 	put_task_struct(env.best_task);
1867 	return ret;
1868 }
1869 
1870 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)1871 static void numa_migrate_preferred(struct task_struct *p)
1872 {
1873 	unsigned long interval = HZ;
1874 
1875 	/* This task has no NUMA fault statistics yet */
1876 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
1877 		return;
1878 
1879 	/* Periodically retry migrating the task to the preferred node */
1880 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1881 	p->numa_migrate_retry = jiffies + interval;
1882 
1883 	/* Success if task is already running on preferred CPU */
1884 	if (task_node(p) == p->numa_preferred_nid)
1885 		return;
1886 
1887 	/* Otherwise, try migrate to a CPU on the preferred node */
1888 	task_numa_migrate(p);
1889 }
1890 
1891 /*
1892  * Find out how many nodes on the workload is actively running on. Do this by
1893  * tracking the nodes from which NUMA hinting faults are triggered. This can
1894  * be different from the set of nodes where the workload's memory is currently
1895  * located.
1896  */
numa_group_count_active_nodes(struct numa_group * numa_group)1897 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1898 {
1899 	unsigned long faults, max_faults = 0;
1900 	int nid, active_nodes = 0;
1901 
1902 	for_each_online_node(nid) {
1903 		faults = group_faults_cpu(numa_group, nid);
1904 		if (faults > max_faults)
1905 			max_faults = faults;
1906 	}
1907 
1908 	for_each_online_node(nid) {
1909 		faults = group_faults_cpu(numa_group, nid);
1910 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1911 			active_nodes++;
1912 	}
1913 
1914 	numa_group->max_faults_cpu = max_faults;
1915 	numa_group->active_nodes = active_nodes;
1916 }
1917 
1918 /*
1919  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1920  * increments. The more local the fault statistics are, the higher the scan
1921  * period will be for the next scan window. If local/(local+remote) ratio is
1922  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1923  * the scan period will decrease. Aim for 70% local accesses.
1924  */
1925 #define NUMA_PERIOD_SLOTS 10
1926 #define NUMA_PERIOD_THRESHOLD 7
1927 
1928 /*
1929  * Increase the scan period (slow down scanning) if the majority of
1930  * our memory is already on our local node, or if the majority of
1931  * the page accesses are shared with other processes.
1932  * Otherwise, decrease the scan period.
1933  */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)1934 static void update_task_scan_period(struct task_struct *p,
1935 			unsigned long shared, unsigned long private)
1936 {
1937 	unsigned int period_slot;
1938 	int lr_ratio, ps_ratio;
1939 	int diff;
1940 
1941 	unsigned long remote = p->numa_faults_locality[0];
1942 	unsigned long local = p->numa_faults_locality[1];
1943 
1944 	/*
1945 	 * If there were no record hinting faults then either the task is
1946 	 * completely idle or all activity is areas that are not of interest
1947 	 * to automatic numa balancing. Related to that, if there were failed
1948 	 * migration then it implies we are migrating too quickly or the local
1949 	 * node is overloaded. In either case, scan slower
1950 	 */
1951 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1952 		p->numa_scan_period = min(p->numa_scan_period_max,
1953 			p->numa_scan_period << 1);
1954 
1955 		p->mm->numa_next_scan = jiffies +
1956 			msecs_to_jiffies(p->numa_scan_period);
1957 
1958 		return;
1959 	}
1960 
1961 	/*
1962 	 * Prepare to scale scan period relative to the current period.
1963 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1964 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1965 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1966 	 */
1967 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1968 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1969 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1970 
1971 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1972 		/*
1973 		 * Most memory accesses are local. There is no need to
1974 		 * do fast NUMA scanning, since memory is already local.
1975 		 */
1976 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1977 		if (!slot)
1978 			slot = 1;
1979 		diff = slot * period_slot;
1980 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1981 		/*
1982 		 * Most memory accesses are shared with other tasks.
1983 		 * There is no point in continuing fast NUMA scanning,
1984 		 * since other tasks may just move the memory elsewhere.
1985 		 */
1986 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1987 		if (!slot)
1988 			slot = 1;
1989 		diff = slot * period_slot;
1990 	} else {
1991 		/*
1992 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1993 		 * yet they are not on the local NUMA node. Speed up
1994 		 * NUMA scanning to get the memory moved over.
1995 		 */
1996 		int ratio = max(lr_ratio, ps_ratio);
1997 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1998 	}
1999 
2000 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2001 			task_scan_min(p), task_scan_max(p));
2002 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2003 }
2004 
2005 /*
2006  * Get the fraction of time the task has been running since the last
2007  * NUMA placement cycle. The scheduler keeps similar statistics, but
2008  * decays those on a 32ms period, which is orders of magnitude off
2009  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2010  * stats only if the task is so new there are no NUMA statistics yet.
2011  */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2012 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2013 {
2014 	u64 runtime, delta, now;
2015 	/* Use the start of this time slice to avoid calculations. */
2016 	now = p->se.exec_start;
2017 	runtime = p->se.sum_exec_runtime;
2018 
2019 	if (p->last_task_numa_placement) {
2020 		delta = runtime - p->last_sum_exec_runtime;
2021 		*period = now - p->last_task_numa_placement;
2022 
2023 		/* Avoid time going backwards, prevent potential divide error: */
2024 		if (unlikely((s64)*period < 0))
2025 			*period = 0;
2026 	} else {
2027 		delta = p->se.avg.load_sum;
2028 		*period = LOAD_AVG_MAX;
2029 	}
2030 
2031 	p->last_sum_exec_runtime = runtime;
2032 	p->last_task_numa_placement = now;
2033 
2034 	return delta;
2035 }
2036 
2037 /*
2038  * Determine the preferred nid for a task in a numa_group. This needs to
2039  * be done in a way that produces consistent results with group_weight,
2040  * otherwise workloads might not converge.
2041  */
preferred_group_nid(struct task_struct * p,int nid)2042 static int preferred_group_nid(struct task_struct *p, int nid)
2043 {
2044 	nodemask_t nodes;
2045 	int dist;
2046 
2047 	/* Direct connections between all NUMA nodes. */
2048 	if (sched_numa_topology_type == NUMA_DIRECT)
2049 		return nid;
2050 
2051 	/*
2052 	 * On a system with glueless mesh NUMA topology, group_weight
2053 	 * scores nodes according to the number of NUMA hinting faults on
2054 	 * both the node itself, and on nearby nodes.
2055 	 */
2056 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2057 		unsigned long score, max_score = 0;
2058 		int node, max_node = nid;
2059 
2060 		dist = sched_max_numa_distance;
2061 
2062 		for_each_online_node(node) {
2063 			score = group_weight(p, node, dist);
2064 			if (score > max_score) {
2065 				max_score = score;
2066 				max_node = node;
2067 			}
2068 		}
2069 		return max_node;
2070 	}
2071 
2072 	/*
2073 	 * Finding the preferred nid in a system with NUMA backplane
2074 	 * interconnect topology is more involved. The goal is to locate
2075 	 * tasks from numa_groups near each other in the system, and
2076 	 * untangle workloads from different sides of the system. This requires
2077 	 * searching down the hierarchy of node groups, recursively searching
2078 	 * inside the highest scoring group of nodes. The nodemask tricks
2079 	 * keep the complexity of the search down.
2080 	 */
2081 	nodes = node_online_map;
2082 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2083 		unsigned long max_faults = 0;
2084 		nodemask_t max_group = NODE_MASK_NONE;
2085 		int a, b;
2086 
2087 		/* Are there nodes at this distance from each other? */
2088 		if (!find_numa_distance(dist))
2089 			continue;
2090 
2091 		for_each_node_mask(a, nodes) {
2092 			unsigned long faults = 0;
2093 			nodemask_t this_group;
2094 			nodes_clear(this_group);
2095 
2096 			/* Sum group's NUMA faults; includes a==b case. */
2097 			for_each_node_mask(b, nodes) {
2098 				if (node_distance(a, b) < dist) {
2099 					faults += group_faults(p, b);
2100 					node_set(b, this_group);
2101 					node_clear(b, nodes);
2102 				}
2103 			}
2104 
2105 			/* Remember the top group. */
2106 			if (faults > max_faults) {
2107 				max_faults = faults;
2108 				max_group = this_group;
2109 				/*
2110 				 * subtle: at the smallest distance there is
2111 				 * just one node left in each "group", the
2112 				 * winner is the preferred nid.
2113 				 */
2114 				nid = a;
2115 			}
2116 		}
2117 		/* Next round, evaluate the nodes within max_group. */
2118 		if (!max_faults)
2119 			break;
2120 		nodes = max_group;
2121 	}
2122 	return nid;
2123 }
2124 
task_numa_placement(struct task_struct * p)2125 static void task_numa_placement(struct task_struct *p)
2126 {
2127 	int seq, nid, max_nid = NUMA_NO_NODE;
2128 	unsigned long max_faults = 0;
2129 	unsigned long fault_types[2] = { 0, 0 };
2130 	unsigned long total_faults;
2131 	u64 runtime, period;
2132 	spinlock_t *group_lock = NULL;
2133 	struct numa_group *ng;
2134 
2135 	/*
2136 	 * The p->mm->numa_scan_seq field gets updated without
2137 	 * exclusive access. Use READ_ONCE() here to ensure
2138 	 * that the field is read in a single access:
2139 	 */
2140 	seq = READ_ONCE(p->mm->numa_scan_seq);
2141 	if (p->numa_scan_seq == seq)
2142 		return;
2143 	p->numa_scan_seq = seq;
2144 	p->numa_scan_period_max = task_scan_max(p);
2145 
2146 	total_faults = p->numa_faults_locality[0] +
2147 		       p->numa_faults_locality[1];
2148 	runtime = numa_get_avg_runtime(p, &period);
2149 
2150 	/* If the task is part of a group prevent parallel updates to group stats */
2151 	ng = deref_curr_numa_group(p);
2152 	if (ng) {
2153 		group_lock = &ng->lock;
2154 		spin_lock_irq(group_lock);
2155 	}
2156 
2157 	/* Find the node with the highest number of faults */
2158 	for_each_online_node(nid) {
2159 		/* Keep track of the offsets in numa_faults array */
2160 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2161 		unsigned long faults = 0, group_faults = 0;
2162 		int priv;
2163 
2164 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2165 			long diff, f_diff, f_weight;
2166 
2167 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2168 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2169 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2170 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2171 
2172 			/* Decay existing window, copy faults since last scan */
2173 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2174 			fault_types[priv] += p->numa_faults[membuf_idx];
2175 			p->numa_faults[membuf_idx] = 0;
2176 
2177 			/*
2178 			 * Normalize the faults_from, so all tasks in a group
2179 			 * count according to CPU use, instead of by the raw
2180 			 * number of faults. Tasks with little runtime have
2181 			 * little over-all impact on throughput, and thus their
2182 			 * faults are less important.
2183 			 */
2184 			f_weight = div64_u64(runtime << 16, period + 1);
2185 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2186 				   (total_faults + 1);
2187 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2188 			p->numa_faults[cpubuf_idx] = 0;
2189 
2190 			p->numa_faults[mem_idx] += diff;
2191 			p->numa_faults[cpu_idx] += f_diff;
2192 			faults += p->numa_faults[mem_idx];
2193 			p->total_numa_faults += diff;
2194 			if (ng) {
2195 				/*
2196 				 * safe because we can only change our own group
2197 				 *
2198 				 * mem_idx represents the offset for a given
2199 				 * nid and priv in a specific region because it
2200 				 * is at the beginning of the numa_faults array.
2201 				 */
2202 				ng->faults[mem_idx] += diff;
2203 				ng->faults_cpu[mem_idx] += f_diff;
2204 				ng->total_faults += diff;
2205 				group_faults += ng->faults[mem_idx];
2206 			}
2207 		}
2208 
2209 		if (!ng) {
2210 			if (faults > max_faults) {
2211 				max_faults = faults;
2212 				max_nid = nid;
2213 			}
2214 		} else if (group_faults > max_faults) {
2215 			max_faults = group_faults;
2216 			max_nid = nid;
2217 		}
2218 	}
2219 
2220 	if (ng) {
2221 		numa_group_count_active_nodes(ng);
2222 		spin_unlock_irq(group_lock);
2223 		max_nid = preferred_group_nid(p, max_nid);
2224 	}
2225 
2226 	if (max_faults) {
2227 		/* Set the new preferred node */
2228 		if (max_nid != p->numa_preferred_nid)
2229 			sched_setnuma(p, max_nid);
2230 	}
2231 
2232 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2233 }
2234 
get_numa_group(struct numa_group * grp)2235 static inline int get_numa_group(struct numa_group *grp)
2236 {
2237 	return refcount_inc_not_zero(&grp->refcount);
2238 }
2239 
put_numa_group(struct numa_group * grp)2240 static inline void put_numa_group(struct numa_group *grp)
2241 {
2242 	if (refcount_dec_and_test(&grp->refcount))
2243 		kfree_rcu(grp, rcu);
2244 }
2245 
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)2246 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2247 			int *priv)
2248 {
2249 	struct numa_group *grp, *my_grp;
2250 	struct task_struct *tsk;
2251 	bool join = false;
2252 	int cpu = cpupid_to_cpu(cpupid);
2253 	int i;
2254 
2255 	if (unlikely(!deref_curr_numa_group(p))) {
2256 		unsigned int size = sizeof(struct numa_group) +
2257 				    4*nr_node_ids*sizeof(unsigned long);
2258 
2259 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2260 		if (!grp)
2261 			return;
2262 
2263 		refcount_set(&grp->refcount, 1);
2264 		grp->active_nodes = 1;
2265 		grp->max_faults_cpu = 0;
2266 		spin_lock_init(&grp->lock);
2267 		grp->gid = p->pid;
2268 		/* Second half of the array tracks nids where faults happen */
2269 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2270 						nr_node_ids;
2271 
2272 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2273 			grp->faults[i] = p->numa_faults[i];
2274 
2275 		grp->total_faults = p->total_numa_faults;
2276 
2277 		grp->nr_tasks++;
2278 		rcu_assign_pointer(p->numa_group, grp);
2279 	}
2280 
2281 	rcu_read_lock();
2282 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2283 
2284 	if (!cpupid_match_pid(tsk, cpupid))
2285 		goto no_join;
2286 
2287 	grp = rcu_dereference(tsk->numa_group);
2288 	if (!grp)
2289 		goto no_join;
2290 
2291 	my_grp = deref_curr_numa_group(p);
2292 	if (grp == my_grp)
2293 		goto no_join;
2294 
2295 	/*
2296 	 * Only join the other group if its bigger; if we're the bigger group,
2297 	 * the other task will join us.
2298 	 */
2299 	if (my_grp->nr_tasks > grp->nr_tasks)
2300 		goto no_join;
2301 
2302 	/*
2303 	 * Tie-break on the grp address.
2304 	 */
2305 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2306 		goto no_join;
2307 
2308 	/* Always join threads in the same process. */
2309 	if (tsk->mm == current->mm)
2310 		join = true;
2311 
2312 	/* Simple filter to avoid false positives due to PID collisions */
2313 	if (flags & TNF_SHARED)
2314 		join = true;
2315 
2316 	/* Update priv based on whether false sharing was detected */
2317 	*priv = !join;
2318 
2319 	if (join && !get_numa_group(grp))
2320 		goto no_join;
2321 
2322 	rcu_read_unlock();
2323 
2324 	if (!join)
2325 		return;
2326 
2327 	BUG_ON(irqs_disabled());
2328 	double_lock_irq(&my_grp->lock, &grp->lock);
2329 
2330 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2331 		my_grp->faults[i] -= p->numa_faults[i];
2332 		grp->faults[i] += p->numa_faults[i];
2333 	}
2334 	my_grp->total_faults -= p->total_numa_faults;
2335 	grp->total_faults += p->total_numa_faults;
2336 
2337 	my_grp->nr_tasks--;
2338 	grp->nr_tasks++;
2339 
2340 	spin_unlock(&my_grp->lock);
2341 	spin_unlock_irq(&grp->lock);
2342 
2343 	rcu_assign_pointer(p->numa_group, grp);
2344 
2345 	put_numa_group(my_grp);
2346 	return;
2347 
2348 no_join:
2349 	rcu_read_unlock();
2350 	return;
2351 }
2352 
2353 /*
2354  * Get rid of NUMA staticstics associated with a task (either current or dead).
2355  * If @final is set, the task is dead and has reached refcount zero, so we can
2356  * safely free all relevant data structures. Otherwise, there might be
2357  * concurrent reads from places like load balancing and procfs, and we should
2358  * reset the data back to default state without freeing ->numa_faults.
2359  */
task_numa_free(struct task_struct * p,bool final)2360 void task_numa_free(struct task_struct *p, bool final)
2361 {
2362 	/* safe: p either is current or is being freed by current */
2363 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2364 	unsigned long *numa_faults = p->numa_faults;
2365 	unsigned long flags;
2366 	int i;
2367 
2368 	if (!numa_faults)
2369 		return;
2370 
2371 	if (grp) {
2372 		spin_lock_irqsave(&grp->lock, flags);
2373 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2374 			grp->faults[i] -= p->numa_faults[i];
2375 		grp->total_faults -= p->total_numa_faults;
2376 
2377 		grp->nr_tasks--;
2378 		spin_unlock_irqrestore(&grp->lock, flags);
2379 		RCU_INIT_POINTER(p->numa_group, NULL);
2380 		put_numa_group(grp);
2381 	}
2382 
2383 	if (final) {
2384 		p->numa_faults = NULL;
2385 		kfree(numa_faults);
2386 	} else {
2387 		p->total_numa_faults = 0;
2388 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2389 			numa_faults[i] = 0;
2390 	}
2391 }
2392 
2393 /*
2394  * Got a PROT_NONE fault for a page on @node.
2395  */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)2396 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2397 {
2398 	struct task_struct *p = current;
2399 	bool migrated = flags & TNF_MIGRATED;
2400 	int cpu_node = task_node(current);
2401 	int local = !!(flags & TNF_FAULT_LOCAL);
2402 	struct numa_group *ng;
2403 	int priv;
2404 
2405 	if (!static_branch_likely(&sched_numa_balancing))
2406 		return;
2407 
2408 	/* for example, ksmd faulting in a user's mm */
2409 	if (!p->mm)
2410 		return;
2411 
2412 	/* Allocate buffer to track faults on a per-node basis */
2413 	if (unlikely(!p->numa_faults)) {
2414 		int size = sizeof(*p->numa_faults) *
2415 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2416 
2417 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2418 		if (!p->numa_faults)
2419 			return;
2420 
2421 		p->total_numa_faults = 0;
2422 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2423 	}
2424 
2425 	/*
2426 	 * First accesses are treated as private, otherwise consider accesses
2427 	 * to be private if the accessing pid has not changed
2428 	 */
2429 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2430 		priv = 1;
2431 	} else {
2432 		priv = cpupid_match_pid(p, last_cpupid);
2433 		if (!priv && !(flags & TNF_NO_GROUP))
2434 			task_numa_group(p, last_cpupid, flags, &priv);
2435 	}
2436 
2437 	/*
2438 	 * If a workload spans multiple NUMA nodes, a shared fault that
2439 	 * occurs wholly within the set of nodes that the workload is
2440 	 * actively using should be counted as local. This allows the
2441 	 * scan rate to slow down when a workload has settled down.
2442 	 */
2443 	ng = deref_curr_numa_group(p);
2444 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2445 				numa_is_active_node(cpu_node, ng) &&
2446 				numa_is_active_node(mem_node, ng))
2447 		local = 1;
2448 
2449 	/*
2450 	 * Retry to migrate task to preferred node periodically, in case it
2451 	 * previously failed, or the scheduler moved us.
2452 	 */
2453 	if (time_after(jiffies, p->numa_migrate_retry)) {
2454 		task_numa_placement(p);
2455 		numa_migrate_preferred(p);
2456 	}
2457 
2458 	if (migrated)
2459 		p->numa_pages_migrated += pages;
2460 	if (flags & TNF_MIGRATE_FAIL)
2461 		p->numa_faults_locality[2] += pages;
2462 
2463 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2464 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2465 	p->numa_faults_locality[local] += pages;
2466 }
2467 
reset_ptenuma_scan(struct task_struct * p)2468 static void reset_ptenuma_scan(struct task_struct *p)
2469 {
2470 	/*
2471 	 * We only did a read acquisition of the mmap sem, so
2472 	 * p->mm->numa_scan_seq is written to without exclusive access
2473 	 * and the update is not guaranteed to be atomic. That's not
2474 	 * much of an issue though, since this is just used for
2475 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2476 	 * expensive, to avoid any form of compiler optimizations:
2477 	 */
2478 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2479 	p->mm->numa_scan_offset = 0;
2480 }
2481 
2482 /*
2483  * The expensive part of numa migration is done from task_work context.
2484  * Triggered from task_tick_numa().
2485  */
task_numa_work(struct callback_head * work)2486 static void task_numa_work(struct callback_head *work)
2487 {
2488 	unsigned long migrate, next_scan, now = jiffies;
2489 	struct task_struct *p = current;
2490 	struct mm_struct *mm = p->mm;
2491 	u64 runtime = p->se.sum_exec_runtime;
2492 	struct vm_area_struct *vma;
2493 	unsigned long start, end;
2494 	unsigned long nr_pte_updates = 0;
2495 	long pages, virtpages;
2496 
2497 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2498 
2499 	work->next = work;
2500 	/*
2501 	 * Who cares about NUMA placement when they're dying.
2502 	 *
2503 	 * NOTE: make sure not to dereference p->mm before this check,
2504 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2505 	 * without p->mm even though we still had it when we enqueued this
2506 	 * work.
2507 	 */
2508 	if (p->flags & PF_EXITING)
2509 		return;
2510 
2511 	if (!mm->numa_next_scan) {
2512 		mm->numa_next_scan = now +
2513 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2514 	}
2515 
2516 	/*
2517 	 * Enforce maximal scan/migration frequency..
2518 	 */
2519 	migrate = mm->numa_next_scan;
2520 	if (time_before(now, migrate))
2521 		return;
2522 
2523 	if (p->numa_scan_period == 0) {
2524 		p->numa_scan_period_max = task_scan_max(p);
2525 		p->numa_scan_period = task_scan_start(p);
2526 	}
2527 
2528 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2529 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2530 		return;
2531 
2532 	/*
2533 	 * Delay this task enough that another task of this mm will likely win
2534 	 * the next time around.
2535 	 */
2536 	p->node_stamp += 2 * TICK_NSEC;
2537 
2538 	start = mm->numa_scan_offset;
2539 	pages = sysctl_numa_balancing_scan_size;
2540 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2541 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2542 	if (!pages)
2543 		return;
2544 
2545 
2546 	if (!down_read_trylock(&mm->mmap_sem))
2547 		return;
2548 	vma = find_vma(mm, start);
2549 	if (!vma) {
2550 		reset_ptenuma_scan(p);
2551 		start = 0;
2552 		vma = mm->mmap;
2553 	}
2554 	for (; vma; vma = vma->vm_next) {
2555 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2556 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2557 			continue;
2558 		}
2559 
2560 		/*
2561 		 * Shared library pages mapped by multiple processes are not
2562 		 * migrated as it is expected they are cache replicated. Avoid
2563 		 * hinting faults in read-only file-backed mappings or the vdso
2564 		 * as migrating the pages will be of marginal benefit.
2565 		 */
2566 		if (!vma->vm_mm ||
2567 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2568 			continue;
2569 
2570 		/*
2571 		 * Skip inaccessible VMAs to avoid any confusion between
2572 		 * PROT_NONE and NUMA hinting ptes
2573 		 */
2574 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2575 			continue;
2576 
2577 		do {
2578 			start = max(start, vma->vm_start);
2579 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2580 			end = min(end, vma->vm_end);
2581 			nr_pte_updates = change_prot_numa(vma, start, end);
2582 
2583 			/*
2584 			 * Try to scan sysctl_numa_balancing_size worth of
2585 			 * hpages that have at least one present PTE that
2586 			 * is not already pte-numa. If the VMA contains
2587 			 * areas that are unused or already full of prot_numa
2588 			 * PTEs, scan up to virtpages, to skip through those
2589 			 * areas faster.
2590 			 */
2591 			if (nr_pte_updates)
2592 				pages -= (end - start) >> PAGE_SHIFT;
2593 			virtpages -= (end - start) >> PAGE_SHIFT;
2594 
2595 			start = end;
2596 			if (pages <= 0 || virtpages <= 0)
2597 				goto out;
2598 
2599 			cond_resched();
2600 		} while (end != vma->vm_end);
2601 	}
2602 
2603 out:
2604 	/*
2605 	 * It is possible to reach the end of the VMA list but the last few
2606 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2607 	 * would find the !migratable VMA on the next scan but not reset the
2608 	 * scanner to the start so check it now.
2609 	 */
2610 	if (vma)
2611 		mm->numa_scan_offset = start;
2612 	else
2613 		reset_ptenuma_scan(p);
2614 	up_read(&mm->mmap_sem);
2615 
2616 	/*
2617 	 * Make sure tasks use at least 32x as much time to run other code
2618 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2619 	 * Usually update_task_scan_period slows down scanning enough; on an
2620 	 * overloaded system we need to limit overhead on a per task basis.
2621 	 */
2622 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2623 		u64 diff = p->se.sum_exec_runtime - runtime;
2624 		p->node_stamp += 32 * diff;
2625 	}
2626 }
2627 
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)2628 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2629 {
2630 	int mm_users = 0;
2631 	struct mm_struct *mm = p->mm;
2632 
2633 	if (mm) {
2634 		mm_users = atomic_read(&mm->mm_users);
2635 		if (mm_users == 1) {
2636 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2637 			mm->numa_scan_seq = 0;
2638 		}
2639 	}
2640 	p->node_stamp			= 0;
2641 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2642 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2643 	/* Protect against double add, see task_tick_numa and task_numa_work */
2644 	p->numa_work.next		= &p->numa_work;
2645 	p->numa_faults			= NULL;
2646 	RCU_INIT_POINTER(p->numa_group, NULL);
2647 	p->last_task_numa_placement	= 0;
2648 	p->last_sum_exec_runtime	= 0;
2649 
2650 	init_task_work(&p->numa_work, task_numa_work);
2651 
2652 	/* New address space, reset the preferred nid */
2653 	if (!(clone_flags & CLONE_VM)) {
2654 		p->numa_preferred_nid = NUMA_NO_NODE;
2655 		return;
2656 	}
2657 
2658 	/*
2659 	 * New thread, keep existing numa_preferred_nid which should be copied
2660 	 * already by arch_dup_task_struct but stagger when scans start.
2661 	 */
2662 	if (mm) {
2663 		unsigned int delay;
2664 
2665 		delay = min_t(unsigned int, task_scan_max(current),
2666 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2667 		delay += 2 * TICK_NSEC;
2668 		p->node_stamp = delay;
2669 	}
2670 }
2671 
2672 /*
2673  * Drive the periodic memory faults..
2674  */
task_tick_numa(struct rq * rq,struct task_struct * curr)2675 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2676 {
2677 	struct callback_head *work = &curr->numa_work;
2678 	u64 period, now;
2679 
2680 	/*
2681 	 * We don't care about NUMA placement if we don't have memory.
2682 	 */
2683 	if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2684 		return;
2685 
2686 	/*
2687 	 * Using runtime rather than walltime has the dual advantage that
2688 	 * we (mostly) drive the selection from busy threads and that the
2689 	 * task needs to have done some actual work before we bother with
2690 	 * NUMA placement.
2691 	 */
2692 	now = curr->se.sum_exec_runtime;
2693 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2694 
2695 	if (now > curr->node_stamp + period) {
2696 		if (!curr->node_stamp)
2697 			curr->numa_scan_period = task_scan_start(curr);
2698 		curr->node_stamp += period;
2699 
2700 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2701 			task_work_add(curr, work, true);
2702 	}
2703 }
2704 
update_scan_period(struct task_struct * p,int new_cpu)2705 static void update_scan_period(struct task_struct *p, int new_cpu)
2706 {
2707 	int src_nid = cpu_to_node(task_cpu(p));
2708 	int dst_nid = cpu_to_node(new_cpu);
2709 
2710 	if (!static_branch_likely(&sched_numa_balancing))
2711 		return;
2712 
2713 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2714 		return;
2715 
2716 	if (src_nid == dst_nid)
2717 		return;
2718 
2719 	/*
2720 	 * Allow resets if faults have been trapped before one scan
2721 	 * has completed. This is most likely due to a new task that
2722 	 * is pulled cross-node due to wakeups or load balancing.
2723 	 */
2724 	if (p->numa_scan_seq) {
2725 		/*
2726 		 * Avoid scan adjustments if moving to the preferred
2727 		 * node or if the task was not previously running on
2728 		 * the preferred node.
2729 		 */
2730 		if (dst_nid == p->numa_preferred_nid ||
2731 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2732 			src_nid != p->numa_preferred_nid))
2733 			return;
2734 	}
2735 
2736 	p->numa_scan_period = task_scan_start(p);
2737 }
2738 
2739 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)2740 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2741 {
2742 }
2743 
account_numa_enqueue(struct rq * rq,struct task_struct * p)2744 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2745 {
2746 }
2747 
account_numa_dequeue(struct rq * rq,struct task_struct * p)2748 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2749 {
2750 }
2751 
update_scan_period(struct task_struct * p,int new_cpu)2752 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2753 {
2754 }
2755 
2756 #endif /* CONFIG_NUMA_BALANCING */
2757 
2758 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)2759 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2760 {
2761 	update_load_add(&cfs_rq->load, se->load.weight);
2762 #ifdef CONFIG_SMP
2763 	if (entity_is_task(se)) {
2764 		struct rq *rq = rq_of(cfs_rq);
2765 
2766 		account_numa_enqueue(rq, task_of(se));
2767 		list_add(&se->group_node, &rq->cfs_tasks);
2768 	}
2769 #endif
2770 	cfs_rq->nr_running++;
2771 }
2772 
2773 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)2774 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2775 {
2776 	update_load_sub(&cfs_rq->load, se->load.weight);
2777 #ifdef CONFIG_SMP
2778 	if (entity_is_task(se)) {
2779 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2780 		list_del_init(&se->group_node);
2781 	}
2782 #endif
2783 	cfs_rq->nr_running--;
2784 }
2785 
2786 /*
2787  * Signed add and clamp on underflow.
2788  *
2789  * Explicitly do a load-store to ensure the intermediate value never hits
2790  * memory. This allows lockless observations without ever seeing the negative
2791  * values.
2792  */
2793 #define add_positive(_ptr, _val) do {                           \
2794 	typeof(_ptr) ptr = (_ptr);                              \
2795 	typeof(_val) val = (_val);                              \
2796 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2797 								\
2798 	res = var + val;                                        \
2799 								\
2800 	if (val < 0 && res > var)                               \
2801 		res = 0;                                        \
2802 								\
2803 	WRITE_ONCE(*ptr, res);                                  \
2804 } while (0)
2805 
2806 /*
2807  * Unsigned subtract and clamp on underflow.
2808  *
2809  * Explicitly do a load-store to ensure the intermediate value never hits
2810  * memory. This allows lockless observations without ever seeing the negative
2811  * values.
2812  */
2813 #define sub_positive(_ptr, _val) do {				\
2814 	typeof(_ptr) ptr = (_ptr);				\
2815 	typeof(*ptr) val = (_val);				\
2816 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
2817 	res = var - val;					\
2818 	if (res > var)						\
2819 		res = 0;					\
2820 	WRITE_ONCE(*ptr, res);					\
2821 } while (0)
2822 
2823 /*
2824  * Remove and clamp on negative, from a local variable.
2825  *
2826  * A variant of sub_positive(), which does not use explicit load-store
2827  * and is thus optimized for local variable updates.
2828  */
2829 #define lsub_positive(_ptr, _val) do {				\
2830 	typeof(_ptr) ptr = (_ptr);				\
2831 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
2832 } while (0)
2833 
2834 #ifdef CONFIG_SMP
2835 static inline void
enqueue_runnable_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2836 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2837 {
2838 	cfs_rq->runnable_weight += se->runnable_weight;
2839 
2840 	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2841 	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2842 }
2843 
2844 static inline void
dequeue_runnable_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2845 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2846 {
2847 	cfs_rq->runnable_weight -= se->runnable_weight;
2848 
2849 	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2850 	sub_positive(&cfs_rq->avg.runnable_load_sum,
2851 		     se_runnable(se) * se->avg.runnable_load_sum);
2852 }
2853 
2854 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2855 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2856 {
2857 	cfs_rq->avg.load_avg += se->avg.load_avg;
2858 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2859 }
2860 
2861 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2862 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2863 {
2864 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2865 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2866 }
2867 #else
2868 static inline void
enqueue_runnable_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2869 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2870 static inline void
dequeue_runnable_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2871 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2872 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2873 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2874 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2875 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2876 #endif
2877 
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight,unsigned long runnable)2878 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2879 			    unsigned long weight, unsigned long runnable)
2880 {
2881 	if (se->on_rq) {
2882 		/* commit outstanding execution time */
2883 		if (cfs_rq->curr == se)
2884 			update_curr(cfs_rq);
2885 		account_entity_dequeue(cfs_rq, se);
2886 		dequeue_runnable_load_avg(cfs_rq, se);
2887 	}
2888 	dequeue_load_avg(cfs_rq, se);
2889 
2890 	se->runnable_weight = runnable;
2891 	update_load_set(&se->load, weight);
2892 
2893 #ifdef CONFIG_SMP
2894 	do {
2895 		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2896 
2897 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2898 		se->avg.runnable_load_avg =
2899 			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2900 	} while (0);
2901 #endif
2902 
2903 	enqueue_load_avg(cfs_rq, se);
2904 	if (se->on_rq) {
2905 		account_entity_enqueue(cfs_rq, se);
2906 		enqueue_runnable_load_avg(cfs_rq, se);
2907 	}
2908 }
2909 
reweight_task(struct task_struct * p,int prio)2910 void reweight_task(struct task_struct *p, int prio)
2911 {
2912 	struct sched_entity *se = &p->se;
2913 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2914 	struct load_weight *load = &se->load;
2915 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2916 
2917 	reweight_entity(cfs_rq, se, weight, weight);
2918 	load->inv_weight = sched_prio_to_wmult[prio];
2919 }
2920 
2921 #ifdef CONFIG_FAIR_GROUP_SCHED
2922 #ifdef CONFIG_SMP
2923 /*
2924  * All this does is approximate the hierarchical proportion which includes that
2925  * global sum we all love to hate.
2926  *
2927  * That is, the weight of a group entity, is the proportional share of the
2928  * group weight based on the group runqueue weights. That is:
2929  *
2930  *                     tg->weight * grq->load.weight
2931  *   ge->load.weight = -----------------------------               (1)
2932  *                       \Sum grq->load.weight
2933  *
2934  * Now, because computing that sum is prohibitively expensive to compute (been
2935  * there, done that) we approximate it with this average stuff. The average
2936  * moves slower and therefore the approximation is cheaper and more stable.
2937  *
2938  * So instead of the above, we substitute:
2939  *
2940  *   grq->load.weight -> grq->avg.load_avg                         (2)
2941  *
2942  * which yields the following:
2943  *
2944  *                     tg->weight * grq->avg.load_avg
2945  *   ge->load.weight = ------------------------------              (3)
2946  *                             tg->load_avg
2947  *
2948  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2949  *
2950  * That is shares_avg, and it is right (given the approximation (2)).
2951  *
2952  * The problem with it is that because the average is slow -- it was designed
2953  * to be exactly that of course -- this leads to transients in boundary
2954  * conditions. In specific, the case where the group was idle and we start the
2955  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2956  * yielding bad latency etc..
2957  *
2958  * Now, in that special case (1) reduces to:
2959  *
2960  *                     tg->weight * grq->load.weight
2961  *   ge->load.weight = ----------------------------- = tg->weight   (4)
2962  *                         grp->load.weight
2963  *
2964  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2965  *
2966  * So what we do is modify our approximation (3) to approach (4) in the (near)
2967  * UP case, like:
2968  *
2969  *   ge->load.weight =
2970  *
2971  *              tg->weight * grq->load.weight
2972  *     ---------------------------------------------------         (5)
2973  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2974  *
2975  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2976  * we need to use grq->avg.load_avg as its lower bound, which then gives:
2977  *
2978  *
2979  *                     tg->weight * grq->load.weight
2980  *   ge->load.weight = -----------------------------		   (6)
2981  *                             tg_load_avg'
2982  *
2983  * Where:
2984  *
2985  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2986  *                  max(grq->load.weight, grq->avg.load_avg)
2987  *
2988  * And that is shares_weight and is icky. In the (near) UP case it approaches
2989  * (4) while in the normal case it approaches (3). It consistently
2990  * overestimates the ge->load.weight and therefore:
2991  *
2992  *   \Sum ge->load.weight >= tg->weight
2993  *
2994  * hence icky!
2995  */
calc_group_shares(struct cfs_rq * cfs_rq)2996 static long calc_group_shares(struct cfs_rq *cfs_rq)
2997 {
2998 	long tg_weight, tg_shares, load, shares;
2999 	struct task_group *tg = cfs_rq->tg;
3000 
3001 	tg_shares = READ_ONCE(tg->shares);
3002 
3003 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3004 
3005 	tg_weight = atomic_long_read(&tg->load_avg);
3006 
3007 	/* Ensure tg_weight >= load */
3008 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3009 	tg_weight += load;
3010 
3011 	shares = (tg_shares * load);
3012 	if (tg_weight)
3013 		shares /= tg_weight;
3014 
3015 	/*
3016 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3017 	 * of a group with small tg->shares value. It is a floor value which is
3018 	 * assigned as a minimum load.weight to the sched_entity representing
3019 	 * the group on a CPU.
3020 	 *
3021 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3022 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3023 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3024 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3025 	 * instead of 0.
3026 	 */
3027 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3028 }
3029 
3030 /*
3031  * This calculates the effective runnable weight for a group entity based on
3032  * the group entity weight calculated above.
3033  *
3034  * Because of the above approximation (2), our group entity weight is
3035  * an load_avg based ratio (3). This means that it includes blocked load and
3036  * does not represent the runnable weight.
3037  *
3038  * Approximate the group entity's runnable weight per ratio from the group
3039  * runqueue:
3040  *
3041  *					     grq->avg.runnable_load_avg
3042  *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
3043  *						 grq->avg.load_avg
3044  *
3045  * However, analogous to above, since the avg numbers are slow, this leads to
3046  * transients in the from-idle case. Instead we use:
3047  *
3048  *   ge->runnable_weight = ge->load.weight *
3049  *
3050  *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
3051  *		-----------------------------------------------------	(8)
3052  *		      max(grq->avg.load_avg, grq->load.weight)
3053  *
3054  * Where these max() serve both to use the 'instant' values to fix the slow
3055  * from-idle and avoid the /0 on to-idle, similar to (6).
3056  */
calc_group_runnable(struct cfs_rq * cfs_rq,long shares)3057 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
3058 {
3059 	long runnable, load_avg;
3060 
3061 	load_avg = max(cfs_rq->avg.load_avg,
3062 		       scale_load_down(cfs_rq->load.weight));
3063 
3064 	runnable = max(cfs_rq->avg.runnable_load_avg,
3065 		       scale_load_down(cfs_rq->runnable_weight));
3066 
3067 	runnable *= shares;
3068 	if (load_avg)
3069 		runnable /= load_avg;
3070 
3071 	return clamp_t(long, runnable, MIN_SHARES, shares);
3072 }
3073 #endif /* CONFIG_SMP */
3074 
3075 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3076 
3077 /*
3078  * Recomputes the group entity based on the current state of its group
3079  * runqueue.
3080  */
update_cfs_group(struct sched_entity * se)3081 static void update_cfs_group(struct sched_entity *se)
3082 {
3083 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3084 	long shares, runnable;
3085 
3086 	if (!gcfs_rq)
3087 		return;
3088 
3089 	if (throttled_hierarchy(gcfs_rq))
3090 		return;
3091 
3092 #ifndef CONFIG_SMP
3093 	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3094 
3095 	if (likely(se->load.weight == shares))
3096 		return;
3097 #else
3098 	shares   = calc_group_shares(gcfs_rq);
3099 	runnable = calc_group_runnable(gcfs_rq, shares);
3100 #endif
3101 
3102 	reweight_entity(cfs_rq_of(se), se, shares, runnable);
3103 }
3104 
3105 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)3106 static inline void update_cfs_group(struct sched_entity *se)
3107 {
3108 }
3109 #endif /* CONFIG_FAIR_GROUP_SCHED */
3110 
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3111 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3112 {
3113 	struct rq *rq = rq_of(cfs_rq);
3114 
3115 	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3116 		/*
3117 		 * There are a few boundary cases this might miss but it should
3118 		 * get called often enough that that should (hopefully) not be
3119 		 * a real problem.
3120 		 *
3121 		 * It will not get called when we go idle, because the idle
3122 		 * thread is a different class (!fair), nor will the utilization
3123 		 * number include things like RT tasks.
3124 		 *
3125 		 * As is, the util number is not freq-invariant (we'd have to
3126 		 * implement arch_scale_freq_capacity() for that).
3127 		 *
3128 		 * See cpu_util().
3129 		 */
3130 		cpufreq_update_util(rq, flags);
3131 	}
3132 }
3133 
3134 #ifdef CONFIG_SMP
3135 #ifdef CONFIG_FAIR_GROUP_SCHED
3136 /**
3137  * update_tg_load_avg - update the tg's load avg
3138  * @cfs_rq: the cfs_rq whose avg changed
3139  * @force: update regardless of how small the difference
3140  *
3141  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3142  * However, because tg->load_avg is a global value there are performance
3143  * considerations.
3144  *
3145  * In order to avoid having to look at the other cfs_rq's, we use a
3146  * differential update where we store the last value we propagated. This in
3147  * turn allows skipping updates if the differential is 'small'.
3148  *
3149  * Updating tg's load_avg is necessary before update_cfs_share().
3150  */
update_tg_load_avg(struct cfs_rq * cfs_rq,int force)3151 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3152 {
3153 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3154 
3155 	/*
3156 	 * No need to update load_avg for root_task_group as it is not used.
3157 	 */
3158 	if (cfs_rq->tg == &root_task_group)
3159 		return;
3160 
3161 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3162 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3163 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3164 	}
3165 }
3166 
3167 /*
3168  * Called within set_task_rq() right before setting a task's CPU. The
3169  * caller only guarantees p->pi_lock is held; no other assumptions,
3170  * including the state of rq->lock, should be made.
3171  */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)3172 void set_task_rq_fair(struct sched_entity *se,
3173 		      struct cfs_rq *prev, struct cfs_rq *next)
3174 {
3175 	u64 p_last_update_time;
3176 	u64 n_last_update_time;
3177 
3178 	if (!sched_feat(ATTACH_AGE_LOAD))
3179 		return;
3180 
3181 	/*
3182 	 * We are supposed to update the task to "current" time, then its up to
3183 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3184 	 * getting what current time is, so simply throw away the out-of-date
3185 	 * time. This will result in the wakee task is less decayed, but giving
3186 	 * the wakee more load sounds not bad.
3187 	 */
3188 	if (!(se->avg.last_update_time && prev))
3189 		return;
3190 
3191 #ifndef CONFIG_64BIT
3192 	{
3193 		u64 p_last_update_time_copy;
3194 		u64 n_last_update_time_copy;
3195 
3196 		do {
3197 			p_last_update_time_copy = prev->load_last_update_time_copy;
3198 			n_last_update_time_copy = next->load_last_update_time_copy;
3199 
3200 			smp_rmb();
3201 
3202 			p_last_update_time = prev->avg.last_update_time;
3203 			n_last_update_time = next->avg.last_update_time;
3204 
3205 		} while (p_last_update_time != p_last_update_time_copy ||
3206 			 n_last_update_time != n_last_update_time_copy);
3207 	}
3208 #else
3209 	p_last_update_time = prev->avg.last_update_time;
3210 	n_last_update_time = next->avg.last_update_time;
3211 #endif
3212 	__update_load_avg_blocked_se(p_last_update_time, se);
3213 	se->avg.last_update_time = n_last_update_time;
3214 }
3215 
3216 
3217 /*
3218  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3219  * propagate its contribution. The key to this propagation is the invariant
3220  * that for each group:
3221  *
3222  *   ge->avg == grq->avg						(1)
3223  *
3224  * _IFF_ we look at the pure running and runnable sums. Because they
3225  * represent the very same entity, just at different points in the hierarchy.
3226  *
3227  * Per the above update_tg_cfs_util() is trivial and simply copies the running
3228  * sum over (but still wrong, because the group entity and group rq do not have
3229  * their PELT windows aligned).
3230  *
3231  * However, update_tg_cfs_runnable() is more complex. So we have:
3232  *
3233  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3234  *
3235  * And since, like util, the runnable part should be directly transferable,
3236  * the following would _appear_ to be the straight forward approach:
3237  *
3238  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3239  *
3240  * And per (1) we have:
3241  *
3242  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3243  *
3244  * Which gives:
3245  *
3246  *                      ge->load.weight * grq->avg.load_avg
3247  *   ge->avg.load_avg = -----------------------------------		(4)
3248  *                               grq->load.weight
3249  *
3250  * Except that is wrong!
3251  *
3252  * Because while for entities historical weight is not important and we
3253  * really only care about our future and therefore can consider a pure
3254  * runnable sum, runqueues can NOT do this.
3255  *
3256  * We specifically want runqueues to have a load_avg that includes
3257  * historical weights. Those represent the blocked load, the load we expect
3258  * to (shortly) return to us. This only works by keeping the weights as
3259  * integral part of the sum. We therefore cannot decompose as per (3).
3260  *
3261  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3262  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3263  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3264  * runnable section of these tasks overlap (or not). If they were to perfectly
3265  * align the rq as a whole would be runnable 2/3 of the time. If however we
3266  * always have at least 1 runnable task, the rq as a whole is always runnable.
3267  *
3268  * So we'll have to approximate.. :/
3269  *
3270  * Given the constraint:
3271  *
3272  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3273  *
3274  * We can construct a rule that adds runnable to a rq by assuming minimal
3275  * overlap.
3276  *
3277  * On removal, we'll assume each task is equally runnable; which yields:
3278  *
3279  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3280  *
3281  * XXX: only do this for the part of runnable > running ?
3282  *
3283  */
3284 
3285 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3286 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3287 {
3288 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3289 
3290 	/* Nothing to update */
3291 	if (!delta)
3292 		return;
3293 
3294 	/*
3295 	 * The relation between sum and avg is:
3296 	 *
3297 	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3298 	 *
3299 	 * however, the PELT windows are not aligned between grq and gse.
3300 	 */
3301 
3302 	/* Set new sched_entity's utilization */
3303 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3304 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3305 
3306 	/* Update parent cfs_rq utilization */
3307 	add_positive(&cfs_rq->avg.util_avg, delta);
3308 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3309 }
3310 
3311 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3312 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3313 {
3314 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3315 	unsigned long runnable_load_avg, load_avg;
3316 	u64 runnable_load_sum, load_sum = 0;
3317 	s64 delta_sum;
3318 
3319 	if (!runnable_sum)
3320 		return;
3321 
3322 	gcfs_rq->prop_runnable_sum = 0;
3323 
3324 	if (runnable_sum >= 0) {
3325 		/*
3326 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3327 		 * the CPU is saturated running == runnable.
3328 		 */
3329 		runnable_sum += se->avg.load_sum;
3330 		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3331 	} else {
3332 		/*
3333 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3334 		 * assuming all tasks are equally runnable.
3335 		 */
3336 		if (scale_load_down(gcfs_rq->load.weight)) {
3337 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3338 				scale_load_down(gcfs_rq->load.weight));
3339 		}
3340 
3341 		/* But make sure to not inflate se's runnable */
3342 		runnable_sum = min(se->avg.load_sum, load_sum);
3343 	}
3344 
3345 	/*
3346 	 * runnable_sum can't be lower than running_sum
3347 	 * Rescale running sum to be in the same range as runnable sum
3348 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3349 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3350 	 */
3351 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3352 	runnable_sum = max(runnable_sum, running_sum);
3353 
3354 	load_sum = (s64)se_weight(se) * runnable_sum;
3355 	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3356 
3357 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3358 	delta_avg = load_avg - se->avg.load_avg;
3359 
3360 	se->avg.load_sum = runnable_sum;
3361 	se->avg.load_avg = load_avg;
3362 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3363 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3364 
3365 	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3366 	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3367 	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3368 	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3369 
3370 	se->avg.runnable_load_sum = runnable_sum;
3371 	se->avg.runnable_load_avg = runnable_load_avg;
3372 
3373 	if (se->on_rq) {
3374 		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3375 		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3376 	}
3377 }
3378 
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3379 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3380 {
3381 	cfs_rq->propagate = 1;
3382 	cfs_rq->prop_runnable_sum += runnable_sum;
3383 }
3384 
3385 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)3386 static inline int propagate_entity_load_avg(struct sched_entity *se)
3387 {
3388 	struct cfs_rq *cfs_rq, *gcfs_rq;
3389 
3390 	if (entity_is_task(se))
3391 		return 0;
3392 
3393 	gcfs_rq = group_cfs_rq(se);
3394 	if (!gcfs_rq->propagate)
3395 		return 0;
3396 
3397 	gcfs_rq->propagate = 0;
3398 
3399 	cfs_rq = cfs_rq_of(se);
3400 
3401 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3402 
3403 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3404 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3405 
3406 	trace_pelt_cfs_tp(cfs_rq);
3407 	trace_pelt_se_tp(se);
3408 
3409 	return 1;
3410 }
3411 
3412 /*
3413  * Check if we need to update the load and the utilization of a blocked
3414  * group_entity:
3415  */
skip_blocked_update(struct sched_entity * se)3416 static inline bool skip_blocked_update(struct sched_entity *se)
3417 {
3418 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3419 
3420 	/*
3421 	 * If sched_entity still have not zero load or utilization, we have to
3422 	 * decay it:
3423 	 */
3424 	if (se->avg.load_avg || se->avg.util_avg)
3425 		return false;
3426 
3427 	/*
3428 	 * If there is a pending propagation, we have to update the load and
3429 	 * the utilization of the sched_entity:
3430 	 */
3431 	if (gcfs_rq->propagate)
3432 		return false;
3433 
3434 	/*
3435 	 * Otherwise, the load and the utilization of the sched_entity is
3436 	 * already zero and there is no pending propagation, so it will be a
3437 	 * waste of time to try to decay it:
3438 	 */
3439 	return true;
3440 }
3441 
3442 #else /* CONFIG_FAIR_GROUP_SCHED */
3443 
update_tg_load_avg(struct cfs_rq * cfs_rq,int force)3444 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3445 
propagate_entity_load_avg(struct sched_entity * se)3446 static inline int propagate_entity_load_avg(struct sched_entity *se)
3447 {
3448 	return 0;
3449 }
3450 
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3451 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3452 
3453 #endif /* CONFIG_FAIR_GROUP_SCHED */
3454 
3455 /**
3456  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3457  * @now: current time, as per cfs_rq_clock_pelt()
3458  * @cfs_rq: cfs_rq to update
3459  *
3460  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3461  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3462  * post_init_entity_util_avg().
3463  *
3464  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3465  *
3466  * Returns true if the load decayed or we removed load.
3467  *
3468  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3469  * call update_tg_load_avg() when this function returns true.
3470  */
3471 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)3472 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3473 {
3474 	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3475 	struct sched_avg *sa = &cfs_rq->avg;
3476 	int decayed = 0;
3477 
3478 	if (cfs_rq->removed.nr) {
3479 		unsigned long r;
3480 		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3481 
3482 		raw_spin_lock(&cfs_rq->removed.lock);
3483 		swap(cfs_rq->removed.util_avg, removed_util);
3484 		swap(cfs_rq->removed.load_avg, removed_load);
3485 		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3486 		cfs_rq->removed.nr = 0;
3487 		raw_spin_unlock(&cfs_rq->removed.lock);
3488 
3489 		r = removed_load;
3490 		sub_positive(&sa->load_avg, r);
3491 		sub_positive(&sa->load_sum, r * divider);
3492 
3493 		r = removed_util;
3494 		sub_positive(&sa->util_avg, r);
3495 		sub_positive(&sa->util_sum, r * divider);
3496 
3497 		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3498 
3499 		decayed = 1;
3500 	}
3501 
3502 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3503 
3504 #ifndef CONFIG_64BIT
3505 	smp_wmb();
3506 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3507 #endif
3508 
3509 	return decayed;
3510 }
3511 
3512 /**
3513  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3514  * @cfs_rq: cfs_rq to attach to
3515  * @se: sched_entity to attach
3516  * @flags: migration hints
3517  *
3518  * Must call update_cfs_rq_load_avg() before this, since we rely on
3519  * cfs_rq->avg.last_update_time being current.
3520  */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)3521 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3522 {
3523 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3524 
3525 	/*
3526 	 * When we attach the @se to the @cfs_rq, we must align the decay
3527 	 * window because without that, really weird and wonderful things can
3528 	 * happen.
3529 	 *
3530 	 * XXX illustrate
3531 	 */
3532 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3533 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3534 
3535 	/*
3536 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3537 	 * period_contrib. This isn't strictly correct, but since we're
3538 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3539 	 * _sum a little.
3540 	 */
3541 	se->avg.util_sum = se->avg.util_avg * divider;
3542 
3543 	se->avg.load_sum = divider;
3544 	if (se_weight(se)) {
3545 		se->avg.load_sum =
3546 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3547 	}
3548 
3549 	se->avg.runnable_load_sum = se->avg.load_sum;
3550 
3551 	enqueue_load_avg(cfs_rq, se);
3552 	cfs_rq->avg.util_avg += se->avg.util_avg;
3553 	cfs_rq->avg.util_sum += se->avg.util_sum;
3554 
3555 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3556 
3557 	cfs_rq_util_change(cfs_rq, flags);
3558 
3559 	trace_pelt_cfs_tp(cfs_rq);
3560 }
3561 
3562 /**
3563  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3564  * @cfs_rq: cfs_rq to detach from
3565  * @se: sched_entity to detach
3566  *
3567  * Must call update_cfs_rq_load_avg() before this, since we rely on
3568  * cfs_rq->avg.last_update_time being current.
3569  */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3570 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3571 {
3572 	dequeue_load_avg(cfs_rq, se);
3573 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3574 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3575 
3576 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3577 
3578 	cfs_rq_util_change(cfs_rq, 0);
3579 
3580 	trace_pelt_cfs_tp(cfs_rq);
3581 }
3582 
3583 /*
3584  * Optional action to be done while updating the load average
3585  */
3586 #define UPDATE_TG	0x1
3587 #define SKIP_AGE_LOAD	0x2
3588 #define DO_ATTACH	0x4
3589 
3590 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)3591 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3592 {
3593 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3594 	int decayed;
3595 
3596 	/*
3597 	 * Track task load average for carrying it to new CPU after migrated, and
3598 	 * track group sched_entity load average for task_h_load calc in migration
3599 	 */
3600 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3601 		__update_load_avg_se(now, cfs_rq, se);
3602 
3603 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3604 	decayed |= propagate_entity_load_avg(se);
3605 
3606 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3607 
3608 		/*
3609 		 * DO_ATTACH means we're here from enqueue_entity().
3610 		 * !last_update_time means we've passed through
3611 		 * migrate_task_rq_fair() indicating we migrated.
3612 		 *
3613 		 * IOW we're enqueueing a task on a new CPU.
3614 		 */
3615 		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3616 		update_tg_load_avg(cfs_rq, 0);
3617 
3618 	} else if (decayed) {
3619 		cfs_rq_util_change(cfs_rq, 0);
3620 
3621 		if (flags & UPDATE_TG)
3622 			update_tg_load_avg(cfs_rq, 0);
3623 	}
3624 }
3625 
3626 #ifndef CONFIG_64BIT
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3627 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3628 {
3629 	u64 last_update_time_copy;
3630 	u64 last_update_time;
3631 
3632 	do {
3633 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3634 		smp_rmb();
3635 		last_update_time = cfs_rq->avg.last_update_time;
3636 	} while (last_update_time != last_update_time_copy);
3637 
3638 	return last_update_time;
3639 }
3640 #else
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3641 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3642 {
3643 	return cfs_rq->avg.last_update_time;
3644 }
3645 #endif
3646 
3647 /*
3648  * Synchronize entity load avg of dequeued entity without locking
3649  * the previous rq.
3650  */
sync_entity_load_avg(struct sched_entity * se)3651 static void sync_entity_load_avg(struct sched_entity *se)
3652 {
3653 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3654 	u64 last_update_time;
3655 
3656 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3657 	__update_load_avg_blocked_se(last_update_time, se);
3658 }
3659 
3660 /*
3661  * Task first catches up with cfs_rq, and then subtract
3662  * itself from the cfs_rq (task must be off the queue now).
3663  */
remove_entity_load_avg(struct sched_entity * se)3664 static void remove_entity_load_avg(struct sched_entity *se)
3665 {
3666 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3667 	unsigned long flags;
3668 
3669 	/*
3670 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3671 	 * post_init_entity_util_avg() which will have added things to the
3672 	 * cfs_rq, so we can remove unconditionally.
3673 	 */
3674 
3675 	sync_entity_load_avg(se);
3676 
3677 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3678 	++cfs_rq->removed.nr;
3679 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3680 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3681 	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3682 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3683 }
3684 
cfs_rq_runnable_load_avg(struct cfs_rq * cfs_rq)3685 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3686 {
3687 	return cfs_rq->avg.runnable_load_avg;
3688 }
3689 
cfs_rq_load_avg(struct cfs_rq * cfs_rq)3690 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3691 {
3692 	return cfs_rq->avg.load_avg;
3693 }
3694 
task_util(struct task_struct * p)3695 static inline unsigned long task_util(struct task_struct *p)
3696 {
3697 	return READ_ONCE(p->se.avg.util_avg);
3698 }
3699 
_task_util_est(struct task_struct * p)3700 static inline unsigned long _task_util_est(struct task_struct *p)
3701 {
3702 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3703 
3704 	return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3705 }
3706 
task_util_est(struct task_struct * p)3707 static inline unsigned long task_util_est(struct task_struct *p)
3708 {
3709 	return max(task_util(p), _task_util_est(p));
3710 }
3711 
3712 #ifdef CONFIG_UCLAMP_TASK
uclamp_task_util(struct task_struct * p)3713 static inline unsigned long uclamp_task_util(struct task_struct *p)
3714 {
3715 	return clamp(task_util_est(p),
3716 		     uclamp_eff_value(p, UCLAMP_MIN),
3717 		     uclamp_eff_value(p, UCLAMP_MAX));
3718 }
3719 #else
uclamp_task_util(struct task_struct * p)3720 static inline unsigned long uclamp_task_util(struct task_struct *p)
3721 {
3722 	return task_util_est(p);
3723 }
3724 #endif
3725 
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)3726 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3727 				    struct task_struct *p)
3728 {
3729 	unsigned int enqueued;
3730 
3731 	if (!sched_feat(UTIL_EST))
3732 		return;
3733 
3734 	/* Update root cfs_rq's estimated utilization */
3735 	enqueued  = cfs_rq->avg.util_est.enqueued;
3736 	enqueued += _task_util_est(p);
3737 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3738 }
3739 
3740 /*
3741  * Check if a (signed) value is within a specified (unsigned) margin,
3742  * based on the observation that:
3743  *
3744  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3745  *
3746  * NOTE: this only works when value + maring < INT_MAX.
3747  */
within_margin(int value,int margin)3748 static inline bool within_margin(int value, int margin)
3749 {
3750 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3751 }
3752 
3753 static void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)3754 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3755 {
3756 	long last_ewma_diff;
3757 	struct util_est ue;
3758 	int cpu;
3759 
3760 	if (!sched_feat(UTIL_EST))
3761 		return;
3762 
3763 	/* Update root cfs_rq's estimated utilization */
3764 	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3765 	ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3766 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3767 
3768 	/*
3769 	 * Skip update of task's estimated utilization when the task has not
3770 	 * yet completed an activation, e.g. being migrated.
3771 	 */
3772 	if (!task_sleep)
3773 		return;
3774 
3775 	/*
3776 	 * If the PELT values haven't changed since enqueue time,
3777 	 * skip the util_est update.
3778 	 */
3779 	ue = p->se.avg.util_est;
3780 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3781 		return;
3782 
3783 	/*
3784 	 * Reset EWMA on utilization increases, the moving average is used only
3785 	 * to smooth utilization decreases.
3786 	 */
3787 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3788 	if (sched_feat(UTIL_EST_FASTUP)) {
3789 		if (ue.ewma < ue.enqueued) {
3790 			ue.ewma = ue.enqueued;
3791 			goto done;
3792 		}
3793 	}
3794 
3795 	/*
3796 	 * Skip update of task's estimated utilization when its EWMA is
3797 	 * already ~1% close to its last activation value.
3798 	 */
3799 	last_ewma_diff = ue.enqueued - ue.ewma;
3800 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3801 		return;
3802 
3803 	/*
3804 	 * To avoid overestimation of actual task utilization, skip updates if
3805 	 * we cannot grant there is idle time in this CPU.
3806 	 */
3807 	cpu = cpu_of(rq_of(cfs_rq));
3808 	if (task_util(p) > capacity_orig_of(cpu))
3809 		return;
3810 
3811 	/*
3812 	 * Update Task's estimated utilization
3813 	 *
3814 	 * When *p completes an activation we can consolidate another sample
3815 	 * of the task size. This is done by storing the current PELT value
3816 	 * as ue.enqueued and by using this value to update the Exponential
3817 	 * Weighted Moving Average (EWMA):
3818 	 *
3819 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
3820 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
3821 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
3822 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
3823 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
3824 	 *
3825 	 * Where 'w' is the weight of new samples, which is configured to be
3826 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3827 	 */
3828 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3829 	ue.ewma  += last_ewma_diff;
3830 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3831 done:
3832 	WRITE_ONCE(p->se.avg.util_est, ue);
3833 }
3834 
task_fits_capacity(struct task_struct * p,long capacity)3835 static inline int task_fits_capacity(struct task_struct *p, long capacity)
3836 {
3837 	return fits_capacity(uclamp_task_util(p), capacity);
3838 }
3839 
update_misfit_status(struct task_struct * p,struct rq * rq)3840 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3841 {
3842 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
3843 		return;
3844 
3845 	if (!p || p->nr_cpus_allowed == 1) {
3846 		rq->misfit_task_load = 0;
3847 		return;
3848 	}
3849 
3850 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3851 		rq->misfit_task_load = 0;
3852 		return;
3853 	}
3854 
3855 	/*
3856 	 * Make sure that misfit_task_load will not be null even if
3857 	 * task_h_load() returns 0.
3858 	 */
3859 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
3860 }
3861 
3862 #else /* CONFIG_SMP */
3863 
3864 #define UPDATE_TG	0x0
3865 #define SKIP_AGE_LOAD	0x0
3866 #define DO_ATTACH	0x0
3867 
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)3868 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3869 {
3870 	cfs_rq_util_change(cfs_rq, 0);
3871 }
3872 
remove_entity_load_avg(struct sched_entity * se)3873 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3874 
3875 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)3876 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3877 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3878 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3879 
idle_balance(struct rq * rq,struct rq_flags * rf)3880 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3881 {
3882 	return 0;
3883 }
3884 
3885 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)3886 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3887 
3888 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)3889 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3890 		 bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)3891 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
3892 
3893 #endif /* CONFIG_SMP */
3894 
check_spread(struct cfs_rq * cfs_rq,struct sched_entity * se)3895 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3896 {
3897 #ifdef CONFIG_SCHED_DEBUG
3898 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3899 
3900 	if (d < 0)
3901 		d = -d;
3902 
3903 	if (d > 3*sysctl_sched_latency)
3904 		schedstat_inc(cfs_rq->nr_spread_over);
3905 #endif
3906 }
3907 
entity_is_long_sleeper(struct sched_entity * se)3908 static inline bool entity_is_long_sleeper(struct sched_entity *se)
3909 {
3910 	struct cfs_rq *cfs_rq;
3911 	u64 sleep_time;
3912 
3913 	if (se->exec_start == 0)
3914 		return false;
3915 
3916 	cfs_rq = cfs_rq_of(se);
3917 
3918 	sleep_time = rq_clock_task(rq_of(cfs_rq));
3919 
3920 	/* Happen while migrating because of clock task divergence */
3921 	if (sleep_time <= se->exec_start)
3922 		return false;
3923 
3924 	sleep_time -= se->exec_start;
3925 	if (sleep_time > ((1ULL << 63) / scale_load_down(NICE_0_LOAD)))
3926 		return true;
3927 
3928 	return false;
3929 }
3930 
3931 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int initial)3932 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3933 {
3934 	u64 vruntime = cfs_rq->min_vruntime;
3935 
3936 	/*
3937 	 * The 'current' period is already promised to the current tasks,
3938 	 * however the extra weight of the new task will slow them down a
3939 	 * little, place the new task so that it fits in the slot that
3940 	 * stays open at the end.
3941 	 */
3942 	if (initial && sched_feat(START_DEBIT))
3943 		vruntime += sched_vslice(cfs_rq, se);
3944 
3945 	/* sleeps up to a single latency don't count. */
3946 	if (!initial) {
3947 		unsigned long thresh = sysctl_sched_latency;
3948 
3949 		/*
3950 		 * Halve their sleep time's effect, to allow
3951 		 * for a gentler effect of sleepers:
3952 		 */
3953 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3954 			thresh >>= 1;
3955 
3956 		vruntime -= thresh;
3957 	}
3958 
3959 	/*
3960 	 * Pull vruntime of the entity being placed to the base level of
3961 	 * cfs_rq, to prevent boosting it if placed backwards.
3962 	 * However, min_vruntime can advance much faster than real time, with
3963 	 * the extreme being when an entity with the minimal weight always runs
3964 	 * on the cfs_rq. If the waking entity slept for a long time, its
3965 	 * vruntime difference from min_vruntime may overflow s64 and their
3966 	 * comparison may get inversed, so ignore the entity's original
3967 	 * vruntime in that case.
3968 	 * The maximal vruntime speedup is given by the ratio of normal to
3969 	 * minimal weight: scale_load_down(NICE_0_LOAD) / MIN_SHARES.
3970 	 * When placing a migrated waking entity, its exec_start has been set
3971 	 * from a different rq. In order to take into account a possible
3972 	 * divergence between new and prev rq's clocks task because of irq and
3973 	 * stolen time, we take an additional margin.
3974 	 * So, cutting off on the sleep time of
3975 	 *     2^63 / scale_load_down(NICE_0_LOAD) ~ 104 days
3976 	 * should be safe.
3977 	 */
3978 	if (entity_is_long_sleeper(se))
3979 		se->vruntime = vruntime;
3980 	else
3981 		se->vruntime = max_vruntime(se->vruntime, vruntime);
3982 }
3983 
3984 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3985 
check_schedstat_required(void)3986 static inline void check_schedstat_required(void)
3987 {
3988 #ifdef CONFIG_SCHEDSTATS
3989 	if (schedstat_enabled())
3990 		return;
3991 
3992 	/* Force schedstat enabled if a dependent tracepoint is active */
3993 	if (trace_sched_stat_wait_enabled()    ||
3994 			trace_sched_stat_sleep_enabled()   ||
3995 			trace_sched_stat_iowait_enabled()  ||
3996 			trace_sched_stat_blocked_enabled() ||
3997 			trace_sched_stat_runtime_enabled())  {
3998 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3999 			     "stat_blocked and stat_runtime require the "
4000 			     "kernel parameter schedstats=enable or "
4001 			     "kernel.sched_schedstats=1\n");
4002 	}
4003 #endif
4004 }
4005 
4006 static inline bool cfs_bandwidth_used(void);
4007 
4008 /*
4009  * MIGRATION
4010  *
4011  *	dequeue
4012  *	  update_curr()
4013  *	    update_min_vruntime()
4014  *	  vruntime -= min_vruntime
4015  *
4016  *	enqueue
4017  *	  update_curr()
4018  *	    update_min_vruntime()
4019  *	  vruntime += min_vruntime
4020  *
4021  * this way the vruntime transition between RQs is done when both
4022  * min_vruntime are up-to-date.
4023  *
4024  * WAKEUP (remote)
4025  *
4026  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4027  *	  vruntime -= min_vruntime
4028  *
4029  *	enqueue
4030  *	  update_curr()
4031  *	    update_min_vruntime()
4032  *	  vruntime += min_vruntime
4033  *
4034  * this way we don't have the most up-to-date min_vruntime on the originating
4035  * CPU and an up-to-date min_vruntime on the destination CPU.
4036  */
4037 
4038 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4039 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4040 {
4041 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4042 	bool curr = cfs_rq->curr == se;
4043 
4044 	/*
4045 	 * If we're the current task, we must renormalise before calling
4046 	 * update_curr().
4047 	 */
4048 	if (renorm && curr)
4049 		se->vruntime += cfs_rq->min_vruntime;
4050 
4051 	update_curr(cfs_rq);
4052 
4053 	/*
4054 	 * Otherwise, renormalise after, such that we're placed at the current
4055 	 * moment in time, instead of some random moment in the past. Being
4056 	 * placed in the past could significantly boost this task to the
4057 	 * fairness detriment of existing tasks.
4058 	 */
4059 	if (renorm && !curr)
4060 		se->vruntime += cfs_rq->min_vruntime;
4061 
4062 	/*
4063 	 * When enqueuing a sched_entity, we must:
4064 	 *   - Update loads to have both entity and cfs_rq synced with now.
4065 	 *   - Add its load to cfs_rq->runnable_avg
4066 	 *   - For group_entity, update its weight to reflect the new share of
4067 	 *     its group cfs_rq
4068 	 *   - Add its new weight to cfs_rq->load.weight
4069 	 */
4070 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4071 	update_cfs_group(se);
4072 	enqueue_runnable_load_avg(cfs_rq, se);
4073 	account_entity_enqueue(cfs_rq, se);
4074 
4075 	if (flags & ENQUEUE_WAKEUP)
4076 		place_entity(cfs_rq, se, 0);
4077 	/* Entity has migrated, no longer consider this task hot */
4078 	if (flags & ENQUEUE_MIGRATED)
4079 		se->exec_start = 0;
4080 
4081 	check_schedstat_required();
4082 	update_stats_enqueue(cfs_rq, se, flags);
4083 	check_spread(cfs_rq, se);
4084 	if (!curr)
4085 		__enqueue_entity(cfs_rq, se);
4086 	se->on_rq = 1;
4087 
4088 	/*
4089 	 * When bandwidth control is enabled, cfs might have been removed
4090 	 * because of a parent been throttled but cfs->nr_running > 1. Try to
4091 	 * add it unconditionnally.
4092 	 */
4093 	if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4094 		list_add_leaf_cfs_rq(cfs_rq);
4095 
4096 	if (cfs_rq->nr_running == 1)
4097 		check_enqueue_throttle(cfs_rq);
4098 }
4099 
__clear_buddies_last(struct sched_entity * se)4100 static void __clear_buddies_last(struct sched_entity *se)
4101 {
4102 	for_each_sched_entity(se) {
4103 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4104 		if (cfs_rq->last != se)
4105 			break;
4106 
4107 		cfs_rq->last = NULL;
4108 	}
4109 }
4110 
__clear_buddies_next(struct sched_entity * se)4111 static void __clear_buddies_next(struct sched_entity *se)
4112 {
4113 	for_each_sched_entity(se) {
4114 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4115 		if (cfs_rq->next != se)
4116 			break;
4117 
4118 		cfs_rq->next = NULL;
4119 	}
4120 }
4121 
__clear_buddies_skip(struct sched_entity * se)4122 static void __clear_buddies_skip(struct sched_entity *se)
4123 {
4124 	for_each_sched_entity(se) {
4125 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4126 		if (cfs_rq->skip != se)
4127 			break;
4128 
4129 		cfs_rq->skip = NULL;
4130 	}
4131 }
4132 
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)4133 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4134 {
4135 	if (cfs_rq->last == se)
4136 		__clear_buddies_last(se);
4137 
4138 	if (cfs_rq->next == se)
4139 		__clear_buddies_next(se);
4140 
4141 	if (cfs_rq->skip == se)
4142 		__clear_buddies_skip(se);
4143 }
4144 
4145 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4146 
4147 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4148 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4149 {
4150 	/*
4151 	 * Update run-time statistics of the 'current'.
4152 	 */
4153 	update_curr(cfs_rq);
4154 
4155 	/*
4156 	 * When dequeuing a sched_entity, we must:
4157 	 *   - Update loads to have both entity and cfs_rq synced with now.
4158 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4159 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4160 	 *   - For group entity, update its weight to reflect the new share
4161 	 *     of its group cfs_rq.
4162 	 */
4163 	update_load_avg(cfs_rq, se, UPDATE_TG);
4164 	dequeue_runnable_load_avg(cfs_rq, se);
4165 
4166 	update_stats_dequeue(cfs_rq, se, flags);
4167 
4168 	clear_buddies(cfs_rq, se);
4169 
4170 	if (se != cfs_rq->curr)
4171 		__dequeue_entity(cfs_rq, se);
4172 	se->on_rq = 0;
4173 	account_entity_dequeue(cfs_rq, se);
4174 
4175 	/*
4176 	 * Normalize after update_curr(); which will also have moved
4177 	 * min_vruntime if @se is the one holding it back. But before doing
4178 	 * update_min_vruntime() again, which will discount @se's position and
4179 	 * can move min_vruntime forward still more.
4180 	 */
4181 	if (!(flags & DEQUEUE_SLEEP))
4182 		se->vruntime -= cfs_rq->min_vruntime;
4183 
4184 	/* return excess runtime on last dequeue */
4185 	return_cfs_rq_runtime(cfs_rq);
4186 
4187 	update_cfs_group(se);
4188 
4189 	/*
4190 	 * Now advance min_vruntime if @se was the entity holding it back,
4191 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4192 	 * put back on, and if we advance min_vruntime, we'll be placed back
4193 	 * further than we started -- ie. we'll be penalized.
4194 	 */
4195 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4196 		update_min_vruntime(cfs_rq);
4197 }
4198 
4199 /*
4200  * Preempt the current task with a newly woken task if needed:
4201  */
4202 static void
check_preempt_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr)4203 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4204 {
4205 	unsigned long ideal_runtime, delta_exec;
4206 	struct sched_entity *se;
4207 	s64 delta;
4208 
4209 	ideal_runtime = sched_slice(cfs_rq, curr);
4210 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4211 	if (delta_exec > ideal_runtime) {
4212 		resched_curr(rq_of(cfs_rq));
4213 		/*
4214 		 * The current task ran long enough, ensure it doesn't get
4215 		 * re-elected due to buddy favours.
4216 		 */
4217 		clear_buddies(cfs_rq, curr);
4218 		return;
4219 	}
4220 
4221 	/*
4222 	 * Ensure that a task that missed wakeup preemption by a
4223 	 * narrow margin doesn't have to wait for a full slice.
4224 	 * This also mitigates buddy induced latencies under load.
4225 	 */
4226 	if (delta_exec < sysctl_sched_min_granularity)
4227 		return;
4228 
4229 	se = __pick_first_entity(cfs_rq);
4230 	delta = curr->vruntime - se->vruntime;
4231 
4232 	if (delta < 0)
4233 		return;
4234 
4235 	if (delta > ideal_runtime)
4236 		resched_curr(rq_of(cfs_rq));
4237 }
4238 
4239 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)4240 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4241 {
4242 	/* 'current' is not kept within the tree. */
4243 	if (se->on_rq) {
4244 		/*
4245 		 * Any task has to be enqueued before it get to execute on
4246 		 * a CPU. So account for the time it spent waiting on the
4247 		 * runqueue.
4248 		 */
4249 		update_stats_wait_end(cfs_rq, se);
4250 		__dequeue_entity(cfs_rq, se);
4251 		update_load_avg(cfs_rq, se, UPDATE_TG);
4252 	}
4253 
4254 	update_stats_curr_start(cfs_rq, se);
4255 	cfs_rq->curr = se;
4256 
4257 	/*
4258 	 * Track our maximum slice length, if the CPU's load is at
4259 	 * least twice that of our own weight (i.e. dont track it
4260 	 * when there are only lesser-weight tasks around):
4261 	 */
4262 	if (schedstat_enabled() &&
4263 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4264 		schedstat_set(se->statistics.slice_max,
4265 			max((u64)schedstat_val(se->statistics.slice_max),
4266 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4267 	}
4268 
4269 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4270 }
4271 
4272 static int
4273 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4274 
4275 /*
4276  * Pick the next process, keeping these things in mind, in this order:
4277  * 1) keep things fair between processes/task groups
4278  * 2) pick the "next" process, since someone really wants that to run
4279  * 3) pick the "last" process, for cache locality
4280  * 4) do not run the "skip" process, if something else is available
4281  */
4282 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)4283 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4284 {
4285 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4286 	struct sched_entity *se;
4287 
4288 	/*
4289 	 * If curr is set we have to see if its left of the leftmost entity
4290 	 * still in the tree, provided there was anything in the tree at all.
4291 	 */
4292 	if (!left || (curr && entity_before(curr, left)))
4293 		left = curr;
4294 
4295 	se = left; /* ideally we run the leftmost entity */
4296 
4297 	/*
4298 	 * Avoid running the skip buddy, if running something else can
4299 	 * be done without getting too unfair.
4300 	 */
4301 	if (cfs_rq->skip == se) {
4302 		struct sched_entity *second;
4303 
4304 		if (se == curr) {
4305 			second = __pick_first_entity(cfs_rq);
4306 		} else {
4307 			second = __pick_next_entity(se);
4308 			if (!second || (curr && entity_before(curr, second)))
4309 				second = curr;
4310 		}
4311 
4312 		if (second && wakeup_preempt_entity(second, left) < 1)
4313 			se = second;
4314 	}
4315 
4316 	/*
4317 	 * Prefer last buddy, try to return the CPU to a preempted task.
4318 	 */
4319 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4320 		se = cfs_rq->last;
4321 
4322 	/*
4323 	 * Someone really wants this to run. If it's not unfair, run it.
4324 	 */
4325 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4326 		se = cfs_rq->next;
4327 
4328 	clear_buddies(cfs_rq, se);
4329 
4330 	return se;
4331 }
4332 
4333 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4334 
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)4335 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4336 {
4337 	/*
4338 	 * If still on the runqueue then deactivate_task()
4339 	 * was not called and update_curr() has to be done:
4340 	 */
4341 	if (prev->on_rq)
4342 		update_curr(cfs_rq);
4343 
4344 	/* throttle cfs_rqs exceeding runtime */
4345 	check_cfs_rq_runtime(cfs_rq);
4346 
4347 	check_spread(cfs_rq, prev);
4348 
4349 	if (prev->on_rq) {
4350 		update_stats_wait_start(cfs_rq, prev);
4351 		/* Put 'current' back into the tree. */
4352 		__enqueue_entity(cfs_rq, prev);
4353 		/* in !on_rq case, update occurred at dequeue */
4354 		update_load_avg(cfs_rq, prev, 0);
4355 	}
4356 	cfs_rq->curr = NULL;
4357 }
4358 
4359 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)4360 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4361 {
4362 	/*
4363 	 * Update run-time statistics of the 'current'.
4364 	 */
4365 	update_curr(cfs_rq);
4366 
4367 	/*
4368 	 * Ensure that runnable average is periodically updated.
4369 	 */
4370 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4371 	update_cfs_group(curr);
4372 
4373 #ifdef CONFIG_SCHED_HRTICK
4374 	/*
4375 	 * queued ticks are scheduled to match the slice, so don't bother
4376 	 * validating it and just reschedule.
4377 	 */
4378 	if (queued) {
4379 		resched_curr(rq_of(cfs_rq));
4380 		return;
4381 	}
4382 	/*
4383 	 * don't let the period tick interfere with the hrtick preemption
4384 	 */
4385 	if (!sched_feat(DOUBLE_TICK) &&
4386 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4387 		return;
4388 #endif
4389 
4390 	if (cfs_rq->nr_running > 1)
4391 		check_preempt_tick(cfs_rq, curr);
4392 }
4393 
4394 
4395 /**************************************************
4396  * CFS bandwidth control machinery
4397  */
4398 
4399 #ifdef CONFIG_CFS_BANDWIDTH
4400 
4401 #ifdef CONFIG_JUMP_LABEL
4402 static struct static_key __cfs_bandwidth_used;
4403 
cfs_bandwidth_used(void)4404 static inline bool cfs_bandwidth_used(void)
4405 {
4406 	return static_key_false(&__cfs_bandwidth_used);
4407 }
4408 
cfs_bandwidth_usage_inc(void)4409 void cfs_bandwidth_usage_inc(void)
4410 {
4411 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4412 }
4413 
cfs_bandwidth_usage_dec(void)4414 void cfs_bandwidth_usage_dec(void)
4415 {
4416 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4417 }
4418 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)4419 static bool cfs_bandwidth_used(void)
4420 {
4421 	return true;
4422 }
4423 
cfs_bandwidth_usage_inc(void)4424 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)4425 void cfs_bandwidth_usage_dec(void) {}
4426 #endif /* CONFIG_JUMP_LABEL */
4427 
4428 /*
4429  * default period for cfs group bandwidth.
4430  * default: 0.1s, units: nanoseconds
4431  */
default_cfs_period(void)4432 static inline u64 default_cfs_period(void)
4433 {
4434 	return 100000000ULL;
4435 }
4436 
sched_cfs_bandwidth_slice(void)4437 static inline u64 sched_cfs_bandwidth_slice(void)
4438 {
4439 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4440 }
4441 
4442 /*
4443  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4444  * directly instead of rq->clock to avoid adding additional synchronization
4445  * around rq->lock.
4446  *
4447  * requires cfs_b->lock
4448  */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)4449 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4450 {
4451 	if (cfs_b->quota != RUNTIME_INF)
4452 		cfs_b->runtime = cfs_b->quota;
4453 }
4454 
tg_cfs_bandwidth(struct task_group * tg)4455 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4456 {
4457 	return &tg->cfs_bandwidth;
4458 }
4459 
4460 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)4461 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4462 				   struct cfs_rq *cfs_rq, u64 target_runtime)
4463 {
4464 	u64 min_amount, amount = 0;
4465 
4466 	lockdep_assert_held(&cfs_b->lock);
4467 
4468 	/* note: this is a positive sum as runtime_remaining <= 0 */
4469 	min_amount = target_runtime - cfs_rq->runtime_remaining;
4470 
4471 	if (cfs_b->quota == RUNTIME_INF)
4472 		amount = min_amount;
4473 	else {
4474 		start_cfs_bandwidth(cfs_b);
4475 
4476 		if (cfs_b->runtime > 0) {
4477 			amount = min(cfs_b->runtime, min_amount);
4478 			cfs_b->runtime -= amount;
4479 			cfs_b->idle = 0;
4480 		}
4481 	}
4482 
4483 	cfs_rq->runtime_remaining += amount;
4484 
4485 	return cfs_rq->runtime_remaining > 0;
4486 }
4487 
4488 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)4489 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4490 {
4491 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4492 	int ret;
4493 
4494 	raw_spin_lock(&cfs_b->lock);
4495 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4496 	raw_spin_unlock(&cfs_b->lock);
4497 
4498 	return ret;
4499 }
4500 
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4501 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4502 {
4503 	/* dock delta_exec before expiring quota (as it could span periods) */
4504 	cfs_rq->runtime_remaining -= delta_exec;
4505 
4506 	if (likely(cfs_rq->runtime_remaining > 0))
4507 		return;
4508 
4509 	if (cfs_rq->throttled)
4510 		return;
4511 	/*
4512 	 * if we're unable to extend our runtime we resched so that the active
4513 	 * hierarchy can be throttled
4514 	 */
4515 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4516 		resched_curr(rq_of(cfs_rq));
4517 }
4518 
4519 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4521 {
4522 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4523 		return;
4524 
4525 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4526 }
4527 
cfs_rq_throttled(struct cfs_rq * cfs_rq)4528 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4529 {
4530 	return cfs_bandwidth_used() && cfs_rq->throttled;
4531 }
4532 
4533 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)4534 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4535 {
4536 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4537 }
4538 
4539 /*
4540  * Ensure that neither of the group entities corresponding to src_cpu or
4541  * dest_cpu are members of a throttled hierarchy when performing group
4542  * load-balance operations.
4543  */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)4544 static inline int throttled_lb_pair(struct task_group *tg,
4545 				    int src_cpu, int dest_cpu)
4546 {
4547 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4548 
4549 	src_cfs_rq = tg->cfs_rq[src_cpu];
4550 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4551 
4552 	return throttled_hierarchy(src_cfs_rq) ||
4553 	       throttled_hierarchy(dest_cfs_rq);
4554 }
4555 
tg_unthrottle_up(struct task_group * tg,void * data)4556 static int tg_unthrottle_up(struct task_group *tg, void *data)
4557 {
4558 	struct rq *rq = data;
4559 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4560 
4561 	cfs_rq->throttle_count--;
4562 	if (!cfs_rq->throttle_count) {
4563 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
4564 					     cfs_rq->throttled_clock_pelt;
4565 
4566 		/* Add cfs_rq with already running entity in the list */
4567 		if (cfs_rq->nr_running >= 1)
4568 			list_add_leaf_cfs_rq(cfs_rq);
4569 	}
4570 
4571 	return 0;
4572 }
4573 
tg_throttle_down(struct task_group * tg,void * data)4574 static int tg_throttle_down(struct task_group *tg, void *data)
4575 {
4576 	struct rq *rq = data;
4577 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4578 
4579 	/* group is entering throttled state, stop time */
4580 	if (!cfs_rq->throttle_count) {
4581 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
4582 		list_del_leaf_cfs_rq(cfs_rq);
4583 	}
4584 	cfs_rq->throttle_count++;
4585 
4586 	return 0;
4587 }
4588 
throttle_cfs_rq(struct cfs_rq * cfs_rq)4589 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4590 {
4591 	struct rq *rq = rq_of(cfs_rq);
4592 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4593 	struct sched_entity *se;
4594 	long task_delta, idle_task_delta, dequeue = 1;
4595 
4596 	raw_spin_lock(&cfs_b->lock);
4597 	/* This will start the period timer if necessary */
4598 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4599 		/*
4600 		 * We have raced with bandwidth becoming available, and if we
4601 		 * actually throttled the timer might not unthrottle us for an
4602 		 * entire period. We additionally needed to make sure that any
4603 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
4604 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4605 		 * for 1ns of runtime rather than just check cfs_b.
4606 		 */
4607 		dequeue = 0;
4608 	} else {
4609 		list_add_tail_rcu(&cfs_rq->throttled_list,
4610 				  &cfs_b->throttled_cfs_rq);
4611 	}
4612 	raw_spin_unlock(&cfs_b->lock);
4613 
4614 	if (!dequeue)
4615 		return false;  /* Throttle no longer required. */
4616 
4617 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4618 
4619 	/* freeze hierarchy runnable averages while throttled */
4620 	rcu_read_lock();
4621 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4622 	rcu_read_unlock();
4623 
4624 	task_delta = cfs_rq->h_nr_running;
4625 	idle_task_delta = cfs_rq->idle_h_nr_running;
4626 	for_each_sched_entity(se) {
4627 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4628 		/* throttled entity or throttle-on-deactivate */
4629 		if (!se->on_rq)
4630 			break;
4631 
4632 		if (dequeue)
4633 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4634 		qcfs_rq->h_nr_running -= task_delta;
4635 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4636 
4637 		if (qcfs_rq->load.weight)
4638 			dequeue = 0;
4639 	}
4640 
4641 	if (!se)
4642 		sub_nr_running(rq, task_delta);
4643 
4644 	/*
4645 	 * Note: distribution will already see us throttled via the
4646 	 * throttled-list.  rq->lock protects completion.
4647 	 */
4648 	cfs_rq->throttled = 1;
4649 	cfs_rq->throttled_clock = rq_clock(rq);
4650 	return true;
4651 }
4652 
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)4653 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4654 {
4655 	struct rq *rq = rq_of(cfs_rq);
4656 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4657 	struct sched_entity *se;
4658 	long task_delta, idle_task_delta;
4659 
4660 	se = cfs_rq->tg->se[cpu_of(rq)];
4661 
4662 	cfs_rq->throttled = 0;
4663 
4664 	update_rq_clock(rq);
4665 
4666 	raw_spin_lock(&cfs_b->lock);
4667 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4668 	list_del_rcu(&cfs_rq->throttled_list);
4669 	raw_spin_unlock(&cfs_b->lock);
4670 
4671 	/* update hierarchical throttle state */
4672 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4673 
4674 	if (!cfs_rq->load.weight)
4675 		return;
4676 
4677 	task_delta = cfs_rq->h_nr_running;
4678 	idle_task_delta = cfs_rq->idle_h_nr_running;
4679 	for_each_sched_entity(se) {
4680 		if (se->on_rq)
4681 			break;
4682 		cfs_rq = cfs_rq_of(se);
4683 		enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4684 
4685 		cfs_rq->h_nr_running += task_delta;
4686 		cfs_rq->idle_h_nr_running += idle_task_delta;
4687 
4688 		/* end evaluation on encountering a throttled cfs_rq */
4689 		if (cfs_rq_throttled(cfs_rq))
4690 			goto unthrottle_throttle;
4691 	}
4692 
4693 	for_each_sched_entity(se) {
4694 		cfs_rq = cfs_rq_of(se);
4695 
4696 		cfs_rq->h_nr_running += task_delta;
4697 		cfs_rq->idle_h_nr_running += idle_task_delta;
4698 
4699 
4700 		/* end evaluation on encountering a throttled cfs_rq */
4701 		if (cfs_rq_throttled(cfs_rq))
4702 			goto unthrottle_throttle;
4703 
4704 		/*
4705 		 * One parent has been throttled and cfs_rq removed from the
4706 		 * list. Add it back to not break the leaf list.
4707 		 */
4708 		if (throttled_hierarchy(cfs_rq))
4709 			list_add_leaf_cfs_rq(cfs_rq);
4710 	}
4711 
4712 	/* At this point se is NULL and we are at root level*/
4713 	add_nr_running(rq, task_delta);
4714 
4715 unthrottle_throttle:
4716 	/*
4717 	 * The cfs_rq_throttled() breaks in the above iteration can result in
4718 	 * incomplete leaf list maintenance, resulting in triggering the
4719 	 * assertion below.
4720 	 */
4721 	for_each_sched_entity(se) {
4722 		cfs_rq = cfs_rq_of(se);
4723 
4724 		if (list_add_leaf_cfs_rq(cfs_rq))
4725 			break;
4726 	}
4727 
4728 	assert_list_leaf_cfs_rq(rq);
4729 
4730 	/* Determine whether we need to wake up potentially idle CPU: */
4731 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4732 		resched_curr(rq);
4733 }
4734 
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b,u64 remaining)4735 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining)
4736 {
4737 	struct cfs_rq *cfs_rq;
4738 	u64 runtime;
4739 	u64 starting_runtime = remaining;
4740 
4741 	rcu_read_lock();
4742 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4743 				throttled_list) {
4744 		struct rq *rq = rq_of(cfs_rq);
4745 		struct rq_flags rf;
4746 
4747 		rq_lock_irqsave(rq, &rf);
4748 		if (!cfs_rq_throttled(cfs_rq))
4749 			goto next;
4750 
4751 		/* By the above check, this should never be true */
4752 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4753 
4754 		runtime = -cfs_rq->runtime_remaining + 1;
4755 		if (runtime > remaining)
4756 			runtime = remaining;
4757 		remaining -= runtime;
4758 
4759 		cfs_rq->runtime_remaining += runtime;
4760 
4761 		/* we check whether we're throttled above */
4762 		if (cfs_rq->runtime_remaining > 0)
4763 			unthrottle_cfs_rq(cfs_rq);
4764 
4765 next:
4766 		rq_unlock_irqrestore(rq, &rf);
4767 
4768 		if (!remaining)
4769 			break;
4770 	}
4771 	rcu_read_unlock();
4772 
4773 	return starting_runtime - remaining;
4774 }
4775 
4776 /*
4777  * Responsible for refilling a task_group's bandwidth and unthrottling its
4778  * cfs_rqs as appropriate. If there has been no activity within the last
4779  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4780  * used to track this state.
4781  */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)4782 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4783 {
4784 	u64 runtime;
4785 	int throttled;
4786 
4787 	/* no need to continue the timer with no bandwidth constraint */
4788 	if (cfs_b->quota == RUNTIME_INF)
4789 		goto out_deactivate;
4790 
4791 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4792 	cfs_b->nr_periods += overrun;
4793 
4794 	/*
4795 	 * idle depends on !throttled (for the case of a large deficit), and if
4796 	 * we're going inactive then everything else can be deferred
4797 	 */
4798 	if (cfs_b->idle && !throttled)
4799 		goto out_deactivate;
4800 
4801 	__refill_cfs_bandwidth_runtime(cfs_b);
4802 
4803 	if (!throttled) {
4804 		/* mark as potentially idle for the upcoming period */
4805 		cfs_b->idle = 1;
4806 		return 0;
4807 	}
4808 
4809 	/* account preceding periods in which throttling occurred */
4810 	cfs_b->nr_throttled += overrun;
4811 
4812 	/*
4813 	 * This check is repeated as we are holding onto the new bandwidth while
4814 	 * we unthrottle. This can potentially race with an unthrottled group
4815 	 * trying to acquire new bandwidth from the global pool. This can result
4816 	 * in us over-using our runtime if it is all used during this loop, but
4817 	 * only by limited amounts in that extreme case.
4818 	 */
4819 	while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4820 		runtime = cfs_b->runtime;
4821 		cfs_b->distribute_running = 1;
4822 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4823 		/* we can't nest cfs_b->lock while distributing bandwidth */
4824 		runtime = distribute_cfs_runtime(cfs_b, runtime);
4825 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
4826 
4827 		cfs_b->distribute_running = 0;
4828 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4829 
4830 		lsub_positive(&cfs_b->runtime, runtime);
4831 	}
4832 
4833 	/*
4834 	 * While we are ensured activity in the period following an
4835 	 * unthrottle, this also covers the case in which the new bandwidth is
4836 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4837 	 * timer to remain active while there are any throttled entities.)
4838 	 */
4839 	cfs_b->idle = 0;
4840 
4841 	return 0;
4842 
4843 out_deactivate:
4844 	return 1;
4845 }
4846 
4847 /* a cfs_rq won't donate quota below this amount */
4848 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4849 /* minimum remaining period time to redistribute slack quota */
4850 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4851 /* how long we wait to gather additional slack before distributing */
4852 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4853 
4854 /*
4855  * Are we near the end of the current quota period?
4856  *
4857  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4858  * hrtimer base being cleared by hrtimer_start. In the case of
4859  * migrate_hrtimers, base is never cleared, so we are fine.
4860  */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)4861 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4862 {
4863 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4864 	s64 remaining;
4865 
4866 	/* if the call-back is running a quota refresh is already occurring */
4867 	if (hrtimer_callback_running(refresh_timer))
4868 		return 1;
4869 
4870 	/* is a quota refresh about to occur? */
4871 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4872 	if (remaining < (s64)min_expire)
4873 		return 1;
4874 
4875 	return 0;
4876 }
4877 
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)4878 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4879 {
4880 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4881 
4882 	/* if there's a quota refresh soon don't bother with slack */
4883 	if (runtime_refresh_within(cfs_b, min_left))
4884 		return;
4885 
4886 	/* don't push forwards an existing deferred unthrottle */
4887 	if (cfs_b->slack_started)
4888 		return;
4889 	cfs_b->slack_started = true;
4890 
4891 	hrtimer_start(&cfs_b->slack_timer,
4892 			ns_to_ktime(cfs_bandwidth_slack_period),
4893 			HRTIMER_MODE_REL);
4894 }
4895 
4896 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)4897 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4898 {
4899 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4900 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4901 
4902 	if (slack_runtime <= 0)
4903 		return;
4904 
4905 	raw_spin_lock(&cfs_b->lock);
4906 	if (cfs_b->quota != RUNTIME_INF) {
4907 		cfs_b->runtime += slack_runtime;
4908 
4909 		/* we are under rq->lock, defer unthrottling using a timer */
4910 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4911 		    !list_empty(&cfs_b->throttled_cfs_rq))
4912 			start_cfs_slack_bandwidth(cfs_b);
4913 	}
4914 	raw_spin_unlock(&cfs_b->lock);
4915 
4916 	/* even if it's not valid for return we don't want to try again */
4917 	cfs_rq->runtime_remaining -= slack_runtime;
4918 }
4919 
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)4920 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4921 {
4922 	if (!cfs_bandwidth_used())
4923 		return;
4924 
4925 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4926 		return;
4927 
4928 	__return_cfs_rq_runtime(cfs_rq);
4929 }
4930 
4931 /*
4932  * This is done with a timer (instead of inline with bandwidth return) since
4933  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4934  */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)4935 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4936 {
4937 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4938 	unsigned long flags;
4939 
4940 	/* confirm we're still not at a refresh boundary */
4941 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4942 	cfs_b->slack_started = false;
4943 	if (cfs_b->distribute_running) {
4944 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4945 		return;
4946 	}
4947 
4948 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4949 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4950 		return;
4951 	}
4952 
4953 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4954 		runtime = cfs_b->runtime;
4955 
4956 	if (runtime)
4957 		cfs_b->distribute_running = 1;
4958 
4959 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4960 
4961 	if (!runtime)
4962 		return;
4963 
4964 	runtime = distribute_cfs_runtime(cfs_b, runtime);
4965 
4966 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
4967 	lsub_positive(&cfs_b->runtime, runtime);
4968 	cfs_b->distribute_running = 0;
4969 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4970 }
4971 
4972 /*
4973  * When a group wakes up we want to make sure that its quota is not already
4974  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4975  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4976  */
check_enqueue_throttle(struct cfs_rq * cfs_rq)4977 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4978 {
4979 	if (!cfs_bandwidth_used())
4980 		return;
4981 
4982 	/* an active group must be handled by the update_curr()->put() path */
4983 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4984 		return;
4985 
4986 	/* ensure the group is not already throttled */
4987 	if (cfs_rq_throttled(cfs_rq))
4988 		return;
4989 
4990 	/* update runtime allocation */
4991 	account_cfs_rq_runtime(cfs_rq, 0);
4992 	if (cfs_rq->runtime_remaining <= 0)
4993 		throttle_cfs_rq(cfs_rq);
4994 }
4995 
sync_throttle(struct task_group * tg,int cpu)4996 static void sync_throttle(struct task_group *tg, int cpu)
4997 {
4998 	struct cfs_rq *pcfs_rq, *cfs_rq;
4999 
5000 	if (!cfs_bandwidth_used())
5001 		return;
5002 
5003 	if (!tg->parent)
5004 		return;
5005 
5006 	cfs_rq = tg->cfs_rq[cpu];
5007 	pcfs_rq = tg->parent->cfs_rq[cpu];
5008 
5009 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5010 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
5011 }
5012 
5013 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5014 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5015 {
5016 	if (!cfs_bandwidth_used())
5017 		return false;
5018 
5019 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5020 		return false;
5021 
5022 	/*
5023 	 * it's possible for a throttled entity to be forced into a running
5024 	 * state (e.g. set_curr_task), in this case we're finished.
5025 	 */
5026 	if (cfs_rq_throttled(cfs_rq))
5027 		return true;
5028 
5029 	return throttle_cfs_rq(cfs_rq);
5030 }
5031 
sched_cfs_slack_timer(struct hrtimer * timer)5032 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5033 {
5034 	struct cfs_bandwidth *cfs_b =
5035 		container_of(timer, struct cfs_bandwidth, slack_timer);
5036 
5037 	do_sched_cfs_slack_timer(cfs_b);
5038 
5039 	return HRTIMER_NORESTART;
5040 }
5041 
5042 extern const u64 max_cfs_quota_period;
5043 
sched_cfs_period_timer(struct hrtimer * timer)5044 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5045 {
5046 	struct cfs_bandwidth *cfs_b =
5047 		container_of(timer, struct cfs_bandwidth, period_timer);
5048 	unsigned long flags;
5049 	int overrun;
5050 	int idle = 0;
5051 	int count = 0;
5052 
5053 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5054 	for (;;) {
5055 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5056 		if (!overrun)
5057 			break;
5058 
5059 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5060 
5061 		if (++count > 3) {
5062 			u64 new, old = ktime_to_ns(cfs_b->period);
5063 
5064 			/*
5065 			 * Grow period by a factor of 2 to avoid losing precision.
5066 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5067 			 * to fail.
5068 			 */
5069 			new = old * 2;
5070 			if (new < max_cfs_quota_period) {
5071 				cfs_b->period = ns_to_ktime(new);
5072 				cfs_b->quota *= 2;
5073 
5074 				pr_warn_ratelimited(
5075 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5076 					smp_processor_id(),
5077 					div_u64(new, NSEC_PER_USEC),
5078 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5079 			} else {
5080 				pr_warn_ratelimited(
5081 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5082 					smp_processor_id(),
5083 					div_u64(old, NSEC_PER_USEC),
5084 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5085 			}
5086 
5087 			/* reset count so we don't come right back in here */
5088 			count = 0;
5089 		}
5090 	}
5091 	if (idle)
5092 		cfs_b->period_active = 0;
5093 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5094 
5095 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5096 }
5097 
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5098 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5099 {
5100 	raw_spin_lock_init(&cfs_b->lock);
5101 	cfs_b->runtime = 0;
5102 	cfs_b->quota = RUNTIME_INF;
5103 	cfs_b->period = ns_to_ktime(default_cfs_period());
5104 
5105 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5106 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5107 	cfs_b->period_timer.function = sched_cfs_period_timer;
5108 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5109 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5110 	cfs_b->distribute_running = 0;
5111 	cfs_b->slack_started = false;
5112 }
5113 
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)5114 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5115 {
5116 	cfs_rq->runtime_enabled = 0;
5117 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5118 }
5119 
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5120 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5121 {
5122 	lockdep_assert_held(&cfs_b->lock);
5123 
5124 	if (cfs_b->period_active)
5125 		return;
5126 
5127 	cfs_b->period_active = 1;
5128 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5129 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5130 }
5131 
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5132 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5133 {
5134 	/* init_cfs_bandwidth() was not called */
5135 	if (!cfs_b->throttled_cfs_rq.next)
5136 		return;
5137 
5138 	hrtimer_cancel(&cfs_b->period_timer);
5139 	hrtimer_cancel(&cfs_b->slack_timer);
5140 }
5141 
5142 /*
5143  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5144  *
5145  * The race is harmless, since modifying bandwidth settings of unhooked group
5146  * bits doesn't do much.
5147  */
5148 
5149 /* cpu online calback */
update_runtime_enabled(struct rq * rq)5150 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5151 {
5152 	struct task_group *tg;
5153 
5154 	lockdep_assert_held(&rq->lock);
5155 
5156 	rcu_read_lock();
5157 	list_for_each_entry_rcu(tg, &task_groups, list) {
5158 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5159 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5160 
5161 		raw_spin_lock(&cfs_b->lock);
5162 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5163 		raw_spin_unlock(&cfs_b->lock);
5164 	}
5165 	rcu_read_unlock();
5166 }
5167 
5168 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)5169 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5170 {
5171 	struct task_group *tg;
5172 
5173 	lockdep_assert_held(&rq->lock);
5174 
5175 	rcu_read_lock();
5176 	list_for_each_entry_rcu(tg, &task_groups, list) {
5177 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5178 
5179 		if (!cfs_rq->runtime_enabled)
5180 			continue;
5181 
5182 		/*
5183 		 * clock_task is not advancing so we just need to make sure
5184 		 * there's some valid quota amount
5185 		 */
5186 		cfs_rq->runtime_remaining = 1;
5187 		/*
5188 		 * Offline rq is schedulable till CPU is completely disabled
5189 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5190 		 */
5191 		cfs_rq->runtime_enabled = 0;
5192 
5193 		if (cfs_rq_throttled(cfs_rq))
5194 			unthrottle_cfs_rq(cfs_rq);
5195 	}
5196 	rcu_read_unlock();
5197 }
5198 
5199 #else /* CONFIG_CFS_BANDWIDTH */
5200 
cfs_bandwidth_used(void)5201 static inline bool cfs_bandwidth_used(void)
5202 {
5203 	return false;
5204 }
5205 
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5206 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5207 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)5208 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)5209 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5210 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5211 
cfs_rq_throttled(struct cfs_rq * cfs_rq)5212 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5213 {
5214 	return 0;
5215 }
5216 
throttled_hierarchy(struct cfs_rq * cfs_rq)5217 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5218 {
5219 	return 0;
5220 }
5221 
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5222 static inline int throttled_lb_pair(struct task_group *tg,
5223 				    int src_cpu, int dest_cpu)
5224 {
5225 	return 0;
5226 }
5227 
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5228 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5229 
5230 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)5231 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5232 #endif
5233 
tg_cfs_bandwidth(struct task_group * tg)5234 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5235 {
5236 	return NULL;
5237 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5238 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)5239 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)5240 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5241 
5242 #endif /* CONFIG_CFS_BANDWIDTH */
5243 
5244 /**************************************************
5245  * CFS operations on tasks:
5246  */
5247 
5248 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)5249 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5250 {
5251 	struct sched_entity *se = &p->se;
5252 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5253 
5254 	SCHED_WARN_ON(task_rq(p) != rq);
5255 
5256 	if (rq->cfs.h_nr_running > 1) {
5257 		u64 slice = sched_slice(cfs_rq, se);
5258 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5259 		s64 delta = slice - ran;
5260 
5261 		if (delta < 0) {
5262 			if (rq->curr == p)
5263 				resched_curr(rq);
5264 			return;
5265 		}
5266 		hrtick_start(rq, delta);
5267 	}
5268 }
5269 
5270 /*
5271  * called from enqueue/dequeue and updates the hrtick when the
5272  * current task is from our class and nr_running is low enough
5273  * to matter.
5274  */
hrtick_update(struct rq * rq)5275 static void hrtick_update(struct rq *rq)
5276 {
5277 	struct task_struct *curr = rq->curr;
5278 
5279 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5280 		return;
5281 
5282 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5283 		hrtick_start_fair(rq, curr);
5284 }
5285 #else /* !CONFIG_SCHED_HRTICK */
5286 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)5287 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5288 {
5289 }
5290 
hrtick_update(struct rq * rq)5291 static inline void hrtick_update(struct rq *rq)
5292 {
5293 }
5294 #endif
5295 
5296 #ifdef CONFIG_SMP
5297 static inline unsigned long cpu_util(int cpu);
5298 
cpu_overutilized(int cpu)5299 static inline bool cpu_overutilized(int cpu)
5300 {
5301 	return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5302 }
5303 
update_overutilized_status(struct rq * rq)5304 static inline void update_overutilized_status(struct rq *rq)
5305 {
5306 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5307 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5308 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5309 	}
5310 }
5311 #else
update_overutilized_status(struct rq * rq)5312 static inline void update_overutilized_status(struct rq *rq) { }
5313 #endif
5314 
5315 /*
5316  * The enqueue_task method is called before nr_running is
5317  * increased. Here we update the fair scheduling stats and
5318  * then put the task into the rbtree:
5319  */
5320 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)5321 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5322 {
5323 	struct cfs_rq *cfs_rq;
5324 	struct sched_entity *se = &p->se;
5325 	int idle_h_nr_running = task_has_idle_policy(p);
5326 	int task_new = !(flags & ENQUEUE_WAKEUP);
5327 
5328 	/*
5329 	 * The code below (indirectly) updates schedutil which looks at
5330 	 * the cfs_rq utilization to select a frequency.
5331 	 * Let's add the task's estimated utilization to the cfs_rq's
5332 	 * estimated utilization, before we update schedutil.
5333 	 */
5334 	util_est_enqueue(&rq->cfs, p);
5335 
5336 	/*
5337 	 * If in_iowait is set, the code below may not trigger any cpufreq
5338 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5339 	 * passed.
5340 	 */
5341 	if (p->in_iowait)
5342 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5343 
5344 	for_each_sched_entity(se) {
5345 		if (se->on_rq)
5346 			break;
5347 		cfs_rq = cfs_rq_of(se);
5348 		enqueue_entity(cfs_rq, se, flags);
5349 
5350 		cfs_rq->h_nr_running++;
5351 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5352 
5353 		/* end evaluation on encountering a throttled cfs_rq */
5354 		if (cfs_rq_throttled(cfs_rq))
5355 			goto enqueue_throttle;
5356 
5357 		flags = ENQUEUE_WAKEUP;
5358 	}
5359 
5360 	for_each_sched_entity(se) {
5361 		cfs_rq = cfs_rq_of(se);
5362 
5363 		update_load_avg(cfs_rq, se, UPDATE_TG);
5364 		update_cfs_group(se);
5365 
5366 		cfs_rq->h_nr_running++;
5367 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5368 
5369 		/* end evaluation on encountering a throttled cfs_rq */
5370 		if (cfs_rq_throttled(cfs_rq))
5371 			goto enqueue_throttle;
5372 
5373                /*
5374                 * One parent has been throttled and cfs_rq removed from the
5375                 * list. Add it back to not break the leaf list.
5376                 */
5377                if (throttled_hierarchy(cfs_rq))
5378                        list_add_leaf_cfs_rq(cfs_rq);
5379 	}
5380 
5381 enqueue_throttle:
5382 	if (!se) {
5383 		add_nr_running(rq, 1);
5384 		/*
5385 		 * Since new tasks are assigned an initial util_avg equal to
5386 		 * half of the spare capacity of their CPU, tiny tasks have the
5387 		 * ability to cross the overutilized threshold, which will
5388 		 * result in the load balancer ruining all the task placement
5389 		 * done by EAS. As a way to mitigate that effect, do not account
5390 		 * for the first enqueue operation of new tasks during the
5391 		 * overutilized flag detection.
5392 		 *
5393 		 * A better way of solving this problem would be to wait for
5394 		 * the PELT signals of tasks to converge before taking them
5395 		 * into account, but that is not straightforward to implement,
5396 		 * and the following generally works well enough in practice.
5397 		 */
5398 		if (!task_new)
5399 			update_overutilized_status(rq);
5400 
5401 	}
5402 
5403 	if (cfs_bandwidth_used()) {
5404 		/*
5405 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5406 		 * breaks in the above iteration can result in incomplete
5407 		 * leaf list maintenance, resulting in triggering the assertion
5408 		 * below.
5409 		 */
5410 		for_each_sched_entity(se) {
5411 			cfs_rq = cfs_rq_of(se);
5412 
5413 			if (list_add_leaf_cfs_rq(cfs_rq))
5414 				break;
5415 		}
5416 	}
5417 
5418 	assert_list_leaf_cfs_rq(rq);
5419 
5420 	hrtick_update(rq);
5421 }
5422 
5423 static void set_next_buddy(struct sched_entity *se);
5424 
5425 /*
5426  * The dequeue_task method is called before nr_running is
5427  * decreased. We remove the task from the rbtree and
5428  * update the fair scheduling stats:
5429  */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)5430 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5431 {
5432 	struct cfs_rq *cfs_rq;
5433 	struct sched_entity *se = &p->se;
5434 	int task_sleep = flags & DEQUEUE_SLEEP;
5435 	int idle_h_nr_running = task_has_idle_policy(p);
5436 
5437 	for_each_sched_entity(se) {
5438 		cfs_rq = cfs_rq_of(se);
5439 		dequeue_entity(cfs_rq, se, flags);
5440 
5441 		cfs_rq->h_nr_running--;
5442 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5443 
5444 		/* end evaluation on encountering a throttled cfs_rq */
5445 		if (cfs_rq_throttled(cfs_rq))
5446 			goto dequeue_throttle;
5447 
5448 		/* Don't dequeue parent if it has other entities besides us */
5449 		if (cfs_rq->load.weight) {
5450 			/* Avoid re-evaluating load for this entity: */
5451 			se = parent_entity(se);
5452 			/*
5453 			 * Bias pick_next to pick a task from this cfs_rq, as
5454 			 * p is sleeping when it is within its sched_slice.
5455 			 */
5456 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5457 				set_next_buddy(se);
5458 			break;
5459 		}
5460 		flags |= DEQUEUE_SLEEP;
5461 	}
5462 
5463 	for_each_sched_entity(se) {
5464 		cfs_rq = cfs_rq_of(se);
5465 
5466 		update_load_avg(cfs_rq, se, UPDATE_TG);
5467 		update_cfs_group(se);
5468 
5469 		cfs_rq->h_nr_running--;
5470 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5471 
5472 		/* end evaluation on encountering a throttled cfs_rq */
5473 		if (cfs_rq_throttled(cfs_rq))
5474 			goto dequeue_throttle;
5475 
5476 	}
5477 
5478 dequeue_throttle:
5479 	if (!se)
5480 		sub_nr_running(rq, 1);
5481 
5482 	util_est_dequeue(&rq->cfs, p, task_sleep);
5483 	hrtick_update(rq);
5484 }
5485 
5486 #ifdef CONFIG_SMP
5487 
5488 /* Working cpumask for: load_balance, load_balance_newidle. */
5489 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5490 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5491 
5492 #ifdef CONFIG_NO_HZ_COMMON
5493 
5494 static struct {
5495 	cpumask_var_t idle_cpus_mask;
5496 	atomic_t nr_cpus;
5497 	int has_blocked;		/* Idle CPUS has blocked load */
5498 	unsigned long next_balance;     /* in jiffy units */
5499 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5500 } nohz ____cacheline_aligned;
5501 
5502 #endif /* CONFIG_NO_HZ_COMMON */
5503 
5504 /* CPU only has SCHED_IDLE tasks enqueued */
sched_idle_cpu(int cpu)5505 static int sched_idle_cpu(int cpu)
5506 {
5507 	struct rq *rq = cpu_rq(cpu);
5508 
5509 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5510 			rq->nr_running);
5511 }
5512 
cpu_runnable_load(struct rq * rq)5513 static unsigned long cpu_runnable_load(struct rq *rq)
5514 {
5515 	return cfs_rq_runnable_load_avg(&rq->cfs);
5516 }
5517 
capacity_of(int cpu)5518 static unsigned long capacity_of(int cpu)
5519 {
5520 	return cpu_rq(cpu)->cpu_capacity;
5521 }
5522 
cpu_avg_load_per_task(int cpu)5523 static unsigned long cpu_avg_load_per_task(int cpu)
5524 {
5525 	struct rq *rq = cpu_rq(cpu);
5526 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5527 	unsigned long load_avg = cpu_runnable_load(rq);
5528 
5529 	if (nr_running)
5530 		return load_avg / nr_running;
5531 
5532 	return 0;
5533 }
5534 
record_wakee(struct task_struct * p)5535 static void record_wakee(struct task_struct *p)
5536 {
5537 	/*
5538 	 * Only decay a single time; tasks that have less then 1 wakeup per
5539 	 * jiffy will not have built up many flips.
5540 	 */
5541 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5542 		current->wakee_flips >>= 1;
5543 		current->wakee_flip_decay_ts = jiffies;
5544 	}
5545 
5546 	if (current->last_wakee != p) {
5547 		current->last_wakee = p;
5548 		current->wakee_flips++;
5549 	}
5550 }
5551 
5552 /*
5553  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5554  *
5555  * A waker of many should wake a different task than the one last awakened
5556  * at a frequency roughly N times higher than one of its wakees.
5557  *
5558  * In order to determine whether we should let the load spread vs consolidating
5559  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5560  * partner, and a factor of lls_size higher frequency in the other.
5561  *
5562  * With both conditions met, we can be relatively sure that the relationship is
5563  * non-monogamous, with partner count exceeding socket size.
5564  *
5565  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5566  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5567  * socket size.
5568  */
wake_wide(struct task_struct * p)5569 static int wake_wide(struct task_struct *p)
5570 {
5571 	unsigned int master = current->wakee_flips;
5572 	unsigned int slave = p->wakee_flips;
5573 	int factor = this_cpu_read(sd_llc_size);
5574 
5575 	if (master < slave)
5576 		swap(master, slave);
5577 	if (slave < factor || master < slave * factor)
5578 		return 0;
5579 	return 1;
5580 }
5581 
5582 /*
5583  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5584  * soonest. For the purpose of speed we only consider the waking and previous
5585  * CPU.
5586  *
5587  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5588  *			cache-affine and is (or	will be) idle.
5589  *
5590  * wake_affine_weight() - considers the weight to reflect the average
5591  *			  scheduling latency of the CPUs. This seems to work
5592  *			  for the overloaded case.
5593  */
5594 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)5595 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5596 {
5597 	/*
5598 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5599 	 * context. Only allow the move if cache is shared. Otherwise an
5600 	 * interrupt intensive workload could force all tasks onto one
5601 	 * node depending on the IO topology or IRQ affinity settings.
5602 	 *
5603 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5604 	 * There is no guarantee that the cache hot data from an interrupt
5605 	 * is more important than cache hot data on the prev_cpu and from
5606 	 * a cpufreq perspective, it's better to have higher utilisation
5607 	 * on one CPU.
5608 	 */
5609 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5610 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5611 
5612 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5613 		return this_cpu;
5614 
5615 	return nr_cpumask_bits;
5616 }
5617 
5618 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)5619 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5620 		   int this_cpu, int prev_cpu, int sync)
5621 {
5622 	s64 this_eff_load, prev_eff_load;
5623 	unsigned long task_load;
5624 
5625 	this_eff_load = cpu_runnable_load(cpu_rq(this_cpu));
5626 
5627 	if (sync) {
5628 		unsigned long current_load = task_h_load(current);
5629 
5630 		if (current_load > this_eff_load)
5631 			return this_cpu;
5632 
5633 		this_eff_load -= current_load;
5634 	}
5635 
5636 	task_load = task_h_load(p);
5637 
5638 	this_eff_load += task_load;
5639 	if (sched_feat(WA_BIAS))
5640 		this_eff_load *= 100;
5641 	this_eff_load *= capacity_of(prev_cpu);
5642 
5643 	prev_eff_load = cpu_runnable_load(cpu_rq(prev_cpu));
5644 	prev_eff_load -= task_load;
5645 	if (sched_feat(WA_BIAS))
5646 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5647 	prev_eff_load *= capacity_of(this_cpu);
5648 
5649 	/*
5650 	 * If sync, adjust the weight of prev_eff_load such that if
5651 	 * prev_eff == this_eff that select_idle_sibling() will consider
5652 	 * stacking the wakee on top of the waker if no other CPU is
5653 	 * idle.
5654 	 */
5655 	if (sync)
5656 		prev_eff_load += 1;
5657 
5658 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5659 }
5660 
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)5661 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5662 		       int this_cpu, int prev_cpu, int sync)
5663 {
5664 	int target = nr_cpumask_bits;
5665 
5666 	if (sched_feat(WA_IDLE))
5667 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5668 
5669 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5670 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5671 
5672 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5673 	if (target == nr_cpumask_bits)
5674 		return prev_cpu;
5675 
5676 	schedstat_inc(sd->ttwu_move_affine);
5677 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5678 	return target;
5679 }
5680 
5681 static unsigned long cpu_util_without(int cpu, struct task_struct *p);
5682 
capacity_spare_without(int cpu,struct task_struct * p)5683 static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
5684 {
5685 	return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
5686 }
5687 
5688 /*
5689  * find_idlest_group finds and returns the least busy CPU group within the
5690  * domain.
5691  *
5692  * Assumes p is allowed on at least one CPU in sd.
5693  */
5694 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu,int sd_flag)5695 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5696 		  int this_cpu, int sd_flag)
5697 {
5698 	struct sched_group *idlest = NULL, *group = sd->groups;
5699 	struct sched_group *most_spare_sg = NULL;
5700 	unsigned long min_runnable_load = ULONG_MAX;
5701 	unsigned long this_runnable_load = ULONG_MAX;
5702 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5703 	unsigned long most_spare = 0, this_spare = 0;
5704 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5705 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5706 				(sd->imbalance_pct-100) / 100;
5707 
5708 	do {
5709 		unsigned long load, avg_load, runnable_load;
5710 		unsigned long spare_cap, max_spare_cap;
5711 		int local_group;
5712 		int i;
5713 
5714 		/* Skip over this group if it has no CPUs allowed */
5715 		if (!cpumask_intersects(sched_group_span(group),
5716 					p->cpus_ptr))
5717 			continue;
5718 
5719 		local_group = cpumask_test_cpu(this_cpu,
5720 					       sched_group_span(group));
5721 
5722 		/*
5723 		 * Tally up the load of all CPUs in the group and find
5724 		 * the group containing the CPU with most spare capacity.
5725 		 */
5726 		avg_load = 0;
5727 		runnable_load = 0;
5728 		max_spare_cap = 0;
5729 
5730 		for_each_cpu(i, sched_group_span(group)) {
5731 			load = cpu_runnable_load(cpu_rq(i));
5732 			runnable_load += load;
5733 
5734 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5735 
5736 			spare_cap = capacity_spare_without(i, p);
5737 
5738 			if (spare_cap > max_spare_cap)
5739 				max_spare_cap = spare_cap;
5740 		}
5741 
5742 		/* Adjust by relative CPU capacity of the group */
5743 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5744 					group->sgc->capacity;
5745 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5746 					group->sgc->capacity;
5747 
5748 		if (local_group) {
5749 			this_runnable_load = runnable_load;
5750 			this_avg_load = avg_load;
5751 			this_spare = max_spare_cap;
5752 		} else {
5753 			if (min_runnable_load > (runnable_load + imbalance)) {
5754 				/*
5755 				 * The runnable load is significantly smaller
5756 				 * so we can pick this new CPU:
5757 				 */
5758 				min_runnable_load = runnable_load;
5759 				min_avg_load = avg_load;
5760 				idlest = group;
5761 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5762 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5763 				/*
5764 				 * The runnable loads are close so take the
5765 				 * blocked load into account through avg_load:
5766 				 */
5767 				min_avg_load = avg_load;
5768 				idlest = group;
5769 			}
5770 
5771 			if (most_spare < max_spare_cap) {
5772 				most_spare = max_spare_cap;
5773 				most_spare_sg = group;
5774 			}
5775 		}
5776 	} while (group = group->next, group != sd->groups);
5777 
5778 	/*
5779 	 * The cross-over point between using spare capacity or least load
5780 	 * is too conservative for high utilization tasks on partially
5781 	 * utilized systems if we require spare_capacity > task_util(p),
5782 	 * so we allow for some task stuffing by using
5783 	 * spare_capacity > task_util(p)/2.
5784 	 *
5785 	 * Spare capacity can't be used for fork because the utilization has
5786 	 * not been set yet, we must first select a rq to compute the initial
5787 	 * utilization.
5788 	 */
5789 	if (sd_flag & SD_BALANCE_FORK)
5790 		goto skip_spare;
5791 
5792 	if (this_spare > task_util(p) / 2 &&
5793 	    imbalance_scale*this_spare > 100*most_spare)
5794 		return NULL;
5795 
5796 	if (most_spare > task_util(p) / 2)
5797 		return most_spare_sg;
5798 
5799 skip_spare:
5800 	if (!idlest)
5801 		return NULL;
5802 
5803 	/*
5804 	 * When comparing groups across NUMA domains, it's possible for the
5805 	 * local domain to be very lightly loaded relative to the remote
5806 	 * domains but "imbalance" skews the comparison making remote CPUs
5807 	 * look much more favourable. When considering cross-domain, add
5808 	 * imbalance to the runnable load on the remote node and consider
5809 	 * staying local.
5810 	 */
5811 	if ((sd->flags & SD_NUMA) &&
5812 	    min_runnable_load + imbalance >= this_runnable_load)
5813 		return NULL;
5814 
5815 	if (min_runnable_load > (this_runnable_load + imbalance))
5816 		return NULL;
5817 
5818 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5819 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5820 		return NULL;
5821 
5822 	return idlest;
5823 }
5824 
5825 /*
5826  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5827  */
5828 static int
find_idlest_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)5829 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5830 {
5831 	unsigned long load, min_load = ULONG_MAX;
5832 	unsigned int min_exit_latency = UINT_MAX;
5833 	u64 latest_idle_timestamp = 0;
5834 	int least_loaded_cpu = this_cpu;
5835 	int shallowest_idle_cpu = -1, si_cpu = -1;
5836 	int i;
5837 
5838 	/* Check if we have any choice: */
5839 	if (group->group_weight == 1)
5840 		return cpumask_first(sched_group_span(group));
5841 
5842 	/* Traverse only the allowed CPUs */
5843 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5844 		if (available_idle_cpu(i)) {
5845 			struct rq *rq = cpu_rq(i);
5846 			struct cpuidle_state *idle = idle_get_state(rq);
5847 			if (idle && idle->exit_latency < min_exit_latency) {
5848 				/*
5849 				 * We give priority to a CPU whose idle state
5850 				 * has the smallest exit latency irrespective
5851 				 * of any idle timestamp.
5852 				 */
5853 				min_exit_latency = idle->exit_latency;
5854 				latest_idle_timestamp = rq->idle_stamp;
5855 				shallowest_idle_cpu = i;
5856 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5857 				   rq->idle_stamp > latest_idle_timestamp) {
5858 				/*
5859 				 * If equal or no active idle state, then
5860 				 * the most recently idled CPU might have
5861 				 * a warmer cache.
5862 				 */
5863 				latest_idle_timestamp = rq->idle_stamp;
5864 				shallowest_idle_cpu = i;
5865 			}
5866 		} else if (shallowest_idle_cpu == -1 && si_cpu == -1) {
5867 			if (sched_idle_cpu(i)) {
5868 				si_cpu = i;
5869 				continue;
5870 			}
5871 
5872 			load = cpu_runnable_load(cpu_rq(i));
5873 			if (load < min_load) {
5874 				min_load = load;
5875 				least_loaded_cpu = i;
5876 			}
5877 		}
5878 	}
5879 
5880 	if (shallowest_idle_cpu != -1)
5881 		return shallowest_idle_cpu;
5882 	if (si_cpu != -1)
5883 		return si_cpu;
5884 	return least_loaded_cpu;
5885 }
5886 
find_idlest_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)5887 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5888 				  int cpu, int prev_cpu, int sd_flag)
5889 {
5890 	int new_cpu = cpu;
5891 
5892 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5893 		return prev_cpu;
5894 
5895 	/*
5896 	 * We need task's util for capacity_spare_without, sync it up to
5897 	 * prev_cpu's last_update_time.
5898 	 */
5899 	if (!(sd_flag & SD_BALANCE_FORK))
5900 		sync_entity_load_avg(&p->se);
5901 
5902 	while (sd) {
5903 		struct sched_group *group;
5904 		struct sched_domain *tmp;
5905 		int weight;
5906 
5907 		if (!(sd->flags & sd_flag)) {
5908 			sd = sd->child;
5909 			continue;
5910 		}
5911 
5912 		group = find_idlest_group(sd, p, cpu, sd_flag);
5913 		if (!group) {
5914 			sd = sd->child;
5915 			continue;
5916 		}
5917 
5918 		new_cpu = find_idlest_group_cpu(group, p, cpu);
5919 		if (new_cpu == cpu) {
5920 			/* Now try balancing at a lower domain level of 'cpu': */
5921 			sd = sd->child;
5922 			continue;
5923 		}
5924 
5925 		/* Now try balancing at a lower domain level of 'new_cpu': */
5926 		cpu = new_cpu;
5927 		weight = sd->span_weight;
5928 		sd = NULL;
5929 		for_each_domain(cpu, tmp) {
5930 			if (weight <= tmp->span_weight)
5931 				break;
5932 			if (tmp->flags & sd_flag)
5933 				sd = tmp;
5934 		}
5935 	}
5936 
5937 	return new_cpu;
5938 }
5939 
5940 #ifdef CONFIG_SCHED_SMT
5941 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5942 EXPORT_SYMBOL_GPL(sched_smt_present);
5943 
set_idle_cores(int cpu,int val)5944 static inline void set_idle_cores(int cpu, int val)
5945 {
5946 	struct sched_domain_shared *sds;
5947 
5948 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5949 	if (sds)
5950 		WRITE_ONCE(sds->has_idle_cores, val);
5951 }
5952 
test_idle_cores(int cpu,bool def)5953 static inline bool test_idle_cores(int cpu, bool def)
5954 {
5955 	struct sched_domain_shared *sds;
5956 
5957 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5958 	if (sds)
5959 		return READ_ONCE(sds->has_idle_cores);
5960 
5961 	return def;
5962 }
5963 
5964 /*
5965  * Scans the local SMT mask to see if the entire core is idle, and records this
5966  * information in sd_llc_shared->has_idle_cores.
5967  *
5968  * Since SMT siblings share all cache levels, inspecting this limited remote
5969  * state should be fairly cheap.
5970  */
__update_idle_core(struct rq * rq)5971 void __update_idle_core(struct rq *rq)
5972 {
5973 	int core = cpu_of(rq);
5974 	int cpu;
5975 
5976 	rcu_read_lock();
5977 	if (test_idle_cores(core, true))
5978 		goto unlock;
5979 
5980 	for_each_cpu(cpu, cpu_smt_mask(core)) {
5981 		if (cpu == core)
5982 			continue;
5983 
5984 		if (!available_idle_cpu(cpu))
5985 			goto unlock;
5986 	}
5987 
5988 	set_idle_cores(core, 1);
5989 unlock:
5990 	rcu_read_unlock();
5991 }
5992 
5993 /*
5994  * Scan the entire LLC domain for idle cores; this dynamically switches off if
5995  * there are no idle cores left in the system; tracked through
5996  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5997  */
select_idle_core(struct task_struct * p,struct sched_domain * sd,int target)5998 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5999 {
6000 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6001 	int core, cpu;
6002 
6003 	if (!static_branch_likely(&sched_smt_present))
6004 		return -1;
6005 
6006 	if (!test_idle_cores(target, false))
6007 		return -1;
6008 
6009 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6010 
6011 	for_each_cpu_wrap(core, cpus, target) {
6012 		bool idle = true;
6013 
6014 		for_each_cpu(cpu, cpu_smt_mask(core)) {
6015 			__cpumask_clear_cpu(cpu, cpus);
6016 			if (!available_idle_cpu(cpu))
6017 				idle = false;
6018 		}
6019 
6020 		if (idle)
6021 			return core;
6022 	}
6023 
6024 	/*
6025 	 * Failed to find an idle core; stop looking for one.
6026 	 */
6027 	set_idle_cores(target, 0);
6028 
6029 	return -1;
6030 }
6031 
6032 /*
6033  * Scan the local SMT mask for idle CPUs.
6034  */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)6035 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6036 {
6037 	int cpu, si_cpu = -1;
6038 
6039 	if (!static_branch_likely(&sched_smt_present))
6040 		return -1;
6041 
6042 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6043 		if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6044 		    !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6045 			continue;
6046 		if (available_idle_cpu(cpu))
6047 			return cpu;
6048 		if (si_cpu == -1 && sched_idle_cpu(cpu))
6049 			si_cpu = cpu;
6050 	}
6051 
6052 	return si_cpu;
6053 }
6054 
6055 #else /* CONFIG_SCHED_SMT */
6056 
select_idle_core(struct task_struct * p,struct sched_domain * sd,int target)6057 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6058 {
6059 	return -1;
6060 }
6061 
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)6062 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6063 {
6064 	return -1;
6065 }
6066 
6067 #endif /* CONFIG_SCHED_SMT */
6068 
6069 /*
6070  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6071  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6072  * average idle time for this rq (as found in rq->avg_idle).
6073  */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,int target)6074 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6075 {
6076 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6077 	struct sched_domain *this_sd;
6078 	u64 avg_cost, avg_idle;
6079 	u64 time, cost;
6080 	s64 delta;
6081 	int this = smp_processor_id();
6082 	int cpu, nr = INT_MAX, si_cpu = -1;
6083 
6084 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6085 	if (!this_sd)
6086 		return -1;
6087 
6088 	/*
6089 	 * Due to large variance we need a large fuzz factor; hackbench in
6090 	 * particularly is sensitive here.
6091 	 */
6092 	avg_idle = this_rq()->avg_idle / 512;
6093 	avg_cost = this_sd->avg_scan_cost + 1;
6094 
6095 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6096 		return -1;
6097 
6098 	if (sched_feat(SIS_PROP)) {
6099 		u64 span_avg = sd->span_weight * avg_idle;
6100 		if (span_avg > 4*avg_cost)
6101 			nr = div_u64(span_avg, avg_cost);
6102 		else
6103 			nr = 4;
6104 	}
6105 
6106 	time = cpu_clock(this);
6107 
6108 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6109 
6110 	for_each_cpu_wrap(cpu, cpus, target) {
6111 		if (!--nr)
6112 			return si_cpu;
6113 		if (available_idle_cpu(cpu))
6114 			break;
6115 		if (si_cpu == -1 && sched_idle_cpu(cpu))
6116 			si_cpu = cpu;
6117 	}
6118 
6119 	time = cpu_clock(this) - time;
6120 	cost = this_sd->avg_scan_cost;
6121 	delta = (s64)(time - cost) / 8;
6122 	this_sd->avg_scan_cost += delta;
6123 
6124 	return cpu;
6125 }
6126 
6127 /*
6128  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6129  * the task fits. If no CPU is big enough, but there are idle ones, try to
6130  * maximize capacity.
6131  */
6132 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)6133 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6134 {
6135 	unsigned long task_util, best_cap = 0;
6136 	int cpu, best_cpu = -1;
6137 	struct cpumask *cpus;
6138 
6139 	cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6140 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6141 
6142 	task_util = uclamp_task_util(p);
6143 
6144 	for_each_cpu_wrap(cpu, cpus, target) {
6145 		unsigned long cpu_cap = capacity_of(cpu);
6146 
6147 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6148 			continue;
6149 		if (fits_capacity(task_util, cpu_cap))
6150 			return cpu;
6151 
6152 		if (cpu_cap > best_cap) {
6153 			best_cap = cpu_cap;
6154 			best_cpu = cpu;
6155 		}
6156 	}
6157 
6158 	return best_cpu;
6159 }
6160 
asym_fits_capacity(int task_util,int cpu)6161 static inline bool asym_fits_capacity(int task_util, int cpu)
6162 {
6163 	if (static_branch_unlikely(&sched_asym_cpucapacity))
6164 		return fits_capacity(task_util, capacity_of(cpu));
6165 
6166 	return true;
6167 }
6168 
6169 /*
6170  * Try and locate an idle core/thread in the LLC cache domain.
6171  */
select_idle_sibling(struct task_struct * p,int prev,int target)6172 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6173 {
6174 	struct sched_domain *sd;
6175 	unsigned long task_util;
6176 	int i, recent_used_cpu;
6177 
6178 	/*
6179 	 * On asymmetric system, update task utilization because we will check
6180 	 * that the task fits with cpu's capacity.
6181 	 */
6182 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6183 		sync_entity_load_avg(&p->se);
6184 		task_util = uclamp_task_util(p);
6185 	}
6186 
6187 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6188 	    asym_fits_capacity(task_util, target))
6189 		return target;
6190 
6191 	/*
6192 	 * If the previous CPU is cache affine and idle, don't be stupid:
6193 	 */
6194 	if (prev != target && cpus_share_cache(prev, target) &&
6195 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6196 	    asym_fits_capacity(task_util, prev))
6197 		return prev;
6198 
6199 	/* Check a recently used CPU as a potential idle candidate: */
6200 	recent_used_cpu = p->recent_used_cpu;
6201 	if (recent_used_cpu != prev &&
6202 	    recent_used_cpu != target &&
6203 	    cpus_share_cache(recent_used_cpu, target) &&
6204 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6205 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6206 	    asym_fits_capacity(task_util, recent_used_cpu)) {
6207 		/*
6208 		 * Replace recent_used_cpu with prev as it is a potential
6209 		 * candidate for the next wake:
6210 		 */
6211 		p->recent_used_cpu = prev;
6212 		return recent_used_cpu;
6213 	}
6214 
6215 	/*
6216 	 * For asymmetric CPU capacity systems, our domain of interest is
6217 	 * sd_asym_cpucapacity rather than sd_llc.
6218 	 */
6219 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6220 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6221 		/*
6222 		 * On an asymmetric CPU capacity system where an exclusive
6223 		 * cpuset defines a symmetric island (i.e. one unique
6224 		 * capacity_orig value through the cpuset), the key will be set
6225 		 * but the CPUs within that cpuset will not have a domain with
6226 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6227 		 * capacity path.
6228 		 */
6229 		if (sd) {
6230 			i = select_idle_capacity(p, sd, target);
6231 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
6232 		}
6233 	}
6234 
6235 	sd = rcu_dereference(per_cpu(sd_llc, target));
6236 	if (!sd)
6237 		return target;
6238 
6239 	i = select_idle_core(p, sd, target);
6240 	if ((unsigned)i < nr_cpumask_bits)
6241 		return i;
6242 
6243 	i = select_idle_cpu(p, sd, target);
6244 	if ((unsigned)i < nr_cpumask_bits)
6245 		return i;
6246 
6247 	i = select_idle_smt(p, sd, target);
6248 	if ((unsigned)i < nr_cpumask_bits)
6249 		return i;
6250 
6251 	return target;
6252 }
6253 
6254 /**
6255  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6256  * @cpu: the CPU to get the utilization of
6257  *
6258  * The unit of the return value must be the one of capacity so we can compare
6259  * the utilization with the capacity of the CPU that is available for CFS task
6260  * (ie cpu_capacity).
6261  *
6262  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6263  * recent utilization of currently non-runnable tasks on a CPU. It represents
6264  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6265  * capacity_orig is the cpu_capacity available at the highest frequency
6266  * (arch_scale_freq_capacity()).
6267  * The utilization of a CPU converges towards a sum equal to or less than the
6268  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6269  * the running time on this CPU scaled by capacity_curr.
6270  *
6271  * The estimated utilization of a CPU is defined to be the maximum between its
6272  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6273  * currently RUNNABLE on that CPU.
6274  * This allows to properly represent the expected utilization of a CPU which
6275  * has just got a big task running since a long sleep period. At the same time
6276  * however it preserves the benefits of the "blocked utilization" in
6277  * describing the potential for other tasks waking up on the same CPU.
6278  *
6279  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6280  * higher than capacity_orig because of unfortunate rounding in
6281  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6282  * the average stabilizes with the new running time. We need to check that the
6283  * utilization stays within the range of [0..capacity_orig] and cap it if
6284  * necessary. Without utilization capping, a group could be seen as overloaded
6285  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6286  * available capacity. We allow utilization to overshoot capacity_curr (but not
6287  * capacity_orig) as it useful for predicting the capacity required after task
6288  * migrations (scheduler-driven DVFS).
6289  *
6290  * Return: the (estimated) utilization for the specified CPU
6291  */
cpu_util(int cpu)6292 static inline unsigned long cpu_util(int cpu)
6293 {
6294 	struct cfs_rq *cfs_rq;
6295 	unsigned int util;
6296 
6297 	cfs_rq = &cpu_rq(cpu)->cfs;
6298 	util = READ_ONCE(cfs_rq->avg.util_avg);
6299 
6300 	if (sched_feat(UTIL_EST))
6301 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6302 
6303 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6304 }
6305 
6306 /*
6307  * cpu_util_without: compute cpu utilization without any contributions from *p
6308  * @cpu: the CPU which utilization is requested
6309  * @p: the task which utilization should be discounted
6310  *
6311  * The utilization of a CPU is defined by the utilization of tasks currently
6312  * enqueued on that CPU as well as tasks which are currently sleeping after an
6313  * execution on that CPU.
6314  *
6315  * This method returns the utilization of the specified CPU by discounting the
6316  * utilization of the specified task, whenever the task is currently
6317  * contributing to the CPU utilization.
6318  */
cpu_util_without(int cpu,struct task_struct * p)6319 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6320 {
6321 	struct cfs_rq *cfs_rq;
6322 	unsigned int util;
6323 
6324 	/* Task has no contribution or is new */
6325 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6326 		return cpu_util(cpu);
6327 
6328 	cfs_rq = &cpu_rq(cpu)->cfs;
6329 	util = READ_ONCE(cfs_rq->avg.util_avg);
6330 
6331 	/* Discount task's util from CPU's util */
6332 	lsub_positive(&util, task_util(p));
6333 
6334 	/*
6335 	 * Covered cases:
6336 	 *
6337 	 * a) if *p is the only task sleeping on this CPU, then:
6338 	 *      cpu_util (== task_util) > util_est (== 0)
6339 	 *    and thus we return:
6340 	 *      cpu_util_without = (cpu_util - task_util) = 0
6341 	 *
6342 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6343 	 *    IDLE, then:
6344 	 *      cpu_util >= task_util
6345 	 *      cpu_util > util_est (== 0)
6346 	 *    and thus we discount *p's blocked utilization to return:
6347 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6348 	 *
6349 	 * c) if other tasks are RUNNABLE on that CPU and
6350 	 *      util_est > cpu_util
6351 	 *    then we use util_est since it returns a more restrictive
6352 	 *    estimation of the spare capacity on that CPU, by just
6353 	 *    considering the expected utilization of tasks already
6354 	 *    runnable on that CPU.
6355 	 *
6356 	 * Cases a) and b) are covered by the above code, while case c) is
6357 	 * covered by the following code when estimated utilization is
6358 	 * enabled.
6359 	 */
6360 	if (sched_feat(UTIL_EST)) {
6361 		unsigned int estimated =
6362 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6363 
6364 		/*
6365 		 * Despite the following checks we still have a small window
6366 		 * for a possible race, when an execl's select_task_rq_fair()
6367 		 * races with LB's detach_task():
6368 		 *
6369 		 *   detach_task()
6370 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6371 		 *     ---------------------------------- A
6372 		 *     deactivate_task()                   \
6373 		 *       dequeue_task()                     + RaceTime
6374 		 *         util_est_dequeue()              /
6375 		 *     ---------------------------------- B
6376 		 *
6377 		 * The additional check on "current == p" it's required to
6378 		 * properly fix the execl regression and it helps in further
6379 		 * reducing the chances for the above race.
6380 		 */
6381 		if (unlikely(task_on_rq_queued(p) || current == p))
6382 			lsub_positive(&estimated, _task_util_est(p));
6383 
6384 		util = max(util, estimated);
6385 	}
6386 
6387 	/*
6388 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6389 	 * clamp to the maximum CPU capacity to ensure consistency with
6390 	 * the cpu_util call.
6391 	 */
6392 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6393 }
6394 
6395 /*
6396  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6397  * to @dst_cpu.
6398  */
cpu_util_next(int cpu,struct task_struct * p,int dst_cpu)6399 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6400 {
6401 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6402 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6403 
6404 	/*
6405 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6406 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6407 	 * the other cases, @cpu is not impacted by the migration, so the
6408 	 * util_avg should already be correct.
6409 	 */
6410 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6411 		sub_positive(&util, task_util(p));
6412 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6413 		util += task_util(p);
6414 
6415 	if (sched_feat(UTIL_EST)) {
6416 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6417 
6418 		/*
6419 		 * During wake-up, the task isn't enqueued yet and doesn't
6420 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6421 		 * so just add it (if needed) to "simulate" what will be
6422 		 * cpu_util() after the task has been enqueued.
6423 		 */
6424 		if (dst_cpu == cpu)
6425 			util_est += _task_util_est(p);
6426 
6427 		util = max(util, util_est);
6428 	}
6429 
6430 	return min(util, capacity_orig_of(cpu));
6431 }
6432 
6433 /*
6434  * compute_energy(): Estimates the energy that @pd would consume if @p was
6435  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6436  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6437  * to compute what would be the energy if we decided to actually migrate that
6438  * task.
6439  */
6440 static long
compute_energy(struct task_struct * p,int dst_cpu,struct perf_domain * pd)6441 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6442 {
6443 	struct cpumask *pd_mask = perf_domain_span(pd);
6444 	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6445 	unsigned long max_util = 0, sum_util = 0;
6446 	unsigned long energy = 0;
6447 	int cpu;
6448 
6449 	/*
6450 	 * The capacity state of CPUs of the current rd can be driven by CPUs
6451 	 * of another rd if they belong to the same pd. So, account for the
6452 	 * utilization of these CPUs too by masking pd with cpu_online_mask
6453 	 * instead of the rd span.
6454 	 *
6455 	 * If an entire pd is outside of the current rd, it will not appear in
6456 	 * its pd list and will not be accounted by compute_energy().
6457 	 */
6458 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6459 		unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6460 		struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6461 
6462 		/*
6463 		 * Busy time computation: utilization clamping is not
6464 		 * required since the ratio (sum_util / cpu_capacity)
6465 		 * is already enough to scale the EM reported power
6466 		 * consumption at the (eventually clamped) cpu_capacity.
6467 		 */
6468 		sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6469 					       ENERGY_UTIL, NULL);
6470 
6471 		/*
6472 		 * Performance domain frequency: utilization clamping
6473 		 * must be considered since it affects the selection
6474 		 * of the performance domain frequency.
6475 		 * NOTE: in case RT tasks are running, by default the
6476 		 * FREQUENCY_UTIL's utilization can be max OPP.
6477 		 */
6478 		cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6479 					      FREQUENCY_UTIL, tsk);
6480 		max_util = max(max_util, cpu_util);
6481 	}
6482 
6483 	trace_android_vh_em_pd_energy(pd->em_pd, max_util, sum_util, &energy);
6484 	if (!energy)
6485 		energy = em_pd_energy(pd->em_pd, max_util, sum_util);
6486 
6487 	return energy;
6488 }
6489 
6490 /*
6491  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6492  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6493  * spare capacity in each performance domain and uses it as a potential
6494  * candidate to execute the task. Then, it uses the Energy Model to figure
6495  * out which of the CPU candidates is the most energy-efficient.
6496  *
6497  * The rationale for this heuristic is as follows. In a performance domain,
6498  * all the most energy efficient CPU candidates (according to the Energy
6499  * Model) are those for which we'll request a low frequency. When there are
6500  * several CPUs for which the frequency request will be the same, we don't
6501  * have enough data to break the tie between them, because the Energy Model
6502  * only includes active power costs. With this model, if we assume that
6503  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6504  * the maximum spare capacity in a performance domain is guaranteed to be among
6505  * the best candidates of the performance domain.
6506  *
6507  * In practice, it could be preferable from an energy standpoint to pack
6508  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6509  * but that could also hurt our chances to go cluster idle, and we have no
6510  * ways to tell with the current Energy Model if this is actually a good
6511  * idea or not. So, find_energy_efficient_cpu() basically favors
6512  * cluster-packing, and spreading inside a cluster. That should at least be
6513  * a good thing for latency, and this is consistent with the idea that most
6514  * of the energy savings of EAS come from the asymmetry of the system, and
6515  * not so much from breaking the tie between identical CPUs. That's also the
6516  * reason why EAS is enabled in the topology code only for systems where
6517  * SD_ASYM_CPUCAPACITY is set.
6518  *
6519  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6520  * they don't have any useful utilization data yet and it's not possible to
6521  * forecast their impact on energy consumption. Consequently, they will be
6522  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6523  * to be energy-inefficient in some use-cases. The alternative would be to
6524  * bias new tasks towards specific types of CPUs first, or to try to infer
6525  * their util_avg from the parent task, but those heuristics could hurt
6526  * other use-cases too. So, until someone finds a better way to solve this,
6527  * let's keep things simple by re-using the existing slow path.
6528  */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu,int sync)6529 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu, int sync)
6530 {
6531 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6532 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6533 	int max_spare_cap_cpu_ls = prev_cpu, best_idle_cpu = -1;
6534 	unsigned long max_spare_cap_ls = 0, target_cap;
6535 	unsigned long cpu_cap, util, base_energy = 0;
6536 	bool boosted, latency_sensitive = false;
6537 	unsigned int min_exit_lat = UINT_MAX;
6538 	int cpu, best_energy_cpu = prev_cpu;
6539 	struct cpuidle_state *idle;
6540 	struct sched_domain *sd;
6541 	struct perf_domain *pd;
6542 
6543 	rcu_read_lock();
6544 	pd = rcu_dereference(rd->pd);
6545 	if (!pd || READ_ONCE(rd->overutilized))
6546 		goto fail;
6547 
6548 	cpu = smp_processor_id();
6549 	if (sync && cpu_rq(cpu)->nr_running == 1 &&
6550 	    cpumask_test_cpu(cpu, p->cpus_ptr)) {
6551 		rcu_read_unlock();
6552 		return cpu;
6553 	}
6554 
6555 	/*
6556 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6557 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6558 	 */
6559 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6560 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6561 		sd = sd->parent;
6562 	if (!sd)
6563 		goto fail;
6564 
6565 	sync_entity_load_avg(&p->se);
6566 	if (!task_util_est(p))
6567 		goto unlock;
6568 
6569 	latency_sensitive = uclamp_latency_sensitive(p);
6570 	boosted = uclamp_boosted(p);
6571 	target_cap = boosted ? 0 : ULONG_MAX;
6572 
6573 	for (; pd; pd = pd->next) {
6574 		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6575 		unsigned long base_energy_pd;
6576 		int max_spare_cap_cpu = -1;
6577 
6578 		/* Compute the 'base' energy of the pd, without @p */
6579 		base_energy_pd = compute_energy(p, -1, pd);
6580 		base_energy += base_energy_pd;
6581 
6582 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6583 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6584 				continue;
6585 
6586 			util = cpu_util_next(cpu, p, cpu);
6587 			cpu_cap = capacity_of(cpu);
6588 			spare_cap = cpu_cap;
6589 			lsub_positive(&spare_cap, util);
6590 
6591 			/*
6592 			 * Skip CPUs that cannot satisfy the capacity request.
6593 			 * IOW, placing the task there would make the CPU
6594 			 * overutilized. Take uclamp into account to see how
6595 			 * much capacity we can get out of the CPU; this is
6596 			 * aligned with schedutil_cpu_util().
6597 			 */
6598 			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6599 			if (!fits_capacity(util, cpu_cap))
6600 				continue;
6601 
6602 			/* Always use prev_cpu as a candidate. */
6603 			if (!latency_sensitive && cpu == prev_cpu) {
6604 				prev_delta = compute_energy(p, prev_cpu, pd);
6605 				prev_delta -= base_energy_pd;
6606 				best_delta = min(best_delta, prev_delta);
6607 			}
6608 
6609 			/*
6610 			 * Find the CPU with the maximum spare capacity in
6611 			 * the performance domain
6612 			 */
6613 			if (spare_cap > max_spare_cap) {
6614 				max_spare_cap = spare_cap;
6615 				max_spare_cap_cpu = cpu;
6616 			}
6617 
6618 			if (!latency_sensitive)
6619 				continue;
6620 
6621 			if (idle_cpu(cpu)) {
6622 				cpu_cap = capacity_orig_of(cpu);
6623 				if (boosted && cpu_cap < target_cap)
6624 					continue;
6625 				if (!boosted && cpu_cap > target_cap)
6626 					continue;
6627 				idle = idle_get_state(cpu_rq(cpu));
6628 				if (idle && idle->exit_latency > min_exit_lat &&
6629 						cpu_cap == target_cap)
6630 					continue;
6631 
6632 				if (idle)
6633 					min_exit_lat = idle->exit_latency;
6634 				target_cap = cpu_cap;
6635 				best_idle_cpu = cpu;
6636 			} else if (spare_cap > max_spare_cap_ls) {
6637 				max_spare_cap_ls = spare_cap;
6638 				max_spare_cap_cpu_ls = cpu;
6639 			}
6640 		}
6641 
6642 		/* Evaluate the energy impact of using this CPU. */
6643 		if (!latency_sensitive && max_spare_cap_cpu >= 0 &&
6644 						max_spare_cap_cpu != prev_cpu) {
6645 			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6646 			cur_delta -= base_energy_pd;
6647 			if (cur_delta < best_delta) {
6648 				best_delta = cur_delta;
6649 				best_energy_cpu = max_spare_cap_cpu;
6650 			}
6651 		}
6652 	}
6653 unlock:
6654 	rcu_read_unlock();
6655 
6656 	if (latency_sensitive)
6657 		return best_idle_cpu >= 0 ? best_idle_cpu : max_spare_cap_cpu_ls;
6658 
6659 	/*
6660 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6661 	 * least 6% of the energy used by prev_cpu.
6662 	 */
6663 	if (prev_delta == ULONG_MAX)
6664 		return best_energy_cpu;
6665 
6666 	if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6667 		return best_energy_cpu;
6668 
6669 	return prev_cpu;
6670 
6671 fail:
6672 	rcu_read_unlock();
6673 
6674 	return -1;
6675 }
6676 
6677 /*
6678  * select_task_rq_fair: Select target runqueue for the waking task in domains
6679  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6680  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6681  *
6682  * Balances load by selecting the idlest CPU in the idlest group, or under
6683  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6684  *
6685  * Returns the target CPU number.
6686  *
6687  * preempt must be disabled.
6688  */
6689 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int sd_flag,int wake_flags)6690 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6691 {
6692 	struct sched_domain *tmp, *sd = NULL;
6693 	int cpu = smp_processor_id();
6694 	int new_cpu = prev_cpu;
6695 	int want_affine = 0;
6696 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6697 	int target_cpu = -1;
6698 
6699 	trace_android_rvh_select_task_rq_fair(p, prev_cpu, sd_flag,
6700 			wake_flags, &target_cpu);
6701 	if (target_cpu >= 0)
6702 		return target_cpu;
6703 
6704 	if (sd_flag & SD_BALANCE_WAKE) {
6705 		record_wakee(p);
6706 
6707 		if (sched_energy_enabled()) {
6708 			new_cpu = find_energy_efficient_cpu(p, prev_cpu, sync);
6709 			if (new_cpu >= 0)
6710 				return new_cpu;
6711 			new_cpu = prev_cpu;
6712 		}
6713 
6714 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6715 	}
6716 
6717 	rcu_read_lock();
6718 	for_each_domain(cpu, tmp) {
6719 		if (!(tmp->flags & SD_LOAD_BALANCE))
6720 			break;
6721 
6722 		/*
6723 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6724 		 * cpu is a valid SD_WAKE_AFFINE target.
6725 		 */
6726 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6727 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6728 			if (cpu != prev_cpu)
6729 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6730 
6731 			sd = NULL; /* Prefer wake_affine over balance flags */
6732 			break;
6733 		}
6734 
6735 		if (tmp->flags & sd_flag)
6736 			sd = tmp;
6737 		else if (!want_affine)
6738 			break;
6739 	}
6740 
6741 	if (unlikely(sd)) {
6742 		/* Slow path */
6743 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6744 	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6745 		/* Fast path */
6746 
6747 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6748 
6749 		if (want_affine)
6750 			current->recent_used_cpu = cpu;
6751 	}
6752 	rcu_read_unlock();
6753 
6754 	return new_cpu;
6755 }
6756 
6757 static void detach_entity_cfs_rq(struct sched_entity *se);
6758 
6759 /*
6760  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6761  * cfs_rq_of(p) references at time of call are still valid and identify the
6762  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6763  */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)6764 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6765 {
6766 	/*
6767 	 * As blocked tasks retain absolute vruntime the migration needs to
6768 	 * deal with this by subtracting the old and adding the new
6769 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6770 	 * the task on the new runqueue.
6771 	 */
6772 	if (p->state == TASK_WAKING) {
6773 		struct sched_entity *se = &p->se;
6774 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6775 		u64 min_vruntime;
6776 
6777 #ifndef CONFIG_64BIT
6778 		u64 min_vruntime_copy;
6779 
6780 		do {
6781 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6782 			smp_rmb();
6783 			min_vruntime = cfs_rq->min_vruntime;
6784 		} while (min_vruntime != min_vruntime_copy);
6785 #else
6786 		min_vruntime = cfs_rq->min_vruntime;
6787 #endif
6788 
6789 		se->vruntime -= min_vruntime;
6790 	}
6791 
6792 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6793 		/*
6794 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6795 		 * rq->lock and can modify state directly.
6796 		 */
6797 		lockdep_assert_held(&task_rq(p)->lock);
6798 		detach_entity_cfs_rq(&p->se);
6799 
6800 	} else {
6801 		/*
6802 		 * We are supposed to update the task to "current" time, then
6803 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6804 		 * have difficulty in getting what current time is, so simply
6805 		 * throw away the out-of-date time. This will result in the
6806 		 * wakee task is less decayed, but giving the wakee more load
6807 		 * sounds not bad.
6808 		 */
6809 		remove_entity_load_avg(&p->se);
6810 	}
6811 
6812 	/* Tell new CPU we are migrated */
6813 	p->se.avg.last_update_time = 0;
6814 
6815 	update_scan_period(p, new_cpu);
6816 }
6817 
task_dead_fair(struct task_struct * p)6818 static void task_dead_fair(struct task_struct *p)
6819 {
6820 	remove_entity_load_avg(&p->se);
6821 }
6822 
6823 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6824 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6825 {
6826 	if (rq->nr_running)
6827 		return 1;
6828 
6829 	return newidle_balance(rq, rf) != 0;
6830 }
6831 #endif /* CONFIG_SMP */
6832 
wakeup_gran(struct sched_entity * se)6833 static unsigned long wakeup_gran(struct sched_entity *se)
6834 {
6835 	unsigned long gran = sysctl_sched_wakeup_granularity;
6836 
6837 	/*
6838 	 * Since its curr running now, convert the gran from real-time
6839 	 * to virtual-time in his units.
6840 	 *
6841 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6842 	 * they get preempted easier. That is, if 'se' < 'curr' then
6843 	 * the resulting gran will be larger, therefore penalizing the
6844 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6845 	 * be smaller, again penalizing the lighter task.
6846 	 *
6847 	 * This is especially important for buddies when the leftmost
6848 	 * task is higher priority than the buddy.
6849 	 */
6850 	return calc_delta_fair(gran, se);
6851 }
6852 
6853 /*
6854  * Should 'se' preempt 'curr'.
6855  *
6856  *             |s1
6857  *        |s2
6858  *   |s3
6859  *         g
6860  *      |<--->|c
6861  *
6862  *  w(c, s1) = -1
6863  *  w(c, s2) =  0
6864  *  w(c, s3) =  1
6865  *
6866  */
6867 static int
wakeup_preempt_entity(struct sched_entity * curr,struct sched_entity * se)6868 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6869 {
6870 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6871 
6872 	if (vdiff <= 0)
6873 		return -1;
6874 
6875 	gran = wakeup_gran(se);
6876 	if (vdiff > gran)
6877 		return 1;
6878 
6879 	return 0;
6880 }
6881 
set_last_buddy(struct sched_entity * se)6882 static void set_last_buddy(struct sched_entity *se)
6883 {
6884 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6885 		return;
6886 
6887 	for_each_sched_entity(se) {
6888 		if (SCHED_WARN_ON(!se->on_rq))
6889 			return;
6890 		cfs_rq_of(se)->last = se;
6891 	}
6892 }
6893 
set_next_buddy(struct sched_entity * se)6894 static void set_next_buddy(struct sched_entity *se)
6895 {
6896 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6897 		return;
6898 
6899 	for_each_sched_entity(se) {
6900 		if (SCHED_WARN_ON(!se->on_rq))
6901 			return;
6902 		cfs_rq_of(se)->next = se;
6903 	}
6904 }
6905 
set_skip_buddy(struct sched_entity * se)6906 static void set_skip_buddy(struct sched_entity *se)
6907 {
6908 	for_each_sched_entity(se)
6909 		cfs_rq_of(se)->skip = se;
6910 }
6911 
6912 /*
6913  * Preempt the current task with a newly woken task if needed:
6914  */
check_preempt_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)6915 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6916 {
6917 	struct task_struct *curr = rq->curr;
6918 	struct sched_entity *se = &curr->se, *pse = &p->se;
6919 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6920 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6921 	int next_buddy_marked = 0;
6922 
6923 	if (unlikely(se == pse))
6924 		return;
6925 
6926 	/*
6927 	 * This is possible from callers such as attach_tasks(), in which we
6928 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6929 	 * lead to a throttle).  This both saves work and prevents false
6930 	 * next-buddy nomination below.
6931 	 */
6932 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6933 		return;
6934 
6935 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6936 		set_next_buddy(pse);
6937 		next_buddy_marked = 1;
6938 	}
6939 
6940 	/*
6941 	 * We can come here with TIF_NEED_RESCHED already set from new task
6942 	 * wake up path.
6943 	 *
6944 	 * Note: this also catches the edge-case of curr being in a throttled
6945 	 * group (e.g. via set_curr_task), since update_curr() (in the
6946 	 * enqueue of curr) will have resulted in resched being set.  This
6947 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6948 	 * below.
6949 	 */
6950 	if (test_tsk_need_resched(curr))
6951 		return;
6952 
6953 	/* Idle tasks are by definition preempted by non-idle tasks. */
6954 	if (unlikely(task_has_idle_policy(curr)) &&
6955 	    likely(!task_has_idle_policy(p)))
6956 		goto preempt;
6957 
6958 	/*
6959 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6960 	 * is driven by the tick):
6961 	 */
6962 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6963 		return;
6964 
6965 	find_matching_se(&se, &pse);
6966 	update_curr(cfs_rq_of(se));
6967 	BUG_ON(!pse);
6968 	if (wakeup_preempt_entity(se, pse) == 1) {
6969 		/*
6970 		 * Bias pick_next to pick the sched entity that is
6971 		 * triggering this preemption.
6972 		 */
6973 		if (!next_buddy_marked)
6974 			set_next_buddy(pse);
6975 		goto preempt;
6976 	}
6977 
6978 	return;
6979 
6980 preempt:
6981 	resched_curr(rq);
6982 	/*
6983 	 * Only set the backward buddy when the current task is still
6984 	 * on the rq. This can happen when a wakeup gets interleaved
6985 	 * with schedule on the ->pre_schedule() or idle_balance()
6986 	 * point, either of which can * drop the rq lock.
6987 	 *
6988 	 * Also, during early boot the idle thread is in the fair class,
6989 	 * for obvious reasons its a bad idea to schedule back to it.
6990 	 */
6991 	if (unlikely(!se->on_rq || curr == rq->idle))
6992 		return;
6993 
6994 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6995 		set_last_buddy(se);
6996 }
6997 
6998 static struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6999 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7000 {
7001 	struct cfs_rq *cfs_rq = &rq->cfs;
7002 	struct sched_entity *se;
7003 	struct task_struct *p;
7004 	int new_tasks;
7005 
7006 again:
7007 	if (!sched_fair_runnable(rq))
7008 		goto idle;
7009 
7010 #ifdef CONFIG_FAIR_GROUP_SCHED
7011 	if (!prev || prev->sched_class != &fair_sched_class)
7012 		goto simple;
7013 
7014 	/*
7015 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7016 	 * likely that a next task is from the same cgroup as the current.
7017 	 *
7018 	 * Therefore attempt to avoid putting and setting the entire cgroup
7019 	 * hierarchy, only change the part that actually changes.
7020 	 */
7021 
7022 	do {
7023 		struct sched_entity *curr = cfs_rq->curr;
7024 
7025 		/*
7026 		 * Since we got here without doing put_prev_entity() we also
7027 		 * have to consider cfs_rq->curr. If it is still a runnable
7028 		 * entity, update_curr() will update its vruntime, otherwise
7029 		 * forget we've ever seen it.
7030 		 */
7031 		if (curr) {
7032 			if (curr->on_rq)
7033 				update_curr(cfs_rq);
7034 			else
7035 				curr = NULL;
7036 
7037 			/*
7038 			 * This call to check_cfs_rq_runtime() will do the
7039 			 * throttle and dequeue its entity in the parent(s).
7040 			 * Therefore the nr_running test will indeed
7041 			 * be correct.
7042 			 */
7043 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7044 				cfs_rq = &rq->cfs;
7045 
7046 				if (!cfs_rq->nr_running)
7047 					goto idle;
7048 
7049 				goto simple;
7050 			}
7051 		}
7052 
7053 		se = pick_next_entity(cfs_rq, curr);
7054 		cfs_rq = group_cfs_rq(se);
7055 	} while (cfs_rq);
7056 
7057 	p = task_of(se);
7058 
7059 	/*
7060 	 * Since we haven't yet done put_prev_entity and if the selected task
7061 	 * is a different task than we started out with, try and touch the
7062 	 * least amount of cfs_rqs.
7063 	 */
7064 	if (prev != p) {
7065 		struct sched_entity *pse = &prev->se;
7066 
7067 		while (!(cfs_rq = is_same_group(se, pse))) {
7068 			int se_depth = se->depth;
7069 			int pse_depth = pse->depth;
7070 
7071 			if (se_depth <= pse_depth) {
7072 				put_prev_entity(cfs_rq_of(pse), pse);
7073 				pse = parent_entity(pse);
7074 			}
7075 			if (se_depth >= pse_depth) {
7076 				set_next_entity(cfs_rq_of(se), se);
7077 				se = parent_entity(se);
7078 			}
7079 		}
7080 
7081 		put_prev_entity(cfs_rq, pse);
7082 		set_next_entity(cfs_rq, se);
7083 	}
7084 
7085 	goto done;
7086 simple:
7087 #endif
7088 	if (prev)
7089 		put_prev_task(rq, prev);
7090 
7091 	do {
7092 		se = pick_next_entity(cfs_rq, NULL);
7093 		set_next_entity(cfs_rq, se);
7094 		cfs_rq = group_cfs_rq(se);
7095 	} while (cfs_rq);
7096 
7097 	p = task_of(se);
7098 
7099 done: __maybe_unused;
7100 #ifdef CONFIG_SMP
7101 	/*
7102 	 * Move the next running task to the front of
7103 	 * the list, so our cfs_tasks list becomes MRU
7104 	 * one.
7105 	 */
7106 	list_move(&p->se.group_node, &rq->cfs_tasks);
7107 #endif
7108 
7109 	if (hrtick_enabled(rq))
7110 		hrtick_start_fair(rq, p);
7111 
7112 	update_misfit_status(p, rq);
7113 
7114 	return p;
7115 
7116 idle:
7117 	if (!rf)
7118 		return NULL;
7119 
7120 	new_tasks = newidle_balance(rq, rf);
7121 
7122 	/*
7123 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7124 	 * possible for any higher priority task to appear. In that case we
7125 	 * must re-start the pick_next_entity() loop.
7126 	 */
7127 	if (new_tasks < 0)
7128 		return RETRY_TASK;
7129 
7130 	if (new_tasks > 0)
7131 		goto again;
7132 
7133 	/*
7134 	 * rq is about to be idle, check if we need to update the
7135 	 * lost_idle_time of clock_pelt
7136 	 */
7137 	update_idle_rq_clock_pelt(rq);
7138 
7139 	return NULL;
7140 }
7141 
7142 /*
7143  * Account for a descheduled task:
7144  */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)7145 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7146 {
7147 	struct sched_entity *se = &prev->se;
7148 	struct cfs_rq *cfs_rq;
7149 
7150 	for_each_sched_entity(se) {
7151 		cfs_rq = cfs_rq_of(se);
7152 		put_prev_entity(cfs_rq, se);
7153 	}
7154 }
7155 
7156 /*
7157  * sched_yield() is very simple
7158  *
7159  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7160  */
yield_task_fair(struct rq * rq)7161 static void yield_task_fair(struct rq *rq)
7162 {
7163 	struct task_struct *curr = rq->curr;
7164 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7165 	struct sched_entity *se = &curr->se;
7166 
7167 	/*
7168 	 * Are we the only task in the tree?
7169 	 */
7170 	if (unlikely(rq->nr_running == 1))
7171 		return;
7172 
7173 	clear_buddies(cfs_rq, se);
7174 
7175 	if (curr->policy != SCHED_BATCH) {
7176 		update_rq_clock(rq);
7177 		/*
7178 		 * Update run-time statistics of the 'current'.
7179 		 */
7180 		update_curr(cfs_rq);
7181 		/*
7182 		 * Tell update_rq_clock() that we've just updated,
7183 		 * so we don't do microscopic update in schedule()
7184 		 * and double the fastpath cost.
7185 		 */
7186 		rq_clock_skip_update(rq);
7187 	}
7188 
7189 	set_skip_buddy(se);
7190 }
7191 
yield_to_task_fair(struct rq * rq,struct task_struct * p,bool preempt)7192 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7193 {
7194 	struct sched_entity *se = &p->se;
7195 
7196 	/* throttled hierarchies are not runnable */
7197 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7198 		return false;
7199 
7200 	/* Tell the scheduler that we'd really like pse to run next. */
7201 	set_next_buddy(se);
7202 
7203 	yield_task_fair(rq);
7204 
7205 	return true;
7206 }
7207 
7208 #ifdef CONFIG_SMP
7209 /**************************************************
7210  * Fair scheduling class load-balancing methods.
7211  *
7212  * BASICS
7213  *
7214  * The purpose of load-balancing is to achieve the same basic fairness the
7215  * per-CPU scheduler provides, namely provide a proportional amount of compute
7216  * time to each task. This is expressed in the following equation:
7217  *
7218  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7219  *
7220  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7221  * W_i,0 is defined as:
7222  *
7223  *   W_i,0 = \Sum_j w_i,j                                             (2)
7224  *
7225  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7226  * is derived from the nice value as per sched_prio_to_weight[].
7227  *
7228  * The weight average is an exponential decay average of the instantaneous
7229  * weight:
7230  *
7231  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7232  *
7233  * C_i is the compute capacity of CPU i, typically it is the
7234  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7235  * can also include other factors [XXX].
7236  *
7237  * To achieve this balance we define a measure of imbalance which follows
7238  * directly from (1):
7239  *
7240  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7241  *
7242  * We them move tasks around to minimize the imbalance. In the continuous
7243  * function space it is obvious this converges, in the discrete case we get
7244  * a few fun cases generally called infeasible weight scenarios.
7245  *
7246  * [XXX expand on:
7247  *     - infeasible weights;
7248  *     - local vs global optima in the discrete case. ]
7249  *
7250  *
7251  * SCHED DOMAINS
7252  *
7253  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7254  * for all i,j solution, we create a tree of CPUs that follows the hardware
7255  * topology where each level pairs two lower groups (or better). This results
7256  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7257  * tree to only the first of the previous level and we decrease the frequency
7258  * of load-balance at each level inv. proportional to the number of CPUs in
7259  * the groups.
7260  *
7261  * This yields:
7262  *
7263  *     log_2 n     1     n
7264  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7265  *     i = 0      2^i   2^i
7266  *                               `- size of each group
7267  *         |         |     `- number of CPUs doing load-balance
7268  *         |         `- freq
7269  *         `- sum over all levels
7270  *
7271  * Coupled with a limit on how many tasks we can migrate every balance pass,
7272  * this makes (5) the runtime complexity of the balancer.
7273  *
7274  * An important property here is that each CPU is still (indirectly) connected
7275  * to every other CPU in at most O(log n) steps:
7276  *
7277  * The adjacency matrix of the resulting graph is given by:
7278  *
7279  *             log_2 n
7280  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7281  *             k = 0
7282  *
7283  * And you'll find that:
7284  *
7285  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7286  *
7287  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7288  * The task movement gives a factor of O(m), giving a convergence complexity
7289  * of:
7290  *
7291  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7292  *
7293  *
7294  * WORK CONSERVING
7295  *
7296  * In order to avoid CPUs going idle while there's still work to do, new idle
7297  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7298  * tree itself instead of relying on other CPUs to bring it work.
7299  *
7300  * This adds some complexity to both (5) and (8) but it reduces the total idle
7301  * time.
7302  *
7303  * [XXX more?]
7304  *
7305  *
7306  * CGROUPS
7307  *
7308  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7309  *
7310  *                                s_k,i
7311  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7312  *                                 S_k
7313  *
7314  * Where
7315  *
7316  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7317  *
7318  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7319  *
7320  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7321  * property.
7322  *
7323  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7324  *      rewrite all of this once again.]
7325  */
7326 
7327 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7328 
7329 enum fbq_type { regular, remote, all };
7330 
7331 enum group_type {
7332 	group_other = 0,
7333 	group_misfit_task,
7334 	group_imbalanced,
7335 	group_overloaded,
7336 };
7337 
7338 #define LBF_ALL_PINNED	0x01
7339 #define LBF_NEED_BREAK	0x02
7340 #define LBF_DST_PINNED  0x04
7341 #define LBF_SOME_PINNED	0x08
7342 #define LBF_NOHZ_STATS	0x10
7343 #define LBF_NOHZ_AGAIN	0x20
7344 
7345 struct lb_env {
7346 	struct sched_domain	*sd;
7347 
7348 	struct rq		*src_rq;
7349 	int			src_cpu;
7350 
7351 	int			dst_cpu;
7352 	struct rq		*dst_rq;
7353 
7354 	struct cpumask		*dst_grpmask;
7355 	int			new_dst_cpu;
7356 	enum cpu_idle_type	idle;
7357 	long			imbalance;
7358 	unsigned int		src_grp_nr_running;
7359 	/* The set of CPUs under consideration for load-balancing */
7360 	struct cpumask		*cpus;
7361 
7362 	unsigned int		flags;
7363 
7364 	unsigned int		loop;
7365 	unsigned int		loop_break;
7366 	unsigned int		loop_max;
7367 
7368 	enum fbq_type		fbq_type;
7369 	enum group_type		src_grp_type;
7370 	struct list_head	tasks;
7371 };
7372 
7373 /*
7374  * Is this task likely cache-hot:
7375  */
task_hot(struct task_struct * p,struct lb_env * env)7376 static int task_hot(struct task_struct *p, struct lb_env *env)
7377 {
7378 	s64 delta;
7379 
7380 	lockdep_assert_held(&env->src_rq->lock);
7381 
7382 	if (p->sched_class != &fair_sched_class)
7383 		return 0;
7384 
7385 	if (unlikely(task_has_idle_policy(p)))
7386 		return 0;
7387 
7388 	/*
7389 	 * Buddy candidates are cache hot:
7390 	 */
7391 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7392 			(&p->se == cfs_rq_of(&p->se)->next ||
7393 			 &p->se == cfs_rq_of(&p->se)->last))
7394 		return 1;
7395 
7396 	if (sysctl_sched_migration_cost == -1)
7397 		return 1;
7398 	if (sysctl_sched_migration_cost == 0)
7399 		return 0;
7400 
7401 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7402 
7403 	return delta < (s64)sysctl_sched_migration_cost;
7404 }
7405 
7406 #ifdef CONFIG_NUMA_BALANCING
7407 /*
7408  * Returns 1, if task migration degrades locality
7409  * Returns 0, if task migration improves locality i.e migration preferred.
7410  * Returns -1, if task migration is not affected by locality.
7411  */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)7412 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7413 {
7414 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7415 	unsigned long src_weight, dst_weight;
7416 	int src_nid, dst_nid, dist;
7417 
7418 	if (!static_branch_likely(&sched_numa_balancing))
7419 		return -1;
7420 
7421 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7422 		return -1;
7423 
7424 	src_nid = cpu_to_node(env->src_cpu);
7425 	dst_nid = cpu_to_node(env->dst_cpu);
7426 
7427 	if (src_nid == dst_nid)
7428 		return -1;
7429 
7430 	/* Migrating away from the preferred node is always bad. */
7431 	if (src_nid == p->numa_preferred_nid) {
7432 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7433 			return 1;
7434 		else
7435 			return -1;
7436 	}
7437 
7438 	/* Encourage migration to the preferred node. */
7439 	if (dst_nid == p->numa_preferred_nid)
7440 		return 0;
7441 
7442 	/* Leaving a core idle is often worse than degrading locality. */
7443 	if (env->idle == CPU_IDLE)
7444 		return -1;
7445 
7446 	dist = node_distance(src_nid, dst_nid);
7447 	if (numa_group) {
7448 		src_weight = group_weight(p, src_nid, dist);
7449 		dst_weight = group_weight(p, dst_nid, dist);
7450 	} else {
7451 		src_weight = task_weight(p, src_nid, dist);
7452 		dst_weight = task_weight(p, dst_nid, dist);
7453 	}
7454 
7455 	return dst_weight < src_weight;
7456 }
7457 
7458 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)7459 static inline int migrate_degrades_locality(struct task_struct *p,
7460 					     struct lb_env *env)
7461 {
7462 	return -1;
7463 }
7464 #endif
7465 
7466 /*
7467  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7468  */
7469 static
can_migrate_task(struct task_struct * p,struct lb_env * env)7470 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7471 {
7472 	int tsk_cache_hot;
7473 	int can_migrate = 1;
7474 
7475 	lockdep_assert_held(&env->src_rq->lock);
7476 
7477 	trace_android_rvh_can_migrate_task(p, env->dst_cpu, &can_migrate);
7478 	if (!can_migrate)
7479 		return 0;
7480 
7481 	/*
7482 	 * We do not migrate tasks that are:
7483 	 * 1) throttled_lb_pair, or
7484 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7485 	 * 3) running (obviously), or
7486 	 * 4) are cache-hot on their current CPU.
7487 	 */
7488 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7489 		return 0;
7490 
7491 	/* Disregard pcpu kthreads; they are where they need to be. */
7492 	if (kthread_is_per_cpu(p))
7493 		return 0;
7494 
7495 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7496 		int cpu;
7497 
7498 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7499 
7500 		env->flags |= LBF_SOME_PINNED;
7501 
7502 		/*
7503 		 * Remember if this task can be migrated to any other CPU in
7504 		 * our sched_group. We may want to revisit it if we couldn't
7505 		 * meet load balance goals by pulling other tasks on src_cpu.
7506 		 *
7507 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7508 		 * already computed one in current iteration.
7509 		 */
7510 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7511 			return 0;
7512 
7513 		/* Prevent to re-select dst_cpu via env's CPUs: */
7514 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7515 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7516 				env->flags |= LBF_DST_PINNED;
7517 				env->new_dst_cpu = cpu;
7518 				break;
7519 			}
7520 		}
7521 
7522 		return 0;
7523 	}
7524 
7525 	/* Record that we found atleast one task that could run on dst_cpu */
7526 	env->flags &= ~LBF_ALL_PINNED;
7527 
7528 	if (task_running(env->src_rq, p)) {
7529 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7530 		return 0;
7531 	}
7532 
7533 	/*
7534 	 * Aggressive migration if:
7535 	 * 1) destination numa is preferred
7536 	 * 2) task is cache cold, or
7537 	 * 3) too many balance attempts have failed.
7538 	 */
7539 	tsk_cache_hot = migrate_degrades_locality(p, env);
7540 	if (tsk_cache_hot == -1)
7541 		tsk_cache_hot = task_hot(p, env);
7542 
7543 	if (tsk_cache_hot <= 0 ||
7544 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7545 		if (tsk_cache_hot == 1) {
7546 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7547 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7548 		}
7549 		return 1;
7550 	}
7551 
7552 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7553 	return 0;
7554 }
7555 
7556 /*
7557  * detach_task() -- detach the task for the migration specified in env
7558  */
detach_task(struct task_struct * p,struct lb_env * env)7559 static void detach_task(struct task_struct *p, struct lb_env *env)
7560 {
7561 	lockdep_assert_held(&env->src_rq->lock);
7562 
7563 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7564 	set_task_cpu(p, env->dst_cpu);
7565 }
7566 
7567 /*
7568  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7569  * part of active balancing operations within "domain".
7570  *
7571  * Returns a task if successful and NULL otherwise.
7572  */
detach_one_task(struct lb_env * env)7573 static struct task_struct *detach_one_task(struct lb_env *env)
7574 {
7575 	struct task_struct *p;
7576 
7577 	lockdep_assert_held(&env->src_rq->lock);
7578 
7579 	list_for_each_entry_reverse(p,
7580 			&env->src_rq->cfs_tasks, se.group_node) {
7581 		if (!can_migrate_task(p, env))
7582 			continue;
7583 
7584 		detach_task(p, env);
7585 
7586 		/*
7587 		 * Right now, this is only the second place where
7588 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7589 		 * so we can safely collect stats here rather than
7590 		 * inside detach_tasks().
7591 		 */
7592 		schedstat_inc(env->sd->lb_gained[env->idle]);
7593 		return p;
7594 	}
7595 	return NULL;
7596 }
7597 
7598 static const unsigned int sched_nr_migrate_break = 32;
7599 
7600 /*
7601  * detach_tasks() -- tries to detach up to imbalance runnable load from
7602  * busiest_rq, as part of a balancing operation within domain "sd".
7603  *
7604  * Returns number of detached tasks if successful and 0 otherwise.
7605  */
detach_tasks(struct lb_env * env)7606 static int detach_tasks(struct lb_env *env)
7607 {
7608 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7609 	struct task_struct *p;
7610 	unsigned long load;
7611 	int detached = 0;
7612 
7613 	lockdep_assert_held(&env->src_rq->lock);
7614 
7615 	if (env->imbalance <= 0)
7616 		return 0;
7617 
7618 	while (!list_empty(tasks)) {
7619 		/*
7620 		 * We don't want to steal all, otherwise we may be treated likewise,
7621 		 * which could at worst lead to a livelock crash.
7622 		 */
7623 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7624 			break;
7625 
7626 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7627 
7628 		env->loop++;
7629 		/* We've more or less seen every task there is, call it quits */
7630 		if (env->loop > env->loop_max)
7631 			break;
7632 
7633 		/* take a breather every nr_migrate tasks */
7634 		if (env->loop > env->loop_break) {
7635 			env->loop_break += sched_nr_migrate_break;
7636 			env->flags |= LBF_NEED_BREAK;
7637 			break;
7638 		}
7639 
7640 		if (!can_migrate_task(p, env))
7641 			goto next;
7642 
7643 		/*
7644 		 * Depending of the number of CPUs and tasks and the
7645 		 * cgroup hierarchy, task_h_load() can return a null
7646 		 * value. Make sure that env->imbalance decreases
7647 		 * otherwise detach_tasks() will stop only after
7648 		 * detaching up to loop_max tasks.
7649 		 */
7650 		load = max_t(unsigned long, task_h_load(p), 1);
7651 
7652 
7653 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7654 			goto next;
7655 
7656 		if ((load / 2) > env->imbalance)
7657 			goto next;
7658 
7659 		detach_task(p, env);
7660 		list_add(&p->se.group_node, &env->tasks);
7661 
7662 		detached++;
7663 		env->imbalance -= load;
7664 
7665 #ifdef CONFIG_PREEMPTION
7666 		/*
7667 		 * NEWIDLE balancing is a source of latency, so preemptible
7668 		 * kernels will stop after the first task is detached to minimize
7669 		 * the critical section.
7670 		 */
7671 		if (env->idle == CPU_NEWLY_IDLE)
7672 			break;
7673 #endif
7674 
7675 		/*
7676 		 * We only want to steal up to the prescribed amount of
7677 		 * runnable load.
7678 		 */
7679 		if (env->imbalance <= 0)
7680 			break;
7681 
7682 		continue;
7683 next:
7684 		list_move(&p->se.group_node, tasks);
7685 	}
7686 
7687 	/*
7688 	 * Right now, this is one of only two places we collect this stat
7689 	 * so we can safely collect detach_one_task() stats here rather
7690 	 * than inside detach_one_task().
7691 	 */
7692 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7693 
7694 	return detached;
7695 }
7696 
7697 /*
7698  * attach_task() -- attach the task detached by detach_task() to its new rq.
7699  */
attach_task(struct rq * rq,struct task_struct * p)7700 static void attach_task(struct rq *rq, struct task_struct *p)
7701 {
7702 	lockdep_assert_held(&rq->lock);
7703 
7704 	BUG_ON(task_rq(p) != rq);
7705 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7706 	check_preempt_curr(rq, p, 0);
7707 }
7708 
7709 /*
7710  * attach_one_task() -- attaches the task returned from detach_one_task() to
7711  * its new rq.
7712  */
attach_one_task(struct rq * rq,struct task_struct * p)7713 static void attach_one_task(struct rq *rq, struct task_struct *p)
7714 {
7715 	struct rq_flags rf;
7716 
7717 	rq_lock(rq, &rf);
7718 	update_rq_clock(rq);
7719 	attach_task(rq, p);
7720 	rq_unlock(rq, &rf);
7721 }
7722 
7723 /*
7724  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7725  * new rq.
7726  */
attach_tasks(struct lb_env * env)7727 static void attach_tasks(struct lb_env *env)
7728 {
7729 	struct list_head *tasks = &env->tasks;
7730 	struct task_struct *p;
7731 	struct rq_flags rf;
7732 
7733 	rq_lock(env->dst_rq, &rf);
7734 	update_rq_clock(env->dst_rq);
7735 
7736 	while (!list_empty(tasks)) {
7737 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7738 		list_del_init(&p->se.group_node);
7739 
7740 		attach_task(env->dst_rq, p);
7741 	}
7742 
7743 	rq_unlock(env->dst_rq, &rf);
7744 }
7745 
7746 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)7747 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7748 {
7749 	if (cfs_rq->avg.load_avg)
7750 		return true;
7751 
7752 	if (cfs_rq->avg.util_avg)
7753 		return true;
7754 
7755 	return false;
7756 }
7757 
others_have_blocked(struct rq * rq)7758 static inline bool others_have_blocked(struct rq *rq)
7759 {
7760 	if (READ_ONCE(rq->avg_rt.util_avg))
7761 		return true;
7762 
7763 	if (READ_ONCE(rq->avg_dl.util_avg))
7764 		return true;
7765 
7766 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7767 	if (READ_ONCE(rq->avg_irq.util_avg))
7768 		return true;
7769 #endif
7770 
7771 	return false;
7772 }
7773 
update_blocked_load_status(struct rq * rq,bool has_blocked)7774 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7775 {
7776 	rq->last_blocked_load_update_tick = jiffies;
7777 
7778 	if (!has_blocked)
7779 		rq->has_blocked_load = 0;
7780 }
7781 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)7782 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)7783 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_status(struct rq * rq,bool has_blocked)7784 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7785 #endif
7786 
__update_blocked_others(struct rq * rq,bool * done)7787 static bool __update_blocked_others(struct rq *rq, bool *done)
7788 {
7789 	const struct sched_class *curr_class;
7790 	u64 now = rq_clock_pelt(rq);
7791 	bool decayed;
7792 
7793 	/*
7794 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7795 	 * DL and IRQ signals have been updated before updating CFS.
7796 	 */
7797 	curr_class = rq->curr->sched_class;
7798 
7799 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7800 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7801 		  update_irq_load_avg(rq, 0);
7802 
7803 	if (others_have_blocked(rq))
7804 		*done = false;
7805 
7806 	return decayed;
7807 }
7808 
7809 #ifdef CONFIG_FAIR_GROUP_SCHED
7810 
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)7811 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7812 {
7813 	if (cfs_rq->load.weight)
7814 		return false;
7815 
7816 	if (cfs_rq->avg.load_sum)
7817 		return false;
7818 
7819 	if (cfs_rq->avg.util_sum)
7820 		return false;
7821 
7822 	if (cfs_rq->avg.runnable_load_sum)
7823 		return false;
7824 
7825 	return true;
7826 }
7827 
__update_blocked_fair(struct rq * rq,bool * done)7828 static bool __update_blocked_fair(struct rq *rq, bool *done)
7829 {
7830 	struct cfs_rq *cfs_rq, *pos;
7831 	bool decayed = false;
7832 	int cpu = cpu_of(rq);
7833 
7834 	/*
7835 	 * Iterates the task_group tree in a bottom up fashion, see
7836 	 * list_add_leaf_cfs_rq() for details.
7837 	 */
7838 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7839 		struct sched_entity *se;
7840 
7841 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
7842 			update_tg_load_avg(cfs_rq, 0);
7843 
7844 			if (cfs_rq == &rq->cfs)
7845 				decayed = true;
7846 		}
7847 
7848 		/* Propagate pending load changes to the parent, if any: */
7849 		se = cfs_rq->tg->se[cpu];
7850 		if (se && !skip_blocked_update(se))
7851 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
7852 
7853 		/*
7854 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7855 		 * decayed cfs_rqs linger on the list.
7856 		 */
7857 		if (cfs_rq_is_decayed(cfs_rq))
7858 			list_del_leaf_cfs_rq(cfs_rq);
7859 
7860 		/* Don't need periodic decay once load/util_avg are null */
7861 		if (cfs_rq_has_blocked(cfs_rq))
7862 			*done = false;
7863 	}
7864 
7865 	return decayed;
7866 }
7867 
7868 /*
7869  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7870  * This needs to be done in a top-down fashion because the load of a child
7871  * group is a fraction of its parents load.
7872  */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)7873 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7874 {
7875 	struct rq *rq = rq_of(cfs_rq);
7876 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7877 	unsigned long now = jiffies;
7878 	unsigned long load;
7879 
7880 	if (cfs_rq->last_h_load_update == now)
7881 		return;
7882 
7883 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
7884 	for_each_sched_entity(se) {
7885 		cfs_rq = cfs_rq_of(se);
7886 		WRITE_ONCE(cfs_rq->h_load_next, se);
7887 		if (cfs_rq->last_h_load_update == now)
7888 			break;
7889 	}
7890 
7891 	if (!se) {
7892 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7893 		cfs_rq->last_h_load_update = now;
7894 	}
7895 
7896 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7897 		load = cfs_rq->h_load;
7898 		load = div64_ul(load * se->avg.load_avg,
7899 			cfs_rq_load_avg(cfs_rq) + 1);
7900 		cfs_rq = group_cfs_rq(se);
7901 		cfs_rq->h_load = load;
7902 		cfs_rq->last_h_load_update = now;
7903 	}
7904 }
7905 
task_h_load(struct task_struct * p)7906 static unsigned long task_h_load(struct task_struct *p)
7907 {
7908 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7909 
7910 	update_cfs_rq_h_load(cfs_rq);
7911 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7912 			cfs_rq_load_avg(cfs_rq) + 1);
7913 }
7914 #else
__update_blocked_fair(struct rq * rq,bool * done)7915 static bool __update_blocked_fair(struct rq *rq, bool *done)
7916 {
7917 	struct cfs_rq *cfs_rq = &rq->cfs;
7918 	bool decayed;
7919 
7920 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7921 	if (cfs_rq_has_blocked(cfs_rq))
7922 		*done = false;
7923 
7924 	return decayed;
7925 }
7926 
task_h_load(struct task_struct * p)7927 static unsigned long task_h_load(struct task_struct *p)
7928 {
7929 	return p->se.avg.load_avg;
7930 }
7931 #endif
7932 
update_blocked_averages(int cpu)7933 static void update_blocked_averages(int cpu)
7934 {
7935 	bool decayed = false, done = true;
7936 	struct rq *rq = cpu_rq(cpu);
7937 	struct rq_flags rf;
7938 
7939 	rq_lock_irqsave(rq, &rf);
7940 	update_rq_clock(rq);
7941 
7942 	decayed |= __update_blocked_others(rq, &done);
7943 	decayed |= __update_blocked_fair(rq, &done);
7944 
7945 	update_blocked_load_status(rq, !done);
7946 	if (decayed)
7947 		cpufreq_update_util(rq, 0);
7948 	rq_unlock_irqrestore(rq, &rf);
7949 }
7950 
7951 /********** Helpers for find_busiest_group ************************/
7952 
7953 /*
7954  * sg_lb_stats - stats of a sched_group required for load_balancing
7955  */
7956 struct sg_lb_stats {
7957 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7958 	unsigned long group_load; /* Total load over the CPUs of the group */
7959 	unsigned long load_per_task;
7960 	unsigned long group_capacity;
7961 	unsigned long group_util; /* Total utilization of the group */
7962 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7963 	unsigned int idle_cpus;
7964 	unsigned int group_weight;
7965 	enum group_type group_type;
7966 	int group_no_capacity;
7967 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
7968 #ifdef CONFIG_NUMA_BALANCING
7969 	unsigned int nr_numa_running;
7970 	unsigned int nr_preferred_running;
7971 #endif
7972 };
7973 
7974 /*
7975  * sd_lb_stats - Structure to store the statistics of a sched_domain
7976  *		 during load balancing.
7977  */
7978 struct sd_lb_stats {
7979 	struct sched_group *busiest;	/* Busiest group in this sd */
7980 	struct sched_group *local;	/* Local group in this sd */
7981 	unsigned long total_running;
7982 	unsigned long total_load;	/* Total load of all groups in sd */
7983 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7984 	unsigned long avg_load;	/* Average load across all groups in sd */
7985 
7986 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7987 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7988 };
7989 
init_sd_lb_stats(struct sd_lb_stats * sds)7990 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7991 {
7992 	/*
7993 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7994 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7995 	 * We must however clear busiest_stat::avg_load because
7996 	 * update_sd_pick_busiest() reads this before assignment.
7997 	 */
7998 	*sds = (struct sd_lb_stats){
7999 		.busiest = NULL,
8000 		.local = NULL,
8001 		.total_running = 0UL,
8002 		.total_load = 0UL,
8003 		.total_capacity = 0UL,
8004 		.busiest_stat = {
8005 			.avg_load = 0UL,
8006 			.sum_nr_running = 0,
8007 			.group_type = group_other,
8008 		},
8009 	};
8010 }
8011 
scale_rt_capacity(int cpu,unsigned long max)8012 static unsigned long scale_rt_capacity(int cpu, unsigned long max)
8013 {
8014 	struct rq *rq = cpu_rq(cpu);
8015 	unsigned long used, free;
8016 	unsigned long irq;
8017 
8018 	irq = cpu_util_irq(rq);
8019 
8020 	if (unlikely(irq >= max))
8021 		return 1;
8022 
8023 	used = READ_ONCE(rq->avg_rt.util_avg);
8024 	used += READ_ONCE(rq->avg_dl.util_avg);
8025 
8026 	if (unlikely(used >= max))
8027 		return 1;
8028 
8029 	free = max - used;
8030 
8031 	return scale_irq_capacity(free, irq, max);
8032 }
8033 
init_max_cpu_capacity(struct max_cpu_capacity * mcc)8034 void init_max_cpu_capacity(struct max_cpu_capacity *mcc) {
8035 	raw_spin_lock_init(&mcc->lock);
8036 	mcc->val = 0;
8037 	mcc->cpu = -1;
8038 }
8039 
update_cpu_capacity(struct sched_domain * sd,int cpu)8040 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8041 {
8042 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
8043 	struct sched_group *sdg = sd->groups;
8044 	struct max_cpu_capacity *mcc;
8045 	unsigned long max_capacity;
8046 	int max_cap_cpu;
8047 	unsigned long flags;
8048 
8049 	cpu_rq(cpu)->cpu_capacity_orig = capacity;
8050 
8051 	capacity *= arch_scale_max_freq_capacity(sd, cpu);
8052 	capacity >>= SCHED_CAPACITY_SHIFT;
8053 
8054 	mcc = &cpu_rq(cpu)->rd->max_cpu_capacity;
8055 
8056 	raw_spin_lock_irqsave(&mcc->lock, flags);
8057 	max_capacity = mcc->val;
8058 	max_cap_cpu = mcc->cpu;
8059 
8060 	if ((max_capacity > capacity && max_cap_cpu == cpu) ||
8061 	    (max_capacity < capacity)) {
8062 		mcc->val = capacity;
8063 		mcc->cpu = cpu;
8064 #ifdef CONFIG_SCHED_DEBUG
8065 		raw_spin_unlock_irqrestore(&mcc->lock, flags);
8066 		printk_deferred(KERN_INFO "CPU%d: update max cpu_capacity %lu\n",
8067 				cpu, capacity);
8068 		goto skip_unlock;
8069 #endif
8070 	}
8071 	raw_spin_unlock_irqrestore(&mcc->lock, flags);
8072 
8073 skip_unlock: __attribute__ ((unused));
8074 	capacity = scale_rt_capacity(cpu, capacity);
8075 
8076 	if (!capacity)
8077 		capacity = 1;
8078 
8079 	cpu_rq(cpu)->cpu_capacity = capacity;
8080 	sdg->sgc->capacity = capacity;
8081 	sdg->sgc->min_capacity = capacity;
8082 	sdg->sgc->max_capacity = capacity;
8083 }
8084 
update_group_capacity(struct sched_domain * sd,int cpu)8085 void update_group_capacity(struct sched_domain *sd, int cpu)
8086 {
8087 	struct sched_domain *child = sd->child;
8088 	struct sched_group *group, *sdg = sd->groups;
8089 	unsigned long capacity, min_capacity, max_capacity;
8090 	unsigned long interval;
8091 
8092 	interval = msecs_to_jiffies(sd->balance_interval);
8093 	interval = clamp(interval, 1UL, max_load_balance_interval);
8094 	sdg->sgc->next_update = jiffies + interval;
8095 
8096 	if (!child) {
8097 		update_cpu_capacity(sd, cpu);
8098 		return;
8099 	}
8100 
8101 	capacity = 0;
8102 	min_capacity = ULONG_MAX;
8103 	max_capacity = 0;
8104 
8105 	if (child->flags & SD_OVERLAP) {
8106 		/*
8107 		 * SD_OVERLAP domains cannot assume that child groups
8108 		 * span the current group.
8109 		 */
8110 
8111 		for_each_cpu(cpu, sched_group_span(sdg)) {
8112 			struct sched_group_capacity *sgc;
8113 			struct rq *rq = cpu_rq(cpu);
8114 
8115 			/*
8116 			 * build_sched_domains() -> init_sched_groups_capacity()
8117 			 * gets here before we've attached the domains to the
8118 			 * runqueues.
8119 			 *
8120 			 * Use capacity_of(), which is set irrespective of domains
8121 			 * in update_cpu_capacity().
8122 			 *
8123 			 * This avoids capacity from being 0 and
8124 			 * causing divide-by-zero issues on boot.
8125 			 */
8126 			if (unlikely(!rq->sd)) {
8127 				capacity += capacity_of(cpu);
8128 			} else {
8129 				sgc = rq->sd->groups->sgc;
8130 				capacity += sgc->capacity;
8131 			}
8132 
8133 			min_capacity = min(capacity, min_capacity);
8134 			max_capacity = max(capacity, max_capacity);
8135 		}
8136 	} else  {
8137 		/*
8138 		 * !SD_OVERLAP domains can assume that child groups
8139 		 * span the current group.
8140 		 */
8141 
8142 		group = child->groups;
8143 		do {
8144 			struct sched_group_capacity *sgc = group->sgc;
8145 
8146 			capacity += sgc->capacity;
8147 			min_capacity = min(sgc->min_capacity, min_capacity);
8148 			max_capacity = max(sgc->max_capacity, max_capacity);
8149 			group = group->next;
8150 		} while (group != child->groups);
8151 	}
8152 
8153 	sdg->sgc->capacity = capacity;
8154 	sdg->sgc->min_capacity = min_capacity;
8155 	sdg->sgc->max_capacity = max_capacity;
8156 }
8157 
8158 /*
8159  * Check whether the capacity of the rq has been noticeably reduced by side
8160  * activity. The imbalance_pct is used for the threshold.
8161  * Return true is the capacity is reduced
8162  */
8163 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)8164 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8165 {
8166 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8167 				(rq->cpu_capacity_orig * 100));
8168 }
8169 
8170 /*
8171  * Check whether a rq has a misfit task and if it looks like we can actually
8172  * help that task: we can migrate the task to a CPU of higher capacity, or
8173  * the task's current CPU is heavily pressured.
8174  */
check_misfit_status(struct rq * rq,struct sched_domain * sd)8175 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8176 {
8177 	return rq->misfit_task_load &&
8178 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity.val ||
8179 		 check_cpu_capacity(rq, sd));
8180 }
8181 
8182 /*
8183  * Group imbalance indicates (and tries to solve) the problem where balancing
8184  * groups is inadequate due to ->cpus_ptr constraints.
8185  *
8186  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8187  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8188  * Something like:
8189  *
8190  *	{ 0 1 2 3 } { 4 5 6 7 }
8191  *	        *     * * *
8192  *
8193  * If we were to balance group-wise we'd place two tasks in the first group and
8194  * two tasks in the second group. Clearly this is undesired as it will overload
8195  * cpu 3 and leave one of the CPUs in the second group unused.
8196  *
8197  * The current solution to this issue is detecting the skew in the first group
8198  * by noticing the lower domain failed to reach balance and had difficulty
8199  * moving tasks due to affinity constraints.
8200  *
8201  * When this is so detected; this group becomes a candidate for busiest; see
8202  * update_sd_pick_busiest(). And calculate_imbalance() and
8203  * find_busiest_group() avoid some of the usual balance conditions to allow it
8204  * to create an effective group imbalance.
8205  *
8206  * This is a somewhat tricky proposition since the next run might not find the
8207  * group imbalance and decide the groups need to be balanced again. A most
8208  * subtle and fragile situation.
8209  */
8210 
sg_imbalanced(struct sched_group * group)8211 static inline int sg_imbalanced(struct sched_group *group)
8212 {
8213 	return group->sgc->imbalance;
8214 }
8215 
8216 /*
8217  * group_has_capacity returns true if the group has spare capacity that could
8218  * be used by some tasks.
8219  * We consider that a group has spare capacity if the  * number of task is
8220  * smaller than the number of CPUs or if the utilization is lower than the
8221  * available capacity for CFS tasks.
8222  * For the latter, we use a threshold to stabilize the state, to take into
8223  * account the variance of the tasks' load and to return true if the available
8224  * capacity in meaningful for the load balancer.
8225  * As an example, an available capacity of 1% can appear but it doesn't make
8226  * any benefit for the load balance.
8227  */
8228 static inline bool
group_has_capacity(struct lb_env * env,struct sg_lb_stats * sgs)8229 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
8230 {
8231 	if (sgs->sum_nr_running < sgs->group_weight)
8232 		return true;
8233 
8234 	if ((sgs->group_capacity * 100) >
8235 			(sgs->group_util * env->sd->imbalance_pct))
8236 		return true;
8237 
8238 	return false;
8239 }
8240 
8241 /*
8242  *  group_is_overloaded returns true if the group has more tasks than it can
8243  *  handle.
8244  *  group_is_overloaded is not equals to !group_has_capacity because a group
8245  *  with the exact right number of tasks, has no more spare capacity but is not
8246  *  overloaded so both group_has_capacity and group_is_overloaded return
8247  *  false.
8248  */
8249 static inline bool
group_is_overloaded(struct lb_env * env,struct sg_lb_stats * sgs)8250 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
8251 {
8252 	if (sgs->sum_nr_running <= sgs->group_weight)
8253 		return false;
8254 
8255 	if ((sgs->group_capacity * 100) <
8256 			(sgs->group_util * env->sd->imbalance_pct))
8257 		return true;
8258 
8259 	return false;
8260 }
8261 
8262 /*
8263  * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8264  * per-CPU capacity than sched_group ref.
8265  */
8266 static inline bool
group_smaller_min_cpu_capacity(struct sched_group * sg,struct sched_group * ref)8267 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8268 {
8269 	return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
8270 }
8271 
8272 /*
8273  * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8274  * per-CPU capacity_orig than sched_group ref.
8275  */
8276 static inline bool
group_smaller_max_cpu_capacity(struct sched_group * sg,struct sched_group * ref)8277 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8278 {
8279 	return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
8280 }
8281 
8282 static inline enum
group_classify(struct sched_group * group,struct sg_lb_stats * sgs)8283 group_type group_classify(struct sched_group *group,
8284 			  struct sg_lb_stats *sgs)
8285 {
8286 	if (sgs->group_no_capacity)
8287 		return group_overloaded;
8288 
8289 	if (sg_imbalanced(group))
8290 		return group_imbalanced;
8291 
8292 	if (sgs->group_misfit_task_load)
8293 		return group_misfit_task;
8294 
8295 	return group_other;
8296 }
8297 
update_nohz_stats(struct rq * rq,bool force)8298 static bool update_nohz_stats(struct rq *rq, bool force)
8299 {
8300 #ifdef CONFIG_NO_HZ_COMMON
8301 	unsigned int cpu = rq->cpu;
8302 
8303 	if (!rq->has_blocked_load)
8304 		return false;
8305 
8306 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8307 		return false;
8308 
8309 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8310 		return true;
8311 
8312 	update_blocked_averages(cpu);
8313 
8314 	return rq->has_blocked_load;
8315 #else
8316 	return false;
8317 #endif
8318 }
8319 
8320 /**
8321  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8322  * @env: The load balancing environment.
8323  * @group: sched_group whose statistics are to be updated.
8324  * @sgs: variable to hold the statistics for this group.
8325  * @sg_status: Holds flag indicating the status of the sched_group
8326  */
update_sg_lb_stats(struct lb_env * env,struct sched_group * group,struct sg_lb_stats * sgs,int * sg_status)8327 static inline void update_sg_lb_stats(struct lb_env *env,
8328 				      struct sched_group *group,
8329 				      struct sg_lb_stats *sgs,
8330 				      int *sg_status)
8331 {
8332 	int i, nr_running;
8333 
8334 	memset(sgs, 0, sizeof(*sgs));
8335 
8336 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8337 		struct rq *rq = cpu_rq(i);
8338 
8339 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8340 			env->flags |= LBF_NOHZ_AGAIN;
8341 
8342 		sgs->group_load += cpu_runnable_load(rq);
8343 		sgs->group_util += cpu_util(i);
8344 		sgs->sum_nr_running += rq->cfs.h_nr_running;
8345 
8346 		nr_running = rq->nr_running;
8347 		if (nr_running > 1)
8348 			*sg_status |= SG_OVERLOAD;
8349 
8350 		if (cpu_overutilized(i))
8351 			*sg_status |= SG_OVERUTILIZED;
8352 
8353 #ifdef CONFIG_NUMA_BALANCING
8354 		sgs->nr_numa_running += rq->nr_numa_running;
8355 		sgs->nr_preferred_running += rq->nr_preferred_running;
8356 #endif
8357 		/*
8358 		 * No need to call idle_cpu() if nr_running is not 0
8359 		 */
8360 		if (!nr_running && idle_cpu(i))
8361 			sgs->idle_cpus++;
8362 
8363 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8364 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8365 			sgs->group_misfit_task_load = rq->misfit_task_load;
8366 			*sg_status |= SG_OVERLOAD;
8367 		}
8368 	}
8369 
8370 	/* Adjust by relative CPU capacity of the group */
8371 	sgs->group_capacity = group->sgc->capacity;
8372 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
8373 
8374 	if (sgs->sum_nr_running)
8375 		sgs->load_per_task = sgs->group_load / sgs->sum_nr_running;
8376 
8377 	sgs->group_weight = group->group_weight;
8378 
8379 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
8380 	sgs->group_type = group_classify(group, sgs);
8381 }
8382 
8383 /**
8384  * update_sd_pick_busiest - return 1 on busiest group
8385  * @env: The load balancing environment.
8386  * @sds: sched_domain statistics
8387  * @sg: sched_group candidate to be checked for being the busiest
8388  * @sgs: sched_group statistics
8389  *
8390  * Determine if @sg is a busier group than the previously selected
8391  * busiest group.
8392  *
8393  * Return: %true if @sg is a busier group than the previously selected
8394  * busiest group. %false otherwise.
8395  */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)8396 static bool update_sd_pick_busiest(struct lb_env *env,
8397 				   struct sd_lb_stats *sds,
8398 				   struct sched_group *sg,
8399 				   struct sg_lb_stats *sgs)
8400 {
8401 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8402 
8403 	/*
8404 	 * Don't try to pull misfit tasks we can't help.
8405 	 * We can use max_capacity here as reduction in capacity on some
8406 	 * CPUs in the group should either be possible to resolve
8407 	 * internally or be covered by avg_load imbalance (eventually).
8408 	 */
8409 	if (sgs->group_type == group_misfit_task &&
8410 	    (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8411 	     !group_has_capacity(env, &sds->local_stat)))
8412 		return false;
8413 
8414 	if (sgs->group_type > busiest->group_type)
8415 		return true;
8416 
8417 	if (sgs->group_type < busiest->group_type)
8418 		return false;
8419 
8420 	if (sgs->avg_load <= busiest->avg_load)
8421 		return false;
8422 
8423 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8424 		goto asym_packing;
8425 
8426 	/*
8427 	 * Candidate sg has no more than one task per CPU and
8428 	 * has higher per-CPU capacity. Migrating tasks to less
8429 	 * capable CPUs may harm throughput. Maximize throughput,
8430 	 * power/energy consequences are not considered.
8431 	 */
8432 	if (sgs->sum_nr_running <= sgs->group_weight &&
8433 	    group_smaller_min_cpu_capacity(sds->local, sg))
8434 		return false;
8435 
8436 	/*
8437 	 * If we have more than one misfit sg go with the biggest misfit.
8438 	 */
8439 	if (sgs->group_type == group_misfit_task &&
8440 	    sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8441 		return false;
8442 
8443 asym_packing:
8444 	/* This is the busiest node in its class. */
8445 	if (!(env->sd->flags & SD_ASYM_PACKING))
8446 		return true;
8447 
8448 	/* No ASYM_PACKING if target CPU is already busy */
8449 	if (env->idle == CPU_NOT_IDLE)
8450 		return true;
8451 	/*
8452 	 * ASYM_PACKING needs to move all the work to the highest
8453 	 * prority CPUs in the group, therefore mark all groups
8454 	 * of lower priority than ourself as busy.
8455 	 */
8456 	if (sgs->sum_nr_running &&
8457 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
8458 		if (!sds->busiest)
8459 			return true;
8460 
8461 		/* Prefer to move from lowest priority CPU's work */
8462 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8463 				      sg->asym_prefer_cpu))
8464 			return true;
8465 	}
8466 
8467 	return false;
8468 }
8469 
8470 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)8471 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8472 {
8473 	if (sgs->sum_nr_running > sgs->nr_numa_running)
8474 		return regular;
8475 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
8476 		return remote;
8477 	return all;
8478 }
8479 
fbq_classify_rq(struct rq * rq)8480 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8481 {
8482 	if (rq->nr_running > rq->nr_numa_running)
8483 		return regular;
8484 	if (rq->nr_running > rq->nr_preferred_running)
8485 		return remote;
8486 	return all;
8487 }
8488 #else
fbq_classify_group(struct sg_lb_stats * sgs)8489 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8490 {
8491 	return all;
8492 }
8493 
fbq_classify_rq(struct rq * rq)8494 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8495 {
8496 	return regular;
8497 }
8498 #endif /* CONFIG_NUMA_BALANCING */
8499 
8500 /**
8501  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8502  * @env: The load balancing environment.
8503  * @sds: variable to hold the statistics for this sched_domain.
8504  */
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)8505 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8506 {
8507 	struct sched_domain *child = env->sd->child;
8508 	struct sched_group *sg = env->sd->groups;
8509 	struct sg_lb_stats *local = &sds->local_stat;
8510 	struct sg_lb_stats tmp_sgs;
8511 	bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8512 	int sg_status = 0;
8513 
8514 #ifdef CONFIG_NO_HZ_COMMON
8515 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8516 		env->flags |= LBF_NOHZ_STATS;
8517 #endif
8518 
8519 	do {
8520 		struct sg_lb_stats *sgs = &tmp_sgs;
8521 		int local_group;
8522 
8523 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8524 		if (local_group) {
8525 			sds->local = sg;
8526 			sgs = local;
8527 
8528 			if (env->idle != CPU_NEWLY_IDLE ||
8529 			    time_after_eq(jiffies, sg->sgc->next_update))
8530 				update_group_capacity(env->sd, env->dst_cpu);
8531 		}
8532 
8533 		update_sg_lb_stats(env, sg, sgs, &sg_status);
8534 
8535 		if (local_group)
8536 			goto next_group;
8537 
8538 		/*
8539 		 * In case the child domain prefers tasks go to siblings
8540 		 * first, lower the sg capacity so that we'll try
8541 		 * and move all the excess tasks away. We lower the capacity
8542 		 * of a group only if the local group has the capacity to fit
8543 		 * these excess tasks. The extra check prevents the case where
8544 		 * you always pull from the heaviest group when it is already
8545 		 * under-utilized (possible with a large weight task outweighs
8546 		 * the tasks on the system).
8547 		 */
8548 		if (prefer_sibling && sds->local &&
8549 		    group_has_capacity(env, local) &&
8550 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8551 			sgs->group_no_capacity = 1;
8552 			sgs->group_type = group_classify(sg, sgs);
8553 		}
8554 
8555 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8556 			sds->busiest = sg;
8557 			sds->busiest_stat = *sgs;
8558 		}
8559 
8560 next_group:
8561 		/* Now, start updating sd_lb_stats */
8562 		sds->total_running += sgs->sum_nr_running;
8563 		sds->total_load += sgs->group_load;
8564 		sds->total_capacity += sgs->group_capacity;
8565 
8566 		sg = sg->next;
8567 	} while (sg != env->sd->groups);
8568 
8569 #ifdef CONFIG_NO_HZ_COMMON
8570 	if ((env->flags & LBF_NOHZ_AGAIN) &&
8571 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8572 
8573 		WRITE_ONCE(nohz.next_blocked,
8574 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8575 	}
8576 #endif
8577 
8578 	if (env->sd->flags & SD_NUMA)
8579 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8580 
8581 	env->src_grp_nr_running = sds->busiest_stat.sum_nr_running;
8582 
8583 	if (!env->sd->parent) {
8584 		struct root_domain *rd = env->dst_rq->rd;
8585 
8586 		/* update overload indicator if we are at root domain */
8587 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8588 
8589 		/* Update over-utilization (tipping point, U >= 0) indicator */
8590 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8591 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
8592 	} else if (sg_status & SG_OVERUTILIZED) {
8593 		struct root_domain *rd = env->dst_rq->rd;
8594 
8595 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8596 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
8597 	}
8598 }
8599 
8600 /**
8601  * check_asym_packing - Check to see if the group is packed into the
8602  *			sched domain.
8603  *
8604  * This is primarily intended to used at the sibling level.  Some
8605  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
8606  * case of POWER7, it can move to lower SMT modes only when higher
8607  * threads are idle.  When in lower SMT modes, the threads will
8608  * perform better since they share less core resources.  Hence when we
8609  * have idle threads, we want them to be the higher ones.
8610  *
8611  * This packing function is run on idle threads.  It checks to see if
8612  * the busiest CPU in this domain (core in the P7 case) has a higher
8613  * CPU number than the packing function is being run on.  Here we are
8614  * assuming lower CPU number will be equivalent to lower a SMT thread
8615  * number.
8616  *
8617  * Return: 1 when packing is required and a task should be moved to
8618  * this CPU.  The amount of the imbalance is returned in env->imbalance.
8619  *
8620  * @env: The load balancing environment.
8621  * @sds: Statistics of the sched_domain which is to be packed
8622  */
check_asym_packing(struct lb_env * env,struct sd_lb_stats * sds)8623 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8624 {
8625 	int busiest_cpu;
8626 
8627 	if (!(env->sd->flags & SD_ASYM_PACKING))
8628 		return 0;
8629 
8630 	if (env->idle == CPU_NOT_IDLE)
8631 		return 0;
8632 
8633 	if (!sds->busiest)
8634 		return 0;
8635 
8636 	busiest_cpu = sds->busiest->asym_prefer_cpu;
8637 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8638 		return 0;
8639 
8640 	env->imbalance = sds->busiest_stat.group_load;
8641 
8642 	return 1;
8643 }
8644 
8645 /**
8646  * fix_small_imbalance - Calculate the minor imbalance that exists
8647  *			amongst the groups of a sched_domain, during
8648  *			load balancing.
8649  * @env: The load balancing environment.
8650  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8651  */
8652 static inline
fix_small_imbalance(struct lb_env * env,struct sd_lb_stats * sds)8653 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8654 {
8655 	unsigned long tmp, capa_now = 0, capa_move = 0;
8656 	unsigned int imbn = 2;
8657 	unsigned long scaled_busy_load_per_task;
8658 	struct sg_lb_stats *local, *busiest;
8659 
8660 	local = &sds->local_stat;
8661 	busiest = &sds->busiest_stat;
8662 
8663 	if (!local->sum_nr_running)
8664 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8665 	else if (busiest->load_per_task > local->load_per_task)
8666 		imbn = 1;
8667 
8668 	scaled_busy_load_per_task =
8669 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8670 		busiest->group_capacity;
8671 
8672 	if (busiest->avg_load + scaled_busy_load_per_task >=
8673 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
8674 		env->imbalance = busiest->load_per_task;
8675 		return;
8676 	}
8677 
8678 	/*
8679 	 * OK, we don't have enough imbalance to justify moving tasks,
8680 	 * however we may be able to increase total CPU capacity used by
8681 	 * moving them.
8682 	 */
8683 
8684 	capa_now += busiest->group_capacity *
8685 			min(busiest->load_per_task, busiest->avg_load);
8686 	capa_now += local->group_capacity *
8687 			min(local->load_per_task, local->avg_load);
8688 	capa_now /= SCHED_CAPACITY_SCALE;
8689 
8690 	/* Amount of load we'd subtract */
8691 	if (busiest->avg_load > scaled_busy_load_per_task) {
8692 		capa_move += busiest->group_capacity *
8693 			    min(busiest->load_per_task,
8694 				busiest->avg_load - scaled_busy_load_per_task);
8695 	}
8696 
8697 	/* Amount of load we'd add */
8698 	if (busiest->avg_load * busiest->group_capacity <
8699 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8700 		tmp = (busiest->avg_load * busiest->group_capacity) /
8701 		      local->group_capacity;
8702 	} else {
8703 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8704 		      local->group_capacity;
8705 	}
8706 	capa_move += local->group_capacity *
8707 		    min(local->load_per_task, local->avg_load + tmp);
8708 	capa_move /= SCHED_CAPACITY_SCALE;
8709 
8710 	/* Move if we gain throughput */
8711 	if (capa_move > capa_now) {
8712 		env->imbalance = busiest->load_per_task;
8713 		return;
8714 	}
8715 
8716 	/* We can't see throughput improvement with the load-based
8717 	 * method, but it is possible depending upon group size and
8718 	 * capacity range that there might still be an underutilized
8719 	 * cpu available in an asymmetric capacity system. Do one last
8720 	 * check just in case.
8721 	 */
8722 	if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8723 		busiest->group_type == group_overloaded &&
8724 		busiest->sum_nr_running > busiest->group_weight &&
8725 		local->sum_nr_running < local->group_weight &&
8726 		local->group_capacity < busiest->group_capacity)
8727 		env->imbalance = busiest->load_per_task;
8728 }
8729 
8730 /**
8731  * calculate_imbalance - Calculate the amount of imbalance present within the
8732  *			 groups of a given sched_domain during load balance.
8733  * @env: load balance environment
8734  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8735  */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)8736 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8737 {
8738 	unsigned long max_pull, load_above_capacity = ~0UL;
8739 	struct sg_lb_stats *local, *busiest;
8740 
8741 	local = &sds->local_stat;
8742 	busiest = &sds->busiest_stat;
8743 
8744 	if (busiest->group_type == group_imbalanced) {
8745 		/*
8746 		 * In the group_imb case we cannot rely on group-wide averages
8747 		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8748 		 */
8749 		busiest->load_per_task =
8750 			min(busiest->load_per_task, sds->avg_load);
8751 	}
8752 
8753 	/*
8754 	 * Avg load of busiest sg can be less and avg load of local sg can
8755 	 * be greater than avg load across all sgs of sd because avg load
8756 	 * factors in sg capacity and sgs with smaller group_type are
8757 	 * skipped when updating the busiest sg:
8758 	 */
8759 	if (busiest->group_type != group_misfit_task &&
8760 	    (busiest->avg_load <= sds->avg_load ||
8761 	     local->avg_load >= sds->avg_load)) {
8762 		env->imbalance = 0;
8763 		return fix_small_imbalance(env, sds);
8764 	}
8765 
8766 	/*
8767 	 * If there aren't any idle CPUs, avoid creating some.
8768 	 */
8769 	if (busiest->group_type == group_overloaded &&
8770 	    local->group_type   == group_overloaded) {
8771 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8772 		if (load_above_capacity > busiest->group_capacity) {
8773 			load_above_capacity -= busiest->group_capacity;
8774 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8775 			load_above_capacity /= busiest->group_capacity;
8776 		} else
8777 			load_above_capacity = ~0UL;
8778 	}
8779 
8780 	/*
8781 	 * We're trying to get all the CPUs to the average_load, so we don't
8782 	 * want to push ourselves above the average load, nor do we wish to
8783 	 * reduce the max loaded CPU below the average load. At the same time,
8784 	 * we also don't want to reduce the group load below the group
8785 	 * capacity. Thus we look for the minimum possible imbalance.
8786 	 */
8787 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8788 
8789 	/* How much load to actually move to equalise the imbalance */
8790 	env->imbalance = min(
8791 		max_pull * busiest->group_capacity,
8792 		(sds->avg_load - local->avg_load) * local->group_capacity
8793 	) / SCHED_CAPACITY_SCALE;
8794 
8795 	/* Boost imbalance to allow misfit task to be balanced.
8796 	 * Always do this if we are doing a NEWLY_IDLE balance
8797 	 * on the assumption that any tasks we have must not be
8798 	 * long-running (and hence we cannot rely upon load).
8799 	 * However if we are not idle, we should assume the tasks
8800 	 * we have are longer running and not override load-based
8801 	 * calculations above unless we are sure that the local
8802 	 * group is underutilized.
8803 	 */
8804 	if (busiest->group_type == group_misfit_task &&
8805 		(env->idle == CPU_NEWLY_IDLE ||
8806 		local->sum_nr_running < local->group_weight)) {
8807 		env->imbalance = max_t(long, env->imbalance,
8808 				       busiest->group_misfit_task_load);
8809 	}
8810 
8811 	/*
8812 	 * if *imbalance is less than the average load per runnable task
8813 	 * there is no guarantee that any tasks will be moved so we'll have
8814 	 * a think about bumping its value to force at least one task to be
8815 	 * moved
8816 	 */
8817 	if (env->imbalance < busiest->load_per_task)
8818 		return fix_small_imbalance(env, sds);
8819 }
8820 
8821 /******* find_busiest_group() helpers end here *********************/
8822 
8823 /**
8824  * find_busiest_group - Returns the busiest group within the sched_domain
8825  * if there is an imbalance.
8826  *
8827  * Also calculates the amount of runnable load which should be moved
8828  * to restore balance.
8829  *
8830  * @env: The load balancing environment.
8831  *
8832  * Return:	- The busiest group if imbalance exists.
8833  */
find_busiest_group(struct lb_env * env)8834 static struct sched_group *find_busiest_group(struct lb_env *env)
8835 {
8836 	struct sg_lb_stats *local, *busiest;
8837 	struct sd_lb_stats sds;
8838 
8839 	init_sd_lb_stats(&sds);
8840 
8841 	/*
8842 	 * Compute the various statistics relavent for load balancing at
8843 	 * this level.
8844 	 */
8845 	update_sd_lb_stats(env, &sds);
8846 
8847 	if (sched_energy_enabled()) {
8848 		struct root_domain *rd = env->dst_rq->rd;
8849 		int out_balance = 1;
8850 
8851 		trace_android_rvh_find_busiest_group(sds.busiest, env->dst_rq,
8852 					&out_balance);
8853 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)
8854 					&& out_balance)
8855 			goto out_balanced;
8856 	}
8857 
8858 	local = &sds.local_stat;
8859 	busiest = &sds.busiest_stat;
8860 
8861 	/* ASYM feature bypasses nice load balance check */
8862 	if (check_asym_packing(env, &sds))
8863 		return sds.busiest;
8864 
8865 	/* There is no busy sibling group to pull tasks from */
8866 	if (!sds.busiest || busiest->sum_nr_running == 0)
8867 		goto out_balanced;
8868 
8869 	/* XXX broken for overlapping NUMA groups */
8870 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8871 						/ sds.total_capacity;
8872 
8873 	/*
8874 	 * If the busiest group is imbalanced the below checks don't
8875 	 * work because they assume all things are equal, which typically
8876 	 * isn't true due to cpus_ptr constraints and the like.
8877 	 */
8878 	if (busiest->group_type == group_imbalanced)
8879 		goto force_balance;
8880 
8881 	/*
8882 	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8883 	 * capacities from resulting in underutilization due to avg_load.
8884 	 */
8885 	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8886 	    busiest->group_no_capacity)
8887 		goto force_balance;
8888 
8889 	/* Misfit tasks should be dealt with regardless of the avg load */
8890 	if (busiest->group_type == group_misfit_task)
8891 		goto force_balance;
8892 
8893 	/*
8894 	 * If the local group is busier than the selected busiest group
8895 	 * don't try and pull any tasks.
8896 	 */
8897 	if (local->avg_load >= busiest->avg_load)
8898 		goto out_balanced;
8899 
8900 	/*
8901 	 * Don't pull any tasks if this group is already above the domain
8902 	 * average load.
8903 	 */
8904 	if (local->avg_load >= sds.avg_load)
8905 		goto out_balanced;
8906 
8907 	if (env->idle == CPU_IDLE) {
8908 		/*
8909 		 * This CPU is idle. If the busiest group is not overloaded
8910 		 * and there is no imbalance between this and busiest group
8911 		 * wrt idle CPUs, it is balanced. The imbalance becomes
8912 		 * significant if the diff is greater than 1 otherwise we
8913 		 * might end up to just move the imbalance on another group
8914 		 */
8915 		if ((busiest->group_type != group_overloaded) &&
8916 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8917 			goto out_balanced;
8918 	} else {
8919 		/*
8920 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8921 		 * imbalance_pct to be conservative.
8922 		 */
8923 		if (100 * busiest->avg_load <=
8924 				env->sd->imbalance_pct * local->avg_load)
8925 			goto out_balanced;
8926 	}
8927 
8928 force_balance:
8929 	/* Looks like there is an imbalance. Compute it */
8930 	env->src_grp_type = busiest->group_type;
8931 	calculate_imbalance(env, &sds);
8932 	return env->imbalance ? sds.busiest : NULL;
8933 
8934 out_balanced:
8935 	env->imbalance = 0;
8936 	return NULL;
8937 }
8938 
8939 /*
8940  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8941  */
find_busiest_queue(struct lb_env * env,struct sched_group * group)8942 static struct rq *find_busiest_queue(struct lb_env *env,
8943 				     struct sched_group *group)
8944 {
8945 	struct rq *busiest = NULL, *rq;
8946 	unsigned long busiest_load = 0, busiest_capacity = 1;
8947 	int i;
8948 
8949 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8950 		unsigned long capacity, load;
8951 		enum fbq_type rt;
8952 
8953 		rq = cpu_rq(i);
8954 		rt = fbq_classify_rq(rq);
8955 
8956 		/*
8957 		 * We classify groups/runqueues into three groups:
8958 		 *  - regular: there are !numa tasks
8959 		 *  - remote:  there are numa tasks that run on the 'wrong' node
8960 		 *  - all:     there is no distinction
8961 		 *
8962 		 * In order to avoid migrating ideally placed numa tasks,
8963 		 * ignore those when there's better options.
8964 		 *
8965 		 * If we ignore the actual busiest queue to migrate another
8966 		 * task, the next balance pass can still reduce the busiest
8967 		 * queue by moving tasks around inside the node.
8968 		 *
8969 		 * If we cannot move enough load due to this classification
8970 		 * the next pass will adjust the group classification and
8971 		 * allow migration of more tasks.
8972 		 *
8973 		 * Both cases only affect the total convergence complexity.
8974 		 */
8975 		if (rt > env->fbq_type)
8976 			continue;
8977 
8978 		/*
8979 		 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8980 		 * seek the "biggest" misfit task.
8981 		 */
8982 		if (env->src_grp_type == group_misfit_task) {
8983 			if (rq->misfit_task_load > busiest_load) {
8984 				busiest_load = rq->misfit_task_load;
8985 				busiest = rq;
8986 			}
8987 
8988 			continue;
8989 		}
8990 
8991 		capacity = capacity_of(i);
8992 
8993 		/*
8994 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8995 		 * eventually lead to active_balancing high->low capacity.
8996 		 * Higher per-CPU capacity is considered better than balancing
8997 		 * average load.
8998 		 */
8999 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9000 		    capacity_of(env->dst_cpu) < capacity &&
9001 		    rq->nr_running == 1)
9002 			continue;
9003 
9004 		load = cpu_runnable_load(rq);
9005 
9006 		/*
9007 		 * When comparing with imbalance, use cpu_runnable_load()
9008 		 * which is not scaled with the CPU capacity.
9009 		 */
9010 
9011 		if (rq->nr_running == 1 && load > env->imbalance &&
9012 		    !check_cpu_capacity(rq, env->sd))
9013 			continue;
9014 
9015 		/*
9016 		 * For the load comparisons with the other CPU's, consider
9017 		 * the cpu_runnable_load() scaled with the CPU capacity, so
9018 		 * that the load can be moved away from the CPU that is
9019 		 * potentially running at a lower capacity.
9020 		 *
9021 		 * Thus we're looking for max(load_i / capacity_i), crosswise
9022 		 * multiplication to rid ourselves of the division works out
9023 		 * to: load_i * capacity_j > load_j * capacity_i;  where j is
9024 		 * our previous maximum.
9025 		 */
9026 		if (load * busiest_capacity > busiest_load * capacity) {
9027 			busiest_load = load;
9028 			busiest_capacity = capacity;
9029 			busiest = rq;
9030 		}
9031 	}
9032 
9033 	return busiest;
9034 }
9035 
9036 /*
9037  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9038  * so long as it is large enough.
9039  */
9040 #define MAX_PINNED_INTERVAL	512
9041 
9042 static inline bool
asym_active_balance(struct lb_env * env)9043 asym_active_balance(struct lb_env *env)
9044 {
9045 	/*
9046 	 * ASYM_PACKING needs to force migrate tasks from busy but
9047 	 * lower priority CPUs in order to pack all tasks in the
9048 	 * highest priority CPUs.
9049 	 */
9050 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9051 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
9052 }
9053 
9054 static inline bool
voluntary_active_balance(struct lb_env * env)9055 voluntary_active_balance(struct lb_env *env)
9056 {
9057 	struct sched_domain *sd = env->sd;
9058 
9059 	if (asym_active_balance(env))
9060 		return 1;
9061 
9062 	/*
9063 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9064 	 * It's worth migrating the task if the src_cpu's capacity is reduced
9065 	 * because of other sched_class or IRQs if more capacity stays
9066 	 * available on dst_cpu.
9067 	 */
9068 	if ((env->idle != CPU_NOT_IDLE) &&
9069 	    (env->src_rq->cfs.h_nr_running == 1)) {
9070 		if ((check_cpu_capacity(env->src_rq, sd)) &&
9071 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9072 			return 1;
9073 	}
9074 
9075 	if (env->src_grp_type == group_misfit_task)
9076 		return 1;
9077 
9078 	return 0;
9079 }
9080 
need_active_balance(struct lb_env * env)9081 static int need_active_balance(struct lb_env *env)
9082 {
9083 	struct sched_domain *sd = env->sd;
9084 
9085 	if (voluntary_active_balance(env))
9086 		return 1;
9087 
9088 	if (env->src_grp_type == group_overloaded && env->src_rq->misfit_task_load)
9089 		return 1;
9090 
9091 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9092 }
9093 
9094 static int active_load_balance_cpu_stop(void *data);
9095 
should_we_balance(struct lb_env * env)9096 static int should_we_balance(struct lb_env *env)
9097 {
9098 	struct sched_group *sg = env->sd->groups;
9099 	int cpu, balance_cpu = -1;
9100 
9101 	/*
9102 	 * Ensure the balancing environment is consistent; can happen
9103 	 * when the softirq triggers 'during' hotplug.
9104 	 */
9105 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9106 		return 0;
9107 
9108 	/*
9109 	 * In the newly idle case, we will allow all the CPUs
9110 	 * to do the newly idle load balance.
9111 	 */
9112 	if (env->idle == CPU_NEWLY_IDLE)
9113 		return 1;
9114 
9115 	/* Try to find first idle CPU */
9116 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9117 		if (!idle_cpu(cpu))
9118 			continue;
9119 
9120 		balance_cpu = cpu;
9121 		break;
9122 	}
9123 
9124 	if (balance_cpu == -1)
9125 		balance_cpu = group_balance_cpu(sg);
9126 
9127 	/*
9128 	 * First idle CPU or the first CPU(busiest) in this sched group
9129 	 * is eligible for doing load balancing at this and above domains.
9130 	 */
9131 	return balance_cpu == env->dst_cpu;
9132 }
9133 
9134 /*
9135  * Check this_cpu to ensure it is balanced within domain. Attempt to move
9136  * tasks if there is an imbalance.
9137  */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)9138 static int load_balance(int this_cpu, struct rq *this_rq,
9139 			struct sched_domain *sd, enum cpu_idle_type idle,
9140 			int *continue_balancing)
9141 {
9142 	int ld_moved, cur_ld_moved, active_balance = 0;
9143 	struct sched_domain *sd_parent = sd->parent;
9144 	struct sched_group *group;
9145 	struct rq *busiest;
9146 	struct rq_flags rf;
9147 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9148 
9149 	struct lb_env env = {
9150 		.sd		= sd,
9151 		.dst_cpu	= this_cpu,
9152 		.dst_rq		= this_rq,
9153 		.dst_grpmask    = group_balance_mask(sd->groups),
9154 		.idle		= idle,
9155 		.loop_break	= sched_nr_migrate_break,
9156 		.cpus		= cpus,
9157 		.fbq_type	= all,
9158 		.tasks		= LIST_HEAD_INIT(env.tasks),
9159 	};
9160 
9161 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9162 
9163 	schedstat_inc(sd->lb_count[idle]);
9164 
9165 redo:
9166 	if (!should_we_balance(&env)) {
9167 		*continue_balancing = 0;
9168 		goto out_balanced;
9169 	}
9170 
9171 	group = find_busiest_group(&env);
9172 	if (!group) {
9173 		schedstat_inc(sd->lb_nobusyg[idle]);
9174 		goto out_balanced;
9175 	}
9176 
9177 	busiest = find_busiest_queue(&env, group);
9178 	if (!busiest) {
9179 		schedstat_inc(sd->lb_nobusyq[idle]);
9180 		goto out_balanced;
9181 	}
9182 
9183 	BUG_ON(busiest == env.dst_rq);
9184 
9185 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9186 
9187 	env.src_cpu = busiest->cpu;
9188 	env.src_rq = busiest;
9189 
9190 	ld_moved = 0;
9191 	if (busiest->nr_running > 1) {
9192 		/*
9193 		 * Attempt to move tasks. If find_busiest_group has found
9194 		 * an imbalance but busiest->nr_running <= 1, the group is
9195 		 * still unbalanced. ld_moved simply stays zero, so it is
9196 		 * correctly treated as an imbalance.
9197 		 */
9198 		env.flags |= LBF_ALL_PINNED;
9199 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9200 
9201 more_balance:
9202 		rq_lock_irqsave(busiest, &rf);
9203 		update_rq_clock(busiest);
9204 
9205 		/*
9206 		 * cur_ld_moved - load moved in current iteration
9207 		 * ld_moved     - cumulative load moved across iterations
9208 		 */
9209 		cur_ld_moved = detach_tasks(&env);
9210 
9211 		/*
9212 		 * We've detached some tasks from busiest_rq. Every
9213 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9214 		 * unlock busiest->lock, and we are able to be sure
9215 		 * that nobody can manipulate the tasks in parallel.
9216 		 * See task_rq_lock() family for the details.
9217 		 */
9218 
9219 		rq_unlock(busiest, &rf);
9220 
9221 		if (cur_ld_moved) {
9222 			attach_tasks(&env);
9223 			ld_moved += cur_ld_moved;
9224 		}
9225 
9226 		local_irq_restore(rf.flags);
9227 
9228 		if (env.flags & LBF_NEED_BREAK) {
9229 			env.flags &= ~LBF_NEED_BREAK;
9230 			goto more_balance;
9231 		}
9232 
9233 		/*
9234 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9235 		 * us and move them to an alternate dst_cpu in our sched_group
9236 		 * where they can run. The upper limit on how many times we
9237 		 * iterate on same src_cpu is dependent on number of CPUs in our
9238 		 * sched_group.
9239 		 *
9240 		 * This changes load balance semantics a bit on who can move
9241 		 * load to a given_cpu. In addition to the given_cpu itself
9242 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9243 		 * nohz-idle), we now have balance_cpu in a position to move
9244 		 * load to given_cpu. In rare situations, this may cause
9245 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9246 		 * _independently_ and at _same_ time to move some load to
9247 		 * given_cpu) causing exceess load to be moved to given_cpu.
9248 		 * This however should not happen so much in practice and
9249 		 * moreover subsequent load balance cycles should correct the
9250 		 * excess load moved.
9251 		 */
9252 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9253 
9254 			/* Prevent to re-select dst_cpu via env's CPUs */
9255 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
9256 
9257 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
9258 			env.dst_cpu	 = env.new_dst_cpu;
9259 			env.flags	&= ~LBF_DST_PINNED;
9260 			env.loop	 = 0;
9261 			env.loop_break	 = sched_nr_migrate_break;
9262 
9263 			/*
9264 			 * Go back to "more_balance" rather than "redo" since we
9265 			 * need to continue with same src_cpu.
9266 			 */
9267 			goto more_balance;
9268 		}
9269 
9270 		/*
9271 		 * We failed to reach balance because of affinity.
9272 		 */
9273 		if (sd_parent) {
9274 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9275 
9276 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9277 				*group_imbalance = 1;
9278 		}
9279 
9280 		/* All tasks on this runqueue were pinned by CPU affinity */
9281 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
9282 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
9283 			/*
9284 			 * Attempting to continue load balancing at the current
9285 			 * sched_domain level only makes sense if there are
9286 			 * active CPUs remaining as possible busiest CPUs to
9287 			 * pull load from which are not contained within the
9288 			 * destination group that is receiving any migrated
9289 			 * load.
9290 			 */
9291 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
9292 				env.loop = 0;
9293 				env.loop_break = sched_nr_migrate_break;
9294 				goto redo;
9295 			}
9296 			goto out_all_pinned;
9297 		}
9298 	}
9299 
9300 	if (!ld_moved) {
9301 		schedstat_inc(sd->lb_failed[idle]);
9302 		/*
9303 		 * Increment the failure counter only on periodic balance.
9304 		 * We do not want newidle balance, which can be very
9305 		 * frequent, pollute the failure counter causing
9306 		 * excessive cache_hot migrations and active balances.
9307 		 */
9308 		if (idle != CPU_NEWLY_IDLE)
9309 			if (env.src_grp_nr_running > 1)
9310 				sd->nr_balance_failed++;
9311 
9312 		if (need_active_balance(&env)) {
9313 			unsigned long flags;
9314 
9315 			raw_spin_lock_irqsave(&busiest->lock, flags);
9316 
9317 			/*
9318 			 * Don't kick the active_load_balance_cpu_stop,
9319 			 * if the curr task on busiest CPU can't be
9320 			 * moved to this_cpu:
9321 			 */
9322 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9323 				raw_spin_unlock_irqrestore(&busiest->lock,
9324 							    flags);
9325 				env.flags |= LBF_ALL_PINNED;
9326 				goto out_one_pinned;
9327 			}
9328 
9329 			/*
9330 			 * ->active_balance synchronizes accesses to
9331 			 * ->active_balance_work.  Once set, it's cleared
9332 			 * only after active load balance is finished.
9333 			 */
9334 			if (!busiest->active_balance) {
9335 				busiest->active_balance = 1;
9336 				busiest->push_cpu = this_cpu;
9337 				active_balance = 1;
9338 			}
9339 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
9340 
9341 			if (active_balance) {
9342 				stop_one_cpu_nowait(cpu_of(busiest),
9343 					active_load_balance_cpu_stop, busiest,
9344 					&busiest->active_balance_work);
9345 			}
9346 
9347 			/* We've kicked active balancing, force task migration. */
9348 			sd->nr_balance_failed = sd->cache_nice_tries+1;
9349 		}
9350 	} else
9351 		sd->nr_balance_failed = 0;
9352 
9353 	if (likely(!active_balance) || voluntary_active_balance(&env)) {
9354 		/* We were unbalanced, so reset the balancing interval */
9355 		sd->balance_interval = sd->min_interval;
9356 	} else {
9357 		/*
9358 		 * If we've begun active balancing, start to back off. This
9359 		 * case may not be covered by the all_pinned logic if there
9360 		 * is only 1 task on the busy runqueue (because we don't call
9361 		 * detach_tasks).
9362 		 */
9363 		if (sd->balance_interval < sd->max_interval)
9364 			sd->balance_interval *= 2;
9365 	}
9366 
9367 	goto out;
9368 
9369 out_balanced:
9370 	/*
9371 	 * We reach balance although we may have faced some affinity
9372 	 * constraints. Clear the imbalance flag only if other tasks got
9373 	 * a chance to move and fix the imbalance.
9374 	 */
9375 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9376 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9377 
9378 		if (*group_imbalance)
9379 			*group_imbalance = 0;
9380 	}
9381 
9382 out_all_pinned:
9383 	/*
9384 	 * We reach balance because all tasks are pinned at this level so
9385 	 * we can't migrate them. Let the imbalance flag set so parent level
9386 	 * can try to migrate them.
9387 	 */
9388 	schedstat_inc(sd->lb_balanced[idle]);
9389 
9390 	sd->nr_balance_failed = 0;
9391 
9392 out_one_pinned:
9393 	ld_moved = 0;
9394 
9395 	/*
9396 	 * newidle_balance() disregards balance intervals, so we could
9397 	 * repeatedly reach this code, which would lead to balance_interval
9398 	 * skyrocketting in a short amount of time. Skip the balance_interval
9399 	 * increase logic to avoid that.
9400 	 */
9401 	if (env.idle == CPU_NEWLY_IDLE)
9402 		goto out;
9403 
9404 	/* tune up the balancing interval */
9405 	if ((env.flags & LBF_ALL_PINNED &&
9406 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
9407 	    sd->balance_interval < sd->max_interval)
9408 		sd->balance_interval *= 2;
9409 out:
9410 	return ld_moved;
9411 }
9412 
9413 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)9414 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9415 {
9416 	unsigned long interval = sd->balance_interval;
9417 
9418 	if (cpu_busy)
9419 		interval *= sd->busy_factor;
9420 
9421 	/* scale ms to jiffies */
9422 	interval = msecs_to_jiffies(interval);
9423 	interval = clamp(interval, 1UL, max_load_balance_interval);
9424 
9425 	return interval;
9426 }
9427 
9428 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)9429 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9430 {
9431 	unsigned long interval, next;
9432 
9433 	/* used by idle balance, so cpu_busy = 0 */
9434 	interval = get_sd_balance_interval(sd, 0);
9435 	next = sd->last_balance + interval;
9436 
9437 	if (time_after(*next_balance, next))
9438 		*next_balance = next;
9439 }
9440 
9441 /*
9442  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9443  * running tasks off the busiest CPU onto idle CPUs. It requires at
9444  * least 1 task to be running on each physical CPU where possible, and
9445  * avoids physical / logical imbalances.
9446  */
active_load_balance_cpu_stop(void * data)9447 static int active_load_balance_cpu_stop(void *data)
9448 {
9449 	struct rq *busiest_rq = data;
9450 	int busiest_cpu = cpu_of(busiest_rq);
9451 	int target_cpu = busiest_rq->push_cpu;
9452 	struct rq *target_rq = cpu_rq(target_cpu);
9453 	struct sched_domain *sd;
9454 	struct task_struct *p = NULL;
9455 	struct rq_flags rf;
9456 
9457 	rq_lock_irq(busiest_rq, &rf);
9458 	/*
9459 	 * Between queueing the stop-work and running it is a hole in which
9460 	 * CPUs can become inactive. We should not move tasks from or to
9461 	 * inactive CPUs.
9462 	 */
9463 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9464 		goto out_unlock;
9465 
9466 	/* Make sure the requested CPU hasn't gone down in the meantime: */
9467 	if (unlikely(busiest_cpu != smp_processor_id() ||
9468 		     !busiest_rq->active_balance))
9469 		goto out_unlock;
9470 
9471 	/* Is there any task to move? */
9472 	if (busiest_rq->nr_running <= 1)
9473 		goto out_unlock;
9474 
9475 	/*
9476 	 * This condition is "impossible", if it occurs
9477 	 * we need to fix it. Originally reported by
9478 	 * Bjorn Helgaas on a 128-CPU setup.
9479 	 */
9480 	BUG_ON(busiest_rq == target_rq);
9481 
9482 	/* Search for an sd spanning us and the target CPU. */
9483 	rcu_read_lock();
9484 	for_each_domain(target_cpu, sd) {
9485 		if ((sd->flags & SD_LOAD_BALANCE) &&
9486 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9487 				break;
9488 	}
9489 
9490 	if (likely(sd)) {
9491 		struct lb_env env = {
9492 			.sd		= sd,
9493 			.dst_cpu	= target_cpu,
9494 			.dst_rq		= target_rq,
9495 			.src_cpu	= busiest_rq->cpu,
9496 			.src_rq		= busiest_rq,
9497 			.idle		= CPU_IDLE,
9498 			/*
9499 			 * can_migrate_task() doesn't need to compute new_dst_cpu
9500 			 * for active balancing. Since we have CPU_IDLE, but no
9501 			 * @dst_grpmask we need to make that test go away with lying
9502 			 * about DST_PINNED.
9503 			 */
9504 			.flags		= LBF_DST_PINNED,
9505 		};
9506 
9507 		schedstat_inc(sd->alb_count);
9508 		update_rq_clock(busiest_rq);
9509 
9510 		p = detach_one_task(&env);
9511 		if (p) {
9512 			schedstat_inc(sd->alb_pushed);
9513 			/* Active balancing done, reset the failure counter. */
9514 			sd->nr_balance_failed = 0;
9515 		} else {
9516 			schedstat_inc(sd->alb_failed);
9517 		}
9518 	}
9519 	rcu_read_unlock();
9520 out_unlock:
9521 	busiest_rq->active_balance = 0;
9522 	rq_unlock(busiest_rq, &rf);
9523 
9524 	if (p)
9525 		attach_one_task(target_rq, p);
9526 
9527 	local_irq_enable();
9528 
9529 	return 0;
9530 }
9531 
9532 static DEFINE_SPINLOCK(balancing);
9533 
9534 /*
9535  * Scale the max load_balance interval with the number of CPUs in the system.
9536  * This trades load-balance latency on larger machines for less cross talk.
9537  */
update_max_interval(void)9538 void update_max_interval(void)
9539 {
9540 	max_load_balance_interval = HZ*num_online_cpus()/10;
9541 }
9542 
9543 /*
9544  * It checks each scheduling domain to see if it is due to be balanced,
9545  * and initiates a balancing operation if so.
9546  *
9547  * Balancing parameters are set up in init_sched_domains.
9548  */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)9549 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9550 {
9551 	int continue_balancing = 1;
9552 	int cpu = rq->cpu;
9553 	unsigned long interval;
9554 	struct sched_domain *sd;
9555 	/* Earliest time when we have to do rebalance again */
9556 	unsigned long next_balance = jiffies + 60*HZ;
9557 	int update_next_balance = 0;
9558 	int need_serialize, need_decay = 0;
9559 	u64 max_cost = 0;
9560 
9561 	rcu_read_lock();
9562 	for_each_domain(cpu, sd) {
9563 		/*
9564 		 * Decay the newidle max times here because this is a regular
9565 		 * visit to all the domains. Decay ~1% per second.
9566 		 */
9567 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9568 			sd->max_newidle_lb_cost =
9569 				(sd->max_newidle_lb_cost * 253) / 256;
9570 			sd->next_decay_max_lb_cost = jiffies + HZ;
9571 			need_decay = 1;
9572 		}
9573 		max_cost += sd->max_newidle_lb_cost;
9574 
9575 		if (!(sd->flags & SD_LOAD_BALANCE))
9576 			continue;
9577 
9578 		/*
9579 		 * Stop the load balance at this level. There is another
9580 		 * CPU in our sched group which is doing load balancing more
9581 		 * actively.
9582 		 */
9583 		if (!continue_balancing) {
9584 			if (need_decay)
9585 				continue;
9586 			break;
9587 		}
9588 
9589 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9590 
9591 		need_serialize = sd->flags & SD_SERIALIZE;
9592 		if (need_serialize) {
9593 			if (!spin_trylock(&balancing))
9594 				goto out;
9595 		}
9596 
9597 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9598 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9599 				/*
9600 				 * The LBF_DST_PINNED logic could have changed
9601 				 * env->dst_cpu, so we can't know our idle
9602 				 * state even if we migrated tasks. Update it.
9603 				 */
9604 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9605 			}
9606 			sd->last_balance = jiffies;
9607 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9608 		}
9609 		if (need_serialize)
9610 			spin_unlock(&balancing);
9611 out:
9612 		if (time_after(next_balance, sd->last_balance + interval)) {
9613 			next_balance = sd->last_balance + interval;
9614 			update_next_balance = 1;
9615 		}
9616 	}
9617 	if (need_decay) {
9618 		/*
9619 		 * Ensure the rq-wide value also decays but keep it at a
9620 		 * reasonable floor to avoid funnies with rq->avg_idle.
9621 		 */
9622 		rq->max_idle_balance_cost =
9623 			max((u64)sysctl_sched_migration_cost, max_cost);
9624 	}
9625 	rcu_read_unlock();
9626 
9627 	/*
9628 	 * next_balance will be updated only when there is a need.
9629 	 * When the cpu is attached to null domain for ex, it will not be
9630 	 * updated.
9631 	 */
9632 	if (likely(update_next_balance)) {
9633 		rq->next_balance = next_balance;
9634 
9635 #ifdef CONFIG_NO_HZ_COMMON
9636 		/*
9637 		 * If this CPU has been elected to perform the nohz idle
9638 		 * balance. Other idle CPUs have already rebalanced with
9639 		 * nohz_idle_balance() and nohz.next_balance has been
9640 		 * updated accordingly. This CPU is now running the idle load
9641 		 * balance for itself and we need to update the
9642 		 * nohz.next_balance accordingly.
9643 		 */
9644 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9645 			nohz.next_balance = rq->next_balance;
9646 #endif
9647 	}
9648 }
9649 
on_null_domain(struct rq * rq)9650 static inline int on_null_domain(struct rq *rq)
9651 {
9652 	return unlikely(!rcu_dereference_sched(rq->sd));
9653 }
9654 
9655 #ifdef CONFIG_NO_HZ_COMMON
9656 /*
9657  * idle load balancing details
9658  * - When one of the busy CPUs notice that there may be an idle rebalancing
9659  *   needed, they will kick the idle load balancer, which then does idle
9660  *   load balancing for all the idle CPUs.
9661  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9662  *   anywhere yet.
9663  */
9664 
find_new_ilb(void)9665 static inline int find_new_ilb(void)
9666 {
9667 	int ilb;
9668 
9669 	for_each_cpu_and(ilb, nohz.idle_cpus_mask,
9670 			      housekeeping_cpumask(HK_FLAG_MISC)) {
9671 		if (idle_cpu(ilb))
9672 			return ilb;
9673 	}
9674 
9675 	return nr_cpu_ids;
9676 }
9677 
9678 /*
9679  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
9680  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
9681  */
kick_ilb(unsigned int flags)9682 static void kick_ilb(unsigned int flags)
9683 {
9684 	int ilb_cpu;
9685 
9686 	/*
9687 	 * Increase nohz.next_balance only when if full ilb is triggered but
9688 	 * not if we only update stats.
9689 	 */
9690 	if (flags & NOHZ_BALANCE_KICK)
9691 		nohz.next_balance = jiffies+1;
9692 
9693 	ilb_cpu = find_new_ilb();
9694 
9695 	if (ilb_cpu >= nr_cpu_ids)
9696 		return;
9697 
9698 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9699 	if (flags & NOHZ_KICK_MASK)
9700 		return;
9701 
9702 	/*
9703 	 * Use smp_send_reschedule() instead of resched_cpu().
9704 	 * This way we generate a sched IPI on the target CPU which
9705 	 * is idle. And the softirq performing nohz idle load balance
9706 	 * will be run before returning from the IPI.
9707 	 */
9708 	smp_send_reschedule(ilb_cpu);
9709 }
9710 
9711 /*
9712  * Current decision point for kicking the idle load balancer in the presence
9713  * of idle CPUs in the system.
9714  */
nohz_balancer_kick(struct rq * rq)9715 static void nohz_balancer_kick(struct rq *rq)
9716 {
9717 	unsigned long now = jiffies;
9718 	struct sched_domain_shared *sds;
9719 	struct sched_domain *sd;
9720 	int nr_busy, i, cpu = rq->cpu;
9721 	unsigned int flags = 0;
9722 
9723 	if (unlikely(rq->idle_balance))
9724 		return;
9725 
9726 	/*
9727 	 * We may be recently in ticked or tickless idle mode. At the first
9728 	 * busy tick after returning from idle, we will update the busy stats.
9729 	 */
9730 	nohz_balance_exit_idle(rq);
9731 
9732 	/*
9733 	 * None are in tickless mode and hence no need for NOHZ idle load
9734 	 * balancing.
9735 	 */
9736 	if (likely(!atomic_read(&nohz.nr_cpus)))
9737 		return;
9738 
9739 	if (READ_ONCE(nohz.has_blocked) &&
9740 	    time_after(now, READ_ONCE(nohz.next_blocked)))
9741 		flags = NOHZ_STATS_KICK;
9742 
9743 	if (time_before(now, nohz.next_balance))
9744 		goto out;
9745 
9746 	if (rq->nr_running >= 2) {
9747 		flags = NOHZ_KICK_MASK;
9748 		goto out;
9749 	}
9750 
9751 	rcu_read_lock();
9752 
9753 	sd = rcu_dereference(rq->sd);
9754 	if (sd) {
9755 		/*
9756 		 * If there's a CFS task and the current CPU has reduced
9757 		 * capacity; kick the ILB to see if there's a better CPU to run
9758 		 * on.
9759 		 */
9760 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
9761 			flags = NOHZ_KICK_MASK;
9762 			goto unlock;
9763 		}
9764 	}
9765 
9766 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
9767 	if (sd) {
9768 		/*
9769 		 * When ASYM_PACKING; see if there's a more preferred CPU
9770 		 * currently idle; in which case, kick the ILB to move tasks
9771 		 * around.
9772 		 */
9773 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
9774 			if (sched_asym_prefer(i, cpu)) {
9775 				flags = NOHZ_KICK_MASK;
9776 				goto unlock;
9777 			}
9778 		}
9779 	}
9780 
9781 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
9782 	if (sd) {
9783 		/*
9784 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
9785 		 * to run the misfit task on.
9786 		 */
9787 		if (check_misfit_status(rq, sd)) {
9788 			flags = NOHZ_KICK_MASK;
9789 			goto unlock;
9790 		}
9791 
9792 		/*
9793 		 * For asymmetric systems, we do not want to nicely balance
9794 		 * cache use, instead we want to embrace asymmetry and only
9795 		 * ensure tasks have enough CPU capacity.
9796 		 *
9797 		 * Skip the LLC logic because it's not relevant in that case.
9798 		 */
9799 		goto unlock;
9800 	}
9801 
9802 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9803 	if (sds) {
9804 		/*
9805 		 * If there is an imbalance between LLC domains (IOW we could
9806 		 * increase the overall cache use), we need some less-loaded LLC
9807 		 * domain to pull some load. Likewise, we may need to spread
9808 		 * load within the current LLC domain (e.g. packed SMT cores but
9809 		 * other CPUs are idle). We can't really know from here how busy
9810 		 * the others are - so just get a nohz balance going if it looks
9811 		 * like this LLC domain has tasks we could move.
9812 		 */
9813 		nr_busy = atomic_read(&sds->nr_busy_cpus);
9814 		if (nr_busy > 1) {
9815 			flags = NOHZ_KICK_MASK;
9816 			goto unlock;
9817 		}
9818 	}
9819 unlock:
9820 	rcu_read_unlock();
9821 out:
9822 	if (flags)
9823 		kick_ilb(flags);
9824 }
9825 
set_cpu_sd_state_busy(int cpu)9826 static void set_cpu_sd_state_busy(int cpu)
9827 {
9828 	struct sched_domain *sd;
9829 
9830 	rcu_read_lock();
9831 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9832 
9833 	if (!sd || !sd->nohz_idle)
9834 		goto unlock;
9835 	sd->nohz_idle = 0;
9836 
9837 	atomic_inc(&sd->shared->nr_busy_cpus);
9838 unlock:
9839 	rcu_read_unlock();
9840 }
9841 
nohz_balance_exit_idle(struct rq * rq)9842 void nohz_balance_exit_idle(struct rq *rq)
9843 {
9844 	SCHED_WARN_ON(rq != this_rq());
9845 
9846 	if (likely(!rq->nohz_tick_stopped))
9847 		return;
9848 
9849 	rq->nohz_tick_stopped = 0;
9850 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9851 	atomic_dec(&nohz.nr_cpus);
9852 
9853 	set_cpu_sd_state_busy(rq->cpu);
9854 }
9855 
set_cpu_sd_state_idle(int cpu)9856 static void set_cpu_sd_state_idle(int cpu)
9857 {
9858 	struct sched_domain *sd;
9859 
9860 	rcu_read_lock();
9861 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9862 
9863 	if (!sd || sd->nohz_idle)
9864 		goto unlock;
9865 	sd->nohz_idle = 1;
9866 
9867 	atomic_dec(&sd->shared->nr_busy_cpus);
9868 unlock:
9869 	rcu_read_unlock();
9870 }
9871 
9872 /*
9873  * This routine will record that the CPU is going idle with tick stopped.
9874  * This info will be used in performing idle load balancing in the future.
9875  */
nohz_balance_enter_idle(int cpu)9876 void nohz_balance_enter_idle(int cpu)
9877 {
9878 	struct rq *rq = cpu_rq(cpu);
9879 
9880 	SCHED_WARN_ON(cpu != smp_processor_id());
9881 
9882 	/* If this CPU is going down, then nothing needs to be done: */
9883 	if (!cpu_active(cpu))
9884 		return;
9885 
9886 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9887 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9888 		return;
9889 
9890 	/*
9891 	 * Can be set safely without rq->lock held
9892 	 * If a clear happens, it will have evaluated last additions because
9893 	 * rq->lock is held during the check and the clear
9894 	 */
9895 	rq->has_blocked_load = 1;
9896 
9897 	/*
9898 	 * The tick is still stopped but load could have been added in the
9899 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
9900 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9901 	 * of nohz.has_blocked can only happen after checking the new load
9902 	 */
9903 	if (rq->nohz_tick_stopped)
9904 		goto out;
9905 
9906 	/* If we're a completely isolated CPU, we don't play: */
9907 	if (on_null_domain(rq))
9908 		return;
9909 
9910 	rq->nohz_tick_stopped = 1;
9911 
9912 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9913 	atomic_inc(&nohz.nr_cpus);
9914 
9915 	/*
9916 	 * Ensures that if nohz_idle_balance() fails to observe our
9917 	 * @idle_cpus_mask store, it must observe the @has_blocked
9918 	 * store.
9919 	 */
9920 	smp_mb__after_atomic();
9921 
9922 	set_cpu_sd_state_idle(cpu);
9923 
9924 out:
9925 	/*
9926 	 * Each time a cpu enter idle, we assume that it has blocked load and
9927 	 * enable the periodic update of the load of idle cpus
9928 	 */
9929 	WRITE_ONCE(nohz.has_blocked, 1);
9930 }
9931 
9932 /*
9933  * Internal function that runs load balance for all idle cpus. The load balance
9934  * can be a simple update of blocked load or a complete load balance with
9935  * tasks movement depending of flags.
9936  * The function returns false if the loop has stopped before running
9937  * through all idle CPUs.
9938  */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags,enum cpu_idle_type idle)9939 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9940 			       enum cpu_idle_type idle)
9941 {
9942 	/* Earliest time when we have to do rebalance again */
9943 	unsigned long now = jiffies;
9944 	unsigned long next_balance = now + 60*HZ;
9945 	bool has_blocked_load = false;
9946 	int update_next_balance = 0;
9947 	int this_cpu = this_rq->cpu;
9948 	int balance_cpu;
9949 	int ret = false;
9950 	struct rq *rq;
9951 
9952 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9953 
9954 	/*
9955 	 * We assume there will be no idle load after this update and clear
9956 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9957 	 * set the has_blocked flag and trig another update of idle load.
9958 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9959 	 * setting the flag, we are sure to not clear the state and not
9960 	 * check the load of an idle cpu.
9961 	 */
9962 	WRITE_ONCE(nohz.has_blocked, 0);
9963 
9964 	/*
9965 	 * Ensures that if we miss the CPU, we must see the has_blocked
9966 	 * store from nohz_balance_enter_idle().
9967 	 */
9968 	smp_mb();
9969 
9970 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9971 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9972 			continue;
9973 
9974 		/*
9975 		 * If this CPU gets work to do, stop the load balancing
9976 		 * work being done for other CPUs. Next load
9977 		 * balancing owner will pick it up.
9978 		 */
9979 		if (need_resched()) {
9980 			has_blocked_load = true;
9981 			goto abort;
9982 		}
9983 
9984 		rq = cpu_rq(balance_cpu);
9985 
9986 		has_blocked_load |= update_nohz_stats(rq, true);
9987 
9988 		/*
9989 		 * If time for next balance is due,
9990 		 * do the balance.
9991 		 */
9992 		if (time_after_eq(jiffies, rq->next_balance)) {
9993 			struct rq_flags rf;
9994 
9995 			rq_lock_irqsave(rq, &rf);
9996 			update_rq_clock(rq);
9997 			rq_unlock_irqrestore(rq, &rf);
9998 
9999 			if (flags & NOHZ_BALANCE_KICK)
10000 				rebalance_domains(rq, CPU_IDLE);
10001 		}
10002 
10003 		if (time_after(next_balance, rq->next_balance)) {
10004 			next_balance = rq->next_balance;
10005 			update_next_balance = 1;
10006 		}
10007 	}
10008 
10009 	/*
10010 	 * next_balance will be updated only when there is a need.
10011 	 * When the CPU is attached to null domain for ex, it will not be
10012 	 * updated.
10013 	 */
10014 	if (likely(update_next_balance))
10015 		nohz.next_balance = next_balance;
10016 
10017 	/* Newly idle CPU doesn't need an update */
10018 	if (idle != CPU_NEWLY_IDLE) {
10019 		update_blocked_averages(this_cpu);
10020 		has_blocked_load |= this_rq->has_blocked_load;
10021 	}
10022 
10023 	if (flags & NOHZ_BALANCE_KICK)
10024 		rebalance_domains(this_rq, CPU_IDLE);
10025 
10026 	WRITE_ONCE(nohz.next_blocked,
10027 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10028 
10029 	/* The full idle balance loop has been done */
10030 	ret = true;
10031 
10032 abort:
10033 	/* There is still blocked load, enable periodic update */
10034 	if (has_blocked_load)
10035 		WRITE_ONCE(nohz.has_blocked, 1);
10036 
10037 	return ret;
10038 }
10039 
10040 /*
10041  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10042  * rebalancing for all the cpus for whom scheduler ticks are stopped.
10043  */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)10044 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10045 {
10046 	int this_cpu = this_rq->cpu;
10047 	unsigned int flags;
10048 
10049 	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
10050 		return false;
10051 
10052 	if (idle != CPU_IDLE) {
10053 		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
10054 		return false;
10055 	}
10056 
10057 	/* could be _relaxed() */
10058 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
10059 	if (!(flags & NOHZ_KICK_MASK))
10060 		return false;
10061 
10062 	_nohz_idle_balance(this_rq, flags, idle);
10063 
10064 	return true;
10065 }
10066 
nohz_newidle_balance(struct rq * this_rq)10067 static void nohz_newidle_balance(struct rq *this_rq)
10068 {
10069 	int this_cpu = this_rq->cpu;
10070 
10071 	/*
10072 	 * This CPU doesn't want to be disturbed by scheduler
10073 	 * housekeeping
10074 	 */
10075 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10076 		return;
10077 
10078 	/* Will wake up very soon. No time for doing anything else*/
10079 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
10080 		return;
10081 
10082 	/* Don't need to update blocked load of idle CPUs*/
10083 	if (!READ_ONCE(nohz.has_blocked) ||
10084 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10085 		return;
10086 
10087 	raw_spin_unlock(&this_rq->lock);
10088 	/*
10089 	 * This CPU is going to be idle and blocked load of idle CPUs
10090 	 * need to be updated. Run the ilb locally as it is a good
10091 	 * candidate for ilb instead of waking up another idle CPU.
10092 	 * Kick an normal ilb if we failed to do the update.
10093 	 */
10094 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10095 		kick_ilb(NOHZ_STATS_KICK);
10096 	raw_spin_lock(&this_rq->lock);
10097 }
10098 
10099 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)10100 static inline void nohz_balancer_kick(struct rq *rq) { }
10101 
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)10102 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10103 {
10104 	return false;
10105 }
10106 
nohz_newidle_balance(struct rq * this_rq)10107 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10108 #endif /* CONFIG_NO_HZ_COMMON */
10109 
10110 /*
10111  * idle_balance is called by schedule() if this_cpu is about to become
10112  * idle. Attempts to pull tasks from other CPUs.
10113  */
newidle_balance(struct rq * this_rq,struct rq_flags * rf)10114 int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10115 {
10116 	unsigned long next_balance = jiffies + HZ;
10117 	int this_cpu = this_rq->cpu;
10118 	struct sched_domain *sd;
10119 	int pulled_task = 0;
10120 	u64 curr_cost = 0;
10121 
10122 	update_misfit_status(NULL, this_rq);
10123 	/*
10124 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10125 	 * measure the duration of idle_balance() as idle time.
10126 	 */
10127 	this_rq->idle_stamp = rq_clock(this_rq);
10128 
10129 	/*
10130 	 * Do not pull tasks towards !active CPUs...
10131 	 */
10132 	if (!cpu_active(this_cpu))
10133 		return 0;
10134 
10135 	/*
10136 	 * This is OK, because current is on_cpu, which avoids it being picked
10137 	 * for load-balance and preemption/IRQs are still disabled avoiding
10138 	 * further scheduler activity on it and we're being very careful to
10139 	 * re-start the picking loop.
10140 	 */
10141 	rq_unpin_lock(this_rq, rf);
10142 
10143 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10144 	    !READ_ONCE(this_rq->rd->overload)) {
10145 
10146 		rcu_read_lock();
10147 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
10148 		if (sd)
10149 			update_next_balance(sd, &next_balance);
10150 		rcu_read_unlock();
10151 
10152 		nohz_newidle_balance(this_rq);
10153 
10154 		goto out;
10155 	}
10156 
10157 	raw_spin_unlock(&this_rq->lock);
10158 
10159 	update_blocked_averages(this_cpu);
10160 	rcu_read_lock();
10161 	for_each_domain(this_cpu, sd) {
10162 		int continue_balancing = 1;
10163 		u64 t0, domain_cost;
10164 
10165 		if (!(sd->flags & SD_LOAD_BALANCE))
10166 			continue;
10167 
10168 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10169 			update_next_balance(sd, &next_balance);
10170 			break;
10171 		}
10172 
10173 		if (sd->flags & SD_BALANCE_NEWIDLE) {
10174 			t0 = sched_clock_cpu(this_cpu);
10175 
10176 			pulled_task = load_balance(this_cpu, this_rq,
10177 						   sd, CPU_NEWLY_IDLE,
10178 						   &continue_balancing);
10179 
10180 			domain_cost = sched_clock_cpu(this_cpu) - t0;
10181 			if (domain_cost > sd->max_newidle_lb_cost)
10182 				sd->max_newidle_lb_cost = domain_cost;
10183 
10184 			curr_cost += domain_cost;
10185 		}
10186 
10187 		update_next_balance(sd, &next_balance);
10188 
10189 		/*
10190 		 * Stop searching for tasks to pull if there are
10191 		 * now runnable tasks on this rq.
10192 		 */
10193 		if (pulled_task || this_rq->nr_running > 0)
10194 			break;
10195 	}
10196 	rcu_read_unlock();
10197 
10198 	raw_spin_lock(&this_rq->lock);
10199 
10200 	if (curr_cost > this_rq->max_idle_balance_cost)
10201 		this_rq->max_idle_balance_cost = curr_cost;
10202 
10203 out:
10204 	/*
10205 	 * While browsing the domains, we released the rq lock, a task could
10206 	 * have been enqueued in the meantime. Since we're not going idle,
10207 	 * pretend we pulled a task.
10208 	 */
10209 	if (this_rq->cfs.h_nr_running && !pulled_task)
10210 		pulled_task = 1;
10211 
10212 	/* Move the next balance forward */
10213 	if (time_after(this_rq->next_balance, next_balance))
10214 		this_rq->next_balance = next_balance;
10215 
10216 	/* Is there a task of a high priority class? */
10217 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10218 		pulled_task = -1;
10219 
10220 	if (pulled_task)
10221 		this_rq->idle_stamp = 0;
10222 
10223 	rq_repin_lock(this_rq, rf);
10224 
10225 	return pulled_task;
10226 }
10227 
10228 /*
10229  * run_rebalance_domains is triggered when needed from the scheduler tick.
10230  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10231  */
run_rebalance_domains(struct softirq_action * h)10232 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10233 {
10234 	struct rq *this_rq = this_rq();
10235 	enum cpu_idle_type idle = this_rq->idle_balance ?
10236 						CPU_IDLE : CPU_NOT_IDLE;
10237 
10238 	/*
10239 	 * If this CPU has a pending nohz_balance_kick, then do the
10240 	 * balancing on behalf of the other idle CPUs whose ticks are
10241 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10242 	 * give the idle CPUs a chance to load balance. Else we may
10243 	 * load balance only within the local sched_domain hierarchy
10244 	 * and abort nohz_idle_balance altogether if we pull some load.
10245 	 */
10246 	if (nohz_idle_balance(this_rq, idle))
10247 		return;
10248 
10249 	/* normal load balance */
10250 	update_blocked_averages(this_rq->cpu);
10251 	rebalance_domains(this_rq, idle);
10252 }
10253 
10254 /*
10255  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10256  */
trigger_load_balance(struct rq * rq)10257 void trigger_load_balance(struct rq *rq)
10258 {
10259 	/* Don't need to rebalance while attached to NULL domain */
10260 	if (unlikely(on_null_domain(rq)))
10261 		return;
10262 
10263 	if (time_after_eq(jiffies, rq->next_balance))
10264 		raise_softirq(SCHED_SOFTIRQ);
10265 
10266 	nohz_balancer_kick(rq);
10267 }
10268 
rq_online_fair(struct rq * rq)10269 static void rq_online_fair(struct rq *rq)
10270 {
10271 	update_sysctl();
10272 
10273 	update_runtime_enabled(rq);
10274 }
10275 
rq_offline_fair(struct rq * rq)10276 static void rq_offline_fair(struct rq *rq)
10277 {
10278 	update_sysctl();
10279 
10280 	/* Ensure any throttled groups are reachable by pick_next_task */
10281 	unthrottle_offline_cfs_rqs(rq);
10282 }
10283 
10284 #endif /* CONFIG_SMP */
10285 
10286 /*
10287  * scheduler tick hitting a task of our scheduling class.
10288  *
10289  * NOTE: This function can be called remotely by the tick offload that
10290  * goes along full dynticks. Therefore no local assumption can be made
10291  * and everything must be accessed through the @rq and @curr passed in
10292  * parameters.
10293  */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)10294 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10295 {
10296 	struct cfs_rq *cfs_rq;
10297 	struct sched_entity *se = &curr->se;
10298 
10299 	for_each_sched_entity(se) {
10300 		cfs_rq = cfs_rq_of(se);
10301 		entity_tick(cfs_rq, se, queued);
10302 	}
10303 
10304 	if (static_branch_unlikely(&sched_numa_balancing))
10305 		task_tick_numa(rq, curr);
10306 
10307 	update_misfit_status(curr, rq);
10308 	update_overutilized_status(task_rq(curr));
10309 }
10310 
10311 /*
10312  * called on fork with the child task as argument from the parent's context
10313  *  - child not yet on the tasklist
10314  *  - preemption disabled
10315  */
task_fork_fair(struct task_struct * p)10316 static void task_fork_fair(struct task_struct *p)
10317 {
10318 	struct cfs_rq *cfs_rq;
10319 	struct sched_entity *se = &p->se, *curr;
10320 	struct rq *rq = this_rq();
10321 	struct rq_flags rf;
10322 
10323 	rq_lock(rq, &rf);
10324 	update_rq_clock(rq);
10325 
10326 	cfs_rq = task_cfs_rq(current);
10327 	curr = cfs_rq->curr;
10328 	if (curr) {
10329 		update_curr(cfs_rq);
10330 		se->vruntime = curr->vruntime;
10331 	}
10332 	place_entity(cfs_rq, se, 1);
10333 
10334 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10335 		/*
10336 		 * Upon rescheduling, sched_class::put_prev_task() will place
10337 		 * 'current' within the tree based on its new key value.
10338 		 */
10339 		swap(curr->vruntime, se->vruntime);
10340 		resched_curr(rq);
10341 	}
10342 
10343 	se->vruntime -= cfs_rq->min_vruntime;
10344 	rq_unlock(rq, &rf);
10345 }
10346 
10347 /*
10348  * Priority of the task has changed. Check to see if we preempt
10349  * the current task.
10350  */
10351 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)10352 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10353 {
10354 	if (!task_on_rq_queued(p))
10355 		return;
10356 
10357 	/*
10358 	 * Reschedule if we are currently running on this runqueue and
10359 	 * our priority decreased, or if we are not currently running on
10360 	 * this runqueue and our priority is higher than the current's
10361 	 */
10362 	if (rq->curr == p) {
10363 		if (p->prio > oldprio)
10364 			resched_curr(rq);
10365 	} else
10366 		check_preempt_curr(rq, p, 0);
10367 }
10368 
vruntime_normalized(struct task_struct * p)10369 static inline bool vruntime_normalized(struct task_struct *p)
10370 {
10371 	struct sched_entity *se = &p->se;
10372 
10373 	/*
10374 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10375 	 * the dequeue_entity(.flags=0) will already have normalized the
10376 	 * vruntime.
10377 	 */
10378 	if (p->on_rq)
10379 		return true;
10380 
10381 	/*
10382 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
10383 	 * But there are some cases where it has already been normalized:
10384 	 *
10385 	 * - A forked child which is waiting for being woken up by
10386 	 *   wake_up_new_task().
10387 	 * - A task which has been woken up by try_to_wake_up() and
10388 	 *   waiting for actually being woken up by sched_ttwu_pending().
10389 	 */
10390 	if (!se->sum_exec_runtime ||
10391 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
10392 		return true;
10393 
10394 	return false;
10395 }
10396 
10397 #ifdef CONFIG_FAIR_GROUP_SCHED
10398 /*
10399  * Propagate the changes of the sched_entity across the tg tree to make it
10400  * visible to the root
10401  */
propagate_entity_cfs_rq(struct sched_entity * se)10402 static void propagate_entity_cfs_rq(struct sched_entity *se)
10403 {
10404 	struct cfs_rq *cfs_rq;
10405 
10406 	list_add_leaf_cfs_rq(cfs_rq_of(se));
10407 
10408 	/* Start to propagate at parent */
10409 	se = se->parent;
10410 
10411 	for_each_sched_entity(se) {
10412 		cfs_rq = cfs_rq_of(se);
10413 
10414 		if (!cfs_rq_throttled(cfs_rq)){
10415 			update_load_avg(cfs_rq, se, UPDATE_TG);
10416 			list_add_leaf_cfs_rq(cfs_rq);
10417 			continue;
10418 		}
10419 
10420 		if (list_add_leaf_cfs_rq(cfs_rq))
10421 			break;
10422 	}
10423 }
10424 #else
propagate_entity_cfs_rq(struct sched_entity * se)10425 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10426 #endif
10427 
detach_entity_cfs_rq(struct sched_entity * se)10428 static void detach_entity_cfs_rq(struct sched_entity *se)
10429 {
10430 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10431 
10432 	/* Catch up with the cfs_rq and remove our load when we leave */
10433 	update_load_avg(cfs_rq, se, 0);
10434 	detach_entity_load_avg(cfs_rq, se);
10435 	update_tg_load_avg(cfs_rq, false);
10436 	propagate_entity_cfs_rq(se);
10437 }
10438 
attach_entity_cfs_rq(struct sched_entity * se)10439 static void attach_entity_cfs_rq(struct sched_entity *se)
10440 {
10441 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10442 
10443 #ifdef CONFIG_FAIR_GROUP_SCHED
10444 	/*
10445 	 * Since the real-depth could have been changed (only FAIR
10446 	 * class maintain depth value), reset depth properly.
10447 	 */
10448 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10449 #endif
10450 
10451 	/* Synchronize entity with its cfs_rq */
10452 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10453 	attach_entity_load_avg(cfs_rq, se, 0);
10454 	update_tg_load_avg(cfs_rq, false);
10455 	propagate_entity_cfs_rq(se);
10456 }
10457 
detach_task_cfs_rq(struct task_struct * p)10458 static void detach_task_cfs_rq(struct task_struct *p)
10459 {
10460 	struct sched_entity *se = &p->se;
10461 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10462 
10463 	if (!vruntime_normalized(p)) {
10464 		/*
10465 		 * Fix up our vruntime so that the current sleep doesn't
10466 		 * cause 'unlimited' sleep bonus.
10467 		 */
10468 		place_entity(cfs_rq, se, 0);
10469 		se->vruntime -= cfs_rq->min_vruntime;
10470 	}
10471 
10472 	detach_entity_cfs_rq(se);
10473 }
10474 
attach_task_cfs_rq(struct task_struct * p)10475 static void attach_task_cfs_rq(struct task_struct *p)
10476 {
10477 	struct sched_entity *se = &p->se;
10478 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10479 
10480 	attach_entity_cfs_rq(se);
10481 
10482 	if (!vruntime_normalized(p))
10483 		se->vruntime += cfs_rq->min_vruntime;
10484 }
10485 
switched_from_fair(struct rq * rq,struct task_struct * p)10486 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10487 {
10488 	detach_task_cfs_rq(p);
10489 }
10490 
switched_to_fair(struct rq * rq,struct task_struct * p)10491 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10492 {
10493 	attach_task_cfs_rq(p);
10494 
10495 	if (task_on_rq_queued(p)) {
10496 		/*
10497 		 * We were most likely switched from sched_rt, so
10498 		 * kick off the schedule if running, otherwise just see
10499 		 * if we can still preempt the current task.
10500 		 */
10501 		if (rq->curr == p)
10502 			resched_curr(rq);
10503 		else
10504 			check_preempt_curr(rq, p, 0);
10505 	}
10506 }
10507 
10508 /* Account for a task changing its policy or group.
10509  *
10510  * This routine is mostly called to set cfs_rq->curr field when a task
10511  * migrates between groups/classes.
10512  */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)10513 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
10514 {
10515 	struct sched_entity *se = &p->se;
10516 
10517 #ifdef CONFIG_SMP
10518 	if (task_on_rq_queued(p)) {
10519 		/*
10520 		 * Move the next running task to the front of the list, so our
10521 		 * cfs_tasks list becomes MRU one.
10522 		 */
10523 		list_move(&se->group_node, &rq->cfs_tasks);
10524 	}
10525 #endif
10526 
10527 	for_each_sched_entity(se) {
10528 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10529 
10530 		set_next_entity(cfs_rq, se);
10531 		/* ensure bandwidth has been allocated on our new cfs_rq */
10532 		account_cfs_rq_runtime(cfs_rq, 0);
10533 	}
10534 }
10535 
init_cfs_rq(struct cfs_rq * cfs_rq)10536 void init_cfs_rq(struct cfs_rq *cfs_rq)
10537 {
10538 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10539 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10540 #ifndef CONFIG_64BIT
10541 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10542 #endif
10543 #ifdef CONFIG_SMP
10544 	raw_spin_lock_init(&cfs_rq->removed.lock);
10545 #endif
10546 }
10547 
10548 #ifdef CONFIG_FAIR_GROUP_SCHED
task_set_group_fair(struct task_struct * p)10549 static void task_set_group_fair(struct task_struct *p)
10550 {
10551 	struct sched_entity *se = &p->se;
10552 
10553 	set_task_rq(p, task_cpu(p));
10554 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10555 }
10556 
task_move_group_fair(struct task_struct * p)10557 static void task_move_group_fair(struct task_struct *p)
10558 {
10559 	detach_task_cfs_rq(p);
10560 	set_task_rq(p, task_cpu(p));
10561 
10562 #ifdef CONFIG_SMP
10563 	/* Tell se's cfs_rq has been changed -- migrated */
10564 	p->se.avg.last_update_time = 0;
10565 #endif
10566 	attach_task_cfs_rq(p);
10567 }
10568 
task_change_group_fair(struct task_struct * p,int type)10569 static void task_change_group_fair(struct task_struct *p, int type)
10570 {
10571 	switch (type) {
10572 	case TASK_SET_GROUP:
10573 		task_set_group_fair(p);
10574 		break;
10575 
10576 	case TASK_MOVE_GROUP:
10577 		task_move_group_fair(p);
10578 		break;
10579 	}
10580 }
10581 
free_fair_sched_group(struct task_group * tg)10582 void free_fair_sched_group(struct task_group *tg)
10583 {
10584 	int i;
10585 
10586 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10587 
10588 	for_each_possible_cpu(i) {
10589 		if (tg->cfs_rq)
10590 			kfree(tg->cfs_rq[i]);
10591 		if (tg->se)
10592 			kfree(tg->se[i]);
10593 	}
10594 
10595 	kfree(tg->cfs_rq);
10596 	kfree(tg->se);
10597 }
10598 
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)10599 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10600 {
10601 	struct sched_entity *se;
10602 	struct cfs_rq *cfs_rq;
10603 	int i;
10604 
10605 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10606 	if (!tg->cfs_rq)
10607 		goto err;
10608 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10609 	if (!tg->se)
10610 		goto err;
10611 
10612 	tg->shares = NICE_0_LOAD;
10613 
10614 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10615 
10616 	for_each_possible_cpu(i) {
10617 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10618 				      GFP_KERNEL, cpu_to_node(i));
10619 		if (!cfs_rq)
10620 			goto err;
10621 
10622 		se = kzalloc_node(sizeof(struct sched_entity),
10623 				  GFP_KERNEL, cpu_to_node(i));
10624 		if (!se)
10625 			goto err_free_rq;
10626 
10627 		init_cfs_rq(cfs_rq);
10628 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10629 		init_entity_runnable_average(se);
10630 	}
10631 
10632 	return 1;
10633 
10634 err_free_rq:
10635 	kfree(cfs_rq);
10636 err:
10637 	return 0;
10638 }
10639 
online_fair_sched_group(struct task_group * tg)10640 void online_fair_sched_group(struct task_group *tg)
10641 {
10642 	struct sched_entity *se;
10643 	struct rq_flags rf;
10644 	struct rq *rq;
10645 	int i;
10646 
10647 	for_each_possible_cpu(i) {
10648 		rq = cpu_rq(i);
10649 		se = tg->se[i];
10650 		rq_lock_irq(rq, &rf);
10651 		update_rq_clock(rq);
10652 		attach_entity_cfs_rq(se);
10653 		sync_throttle(tg, i);
10654 		rq_unlock_irq(rq, &rf);
10655 	}
10656 }
10657 
unregister_fair_sched_group(struct task_group * tg)10658 void unregister_fair_sched_group(struct task_group *tg)
10659 {
10660 	unsigned long flags;
10661 	struct rq *rq;
10662 	int cpu;
10663 
10664 	for_each_possible_cpu(cpu) {
10665 		if (tg->se[cpu])
10666 			remove_entity_load_avg(tg->se[cpu]);
10667 
10668 		/*
10669 		 * Only empty task groups can be destroyed; so we can speculatively
10670 		 * check on_list without danger of it being re-added.
10671 		 */
10672 		if (!tg->cfs_rq[cpu]->on_list)
10673 			continue;
10674 
10675 		rq = cpu_rq(cpu);
10676 
10677 		raw_spin_lock_irqsave(&rq->lock, flags);
10678 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10679 		raw_spin_unlock_irqrestore(&rq->lock, flags);
10680 	}
10681 }
10682 
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)10683 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10684 			struct sched_entity *se, int cpu,
10685 			struct sched_entity *parent)
10686 {
10687 	struct rq *rq = cpu_rq(cpu);
10688 
10689 	cfs_rq->tg = tg;
10690 	cfs_rq->rq = rq;
10691 	init_cfs_rq_runtime(cfs_rq);
10692 
10693 	tg->cfs_rq[cpu] = cfs_rq;
10694 	tg->se[cpu] = se;
10695 
10696 	/* se could be NULL for root_task_group */
10697 	if (!se)
10698 		return;
10699 
10700 	if (!parent) {
10701 		se->cfs_rq = &rq->cfs;
10702 		se->depth = 0;
10703 	} else {
10704 		se->cfs_rq = parent->my_q;
10705 		se->depth = parent->depth + 1;
10706 	}
10707 
10708 	se->my_q = cfs_rq;
10709 	/* guarantee group entities always have weight */
10710 	update_load_set(&se->load, NICE_0_LOAD);
10711 	se->parent = parent;
10712 }
10713 
10714 static DEFINE_MUTEX(shares_mutex);
10715 
sched_group_set_shares(struct task_group * tg,unsigned long shares)10716 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10717 {
10718 	int i;
10719 
10720 	/*
10721 	 * We can't change the weight of the root cgroup.
10722 	 */
10723 	if (!tg->se[0])
10724 		return -EINVAL;
10725 
10726 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10727 
10728 	mutex_lock(&shares_mutex);
10729 	if (tg->shares == shares)
10730 		goto done;
10731 
10732 	tg->shares = shares;
10733 	for_each_possible_cpu(i) {
10734 		struct rq *rq = cpu_rq(i);
10735 		struct sched_entity *se = tg->se[i];
10736 		struct rq_flags rf;
10737 
10738 		/* Propagate contribution to hierarchy */
10739 		rq_lock_irqsave(rq, &rf);
10740 		update_rq_clock(rq);
10741 		for_each_sched_entity(se) {
10742 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10743 			update_cfs_group(se);
10744 		}
10745 		rq_unlock_irqrestore(rq, &rf);
10746 	}
10747 
10748 done:
10749 	mutex_unlock(&shares_mutex);
10750 	return 0;
10751 }
10752 #else /* CONFIG_FAIR_GROUP_SCHED */
10753 
free_fair_sched_group(struct task_group * tg)10754 void free_fair_sched_group(struct task_group *tg) { }
10755 
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)10756 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10757 {
10758 	return 1;
10759 }
10760 
online_fair_sched_group(struct task_group * tg)10761 void online_fair_sched_group(struct task_group *tg) { }
10762 
unregister_fair_sched_group(struct task_group * tg)10763 void unregister_fair_sched_group(struct task_group *tg) { }
10764 
10765 #endif /* CONFIG_FAIR_GROUP_SCHED */
10766 
10767 
get_rr_interval_fair(struct rq * rq,struct task_struct * task)10768 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10769 {
10770 	struct sched_entity *se = &task->se;
10771 	unsigned int rr_interval = 0;
10772 
10773 	/*
10774 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10775 	 * idle runqueue:
10776 	 */
10777 	if (rq->cfs.load.weight)
10778 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10779 
10780 	return rr_interval;
10781 }
10782 
10783 /*
10784  * All the scheduling class methods:
10785  */
10786 const struct sched_class fair_sched_class = {
10787 	.next			= &idle_sched_class,
10788 	.enqueue_task		= enqueue_task_fair,
10789 	.dequeue_task		= dequeue_task_fair,
10790 	.yield_task		= yield_task_fair,
10791 	.yield_to_task		= yield_to_task_fair,
10792 
10793 	.check_preempt_curr	= check_preempt_wakeup,
10794 
10795 	.pick_next_task		= pick_next_task_fair,
10796 	.put_prev_task		= put_prev_task_fair,
10797 	.set_next_task          = set_next_task_fair,
10798 
10799 #ifdef CONFIG_SMP
10800 	.balance		= balance_fair,
10801 	.select_task_rq		= select_task_rq_fair,
10802 	.migrate_task_rq	= migrate_task_rq_fair,
10803 
10804 	.rq_online		= rq_online_fair,
10805 	.rq_offline		= rq_offline_fair,
10806 
10807 	.task_dead		= task_dead_fair,
10808 	.set_cpus_allowed	= set_cpus_allowed_common,
10809 #endif
10810 
10811 	.task_tick		= task_tick_fair,
10812 	.task_fork		= task_fork_fair,
10813 
10814 	.prio_changed		= prio_changed_fair,
10815 	.switched_from		= switched_from_fair,
10816 	.switched_to		= switched_to_fair,
10817 
10818 	.get_rr_interval	= get_rr_interval_fair,
10819 
10820 	.update_curr		= update_curr_fair,
10821 
10822 #ifdef CONFIG_FAIR_GROUP_SCHED
10823 	.task_change_group	= task_change_group_fair,
10824 #endif
10825 
10826 #ifdef CONFIG_UCLAMP_TASK
10827 	.uclamp_enabled		= 1,
10828 #endif
10829 };
10830 
10831 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)10832 void print_cfs_stats(struct seq_file *m, int cpu)
10833 {
10834 	struct cfs_rq *cfs_rq, *pos;
10835 
10836 	rcu_read_lock();
10837 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10838 		print_cfs_rq(m, cpu, cfs_rq);
10839 	rcu_read_unlock();
10840 }
10841 
10842 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)10843 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10844 {
10845 	int node;
10846 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10847 	struct numa_group *ng;
10848 
10849 	rcu_read_lock();
10850 	ng = rcu_dereference(p->numa_group);
10851 	for_each_online_node(node) {
10852 		if (p->numa_faults) {
10853 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10854 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10855 		}
10856 		if (ng) {
10857 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
10858 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
10859 		}
10860 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10861 	}
10862 	rcu_read_unlock();
10863 }
10864 #endif /* CONFIG_NUMA_BALANCING */
10865 #endif /* CONFIG_SCHED_DEBUG */
10866 
init_sched_fair_class(void)10867 __init void init_sched_fair_class(void)
10868 {
10869 #ifdef CONFIG_SMP
10870 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10871 
10872 #ifdef CONFIG_NO_HZ_COMMON
10873 	nohz.next_balance = jiffies;
10874 	nohz.next_blocked = jiffies;
10875 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10876 #endif
10877 #endif /* SMP */
10878 
10879 }
10880 
10881 /*
10882  * Helper functions to facilitate extracting info from tracepoints.
10883  */
10884 
sched_trace_cfs_rq_avg(struct cfs_rq * cfs_rq)10885 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
10886 {
10887 #ifdef CONFIG_SMP
10888 	return cfs_rq ? &cfs_rq->avg : NULL;
10889 #else
10890 	return NULL;
10891 #endif
10892 }
10893 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
10894 
sched_trace_cfs_rq_path(struct cfs_rq * cfs_rq,char * str,int len)10895 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
10896 {
10897 	if (!cfs_rq) {
10898 		if (str)
10899 			strlcpy(str, "(null)", len);
10900 		else
10901 			return NULL;
10902 	}
10903 
10904 	cfs_rq_tg_path(cfs_rq, str, len);
10905 	return str;
10906 }
10907 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
10908 
sched_trace_cfs_rq_cpu(struct cfs_rq * cfs_rq)10909 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
10910 {
10911 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
10912 }
10913 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
10914 
sched_trace_rq_avg_rt(struct rq * rq)10915 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
10916 {
10917 #ifdef CONFIG_SMP
10918 	return rq ? &rq->avg_rt : NULL;
10919 #else
10920 	return NULL;
10921 #endif
10922 }
10923 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
10924 
sched_trace_rq_avg_dl(struct rq * rq)10925 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
10926 {
10927 #ifdef CONFIG_SMP
10928 	return rq ? &rq->avg_dl : NULL;
10929 #else
10930 	return NULL;
10931 #endif
10932 }
10933 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
10934 
sched_trace_rq_avg_irq(struct rq * rq)10935 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
10936 {
10937 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
10938 	return rq ? &rq->avg_irq : NULL;
10939 #else
10940 	return NULL;
10941 #endif
10942 }
10943 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
10944 
sched_trace_rq_cpu(struct rq * rq)10945 int sched_trace_rq_cpu(struct rq *rq)
10946 {
10947 	return rq ? cpu_of(rq) : -1;
10948 }
10949 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
10950 
sched_trace_rd_span(struct root_domain * rd)10951 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
10952 {
10953 #ifdef CONFIG_SMP
10954 	return rd ? rd->span : NULL;
10955 #else
10956 	return NULL;
10957 #endif
10958 }
10959 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
10960